Assumption-Commitment Support for CSP Model Checking
Paris-Sud XI, Université de
AVoCS 2006 Assumption-Commitment Support for CSP Model Checking Nick Moffat1 Systems Assurance using CSP. In our formulation, an assumption-commitment style property of a process SYS takes the form-Guarantee, CSP, Model Checking, Compositional Reasoning 1 Introduction The principle of compositional program
Utilizing Symmetry when Model Checking under Fairness Assumptions: An Automatatheoretic
Emerson, E. Allen
Â current Programming General Terms: Verification, Model Checking, Temporal Logic, Abstraction AdditionalUtilizing Symmetry when Model Checking under Fairness Assumptions: An AutomataÂtheoretic Approach E temporal logic model checking. In previous work it is shown how, using some basic notions of group theory
Cost and Performance Assumptions for Modeling Electricity Generation Technologies
Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.
2010-11-01T23:59:59.000Z
The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.
CBE UFAD cost analysis tool: Life cycle cost model, issues and assumptions
Webster, Tom; Benedek, Corinne; Bauman, Fred
2008-01-01T23:59:59.000Z
Building Maintenance and Repair Cost Reference. ” WhitestoneJ. Wallis and H. Lin. 2008. “CBE UFAD Cost Analysis Tool:UFAD First Cost Model, Issues and Assumptions. ” Center for
On the assumption of mutual independence of jitter realizations in P-TRNG stochastic models
Paris-Sud XI, Université de
On the assumption of mutual independence of jitter realizations in P-TRNG stochastic models Patrick at transistor level and on conversion of the noise to the clock jitter exploited at the generator level. Using this approach, we can estimate proportion of the jitter coming only from the thermal noise, which is included
Juven Wang; Jiunn-Wei Chen
2015-01-08T23:59:59.000Z
Fundamental properties of macroscopic gene-mating dynamic evolutionary systems are investigated. A model is proposed to describe a large class of systems within population genetics. We focus on a single locus, arbitrary number alleles in a two-gender dioecious population. Our governing equations are time-dependent continuous differential equations labeled by a set of genotype frequencies. The full parameter space consists of all allowed genotype frequencies. Our equations are uniquely derived from four fundamental assumptions within any population: (1) a closed system; (2) average-and-random mating process (mean-field behavior); (3) Mendelian inheritance; (4) exponential growth and exponential death. Even though our equations are non-linear with time evolutionary dynamics, we have an exactly solvable model. Our findings are summarized from phenomenological and mathematical viewpoints. From the phenomenological viewpoint, any initial genotype frequency of a closed system will eventually approach a stable fixed point. Under time evolution, we show (1) the monotonic behavior of genotype frequencies, (2) any genotype or allele that appears in the population will never become extinct, (3) the Hardy-Weinberg law, and (4) the global stability without chaos in the parameter space. To demonstrate the experimental evidence, as an example, we show a mapping from the blood type genotype frequencies of world ethnic groups to our stable fixed-point solutions. From the mathematical viewpoint, the equilibrium solutions consist of a base manifold as a global stable attractor, attracting any initial point in a Euclidean fiber bundle to the fixed point where the fiber is attached. We can define the genetic distance of two populations as their geodesic distance on the equilibrium manifold. In addition, the modification of our theory under the process of natural selection and mutation is addressed.
Dimension Reduction and Covariance Structure for Multivariate Data, Beyond Gaussian Assumption
Maadooliat, Mehdi
2012-10-19T23:59:59.000Z
are based on the PCA, and thus may not work well when there is non-Gaussian structure in the data. To address this issue, a likelihood based data transformation method with a computationally efficient algorithm is developed. Also, a new multivariate...
Arthur S. Rood; Swen O. Magnuson
2009-07-01T23:59:59.000Z
This document is in response to a request by Ming Zhu, DOE-EM to provide a preliminary review of existing models and data used in completed or soon to be completed Performance Assessments and Composite Analyses (PA/CA) documents, to identify codes, methodologies, main assumptions, and key data sets used.
Sensitivity of economic performance of the nuclear fuel cycle to simulation modeling assumptions
Bonnet, Nicéphore
2007-01-01T23:59:59.000Z
Comparing different nuclear fuel cycles and assessing their implications require a fuel cycle simulation model as complete and realistic as possible. In this thesis, methodological implications of modeling choices are ...
What are the Starting Points? Evaluating Base-Year Assumptions in the Asian Modeling Exercise
Chaturvedi, Vaibhav; Waldhoff, Stephanie; Clarke, Leon E.; Fujimori, Shinichiro
2012-12-01T23:59:59.000Z
A common feature of model inter-comparison efforts is that the base year numbers for important parameters such as population and GDP can differ substantially across models. This paper explores the sources and implications of this variation in Asian countries across the models participating in the Asian Modeling Exercise (AME). Because the models do not all have a common base year, each team was required to provide data for 2005 for comparison purposes. This paper compares the year 2005 information for different models, noting the degree of variation in important parameters, including population, GDP, primary energy, electricity, and CO2 emissions. It then explores the difference in these key parameters across different sources of base-year information. The analysis confirms that the sources provide different values for many key parameters. This variation across data sources and additional reasons why models might provide different base-year numbers, including differences in regional definitions, differences in model base year, and differences in GDP transformation methodologies, are then discussed in the context of the AME scenarios. Finally, the paper explores the implications of base-year variation on long-term model results.
is with the Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706 USA (e Abstract--One important assumption in a model of an electricity market is the format of bids and costs. Most literature on electricity markets uses piecewise linear or quadratic functions to represent costs
Supply Limitations 8 Withi h B l i8. Within-hour Balancing 9. Capacity and Energy Values for Wind · Independent Power Producers C t ti· Current assumptions · Winter: full availability ~ 3,200 MW · Summer: 1 t b it d d li d· Thermal: must be sited and licensed · Wind/solar: must be sited and licensed · EE
Wood, D.J.
2010-01-01T23:59:59.000Z
of residential space heating technology choice. That choicemarket for space heating technologies. EPRI modeled thesethe selection of space heating technology. It is more likely
Post, Ellen S.; Grambsch, A.; Weaver, C. P.; Morefield, Philip; Huang, Jin; Leung, Lai-Yung R.; Nolte, Christopher G.; Adams, P. J.; Liang, Xin-Zhong; Zhu, J.; Mahoney, Hardee
2012-11-01T23:59:59.000Z
Future climate change may cause air quality degradation via climate-induced changes in meteorology, atmospheric chemistry, and emissions into the air. Few studies have explicitly modeled the potential relationships between climate change, air quality, and human health, and fewer still have investigated the sensitivity of estimates to the underlying modeling choices.
Modelling intonational structure using hidden markov models.
Wright, Helen; Taylor, Paul A
1997-01-01T23:59:59.000Z
A method is introduced for using hidden Markov models (HMMs) to model intonational structure. HMMs are probabilistic and can capture the variability in structure which previous finite state network models lack. We show ...
Protein Structure Modeling With MODELLER Narayanan Eswar$
Sali, Andrej
of MODELLER to construct a comparative model for a protein with unknown structure. Automation of similar se- quence and the template(s); (iii) building a model based on the alignment with the cho- sen user intervention and within minutes on a desktop computer. Apart from model building, MODELLER can
Input on basic assumptions Larry Hughes, Mandeep Dhaliwal, Keshab Gajurel,
Hughes, Larry
are in constant or chained dollars. #12;Energy Research Group: Input on basic assumptions 2 $0 $50 $100 $150 $200, the #12;Energy Research Group: Input on basic assumptions 3 2.3. Other greenhouse gases In addition to CO2 be included in the IRP model. 3.2. Emissions reduction technology NSPI's basic assumptions include SO2, NOx
SPAR Model Structural Efficiencies
John Schroeder; Dan Henry
2013-04-01T23:59:59.000Z
The Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) are supporting initiatives aimed at improving the quality of probabilistic risk assessments (PRAs). Included in these initiatives are the resolution of key technical issues that are have been judged to have the most significant influence on the baseline core damage frequency of the NRC’s Standardized Plant Analysis Risk (SPAR) models and licensee PRA models. Previous work addressed issues associated with support system initiating event analysis and loss of off-site power/station blackout analysis. The key technical issues were: • Development of a standard methodology and implementation of support system initiating events • Treatment of loss of offsite power • Development of standard approach for emergency core cooling following containment failure Some of the related issues were not fully resolved. This project continues the effort to resolve outstanding issues. The work scope was intended to include substantial collaboration with EPRI; however, EPRI has had other higher priority initiatives to support. Therefore this project has addressed SPAR modeling issues. The issues addressed are • SPAR model transparency • Common cause failure modeling deficiencies and approaches • Ac and dc modeling deficiencies and approaches • Instrumentation and control system modeling deficiencies and approaches
Vonessen, Nikolaus
.1 Electricity 2% 2% 231.7 3.7 Fuel Oil 9% 8% 240.8 3.9 Natural Gas -25% 0% 253.1 5.1 Lab Gas 0% 0% 260.3 2.8 Water 3% 3% 273.2 5.0 Sewer 6% 5% 279.3 2.2 Garbage 4% 4% 281.8 0.9 *FY13 based on projections dated 6.03% 18.46% 3.33% 5.54% Higher Education Price Index (HEPI)* Utility Assumptions Fiscal Year 2002 3,679 3
STRUCTURED TEXT RETRIEVAL MODELS Djoerd Hiemstra
Hiemstra, Djoerd
and manipulating content and hierarchical structure such as the parsed strings model [10], PAT expressions [15STRUCTURED TEXT RETRIEVAL MODELS Djoerd Hiemstra University of Twente http DEFINITION Structured text retrieval models provide a formal definition or mathematical framework
Structural Analysis of Combustion Models
Tóth, J; Zsély, I
2013-01-01T23:59:59.000Z
Using ReactionKinetics, a Mathematica based package a few dozen detailed models for combustion of hydrogen, carbon monoxide and methanol are investigated. Essential structural characteristics are pulled out, and similarities and differences of the mechanisms are highlighted. These investigations can be used before or parallel with usual numerical investigations, such as pathway analysis, sensitivity analysis, parameter estimation, or simulation.
Testing the assumptions of linear prediction analysis in normal vowels
Max Little; Patrick E. McSharry; Irene M. Moroz; Stephen J. Roberts
2006-01-04T23:59:59.000Z
This paper develops an improved surrogate data test to show experimental evidence, for all the simple vowels of US English, for both male and female speakers, that Gaussian linear prediction analysis, a ubiquitous technique in current speech technologies, cannot be used to extract all the dynamical structure of real speech time series. The test provides robust evidence undermining the validity of these linear techniques, supporting the assumptions of either dynamical nonlinearity and/or non-Gaussianity common to more recent, complex, efforts at dynamical modelling speech time series. However, an additional finding is that the classical assumptions cannot be ruled out entirely, and plausible evidence is given to explain the success of the linear Gaussian theory as a weak approximation to the true, nonlinear/non-Gaussian dynamics. This supports the use of appropriate hybrid linear/nonlinear/non-Gaussian modelling. With a calibrated calculation of statistic and particular choice of experimental protocol, some of the known systematic problems of the method of surrogate data testing are circumvented to obtain results to support the conclusions to a high level of significance.
Van Weverberg, K.; van Lipzig, N. P. M.; Delobbe, L.
2011-02-01T23:59:59.000Z
This study investigates the sensitivity of moist processes and surface precipitation during three extreme precipitation events over Belgium to the representation of rain, snow and hail size distributions in a bulk one-moment microphysics parameterisation scheme. Sensitivities included the use of empirically derived relations to calculate the slope parameter and diagnose the intercept parameter of the exponential snow and rain size distributions and sensitivities to the treatment of hail/graupel. A detailed evaluation of the experiments against various high temporal resolution and spatially distributed observational data was performed to understand how moist processes responded to the implemented size distribution modifications. Net vapor consumption by microphysical processes was found to be unaffected by snow or rain size distribution modifications, while it was reduced replacing formulations for hail by those typical for graupel, mainly due to intense sublimation of graupel. Cloud optical thickness was overestimated in all experiments and all cases, likely due to overestimated snow amounts. The overestimation slightly deteriorated by modifying the rain and snow size distributions due to increased snow depositional growth, while it was reduced by including graupel. The latter was mainly due to enhanced cloud water collection by graupel and reduced snow depositional growth. Radar reflectivity and cloud optical thickness could only be realistically represented by inclusion of graupel during a stratiform case, while hail was found indispensable to simulate the vertical reflectivity profile and the surface precipitation structure. Precipitation amount was not much altered by any of the modifications made and the general overestimation was only decreased slightly during a supercell convective case.
Structure formation: Models, Dynamics and Status
T. Padmanabhan
1995-08-25T23:59:59.000Z
The constraints on the models for the structure formation arising from various cosmological observations at different length scales are reviewed. The status of different models for structure formation is examined critically in the light of these observations.
Structural model uncertainty in stochastic simulation
McKay, M.D.; Morrison, J.D. [Los Alamos National Lab., NM (United States). Technology and Safety Assessment Div.
1997-09-01T23:59:59.000Z
Prediction uncertainty in stochastic simulation models can be described by a hierarchy of components: stochastic variability at the lowest level, input and parameter uncertainty at a higher level, and structural model uncertainty at the top. It is argued that a usual paradigm for analysis of input uncertainty is not suitable for application to structural model uncertainty. An approach more likely to produce an acceptable methodology for analyzing structural model uncertainty is one that uses characteristics specific to the particular family of models.
Appendix MASS: Performance Assessment Modeling Assumptions
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm BiofuelinAnalysis ofAntonyaFederal Facility B-1
The Power of a Few Large Blocks: A credible assumption with incredible efficiency
Foster, Dean P.
i.i.d. assumption about the error structure, the two-sample t-statistic for oil was significantThe Power of a Few Large Blocks: A credible assumption with incredible efficiency Dongyu Lin and Dean P. Foster Abstract The most powerful assumption in data analysis is that of independence. Unfortu
Model Structure Analysis for Model-based Operation of
Van den Hof, Paul
conducted in the framework of the "Integrated System Approach Petroleum Production" (ISAPP) programmeModel Structure Analysis for Model-based Operation of Petroleum Reservoirs #12;#12;MODEL STRUCTURE ANALYSIS FOR MODEL-BASED OPERATION OF PETROLEUM RESERVOIRS PROEFSCHRIFT ter verkrijging van de graad van
Smart Structures: Model Development and Control Applications
Smart Structures: Model Development and Control Applications Ralph C. Smith Center for Research for smart structure which utilize piezoelectric, electrostrictive, magnetostrictive or shape memory alloys of the structure. The limitations on the mass and size of transducers are often relaxed in industrial applications
Bayesian Multivariate Autoregressive Models with Structured Priors
Roberts, Stephen
Bayesian Multivariate Autoregressive Models with Structured Priors W:D:Penny 1 and S:J:Roberts 2 (1) learning algorithm for param- eter estimation and model order selection in Multivariate Autoregressive (MAR and electro-encephalogram (EEG) data. 2 #12; 1 Introduction The Multivariate Autoregressive (MAR) process
Counterexamples to commonly held Assumptions on
Gatterbauer, Wolfgang
Counterexamples to commonly held Assumptions on Unit Commitment and Market Power Assessment NAPS and Decentralized Unit Commitment (PoolCo vs. PX) Â· Determination of Market Power revisiting the fundamental Information 1: PoolCo vs PX Â· Unit Commitment: Technological constraints (minimum up-time, starting costs
Preliminary Assumptions for Natural Gas Peaking
; adjusted to 2012$, state construction cost index, vintage of cost estimate, scope of estimate to extent's Discussion Aeroderivative Gas Turbine Technology Proposed reference plant and assumptions Preliminary cost Robbins 2 #12;Peaking Power Plant Characteristics 6th Power Plan ($2006) Unit Size (MW) Capital Cost ($/k
Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions revisited and found inadequate
Sulsky, Deborah L.
the Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions about pack ice behavior with an eye to modeling the behavior of pack ice. A model based on these assumptions is needed to represent the deformation and stress in pack ice on scales from 10 to 100 km, and would need to explicitly resolve discontinuities
Bilayer Structure and Lipid Dynamics in a Model Stratum Corneum...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Bilayer Structure and Lipid Dynamics in a Model Stratum Corneum with Oleic Acid. Bilayer Structure and Lipid Dynamics in a Model Stratum Corneum with Oleic Acid. Abstract: The...
Modeling Fission Product Sorption in Graphite Structures
Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)
2013-04-08T23:59:59.000Z
The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products on each type of graphite site. The model will include multiple simultaneous adsorbing species, which will allow for competitive adsorption effects between different fission product species and O and OH (for modeling accident conditions).
Feature extraction for structural dynamics model validation
Hemez, Francois [Los Alamos National Laboratory; Farrar, Charles [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Nishio, Mayuko [UNIV OF TOKYO; Worden, Keith [UNIV OF SHEFFIELD; Takeda, Nobuo [UNIV OF TOKYO
2010-11-08T23:59:59.000Z
This study focuses on defining and comparing response features that can be used for structural dynamics model validation studies. Features extracted from dynamic responses obtained analytically or experimentally, such as basic signal statistics, frequency spectra, and estimated time-series models, can be used to compare characteristics of structural system dynamics. By comparing those response features extracted from experimental data and numerical outputs, validation and uncertainty quantification of numerical model containing uncertain parameters can be realized. In this study, the applicability of some response features to model validation is first discussed using measured data from a simple test-bed structure and the associated numerical simulations of these experiments. issues that must be considered were sensitivity, dimensionality, type of response, and presence or absence of measurement noise in the response. Furthermore, we illustrate a comparison method of multivariate feature vectors for statistical model validation. Results show that the outlier detection technique using the Mahalanobis distance metric can be used as an effective and quantifiable technique for selecting appropriate model parameters. However, in this process, one must not only consider the sensitivity of the features being used, but also correlation of the parameters being compared.
The role of geologic assumptions in solving complex contaminant transport problems
Bustamante, Louis Sorola
1995-01-01T23:59:59.000Z
Commonly used ground-water flow and con t transport computer models often assume a homogeneous, isotropic medium. Most hydrogeological systems are very complex and violate the basic assumptions underlying these models. However, even complex...
Grothey, Andreas
Optimization Modelling Example Design Implementation Conclusions A Structure-Conveying Modelling Languages for Mathematical Programming 3 An example problem from network design 4 Design of Structured, K. Woodsend Structure-Conveying Modelling Language #12;Optimization Modelling Example Design
Turbulence model of the cosmic structure
Jose Gaite
2012-02-14T23:59:59.000Z
The Kolmogorov approach to turbulence is applied to the Burgers turbulence in the stochastic adhesion model of large-scale structure formation. As the perturbative approach to this model is unreliable, here is proposed a new, non-perturbative approach, based on a suitable formulation of Kolmogorov's scaling laws. This approach suggests that the power-law exponent of the matter density two-point correlation function is in the range 1--1.33, but it also suggests that the adhesion model neglects important aspects of the gravitational dynamics.
Assumptions to the Annual Energy Outlook 2015
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm BiofuelinAnalysisCycle2014)4-14Assumptions to the Annual Energy
Assumptions to the Annual Energy Outlook 2015
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm BiofuelinAnalysisCycle2014)4-14Assumptions to the Annual Energy00
Assumptions to the Annual Energy Outlook 2015
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm BiofuelinAnalysisCycle2014)4-14Assumptions to the Annual Energy0073
Assumptions to the Annual Energy Outlook 2015
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm BiofuelinAnalysisCycle2014)4-14Assumptions to the Annual
Assumptions to the Annual Energy Outlook 2015
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm BiofuelinAnalysisCycle2014)4-14Assumptions to the Annual02
Assumptions to the Annual Energy Outlook 2015
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm BiofuelinAnalysisCycle2014)4-14Assumptions to the Annual0247
Assumptions to the Annual Energy Outlook 2015
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm BiofuelinAnalysisCycle2014)4-14Assumptions to the Annual0247
Assumptions to the Annual Energy Outlook 2015
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm BiofuelinAnalysisCycle2014)4-14Assumptions to the Annual0247
Assumptions to the Annual Energy Outlook 2015
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm BiofuelinAnalysisCycle2014)4-14Assumptions to the Annual024757
Random vibration sensitivity studies of modeling uncertainties in the NIF structures
Swensen, E.A.; Farrar, C.R. [Los Alamos National Lab., NM (United States); Barron, A.A. [Stanford Univ., CA (United States). Dept. of Civil Engineering; Cornwell, P. [Rose-Hulman Inst. of Tech., Terre Haute, IN (United States). Mechanical Engineering Dept.
1996-12-31T23:59:59.000Z
The National Ignition Facility is a laser fusion project that will provide an above-ground experimental capability for nuclear weapons effects simulation. This facility will achieve fusion ignition utilizing solid-state lasers as the energy driver. The facility will cover an estimated 33,400 m{sup 2} at an average height of 5--6 stories. Within this complex, a number of beam transport structures will be houses that will deliver the laser beams to the target area within a 50 {micro}m ms radius of the target center. The beam transport structures are approximately 23 m long and reach approximately heights of 2--3 stories. Low-level ambient random vibrations are one of the primary concerns currently controlling the design of these structures. Low level ambient vibrations, 10{sup {minus}10} g{sup 2}/Hz over a frequency range of 1 to 200 Hz, are assumed to be present during all facility operations. Each structure described in this paper will be required to achieve and maintain 0.6 {micro}rad ms laser beam pointing stability for a minimum of 2 hours under these vibration levels. To date, finite element (FE) analysis has been performed on a number of the beam transport structures. Certain assumptions have to be made regarding structural uncertainties in the FE models. These uncertainties consist of damping values for concrete and steel, compliance within bolted and welded joints, and assumptions regarding the phase coherence of ground motion components. In this paper, the influence of these structural uncertainties on the predicted pointing stability of the beam line transport structures as determined by random vibration analysis will be discussed.
Infrastructure for 3D model reconstruction of marine structures
Kurniawati, Hanna
2011-01-01T23:59:59.000Z
3D model reconstruction of marine structures, such as dams, oil-rigs, and sea caves, is both important and challenging. An important application includes structural inspection. Manual inspection of marine structures is ...
Optimization Online - A Non-Parametric Structural Hybrid Modeling ...
Somayeh Moazeni
2014-06-30T23:59:59.000Z
Jun 30, 2014 ... A Non-Parametric Structural Hybrid Modeling Approach for Electricity Prices ... Keywords: Electricity market; Electricity price modeling; Energy ...
Current Status and Future Assumptions INTRODUCTION
structure, higher electricity prices, and regional and national conservation efforts. 0 5000 10000 15000 of the region's electricity system, some relevant historical trends leading to that status, and the Council's projections of how that status might change in the future. An understanding of our current situation and how
Fit Index Sensitivity in Multilevel Structural Equation Modeling
Boulton, Aaron Jacob
2011-07-29T23:59:59.000Z
Multilevel Structural Equation Modeling (MSEM) is used to estimate latent variable models in the presence of multilevel data. A key feature of MSEM is its ability to quantify the extent to which a hypothesized model fits ...
Assumptions that imply quantum dynamics is linear
Thomas F. Jordan
2006-01-26T23:59:59.000Z
A basic linearity of quantum dynamics, that density matrices are mapped linearly to density matrices, is proved very simply for a system that does not interact with anything else. It is assumed that at each time the physical quantities and states are described by the usual linear structures of quantum mechanics. Beyond that, the proof assumes only that the dynamics does not depend on anything outside the system but must allow the system to be described as part of a larger system. The basic linearity is linked with previously established results to complete a simple derivation of the linear Schrodinger equation. For this it is assumed that density matrices are mapped one-to-one onto density matrices. An alternative is to assume that pure states are mapped one-to-one onto pure states and that entropy does not decrease.
MODELING WITH STRUCTURE OF RESINS IN ELECTRONIC , Tadahiro SHIBUTANI*
Paris-Sud XI, Université de
MODELING WITH STRUCTURE OF RESINS IN ELECTRONIC COMPONENTS Qiang YU* , Tadahiro SHIBUTANI* , Masaki model of the interfacial structure of resin in electronic components was proposed. Bimaterial model, interfacial fracture becomes one of the most important problems in the assessment of reliability
Evolution of Middle Eastern Social Structures: a new model
White, Douglas R.
Evolution of Middle Eastern Social Structures: a new model Abstract The desert is small relative: evolution, endogamy, population, raiding, Bedouin,] #12;2 Evolution of Middle Eastern Social Structures
Modeling Structural Properties of Breast Cancer Cells at NERSC
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Biological cells Modeling structural properties of cells Goals To advance in detection, characterization, analysis and predictions of biological cells and their inherent...
A Preliminary Structural Model for the Blue Mountain Geothermal...
County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: A Preliminary Structural Model for the Blue Mountain Geothermal Field,...
A Structural Model Guide For Geothermal Exploration In Ancestral...
search OpenEI Reference LibraryAdd to library Journal Article: A Structural Model Guide For Geothermal Exploration In Ancestral Mount Bao, Leyte, Philippines Abstract The...
Optimization Online - A Structure-Conveying Modelling Language ...
Marco Colombo
2009-03-24T23:59:59.000Z
Mar 24, 2009 ... A Structure-Conveying Modelling Language for Mathematical and Stochastic Programming. Marco Colombo (m.colombo ***at*** ed.ac.uk)
Robust nite-di erence modelling of complex structures1
Cerveny, Vlastislav
with the 1Proc. of HIGH PERFORMANCE COMPUTING IN SEISMIC MODELLING, An International Sympo- sium, Zaragoza-difference modelling of complex structures Paper No. 15 in Proc. of Int. Symposium on High Performance Computing
Modeling and Optimal Design of Di ractive Optical Structures
Dobson, David C.
Modeling and Optimal Design of Di ractive Optical Structures Gang Bao Department of Mathematics be designed to perform functions unattainable with traditionaloptical elements. For example, structures and for the determination of optimal" device designs. In contrast to the case of traditional optical structures, geometrical
Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions
Drury, E.; Denholm, P.; Margolis, R.
2013-01-01T23:59:59.000Z
The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.
Validity of conventional assumptions concerning flexible response. Research report
Gutierrez, M.J.
1989-01-01T23:59:59.000Z
The North Atlantic Treaty Organization is an alliance for collective defense. Made up of 16 countries, NATO has been a successful alliance because there has been no war in Europe since 1945. In 1967, NATO adopted the strategy of flexible response, a strategy dependent upon conventional, tactical nuclear, and strategic nuclear weapons to provide deterrence from a Warsaw Pact attack. Although successful, NATO is suffering from an erosion in conventional strength. NATO continues to make assumptions about its conventional capabilities to successfully meet the requirements of the flexible response strategy. In the present day world of NATO, there is limited funding, a fact that is not likely to change any time in the foreseeable future. Limited funding makes it impossible to buy all the conventional force structure needed to ideally support the current strategy, also a fact that is unlikely to change. This paper shows limitations in some of the ways NATO assumes it can conventionally perform its mission. It is the author's position that NATO should modernize its conventional thinking to make it more in line with the realities of the situation NATO finds itself in today.
SWITCH-WECC Data, Assumptions, and Model Formulation
Kammen, Daniel M.
............................................................................................................ 11 2.1 Load Zones ............................................................................................... 17 2.4 Historical Demand Profiles
MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT
R.E. Sweeney
2001-02-08T23:59:59.000Z
The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.
Structural Equation Modeling For Travel Behavior Research
Golob, Thomas F.
2001-01-01T23:59:59.000Z
T.F. R. Kitamura and C. Lula, 1994. Modeling the Effects ofand Golob, Kitamura and Lula (1994) were the first to apply
Structural Equation Modeling for Travel Behavior Research
Golob, Thomas F.
2001-01-01T23:59:59.000Z
T.F. R. Kitamura and C. Lula, 1994. Modeling the Effects ofand Golob, Kitamura and Lula (1994) were the first to apply
Structural Equation Modeling For Travel Behavior Research
Golob, Thomas F.
2011-01-01T23:59:59.000Z
T.F. R. Kitamura and C. Lula, 1994. Modeling the Effects ofand Golob, Kitamura and Lula (1994) were the first to apply
On the Identification of Nonparametric Structural Models
Judea Pearl
2011-01-01T23:59:59.000Z
Definitions and Notation Models, Graphs, and Theories Wedistribution PT(X) Definition 1 Each theory in M correspondsfollowing definition of identifiability: any two theories is
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Burr, Tom; Hamada, Michael S.; Howell, John; Skurikhin, Misha; Ticknor, Larry; Weaver, Brian
2013-01-01T23:59:59.000Z
Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Threshold estimation dates to the 1920s with the Shewhart control chart; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is timely to consider modern model selection options in the context of threshold estimation. One of the possible new PM roles involves PM residuals, where a residual is defined as residual = data ? prediction. This paper reviews alarm threshold estimation, introduces model selection options, and considers a range of assumptions regarding the data-generating mechanism for PM residuals.more »Two PM examples from nuclear safeguards are included to motivate the need for alarm threshold estimation. The first example involves mixtures of probability distributions that arise in solution monitoring, which is a common type of PM. The second example involves periodic partial cleanout of in-process inventory, leading to challenging structure in the time series of PM residuals.« less
Computational soundness for standard assumptions of formal cryptography
Herzog, Jonathan, 1975-
2004-01-01T23:59:59.000Z
This implementation is conceptually simple, and relies only on general assumptions. Specifically, it can be thought of as a 'self-referential' variation on a well-known encryption scheme. 4. Lastly, we show how the ...
STUDENT FORM GENERAL RELEASE FORM & ASSUMPTION OF RISK
Schaefer, Marcus
STUDENT FORM GENERAL RELEASE FORM & ASSUMPTION OF RISK DePaul University School of Cinematic Arts I that while enrolling in the Course may be a requirement for achieving my degree in Cinematic Arts at De
Distributed Prognostics Based on Structural Model Decomposition
Daigle, Matthew
efficiency. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments or probability Q volumetric flow T temperature r friction coefficient w wear parameter M model/submodel v
1 Artificial Neural Networks and Hidden Markov Models for Predicting the Protein Structures advice on the development of this project #12;2 Artificial Neural Networks and Hidden Markov Models learning methods: artificial neural networks (ANN) and hidden Markov models (HMM) (Rost 2002; Karplus et al
Reduced Order Structural Modeling of Wind Turbine Blades
Jonnalagadda, Yellavenkatasunil
2011-10-21T23:59:59.000Z
Conventional three dimensional structural analysis methods prove to be expensive for the preliminary design of wind turbine blades. However, wind turbine blades are large slender members with complex cross sections. They can be accurately modeled...
Reduced Order Structural Modeling of Wind Turbine Blades
Jonnalagadda, Yellavenkatasunil
2011-10-21T23:59:59.000Z
Conventional three dimensional structural analysis methods prove to be expensive for the preliminary design of wind turbine blades. However, wind turbine blades are large slender members with complex cross sections. They can be accurately modeled...
Structure Learning for Generative Models of Protein Fold Families
Structure Learning for Generative Models of Protein Fold Families Sivaraman Balakrishnan composition of the proteins within a fold family are widely used in science and engineering. Existing composition of the proteins within a fold family provide insights into the constraints that govern structure
On the Vacuum Structure of the 3-2 Model
Tomer Shacham
2012-05-27T23:59:59.000Z
The 3-2 model of dynamical supersymmetry breaking is revisited, with some incidentally new observations on the vacuum structure. Extra matter is then added, and the vacuum structure is further studied. The parametric dependence of the location of the vacuum provides a consistency check of Seiberg duality.
Lattice Boltzmann Model for Electronic Structure Simulations
Mendoza, M; Succi, S
2015-01-01T23:59:59.000Z
Recently, a new connection between density functional theory and kinetic theory has been proposed. In particular, it was shown that the Kohn-Sham (KS) equations can be reformulated as a macroscopic limit of the steady-state solution of a suitable single-particle kinetic equation. By using a discrete version of this new formalism, the exchange and correlation energies of simple atoms and the geometrical configuration of the methane molecule were calculated accurately. Here, we discuss the main ideas behind the lattice kinetic approach to electronic structure computations, offer some considerations for prospective extensions, and also show additional numerical results, namely the geometrical configuration of the water molecule.
Lattice Boltzmann Model for Electronic Structure Simulations
M. Mendoza; H. J. Herrmann; S. Succi
2015-07-28T23:59:59.000Z
Recently, a new connection between density functional theory and kinetic theory has been proposed. In particular, it was shown that the Kohn-Sham (KS) equations can be reformulated as a macroscopic limit of the steady-state solution of a suitable single-particle kinetic equation. By using a discrete version of this new formalism, the exchange and correlation energies of simple atoms and the geometrical configuration of the methane molecule were calculated accurately. Here, we discuss the main ideas behind the lattice kinetic approach to electronic structure computations, offer some considerations for prospective extensions, and also show additional numerical results, namely the geometrical configuration of the water molecule.
Alternatives to traditional model comparison strategies for covariance structure models
Preacher, K. J.; Cai, Li; MacCallum, R. C.
2007-01-01T23:59:59.000Z
involving an extension of recently introduced methods to nested model scenarios. Following our discussion of power, we further explore the potential value of adopting a model selection approach that avoids hypoth- a105 ?Chapter3?Preacher? ? 2007/2/12 ? 15... is literally true, there is an obvious logical problem in testing the null hypothesis that a model fits data perfectly in the population. Yet, this is precisely the hypothesis tested by the popular LR test of model a105 ?Chapter3?Preacher? ? 2007/2/12 ? 15...
Structure formation in modified gravity models alternative to dark energy
Kazuya Koyama
2006-01-10T23:59:59.000Z
We study structure formation in phenomenological models in which the Friedmann equation receives a correction of the form $H^{\\alpha}/r_c^{2-\\alpha}$, which realize an accelerated expansion without dark energy. In order to address structure formation in these model, we construct simple covariant gravitational equations which give the modified Friedmann equation with $\\alpha=2/n$ where $n$ is an integer. For $n=2$, the underlying theory is known as a 5D braneworld model (the DGP model). Thus the models interpolate between the DGP model ($n=2, \\alpha=1$) and the LCDM model in general relativity ($n \\to \\infty, \\alpha \\to 0$). Using the covariant equations, cosmological perturbations are analyzed. It is shown that in order to satisfy the Bianchi identity at a perturbative level, we need to introduce a correction term $E_{\\mu \
Structure formation in modified gravity models alternative to dark energy
Koyama, K
2006-01-01T23:59:59.000Z
We study structure formation in phenomenological models in which the Friedmann equation receives a correction of the form $H^{\\alpha}/r_c^{2-\\alpha}$, which realize an accelerated expansion without dark energy. In order to address structure formation in these model, we construct simple covariant gravitational equations which give the modified Friedmann equation with $\\alpha=2/n$ where $n$ is an integer. For $n=2$, the underlying theory is known as a 5D braneworld model (the DGP model). Thus the models interpolate between the DGP model ($n=2, \\alpha=1$) and the LCDM model in general relativity ($n \\to \\infty, \\alpha \\to 0$). Using the covariant equations, cosmological perturbations are analyzed. It is shown that in order to satisfy the Bianchi identity at a perturbative level, we need to introduce a correction term $E_{\\mu \
Model for heat-up of structures in VICTORIA
Bixler, N.E.
1993-12-01T23:59:59.000Z
VICTORIA is a mechanistic computer code that treats fission product behavior in the reactor coolant system during a severe accident. During an accident, fission products that deposit on structural surfaces produce heat loads that can cause fission products to revaporize and possibly cause structures, such as a pipe, to fail. This mechanism had been lacking from the VICTORIA model. This report describes the structural heat-up model that has recently been implemented in the code. A sample problem shows that revaporization of fission products can occur as structures heat up due to radioactive decay. In the sample problem, the mass of deposited fission products reaches a maximum, then diminishes. Similarly, temperatures of the deposited film and adjoining structure reach a maximum, then diminish.
A covariant model for the nucleon spin structure
Ramalho, G
2015-01-01T23:59:59.000Z
We present the results of the covariant spectator quark model applied to the nucleon structure function $f(x)$ measured in unpolarized deep inelastic scattering, and the structure functions $g_1(x)$ and $g_2(x)$ measured in deep inelastic scattering using polarized beams and targets ($x$ is the Bjorken scaling variable). The nucleon is modeled by a valence quark-diquark structure with $S,P$ and $D$ components. The shape of the wave functions and the relative strength of each component are fixed by making fits to the deep inelastic scattering data for the structure functions $f(x)$ and $g_1(x)$. The model is then used to make predictions on the function $g_2(x)$ for the proton and neutron.
CDS Calibration with tractable structural models under uncertain credit quality
Brigo, Damiano
CDS Calibration with tractable structural models under uncertain credit quality Damiano Brigo-varying volatility and characterized by high tractability. The models can be calibrated exactly to credit spreads to exact calibration of Parmalat Credit Default Swap (CDS) data during the months preceding default
Fast Bootstrap for Model Structure Selection A. Lendasse, V. Wertz
Verleysen, Michel
Fast Bootstrap for Model Structure Selection A. Lendasse, V. Wertz Cesame, UCL, av. Georges Lema Introduction In this paper we propose an effective procedure to reduce the computation time of a bootstrap approximation of the gene- ralization error in a family of nonlinear regression models. The bootstrap [1
Model for dynamic self-assembled magnetic surface structures.
Belkin, M.; Glatz, A.; Snezhko, A.; Aranson, I. S.; Materials Science Division; Northwestern Univ.
2010-07-07T23:59:59.000Z
We propose a first-principles model for the dynamic self-assembly of magnetic structures at a water-air interface reported in earlier experiments. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended at a water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snakelike structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids.
The Canonical Structure of Wess-Zumino-Witten Models
G. Papadopoulos; B. Spence
1992-04-30T23:59:59.000Z
The phase space of the Wess-Zumino-Witten model on a circle with target space a compact, connected, semisimple Lie group $G$ is defined and the corresponding symplectic form is given. We present a careful derivation of the Poisson brackets of the Wess-Zumino-Witten model. We also study the canonical structure of the supersymmetric and the gauged Wess-Zumino-Witten models.
A finite element model for transient thermal/structural analysis of large composite space structures
Lutz, James Delmar
1986-01-01T23:59:59.000Z
Composite Space Structures. (May 1986) James Delmar Lutz, B. S. , Texas A&M University Chairmen of Advisory Committee: Dr. David H. Allen Dr. Walter E. Haisler A finite element model is developed for predicting the transient thermal/structural response... of structures to be analyzed in order to simplify the heat load analysis. The first r estr iction applies to the geometry of struc- tures to be analyzed. An appropriate structure should be of open lattice-type construction and have highly repetitive...
COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1
Pantaleone, Jim
context of Alaska oil production taxes, comparing MAPA and ACES to the original petroleum profits tax (PPT1 COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1 Matthew Berman In a recent analysis comparing the current oil production tax, More Alaska Production Act (MAPA, also known as SB 21
PHASE STRUCTURE OF TWISTED EGUCHI-KAWAI MODEL.
ISHIKAWA,T.; AZEYANAGI, T.; HANADA, M.; HIRATA, T.
2007-07-30T23:59:59.000Z
We study the phase structure of the four-dimensional twisted Eguchi-Kawai model using numerical simulations. This model is an effective tool for studying SU(N) gauge theory in the large-N limit and provides a nonperturbative formulation of the gauge theory on noncommutative spaces. Recently it was found that its Z{sub n}{sup 4} symmetry, which is crucial for the validity of this model, can break spontaneously in the intermediate coupling region. We investigate in detail the symmetry breaking point from the weak coupling side. Our simulation results show that the continuum limit of this model cannot be taken.
Advances on statistical/thermodynamical models for unpolarized structure functions
Trevisan, Luis A. [Departamento de Matematica e Estatistica, Universidade Estadual de Ponta Grossa, 84010-790, Ponta Grossa, PR (Brazil); Mirez, Carlos [Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus do Mucuri, 39803-371, Teofilo Otoni, Minas Gerais (Brazil); Tomio, Lauro [Instituto de Fisica Teorica, Universidade Estadual Paulista, R. Dr. Bento Teobaldo Ferraz 271, Bl II Barra Funda, 01140070, Sao Paulo, SP (Brazil)
2013-03-25T23:59:59.000Z
During the eights and nineties many statistical/thermodynamical models were proposed to describe the nucleons' structure functions and distribution of the quarks in the hadrons. Most of these models describe the compound quarks and gluons inside the nucleon as a Fermi / Bose gas respectively, confined in a MIT bag with continuous energy levels. Another models considers discrete spectrum. Some interesting features of the nucleons are obtained by these models, like the sea asymmetries {sup -}d/{sup -}u and {sup -}d-{sup -}u.
Modeling H2 adsorption in carbon-based structures
Lamonte, Kevin Anthony
2009-05-15T23:59:59.000Z
MODELING H2 ADSORPTION IN CARBON-BASED STRUCTURES A Thesis by KEVIN ANTHONY LAMONTE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2008 Major... Subject: Chemical Engineering MODELING H2 ADSORPTION IN CARBON-BASED STRUCTURES A Thesis by KEVIN ANTHONY LAMONTE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...
Model for Dynamic Self-Assembled Magnetic Surface Structures
M. Belkin; A. Glatz; A. Snezhko; I. S. Aranson
2010-02-02T23:59:59.000Z
We propose a first-principles model for self-assembled magnetic surface structures on the water-air interface reported in earlier experiments \\cite{snezhko2,snezhko4}. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended on the water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snake-like structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids. The model provides valuable insights into self-organization phenomena in a broad range of non-equilibrium magnetic and electrostatic systems with competing interactions.
Thomas Buchert; Alvaro Dominguez
1998-05-27T23:59:59.000Z
The generally held view that a model of large-scale structure, formed by collisionless matter in the Universe, can be based on the matter model ``dust'' fails in the presence of multi-stream flow, i.e., velocity dispersion. We argue that models for large-scale structure should rather be constructed for a flow which describes the average motion of a multi-stream system. We present a clearcut reasoning how to approach the problem and derive an evolution equation for the mean peculiar-velocity relative to background solutions of Friedmann-Lema\\^\\i tre type. We consider restrictions of the nonlinear problem and show that the effect of velocity dispersion gives rise to an effective viscosity of non-dissipative gravitational origin. We discuss subcases which arise naturally from this approach: the ``sticky particle model'' and the ``adhesion approximation''. We also construct a novel approximation that features adhesive action in the multi-stream regime while conserving momentum, which was considered a drawback of the standard approximation based on Burger's equation. We finally argue that the assumptions made to obtain these models should be relaxed and we discuss how this can be achieved.
Notes 01. The fundamental assumptions and equations of lubrication theory
San Andres, Luis
2009-01-01T23:59:59.000Z
for unsteady or transient motions ? Journal angular speed (rad/s) NOTES 1. THE FUNDAMENTAL ASSUMPTIONS IN HYDRODYNAMIC LUBRICATION ? Dr. Luis San Andr?s (2009) 2 Fluid flow in a general physical domain is governed by the principles of: a) conservation... of the runner surface. For example, in journal bearings U * =?R J where ? is the journal angular speed in rad/s. Substitution of the dimensionless variables into the continuity equation (1) renders the following expression 0...
Models for Offender Target Location Selection with Explicit Dependency Structures
O'Leary, Michael
Models for Offender Target Location Selection with Explicit Dependency Structures Mike O'Leary April 30 - May 1, 2012 O'Leary & Tucker (Towson University) Target Location Selection QMDNS 2012 1 / 54 in this study We thank Phil Canter from the Baltimore County Police Department for his assistance. O'Leary
A Scalable Approach to Learn Semantic Models of Structured Sources
Ambite, JosÃ© Luis
. Knoblock, Pedro Szekely, JosÂ´e Luis Ambite Information Sciences Institute and Computer Science Department of information available on the Web is available in sources such as relational databases, spreadsheets, XML, JSONA Scalable Approach to Learn Semantic Models of Structured Sources Mohsen Taheriyan, Craig A
Modeling Blast Loading on Buried Reinforced Concrete Structures with Zapotec
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bessette, Greg C.
2008-01-01T23:59:59.000Z
A coupled Euler-Lagrange solution approach is used to model the response of a buried reinforced concrete structure subjected to a close-in detonation of a high explosive charge. The coupling algorithm is discussed along with a set of benchmark calculations involving detonations in clay and sand.
MULTILEVEL FAST MULTIPOLE METHOD FOR MODELING PERMEABLE STRUCTURES
Sarabandi, Kamal
MULTILEVEL FAST MULTIPOLE METHOD FOR MODELING PERMEABLE STRUCTURES USING CONFORMAL FINITE ELEMENTS #12;Copyright c Kubilay Sertel All Rights Reserved 2003 #12;ABSTRACT MULTILEVEL FAST MULTIPOLE METHOD fast multipole method for impen- etrable targets in the context of flat-triangular geometry
Modelling the human rhesus proteins: implications for structure and function
Merrick, Mike
D and RhAG using the structure of the Escherichia coli ammonia channel AmtB as a template, together, slime moulds and marine sponges (Huang & Liu, 2001). Rh proteins show sequence homology to ammonium mechanism. The E. coli AmtB protein is a homotrimer and our models provoke a reassessment of the widely
A STRUCTURAL-MAGNETIC STRAIN MODEL FOR MAGNETOSTRICTIVE TRANSDUCERS
strains and forces is provided by a magnetic bias generated by either the surrounding permanent magnet of a cylindrical Terfenol-D rod, a wound wire solenoid, an enclosing permanent magnet and a prestress mechanismA STRUCTURAL-MAGNETIC STRAIN MODEL FOR MAGNETOSTRICTIVE TRANSDUCERS Marcelo J. Dapino Department
Ariza Moreno, Pilar
SEMINARIOS INTERUNIVERSITARIOS MECÁNICA Y MATERIALES STRUCTURAL MODELING OF BIOSOLIDS UNDER FINITE the detailed structure of a biosolid in a material model. We focus on the micro- structure of arterial walls
Structural Design Composition for C++ Hardware Models Frederic Doucet, Vivek Sinha, Rajesh Gupta
Gupta, Rajesh
Structural Design Composition for C++ Hardware Models Frederic Doucet, Vivek Sinha, Rajesh Gupta design to specify these structural concerns. 1. Introduction High level modeling using C/C++ models [11,vsinha,rguptag@ics.uci.edu Abstract This paper addresses the modeling of layout structure in high level C++ models. Researchers agree
Analytic Model of the Universal Structure of Turbulent Boundary Layers
Victor S. L'vov; Itamar Procaccia; Oleksii Rudenko
2006-06-21T23:59:59.000Z
Turbulent boundary layers exhibit a universal structure which nevertheless is rather complex, being composed of a viscous sub-layer, a buffer zone, and a turbulent log-law region. In this letter we present a simple analytic model of turbulent boundary layers which culminates in explicit formulae for the profiles of the mean velocity, the kinetic energy and the Reynolds stress as a function of the distance from the wall. The resulting profiles are in close quantitative agreement with measurements over the entire structure of the boundary layer, without any need of re-fitting in the different zones.
Verification of energy audit assumptions: Why engineering estimates go bad
Dent, C.L.; Swanson, D.B.; Koca, R.W.; Tibbetts, B.
1994-12-31T23:59:59.000Z
Often, local governments do not have the resources to fully assess and implement energy efficiency measures (EEMs) even though initial payback calculations are encouraging. To address this problem, the California Energy Commission (CEC) has been operating the Energy Partnership Program (EPP) to provide technical assistance and funding to local governments for energy efficiency projects in public buildings. A government agency interested in participating in the EPP begins the process by submitting an application which is then reviewed by the CEC for energy savings potential. Selected sites are visited by the CEC, after which they may be granted a full energy audit and recommendation study by an independent energy service company (ESCO). Also, in cases where the local government does not have the capital for new equipment purchases, the CEC can provide a loan to that government which can then be repaid through the reduced utility expenditures. Since industry experience has found that, on average, actual energy savings are only 60 - 70% of engineering estimates, the CEC hired Pacific Science & Technology (PS&T) to perform end-use metering and analysis to evaluate the accuracy of the energy audit. The CEC is not only interested in evaluating the total energy savings, but also improving the accuracy of future energy audits as well. To this end, Pacific Science & Technology is reviewing and evaluating all of the basic assumptions made by the auditor such as equipment power draws, operating schedules, fixture counts, etc. These basic assumptions are common building blocks used in energy use analysis. So, the goal of this project is to improve the audit assumptions and thereby improve the accuracy of future energy audits and EEM assessments.
Assumption Parish, Louisiana: Energy Resources | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a <AlaskaApplied EnergyAshton, Illinois: EnergyAssociation of RenewableAssumption
Model comparison for the density structure across solar coronal waveguides
Arregui, I; Ramos, A Asensio
2015-01-01T23:59:59.000Z
The spatial variation of physical quantities, such as the mass density, across solar atmospheric waveguides governs the timescales and spatial scales for wave damping and energy dissipation. The direct measurement of the spatial distribution of density, however, is difficult and indirect seismology inversion methods have been suggested as an alternative. We applied Bayesian inference, model comparison, and model-averaging techniques to the inference of the cross-field density structuring in solar magnetic waveguides using information on periods and damping times for resonantly damped magnetohydrodynamic (MHD) transverse kink oscillations. Three commonly employed alternative profiles were used to model the variation of the mass density across the waveguide boundary. Parameter inference enabled us to obtain information on physical quantities such as the Alfv\\'en travel time, the density contrast, and the transverse inhomogeneity length scale. The inference results from alternative density models were compared a...
Crystal Structure Representations for Machine Learning Models of Formation Energies
Faber, Felix; von Lilienfeld, O Anatole; Armiento, Rickard
2015-01-01T23:59:59.000Z
We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an Ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix by using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a data set of 3938 crystal structures obtained from the Materials Project. For training sets consi...
Fine-structure constant constraints on Bekenstein-type models
P. M. M. Leal; C. J. A. P. Martins; L. B. Ventura
2014-07-15T23:59:59.000Z
Astrophysical tests of the stability of dimensionless fundamental couplings, such as the fine-structure constant $\\alpha$, are an area of much increased recent activity, following some indications of possible spacetime variations at the few parts per million level. Here we obtain updated constraints on the Bekenstein-Sandvik-Barrow-Magueijo model, which is arguably the simplest model allowing for $\\alpha$ variations. Recent accurate spectroscopic measurements allow us to improve previous constraints by about an order of magnitude. We briefly comment on the dependence of the results on the data sample, as well as on the improvements expected from future facilities.
Structure formation and CMBR anisotropy spectrum in the inflessence model
A. A. Sen; V. F. Cardone; S. Capozziello; A. Troisi
2006-07-25T23:59:59.000Z
The inflessence model has recently been proposed in an attempt to explain both early inflation and present day accelerated expansion within a single mechanism. The model has been successfully tested against the Hubble diagram of Type Ia Supernovae, the shift parameter, and the acoustic peak parameter. As a further mandatory test, we investigate here structure formation in the inflessence model determining the evolution of matter density contrast $\\delta \\equiv \\delta \\rho_M/\\rho_M$ in the linear regime. We compare the growth factor $D(a) \\equiv \\delta/a$ and the growth index $f(z) \\equiv d\\ln{\\delta}/d\\ln{a}$ to these same quantities for the successful concordance $\\Lambda$CDM model with a particular emphasis on the role of the inflessence parameters $(\\gamma, z_Q)$. We also evaluate the anisotropy spectrum of the cosmic microwave background radiation (CMBR) to check whether the inflessence model may be in agreement with the observations. We find that, for large values of $(\\gamma, z_Q)$, structure formation proceeds in a similar way to that in the $\\Lambda$CDM scenario, and it is also possible to nicely fit the CMBR spectrum.
Structure formation in inhomogeneous Early Dark Energy models
Batista, R.C. [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, Caixa Postal 1524, 59072-970, Natal, Rio Grande do Norte (Brazil); Pace, F., E-mail: rbatista@ect.ufrn.br, E-mail: francesco.pace@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom)
2013-06-01T23:59:59.000Z
We study the impact of Early Dark Energy fluctuations in the linear and non-linear regimes of structure formation. In these models the energy density of dark energy is non-negligible at high redshifts and the fluctuations in the dark energy component can have the same order of magnitude of dark matter fluctuations. Since two basic approximations usually taken in the standard scenario of quintessence models, that both dark energy density during the matter dominated period and dark energy fluctuations on small scales are negligible, are not valid in such models, we first study approximate analytical solutions for dark matter and dark energy perturbations in the linear regime. This study is helpful to find consistent initial conditions for the system of equations and to analytically understand the effects of Early Dark Energy and its fluctuations, which are also verified numerically. In the linear regime we compute the matter growth and variation of the gravitational potential associated with the Integrated Sachs-Wolf effect, showing that these observables present important modifications due to Early Dark Energy fluctuations, though making them more similar to the ?CDM model. We also make use of the Spherical Collapse model to study the influence of Early Dark Energy fluctuations in the nonlinear regime of structure formation, especially on ?{sub c} parameter, and their contribution to the halo mass, which we show can be of the order of 10%. We finally compute how the number density of halos is modified in comparison to the ?CDM model and address the problem of how to correct the mass function in order to take into account the contribution of clustered dark energy. We conclude that the inhomogeneous Early Dark Energy models are more similar to the ?CDM model than its homogeneous counterparts.
Flavor structure in D-brane models: Majorana neutrino masses
Yuta Hamada; Tatsuo Kobayashi; Shohei Uemura
2014-06-11T23:59:59.000Z
We study the flavor structure in intersecting D-brane models. We study anomalies of the discrete flavor symmetries. We analyze the Majorana neutrino masses, which can be generated by D-brane instanton effects. It is found that a certain pattern of mass matrix is obtained and the cyclic permutation symmetry remains unbroken. As a result, trimaximal mixing matrix can be realized if Dirac neutrino mass and charged lepton mass matrices are diagonal.
Thermo-mechanical structural modelling of FRP composite sandwich panels exposed to fire
Ramroth, William T.
2006-01-01T23:59:59.000Z
CALIFORNIA, SAN DIEGO Thermo-mechanical Structural ModellingABSTRACT OF THE DISSERTATION Thermo-mechanical Structuralpolymer matrix), and thermo-mechanical (structural)
Ultrafast Structural Dynamics in Combustion Relevant Model Systems
Weber, Peter M. [Brown University
2014-03-31T23:59:59.000Z
The research project explored the time resolved structural dynamics of important model reaction system using an array of novel methods that were developed specifically for this purpose. They include time resolved electron diffraction, time resolved relativistic electron diffraction, and time resolved Rydberg fingerprint spectroscopy. Toward the end of the funding period, we also developed time-resolved x-ray diffraction, which uses ultrafast x-ray pulses at LCLS. Those experiments are just now blossoming, as the funding period expired. In the following, the time resolved Rydberg Fingerprint Spectroscopy is discussed in some detail, as it has been a very productive method. The binding energy of an electron in a Rydberg state, that is, the energy difference between the Rydberg level and the ground state of the molecular ion, has been found to be a uniquely powerful tool to characterize the molecular structure. To rationalize the structure sensitivity we invoke a picture from electron diffraction: when it passes the molecular ion core, the Rydberg electron experiences a phase shift compared to an electron in a hydrogen atom. This phase shift requires an adjustment of the binding energy of the electron, which is measurable. As in electron diffraction, the phase shift depends on the molecular, geometrical structure, so that a measurement of the electron binding energy can be interpreted as a measurement of the molecule’s structure. Building on this insight, we have developed a structurally sensitive spectroscopy: the molecule is first elevated to the Rydberg state, and the binding energy is then measured using photoelectron spectroscopy. The molecule’s structure is read out as the binding energy spectrum. Since the photoionization can be done with ultrafast laser pulses, the technique is inherently capable of a time resolution in the femtosecond regime. For the purpose of identifying the structures of molecules during chemical reactions, and for the analysis of molecular species in the hot environments of combustion processes, there are several features that make the Rydberg ionization spectroscopy uniquely useful. First, the Rydberg electron’s orbit is quite large and covers the entire molecule for most molecular structures of combustion interest. Secondly, the ionization does not change vibrational quantum numbers, so that even complicated and large molecules can be observed with fairly well resolved spectra. In fact, the spectroscopy is blind to vibrational excitation of the molecule. This has the interesting consequence for the study of chemical dynamics, where the molecules are invariably very energetic, that the molecular structures are observed unobstructed by the vibrational congestion that dominates other spectroscopies. This implies also that, as a tool to probe the time-dependent structural dynamics of chemically interesting molecules, Rydberg spectroscopy may well be better suited than electron or x-ray diffraction. With recent progress in calculating Rydberg binding energy spectra, we are approaching the point where the method can be evolved into a structure determination method. To implement the Rydberg ionization spectroscopy we use a molecular beam based, time-resolved pump-probe multi-photon ionization/photoelectron scheme in which a first laser pulse excites the molecule to a Rydberg state, and a probe pulse ionizes the molecule. A time-of-flight detector measures the kinetic energy spectrum of the photoelectrons. The photoelectron spectrum directly provides the binding energy of the electron, and thereby reveals the molecule’s time-dependent structural fingerprint. Only the duration of the laser pulses limits the time resolution. With a new laser system, we have now reached time resolutions better than 100 fs, although very deep UV wavelengths (down to 190 nm) have slightly longer instrument functions. The structural dynamics of molecules in Rydberg-excited states is obtained by delaying the probe ionization photon from the pump photon; the structural dynamics of molecules in their ground state or e
On the estimation of galaxy structural parameters: the Sersic Model
Ignacio Trujillo; Alister W. Graham; Nicola Caon
2001-02-22T23:59:59.000Z
This paper addresses some questions which have arisen from the use of the S\\'ersic r^{1/n} law in modelling the luminosity profiles of early type galaxies. The first issue deals with the trend between the half-light radius and the structural parameter n. We show that the correlation between these two parameters is not only real, but is a natural consequence from the previous relations found to exist between the model-independent parameters: total luminosity, effective radius and effective surface brightness. We also define a new galaxy concentration index which is largely independent of the image exposure depth, and monotonically related with n. The second question concerns the curious coincidence between the form of the Fundamental Plane and the coupling between _e and r_e when modelling a light profile. We explain, through a mathematical analysis of the S\\'ersic law, why the quantity r_e_e^{0.7} appears almost constant for an individual galaxy, regardless of the value of n (over a large range) adopted in the fit to the light profile. Consequently, Fundamental Planes of the form r_e_e^{0.7} propto sigma_0^x (for any x, and where sigma_0 is the central galaxy velocity dispersion) are insensitive to galaxy structure. Finally, we address the problematic issue of the use of model-dependent galaxy light profile parameters versus model-independent quantities for the half-light radii, mean surface brightness and total galaxy magnitude. The former implicitly assume that the light profile model can be extrapolated to infinity, while the latter quantities, in general, are derived from a signal-to-noise truncated profile. We quantify (mathematically) how these parameters change as one reduces the outer radius of an r^{1/n} profile, and reveal how these can vary substantially when n>4.
Hybrid Structural Model of the Complete Human ESCRT-0 Complex
Ren, Xuefeng; Kloer, Daniel P.; Kim, Young C.; Ghirlando, Rodolfo; Saidi, Layla F.; Hummer, Gerhard; Hurley, James H.; (NIH)
2009-03-31T23:59:59.000Z
The human Hrs and STAM proteins comprise the ESCRT-0 complex, which sorts ubiquitinated cell surface receptors to lysosomes for degradation. Here we report a model for the complete ESCRT-0 complex based on the crystal structure of the Hrs-STAM core complex, previously solved domain structures, hydrodynamic measurements, and Monte Carlo simulations. ESCRT-0 expressed in insect cells has a hydrodynamic radius of R{sub H} = 7.9 nm and is a 1:1 heterodimer. The 2.3 {angstrom} crystal structure of the ESCRT-0 core complex reveals two domain-swapped GAT domains and an antiparallel two-stranded coiled-coil, similar to yeast ESCRT-0. ESCRT-0 typifies a class of biomolecular assemblies that combine structured and unstructured elements, and have dynamic and open conformations to ensure versatility in target recognition. Coarse-grained Monte Carlo simulations constrained by experimental R{sub H} values for ESCRT-0 reveal a dynamic ensemble of conformations well suited for diverse functions.
A 'BOOSTED FIREBALL' MODEL FOR STRUCTURED RELATIVISTIC JETS
Duffell, Paul C.; MacFadyen, Andrew I., E-mail: pcd233@nyu.edu, E-mail: macfadyen@nyu.edu [Center for Cosmology and Particle Physics, New York University, NY (United States)
2013-10-10T23:59:59.000Z
We present a model for relativistic jets which generates a particular angular distribution of Lorentz factor and energy per solid angle. We consider a fireball with specific internal energy E/M launched with bulk Lorentz factor ? {sub B}. In its center-of-momentum frame the fireball expands isotropically, converting its internal energy into radially expanding flow with asymptotic Lorentz factor ?{sub 0} ? E/M. In the lab frame the flow is beamed, expanding with Lorentz factor ? = 2?{sub 0}? {sub B} in the direction of its initial bulk motion and with characteristic opening angle ?{sub 0} ? 1/? {sub B}. The flow is jet-like with ??{sub 0} ? 2?{sub 0} such that jets with ? > 1/?{sub 0} are naturally produced. The choice ?{sub 0} ? ? {sub B} ? 10 yields a jet with ? ? 200 on-axis and angular structure characterized by opening angle ?{sub 0} ? 0.1 of relevance for cosmological gamma-ray bursts (GRBs), while ? {sub B} ?> 1 may be relevant for low-luminosity GRBs. The model produces a family of outflows, of relevance for different relativistic phenomena with structures completely determined by ?{sub 0} and ? {sub B}. We calculate the energy per unit solid angle for the model and use it to compute light curves for comparison with the widely used top-hat model. The jet break in the boosted fireball light curve is greatly subdued when compared to the top-hat model because the edge of the jet is smoother than for a top-hat. This may explain missing jet breaks in afterglow light curves.
Adams, D.M.; Alig, R.J.; Callaway, J.M.; McCarl, B.A.; Winnett, S.M.
1996-09-01T23:59:59.000Z
The Forest and Agricultural Sector Opimization Model (FASOM) is a dynamic, nonlinear programming model of the forest and agricultural sectors in the United States. The FASOM model initially was developed to evaluate welfare and market impacts of alternative policies for sequestering carbon in trees but also has been applied to a wider range of forest and agricultural sector policy scenarios. The authors describe the model structure and give selected examples of policy applications. A summary of the data sources, input data file format, and the methods used to develop the input data files also are provided.
Dynamic soil-structure interaction-comparison of FEM model with experimental results
Srinivasan, Palanivel Rajan
2000-01-01T23:59:59.000Z
Linearly elastic finite element models are developed for particular scale-model gravity retaining wall structures. The sand is modeled as a homogenous isotropic linearly elastic continuum. Models are created in four ...
Lee, Jooyoung
Random Forest-Based Protein Model Quality Assessment (RFMQA) Using Structural Features and Potential Energy Terms Balachandran Manavalan, Juyong Lee, Jooyoung Lee* Center for In Silico Protein quality assessment (RFMQA) to rank protein models using its structural features and knowledge
Global stability of an age-structure model for TB and its applications ...
1998-07-14T23:59:59.000Z
pendent transmission rates on a model for TB dynamics in a population with or without a vaccination program. The formulation of an age-structure model for.
Modeling and Design of RF MEMS Structures Using Computationally Efficient Numerical Techniques
Tentzeris, Manos
Modeling and Design of RF MEMS Structures Using Computationally Efficient Numerical Techniques N. A Abstract The modeling of MEMS structures using MRTD is presented. Many complex RF structures have been communication systems efficiently and accurately. Specifically, micromachined structures such as MEMS
A Deep Learning Model for Structured Outputs with High-order Interaction
Toronto, University of
A Deep Learning Model for Structured Outputs with High-order Interaction Hongyu Guo , Xiaodan Zhu to generate a powerful nonlinear functional mapping from structured input to structured output. More nonlinear functional mapping from high-order structured input to high-order structured output. To this end
Meyen, Edward L.; Schiefelbusch, Richard L.; Deshler, Donald D.; Alley, Gordon R.; Moran, Mary Ross; Clark, Frances L.
1980-01-01T23:59:59.000Z
This paper details the assumptions about learning disabled adolescents and young adults as well as assumptions about conducting research with this population held by researchers at the Kansas Institute. Strategies developed ...
Geometrical model for malaria parasite migration in structured environments
Anna Battista; Friedrich Frischknecht; Ulrich S. Schwarz
2014-10-23T23:59:59.000Z
Malaria is transmitted to vertebrates via a mosquito bite, during which rod-like and crescent-shaped parasites, called sporozoites, are injected into the skin of the host. Searching for a blood capillary to penetrate, sporozoites move quickly in locally helical trajectories, that are frequently perturbed by interactions with the extracellular environment. Here we present a theoretical analysis of the active motility of sporozoites in a structured environment. The sporozoite is modelled as a self-propelled rod with spontaneous curvature and bending rigidity. It interacts with hard obstacles through collision rules inferred from experimental observation of two-dimensional sporozoite movement in pillar arrays. Our model shows that complex motion patterns arise from the geometrical shape of the parasite and that its mechanical flexibility is crucial for stable migration patterns. Extending the model to three dimensions reveals that a bent and twisted rod can associate to cylindrical obstacles in a manner reminiscent of the association of sporozoites to blood capillaries, supporting the notion of a prominent role of cell shape during malaria transmission.
On electromagnetic models of ball lightning with topological structure
Donoso, J M; Trueba, J L
2003-01-01T23:59:59.000Z
It has been long admitted that a consequence of the virial theorem is that there can be no equilibrium configurations of a system of charges in electromagnetic interaction in the absence of external forces. However, recent results have shown that the virial theorem can not preclude the existence of certain nontrivial equilibrium configurations. Although some of these new results are based on an effective microscopic field theory, they are important for a theory of ball lightning that has been developed by the authors of the present work. Other theoretical results relative to magnetic force-free fields with field aligned currents and self-organized filamentary structures are also found to be relevant for this model.
PSMG–A Parallel Structured Model Generator for Mathematical ...
2014-10-09T23:59:59.000Z
elling and generating large scale nested structured problems, including .... statements to describe repeated common structures that build up the full problem.
LINEARIZING ASSUMPTIONS AND CONTROL DESIGN FOR SPACECRAFT FORMATION FLYING MANEUVERS
Crassidis, John L.
the validity of neglecting the relative effect of the gravitational force of the Earth on a for- mation and all control laws are designed using a linear model that neglects this effect. A previously designed and the full nonlinear model that includes the gravitational force. All tests are carried out in the presence
Joint Learning of Modular Structures from Multiple Data Types
Pratt, Vaughan
-fitting, imposing structural assumptions may be required. We propose an extended model inspired by module networks in gene regulatory networks) and relational data among objects (e.g. protein-DNA interactions and practical significance of the model and developed a reversible-jump MCMC learning procedure for learning
Heaton, Thomas H.
2006-01-01T23:59:59.000Z
practical for health monitoring of real structures. The approach also inherits the advantages of Bayesian in structural health monitoring (Natke and Yao, 1988; Hjelmstad and Shin, 1997; Lam et al., 1998; Beck et al of structural health monitoring, linear struc- tural models are often used for model updating (Vanik et al
Alencar, Adriano Mesquita
Fluid transport in branched structures with temporary closures: A model for quasistatic lung a model system relevant to the inflation of a mammalian lung, an asymmetric bifurcating structure description of the underlying branching structure of the lung, by analyzing experimental pressure-volume data
Wu, Jiun-Yu
2011-10-21T23:59:59.000Z
researcher can either use the ad-hoc robust sandwich standard error estimators to correct the standard error estimates (Design-based approach) or perform multilevel analysis to model the multilevel data structure (Model-based approach) to analyze dependent...
A Structure-Conveying Modelling Language for Mathematical and Stochastic Programming
Grothey, Andreas
A Structure-Conveying Modelling Language for Mathematical and Stochastic Programming Marco Colombo present a structure-conveying algebraic modelling language for mathematical pro- gramming. The proposed language extends AMPL with object-oriented features that allows the user to construct models from sub
Al-Arfaj, Muhammad A.
compares the closed-loop performance of three control structures using an approximate linear model. Responses based on the linear model for various control structures show a good agreement when compared of the linear model is shown to be better in a single-end control system than in a dual-end control system
Song, Il-Yeol
. The data models in data warehouses base on the analytical requirements of the users. FurthermoreDeriving Initial Data Warehouse Structures from the Conceptual Data Models of the Underlying the major problem of conceptual data modeling for business needs. Multidimensional data structures used
THE DYNAMICAL STRUCTURE FACTOR AND CRITICAL BEHAVIOR OF A TRAFFIC FLOW MODEL
Lübeck, Sven
261 THE DYNAMICAL STRUCTURE FACTOR AND CRITICAL BEHAVIOR OF A TRAFFIC FLOW MODEL L. ROTERS, S. L. The behavior of the model is determined by three parameters, the maximal velocity v max , the noise parameter P of the dynamical structure factor of the Nagel Schreckenberg traffic flow model based on the local occupation
SEMANTIC STRUCTURED LANGUAGE MODELS Hakan Erdogan, Ruhi Sarikaya, Yuqing Gao and Michael Picheny
Erdogan, Hakan
SEMANTIC STRUCTURED LANGUAGE MODELS Hakan Erdogan, Ruhi Sarikaya, Yuqing Gao and Michael Picheny,sarikaya,yuqing,picheny}@us.ibm.com ABSTRACT In this study, we propose two novel semantic language model- ing techniques for spoken dialog systems. These methods are called semantic concept based language modeling and seman- tic structured
A Model for Structure and Thermodynamics of ssDNA and dsDNA Near...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Structure and Thermodynamics of ssDNA and dsDNA Near a Surface:A Coarse Grained Approach. A Model for Structure and Thermodynamics of ssDNA and dsDNA Near a Surface:A Coarse...
Jiajuan Liang; Peter Bentler
2011-01-01T23:59:59.000Z
The model can be expressed as ( Vgi 9i v v w i t h the basicis given by 5 V = cov I \\Vgi I , J S I , w and the between-value v . g g YgO q+(N Vgi N g Under the basic assumptions B
CONTROL-ORIENTED MODELING OF A SOLID-OXIDE FUEL CELL STACK USING AN LPV MODEL STRUCTURE
Sanandaji, Borhan M.
CONTROL-ORIENTED MODELING OF A SOLID-OXIDE FUEL CELL STACK USING AN LPV MODEL STRUCTURE Borhan M dynamic model of a solid oxide fuel cell stack. Using a detailed physical model as a starting point, we (usually air) on the cathode side. Solid-oxide fuel cells (SOFCs) utilize a ceramic oxygen-ion conducting
Modeling Structural Changes in Market Demand and Supply
Park, Beom Su
2011-10-21T23:59:59.000Z
Economic events may cause structural changes in markets. To know the effect of the economic event we should analyze the structural changes in the market demand and supply. The purpose of this dissertation is to analyze the effect of selected...
STRUCTURED DISCRIMINATIVE MODELS FOR NOISE ROBUST CONTINUOUS SPEECH RECOGNITION
Gales, Mark
conditional random fields (SCRF) [1], assume a word-level structure. The use of multiple feature streams
Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle are derived either at microscale with random distribution of material properties or at a mesoscale
Im, Myung
2014-07-25T23:59:59.000Z
with cross-classified model, most substantive researchers adopt then the less optimal approaches to analyze cross-classified multilevel data. Two separate Monte Carlo studies were conducted to evaluate the impacts of misspecifying cross-classified structure...
A Hidden Markov Chain Model for the Term Structure of Bond Credit Risk Spreads
Thomas, L; Allen, David E; Morkel-Kingsbury, N
1998-01-01T23:59:59.000Z
This paper provides a Markov chain model for the term structure and credit risk spreads of bond processes. It allows dependency between the stochastic process modeling the interest rate and the Markov chain process describing ...
Trees and beyond : exploiting and improving tree-structured graphical models
Choi, Myung Jin, Ph. D. Massachusetts Institute of Technology
2011-01-01T23:59:59.000Z
Probabilistic models commonly assume that variables are independent of each other conditioned on a subset of other variables. Graphical models provide a powerful framework for encoding such conditional independence structure ...
Modeling Elasto-Plastic Behavior of Polycrystalline Grain Structure of Steels at Mesoscopic Level
Cizelj, Leon
Modeling Elasto-Plastic Behavior of Polycrystalline Grain Structure of Steels at Mesoscopic Level. The constitutive model of crystal grains utilizes anisotropic elasticity and crystal plasticity. Commercially be considered macroscopically homogeneous. Elastic and rate independent plastic deformation modes are considered
Mixed Membership Models for Rank Data: Investigating Structure in Irish Voting Data
Wolfe, Patrick J.
the population. Thus, mixed membership models provide a method for model-based soft clustering of data. The mixed21 Mixed Membership Models for Rank Data: Investigating Structure in Irish Voting Data Isobel ........................................................................ 444 21.3.1 The Plackett-Luce Model for Rank Data ............................................ 445 21
Giurgiutiu, Victor
Structural health monitoring with piezoelectric wafer active sensors predictive modeling of the state of the art in structural health monitoring with piezoelectric wafer active sensors and follows with conclusions and suggestions for further work Key Words: structural health monitoring, SHM, nondestructive
FINITE ELEMENT MODEL-BASED STRUCTURAL HEALTH MONITORING (SHM) SYSTEMS FOR COMPOSITE MATERIAL UNDER
Paris-Sud XI, Université de
FINITE ELEMENT MODEL-BASED STRUCTURAL HEALTH MONITORING (SHM) SYSTEMS FOR COMPOSITE MATERIAL UNDER). To design a Structural Health Monitoring (SHM) system, it is important to understand phenomenologically Workshop on Structural Health Monitoring July 8-11, 2014. La Cité, Nantes, France Copyright © Inria (2014
Structural Context of Exons in Protein Domains: Implications for Protein Modelling and Design
Moreira, Bruno Contreras
Structural Context of Exons in Protein Domains: Implications for Protein Modelling and Design Bruno structures taken from the Protein Data Bank. A first analysis of this set of proteins shows that intron boundaries prefer to be in non-regular secondary structure elements, while avoiding a-helices and b
Integer Programming Model for Automated Structure-based NMR Richard Jang , Xin Gao , and Ming Li
Waterloo, University of
Integer Programming Model for Automated Structure-based NMR Assignment Richard Jang , Xin Gao. The core of the solution is a novel integer linear programming model, which is a general framework for many N2L 6P7 Technical Report CS-2009-32 Abstract. We introduce the "Automated Structure-based Assignment
Cellulose Biodegradation Models; An Example of Cooperative Interactions in Structured Populations
Miroshnikov, Alexey
Cellulose Biodegradation Models; An Example of Cooperative Interactions in Structured Populations Pierre-Emmanuel Jabin Alexey Miroshnikov Robin Young Abstract We introduce various models for cellulose the structure of the cellulose chains and are allowed to depend on the phenotypical traits of the population
Modeling the structure of coal water slurry (CWS) sprays
Prithiviraj, Manikandan
1993-01-01T23:59:59.000Z
This thesis describes a model of coal water slurry (CWS) sprays and presents new experimental data for CWS viscosities. The model is based on the aerodynamic theory of spray atomization which has been successfully used for Diesel sprays. However...
Modeling the structure of coal water slurry (CWS) sprays
Prithiviraj, Manikandan
1993-01-01T23:59:59.000Z
This thesis describes a model of coal water slurry (CWS) sprays and presents new experimental data for CWS viscosities. The model is based on the aerodynamic theory of spray atomization which has been successfully used for Diesel sprays. However...
Attachment working models and false recall: a category structure approach
Wilson, Carol Leigh
2009-06-02T23:59:59.000Z
Two studies were conducted to test the central hypothesis that internal working models of attachment will influence false memory in a model-congruent pattern. Participants in both studies were first primed with a relationship-specific attachment...
Causes and explanations: A structural-model approach
J.Y. Halpern; Judea Pearl
2011-01-01T23:59:59.000Z
J. Y. and J. Pearl (2000). Causes and expla- nations: AJ. Y. and J. Pearl (2001). Causes and explana- tions: AR-266-UAI June 2001 Causes and Explanations: A Structural-
Conditional Graphical Models for Protein Structural Motif Recognition
Liu, Yan
Determining protein structures is crucial to understanding the mechanisms of infection and designing drugs. However, the elucidation of protein folds by crystallographic experiments can be a bottleneck in the development ...
Kriegler, Elmar; Edmonds, James A.; Hallegatte, Stephane; Ebi, Kristie L.; Kram, Tom; Riahi, Keywan; Winkler, Harald; Van Vuuren, Detlef
2014-04-01T23:59:59.000Z
The paper presents the concept of shared climate policy assumptions as an important element of the new scenario framework. Shared climate policy assumptions capture key climate policy dimensions such as the type and scale of mitigation and adaptation measures. They are not specified in the socio-economic reference pathways, and therefore introduce an important third dimension to the scenario matrix architecture. Climate policy assumptions will have to be made in any climate policy scenario, and can have a significant impact on the scenario description. We conclude that a meaningful set of shared climate policy assumptions is useful for grouping individual climate policy analyses and facilitating their comparison. Shared climate policy assumptions should be designed to be policy relevant, and as a set to be broad enough to allow a comprehensive exploration of the climate change scenario space.
Chen, H.W. (Los Alamos National Lab., NM (United States). Biophysics Group M715)
1995-01-01T23:59:59.000Z
Structural classification and parameter estimation (SCPE) methods are used for studying single-input single-output (SISO) parallel linear-nonlinear-linear (LNL), linear-nonlinear (LN), and nonlinear-linear (NL) system models from input-output (I-O) measurements. The uniqueness of the I-O mappings (see the definition of the I-O mapping in Section 3-A) of some model structures is discussed. The uniqueness of the I-O mappings (see the definition of the I-O mapping in Section 3-A) of some model structures is discussed. The uniqueness of I-O mappings of different models tells them in what conditions different model structures can be differentiated from one another. Parameter uniqueness of the I-O mapping of a given structural model is also discussed, which tells the authors in what conditions a given model's parameters can be uniquely estimated from I-O measurements. These methods are then generalized so that they can be used to study single-input multi-output (SIMO), multi-input single-output (MISO), as well as multi-input multi-output (MIMO) nonlinear system models. Parameter estimation of the two-input single-output nonlinear system model (denoted as the 2f-structure in 2 cited references), which was left unsolved previously, can now be obtained using the newly derived algorithms. Applications of SCPE methods for modeling visual cortical neurons, system fault detection, modeling and identification of communication networks, biological systems, and natural and artificial neural networks are also discussed. The feasibility of these methods is demonstrated using simulated examples. SCPE methods presented in this paper can be further developed to study more complicated block-structures models, and will therefore have future potential for modeling and identifying highly complex multi-input multi-output nonlinear systems.
Dynamics of an age-structured metapopulation model
2005-10-28T23:59:59.000Z
of these types of age distributions into the model may provide more realistic predictions for .... It is clear that K2(a) represents the production of newly occupied ...
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
Smith, N. A. S., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Correia, T. M., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk [National Physical Laboratory, Hampton Road, TW11 0LW Middlesex (United Kingdom); Rokosz, M. K., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk [National Physical Laboratory, Hampton Road, TW11 0LW Middlesex (United Kingdom); Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom)
2014-07-28T23:59:59.000Z
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.
Optimization Online - PSMG-A Parallel Structured Model Generator ...
Feng Qiang
2014-10-10T23:59:59.000Z
Oct 10, 2014 ... As far as we are aware, PSMG is the first processor for an algebraic modelling language that is capable of generating the problem in parallel.
A MODEL FOR PHYLOGENETIC INFERENCE USING STRUCTURAL AND CHEMICAL COVARIATES
Naylor, Gavin
in DNA sequence data was homogeneous across different classes of base pairs. DNA sequences for eight among all genes. A stochastic model of rate variation based on the interaction of the covariates. These results confirm that there are classes of base pairs that evolve differently, and suggest that models
Chandler, C.G.
1981-06-01T23:59:59.000Z
The study focuses on the project development process for hydroelectric project planning in Nepal. Chapter I describes the contrast between the vast potential for hydroelectric power development in Nepal and the current energy shortage within the country, not only for electricity, but for firewood and other fuel sources as well. Chapter II explores some of the unknown factors facing hydropower project planners in Nepal, where data for hydrologic, geologic, environmental, and sociological project components are lacking. The chapter also examines institutional and fiscal factors which constrain the planning process. Chapter III describes the critical role of assumptions in the project development process, and details the stages that a project goes through as it is planned. The chapter introduces the concept of assumption analysis as a technique for project planning, listing the potential conflict between the assumptions of foreign consultants and the host-country users of project outputs as an ingredient in the project's success or failure. Chapter IV demonstrates the mechanics and usefulness of assumption analysis through an Assumption Analysis Chart, which shows the interaction among project objectives, project alternatives, project assumptions, and the project development process. Assumption analysis techniques are expected to be useful among bilateral and multilateral aid donors servicing less developed countries.
Relation Between Structure, Function, and Imaging in a Three-Dimensional Model of the Lung
Lutchen, Kenneth
Relation Between Structure, Function, and Imaging in a Three-Dimensional Model of the Lung NORA T morphometric mod- els to predict function relations in the lung. These models, however, are not anatomically explicit. We have advanced a three-dimensional airway tree model to relate dynamic lung function
Structural Informatics, Modeling, and Design with an Open-Source Molecular Software Library (MSL)
Senes, Alessandro
Structural Informatics, Modeling, and Design with an Open-Source Molecular Software Library (MSL for the design, modeling, and analysis of macromolecules. Among the main features supported by the library coordinates (for modeling) and multiple amino acid identities at the same backbone position (for design
A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure
Ciocan-Fontanine, Ionut
A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure Yoichiro Moria 60612, U.S.A. Abstract We introduce a model for ionic electrodiffusion and osmotic water flow through are dissipated through viscous, electrodiffusive and osmotic flows. We discuss limiting models when certain
The mathematical structure of multiphase thermal models of flow in porous media
Bell, John B.
The mathematical structure of multiphase thermal models of flow in porous media By Daniel E.A. van with the formulation and numerical solution of equations for modelling multicomponent, two-phase, thermal fluid flow- tions, Darcy's law for volumetric flow rates and an energy equation in terms of enthalpy. The model
Anisotropic damage modelling of biaxial behaviour and rupture of concrete structures
Boyer, Edmond
Anisotropic damage modelling of biaxial behaviour and rupture of concrete structures Ragueneau F with damage induced anisotropy modelling for concrete-like materials. A thermodynamics based constitutive relationship is presented coupling anisotropic damage and elasticity. The biaxial behaviour of such a model
Proposed database model and file structures for arthropod collection management
Miller, Scott
the context of a single data management system. The value of this linkage is that it permits developers who. In some mainframe based database management systems, it is possible to define repeating subsets of information as part of a single database file structure. However, few personal computer-based systems have
Bachelor Thesis Modeling the interface of oxide hetero-structures
Pfeifer, Holger
composition at the SrTiO3-YBa2Cu2O7- La0.67Ca0.33MnO3 (Superconductor-Ferromagnet ) and LaSrAlO4-LaNiO3-LaAlO3 structures have been shown to have interesting properties including magnetism, superconductivity, metal
Sixth Northwest Conservation and Electric Power Plan Chapter 2: Key Assumptions
at zero and increase to $47 per ton of CO2 emissions by 2030. Higher electricity prices reduce demandSixth Northwest Conservation and Electric Power Plan Chapter 2: Key Assumptions Summary of Key................................................................ 10 Wholesale Electricity Prices
Mohaghegh, Shahab
WVU Regional Research Institute grad assistant wins national award for throwing assumptions out the window Silicon Valley conjures images of leading edge technology. Las Vegas makes one think of gambling
Lee, Yuan-Hsuan
2011-10-21T23:59:59.000Z
This dissertation focuses on issues related to fitting an optimal variance-covariance structure in multilevel linear modeling framework with two Monte Carlo simulation studies. In the first study, the author evaluated the ...
This Text Has the Scent of Starbucks: A Laplacian Structured Sparsity Model for
Murphy, Robert F.
This Text Has the Scent of Starbucks: A Laplacian Structured Sparsity Model for Computational. To do this, we collected customer re- views from Starbucks, Dunkin' Donuts, and other coffee shops
A Structure-Controlled Model For Hot Spring Exploration In Taiwan...
Structure-Controlled Model For Hot Spring Exploration In Taiwan By Remote Sensing Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...
Yang, Ming-Hsuan
Visual Tracking via Adaptive Structural Local Sparse Appearance Model Xu Jia Dalian University of Technology jiaxu1986@mail.dlut.edu.cn Huchuan Lu Dalian University of Technology lhchuan@dlut.edu.cn Ming
Essays on empirical time series modeling with causality and structural change
Kim, Jin Woong
2006-10-30T23:59:59.000Z
In this dissertation, three related issues of building empirical time series models for financial markets are investigated with respect to contemporaneous causality, dynamics, and structural change. In the first essay, ...
NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions
Wayne Moe
2013-05-01T23:59:59.000Z
This document provides key definitions, plant capabilities, and inputs and assumptions related to the Next Generation Nuclear Plant to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor. These definitions, capabilities, and assumptions were extracted from a number of NGNP Project sources such as licensing related white papers, previously issued requirement documents, and preapplication interactions with the Nuclear Regulatory Commission (NRC).
Haas, B J; Salzberg, S L; Zhu, W; Pertea, M; Allen, J E; Orvis, J; White, O; Buell, C R; Wortman, J R
2007-12-10T23:59:59.000Z
EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.
A Dimensionless Model for Predicting the Mass-Transfer Area of Structured Packing
Eldridge, R. Bruce
area Introduction Packing is commonly used in absorption and distillation columns to promote efficient structured packings was measured in a 0.427 m ID column via absorption of CO2 from air into 0.1 kmol/m3 Na structured packing area model is especially critical for the analysis and design of these processes. Wang et
MODELING AND ANALYSIS OF THE DYNAMICS OF DRY-FRICTION-DAMPED STRUCTURAL SYSTEMS
Paris-Sud XI, Université de
MODELING AND ANALYSIS OF THE DYNAMICS OF DRY-FRICTION-DAMPED STRUCTURAL SYSTEMS by Olivier J . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Nonlinear methods for the analysis of friction-damped systems . . . . . . . . . . . . . . . . . . . . . . . . 15 II. HYBRID FREQUENCY-TIME DOMAIN METHODS FOR THE ANALYSIS OF COMPLEX STRUCTURAL SYSTEMS WITH DRY
COMMENTS ON STRUCTURAL CONDITION ANALYSIS BASED ON STRAIN MEASUREMENTS ON TRIPOD MODEL
Boyer, Edmond
depth of 50 m. Bigger size wind turbines are now designed in order to produce more electrical power thanCOMMENTS ON STRUCTURAL CONDITION ANALYSIS BASED ON STRAIN MEASUREMENTS ON TRIPOD MODEL S. Opoka1, M strain can be valuable indicator of such changes. KEYWORDS : offshore support structure, wind turbine
Rudin, Cynthia
Treatment Effect of Repairs to an Electrical Grid Leveraging a Machine Learned Model of Structure is the utility company that provides electrical power to New York City. As of late 2004, the Public Service Commission of the State of New York requires Con Edison to inspect all electrical structures in the power
A SURVEY OF COMMODITY MARKETS AND STRUCTURAL MODELS FOR ELECTRICITY PRICES
Carmona, Rene
A SURVEY OF COMMODITY MARKETS AND STRUCTURAL MODELS FOR ELECTRICITY PRICES RENE CARMONA AND MICHAEL attention to the most idiosyncratic of all: electricity mar- kets. Following a discussion of traded. In doing so, we present a detailed analysis of the structural approach for electricity, arguing for its
Prediction Intervals for NAR Model Structures Using a Bootstrap De Brabanter J.,
Prediction Intervals for NAR Model Structures Using a Bootstrap Method De Brabanter J structure. Our approach relies on the external bootstrap procedure [1]. This method is contrasted. In this paper, an external bootstrap method will be proposed for this purpose. The bootstrap is a computer
DAMAGE DETECTION BASED ON STRUCTURAL RESPONSE TO TEMPERATURE CHANGES AND MODEL UPDATING
Boyer, Edmond
DAMAGE DETECTION BASED ON STRUCTURAL RESPONSE TO TEMPERATURE CHANGES AND MODEL UPDATING Marian The paper proposes use of measured structural response to temperature loads for purposes of damage identification. As opposed to the most common approaches, which rely on suppressing temperature effects in damage
A Structurally Based Investigation of Abdominal Aortic Aneurysms in Mouse Models
Collins, Melissa
2012-02-14T23:59:59.000Z
A STRUCTURALLY BASED INVESTIGATION OF ABDOMINAL AORTIC ANEURYSMS IN MOUSE MODELS A Dissertation by MELISSA JILL COLLINS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... Melissa Jill Collins A STRUCTURALLY BASED INVESTIGATION OF ABDOMINAL AORTIC ANEURYSMS IN MOUSE MODELS A Dissertation by MELISSA JILL COLLINS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...
First Structure Formation: II. Cosmic String + Hot Dark Matter Models
Tom Abel; Albert Stebbins; Peter Anninos; Michael L. Norman
1997-06-26T23:59:59.000Z
We examine the structure of baryonic wakes in the cosmological fluid which would form behind GUT-scale cosmic strings at early times (redshifts z > 100) in a neutrino-dominated universe. We show, using simple analytical arguments as well as 1- and 2-dimensional hydrodynamical simulations, that these wakes will NOT be able to form interesting cosmological objects before the neutrino component collapses. The width of the baryonic wakes (< 10 kpc comoving) is smaller than the scale of wiggles on the strings and are probably not enhanced by the wiggliness of the string network.
Structured Probabilistic Models of Proteins across Spatial and Fitness Landscapes
acid composition in response to changing fitness landscapes. The thesis of this dissertation interactions quickly and accurately. We then develop a method of learning generative models of amino acid cocktails that remain effective against natural possible mutant variants of the tar- get. Towards this
Modeling hierarchically structured nanoparticle/diblock copolymer systems
Lisal, Martin
challenge. In this work, we present a molecular modeling approach for predicting the nanostructure of hybrid of the DBCPs can be harnessed to promote the ordering of the NPs and thereby create highly organized hybrid so materials systems, such as DBCP- based nanocomposites.24 Indeed, the nal morphology of DBCP
An Active and Structural Strain Model for Magnetostrictive Transducers \\Lambda
Flatau, Alison B.
by a magnetic bias generated by either the surrounding permanent magnet or an applied DC current to the solenoid consider the modeling of strains generated by magnetostrictive materials in response to applied magnetic magnetic fields and (ii) the application of magnetic fields generates large strains in the material
An Active and Structural Strain Model for Magnetostrictive Transducers
by a magnetic bias generated by either the surrounding permanent magnet or an applied DC current to the solenoid the modeling of strains generated by magnetostrictive materials in response to applied magnetic fields magnetic fields and (ii) the application of magnetic fields generates large strains in the material
An Active and Structural Strain Model for Magnetostrictive Transducers
Flatau, Alison B.
the modeling of strains generated by magnetostrictive materials in response to applied magnetic elds magnetic elds and ii the application of magnetic elds generates large strains in the material. By utilizing magnetostrictive rod, a wound wire solenoid, an enclosing permanent magnet and a prestress mechanism. The rod
Wave Models for Offshore Wind Turbines Puneet Agarwal
Manuel, Lance
Wave Models for Offshore Wind Turbines Puneet Agarwal§ and Lance Manuely Department of Civil. These wave modeling assumptions do not adequately represent waves in shallow waters where most offshore wind for estimating loads on the support structure (monopile) of an offshore wind turbine. We use a 5MW utility
Modelling the Structure and Dynamics of Science Using Books
Ginda, Michael; Borner, Katy
2015-01-01T23:59:59.000Z
Scientific research is a major driving force in a knowledge based economy. Income, health and wellbeing depend on scientific progress. The better we understand the inner workings of the scientific enterprise, the better we can prompt, manage, steer, and utilize scientific progress. Diverse indicators and approaches exist to evaluate and monitor research activities, from calculating the reputation of a researcher, institution, or country to analyzing and visualizing global brain circulation. However, there are very few predictive models of science that are used by key decision makers in academia, industry, or government interested to improve the quality and impact of scholarly efforts. We present a novel 'bibliographic bibliometric' analysis which we apply to a large collection of books relevant for the modelling of science. We explain the data collection together with the results of the data analyses and visualizations. In the final section we discuss how the analysis of books that describe different modellin...
Zhai, ChengXiang
models (Hofmann, 1999; Blei et al., 2003) to explore word co-occurrence pat- terns, i.e. topics, embedded.g., (Blei and Jordan, 2003; Blei and Lafferty, 2007; Mei et al., 2007; Lu and Zhai, 2008)). In general (Blei et al., 2003), i.e., the doc- ument generation probabilities are invariant to con- tent
Modeling direct interband tunneling. II. Lower-dimensional structures
Pan, Andrew, E-mail: pandrew@ucla.edu [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Chui, Chi On [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095 (United States)
2014-08-07T23:59:59.000Z
We investigate the applicability of the two-band Hamiltonian and the widely used Kane analytical formula to interband tunneling along unconfined directions in nanostructures. Through comparisons with k·p and tight-binding calculations and quantum transport simulations, we find that the primary correction is the change in effective band gap. For both constant fields and realistic tunnel field-effect transistors, dimensionally consistent band gap scaling of the Kane formula allows analytical and numerical device simulations to approximate non-equilibrium Green's function current characteristics without arbitrary fitting. This allows efficient first-order calibration of semiclassical models for interband tunneling in nanodevices.
Emergence of structured interactions: from a theoretical model to pragmatic robotics
Boyer, Edmond
, the the underlying dynamical parameters of the model will be applied to 2 robotic controllers in order to increaseEmergence of structured interactions: from a theoretical model to pragmatic robotics A.Revel ETIS In this article, we present two neural architectures for the control of socially interacting robots. Beginning
Discovering Block-Structured Process Models From Event Logs -A Constructive Approach
van der Aalst, Wil
Discovering Block-Structured Process Models From Event Logs - A Constructive Approach S University of Technology, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands Abstract Process discovery is the problem of, given a log of observed behaviour, finding a process model that `best' describes
Social Networks An Overview of Approaches to Visualize their Structure, Model their
Nagurney, Anna
Social Networks An Overview of Approaches to Visualize their Structure, Model their Emergence of a Social Network Representations of Social Networks Modeling the Emergence of Networks Flows on Networks of Relationships in Supply Chain and Financial Networks #12;Definition of Social Networks "A social network
An Efficient Genetic Algorithm for Predicting Protein Tertiary Structures in the 2D HP Model
Istrail, Sorin
, predicting its tertiary structure is known as the protein folding problem. This problem has been widely genetic algo- rithm for the protein folding problem under the HP model in the two-dimensional square Genetic Algorithm, Protein Folding Problem, 2D HP Model 1. INTRODUCTION Amino acids are the building
Shirai, Kiyoaki
: The language model used in a statistical parser should have probabilistically well-founded se- mantics, which simultaneously1 . In this context, we newly designed a framework of statistical language modeling taking all) and (Collins, 1997) due to the lack of modularity of statistical types. 2Although syntactic structure R
On a tensor-based finite element model for the analysis of shell structures
Arciniega Aleman, Roman Augusto
2006-04-12T23:59:59.000Z
In the present study, we propose a computational model for the linear and nonlinear analysis of shell structures. We consider a tensor-based finite element formulation which describes the mathematical shell model in a natural and simple way by using...
Hierarchical Modelling of Automotive Sensor Front-Ends For Structural Diagnosis of Aging Faults
Wieringa, Roel
h.g.kerkhoff@utwente.nl Abstract: The semiconductor industry for automotive applications is growingHierarchical Modelling of Automotive Sensor Front-Ends For Structural Diagnosis of Aging Faults, dependability, reliability, aging models, hierarchical interfacing, analogue automotive front-ends. I
Senescence and antibiotic resistance in an age-structured population model
Gedeon, Tomas
and other interventions that focus on reducing the transmission of antimicrobial-resistant bacteria betweenSenescence and antibiotic resistance in an age-structured population model Patrick De Leenheer Jack the growing problem of antibiotic resistance of microbial populations. Here we investigate a model
Complete Structural Model of Escherichia coli RNA Polymerase from a Hybrid Approach
Opalka, N.; Brown, J; Lane, W; Twist, K; Landick, R; Asturias, F; Darst, S
2010-01-01T23:59:59.000Z
The Escherichia coli transcription system is the best characterized from a biochemical and genetic point of view and has served as a model system. Nevertheless, a molecular understanding of the details of E. coli transcription and its regulation, and therefore its full exploitation as a model system, has been hampered by the absence of high-resolution structural information on E. coli RNA polymerase (RNAP). We use a combination of approaches, including high-resolution X-ray crystallography, ab initio structural prediction, homology modeling, and single-particle cryo-electron microscopy, to generate complete atomic models of E. coli core RNAP and an E. coli RNAP ternary elongation complex. The detailed and comprehensive structural descriptions can be used to help interpret previous biochemical and genetic data in a new light and provide a structural framework for designing experiments to understand the function of the E. coli lineage-specific insertions and their role in the E. coli transcription program. Transcription, or the synthesis of RNA from DNA, is one of the most important processes in the cell. The central enzyme of transcription is the DNA-dependent RNA polymerase (RNAP), a large, macromolecular assembly consisting of at least five subunits. Historically, much of our fundamental information on the process of transcription has come from genetic and biochemical studies of RNAP from the model bacterium Escherichia coli. More recently, major breakthroughs in our understanding of the mechanism of action of RNAP have come from high resolution crystal structures of various bacterial, archaebacterial, and eukaryotic enzymes. However, all of our high-resolution bacterial RNAP structures are of enzymes from the thermophiles Thermus aquaticus or T. thermophilus, organisms with poorly characterized transcription systems. It has thus far proven impossible to obtain a high-resolution structure of E. coli RNAP, which has made it difficult to relate the large collection of genetic and biochemical data on RNAP function directly to the available structural information. Here, we used a combination of approaches - high-resolution X-ray crystallography of E. coli RNAP fragments, ab initio structure prediction, homology modeling, and single-particle cryo-electron microscopy - to generate complete atomic models of E. coli RNAP. Our detailed and comprehensive structural models provide the heretofore missing structural framework for understanding the function of the highly characterized E. coli RNAP.
Nelson, Jonathan D.
The Assumption of Class-Conditional Independence in Category Learning Jana Jarecki (jarecki Berlin, Germany Abstract This paper investigates the role of the assumption of class- conditional. Treating features as class- conditionally independent can in many situations substantially facilitate
Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England; Terwilliger, Thomas; Terwilliger, T.C.; Grosse-Kunstleve, Ralf Wilhelm; Afonine, P.V.; Moriarty, N.W.; Zwart, P.H.; Hung, L.-W.; Read, R.J.; Adams, P.D.
2007-04-29T23:59:59.000Z
The PHENIX AutoBuild Wizard is a highly automated tool for iterative model-building, structure refinement and density modification using RESOLVE or TEXTAL model-building, RESOLVE statistical density modification, and phenix.refine structure refinement. Recent advances in the AutoBuild Wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model completion algorithms, and automated solvent molecule picking. Model completion algorithms in the AutoBuild Wizard include loop-building, crossovers between chains in different models of a structure, and side-chain optimization. The AutoBuild Wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 {angstrom} to 3.2 {angstrom}, resulting in a mean R-factor of 0.24 and a mean free R factor of 0.29. The R-factor of the final model is dependent on the quality of the starting electron density, and relatively independent of resolution.
Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States); Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Moriarty, Nigel W.; Zwart, Peter H. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Hung, Li-Wei [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States); Read, Randy J. [Department of Haematology, University of Cambridge, Cambridge CB2 0XY (United Kingdom); Adams, Paul D., E-mail: terwilliger@lanl.gov [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States)
2008-01-01T23:59:59.000Z
The highly automated PHENIX AutoBuild wizard is described. The procedure can be applied equally well to phases derived from isomorphous/anomalous and molecular-replacement methods. The PHENIX AutoBuild wizard is a highly automated tool for iterative model building, structure refinement and density modification using RESOLVE model building, RESOLVE statistical density modification and phenix.refine structure refinement. Recent advances in the AutoBuild wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model-completion algorithms and automated solvent-molecule picking. Model-completion algorithms in the AutoBuild wizard include loop building, crossovers between chains in different models of a structure and side-chain optimization. The AutoBuild wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 to 3.2 Å, resulting in a mean R factor of 0.24 and a mean free R factor of 0.29. The R factor of the final model is dependent on the quality of the starting electron density and is relatively independent of resolution.
Technical assumption for Mo-99 production in the MARIA reactor. Feasibility study
Jaroszewicz, J.; Pytel, K.; Dabkowski, L.; Krzysztoszek, G. [Institute of Atomic Energy, 05-400 Otwock-Swierk (Poland)
2008-07-15T23:59:59.000Z
The main objective of U-235 irradiation is to obtain the Tc-99m isotope which is widely used in the domain of medical diagnostics. The decisive factor determining its availability, despite its short life time, is a reaction of radioactive decay of Mo-99 into Tc- 99m. One of the possible sources of molybdenum can be achieved in course of the U-235 fission reaction. The paper presents activities and the calculations results obtained upon the feasibility study on irradiation of U-235 targets for production of molybdenum in the MARIA reactor. The activities including technical assumption were focused on performing calculation for modelling of the target and irradiation device as well as adequate equipment and tools for processing in reactor. It has been assumed that the basic component of fuel charge is an aluminium cladded plate with dimensions of 40x230x1.45 containing 4.7 g U-235. The presumed mode of the heat removal generated in the fuel charge of the reactor primary cooling circuit influences the construction of installation to be used for irradiation and the technological instrumentation. The outer channel construction for irradiation has to be identical as the standard fuel channel construction of the MARIA reactor. It enables to use the existing slab and reactor mounting sockets for the fastening of the molybdenum channel as well as the cooling water delivery system. The measurement of water temperature cooling a fuel charge and control of water flow rate in the channel can also be carried out be means of the standard instrumentation of the reactor. (author)
Folding Proteins with Both Alpha and Beta Structures in a Reduced Model
Nan-yow Chen
2006-07-17T23:59:59.000Z
A reduced model, which can fold both helix and sheet structures, is proposed to study the problem of protein folding. The goal of this model is to find an unbiased effective potential that has included the effects of water and at the same time can predict the three dimensional structure of a protein with a given sequence in reasonable time. For this purpose, rather than focusing on the real folding dynamics or full structural details at the atomic scale, we adopt the Monte Carlo method and the coarse-grained representation of the protein in which both side-chains and the backbones are replaced by suitable geometrical objects in consistent with the known structure. On top of the coarse-grained representation, our effective potential can be developed. Two new interactions, the dipole-dipole interactions and the local hydrophobic interactions, are introduced and are shown to be as crucial as the hydrogen bonds for forming the secondary structures. In particular, for the first time, we demonstrate that the resulting reduced model can successfully fold proteins with both helix and sheet structures without using any biased potential. Further analyses show that this model can also fold other proteins in reasonable accuracy and thus provides a promising starting point for the problem of protein folding.
Vibration-based health monitoring and model refinement of civil engineering structures
Farrar, C.R.; Doebling, S.W.
1997-10-01T23:59:59.000Z
Damage or fault detection, as determined by changes in the dynamic properties of structures, is a subject that has received considerable attention in the technical literature beginning approximately 30 years ago. The basic idea is that changes in the structure`s properties, primarily stiffness, will alter the dynamic properties of the structure such as resonant frequencies and mode shapes, and properties derived from these quantities such as modal-based flexibility. Recently, this technology has been investigated for applications to health monitoring of large civil engineering structures. This presentation will discuss such a study undertaken by engineers from New Mexico Sate University, Sandia National Laboratory and Los Alamos National Laboratory. Experimental modal analyses were performed in an undamaged interstate highway bridge and immediately after four successively more severe damage cases were inflicted in the main girder of the structure. Results of these tests provide insight into the abilities of modal-based damage ID methods to identify damage and the current limitations of this technology. Closely related topics that will be discussed are the use of modal properties to validate computer models of the structure, the use of these computer models in the damage detection process, and the general lack of experimental investigation of large civil engineering structures.
CBE UFAD cost analysis tool: Life cycle cost model, issues and assumptions
Webster, Tom; Benedek, Corinne; Bauman, Fred
2008-01-01T23:59:59.000Z
this purpose in the near future. Churn Expense This elementand restructuring. Data is used regarding churn typesand associated churn rates and difference between UFAD and
CBE UFAD cost analysis tool: Life cycle cost model, issues and assumptions
Webster, Tom; Benedek, Corinne; Bauman, Fred
2008-01-01T23:59:59.000Z
types and associated churn rates and difference between UFADmay have a workstation churn rate of only 5%, but the typerate data Maintenance & Repair (Operations) Utility Expenses (Operations) Churn
CBE UFAD cost analysis tool: Life cycle cost model, issues and assumptions
Webster, Tom; Benedek, Corinne; Bauman, Fred
2008-01-01T23:59:59.000Z
Building Construction Cost Data. ” RS Means, Kingston MA.schedules Refurbish cost data Tax rate data Maintenance &Maintenance & Repair section, cost data is a combination of
CBE UFAD cost analysis tool: Life cycle cost model, issues and assumptions
Webster, Tom; Benedek, Corinne; Bauman, Fred
2008-01-01T23:59:59.000Z
floor terminal unit Wall outlets, power and voice/data PowerWall PP NA Move Powered Workstation n/a n/a All move types: Furniture, minor, major Power,Wall All NA NA NA NA All NA NA All NA Open Plan Private Office Comments OH: Power
Sabahi, Parsa
2012-02-14T23:59:59.000Z
. During the modeling process, time has been recorded as well as other observations describing obstacles, advantages, and disadvantages of both methods. The results show that the usage of predefined parametric families speeds up the process of modeling...
Kockelman, Kara M.
1 1 Relaxing the Multivariate Normality Assumption in the Simulation 2 of Transportation System network analysis literature is the3 use of the multivariate normal (MVN) distribution. While in certain to sample from these case-specific multivariate distributions in simulation studies (see, e.g.,14 Ghosh
Complete Knowledge Assumption Often you want to assume that your knowledge is complete.
Valtorta, Marco
Complete Knowledge Assumption Often you want to assume that your knowledge is complete. Example: assume that a database of what students are enrolled in a course is complete. The definite clause language is monotonic: adding clauses can't invalidate a previous conclusion. Under the complete knowledge
RETI Phase 1B Final Report Update NET SHORT RECALCULATION AND NEW PV ASSUMPTIONS
RETI Phase 1B Final Report Update NET SHORT RECALCULATION AND NEW PV ASSUMPTIONS With Revisions distributed photovoltaic (PV) installations in the Report is unclear and perhaps misleading. At the direction-generation is required. The CEC forecast assumed that 1,082 GWh will be self-generated by consumers from new PV
Wieringa, Roel
Requirements Engineering for Cross-organizational ERP Implementation: Undocumented Assumptions) for Enterprise Resource Planning (ERP) in a cross- organizational context is how to find a match between the ERP for analyzing coordination requirements in inter-organizational ERP projects from a coordination theory
Human lightness perception is guided by simple assumptions about reflectance and lighting
Murray, Richard
Human lightness perception is guided by simple assumptions about reflectance and lighting Richard F 0009, Toronto, Ontario, Canada, M3J 1P3 ABSTRACT Lightness constancy is the remarkable ability of human successful approaches to understanding lightness perception that have developed along independent paths
Impact of assumption of log-normal distribution on monthly rainfall estimation from TMI
Lee, Dong Heon
2001-01-01T23:59:59.000Z
-evaluate the assumption for estimates from TMI, which, unlike the SSM/I, has a 10 GHz channel. The minimum chi-square estimation technique was used for the log-normal method. To check the credibility of the estimation routines, log-normally distributed synthetic data were...
Water transfer in soil at low water content. Is the local equilibrium assumption still appropriate?
Paris-Sud XI, Université de
Water transfer in soil at low water content. Is the local equilibrium assumption still appropriate Montpellier, France Abstract The dynamics of water content in the superficial layers of soils is critical a retardation time and a decrease in phase change rate as the water content gets lower. Therefore, the objective
Novel Use of a Genetic Algorithm for Protein Structure Prediction: Searching Template and Sequence
Moreira, Bruno Contreras
Novel Use of a Genetic Algorithm for Protein Structure Prediction: Searching Template and Sequence assumption is that similar amino acid sequences have the same fold, as supported by empirical observation, so into the models are a function of the differences in sequence between query and template(s).1 Evaluation
The structure of the free energy surface of coarse-grained off-lattice protein models
E. Akturk; H. Arkin Olgar; T. Celik
2007-03-23T23:59:59.000Z
We have performed multicanonical simulations of hydrophobic-hydrophilic heteropolymers with a simple effective, coarse-grained off-lattice model to study the structure and the topology of the energy surface. The multicanonical method samples the whole rugged energy landscape, in particular the low-energy part, and enables one to better understand the critical behaviors and visualize the folding pathways of the considered protein model.
Using Stochastically Generated Subcolumns to Represent Cloud Structure in a Large-Scale Model
Robert, Pincus
condensate amount and cloud fraction, has about the same effect on radiative fluxes as does the ad hoc tuning for representing cloud structure in instantaneous calculations and long-term integrations. Shortwave radiation accounting for this effect in the operational radiation scheme. Long simulations with the new model
Modeling the 19982003 summer circulation and thermal structure in Lake Michigan
Modeling the 19982003 summer circulation and thermal structure in Lake Michigan Dmitry Beletsky,1 to Lake Michigan on a 2 km grid for 6 consecutive years to study interannual variability of summer. Circulation in southern Lake Michigan appears to be more variable than circulation in northern Lake Michigan
VERTICALLY INHOMOGENEOUS MODELS OF THE UPPER CRUSTAL STRUCTURE IN THE WEST-BOHEMIAN SEISMOACTIVE
Cerveny, Vlastislav
VERTICALLY INHOMOGENEOUS MODELS OF THE UPPER CRUSTAL STRUCTURE IN THE WEST-BOHEMIAN SEISMOACTIVE in the year 2000, three profiles traversed the region of earthquake swarms in West- Bohemia/Vogtland. The shots were also recorded at the permanent stations of the local seismic networks. The travel times of P
Inference of the Structural Credit Risk Model Yuxi Li, Li Cheng and Dale Schuurmans
Schuurmans, Dale
, which sits at the very heart of the structural credit risk model, causes great difficulty when in. Take the sub- prime mortgage crisis as an example where a failure in credit risk assessment has played a critical role in precipitating a world wide financial crisis that has profoundly affected the global
Buldyrev, Sergey
Fluid transport in branched structures with temporary closures: A model for quasistatic lung, Hungary Received 20 August 2002; published 20 March 2003 We analyze the problem of fluid transport through containing random blockages that can be removed by the pressure of the fluid itself. We obtain
STRAIN-INDUCED STRUCTURAL CHANGES AND CHEMICAL REACTIONSII. MODELLING OF REACTIONS
Meyers, Marc A.
STRAIN-INDUCED STRUCTURAL CHANGES AND CHEMICAL REACTIONSÐII. MODELLING OF REACTIONS IN SHEAR BAND V 1997; accepted in revised form 26 April 1998) AbstractÐThe problem on strain-induced chemical reaction is connected with the additional heating due to RIP. A kinetic criterion of chemical reaction is formulated
Multi-scale modelling of III-nitrides: from dislocations to the electronic structure
Holec, David
level modelling for the case of the critical thickness of thin epitaxial layers, and covers some issues of simulating the electronic structure of III-nitride alloys by means of the first principle methods. The first part of this work discusses several...
Folding Trp-Cage to NMR Resolution Native Structure Using a Coarse-Grained Protein Model
Buldyrev, Sergey
Folding Trp-Cage to NMR Resolution Native Structure Using a Coarse-Grained Protein Model Feng Ding molecular dynamics folding simulations of a small 20-residue protein--Trp-cage--from a fully extended is not necessary to reach the native state of a protein. Our results also suggest that the success of folding Trp
Structural parameters The analytical model proposed here can explain high fracture
Barthelat, Francois
Structural parameters · The analytical model proposed here can explain high fracture toughness, P.J., et al., Engineering Fracture Mechanics, 2007. 74: p. 19281941. 4. Ritchie, R.O., et al Tensile strength Fracture toughness Composite properties E max S )~( ~ aJ III. Fracture toughness
A conceptual model for the origin of fault damage zone structures in high-porosity sandstone
Cowie, Patience
A conceptual model for the origin of fault damage zone structures in high-porosity sandstone Zoe K-porosity sandstones. Damage zone deformation has been particularly well constrained for two 4-km-long normal faults formed in the Navajo Sandstone of central Utah, USA. For these faults the width of the damage zone
Predicting Protein Folds with Structural Repeats Using a Chain Graph Model
Xing, Eric P.
Predicting Protein Folds with Structural Repeats Using a Chain Graph Model Yan Liu yanliu, Carnegie Mellon University, Pittsburgh, PA 15213 USA Abstract Protein fold recognition is a key step to to accurately identify protein folds aris- ing from typical spatial arrangements of well-defined secondary
Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks
Zilic, Zeljko
. Replacing wired units with wireless sensor network (WSN) nodes offers more flexibility, and ultimately coverage during its deployment. Wireless networking devices are inherently power-limited, which limits1 Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks Rong
Statistical effects of dose deposition in track-structure modelling of radiobiology efficiency
Paris-Sud XI, UniversitÃ© de
: Track-structure model, cell survival, high LET, ions, theory, simulation Abstract: Ion-induced cell. In this paper we focus on two approaches developed and extensively used to predict cell survival in response dose deposition statistics. A INTRODUCTION Cell survival to ionizing radiations is a relevant
New Structural Model for Multicomponent Pile Cross Sections under Axial Load
Horvath, John S.
New Structural Model for Multicomponent Pile Cross Sections under Axial Load John S. Horvath, Ph.D., P.E., M.ASCE1 Abstract: Piles composed of more than one material in their cross section have been used for more than 100 years. Originally this was limited to driven steel shell or pipe piles filled
Finite element modeling of long-term fluid-structure interaction problems in geological media
Anderson, C.A.
1980-01-01T23:59:59.000Z
A model is developed to predict long-term thermal creep and creep rupture in geological structures under multiaxial stress states and under elevated temperature conditions. An example of the method is given showing the behavior of the crust and mantle while undergoing intrusion by a low density diaper. (ACR)
Chang, Grace C.
that contributed to the evolution of observed thermal structure and resuspension of particulate matter during resuspension processes. It is concluded that wave-current bottom shear stress was clearly the most important process for sediment resuspension during and following both hurricanes. Discrepancies between modeled
Modeling electronic structure and transport properties of graphene with resonant scattering centers
Modeling electronic structure and transport properties of graphene with resonant scattering centers present a detailed numerical study of the electronic properties of single-layer graphene with resonant and transport properties of functionalized graphene in a broad range of concentration of impurities from
Dynamic model failure tests of dam structures Dalian University of Technology, Dalian 116024, China
Spencer Jr., Billie F.
Dynamic model failure tests of dam structures Gao Lin Dalian University of Technology, Dalian carried out in Dalian University of Technology, China. The relevant research work is briefly introduced on a earthquake simulating shaking table installed in the Dalian University of Technology. The relevant research
FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES
FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES parents and Ashley for their encouragement and patience through out this process. Without your support I and helped with the testing and data acquisition for the fabric compression tests. Russ's help with gathering
FINITE WAVELET DOMAIN METHOD FOR EFFICIENT MODELING OF LAMB WAVE BASED STRUCTURAL HEALTH MONITORING
Paris-Sud XI, Université de
FINITE WAVELET DOMAIN METHOD FOR EFFICIENT MODELING OF LAMB WAVE BASED STRUCTURAL HEALTH MONITORING element exploits the advantages of wavelets for the spatial discretization of the displacement field : Wavelet-based Finite Element, Transient Response. 1 INTRODUCTION The dynamic transient response and wave
Guidoni, Leonardo
Hybrid Car-Parrinello/Molecular Mechanics Modelling of Transition Metal Complexes: Structure). We have recently developed a QM/MM extension of a Car-Parrinello scheme [5]. These hybrid Car functional theory embedded in a classical force field description. The power of such a combined Car
Boyer, Edmond
Time-dependent model for diluted magnetic semiconductors including band structure and confinement dynamics in confined diluted magnetic semiconductors induced by laser. The hole-spin relaxation process light-induced magnetization dynamics in ferro- magnetic films and in diluted magnetic semiconductors DMS
A STRUCTURAL MODEL FOR ELECTRICITY PRICES RENE CARMONA, MICHAEL COULON, AND DANIEL SCHWARZ
Carmona, Rene
A STRUCTURAL MODEL FOR ELECTRICITY PRICES RENE CARMONA, MICHAEL COULON, AND DANIEL SCHWARZ Abstract pricing in electricity markets, thus extending the growing branch of liter- ature which describes power prices for electricity. We capture both the heavy-tailed nature of spot prices and the complex dependence
Vajda, Sandor
Discrimination of Near-Native Protein Structures From Misfolded Models by Empirical Free Energy University, Boston, Massachusetts ABSTRACT Free energy potentials, combining molecular mechanics of discrimination that in- clude the correlation coefficient between RMSD and free energy, and a new measure labeled
Giurgiutiu, Victor
damage assessment, and are considered as a new non-destructive evaluation method. The in-situ impedance of experimental results obtained from previous work. The real part of the measured PWAS impedance presents twoOn the Modeling of Piezoelectric Wafer Active Sensor Impedance Analysis for Structural Health
On the Phase Structure of the Schwinger Model with Wilson Fermions
H. Gausterer; C. B. Lang
1993-11-19T23:59:59.000Z
We study the phase structure of the massive one flavour lattice Schwinger model on the basis of the finite size scaling behaviour of the partition function zeroes. At $\\beta = 0$ we observe and discuss a possible discrepancy with results obtained by a different method.
Paris-Sud XI, Université de
Modelling Bulk Density According to Structure Development: Toward an Indicator of Microstructure the microaggregates with a small contribution of large pores resulting from root development and macrofaunal activity.25 g cm-3 among the 108 samples studied. Visual assessment of BESI showed that soil material
Boyer, Edmond
STRUCTURAL DAMAGE CLASSIFICATION COMPARISON USING SUPPORT VECTOR MACHINE AND BAYESIAN MODEL, CA, USA 92093-0085 mdtodd@ucsd.edu ABSTRACT Since all damage identification strategies inevitably in the decision-making process of damage detection, classification, and prognosis, which employs training data (or
Hamann, Andreas
1 Post-glacial biogeography of trembling aspen inferred from genetic structure, genetic diversity title: Aspen post-glacial migration history Keywords: Populus tremuloides, species distribution models, phylogeography, genetic diversity, glacial refugia, aspen clones, Pando Length: Abstract: 250 words Main text
Rao, Rekha R.; Celina, Mathias C.; Giron, Nicholas Henry; Long, Kevin Nicholas; Russick, Edward M.
2015-01-01T23:59:59.000Z
We are developing computational models to help understand manufacturing processes, final properties and aging of structural foam, polyurethane PMDI. Th e resulting model predictions of density and cure gradients from the manufacturing process will be used as input to foam heat transfer and mechanical models. BKC 44306 PMDI-10 and BKC 44307 PMDI-18 are the most prevalent foams used in structural parts. Experiments needed to parameterize models of the reaction kinetics and the equations of motion during the foam blowing stages were described for BKC 44306 PMDI-10 in the first of this report series (Mondy et al. 2014). BKC 44307 PMDI-18 is a new foam that will be used to make relatively dense structural supports via over packing. It uses a different catalyst than those in the BKC 44306 family of foams; hence, we expect that the reaction kineti cs models must be modified. Here we detail the experiments needed to characteriz e the reaction kinetics of BKC 44307 PMDI-18 and suggest parameters for the model based on these experiments. In additi on, the second part of this report describes data taken to provide input to the preliminary nonlinear visco elastic structural response model developed for BKC 44306 PMDI-10 foam. We show that the standard cu re schedule used by KCP does not fully cure the material, and, upon temperature elevation above 150 o C, oxidation or decomposition reactions occur that alter the composition of the foam. These findings suggest that achieving a fully cured foam part with this formulation may be not be possible through therma l curing. As such, visco elastic characterization procedures developed for curing thermosets can provide only approximate material properties, since the state of the material continuously evolves during tests.
Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M.
2013-04-01T23:59:59.000Z
The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The ReEDS model was used to simulate utility PV and CSP deployment for this present study, based on several market and performance assumptions - electricity demand, natural gas prices, coal retirements, cost and performance of non-solar renewable technologies, PV resource variability, distributed PV deployment, and solar market supply growth - in addition to the SunShot solar price projections. This study finds that utility-scale solar deployment is highly sensitive to solar prices. Other factors can have significant impacts, particularly electricity demand and natural gas prices.
Macroscale modeling and mesoscale observations of plasma density structures in the polar cap
Basu, S. [Phillips Lab., Hanscom Air Force Base, MA (United States)] [Phillips Lab., Hanscom Air Force Base, MA (United States); Basu, S. [National Science Foundation, Arlington, VA (United States)] [National Science Foundation, Arlington, VA (United States); Sojka, J.J. [Utah State Univ., Logan, UT (United States)] [and others] [Utah State Univ., Logan, UT (United States); and others
1995-04-15T23:59:59.000Z
The seasonal and UT variation of mesoscale structures (10 km - 100 m) in the central polar cap has been obtained from an analysis of 250-MHz intensity scintillation observations made at Thule, Greenland. It has been established earlier that mesoscale structures causing scintillations of satellite signals may develop at the edges of macroscale structures (several hundred km) such as discrete polar cap plasma density enhancements or patches through the gradient drift instability process. As such, the authors examined the seasonal and UT variation of polar cap patches simulated by using the USU Time Dependent Ionospheric Model (TDIM) under conditions of southward B{sub z}. A fairly remarkable similarity is found between the scintillation observations and the model predictions of patch occurrence. For instance, both the patch and scintillation occurrences are minimized during the winter solstice (northern hemisphere) between 0800-1200 UT while also having their largest seasonal intensity between 2000-2400 UT. Little UT dependence of patches and scintillations is seen at equinox with high intensity being observed throughout the day, while during local summer the intensity of macroscale patches and mesoscale irregularities are found to be a minimum at all UT. These results indicate that macroscale features in the polar cap are routinely associated with plasma instabilities giving rise to smaller scale structures and that the specific patch formation mechanism assumed in the simulation is consistent with the observations. This ability to bridge between macroscale modeling and mesoscale observations provides a natural framework for the modeling of mesoscale structures themselves. This mesoscale modeling, in turn, can be utilized in a variety of radar and communication systems applications in the polar region. 25 refs., 3 figs.
Introducing Improved Structural Properties and Salt Dependence into a Coarse-Grained Model of DNA
Benedict E. K. Snodin; Ferdinando Randisi; Majid Mosayebi; Petr Sulc; John S. Schreck; Flavio Romano; Thomas E. Ouldridge; Roman Tsukanov; Eyal Nir; Ard A. Louis; Jonathan P. K. Doye
2015-05-19T23:59:59.000Z
We introduce an extended version of oxDNA, a coarse-grained model of DNA designed to capture the thermodynamic, structural and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves, and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures such as DNA origami which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na$^+$]=0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.
Residential applliance data, assumptions and methodology for end-use forecasting with EPRI-REEPS 2.1
Hwang, R.J,; Johnson, F.X.; Brown, R.E.; Hanford, J.W.; Kommey, J.G.
1994-05-01T23:59:59.000Z
This report details the data, assumptions and methodology for end-use forecasting of appliance energy use in the US residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was developed by the Electric Power Research Institute. In this modeling framework, appliances include essentially all residential end-uses other than space conditioning end-uses. We have defined a distinct appliance model for each end-use based on a common modeling framework provided in the REEPS software. This report details our development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for approximately 70% of electricity consumption and 30% of natural gas consumption in the US residential sector. Appliances are thus important to those residential sector policies or programs aimed at improving the efficiency of electricity and natural gas consumption. This report is primarily methodological in nature, taking the reader through the entire process of developing the baseline for residential appliance end-uses. Analysis steps documented in this report include: gathering technology and market data for each appliance end-use and specific technologies within those end-uses, developing cost data for the various technologies, and specifying decision models to forecast future purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework draws on the extensive technology, cost and market data assembled by LBL for the purpose of analyzing federal energy conservation standards. The resulting residential appliance forecasting model offers a flexible and accurate tool for analyzing the effect of policies at the national level.
Boyer, Edmond
Hybrid Protein Model (HPM) : a method to compact protein 3D-structure information of the Seventh International Symposium on String Processing Information R #12;Hybrid Protein Model (HPM
Hsu, Hsien-Yuan
2011-02-22T23:59:59.000Z
Two Monte Carlo studies were conducted to investigate the sensitivity of fit indices in detecting model misspecification in multilevel structural equation models (MSEM) with normally distributed or dichotomous outcome variables separately under...
Tice, Julie Anne Goodwin
1996-01-01T23:59:59.000Z
This research used structural equation modeling to test the construct validity of measures I I ion, and work of four global constructs: trait socialization, self-concept, organizational socialization' concept. Using measurement model procedures...
Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin; Phelps, Jay; Tucker III, Charles L.; Kunc, Vlastimil; Bapanapalli, Satish K.; Smith, Mark T.
2010-02-23T23:59:59.000Z
This report describes the work conducted under the Cooperative Research and Development Agreement (CRADA) (Nr. 260) between the Pacific Northwest National Laboratory (PNNL) and Autodesk, Inc. to develop and implement process models for injection-molded long-fiber thermoplastics (LFTs) in processing software packages. The structure of this report is organized as follows. After the Introduction Section (Section 1), Section 2 summarizes the current fiber orientation models developed for injection-molded short-fiber thermoplastics (SFTs). Section 3 provides an assessment of these models to determine their capabilities and limitations, and the developments needed for injection-molded LFTs. Section 4 then focuses on the development of a new fiber orientation model for LFTs. This model is termed the anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model as it explores the concept of anisotropic rotary diffusion to capture the fiber-fiber interaction in long-fiber suspensions and uses the reduced strain closure method of Wang et al. to slow down the orientation kinetics in concentrated suspensions. In contrast to fiber orientation modeling, before this project, no standard model was developed to predict the fiber length distribution in molded fiber composites. Section 5 is therefore devoted to the development of a fiber length attrition model in the mold. Sections 6 and 7 address the implementations of the models in AMI, and the conclusions drawn from this work is presented in Section 8.
NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions
Phillip Mills
2012-02-01T23:59:59.000Z
This document is intended to provide a Next Generation Nuclear Plant (NGNP) Project tool in which to collect and identify key definitions, plant capabilities, and inputs and assumptions to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor (HTGR). These definitions, capabilities, and assumptions are extracted from a number of sources, including NGNP Project documents such as licensing related white papers [References 1-11] and previously issued requirement documents [References 13-15]. Also included is information agreed upon by the NGNP Regulatory Affairs group's Licensing Working Group and Configuration Council. The NGNP Project approach to licensing an HTGR plant via a combined license (COL) is defined within the referenced white papers and reference [12], and is not duplicated here.
Localized Smoothing for Multinomial Language Models Victor Lavrenko
Edinburgh, University of
in applications of proba- bilistic models to language. In this report we introduce the zero frequency problem techniques that have proven successful in Information Retrieval. The rest of this report is structured of ¡ under can be rewritten as: ¢¤£(¡§¦ ©¨ @BA6CEDGF(H"I#PRQ S T$U7V ¢¤£(¡8RW9§¦ ©¨ The unigram assumption
First determination of the quark mixing matrix element Vtb independent of assumptions of unitarity
John Swain; Lucas Taylor
1997-12-17T23:59:59.000Z
We present a new method for the determination of the Cabibbo-Kobayashi-Maskawa quark mixing matrix element $|V_{tb}|$ from electroweak loop corrections, in particular those affecting the process $Z\\to b\\bar{b}$. From a combined analysis of results from the LEP, SLC, Tevatron, and neutrino scattering experiments we determine $|V_{tb}| = 0.77^{+0.18}_{-0.24}$. This is the first determination of $|V_{tb}|$ which is independent of unitarity assumptions.
The large-scale structure of semantic networks: statistical analyses and a model for semantic growth
Mark Steyvers; Joshua B. Tenenbaum
2001-10-01T23:59:59.000Z
We present statistical analyses of the large-scale structure of three types of semantic networks: word associations, WordNet, and Roget's thesaurus. We show that they have a small-world structure, characterized by sparse connectivity, short average path-lengths between words, and strong local clustering. In addition, the distributions of the number of connections follow power laws that indicate a scale-free pattern of connectivity, with most nodes having relatively few connections joined together through a small number of hubs with many connections. These regularities have also been found in certain other complex natural networks, such as the world wide web, but they are not consistent with many conventional models of semantic organization, based on inheritance hierarchies, arbitrarily structured networks, or high-dimensional vector spaces. We propose that these structures reflect the mechanisms by which semantic networks grow. We describe a simple model for semantic growth, in which each new word or concept is connected to an existing network by differentiating the connectivity pattern of an existing node. This model generates appropriate small-world statistics and power-law connectivity distributions, and also suggests one possible mechanistic basis for the effects of learning history variables (age-of-acquisition, usage frequency) on behavioral performance in semantic processing tasks.
Wetzel, Christian M.
leap as soon as the electronic band structure in quantum wells will be determined and respective interQuantized states in Ga1ÀxInxNÕGaN heterostructures and the model of polarized homogeneous quantum are modeled under the assumption of polarized laterally ho- mogenous quantum wells. In perturbation
Scaling between Structural Relaxation and Particle Caging in a Model Colloidal Gel
Cristiano De Michele; Emanuela Del Gado; Dino Leporini
2010-09-08T23:59:59.000Z
In polymers melts and supercooled liquids, the glassy dynamics is characterized by the rattling of monomers or particles in the cage formed by their neighbors. Recently, a direct correlation in such systems, described by a universal scaling form, has been established between the rattling amplitude and the structural relaxation time. In this paper we analyze the glassy dynamics emerging from the formation of a persistent network in a model colloidal gel at very low density. The structural relaxation time of the gel network is compared with the mean squared displacement at short times, corresponding to the localization length associated to the presence of energetic bonds. Interestingly, we find that the same type of scaling as for the dense glassy systems holds. Our findings well elucidate the strong coupling between the cooperative rearrangements of the gel network and the single particle localization in the structure. Our results further indicate that the scaling captures indeed fundamental physical elements of glassy dynamics.
Numerical modeling of roll structures in mesoscale vortexes over the Black Sea
Iarova, D A
2014-01-01T23:59:59.000Z
This paper is a case study of horizontal atmospheric rolls that formed over the Black Sea on 16 August 2007. The rolls were discovered in WRF modeling results for a mesoscale cyclone that originated over the sea on 15 August 2007. The roll formation mechanisms, such as Rayleigh-Benard convective instability, dynamic instability, advection and stretching of vertical velocity field inhomogeneities, are considered. It is shown that indeed convective instability played an important role in the roll formation but dynamic instability did not occur. In order to distinguish other possible mechanisms of the roll formation numerical experiments were performed. In these experiments sea surface temperature in the initial conditions was decreased in order to prevent convective instability. Even though convective instability was suppressed roll-like structures still appeared in the modeling results, although their height and circulation velocity were smaller than in the control run. It was found that these structures were ...
Macroscale modeling and mesoscale observations of plasma density structures in the polar cap
Basu, S.; Basu, S.; Sojka, J.J.; Schunk, R.W.; MacKenzie, E.
1995-04-15T23:59:59.000Z
The seasonal and UT variation of mesoscale structures (10 km - 100 m) in the central polar cap has been obtained from an analysis of 250-MHz intensity scintillation observations made at Thule, Greenland. It has been established earlier that mesoscale structures causing scintillations of satellite signals may develop at the edges of macroscale structures (several hundred km) such as discrete polar cap plasma density enhancements or patches through the gradient drift instability process. As such, the authrs examined the seasonal and UT variation of polar cap patches simulated by using the USU Time Dependent Ionospheric Model (TDIM) under conditions of southward B(sub z). A fairly remarkable similarity is found between the scintillation observations and the model predictions of patch occurrence. For instance, both the patch and scintillation occurrences are minimized during the winter solstice (northern hemisphere) between 0800-1200 UT while also having their largest seasonal intensity between 2000-2400 UT. Little UT dependence of patches and scintillations is seen at equinox with high intensity being observed throughout the day, while during local summer the intensity of macroscale patches and mesoscale irregularities are found to be a minimum at all UT. These results indicate that macroscale features in the polar cap are routinely associated with plasma instabilities giving rise to smaller scale structures and that the specific patch formation mechanism assumed in the simulation is consistent with the observations.
Scanning tunneling microscopy studies on the structure and stability of model catalysts
Yang, Fan
2009-05-15T23:59:59.000Z
of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, D. Wayne Goodman Committee Members, Glenn Agnolet James D. Batteas Robert R. Lucchese Head of Department..., David H. Russell December 2007 Major Subject: Chemistry iii ABSTRACT Scanning Tunneling Microscopy Studies on the Structure and Stability of Model Catalysts. (December 2007) Fan Yang, B.S., Peking University (P. R. China) Chair...
Li, Ke
2012-02-14T23:59:59.000Z
of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2010 Major Subject: Agricultural Economics Essays on Regression Spline Structural Nonparametric Stochastic Production Frontier Estimation and Ine ciency Analysis Models Copyright 2010 Ke Li... of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Ximing Wu Committee Members, David Bessler H. Alan Love Qi Li Head of Department, John P. Nichols December 2010 Major Subject: Agricultural Economics iii ABSTRACT...
Scanning tunneling microscopy studies on the structure and stability of model catalysts
Yang, Fan
2009-05-15T23:59:59.000Z
. R. China) Chair of Advisory Committee: Dr. D. Wayne Goodman An atomic level understanding of the structure and stability of model catalysts is essential for surface science studies in heterogeneous catalysis. Scanning tunneling microscopy (STM... ? 100 nm, and (b) V s = 1 V, I = 0.2 nA, 20 nm ? 20 nm ...................... 177 1 CHAPTER I INTRODUCTION The study of heterogeneous catalysis has been a major subject in the field of surface science since the early twentieth century...
Powers, Robert
Homology Model for Oncostatin M Based on NMR Structural Data Douglas Kitchen,,§ Ross C. Hoffman-ray structure, creating homology models may prove to be the most efficient means of providing structural data model for OM was determined from the X-ray structures of human growth hormone (hGH), LIF, and G
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankShale_Gas.pdfService on the TargetFY12Environment | DepartmentResources Before the Behavioral Assumptions
Dimenna, R.A.; Jacobs, R.A.; Taylor, G.A.; Durate, O.E.; Paul, P.K.; Elder, H.H.; Pike, J.A.; Fowler, J.R.; Rutland, P.L.; Gregory, M.V.; Smith III, F.G.; Hang, T.; Subosits, S.G.; Campbell, S.G.
2001-03-26T23:59:59.000Z
The High Level Waste (HLW) Salt Disposition Systems Engineering Team was formed on March 13, 1998, and chartered to identify options, evaluate alternatives, and recommend a selected alternative(s) for processing HLW salt to a permitted wasteform. This requirement arises because the existing In-Tank Precipitation process at the Savannah River Site, as currently configured, cannot simultaneously meet the HLW production and Authorization Basis safety requirements. This engineering study was performed in four phases. This document provides the technical bases, assumptions, and results of this engineering study.
First Structure Formation: I. Primordial Star Forming Regions in hierarchical models
Tom Abel; Peter Anninos; Michael L. Norman; Yu Zhang
1997-05-17T23:59:59.000Z
We investigate the possibility of very early formation of primordial star clusters from high-\\sigma perturbations in cold dark matter dominated structure formation scenarios. For this we have developed a powerful 2-level hierarchical cosmological code with a realistic and robust treatment of multi-species primordial gas chemistry, paying special attention to the formation and destruction of hydrogen molecules, non-equilibrium ionization, and cooling processes. We performed 3-D simulations at small scales and at high redshifts and find that, analogous to simulations of large scale structure, a complex system of filaments, sheets, and spherical knots at the intersections of filaments form. On the mass scales covered by our simulations (5x10^5 - 1x10^9\\Ms) that collapse at redshifts z>25, we find that only at the spherical knots can enough H2 be formed (n_{H_2}/n_H > 5x10^-4) to cool the gas appreciably. Quantities such as the time dependence of the formation of H2 molecules, the final H2 fraction, and central densities from the simulations are compared to the theoretical predictions of Abel (1995) and Tegmark et al. (1997) and found to agree remarkably well. Comparing the 3-D results to an isobaric collapse model we further discuss the possible implications of the extensive merging of small structure that is inherent in hierarchical models. Typically only 5-8% percent of the total baryonic mass in the collapsing structures is found to cool significanlty. Assuming the Padoan (1995) model for star formation our results would predict the first stellar systems to be as small as ~30\\Ms. Some implications for primordial globular cluster formation scenarios are also discussed.
Nonlinear waves and coherent structures in the quantum single-wave model
Tzenov, Stephan I. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Marinov, Kiril B. [ASTeC, STFC Daresbury Laboratory, Keckwick Lane, Daresbury WA4 4AD (United Kingdom)
2011-10-15T23:59:59.000Z
Starting from the von Neumann-Maxwell equations for the Wigner quasi-probability distribution and for the self-consistent electric field, the quantum analog of the classical single-wave model has been derived. The linear stability of the quantum single-wave model has been studied, and periodic in time patterns have been found both analytically and numerically. In addition, some features of quantum chaos have been detected in the unstable region in parameter space. Further, a class of standing-wave solutions of the quantum single-wave model has also been found, which have been observed to behave as stable solitary-wave structures. The analytical results have been finally compared to the exact system dynamics obtained by solving the corresponding equations in Schrodinger representation numerically.
Skolski, J. Z. P., E-mail: j.z.p.skolski@utwente.nl; Vincenc Obona, J. [Materials innovation institute M2i, Faculty of Engineering Technology, Chair of Applied Laser Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Römer, G. R. B. E.; Huis in 't Veld, A. J. [Faculty of Engineering Technology, Chair of Applied Laser Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)
2014-03-14T23:59:59.000Z
A model predicting the formation of laser-induced periodic surface structures (LIPSSs) is presented. That is, the finite-difference time domain method is used to study the interaction of electromagnetic fields with rough surfaces. In this approach, the rough surface is modified by “ablation after each laser pulse,” according to the absorbed energy profile, in order to account for inter-pulse feedback mechanisms. LIPSSs with a periodicity significantly smaller than the laser wavelength are found to “grow” either parallel or orthogonal to the laser polarization. The change in orientation and periodicity follow from the model. LIPSSs with a periodicity larger than the wavelength of the laser radiation and complex superimposed LIPSS patterns are also predicted by the model.
A nonlocal model for fluid-structure interaction with applications in hydraulic fracturing
Turner, Daniel Z
2012-01-01T23:59:59.000Z
Modeling important engineering problems related to flow-induced damage (in the context of hydraulic fracturing among others) depends critically on characterizing the interaction of porous media and interstitial fluid flow. This work presents a new formulation for incorporating the effects of pore pressure in a nonlocal representation of solid mechanics. The result is a framework for modeling fluid-structure interaction problems with the discontinuity capturing advantages of an integral based formulation. A number of numerical examples are used to show that the proposed formulation can be applied to measure the effect of leak-off during hydraulic fracturing as well as modeling consolidation of fluid saturated rock and surface subsidence caused by fluid extraction from a geologic reservoir. The formulation incorporates the effect of pore pressure in the constitutive description of the porous material in a way that is appropriate for nonlinear materials, easily implemented in existing codes, straightforward in i...
Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin; Kunc, Vlastimil; Tucker III, Charles L.
2012-02-23T23:59:59.000Z
This report describes the work conducted under the CRADA Nr. PNNL/304 between Battelle PNNL and Autodesk whose objective is to validate the new process models developed under the previous CRADA for large injection-molded LFT composite structures. To this end, the ARD-RSC and fiber length attrition models implemented in the 2013 research version of Moldflow was used to simulate the injection molding of 600-mm x 600-mm x 3-mm plaques from 40% glass/polypropylene (Dow Chemical DLGF9411.00) and 40% glass/polyamide 6,6 (DuPont Zytel 75LG40HSL BK031) materials. The injection molding was performed by Injection Technologies, Inc. at Windsor, Ontario (under a subcontract by Oak Ridge National Laboratory, ORNL) using the mold offered by the Automotive Composite Consortium (ACC). Two fill speeds under the same back pressure were used to produce plaques under slow-fill and fast-fill conditions. Also, two gating options were used to achieve the following desired flow patterns: flows in edge-gated plaques and in center-gated plaques. After molding, ORNL performed measurements of fiber orientation and length distributions for process model validations. The structure of this report is as follows. After the Introduction (Section 1), Section 2 provides a summary of the ARD-RSC and fiber length attrition models. A summary of model implementations in the latest research version of Moldflow is given in Section 3. Section 4 provides the key processing conditions and parameters for molding of the ACC plaques. The validations of the ARD-RSC and fiber length attrition models are presented and discussed in Section 5. The conclusions will be drawn in Section 6.
Chen Duan [Department of Mathematics, Michigan State University, East Lansing, MI 48824 (United States); Wei Guowei [Department of Mathematics, Michigan State University, East Lansing, MI 48824 (United States); Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 (United States)], E-mail: wei@math.msu.edu
2010-06-20T23:59:59.000Z
The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano-scale. By optimization of the energy functional, we derive consistently coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano-transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano-electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence and model well-posedness are also investigated in the present work.
Fang, Bin; Fu, Guoxing; Agniswamy, Johnson; Harrison, Robert W.; Weber, Irene T.; (GSU)
2009-03-31T23:59:59.000Z
Caspase-3 recognition of various P4 residues in its numerous protein substrates was investigated by crystallography, kinetics, and calculations on model complexes. Asp is the most frequent P4 residue in peptide substrates, although a wide variety of P4 residues are found in the cellular proteins cleaved by caspase-3. The binding of peptidic inhibitors with hydrophobic P4 residues, or no P4 residue, is illustrated by crystal structures of caspase-3 complexes with Ac-IEPD-Cho, Ac-WEHD-Cho, Ac-YVAD-Cho, and Boc-D(OMe)-Fmk at resolutions of 1.9-2.6 {angstrom}. The P4 residues formed favorable hydrophobic interactions in two separate hydrophobic regions of the binding site. The side chains of P4 Ile and Tyr form hydrophobic interactions with caspase-3 residues Trp206 and Trp214 within a non-polar pocket of the S4 subsite, while P4 Trp interacts with Phe250 and Phe252 that can also form the S5 subsite. These interactions of hydrophobic P4 residues are distinct from those for polar P4 Asp, which indicates the adaptability of caspase-3 for binding diverse P4 residues. The predicted trends in peptide binding from molecular models had high correlation with experimental values for peptide inhibitors. Analysis of structural models for the binding of 20 different amino acids at P4 in the aldehyde peptide Ac-XEVD-Cho suggested that the majority of hydrophilic P4 residues interact with Phe250, while hydrophobic residues interact with Trp206, Phe250, and Trp214. Overall, the S4 pocket of caspase-3 exhibits flexible adaptation for different residues and the new structures and models, especially for hydrophobic P4 residues, will be helpful for the design of caspase-3 based drugs.
Thermodynamics and Structural Properties of the High Density Gaussian Core Model
Atsushi Ikeda; Kunimasa Miyazaki
2011-07-20T23:59:59.000Z
We numerically study thermodynamic and structural properties of the one-component Gaussian core model (GCM) at very high densities. The solid-fluid phase boundary is carefully determined. We find that the density dependence of both the freezing and melting temperatures obey the asymptotic relation, $\\log T_f$, $\\log T_m \\propto -\\rho^{2/3}$, where $\\rho$ is the number density, which is consistent with Stillinger's conjecture. Thermodynamic quantities such as the energy and pressure and the structural functions such as the static structure factor are also investigated in the fluid phase for a wide range of temperature above the phase boundary. We compare the numerical results with the prediction of the liquid theory with the random phase approximation (RPA). At high temperatures, the results are in almost perfect agreement with RPA for a wide range of density, as it has been already shown in the previous studies. In the low temperature regime close to the phase boundary line, although RPA fails to describe the structure factors and the radial distribution functions at the length scales of the interparticle distance, it successfully predicts their behaviors at shorter length scales. RPA also predicts thermodynamic quantities such as the energy, pressure, and the temperature at which the thermal expansion coefficient becomes negative, almost perfectly. Striking ability of RPA to predict thermodynamic quantities even at high densities and low temperatures is understood in terms of the decoupling of the length scales which dictate thermodynamic quantities from the interparticle distance which dominates the peak structures of the static structure factor due to the softness of the Gaussian core potential.
Jones, Peter JS
3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave) and backscatter (microwave) signals measured remotely. We show it is feasible to model forest canopy scattering were used to drive optical and microwave models of canopy scattering. Simulated canopy radiometric
Substrate Creep on The Fatigue Life of A Model Dental Multilayer Structure
Zhou, J; Huang, M; Niu, X; soboyejo, W
2006-10-09T23:59:59.000Z
In this paper, we investigated the effects of substrate creep on the fatigue behavior of a model dental multilayer structure, in which a top glass layer was bonded to a polycarbonate substrate through a dental adhesive. The top glass layers were ground using 120 grit or 600 grit sand papers before bonding to create different sub-surface crack sizes and morphologies. The multilayer structures were tested under cyclic Hertzian contact loading to study crack growth and obtain fatigue life curves. The experiment results showed that the fatigue lives of the multilayer structures were impaired by increasing crack sizes in the sub-surfaces. They were also significantly reduced by the substrate creep when tested at relatively low load levels i.e. P{sub m} < 60 N (Pm is the maximum magnitude of cyclic load). But at relatively high load levels i.e. P{sub m} > 65 N, slow crack growth (SCG) was the major failure mechanisms. A modeling study was then carried out to explore the possible failure mechanisms over a range of load levels. It is found that fatigue life at relatively low load levels can be better estimated by considering the substrate creep effect (SCE).
Influence of the plasma environment on atomic structure using an ion-sphere model
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Belkhiri, Madeny Jean; Fontes, Christopher John; Poirier, Michel
2015-09-03T23:59:59.000Z
Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for themore »six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe22+, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the MCDF value of B. Saha et al.« less
Fluid-Structure Interaction Modeling of High-Aspect Ratio Nuclear Fuel Plates Using COMSOL
Curtis, Franklin G [ORNL] [ORNL; Ekici, Kivanc [ORNL] [ORNL; Freels, James D [ORNL] [ORNL
2013-01-01T23:59:59.000Z
The High Flux Isotope Reactor at the Oak Ridge National Lab is in the research stage of converting its fuel from high-enriched uranium to low-enriched uranium. Due to different physical properties of the new fuel and changes to the internal fuel plate design, the current safety basis must be re-evaluated through rigorous computational analyses. One of the areas being explored is the fluid-structure interaction phenomenon due to the interaction of thin fuel plates (50 mils thickness) and the cooling fluid (water). Detailed computational fluid dynamics and fluid-structure interaction simulations have only recently become feasible due to improved numerical algorithms and advancements in computing technology. For many reasons including the already built-in fluid-structure interaction module, COMSOL has been chosen for this complex problem. COMSOL's ability to solve multiphysics problems using a fully-coupled and implicit solution algorithm is crucial in obtaining a stable and accurate solution. Our initial findings show that COMSOL can accurately model such problems due to its ability to closely couple the fluid dynamics and the structural dynamics problems.
Introducing Improved Structural Properties and Salt Dependence into a Coarse-Grained Model of DNA
Snodin, Benedict E K; Mosayebi, Majid; Sulc, Petr; Schreck, John S; Romano, Flavio; Ouldridge, Thomas E; Tsukanov, Roman; Nir, Eyal; Louis, Ard A; Doye, Jonathan P K
2015-01-01T23:59:59.000Z
We introduce an extended version of oxDNA, a coarse-grained model of DNA designed to capture the thermodynamic, structural and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves, and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures such as DNA origami which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na+]=0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened...
A Home Ignition Assessment Model Applied to Structures in the Wildland-Urban Interface
Biswas, Kaushik [ORNL; Werth, David [Savannah River National Laboratory, Aiken, SC; Gupta, Narendra [Savannah River National Laboratory, Aiken, SC
2013-01-01T23:59:59.000Z
The issue of exterior fire threat to buildings, from either wildfires in the wildland-urban interface or neighboring structure fires, is critically important. To address this, theWildfire Ignition Resistant Home Design (WIRHD) program was initiated. The WIRHD program developed a tool, theWildFIREWizard, that will allow homeowners to estimate the external fire threat to their homes based on specific features and characteristics of the homes and yards. The software then makes recommendations to reduce the threat. The inputs include the structural and material features of the home and information about any ignition sources or flammable objects in its immediate vicinity, known as the home ignition zone. The tool comprises an ignition assessment model that performs explicit calculations of the radiant and convective heating of the building envelope from the potential ignition sources. This article describes a series of material ignition and flammability tests that were performed to calibrate and/or validate the ignition assessment model. The tests involved exposing test walls with different external siding types to radiant heating and/or direct flame contact.The responses of the test walls were used to determine the conditions leading to melting, ignition, or any other mode of failure of the walls. Temperature data were used to verify the model predictions of temperature rises and ignition times of the test walls.
Corum, J.M. [ORNL; Battiste, R.L. [ORNL; Brinkman, C.R. [ORNL; Ren, W. [ORNL; Ruggles, M.B. [ORNL; Weitsman, Y.J. [ORNL; Yahr, G.T. [ORNL
1998-02-01T23:59:59.000Z
This background report is a companion to the document entitled ''Durability-Based Design Criteria for an Automotive Structural Composite: Part 1. Design Rules'' (ORNL-6930). The rules and the supporting material characterization and modeling efforts described here are the result of a U.S. Department of Energy Advanced Automotive Materials project entitled ''Durability of Lightweight Composite Structures.'' The overall goal of the project is to develop experimentally based, durability-driven design guidelines for automotive structural composites. The project is closely coordinated with the Automotive Composites Consortium (ACC). The initial reference material addressed by the rules and this background report was chosen and supplied by ACC. The material is a structural reaction injection-molded isocyanurate (urethane), reinforced with continuous-strand, swirl-mat, E-glass fibers. This report consists of 16 position papers, each summarizing the observations and results of a key area of investigation carried out to provide the basis for the durability-based design guide. The durability issues addressed include the effects of cyclic and sustained loadings, temperature, automotive fluids, vibrations, and low-energy impacts (e.g., tool drops and roadway kickups) on deformation, strength, and stiffness. The position papers cover these durability issues. Topics include (1) tensile, compressive, shear, and flexural properties; (2) creep and creep rupture; (3) cyclic fatigue; (4) the effects of temperature, environment, and prior loadings; (5) a multiaxial strength criterion; (6) impact damage and damage tolerance design; (7) stress concentrations; (8) a damage-based predictive model for time-dependent deformations; (9) confirmatory subscale component tests; and (10) damage development and growth observations.
The fixed structurally robust internal model principle for linear multivariable regulators
McGrath, John Thomas
1980-01-01T23:59:59.000Z
for the degree of I'V. STER OF S"IENCE Vay 1980 Va jor Sub jec ~: Elec+r ical Engineering THE FIXED STRUCTURALLY ROBUST INTERNAL MODEL PRINCIPLE FOR LINEAR MULTIVARIABLE REGUIATORS A Thesis by JOHN THOMAS MCGRATH Aoproved as to style and content by... Multivariable Regulators. (May 19BC) John Thomas McGrath, B. S. , Texas ARM Unive sity Chairman of Advisory Committee: Dr. Ralph Keary Cavin III In this paper we develop the necessary and suffi- cient cond'tions to establish the new concept of' a fixed...
Turbulence Modelling and Stirring Mechanisms in the Cosmological Large-scale Structure
Iapichino, L; Niemeyer, J C; Merklein, J
2011-01-01T23:59:59.000Z
FEARLESS (Fluid mEchanics with Adaptively Refined Large Eddy SimulationS) is a numerical scheme for modelling subgrid-scale turbulence in cosmological adaptive mesh refinement simulations. In this contribution, the main features of this tool will be outlined. We discuss the application of this method to cosmological simulations of the large-scale structure. The simulations show that the production of turbulence has a different redshift dependence in the intra-cluster medium and the warm-hot intergalactic medium, caused by the distinct stirring mechanisms (mergers and shock interactions) acting in them. Some properties of the non-thermal pressure support in the two baryon phases are also described.
- Composition & configuration of forest structural attributes Keystone Structures e.g. dead wood `Habitat. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures
Babiuch, B.; Bilello, D. E.; Cowlin, S. C.; Mann, M.; Wise, A.
2008-08-01T23:59:59.000Z
The 2008 Washington International Renewable Energy Conference (WIREC) was held in Washington, D.C., from March 4-6, 2008, and involved nearly 9,000 people from 125 countries. The event brought together worldwide leaders in renewable energy (RE) from governments, international organizations, nongovernmental organizations, and the private sector to discuss the role that renewables can play in alleviating poverty, growing economies, and passing on a healthy planet to future generations. The conference concluded with more than 140 governments, international organizations, and private-sector representatives pledging to advance the uptake of renewable energy. The U.S. government authorized the National Renewable Energy Laboratory (NREL) to estimate the carbon dioxide (CO2) savings that would result from the pledges made at the 2008 conference. This report describes the methodology and assumptions used by NREL in quantifying the potential CO2 reductions derived from those pledges.
Comment on "Magnetic Structure of Gd2Ti2O7"
Stewart, John Ross [ISIS Facility, Rutherford Appleton Laboratory; Ehlers, Georg [ORNL; Wills, A S [University College, London; Bramwell, S T [University College, London; Gardner, Jason [Indiana University
2012-01-01T23:59:59.000Z
M. W. Long and collaborators [ Phys. Rev. B 83 054422 (2011)] recently proposed magnetic structures for gadolinium titanate that differ from those previously reported by us [ J. R. Stewart, G. Ehlers, A. S. Wills, S. T. Bramwell and J. S. Gardner J. Phys.: Condens. Matter 16 L321 (2004)]. In this Comment, we show that the calculated structure factors, S(Q), of the newly proposed models are inconsistent with our neutron powder diffraction data. Long and colleagues were led to reconsider the magnetic structure of gadolinium titanate on the basis of a number of theoretical and experimental assumptions. We argue that these assumptions have no basis in fact and conclude that they provide no reason to doubt our published magnetic structures.
Mooijaart, Ab; Satorra, Albert
2011-01-01T23:59:59.000Z
of-?t summaries for the MM method degrees of freedom chi-regarding the robustness of the MM method to non-normality.MM versus ML estimates of structural equation models with
On the validity of the Poisson assumption in sampling nanometer-sized aerosols
Damit, Brian E [ORNL] [ORNL; Wu, Dr. Chang-Yu [University of Florida, Gainesville] [University of Florida, Gainesville; Cheng, Mengdawn [ORNL] [ORNL
2014-01-01T23:59:59.000Z
A Poisson process is traditionally believed to apply to the sampling of aerosols. For a constant aerosol concentration, it is assumed that a Poisson process describes the fluctuation in the measured concentration because aerosols are stochastically distributed in space. Recent studies, however, have shown that sampling of micrometer-sized aerosols has non-Poissonian behavior with positive correlations. The validity of the Poisson assumption for nanometer-sized aerosols has not been examined and thus was tested in this study. Its validity was tested for four particle sizes - 10 nm, 25 nm, 50 nm and 100 nm - by sampling from indoor air with a DMA- CPC setup to obtain a time series of particle counts. Five metrics were calculated from the data: pair-correlation function (PCF), time-averaged PCF, coefficient of variation, probability of measuring a concentration at least 25% greater than average, and posterior distributions from Bayesian inference. To identify departures from Poissonian behavior, these metrics were also calculated for 1,000 computer-generated Poisson time series with the same mean as the experimental data. For nearly all comparisons, the experimental data fell within the range of 80% of the Poisson-simulation values. Essentially, the metrics for the experimental data were indistinguishable from a simulated Poisson process. The greater influence of Brownian motion for nanometer-sized aerosols may explain the Poissonian behavior observed for smaller aerosols. Although the Poisson assumption was found to be valid in this study, it must be carefully applied as the results here do not definitively prove applicability in all sampling situations.
Monte Carlo study of Lefschetz thimble structure in one-dimensional Thirring model at finite density
Fujii, Hirotsugu; Kikukawa, Yoshio
2015-01-01T23:59:59.000Z
We consider the one-dimensional massive Thirring model formulated on the lattice with staggered fermions and an auxiliary compact vector (link) field, which is exactly solvable and shows a phase transition with increasing the chemical potential of fermion number: the crossover at a finite temperature and the first order transition at zero temperature. We complexify its path-integration on Lefschetz thimbles and examine its phase transition by hybrid Monte Carlo simulations on the single dominant thimble. We observe a discrepancy between the numerical and exact results in the crossover region for small inverse coupling $\\beta$ and/or large lattice size $L$, while they are in good agreement at the lower and higher density regions. We also observe that the discrepancy persists in the continuum limit keeping the temperature finite and it becomes more significant toward the low-temperature limit. This numerical result is consistent with our analytical study of the model's thimble structure. And these results imply...
Shock structure and temperature overshoot in macroscopic multi-temperature model of mixtures
Madjarevi?, Damir, E-mail: damirm@uns.ac.rs; Simi?, Srboljub, E-mail: ssimic@uns.ac.rs [Department of Mechanics, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovi?a 6, 21000 Novi Sad (Serbia); Ruggeri, Tommaso, E-mail: tommaso.ruggeri@unibo.it [Department of Mathematics and Research Center of Applied Mathematics, University of Bologna, Via Saragozza 8, 40123 Bologna (Italy)
2014-10-15T23:59:59.000Z
The paper discusses the shock structure in macroscopic multi-temperature model of gaseous mixtures, recently established within the framework of extended thermodynamics. The study is restricted to weak and moderate shocks in a binary mixture of ideal gases with negligible viscosity and heat conductivity. The model predicts the existence of temperature overshoot of heavier constituent, like more sophisticated approaches, but also puts in evidence its non-monotonic behavior not documented in other studies. This phenomenon is explained as a consequence of weak energy exchange between the constituents, either due to large mass difference, or large rarefaction of the mixture. In the range of small Mach number it is also shown that shock thickness (or equivalently, the inverse of Knudsen number) decreases with the increase of Mach number, as well as when the mixture tends to behave like a single-component gas (small mass difference and/or presence of one constituent in traces)
Istrail, Sorin
Lattice and Off-Lattice Side Chain Models of Protein Folding: Linear Time Structure Prediction This paper considers the protein structure prediction problem for lattice and off-lattice protein folding tools for reasoning about protein folding in unrestricted continuous space through anal- ogy. This paper
MODELLING OF THE PERC STRUCTURE WITH STRIPE AND DOT BACK K.R. Catchpole and A.W. Blakers
MODELLING OF THE PERC STRUCTURE WITH STRIPE AND DOT BACK CONTACTS K.R. Catchpole and A.W. Blakers Centre for Sustainable Energy Systems Engineering Department, FEIT, The Australian National University commercial cell designs with only a small increase in process complexity. Optimisation of the PERC structure
Baudouin, Lucie
A controlled distributed parameter model for a fluid-flexible structure system: numerical consider the problem of active reduction of vibrations in a fluid-flexible structure system and the sloshing of the fuel inside the wing's tank. The control is performed using piezoelectric patches
Paris-Sud XI, Université de
Forecasting the conditional volatility of oil spot and futures prices with structural breaks of oil spot and futures prices using three GARCH-type models, i.e., linear GARCH, GARCH with structural that oil price fluctuations influence economic activity and financial sector (e.g., Jones and Kaul, 1996
Shi, Ya-Zhou; Wang, Feng-Hua; Wu, Yuan-Yan; Tan, Zhi-Jie, E-mail: zjtan@whu.edu.cn [Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China)
2014-09-14T23:59:59.000Z
To bridge the gap between the sequences and 3-dimensional (3D) structures of RNAs, some computational models have been proposed for predicting RNA 3D structures. However, the existed models seldom consider the conditions departing from the room/body temperature and high salt (1M NaCl), and thus generally hardly predict the thermodynamics and salt effect. In this study, we propose a coarse-grained model with implicit salt for RNAs to predict 3D structures, stability, and salt effect. Combined with Monte Carlo simulated annealing algorithm and a coarse-grained force field, the model folds 46 tested RNAs (?45 nt) including pseudoknots into their native-like structures from their sequences, with an overall mean RMSD of 3.5 Å and an overall minimum RMSD of 1.9 Å from the experimental structures. For 30 RNA hairpins, the present model also gives the reliable predictions for the stability and salt effect with the mean deviation ? 1.0 °C of melting temperatures, as compared with the extensive experimental data. In addition, the model could provide the ensemble of possible 3D structures for a short RNA at a given temperature/salt condition.
Model test of wave forces on a structurally dense jacket platform
Gu, G.Z.; Parsley, M.A.; Berek, E.P.; Calvo, J.J.; Johnson, R.C.; Petruska, D.J. [Mobil Technology Co., Dallas, TX (United States)
1996-12-31T23:59:59.000Z
In the Gulf of Mexico, there are a significant number of jacket platforms built in the 1950`s and 60`s which are still in operation. Typically, these platforms have a large number of closely spaced legs and densely arranged bracing members. Since most of these platforms are beyond their design lives but the reservoirs are still producing, their safety, serviceability and fitness-for-purpose must be re-assessed in order to continue producing from them. During Mobil`s in-house re-qualification effort, it was found that the predictions by structural analysis programs (such as SACS and KARMA) were inconsistent with the platform inspection results. The programs predicted a large number of joint can failures during design storms (such as hurricane Andrew), but underwater inspections indicated only few failures had actually occurred. It was apparent that the procedure used for the assessment was conservative--either the wave loads the platforms experienced during the hurricanes were overestimated and/or the structural resistances were underestimated. This paper addresses the wave load issue. To calibrate the force algorithms typically used in structural analysis programs, a model test of a typical aging jacket platform was conducted in the wave basin.
Klein, M.T.; Korre, S.C.; Read, C.J.; Russell, C.L. [Univ. of Deleware, Newark, DE (United States)
1993-12-31T23:59:59.000Z
Heavy oil catalytic hydrocracking is a flexible refining process aimed at increasing the hydrogen-to-carbon ratio, while at the same time decreasing the molecular weight of heavy oils. Reliable information on kinetics, pathways and mechanisms is scarce because of the complexity of the feed that obscures reactant structure. The authors have thus sought to introduce the reactant structure through model compound experiments. The reactants were selected in order to sample the basic structural attributes of heavy oils - the total number of rings, the numbers of aromatic rings and the extent of alkyl substitution. The pathways of hydrocracking bare-ring compounds consist of hydrogenation of an aromatic ring, isomerization of the resulting cyclohexyl moiety to a metyl cyclopentyl moiety, ring opening to a butyl side chain, and dealkylation of the side chain at various positions. This ring-by-ring procedure is repeated a new until alkyl benzenes were produced. The authors have extended this reaction family notion to efficiently organize kinetic information in terms of linear free energy relationships. The authors have also studied a more efficient way of cleavage of polynuclear aromatics, where to molecules of alkyl benzenes are produced from one molecule with {>=}3 rings. Certain alkyl biphenyl moieties have been found to undergo this selective cleavage. Additionally, dealkylation pathways and kinetics have been further examined by experiments with long-alkyl substituted compounds (C{sub 4}-C{sub 15}). These results are expected to enhance the understanding of heavy oil hydrocracking and contribute to process modeling and optimization, with special emphasis on product properties.
HOT X-RAY CORONAE AROUND MASSIVE SPIRAL GALAXIES: A UNIQUE PROBE OF STRUCTURE FORMATION MODELS
Bogdan, Akos; Forman, William R.; Vogelsberger, Mark; Sijacki, Debora; Mazzotta, Pasquale; Kraft, Ralph P.; Jones, Christine; David, Laurence P. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bourdin, Herve [Dipartimento di Fisica, Universita degli Studi di Roma 'Tor Vergata', via della Ricerca Scientifica 1, I-00133 Roma (Italy); Gilfanov, Marat; Churazov, Eugene, E-mail: abogdan@cfa.harvard.edu [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-str. 1, D-85748 Garching (Germany)
2013-08-01T23:59:59.000Z
Luminous X-ray gas coronae in the dark matter halos of massive spiral galaxies are a fundamental prediction of structure formation models, yet only a few such coronae have been detected so far. In this paper, we study the hot X-ray coronae beyond the optical disks of two 'normal' massive spirals, NGC 1961 and NGC 6753. Based on XMM-Newton X-ray observations, hot gaseous emission is detected to {approx}60 kpc-well beyond their optical radii. The hot gas has a best-fit temperature of kT {approx} 0.6 keV and an abundance of {approx}0.1 Solar, and exhibits a fairly uniform distribution, suggesting that the quasi-static gas resides in hydrostatic equilibrium in the potential well of the galaxies. The bolometric luminosity of the gas in the (0.05-0.15)r{sub 200} region (r{sub 200} is the virial radius) is {approx}6 Multiplication-Sign 10{sup 40} erg s{sup -1} for both galaxies. The baryon mass fractions of NGC 1961 and NGC 6753 are f{sub b,NGC1961} {approx} 0.11 and f{sub b,NGC6753} {approx} 0.09, which values fall short of the cosmic baryon fraction. The hot coronae around NGC 1961 and NGC 6753 offer an excellent basis to probe structure formation simulations. To this end, the observations are confronted with the moving mesh code AREPO and the smoothed particle hydrodynamics code GADGET. Although neither model gives a perfect description, the observed luminosities, gas masses, and abundances favor the AREPO code. Moreover, the shape and the normalization of the observed density profiles are better reproduced by AREPO within {approx}0.5r{sub 200}. However, neither model incorporates efficient feedback from supermassive black holes or supernovae, which could alter the simulated properties of the X-ray coronae. With the further advance of numerical models, the present observations will be essential in constraining the feedback effects in structure formation simulations.
FLUID-STRUCTURE INTERACTION MODELS OF THE MITRAL VALVE: FUNCTION IN NORMAL AND PATHOLOGIC STATES
Kunzelman, K. S.; Einstein, Daniel R.; Cochran, R. P.
2007-08-29T23:59:59.000Z
Successful mitral valve repair is dependent upon a full understanding of normal and abnormal mitral valve anatomy and function. Computational analysis is one such method that can be applied to simulate mitral valve function in order to analyze the roles of individual components, and evaluate proposed surgical repair. We developed the first three-dimensional, finite element (FE) computer model of the mitral valve including leaflets and chordae tendineae, however, one critical aspect that has been missing until the last few years was the evaluation of fluid flow, as coupled to the function of the mitral valve structure. We present here our latest results for normal function and specific pathologic changes using a fluid-structure interaction (FSI) model. Normal valve function was first assessed, followed by pathologic material changes in collagen fiber volume fraction, fiber stiffness, fiber splay, and isotropic stiffness. Leaflet and chordal stress and strain, and papillary muscle force was determined. In addition, transmitral flow, time to leaflet closure, and heart valve sound were assessed. Model predictions in the normal state agreed well with a wide range of available in-vivo and in-vitro data. Further, pathologic material changes that preserved the anisotropy of the valve leaflets were found to preserve valve function. By contrast, material changes that altered the anisotropy of the valve were found to profoundly alter valve function. The addition of blood flow and an experimentally driven microstructural description of mitral tissue represent significant advances in computational studies of the mitral valve, which allow further insight to be gained. This work is another building block in the foundation of a computational framework to aid in the refinement and development of a truly noninvasive diagnostic evaluation of the mitral valve. Ultimately, it represents the basis for simulation of surgical repair of pathologic valves in a clinical and educational setting.
Droegemeier, Kelvin K.
On the Vertical Structure of Modeled and Observed Deep Convective Storms: Insights-GEORGIOU, AND VENUGOPAL VURUPUTUR Saint Anthony Falls Laboratory, Department of Civil Engineering, University of Minnesota of hydrometeors (liquid and frozen water droplets in a cloud) produced by high-resolution NWP models with explicit
Margraf, J
2012-06-12T23:59:59.000Z
This report primarily concerns the use of two massively parallel finite element codes originally written and maintained at Lawrence Livermore National Laboratory. ALE3D is an explicit hydrodynamics code commonly employed to simulate wave propagation from high energy scenarios and the resulting interaction with nearby structures. This coupled response ensures that a structure is accurately applied with a blast loading varying both in space and time. Figure 1 illustrates the radial outward propagation of a pressure wave due to a center detonated spherical explosive originating from the lower left. The radial symmetry seen in this scenario is lost when instead a cylindrocal charge is detonated. Figure 2 indicates that a stronger, faster traveling pressure wave occurs in the direction of the normal axis to the cylinder. The ALE3D name is derived because of the use of arbitrary-Lagrange-Eulerian elements in which the mesh is allowed to advect; a process through which the mesh is modified to alleviate tanlging and general mesh distortion often cuased by high energy scenarios. The counterpart to an advecting element is a Lagrange element, whose mesh moves with the material. Ideally all structural components are kept Lagrange as long as possible to preserve accuracy of material variables and minimize advection related errors. Advection leads to mixed zoning, so using structural Lagrange elements also improves the visualization when post processing the results. A simplified representation of the advection process is shown in Figure 3. First the mesh is distorted due to material motion during the Lagrange step. The mesh is then shifted to an idealized and less distorted state to prevent irregular zones caused by the Lagrange motion. Lastly, the state variables are remapped to the elements of the newly constructed mesh. Note that Figure 3 represents a purely Eulerian mesh relaxation because the mesh is relocated back to the pre-Lagrange position. This is the case when the material flows through a still mesh. This is not typically done in an ALE3D analysis, especially if Lagrange elements exist. Deforming Lagrange elements would certainly tangle with a Eulerian mesh eventually. The best method in this case is to have an advecting mesh positioned as some relaxed version of the pre and post Lagrange step; this gives the best opportunity of modeling a high energy event with a combination of Lagrange and ALE elements. Dyne3D is another explicit dynamic analysis code, ParaDyn being the parallel version. ParaDyn is used for predicting the transient response of three dimensional structures using Lagrangian solid mechanics. Large deformation and mesh tangling is often resolved through the use of an element deletion scheme. This is useful to accommodate component failure, but if it is done purely as a means to preserve a useful mesh it can lead to problems because it does not maintain continuity of the material bulk response. Whatever medium exists between structural components is typically not modeled in ParaDyn. Instead, a structure either has a known loading profile applied or given initial conditions. The many included contact algorithms can calculate the loading response of materials if and when they collide. A recent implementation of an SPH module in which failed or deleted material nodes are converted to independent particles is currently being utilized for a variety of spall related problems and high velocity impact scenarios. Figure 4 shows an example of a projectile, given an initial velocity, and how it fails the first plate which generates SPH particles which then interact with and damage the second plate.
Kandemir, Zafer; Bulut, Nejat
2015-01-01T23:59:59.000Z
We study the electronic structure and correlations of vitamin B12 (cyanocobalamine) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. In this approach, the cobalt 3d orbitals are treated as the impurity states placed in a semiconductor host where the host consists of the rest of the molecule. The parameters of the resulting effective Haldane-Anderson model are obtained within the Hartree-Fock (HF) approximation. The quantum Monte Carlo (QMC) technique is then used to calculate the one-electron and magnetic correlation functions of this effective model. We observe that new states form inside the semiconductor gap found by HF due to the intra-orbital Coulomb interaction at the impurity 3d orbitals. In particular, the lowest unoccupied states correspond to an impurity bound state, which consists of the states from the CN axial ligand and the corring ring as well as the Co e_g orbitals. We present results on the charge distri...
Special relativity as the limit of an Aristotelian universal friction theory under Reye's assumption
E. Minguzzi
2014-11-28T23:59:59.000Z
This work explores a classical mechanical theory under two further assumptions: (a) there is a universal dry friction force (Aristotelian mechanics), and (b) the variation of the mass of a body due to wear is proportional to the work done by the friction force on the body (Reye's hypothesis). It is shown that mass depends on velocity as in Special Relativity, and that the velocity is constant for a particular characteristic value. In the limit of vanishing friction the theory satisfies a relativity principle as bodies do not decelerate and, therefore, the absolute frame becomes unobservable. However, the limit theory is not Newtonian mechanics, with its Galilei group symmetry, but rather Special Relativity. This result suggests to regard Special Relativity as the limit of a theory presenting universal friction and exchange of mass-energy with a reservoir (vacuum). Thus, quite surprisingly, Special Relativity follows from the absolute space (ether) concept and could have been discovered following studies of Aristotelian mechanics and friction. We end the work confronting the full theory with observations. It predicts the Hubble law through tired light, and hence it is incompatible with supernova light curves unless both mechanisms of tired light (locally) and universe expansion (non-locally) are at work. It also nicely accounts for some challenging numerical coincidences involving phenomena under low acceleration.
Learning Unknown Event Models Matthew Molineaux1
Gupta, Kalyan Moy
, which describes how the environment changes. We relax the completeness assumption; events occur in our an autonomous underwater vehicle (AUV) that detects an unexpected underwater oil plume for which it has no model of assumptions about the initial state. DISCOVERHISTOR
Goddard III, William A.
The Structure of Water in Crystalline Aluminophosphates: Isolated Water and Intermolecular Clusters are used to elucidate the properties of water in Metavariscite, AlPO4-H3, AlPO4-8 and VPI-5. The framework density of the aluminophosphates decreases along this sequence, the pore size increases, and the water
The variation of the fine structure constant: testing the dipole model with thermonuclear supernovae
Kraiselburd, Lucila; Negrelli, Carolina; Berro, Enrique García
2014-01-01T23:59:59.000Z
The large-number hypothesis conjectures that fundamental constants may vary. Accordingly, the spacetime variation of fundamental constants has been an active subject of research for decades. Recently, using data obtained with large telescopes a phenomenological model in which the fine structure constant might vary spatially has been proposed. We test whether this hypothetical spatial variation of {\\alpha}, which follows a dipole law, is compatible with the data of distant thermonuclear supernovae. Unlike previous works, in our calculations we consider not only the variation of the luminosity distance when a varying {\\alpha} is adopted, but we also take into account the variation of the peak luminosity of Type Ia supernovae resulting from a variation of {\\alpha}. This is done using an empirical relation for the peak bolometric magnitude of thermonuclear supernovae that correctly reproduces the results of detailed numerical simulations. We find that there is no significant difference between the several phenome...
Stringy models of modified gravity: space-time defects and structure formation
Mavromatos, Nick E.; Sakellariadou, Mairi; Yusaf, Muhammad Furqaan, E-mail: nikolaos.mavromatos@kcl.ac.uk, E-mail: mairi.sakellariadou@kcl.ac.uk, E-mail: muhammad.yusaf@kcl.ac.uk [King's College London, Department of Physics, Strand, London WC2R 2LS (United Kingdom)
2013-03-01T23:59:59.000Z
Starting from microscopic models of space-time foam, based on brane universes propagating in bulk space-times populated by D0-brane defects (''D-particles''), we arrive at effective actions used by a low-energy observer on the brane world to describe his/her observations of the Universe. These actions include, apart from the metric tensor field, also scalar (dilaton) and vector fields, the latter describing the interactions of low-energy matter on the brane world with the recoiling point-like space-time defect (D-particle). The vector field is proportional to the recoil velocity of the D-particle and as such it satisfies a certain constraint. The vector breaks locally Lorentz invariance, which however is assumed to be conserved on average in a space-time foam situation, involving the interaction of matter with populations of D-particle defects. In this paper we clarify the role of fluctuations of the vector field on structure formation and galactic growth. In particular we demonstrate that, already at the end of the radiation era, the (constrained) vector field associated with the recoil of the defects provides the seeds for a growing mode in the evolution of the Universe. Such a growing mode survives during the matter dominated era, provided the variance of the D-particle recoil velocities on the brane is larger than a critical value. We note that in this model, as a result of specific properties of D-brane dynamics in the bulk, there is no issue of overclosing the brane Universe for large defect densities. Thus, in these models, the presence of defects may be associated with large-structure formation. Although our string inspired models do have (conventional, from a particle physics point of view) dark matter components, nevertheless it is interesting that the role of ''extra'' dark matter is also provided by the population of massive defects. This is consistent with the weakly interacting character of the D-particle defects, which predominantly interact only gravitationally.
A Spectral Element Approach for Modeling of Wave-Based Structural Health Monitoring Systems
Schulte, Rolf T.; Fritzen, Claus-Peter [Institute of Mechanics and Control-Mechatronics, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen (Germany)
2010-09-30T23:59:59.000Z
During the last decades, guided waves have shown great potential for Structural Health Monitoring (SHM) applications. These waves can be excited and sensed by piezoelectric elements that can be permanently attached onto a structure offering online monitoring capability. As the setup of wave based SHM systems may be very difficult and time consuming there is a growing demand for efficient simulation tools providing the opportunity to design wave based SHM systems in a virtual environment. As usually high frequency waves are used, the associated short wavelength leads to the necessity of a very dense mesh, which makes conventional finite elements not well suited for this purpose. Therefore a flat shell spectral element approach is presented in this contribution. By including electromechanical coupling an SHM system can be simulated entirely from actuator voltage to sensor voltage. The focus of this contribution is the analysis of the effect of delaminations on propagating waves. A forward increment Lagrange multiplier method is used to simulate contact within the delaminated area. A model validation is performed using measured data of an anisotropic CFRP-plate.
Structure and Evolution of Giant Cells in Global Models of Solar Convection
Mark S. Miesch; Allan Sacha Brun; Marc L. Derosa; Juri Toomre
2007-07-10T23:59:59.000Z
The global scales of solar convection are studied through three-dimensional simulations of compressible convection carried out in spherical shells of rotating fluid which extend from the base of the convection zone to within 15 Mm of the photosphere. Such modelling at the highest spatial resolution to date allows study of distinctly turbulent convection, revealing that coherent downflow structures associated with giant cells continue to play a significant role in maintaining the strong differential rotation that is achieved. These giant cells at lower latitudes exhibit prograde propagation relative to the mean zonal flow, or differential rotation, that they establish, and retrograde propagation of more isotropic structures with vortical character at mid and high latitudes. The interstices of the downflow networks often possess strong and compact cyclonic flows. The evolving giant-cell downflow systems can be partly masked by the intense smaller scales of convection driven closer to the surface, yet they are likely to be detectable with the helioseismic probing that is now becoming available. Indeed, the meandering streams and varying cellular subsurface flows revealed by helioseismology must be sampling contributions from the giant cells, yet it is difficult to separate out these signals from those attributed to the faster horizontal flows of supergranulation. To aid in such detection, we use our simulations to describe how the properties of giant cells may be expected to vary with depth, how their patterns evolve in time, and analyze the statistical features of correlations within these complex flow fields.
Structure of A=7 iso-triplet $?$ hypernuclei studied with he four-body model
E. Hiyama; Y. Yamamoto; T. Motoba; M. Kamimura
2009-11-20T23:59:59.000Z
The structure of the T=1 iso-triplet hypernuclei, $^7_{\\Lambda}$He, $^7_{\\Lambda}$Li and $^7_{\\Lambda}$Be within the framework of an $\\alpha +\\Lambda +N+N$ four-body cluster model is studied. Interactions between the constituent subunits are determined so as to reproduce reasonably well the observed low-energy properties of the $\\alpha N$, $\\alpha \\Lambda$, $\\alpha NN$ and $\\alpha \\Lambda N$ subsystems. Furthermore, the two-body $\\Lambda N$ interaction is adjusted so as to reproduce the $0^+$-$1^+$ splitting of $^4_{\\Lambda}$H. Also a phenomenological $\\Lambda N$ charge symmetry breaking(CSB) interaction is introduced. The $\\Lambda$ binding energy of the ground state in $^7_{\\Lambda}$He is predicted to be 5.16(5.36) MeV with(without) the CSB interaction. The calculated energy splittings of the $3/2^+$-$5/2^+$ states in $^7_{\\Lambda}$He and $^7_{\\Lambda}$Li are around 0.1 MeV. We point out that there is a three-layer structure of the matter distribution, $\\alpha$ particle, $\\Lambda$ skin, proton or neutron halo, in the $^7_{\\Lambda}{\\rm He}(J=5/2^+)$, $^7_{\\Lambda}{\\rm Li}(J=5/2^+)$ and $^7_{\\Lambda}{\\rm Be}(J=1/2^+)$ states.
Hart, W.E.; Istrail, S. [Sandia National Labs., Albuquerque, NM (United States). Algorithms and Discrete Mathematics Dept.
1996-08-09T23:59:59.000Z
This paper considers the protein structure prediction problem for lattice and off-lattice protein folding models that explicitly represent side chains. Lattice models of proteins have proven extremely useful tools for reasoning about protein folding in unrestricted continuous space through analogy. This paper provides the first illustration of how rigorous algorithmic analyses of lattice models can lead to rigorous algorithmic analyses of off-lattice models. The authors consider two side chain models: a lattice model that generalizes the HP model (Dill 85) to explicitly represent side chains on the cubic lattice, and a new off-lattice model, the HP Tangent Spheres Side Chain model (HP-TSSC), that generalizes this model further by representing the backbone and side chains of proteins with tangent spheres. They describe algorithms for both of these models with mathematically guaranteed error bounds. In particular, the authors describe a linear time performance guaranteed approximation algorithm for the HP side chain model that constructs conformations whose energy is better than 865 of optimal in a face centered cubic lattice, and they demonstrate how this provides a 70% performance guarantee for the HP-TSSC model. This is the first algorithm in the literature for off-lattice protein structure prediction that has a rigorous performance guarantee. The analysis of the HP-TSSC model builds off of the work of Dancik and Hannenhalli who have developed a 16/30 approximation algorithm for the HP model on the hexagonal close packed lattice. Further, the analysis provides a mathematical methodology for transferring performance guarantees on lattices to off-lattice models. These results partially answer the open question of Karplus et al. concerning the complexity of protein folding models that include side chains.
Li, Wei-hsieh
2010-12-29T23:59:59.000Z
China's growing economic power combined with emerging Asian community is not only gradually enabling Asia to be one of the most important economic regions in the world, but also changing the international structure that was largely dominated...
Exact Coherent Structures and Chaotic Dynamics in a Model of Cardiac Tissue
Greg Byrne; Christopher D. Marcotte; Roman O. Grigoriev
2015-01-20T23:59:59.000Z
Unstable nonchaotic solutions embedded in the chaotic attractor can provide significant new insight into chaotic dynamics of both low- and high-dimensional systems. In particular, in turbulent fluid flows, such unstable solutions are referred to as exact coherent structures (ECS) and play an important role in both initiating and sustaining turbulence. The nature of ECS and their role in organizing spatiotemporally chaotic dynamics, however, is reasonably well understood only for systems on relatively small spatial domains lacking continuous Euclidean symmetries. Construction of ECS on large domains and in the presence of continuous translational and/or rotational symmetries remains a challenge. This is especially true for models of excitable media which display spiral turbulence and for which the standard approach to computing ECS completely breaks down. This paper uses the Karma model of cardiac tissue to illustrate a potential approach that could allow computing a new class of ECS on large domains of arbitrary shape by decomposing them into a patchwork of solutions on smaller domains, or tiles, which retain Euclidean symmetries locally.
Modeling precursor diffusion and reaction of atomic layer deposition in porous structures
Keuter, Thomas, E-mail: t.keuter@fz-juelich.de; Menzler, Norbert Heribert; Mauer, Georg; Vondahlen, Frank; Vaßen, Robert; Buchkremer, Hans Peter [Forschungszentrum Jülich, Institute of Energy and Climate Research (IEK-1), 52425 Jülich (Germany)
2015-01-01T23:59:59.000Z
Atomic layer deposition (ALD) is a technique for depositing thin films of materials with a precise thickness control and uniformity using the self-limitation of the underlying reactions. Usually, it is difficult to predict the result of the ALD process for given external parameters, e.g., the precursor exposure time or the size of the precursor molecules. Therefore, a deeper insight into ALD by modeling the process is needed to improve process control and to achieve more economical coatings. In this paper, a detailed, microscopic approach based on the model developed by Yanguas-Gil and Elam is presented and additionally compared with the experiment. Precursor diffusion and second-order reaction kinetics are combined to identify the influence of the porous substrate's microstructural parameters and the influence of precursor properties on the coating. The thickness of the deposited film is calculated for different depths inside the porous structure in relation to the precursor exposure time, the precursor vapor pressure, and other parameters. Good agreement with experimental results was obtained for ALD zirconiumdioxide (ZrO{sub 2}) films using the precursors tetrakis(ethylmethylamido)zirconium and O{sub 2}. The derivation can be adjusted to describe other features of ALD processes, e.g., precursor and reactive site losses, different growth modes, pore size reduction, and surface diffusion.
Cronin, Kelly; Whyte, Catherine [University of California at Berkeley, Department of Civil and Environmental Engineering, 760 Davis Hall (United States); Reiner, Tom [Graduate Engineer, Buro Happold Consulting Engineers, Inc., 9601 Jefferson Blvd., Suite B, Culver City, CA 90232 (United States)
2008-07-08T23:59:59.000Z
Throughout the world there are hundreds of historic monuments and structures considered to be invaluable and irreplaceable. They are symbols of cultural identity and a means of educating people about history. Preservation of historic monuments and structures is therefore an important part of safeguarding these cultural heritage sites so that they retain their value for future generations.This report discusses a procedure for the investigation of seismic hazards in existing buildings and possible steps that can be taken to avoid damage caused by these hazards. The Augusta Airship Hangar located in Sicily, will be used as a case study however the topics addressed in this paper can be applied to other structures of historic value around the world.First state-of-the-art scanning procedures were used to create scale digital models that were imported into a structural analysis program. Within this program dynamic analyses were performed on the model based on actual ground motions taken close to the site. This data was used to determine the period and mode shapes of the structure. Then a nonlinear analysis, including a static pushover analysis, was implemented on a two-dimensional model of the structural frame. From this analysis the failure mechanisms of the structure were revealed with relation to an allowable roof displacement. The structural integrity of the structure was evaluated based on pre-defined performance goals. Finally multiple suggestions were made how the Augusta Airship Hangar might be repaired and strengthened so that this structure will not be destroyed should an earthquake occur.The results of our study show that historic structures, despite their age, can still be strong and ductile. Also there are a multitude of effective preservation and retrofit techniques that can be used to strengthen these historic structures, should an earthquake occur. Through this study, the Augusta Airship Hangar has proven to be not only a historic symbol for Sicily but also can be used as an example for the rehabilitation of other historic structures. The techniques and processes discussed in this paper can be applied to other historic reinforced concrete structures and can be expanded upon in future investigations.
Cosmogony of Generic Structures
T. Buchert
1994-12-19T23:59:59.000Z
The problem of formation of generic structures in the Universe is addressed, whereby first the kinematics of inertial continua for coherent initial data is considered. The generalization to self--gravitating continua is outlined focused on the classification problem of singularities and metamorphoses arising in the density field. Self--gravity gives rise to an internal hierarchy of structures, and, dropping the assumption of coherence, also to an external hierarchy of structures dependent on the initial power spectrum of fluctuations.
Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; Ciesielski, Filip; Kuzmenko, Ivan; Holt, Stephen A.; Lakey, Jeremy H.
2014-12-09T23:59:59.000Z
The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutronmore »reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less
Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models
Clifton, Luke A. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab., ISIS Pulsed Neutron and Muon Source; Skoda, Maximilian W. A. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab., ISIS Pulsed Neutron and Muon Source; Le Brun, Anton P. [Australian Nuclear Science and Technology Organisation (ANSTO), Menai, NSW (Australia). Bragg Inst.; Ciesielski, Filip [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab., ISIS Pulsed Neutron and Muon Source; Kuzmenko, Ivan [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Holt, Stephen A. [Australian Nuclear Science and Technology Organisation (ANSTO), Menai, NSW (Australia). Bragg Inst.; Lakey, Jeremy H. [Newcastle Univ. (United Kingdom). Inst. for Cell and Molecular Biosciences
2014-12-09T23:59:59.000Z
The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg^{2+} and Ca^{2+}) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca^{2+} binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.
XU,J.; COSTANTINO,C.; HOFMAYER,C.; MURPHY,A.; KITADA,Y.
2003-08-17T23:59:59.000Z
As part of a verification test program for seismic analysis codes for NPP structures, the Nuclear Power Engineering Corporation (NUPEC) of Japan has conducted a series of field model test programs to ensure the adequacy of methodologies employed for seismic analyses of NPP structures. A collaborative program between the United States and Japan was developed to study seismic issues related to NPP applications. The US Nuclear Regulatory Commission (NRC) and its contractor, Brookhaven National Laboratory (BNL), are participating in this program to apply common analysis procedures to predict both free field and soil-structure interaction (SSI) responses to recorded earthquake events, including embedment and dynamic cross interaction (DCI) effects. This paper describes the BNL effort to predict seismic responses of the large-scale realistic model structures for reactor and turbine buildings at the NUPEC test facility in northern Japan. The NUPEC test program has collected a large amount of recorded earthquake response data (both free-field and in-structure) from these test model structures. The BNL free-field analyses were performed with the CARES program while the SSI analyses were preformed using the SASS12000 computer code. The BNL analysis includes both embedded and excavated conditions, as well as the DCI effect, The BNL analysis results and their comparisons to the NUPEC recorded responses are presented in the paper.
Kukushkin, A B
2005-01-01T23:59:59.000Z
The paper briefly reviews (i) the evidences for self-similar structures of a skeletal form (namely, tubules and cartwheels, and their simplest combinations), called the Universal Skeletal Structures (USS), observed in the range 10-5 cm - 1023 cm. in the high-current electric discharges in various fusion devices, severe weather phenomena, and space, (ii) the models for interpreting the phenomenon of skeletal structures, including the hypothesis for a fractal condensed matter (FCM), assembled from nanotubular dust, and (iii) probable role of FCM, which might be responsible for the USS phenomenon, in tornado, ball lightning, and waterspout.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Fisher, R. A.; Muszala, S.; Verteinstein, M.; Lawrence, P.; Xu, C.; McDowell, N. G.; Knox, R. G.; Koven, C.; Holm, J.; Rogers, B. M.; et al
2015-04-29T23:59:59.000Z
We describe an implementation of the Ecosystem Demography (ED) concept in the Community Land Model. The structure of CLM(ED) and the physiological and structural modifications applied to the CLM are presented. A major motivation of this development is to allow the prediction of biome boundaries directly from plant physiological traits via their competitive interactions. Here we investigate the performance of the model for an example biome boundary in Eastern North America. We explore the sensitivity of the predicted biome boundaries and ecosystem properties to the variation of leaf properties determined by the parameter space defined by the GLOPNET global leafmore »trait database. Further, we investigate the impact of four sequential alterations to the structural assumptions in the model governing the relative carbon economy of deciduous and evergreen plants. The default assumption is that the costs and benefits of deciduous vs. evergreen leaf strategies, in terms of carbon assimilation and expenditure, can reproduce the geographical structure of biome boundaries and ecosystem functioning. We find some support for this assumption, but only under particular combinations of model traits and structural assumptions. Many questions remain regarding the preferred methods for deployment of plant trait information in land surface models. In some cases, plant traits might best be closely linked with each other, but we also find support for direct linkages to environmental conditions. We advocate for intensified study of the costs and benefits of plant life history strategies in different environments, and for the increased use of parametric and structural ensembles in the development and analysis of complex vegetation models.« less
Fisher, R. A. [National Center for Atmospheric Research, Boulder, CO (United States); Muszala, S. [National Center for Atmospheric Research, Boulder, CO (United States); Verteinstein, M. [National Center for Atmospheric Research, Boulder, CO (United States); Lawrence, P. [National Center for Atmospheric Research, Boulder, CO (United States); Xu, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McDowell, N. G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Knox, R. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Koven, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)] (ORCID:0000000233670065); Holm, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rogers, B. M. [Woods Hole Research Center, Falmouth, MA (United States); Lawrence, D. [National Center for Atmospheric Research, Boulder, CO (United States); Bonan, G. [National Center for Atmospheric Research, Boulder, CO (United States)
2015-01-01T23:59:59.000Z
We describe an implementation of the Ecosystem Demography (ED) concept in the Community Land Model. The structure of CLM(ED) and the physiological and structural modifications applied to the CLM are presented. A major motivation of this development is to allow the prediction of biome boundaries directly from plant physiological traits via their competitive interactions. Here we investigate the performance of the model for an example biome boundary in Eastern North America. We explore the sensitivity of the predicted biome boundaries and ecosystem properties to the variation of leaf properties determined by the parameter space defined by the GLOPNET global leaf trait database. Further, we investigate the impact of four sequential alterations to the structural assumptions in the model governing the relative carbon economy of deciduous and evergreen plants. The default assumption is that the costs and benefits of deciduous vs. evergreen leaf strategies, in terms of carbon assimilation and expenditure, can reproduce the geographical structure of biome boundaries and ecosystem functioning. We find some support for this assumption, but only under particular combinations of model traits and structural assumptions. Many questions remain regarding the preferred methods for deployment of plant trait information in land surface models. In some cases, plant traits might best be closely linked with each other, but we also find support for direct linkages to environmental conditions. We advocate for intensified study of the costs and benefits of plant life history strategies in different environments, and for the increased use of parametric and structural ensembles in the development and analysis of complex vegetation models.
Phase structure and Higgs boson mass in a Higgs-Yukawa model with a dimension-6 operator
David Y. -J. Chu; Karl Jansen; Bastian Knippschild; C. -J. David Lin; Kei-Ichi Nagai; Attila Nagy
2015-01-01T23:59:59.000Z
We investigate the impact of a $\\lambda_6 \\varphi^6$ term included in a chirally invariant lattice Higgs-Yukawa model. Such a term could emerge from BSM physics at some larger energy scale. We map out the phase structure of the Higgs-Yukawa model with positive $\\lambda_6$ and negative quartic self coupling of the scalar fields. To this end, we evaluate the constraint effective potential in lattice perturbation theory and also determine the magnetization of the model via numerical simulations which allow us to reach also non-perturbative values of the couplings. As a result, we find a complex phase structure with first and second order phase transitions identified through the magnetization. Further we analyze the effect of such a $\\varphi^6$ term on the lower Higgs boson mass bound to see, whether the standard model lower mass bound can be altered.
Tong, Fuhui; Lara-Alecio, Rafael; Irby, Beverly; Mathes, Patricia; Kwok, Oi-man
2010-10-22T23:59:59.000Z
Academic Oral English Development Among Spanish-speaking English Language Learners: Comparing Transitional Bilingual and Structured English Immersion Models Introduction ? Nation-wide: 11.3 million immigrants, among most recent arrivals (2000... students? English proficiency in order to succeed academically in English-only classroom. ? Transitional bilingual education (TBE) model ? All students are of the same minority linguistic background. The goal is to instruct language minority students...
An equilibrium double-twist model for the radial structure of collagen fibrils
Aidan I Brown; Laurent Kreplak; Andrew D Rutenberg
2014-09-15T23:59:59.000Z
Mammalian tissues contain networks and ordered arrays of collagen fibrils originating from the periodic self-assembly of helical 300 nm long tropocollagen complexes. The fibril radius is typically between 25 to 250 nm, and tropocollagen at the surface appears to exhibit a characteristic twist-angle with respect to the fibril axis. Similar fibril radii and twist-angles at the surface are observed in vitro, suggesting that these features are controlled by a similar self-assembly process. In this work, we propose a physical mechanism of equilibrium radius control for collagen fibrils based on a radially varying double-twist alignment of tropocollagen within a collagen fibril. The free-energy of alignment is similar to that of liquid crystalline blue phases, and we employ an analytic Euler-Lagrange and numerical free energy minimization to determine the twist-angle between the molecular axis and the fibril axis along the radial direction. Competition between the different elastic energy components, together with a surface energy, determines the equilibrium radius and twist-angle at the fibril surface. A simplified model with a twist-angle that is linear with radius is a reasonable approximation in some parameter regimes, and explains a power-law dependence of radius and twist-angle at the surface as parameters are varied. Fibril radius and twist-angle at the surface corresponding to an equilibrium free-energy minimum are consistent with existing experimental measurements of collagen fibrils. Remarkably, in the experimental regime, all of our model parameters are important for controlling equilibrium structural parameters of collagen fibrils.
Boyer, Edmond
, Samyn et al. (2011) used a 3D seismic refraction traveltime52 tomography to provide a valuable-00749309,version1-7Nov2012 #12;recommended for all case studies. Seismic refraction can be basicallyQuasi-Newton inversion of seismic first arrivals using source finite1 bandwidth assumption
READ AND SIGN THE PARTIAL ASSUMPTION OF RISK ON REVERSE Risk Management 12/2012 Risk Management
Cina, Jeff
READ AND SIGN THE PARTIAL ASSUMPTION OF RISK ON REVERSE Risk Management 12/2012 Risk Management Conditions of Volunteer Service Please send completed form to the Office of Risk Management: riskmanagement ___________________________________________ (name/title of department supervisor) and the Office of Risk Management, (541) 346-8316, within 24 hours
Gatterbauer, Wolfgang
the commonly held assumption that, under the condition of perfect information, a decentralized unit commitment of consecutive hours. Index Terms-- Centralized unit commitment, Decentralized unit commitment, Market power, a centralized unit commitment can be economically more efficient than a decentralized unit commitment
Pratt, Vaughan
the individual datapoint relates to the full building energy use. The green computing research community canGreen Enterprise Computing Data: Assumptions and Realities Maria Kazandjieva, Brandon Heller, brandonh, pal, christos@cs.stanford.edu, gnawali@cs.uh.edu ABSTRACT Until now, green computing research
Modeling and fabrication of self-assembling micron-scale rollup structures
Cybulski, James Stanley, 1979-
2004-01-01T23:59:59.000Z
Self-assembling micron-scale structures based on standard photolithographic and thin film deposition techniques are investigated. Differences in residual stress between successive thin film layers causes the structures to ...
Rapid Loss Modeling of Death and Downtime Caused By Earthquake Induced Damage to Structures
Ghorawat, Sandeep
2012-07-16T23:59:59.000Z
It is important to assess and communicate the risk to life and downtime associated with earthquake induced damage to structures. Thus, a previously developed four-diagram/four-step approach to assess direct losses associated with structural damage...
Detecting the Causes of Ill-Conditioning in Structural Finite Element Models
Higham, Nicholas J.
.6 of the finite element-based structural analysis package Oasys GSA was released. A new feature in this release
Anderson, R W; Pember, R B; Elliot, N S
2000-09-26T23:59:59.000Z
A new method for the solution of the unsteady Euler equations has been developed. The method combines staggered grid Lagrangian techniques with structured local adaptive mesh refinement (AMR). This method is a precursor to a more general adaptive arbitrary Lagrangian Eulerian (ALE-AMR) algorithm under development, which will facilitate the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required. Many of the core issues involved in the development of the ALE-AMR method hinge upon the integration of AMR with a Lagrange step, which is the focus of the work described here. The novel components of the method are mainly driven by the need to reconcile traditional AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. These new algorithmic components are first developed in one dimension and are then generalized to two dimensions. Solutions of several model problems involving shock hydrodynamics are presented and discussed.
Oxygen reduction by lithium on model carbon and oxidized carbon structures
Xu, Ye [ORNL; Shelton Jr, William Allison [ORNL
2011-01-01T23:59:59.000Z
Li-air batteries have attracted substantial interest for their high theoretical specific energies, but the oxygen reduction reaction by Li (Li-ORR) that occurs at the carbon cathode remains poorly understood. Periodic density functional theory calculations have been performed to examine the Li-ORR on several model carbon structures, including the graphite(0001) basal plane, the (8,0) single-wall nanotube, the armchair-type edge, and a di-vacancy in the basal plane. The inertness of the basal plane limits the reversible potential of O{sub 2} reduction to 1.1 V, and slightly higher to 1.2 V on the curved nanotube. The armchair edge and di-vacancy are highly reactive and significantly oxidized at ambient conditions to various CO{sub x} groups, which are reduced by Li via redox mechanisms at 1.2-1.4 V. These CO{sub x} groups can also catalyze O{sub 2} reduction at up to 2.3 V (an overpotential of 0.4 V vs. the calculated equilibrium potential for bulk Li{sub 2}O{sub 2} formation) by chelating and stabilizing the LiO{sub 2} intermediate. The Li-ORR on graphitic carbon, if via concerted Li{sup +}/e{sup -} transfer and involving carbon, lithium, and oxygen only, is therefore expected to initiate with the smallest overpotential at under-coordinated carbon centers that are oxidized at ambient conditions.
The fine structure of the entanglement entropy in the classical XY model
Li-Ping Yang; Yuzhi Liu; Haiyuan Zou; Z. Y. Xie; Y. Meurice
2015-07-13T23:59:59.000Z
We compare two calculations of the particle density in the superfluid phase of the classical XY model with a chemical potential $\\mu$ in 1+1 dimensions.The first relies on exact blocking formulas from the Tensor Renormalization Group (TRG) formulation of the transfer matrix. The second is a worm algorithm. We show that the particle number distributions obtained with the two methods agree well. We use the TRG method to calculate the thermal entropy and the entanglement entropy. We describe the particle density, the two entropies and the topology of the world lines as we increase $\\mu$ to go across the superfluid phase between the first two Mott insulating phases. For a sufficiently large temporal size, this process reveals an interesting fine structure: the average particle number and the winding number of most of the world lines in the Euclidean time direction increase by one unit at a time. At each step, the thermal entropy develops a peak and the entanglement entropy increases until we reach half-filling and then decreases in a way that approximately mirror the ascent. This suggests an approximate fermionic picture.
Robust Decision-making Applied to Model Selection
Hemez, Francois M. [Los Alamos National Laboratory
2012-08-06T23:59:59.000Z
The scientific and engineering communities are relying more and more on numerical models to simulate ever-increasingly complex phenomena. Selecting a model, from among a family of models that meets the simulation requirements, presents a challenge to modern-day analysts. To address this concern, a framework is adopted anchored in info-gap decision theory. The framework proposes to select models by examining the trade-offs between prediction accuracy and sensitivity to epistemic uncertainty. The framework is demonstrated on two structural engineering applications by asking the following question: Which model, of several numerical models, approximates the behavior of a structure when parameters that define each of those models are unknown? One observation is that models that are nominally more accurate are not necessarily more robust, and their accuracy can deteriorate greatly depending upon the assumptions made. It is posited that, as reliance on numerical models increases, establishing robustness will become as important as demonstrating accuracy.
Pennycook, Steve
Structural model for the Al72Ni20Co8 decagonal quasicrystals Yanfa Yan National Renewable Energy-resolution Z-contrast images of Al72Ni20Co8 decago- nal quasicrystals. The exception is the central ring, where obtained from the Al72Ni20Co8 decagonal quasicrystal, except within the central ring. Here we observe
van Stokkum, Ivo
the ability to convert solar energy into chemical energy (stored in the form of ATP and NADPH), which a sequence of electron transfer reactions leads to the conversion into chemical energy. Chemical analysisThe Flow of Excitation Energy in LHCII Monomers: Implications for the Structural Model of the Major
Goodman, Wayne
Nickel Catalysts Kent Coulter, Xueping Xu, and D. Wayne Goodman' Department of Chemistry, Texas A" The surface structure and catalytic properties of model silica-supported nickel catalysts have been hydrogenolysis and carbon monoxide methanation. Nickel particles in the range 15-80 %L were vacuum deposited onto
Wood, D.J.
2010-01-01T23:59:59.000Z
effect on the market for space heating technologies. EPRIeffect on the market for space heating technologies, makingpredicted market shares for three different heating/cooling
Richards, Lance Jonathan
2005-11-01T23:59:59.000Z
As workplace demands change, a need has developed for alternatives to traditional education. With advancements in electronic telecommunication technologies, distance education has become a viable alternative to traditional ...
Byrd, Jimmy
2010-01-14T23:59:59.000Z
The purpose of the study was to examine multilevel regression models in the context of multilevel structural equation modeling (SEM) in terms of accuracy of parameter estimates, standard errors, and fit indices in normal ...
Ilic, Marija
1995-01-01T23:59:59.000Z
This paper introduces a systematic, structure-based modeling framework for analysis and control of electric power systems for processes evolving over the mid-term and long-term time horizons. Much simpler models than the ...
Flores, Analisa Marielena
2011-01-01T23:59:59.000Z
2 k ? 3.2 Model Information Consider a special search linear model (3.1) as it applies to a fractional factorial design.
M. Bahrami ENSC 461 (S 11) IC Engines 1 Air Standard Assumptions
Bahrami, Majid
is provided by burning fuel within the system boundaries, i.e., internal combustion engines. The following. Internal Combustion Engines 1. spark ignition engines: a mixture of fuel and air is ignited by a spark in (ideal) power cycles are internally reversible. 3- Combustion process is modeled by a heat
Aeroelastic Modeling of Offshore Turbines and Support Structures in Hurricane-Prone Regions (Poster)
Damiani, R.
2014-03-01T23:59:59.000Z
US offshore wind turbines (OWTs) will likely have to contend with hurricanes and the associated loading conditions. Current industry standards do not account for these design load cases (DLCs), thus a new approach is required to guarantee that the OWTs achieve an appropriate level of reliability. In this study, a sequentially coupled aero-hydro-servo-elastic modeling technique was used to address two design approaches: 1.) The ABS (American Bureau of Shipping) approach; and 2.) The Hazard Curve or API (American Petroleum Institute) approach. The former employs IEC partial load factors (PSFs) and 100-yr return-period (RP) metocean events. The latter allows setting PSFs and RP to a prescribed level of system reliability. The 500-yr RP robustness check (appearing in [2] and [3] upcoming editions) is a good indicator of the target reliability for L2 structures. CAE tools such as NREL's FAST and Bentley's' SACS (offshore analysis and design software) can be efficiently coupled to simulate system loads under hurricane DLCs. For this task, we augmented the latest FAST version (v. 8) to include tower aerodynamic drag that cannot be ignored in hurricane DLCs. In this project, a 6 MW turbine was simulated on a typical 4-legged jacket for a mid-Atlantic site. FAST-calculated tower base loads were fed to SACS at the interface level (transition piece); SACS added hydrodynamic and wind loads on the exposed substructure, and calculated mudline overturning moments, and member and joint utilization. Results show that CAE tools can be effectively used to compare design approaches for the design of OWTs in hurricane regions and to achieve a well-balanced design, where reliability levels and costs are optimized.
Structural Model of the Basement in the Central Savannah River Area, South Carolina and Georgia
Stephenson, D. [Westinghouse Savannah River Company, AIKEN, SC (United States); Stieve, A.
1992-03-01T23:59:59.000Z
Interpretation of several generations of seismic reflection data and potential field data suggests the presence of several crustal blocks within the basement beneath the Coastal Plain in the Central Savannah River Area (CSRA). The seismic reflection and refraction data include a grid of profiles that capture shallow and deep reflection events and traverse the Savannah River Site and vicinity. Potential field data includes aeromagnetic, ground magnetic surveys, reconnaissance and detailed gravity surveys. Subsurface data from recovered core are used to constrain the model.Interpretation of these data characteristically indicate a southeast dipping basement surface with some minor highs and lows suggesting an erosional pre-Cretaceous unconformity. This surface is interrupted by several basement faults, most of which offset only early Cretaceous sedimentary horizons overlying the erosional surface. The oldest fault is perhaps late Paleozoic because it is truncated at the basement/Coastal Plain interface. This fault is related in timing and mechanism to the underlying Augusta fault. The youngest faults deform Coastal Plain sediments of at least Priabonian age (40-36.6 Ma). One of these young faults is the Pen Branch faults, identified as the southeast dipping master fault for the Triassic Dunbarton basin. All the Cenozoic faults are probably related in time and mechanism to the nearby, well studied Belair fault.The study area thus contains a set of structures evolved from the Alleghanian orogeny through Mesozoic extension to Cenozoic readjustment of the crust. There is a metamorphosed crystalline terrane with several reflector/fault packages, a reactivated Triassic basin, a mafic terrane separating the Dunbarton basin from the large South Georgia basin to the southeast, and an overprint of reverse faults, some reactivated, and some newly formed.
Structure of the Kinase Domain of CaMKII and Modeling the Holoenzyme
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (MillionStructural Basis of Wnt Recognition byStructure ofMinimalSurvivor StructureStructure of
Structure of the Kinase Domain of CaMKII and Modeling the Holoenzyme
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (MillionStructural Basis of Wnt Recognition byStructure ofMinimalSurvivor StructureStructure
Essays on Incorporating Risk Modeling Techniques in Agriculture
Larsen, Ryan A.
2012-10-19T23:59:59.000Z
Measuring, modeling, and managing risk has always been an important task for researchers. Many of the traditional assumptions relied on in risk research, such as the assumption of normality and single period optimization, have proven too...
Reinhold H. Dauskardt
2005-08-30T23:59:59.000Z
Final technical report detailing unique experimental and multi-scale computational modeling capabilities developed to study fracture and subcritical cracking in thin-film structures. Our program to date at Stanford has studied the mechanisms of fracture and fatigue crack-growth in structural ceramics at high temperature, bulk and thin-film glasses in selected moist environments where we demonstrated the presence of a true mechanical fatigue effect in some glass compositions. We also reported on the effects of complex environments and fatigue loading on subcritical cracking that effects the reliability of MEMS and other micro-devices using novel micro-machined silicon specimens and nanomaterial layers.
Error handling strategies in multiphase inverse modeling
Finsterle, S.; Zhang, Y.
2010-12-01T23:59:59.000Z
Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.
Dynamics of structures coupled with elastic media -a review of numerical models and methods
Paris-Sud XI, Université de
), the structure's environment is restricted here to a large and possibly unbounded visco-elastic medium. Under in the field of structure-environment interaction problems, in which the environment is an elastic body and vibration emitted by transportation systems and wave diffraction by obstacles in an elastic medium
Neural Network Modeling of Structured Packing Height Equivalent to a Theoretical Plate
Eldridge, R. Bruce
-transfer ef- ficiency in structured packing. Column designers use the HETP to calculate the height of packing properties of the chemical system, and the operating conditions of the column. In a previous paper, Whaley et a detailed investigation of the parameters which impact the performance of structured packing in distillation
Boyer, Edmond
Health Monitoring of operating wind turbines is challenging, as those structures are characterized, analyzed and compared within the problem of vibration based fault detection on operating wind turbines. The particular case of operating wind turbines is challeng- ing, as those structures are characterized by complex
Karplus, Kevin
-state classification of secondary structure that places a residue in one of three categories: helix, sheet, or coil. This is a broad classification, as it provides little information about the coil category that accounts for 45.2,24,25 One group used only secondary structure information to build a template library of HMMs
Jing-Fei Zhang; Ming-Ming Zhao; Yun-He Li; Xin Zhang
2015-03-27T23:59:59.000Z
The model of holographic dark energy (HDE) with massive neutrinos and/or dark radiation is investigated in detail. The background and perturbation evolutions in the HDE model are calculated. We employ the PPF approach to overcome the gravity instability difficulty (perturbation divergence of dark energy) led by the equation-of-state parameter $w$ evolving across the phantom divide $w=-1$ in the HDE model with $cpower spectrum and the matter power spectrum in the HDE scenario are discussed. Furthermore, we constrain the models of HDE with massive neutrinos and/or dark radiation by using the latest measurements of expansion history and growth of structure, including the Planck CMB temperature data, the baryon acoustic oscillation data, the JLA supernova data, the Hubble constant direct measurement, the cosmic shear data of weak lensing, the Planck CMB lensing data, and the redshift space distortions data. We find that $\\sum m_\
Zhang, Jing-Fei; Li, Yun-He; Zhang, Xin
2015-01-01T23:59:59.000Z
The model of holographic dark energy (HDE) with massive neutrinos and/or dark radiation is investigated in detail. The background and perturbation evolutions in the HDE model are calculated. We employ the PPF approach to overcome the gravity instability difficulty (perturbation divergence of dark energy) led by the equation-of-state parameter $w$ evolving across the phantom divide $w=-1$ in the HDE model with $cpower spectrum and the matter power spectrum in the HDE scenario are discussed. Furthermore, we constrain the models of HDE with massive neutrinos and/or dark radiation by using the latest measurements of expansion history and growth of structure, including the Planck CMB temperature data, the baryon acoustic oscillation data, the JLA supernova data, the Hubble constant direct measurement, the cosmic shear...
R. Gutierrez; R. Caetano; P. B. Woiczikowski; T. Kubar; M. Elstner; G. Cuniberti
2009-10-02T23:59:59.000Z
Charge transport through a short DNA oligomer (Dickerson dodecamer) in presence of structural fluctuations is investigated using a hybrid computational methodology based on a combination of quantum mechanical electronic structure calculations and classical molecular dynamics simulations with a model Hamiltonian approach. Based on a fragment orbital description, the DNA electronic structure can be coarse-grained in a very efficient way. The influence of dynamical fluctuations arising either from the solvent fluctuations or from base-pair vibrational modes can be taken into account in a straightforward way through time series of the effective DNA electronic parameters, evaluated at snapshots along the MD trajectory. We show that charge transport can be promoted through the coupling to solvent fluctuations, which gate the onsite energies along the DNA wire.
An improved structural mechanics model for the FRAPCON nuclear fuel performance code
Mieloszyk, Alexander James
2012-01-01T23:59:59.000Z
In order to provide improved predictions of Pellet Cladding Mechanical Interaction (PCMI) for the FRAPCON nuclear fuel performance code, a new model, the FRAPCON Radial-Axial Soft Pellet (FRASP) model, was developed. This ...
Single family heating and cooling requirements: Assumptions, methods, and summary results
Ritschard, R.L.; Hanford, J.W.; Sezgen, A.O. (Lawrence Berkeley Lab., CA (United States))
1992-03-01T23:59:59.000Z
The research has created a data base of hourly building loads using a state-of-the-art building simulation code (DOE-2.ID) for 8 prototypes, representing pre-1940s to 1990s building practices, in 16 US climates. The report describes the assumed modeling inputs and building operations, defines the building prototypes and selection of base cities, compares the simulation results to both surveyed and measured data sources, and discusses the results. The full data base with hourly space conditioning, water heating, and non-HVAC electricity consumption is available from GRI. In addition, the estimated loads on a per square foot basis are included as well as the peak heating and cooling loads.
Discovering Block-Structured Process Models From Event Logs Containing Infrequent Behaviour
van der Aalst, Wil
behaviour, process discovery aims to find a process model that `best' describes this behaviour. A large and bottlenecks [17,15,4]. e d a b c f Figure 1: Unsound process model. The challenge in process discovery infrequent behaviour and challenge discovery algorithms, as a process model scoring well on all quality
Structure-based model for light-harvesting properties of nucleic acid nanostructures
Pan, Keyao
Programmed self-assembly of DNA enables the rational design of megadalton-scale macromolecular assemblies with sub-nanometer scale precision. These assemblies can be programmed to serve as structural scaffolds for secondary ...
On 3D modeling of seismic wave propagation via a structured ...
2011-07-27T23:59:59.000Z
In many problems following the discretization of linear par- tial differential .... one can not control the solution accuracy of an exact direct solver, even though we only ...... Predicting Structure in Nonsymmetric Sparse ... Theory and practice.
Joshi, Praveen Sudhakar
1999-01-01T23:59:59.000Z
Predictive Variable Structure and Fuzzy Logic based controllers for the same benchmark problem. Evaluation criteria consist of closed-loop system performance, activity level of the VFC nozzles, ease of controller synthesis, time required to synthesize...
Menke, Matthew Ewald, 1978-
2009-01-01T23:59:59.000Z
Modem techniques in biology have produced sequence data for huge quantities of proteins, and 3-D structural information for a much smaller number of proteins. We introduce several algorithms that make use of the limited ...
Model-based design of an ultra high performance concrete support structure for a wind turbine
Wang, Zheng, M. Eng. Massachusetts Institute of Technology
2007-01-01T23:59:59.000Z
A support tower is the main structure which would support rotor, power transmission and control systems, and elevates the rotating blades above the earth boundary layer. A successful design should ensure safe, efficient ...
Ghoniem, Nasr M.
, we plan to investigate the deformation characteris- tics of two classes of nano-structured materials. The proposed research will also impact graduate education world-wide by the developme
Lo, Cynthia
2005-01-01T23:59:59.000Z
Zeolites are crystalline, porous aluminosilicates; while a pure silicate structure is charge-neutral, the substitution of A1³? for Si?? creates in the framework a negative charge, which can be compensated by a proton that ...
2013-01-01T23:59:59.000Z
Cite this article as: Hacker et al. : Urban slum structure:Place 2009, 15:107–116. Hacker et al. International JournalHacker et al. International Journal of Health Geographics
Mukherjee, Srayanta
2011-12-31T23:59:59.000Z
approach using TM-score as the objective function. However, the traditional NW dynamic programming was redesigned to prevent the cross alignment of chains during the structure alignment process. Driven by the knowledge obtained from MM-align that protein...
Energy pathways and structures of oceanic eddies from the ECCO2 State Estimate and Simplified Models
Chen, Ru, Ph. D. Massachusetts Institute of Technology
2013-01-01T23:59:59.000Z
Studying oceanic eddies is important for understanding and predicting ocean circulation and climate variability. The central focus of this dissertation is the energy exchange between eddies and mean ow and banded structures ...
Joshi, Praveen Sudhakar
1999-01-01T23:59:59.000Z
Predictive Variable Structure and Fuzzy Logic based controllers for the same benchmark problem. Evaluation criteria consist of closed-loop system performance, activity level of the VFC nozzles, ease of controller synthesis, time required to synthesize...
Rapid Loss Modeling of Death and Downtime Caused By Earthquake Induced Damage to Structures
Ghorawat, Sandeep
2012-07-16T23:59:59.000Z
, a similar quantitative risk assessment technique is used to examine the indirect loss associated with death and downtime. The four-step approach is subdivided into four distinct tasks: (a) Hazard analysis, (b) Structural analysis, (c) Loss analysis...
Elastic octopoles and colloidal structures in nematic liquid crystals
S. B. Chernyshuk; O. M. Tovkach; B. I. Lev
2013-05-14T23:59:59.000Z
We propose a simple theoretical model which explains a formation of dipolar 2D and 3D colloidal structures in nematic liquid crystal. Colloidal particles are treated as effective hard spheres interacting via their elastic dipole, quadrupole and octopole moments. It is shown that octopole moment plays an important role in the formation of 2D and 3D nematic colloidal crystals. We generalize this assumption on the case of the external electric field and theoretically explain a giant electrostriction effect in 3D crystals observed recently [A. Nych et al., Nature Communications \\textbf{4}, 1489 (2013)].
Structure of the Kinase Domain of CaMKII and Modeling the Holoenzyme
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey Inside theFacebookTechnical InformationStructure IlluminatesStructure of
Paris-Sud XI, Université de
.gery,largeron,thollard}@univ-st-etienne.fr Abstract In databases or in the World Wide Web, many documents are in a structured format (e.g. XML). We provided by structure can be used to emphasize some particular words or some parts of the textual document. Consequently, a word does not have the same importance if it is emphasized (e.g. bold font, italic, etc
A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure
Mori, Yoichiro; Eisenberg, Robert S
2011-01-01T23:59:59.000Z
We introduce a model for ionic electrodiffusion and osmotic water flow through cells and tissues. The model consists of a system of partial differential equations for ionic concentration and fluid flow with interface conditions at deforming membrane boundaries. The model satisfies a natural energy equality, in which the sum of the entropic, elastic and electrostatic free energies are dissipated through viscous, electrodiffusive and osmotic flows. We discuss limiting models when certain dimensionless parameters are small. Finally, we develop a numerical scheme for the one-dimensional case and present some simple applications of our model to cell volume control.
A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure
Yoichiro Mori; Chun Liu; Robert S. Eisenberg
2011-01-27T23:59:59.000Z
We introduce a model for ionic electrodiffusion and osmotic water flow through cells and tissues. The model consists of a system of partial differential equations for ionic concentration and fluid flow with interface conditions at deforming membrane boundaries. The model satisfies a natural energy equality, in which the sum of the entropic, elastic and electrostatic free energies are dissipated through viscous, electrodiffusive and osmotic flows. We discuss limiting models when certain dimensionless parameters are small. Finally, we develop a numerical scheme for the one-dimensional case and present some simple applications of our model to cell volume control.
Alister W. Graham; Peter Erwin; Ignacio Trujillo; Andres Asensio Ramos
2003-06-02T23:59:59.000Z
The Nuker law was designed to match the inner few (~3-10) arcseconds of predominantly nearby (< 30 Mpc) early-type galaxy light-profiles; it was never intended to describe an entire profile. The Sersic model, on the other hand, was developed to fit the entire profile; however, due to the presence of partially depleted galaxy cores, the Sersic model cannot always describe the very inner region. We have therefore developed a new empirical model consisting of an inner power-law, a transition region, and an outer Sersic model to connect the inner and outer structure of elliptical galaxies. Moreover, the stability of the Nuker model parameters are investigated. Surprisingly, none are found to be stable quantities; all are shown to vary systematically with a profile's fitted radial extent, and often by more than 100%. Considering elliptical galaxies spanning a range of 7.5 magnitudes, the central stellar density of the underlying host galaxy is observed to increase with galaxy luminosity until the onset of core formation, detected only in the brightest elliptical galaxies. We suggest that the so-called ``power-law'' galaxies may actually be described by the Sersic model over their entire radial range.
Flores, Analisa Marielena
2011-01-01T23:59:59.000Z
optimal 2 m fractional factorial designs of resolution V,2000. Model-robust factorial designs. Technometrics, 42(4),1979. A screening design for factorial experiments with
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Rafique, R.; Xia, J.; Hararuk, O.; Luo, Y.
2014-06-27T23:59:59.000Z
Modeled carbon (C) storage capacity is largely determined by the C residence time and net primary productivity (NPP). Extensive research has been done on NPP dynamics but the residence time and their relationships with C storage are much less studied. In this study, we implemented a traceability analysis to understand the modeled C storage and residence time in three land surface models: CSIRO's Atmosphere Biosphere Land Exchange (CABLE) with 9 C pools, Community Land Model (version 3.5) combined with Carnegie-Ames-Stanford Approach (CLM3.5-CASA) with 12 C pools and Community Land Model (version 4) (CLM4) with 26 C pools. The globally averagedmore »C storage and residence time was computed at both individual pool and total ecosystem levels. The spatial distribution of total ecosystem C storage and residence time differ greatly among the three models. The CABLE model showed a closer agreement with measured C storage and residence time in plant and soil pools than CLM3.5-CASA and CLM4. However, CLM3.5-CASA and CLM4 were close to each other in modeled C storage but not with measured data. CABLE stores more C in root whereas CLM3.5-CASA and CLM4 store more C in woody pools, partly due to differential NPP allocation in respective pools. The C residence time in individual C pools is greatly different among models, largely because of different transfer coefficient values among pools. CABLE had higher bulk residence time for soil C pools than the other two models. Overall, the traceability analysis used in this study can help fully characterizes the behavior of complex land models.« less
Structural-chemical modeling of transition of coals to the plastic state
A.M. Gyul'maliev; S.G. Gagarin [FGUP Institute for Fossil Fuels, Moscow (Russian Federation)
2007-02-15T23:59:59.000Z
The structural-chemical simulation of the formation of plastic state during the thermal treatment (pyrolysis, coking) of coals is based on allowance for intermolecular interactions in the organic matter. The feasibility of transition of coals to the plastic state is determined by the ratio between the onset plastic state (softening) and runaway degradation temperatures, values that depend on the petrographic composition and the degree of metamorphism of coals and the distribution of structural and chemical characteristics of organic matter. 33 refs., 8 figs., 2 tabs.
The mathematical structure of multiphase thermal models of flow in porous media
- tions, Darcy's law for volumetric flow rates and an energy equation in terms of enthalpy. The model with the formulation and numerical solution of equations for modelling multicomponent, two-phase, thermal fluid flow is closed with an equation of state and phase equilibrium con- ditions that determine the distribution
Steady-state chemical process models. A structural point of view
Neumaier, Arnold
of mixing . . . . . . . . . . . . . . . . . . . . . . . . 13 6.3 Heat exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Process streams 5 3 Sources and sinks 5 4 Atomic units 6 4.1 Structural types of the atomic units . . . . . . . . . . . . . . . . 6 5 Equations 7 5.1 Type of equations
Merchant Commodity Storage and Term Structure Model Error Nicola Secomandi,1
Sadeh, Norman M.
the futures term structure affect the valuation and hedging of natural gas storage. We find that even small; specifically, we consider natural gas storage lease contracts (Maragos 2002). Natural gas is an important, as well as for inventory, production, and capacity investment policies that rely on demand forecast term
proteinsSTRUCTURE O FUNCTION O BIOINFORMATICS Graphical models of proteinprotein
Ramakrishnan, Naren
in a protein family provide evidence for con- straints on choices of amino acids. Some residues may be strictly con- served, allowing only a single amino acid type in order to preserve proper structure and function coupling from correlation--if a pair of (cross-family) residues has correlated amino acid types
Giardina, Giorgia; DeJong, Matthew J.; Mair, Robert J.
2015-07-30T23:59:59.000Z
historische Geba¨ude am Beispiel einer neuen U-Bahnlinie in Rom, Geomechanics and Tunnelling 5 (3) (2012) 275–299. [36] G. Giardina, M. A. N. Hendriks, J. G. Rots, Sensitivity study on tunnelling induced damage to a masonry fac¸ade, Engineering Structures 89...
Theoretical investigation of the magnetic structure in YBa_2Cu_3O_6
Ekkehard Krüger
2006-08-07T23:59:59.000Z
As experimentally well established, YBa_2Cu_3O_6 is an antiferromagnet with the magnetic moments lying on the Cu sites. Starting from this experimental result and the assumption, that nearest-neighbor Cu atoms within a layer have exactly antiparallel magnetic moments, the orientation of the magnetic moments has been determined within a nonadiabatic extension of the Heisenberg model of magnetism, called nonadiabatic Heisenberg model. Within this group-theoretical model there exist four stable magnetic structures in YBa_2Cu_3O_6, two of them are obviously identical with the high- and low-temperature structure established experimentally. However, not all the magnetic moments which appear to be antiparallel in neutron-scattering experiments are exactly antiparallel within this group-theoretical model. Furthermore, within this model the magnetic moments are not exactly perpendicular to the orthorhombic c axis.
Zhu, Yunhua; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.
2009-02-01T23:59:59.000Z
The purpose of this study was to examine alternative biomass-to-ethanol conversion process assumptions and configuration options to determine their relative effects on overall process economics. A process-flow-sheet computer model was used to determine the heat and material balance for each configuration that was studied. The heat and material balance was then fed to a costing spreadsheet to determine the impact on the ethanol selling price. By examining a number of operational and configuration alternatives and comparing the results to the base flow sheet, alternatives having the greatest impact the performance and cost of the overall system were identified and used to make decisions on research priorities. This report, which was originally published in December 2008, has been revised primarily to correct information presented in Appendix B -- Base Case Flow Sheets and Model Results. The corrections to Appendix B include replacement of several pages in Table B.1 that duplicated previous pages of the table. Other changes were made in Appendix B to correct inconsistencies between stream labels presented in the tables and the stream labels in the figures.
Statistics and Philosophy Mathematical models and reality
Hennig, Christian
Statistics and Philosophy Mathematical models and reality Frequentist probabilities The Bayes-frequentist controversy Cluster analysis and truth Model Assumptions and Truth in Statistics Christian Hennig 4 February 2015 Christian Hennig Model Assumptions and Truth in Statistics #12;Statistics and Philosophy
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.; Godano, Maxime
2014-01-01T23:59:59.000Z
We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about Mw = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzed themore »ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic Mw = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO2 leakage, but would certainly be felt by the local population.« less
Rutqvist, Jonny [Lawrence Berkeley National Lab., CA (United States); Cappa, Frederic [Lawrence Berkeley National Lab., CA (United States); Rinaldi, Antonio P. [Lawrence Berkeley National Lab., CA (United States); Godano, Maxime [Univ. of Nice Sophia-Antipolis (France)
2014-12-31T23:59:59.000Z
We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about M_{w} = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic M_{w} = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO_{2} leakage, but would certainly be felt by the local population.
Dynamic soil-structure interaction-comparison of FEM model with experimental results
Srinivasan, Palanivel Rajan
2000-01-01T23:59:59.000Z
to represent twenty different laboratory experiments. The results of these models are compared with results available from extensive experimental dynamic testing on a geotechnical centrifuge. Though the various results from the finite element analysis...
Echols, Jana Elizabeth
1995-01-01T23:59:59.000Z
In vitro cell model systems derived from rat granuloma cells were developed for the study of multistep ovarian carcinogenesis. Spontaneously immortalized rat granuloma cells (SIGC) were transfected with either the pSV3neo plasmid which contains...
Structure of finite-RSB asymptotic Gibbs measures in the diluted spin glass models
Dmitry Panchenko
2015-02-25T23:59:59.000Z
We suggest a possible approach to proving the M\\'ezard-Parisi formula for the free energy in the diluted spin glass models, such as diluted K-spin or random K-sat model at any positive temperature. In the main contribution of the paper, we show that a certain small modification of the Hamiltonian in any of these models forces all finite-RSB asymptotic Gibbs measures in the sense of the overlaps to satisfy the M\\'ezard-Parisi ansatz for the distribution of spins. Unfortunately, what is still missing is a description of the general full-RSB asymptotic Gibbs measures. If one could show that the general case can be approximated by finite-RSB case in the right sense then one could a posteriori remove the small modification of the Hamiltonian to recover the M\\'ezard-Parisi formula for the original model.
Amini, Noushin
2012-02-14T23:59:59.000Z
of rods with or without crossflow. Such flows are crucial in various engineering disciplines. This experiment aimed at modeling the coolant flow behavior and mixing phenomena within the lower plenum of a Very High Temperature Reactor (VHTR). Dynamic...
Towards a Formal Semantics for a Structurally Dynamic Noncausal Modelling Language
Nilsson, Henrik
modelling approach, promoting the reuse of components. Modelica is a prime example of this class of lan, many of these languages are referred to as object-oriented mod- elling languages. Modelica [23] is one
A Structurally Based Investigation of Abdominal Aortic Aneurysms in Mouse Models
Collins, Melissa
2012-02-14T23:59:59.000Z
parameters of the two vessels that experience AAAs in different models, but also the effects of three major components of AAA formation. Biaxial mechanical tests were performed using a modified computer- controlled device. We examined the solid mechanics...
Broader source: Energy.gov [DOE]
Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...
Green Water Flow Kinematics and Impact Pressure on a Three Dimensional Model Structure
Ariyarathne, Hanchapola Appuhamilage Kusalika Suranjani
2011-10-21T23:59:59.000Z
was successfully related to the pressure rising time. Void fraction was measured for few locations near the model front edge. Predictions of maximum impact pressure based on the measured pressure and flow velocity were investigated linking pressure with kinetic...
Lazaridis, Themis
on statistical effective energy functions. Although the theoretical foundation of such functions is not clear physical effective energy function SEEF statistical effective energy function Introduction Approaches augmented by implicit solvation models, provide physical effective energy functions that are beginning
RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1
NONE
1995-08-01T23:59:59.000Z
The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes.
A unifying model for the structure of animal groups on the move
Cristiani, Emiliano
2009-01-01T23:59:59.000Z
In this paper we present an agent-based model for the simulation of animal groups on the move in two and three dimensions. The model takes into account only two forces: a long-range cohesion and a short-range repulsion. We also consider the visual field of the animals and the different zones where cohesion and repulsion are active. Interactions between animals are both metric and topological. Unlike most of the existing models, we do not take into account the alignment of the velocities. The main result is that, despite the simplicity of the model, we can obtain almost all known patterns commonly seen in nature for animal groups (globular, extended and front clusters, columns, Vees, Jays, echelons) without adding extra animal-specific features, disclosing the basic causes of pattern formation.
Assessing Invariance of Factor Structures and Polytomous Item Response Model Parameter Estimates
Reyes, Jennifer McGee
2012-02-14T23:59:59.000Z
.e., identical items, different people) for the homogenous graded response model (Samejima, 1969) and the partial credit model (Masters, 1982)? To evaluate measurement invariance using IRT methods, the item discrimination and item difficulty parameters... obtained from the GRM need to be equivalent across datasets. The YFCY02 and YFCY03 GRM item discrimination parameters (slope) correlation was 0.828. The YFCY02 and YFCY03 GRM item difficulty parameters (location) correlation was 0...
Modeling and Algorithmic Approaches to Constitutively-Complex, Micro-structured Fluids
Forest, Mark Gregory [University of North Carolina at Chapel Hill] [University of North Carolina at Chapel Hill
2014-05-06T23:59:59.000Z
The team for this Project made significant progress on modeling and algorithmic approaches to hydrodynamics of fluids with complex microstructure. Our advances are broken down into modeling and algorithmic approaches. In experiments a driven magnetic bead in a complex fluid accelerates out of the Stokes regime and settles into another apparent linear response regime. The modeling explains the take-off as a deformation of entanglements, and the longtime behavior is a nonlinear, far-from-equilibrium property. Furthermore, the model has predictive value, as we can tune microstructural properties relative to the magnetic force applied to the bead to exhibit all possible behaviors. Wave-theoretic probes of complex fluids have been extended in two significant directions, to small volumes and the nonlinear regime. Heterogeneous stress and strain features that lie beyond experimental capability were studied. It was shown that nonlinear penetration of boundary stress in confined viscoelastic fluids is not monotone, indicating the possibility of interlacing layers of linear and nonlinear behavior, and thus layers of variable viscosity. Models, algorithms, and codes were developed and simulations performed leading to phase diagrams of nanorod dispersion hydrodynamics in parallel shear cells and confined cavities representative of film and membrane processing conditions. Hydrodynamic codes for polymeric fluids are extended to include coupling between microscopic and macroscopic models, and to the strongly nonlinear regime.
Varble, Adam; Fridlind, Ann; Zipser, Edward J.; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben
2011-10-04T23:59:59.000Z
The Tropical Warm Pool – International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. In stratiform regions, there is a large spread in model results with none resembling observed distributions. Above the melting level, observed radar reflectivity decreases more gradually with height than simulated radar reflectivity. A few simulations produce unrealistically uniform and cold 10.8-?m infrared brightness temperatures, but several simulations produce distributions close to observed. Assumed ice particle size distributions appear to play a larger role than ice water contents in producing incorrect simulated radar reflectivity distributions aloft despite substantial differences in mean graupel and snow water contents across models.
Why does the Standard Model fail to explain the elementary particles structure?
Yuri A. Rylov
2008-10-06T23:59:59.000Z
It is shown, that our contemporary knowledge of geometry is insufficient, because we know only axiomatizable geometries. With such a knowledge of geometry one cannot investigate properly physics of microcosm and structure of elementary particles. One can obtain only a phenomenological systematics of elementary particles, whose construction does not need a discrimination mechanism. The discrimination mechanism, responsible for discrete characteristics of elementary particles, can be created only on the basis of a granular (discrete and continuous simultaneously) space-time geometry.
A probabilistic graphical model based stochastic input model construction
Wan, Jiang [Materials Process Design and Control Laboratory, Sibley School of Mechanical and Aerospace Engineering, 101 Frank H.T. Rhodes Hall, Cornell University, Ithaca, NY 14853-3801 (United States); Zabaras, Nicholas, E-mail: nzabaras@gmail.com [Materials Process Design and Control Laboratory, Sibley School of Mechanical and Aerospace Engineering, 101 Frank H.T. Rhodes Hall, Cornell University, Ithaca, NY 14853-3801 (United States); Center for Applied Mathematics, 657 Frank H.T. Rhodes Hall, Cornell University, Ithaca, NY 14853-3801 (United States)
2014-09-01T23:59:59.000Z
Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: • Data-driven stochastic input models without the assumption of independence of the reduced random variables. • The problem is transformed to a Bayesian network structure learning problem. • Examples are given in flows in random media.
Arita, Ken-ichiro
2012-01-01T23:59:59.000Z
Deformed shell structures in nuclear mean-field potentials are systematically investigated as functions of deformation and surface diffuseness. As the mean field model to investigate nuclear shell structures in wide range of mass numbers, we propose the radial power-low potential model, V \\propto r^\\alpha, which enables us a simple semiclassical analysis by the use of its scaling property. We find remarkable shell structures emerge at certain combinations of deformation and diffuseness parameters, and they are closely related to the periodic orbit bifurcations. In particular, significant roles of the "bridge orbit bifurcations" for normal and superdeformed shell structures are pointed out. It is shown that the prolate-oblate asymmetry in deformed shell structures is clearly understood from the contribution of bridge orbit to the semiclassical level density. The roles of bridge orbit bifurcations to the emergence of superdeformed shell structures are also discussed.
Ken-ichiro Arita
2012-09-10T23:59:59.000Z
Deformed shell structures in nuclear mean-field potentials are systematically investigated as functions of deformation and surface diffuseness. As the mean-field model to investigate nuclear shell structures in a wide range of mass numbers, we propose the radial power-law potential model, V \\propto r^\\alpha, which enables a simple semiclassical analysis by the use of its scaling property. We find that remarkable shell structures emerge at certain combinations of deformation and diffuseness parameters, and they are closely related to the periodic-orbit bifurcations. In particular, significant roles of the "bridge orbit bifurcations" for normal and superdeformed shell structures are pointed out. It is shown that the prolate-oblate asymmetry in deformed shell structures is clearly understood from the contribution of the bridge orbit to the semiclassical level density. The roles of bridge orbit bifurcations in the emergence of superdeformed shell structures are also discussed.
Ritschard, R.L.
2010-01-01T23:59:59.000Z
comprehensive list of model and data base assumptions and toe.g. , scenario, data base, model linkages, etc. , andfor regional models (largely due to data base constraints).
Fixed Points Structure & Effective Fractional Dimension for O(N) Models with Long-Range Interactions
Nicolo Defenu; Andrea Trombettoni; Alessandro Codello
2014-11-25T23:59:59.000Z
We study O(N) models with power-law interactions by using functional renormalization group methods: we show that both in Local Potential Approximation (LPA) and in LPA' their critical exponents can be computed from the ones of the corresponding short-range O(N) models at an effective fractional dimension. In LPA such effective dimension is given by $D_{eff}=2d/\\sigma$, where d is the spatial dimension and $d+\\sigma$ is the exponent of the power-law decay of the interactions. In LPA' the prediction by Sak [Phys. Rev. B 8, 1 (1973)] for the critical exponent $\\eta$ is retrieved and an effective fractional dimension $D_{eff}'$ is obtained. Using these results we determine the existence of multicritical universality classes of long-range O(N) models and we present analytical predictions for the critical exponent $\
Burrage, Clare; Seery, David
2015-01-01T23:59:59.000Z
In 'modified' gravity the observed acceleration of the universe is explained by changing the gravitational force law or the number of degrees of freedom in the gravitational sector. Both possibilities can be tested by measurements of cosmological structure formation. In this paper we elaborate the details of such tests using the Galileon model as a case study. We pay attention to the possibility that each new degree of freedom may have stochastically independent initial conditions, generating different types of potential well in the early universe and breaking complete correlation between density and velocity power spectra. This 'stochastic bias' can confuse schemes to parametrize the predictions of modified gravity models, such as the use of the growth parameter f alone. Using data from the WiggleZ Dark Energy Survey we show that it will be possible to obtain constraints using information about the cosmological-scale force law embedded in the multipole power spectra of redshift-space distortions. As an examp...
A ffine Regime-Switching Models for Interest Rate Term Structure
Wu, Shu; Zeng, Yong
2004-01-01T23:59:59.000Z
shifts is not priced in these models, hence does not contribute independently to bond risk premiums. The purpose of the present paper is to develop a tractable latent factor model that can capture the effects of regime-switching, especially...)/??B(?, st)rt/? , where A(?, s) and B(?, s) are determined by the following differential equations ? ?B(?, s) ?? + a˜1(s)B(?, s) + 1 2 ?1(s)B 2(?, s) + ? E [ e?sA(?sB + h˜1(z))? h˜1(z) ] eh˜0(z)1(s = i)#15;z(dz) = 1 (3.2) and ? ?A(?, s) ?? + a˜0(s)B(?, s) + 1...
Spin vortices in the Abelian-Higgs model with cholesteric vacuum structure
Peterson, Adam; Tallarita, Gianni
2015-01-01T23:59:59.000Z
We continue the study of $U(1)$ vortices with cholesteric vacuum structure. A new class of solutions is found which represent global vortices of the internal spin field. These spin vortices are characterized by a non-vanishing angular dependence at spatial infinity, or winding. We show that despite the topological $\\mathbb{Z}_2$ behavior of $SO(3)$ windings, the topological charge of the spin vortices is of the $\\mathbb{Z}$ type in the cholesteric. We find these solutions numerically and discuss the properties derived from their low energy effective field theory in $1+1$ dimensions.
Spin vortices in the Abelian-Higgs model with cholesteric vacuum structure
Adam Peterson; Mikhail Shifman; Gianni Tallarita
2015-08-06T23:59:59.000Z
We continue the study of $U(1)$ vortices with cholesteric vacuum structure. A new class of solutions is found which represent global vortices of the internal spin field. These spin vortices are characterized by a non-vanishing angular dependence at spatial infinity, or winding. We show that despite the topological $\\mathbb{Z}_2$ behavior of $SO(3)$ windings, the topological charge of the spin vortices is of the $\\mathbb{Z}$ type in the cholesteric. We find these solutions numerically and discuss the properties derived from their low energy effective field theory in $1+1$ dimensions.
Stochastic 3D Modeling of the GDL Structure in PEMFCs Based on Thin Section Detection
Schmidt, Volker
Pharma GmbH and Company KG, 88397 Biberach, Germany c Center for Solar Energy and Hydrogen Research Baden, 2008. In order to use hydrogen as an energy carrier, an effective way to convert hydrogen, in particular, random tessellations. Note that the advantage of this type of stochastic model
Giurgiutiu, Victor
chart show the trends in the power and energy flow behavior with remarkable peaks and valleys that can1 Modeling of Power and Energy Transduction of Embedded Piezoelectric Wafer Active Sensors a systematic investigation of power and energy transduction in piezoelectric wafer active sensors (PWAS
Paris-Sud XI, Université de
measurements and finally its instantiation through 3D printing, are presented. Laser scanner acquisition, reconstruction and 3D printing lend well to teaching general concepts in geometric modeling for several reasons. First, starting and ending with real physical 3D objects (the talus and its 3D print) provide
the fall cooling, and finally, an overturn in the late fall. Large-scale circulation patterns tend significant progress in hydrodynamic modeling of short- term hydrodynamic processes in the Great Lakes [Schwab was virtually non- existent until the implementation of the Great Lakes Forecast- ing System (GLFS) in the early
Ecient Statistical Modeling for the Compression of Tree Structured Intermediate Code
Shankar, Priti
. Compressors that work on compiler intermediate representations or virtual machine code are a partial solution to the problem of reducing transmission time. The idea of using syntactic information source models for source used to specify trees. When universal data compressors are applied to the compression of such data
Baran, Sándor
Mathematical Geology, Vol. 34, No. 1, January 2002 ( C 2002) On Modelling Discrete Geological there is a large amount of missing observations, which often is the case in geological applications. We make,predictions,MarkovchainMonteCarlo,simulatedannealing,incomplete observations. INTRODUCTION In many geological applications, there is an interest in predicting properties
A Graph-theoretic Algorithm for Comparative Modeling of Protein Structure
Samudrala, Ram
are the same (Chothia & Lesk, 1986). This is the case now for about 30% of the general sequences entering for doing this is usually termed comparative or homology modeling. In contrast to progress in generating effects makes the energy surface extremely discontinuous, so that search methods that make semi
Bachmann, Michael
characteristic in protein folding. It is defined by a depletion of states that lie energetically between folded have been observed only in lattice models. INTRODUCTION Two-state protein folding is characterized (19,20), and protein folding (2127). Two remarks are worthwhile: 1. If the transition
Paris-Sud XI, Université de
-UPMF Grenoble, France Abstract A model that tackles the Multiple Object Manipulation task computationally solves the manipulation problem with a single controller. We provide experimental and theoretical evidence that tend forces? These two questions are central in object manipulation: control and pre- diction, respectively
World Energy Projection System model documentation
Hutzler, M.J.; Anderson, A.T.
1997-09-01T23:59:59.000Z
The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.
Koepf, W. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978 Tel Aviv (Israel)] [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978 Tel Aviv (Israel); Wilets, L. [Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States)] [Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States)
1995-06-01T23:59:59.000Z
We employ a relativistic quark bag picture, the chromodielectric soliton model, to discuss the quarks` symmetry structure and momentum distribution in the {ital N}-{ital N} system. Six-quark clusters are constructed in a constrained mean-field calculation. The corresponding Hamiltonian contains not only an effective interaction between the quarks and a scalar field, which is assumed to parametrize all nonperturbative effects due to the nonlinearity of QCD, but also quark-quark interactions mediated through one-gluon exchange. We also evaluate the quark light-cone distribution functions, characterizing inclusive deep-inelastic lepton scattering, for the nucleon as well as for the six-quark structures. We find a competition between a softening of the quarks` momenta through the increase of the confinement volume, and a hardening via the admixture of higher symmetry configurations due to the color-electrostatic one-gluon exchange. These findings suggest an unexpected absence of many-nucleon, multiquark effects, even though six-quark structures should represent a nonnegligible part of the nuclear ground state.
Exploration and Modeling of Structural changes in Waste Glass Under Corrosion
Pantano, Carlos; Ryan, Joseph; Strachan, Denis
2013-11-10T23:59:59.000Z
Vitrification is currently the world-wide treatment of choice for the disposition of high-level nuclear wastes. In glasses, radionuclides are atomistically bonded into the solid, resulting in a highly durable product, with borosilicate glasses exhibiting particularly excellent durability in water. Considering that waste glass is designed to retain the radionuclides within the waste form for long periods, it is important to understand the long-term stability of these materials when they react in the environment, especially in the presence of water. Based on a number of previous studies, there is general consensus regarding the mechanisms controlling the initial rate of nuclear waste glass dissolution. Agreement regarding the cause of the observed decrease in dissolution rate at extended times, however, has been elusive. Two general models have been proposed to explain this behavior, and it has been concluded that both concepts are valid and must be taken into account when considering the decrease in dissolution rate. Furthermore, other processes such as water diffusion, ion exchange, and precipitation of mineral phases onto the glass surface may occur in parallel with dissolution of the glass and can influence long-term performance. Our proposed research will address these issues through a combination of aqueous-phase dissolution/reaction experiments and probing of the resulting surface layers with state-of-the-art analytical methods. These methods include solid-state nuclear magnetic resonance (SSNMR) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The resulting datasets will then be coupled with computational chemistry and reaction-rate modeling to address the most persistent uncertainties in the understanding of glass corrosion, which indeed have limited the performance of the best corrosion models to date. With an improved understanding of corrosion mechanisms, models can be developed and improved that, while still conservative, take advantage of the inherent durability of the waste form to enable secure repositories to be engineered with a much higher density of waste disposition. We propose the synthesis, corrosion, and characterization of two sets of glass samples— containing approximately 8 single-component oxides each—as models for corrosion studies of more complicated glass systems (which can contain in excess of 25 single-component ingredients). Powdered samples and millimeter- sized coupons of these simpler glasses will be corroded in solutions that begin at circumneutral pH, but are known to increase in alkalinity as corrosion proceeds and saturation in silica species is approached. Through carefully selected isotopic substitutions with nuclides that are readily detected with SSNMR and TOF-SIMS methods, we will be able to follow the diffusion of atoms into and out of the reacted surface layers of these glasses and provide new data for testing with existing reaction models. The models can then be further extended or updated to take our new data into account, allowing the existing long-term glass corrosion models to more accurately reflect the extraordinary durability of these systems. With improved models, a significant opportunity exists to better utilize the storage volume of any geologic repository.
The National Energy Modeling System: An overview 1998
NONE
1998-02-01T23:59:59.000Z
The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors world energy markets, resource availability and costs, behavior and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system, followed by a chapter on the overall modeling structure and solution algorithm. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. 21 figs.
Ciambur, Bogdan C
2015-01-01T23:59:59.000Z
This work introduces a new fitting formalism for isophotes which enables more accurate modelling of galaxies with non-elliptical shapes, such as disk galaxies viewed edge-on or galaxies with X-shaped/peanut bulges. Within this scheme, the angular parameter which defines quasi-elliptical isophotes is transformed from the commonly used, but inappropriate, polar co-ordinate to the `eccentric anomaly'. This provides a superior description of deviations from ellipticity, better capturing the true isophotal shape. Furthermore, this makes it possible to accurately recover both the surface brightness profile, using the correct azimuthally-averaged isophote, and the two-dimensional model of any galaxy: the hitherto ubiquitous, but artificial, cross-like features in residual images are completely removed. The formalism has been implemented into the IRAF tasks $Ellipse$ and $Bmodel$ to create the new tasks `$Isofit$', and `$Cmodel$'. The new tools are demonstrated here with application to five galaxies, chosen to be rep...
The detection and modelling of surface thermal structures and ground water discharges
Roberts, Douglas Vincent
1985-01-01T23:59:59.000Z
. , Southern Illinois University Chairman of Advisory Committee: Dr. Earl R. Hoskins On March 29, 1973, data were collected by a thermal infrared scanner mounted in a twin-engine aircraft over a 55-mile stretch of the Clark Fork River in northwestern... on a VAX Il/750 interfaced with an I'S Model 70 processing system. Both qualitative and quantitative processing techniques were employed to identify and describe the surface temperature patterns and ground water discharges into the river. Computer...
Modeling the thermal and structural response of engineered systems to abnormal environments
Skocypec, R.D.; Thomas, R.K.; Moya, J.L.
1993-10-01T23:59:59.000Z
Sandia National Laboratories (SNL) is engaged actively in research to improve the ability to accurately predict the response of engineered systems to thermal and structural abnormal environments. Abnormal environments that will be addressed in this paper include: fire, impact, and puncture by probes and fragments, as well as a combination of all of the above. Historically, SNL has demonstrated the survivability of engineered systems to abnormal environments using a balanced approach between numerical simulation and testing. It is necessary to determine the response of engineered systems in two cases: (1) to satisfy regulatory specifications, and (2) to enable quantification of a probabilistic risk assessment (PRA). In a regulatory case, numerical simulation of system response is generally used to guide the system design such that the system will respond satisfactorily to the specified regulatory abnormal environment. Testing is conducted at the regulatory abnormal environment to ensure compliance.
Model for Eukaryotic Tail-anchored Protein Binding Based on the Structure
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41clothThe Bonneville PowerTariff Pages default SignEnergy4 3.4 Myriam Perez De la Rosa1, GillesModeof Get3 Model for
Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm1 of 62.1 PrintBetter BuildingsBeyond the Lone-Pair Model for
Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm1 of 62.1 PrintBetter BuildingsBeyond the Lone-Pair Model forBeyond
Determinantal structures in the O'Connell-Yor directed random polymer model
Takashi Imamura; Tomohiro Sasamoto
2015-06-18T23:59:59.000Z
We study the semi-discrete directed random polymer model introduced by O'Connell and Yor. We obtain a representation for the moment generating function of the polymer partition function in terms of a determinantal measure. This measure is an extension of the probability measure of the eigenvalues for the Gaussian Unitary Ensemble (GUE) in random matrix theory. To establish the relation, we introduce another determinantal measure on larger degrees of freedom and consider its few properties, from which the representation above follows immediately.
Sheffield, University of
THE STRUCTURAL CHEMISTRY OF MOLYBDENUM IN MODEL HIGH LEVEL NUCLEAR WASTE GLASSES, INVESTIGATED of molybdenum in model UK high level nuclear waste glasses was investigated by X-ray Absorption Spectroscopy (XAS). Molybdenum K-edge XAS data were acquired from several inactive simulant high level nuclear waste
Varble, Adam C.; Fridlind, Ann; Zipser, Ed; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben
2011-06-24T23:59:59.000Z
The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. 29 In stratiform regions, there is a large spread in model results with none resembling 30 observed distributions. Above the melting level, observed radar reflectivity decreases 31 more gradually with height than simulated radar reflectivity. A few simulations produce 32 unrealistically uniform and cold 10.8-?m infrared brightness temperatures, but several 33 simulations produce distributions close to observed. Assumed ice particle size 34 distributions appear to play a larger role than ice water contents in producing incorrect 35 simulated radar reflectivity distributions aloft despite substantial differences in mean 36 graupel and snow water contents across models. 37
Nayakshin, Sergei
2015-01-01T23:59:59.000Z
We present improved population synthesis calculations in the context of the Tidal Downsizing (TD) hypothesis for planet formation. Our models provide natural explanations and/or quantitative match to exoplanet observations in the following categories: (i) most abundant planets being super-Earths; (ii) cores more massive than $\\sim 5-15 M_\\oplus$ are enveloped by massive metal-rich atmospheres; (iii) the frequency of occurrence of close-in gas giant planets correlates strongly with metallicity of the host star; (iv) no such correlation is found for sub-Neptune planets; (v) presence of massive cores in giant planets; (vi) the composition of gas giant planets is over-abundant in metals compared to their host stars; (vii) this over-abundance decreases with planet's mass, as observed; (viii) a deep valley in the planet mass function between masses of $\\sim 10-20 M_\\oplus$ and $\\sim 100 M_\\oplus$. We provide a number of observational predictions distinguishing the model from Core Accretion: (a) composition of the m...
Nie,J.; Braverman, J.; Hofmayer, C.; Kim, M. K.; Choi, I-K.
2009-04-27T23:59:59.000Z
When performing seismic safety assessments of nuclear power plants (NPPs), the potential effects of age-related degradation on structures, systems, and components (SSCs) should be considered. To address the issue of aging degradation, the Korea Atomic Energy Research Institute (KAERI) has embarked on a five-year research project to develop a realistic seismic risk evaluation system which will include the consideration of aging of structures and components in NPPs. Three specific areas that are included in the KAERI research project, related to seismic probabilistic risk assessment (PRA), are probabilistic seismic hazard analysis, seismic fragility analysis including the effects of aging, and a plant seismic risk analysis. To support the development of seismic capability evaluation technology for degraded structures and components, KAERI entered into a collaboration agreement with Brookhaven National Laboratory (BNL) in 2007. The collaborative research effort is intended to continue over a five year period with the goal of developing seismic fragility analysis methods that consider the potential effects of age-related degradation of SSCs, and using these results as input to seismic PRAs. In the Year 1 scope of work BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations that will be performed in the subsequent evaluations in the years that follow. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. This report describes the research effort performed by BNL for the Year 2 scope of work. This research focused on methods that could be used to represent the long-term behavior of materials used at NPPs. To achieve this BNL reviewed time-dependent models which can approximate the degradation effects of the key materials used in the construction of structures and passive components determined to be of interest in the Year 1 effort. The intent was to review the degradation models that would cover the most common time-dependent changes in material properties for concrete and steel components.
Nonlinear force-free models for the solar corona I. Two active regions with very different structure
S. Regnier; E. R. Priest
2007-03-29T23:59:59.000Z
With the development of new instrumentation providing measurements of solar photospheric vector magnetic fields, we need to develop our understanding of the effects of current density on coronal magnetic field configurations. The object is to understand the diverse and complex nature of coronal magnetic fields in active regions using a nonlinear force-free model. From the observed photospheric magnetic field we derive the photospheric current density for two active regions: one is a decaying active region with strong currents (AR8151), and the other is a newly emerged active region with weak currents (AR8210). We compare the three-dimensional structure of the magnetic fields for both active region when they are assumed to be either potential or nonlinear force-free. The latter is computed using a Grad-Rubin vector-potential-like numerical scheme. A quantitative comparison is performed in terms of the geometry, the connectivity of field lines, the magnetic energy and the magnetic helicity content. For the old decaying active region the connectivity and geometry of the nonlinear force-free model include strong twist and strong shear and are very different from the potential model. The twisted flux bundles store magnetic energy and magnetic helicity high in the corona (about 50 Mm). The newly emerged active region has a complex topology and the departure from a potential field is small, but the excess magnetic energy is stored in the low corona and is enough to trigger powerful flares.
Griffith, Daniel Todd; Segalman, Daniel Joseph
2006-10-01T23:59:59.000Z
A technique published in SAND Report 2006-1789 ''Model Reduction of Systems with Localized Nonlinearities'' is illustrated in two problems of finite element structural dynamics. That technique, called here the Method of Locally Discontinuous Basis Vectors (LDBV), was devised to address the peculiar difficulties of model reduction of systems having spatially localized nonlinearities. It's illustration here is on two problems of different geometric and dynamic complexity, but each containing localized interface nonlinearities represented by constitutive models for bolted joint behavior. As illustrated on simple problems in the earlier SAND report, the LDBV Method not only affords reduction in size of the nonlinear systems of equations that must be solved, but it also facilitates the use of much larger time steps on problems of joint macro-slip than would be possible otherwise. These benefits are more dramatic for the larger problems illustrated here. The work of both the original SAND report and this one were funded by the LDRD program at Sandia National Laboratories.
The Planck quantum hypothesis and the Friedmannian models of flat universe
V. Skalsky
2000-09-25T23:59:59.000Z
Only one model from an infinite number of the Friedmannian models of flat expansive isotropic and homogeneous universe satisfies the assumptions resulting from the Planck quantum hypothesis.
FOSSIL2 energy policy model documentation: FOSSIL2 documentation
None
1980-10-01T23:59:59.000Z
This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume III lists the model equations and a one line definition for equations, in a short, readable format.
Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1
Johnson, F.X.
2010-01-01T23:59:59.000Z
modeling framework of the Residential End-Use Energy Plamiing System (REEPS) developed for the Electric
STRUCTURAL ENGINEERING, MECHANICS AND MATERIALS
Wang, Yuhang
· Structural Health Monitoring · Structural Reliability Graduate Studies Structural Engineering, Mechanics sensing device for structural health monitoring and control. 3D finite element modeling and simulationSTRUCTURAL ENGINEERING, MECHANICS AND MATERIALS offers graduate instruction and research
Villanueva, Joshua; Huang, Qian; Sirbuly, Donald J., E-mail: dsirbuly@ucsd.edu [Department of NanoEngineering, University of California San Diego, La Jolla, California 92093 (United States)
2014-09-14T23:59:59.000Z
Mechanical characterization is important for understanding small-scale systems and developing devices, particularly at the interface of biology, medicine, and nanotechnology. Yet, monitoring sub-surface forces is challenging with current technologies like atomic force microscopes (AFMs) or optical tweezers due to their probe sizes and sophisticated feedback mechanisms. An alternative transducer design relying on the indentation mechanics of a compressible thin polymer would be an ideal system for more compact and versatile probes, facilitating measurements in situ or in vivo. However, application-specific tuning of a polymer's mechanical properties can be burdensome via experimental optimization. Therefore, efficient transducer design requires a fundamental understanding of how synthetic parameters such as the molecular weight and grafting density influence the bulk material properties that determine the force response. In this work, we apply molecular-level polymer scaling laws to a first order elastic foundation model, relating the conformational state of individual polymer chains to the macroscopic compression of thin film systems. A parameter sweep analysis was conducted to observe predicted model trends under various system conditions and to understand how nano-structural elements influence the material stiffness. We validate the model by comparing predicted force profiles to experimental AFM curves for a real polymer system and show that it has reasonable predictive power for initial estimates of the force response, displaying excellent agreement with experimental force curves. We also present an analysis of the force sensitivity of an example transducer system to demonstrate identification of synthetic protocols based on desired mechanical properties. These results highlight the usefulness of this simple model as an aid for the design of a new class of compact and tunable nanomechanical force transducers.
The Hamiltonian Mean Field model: effect of network structure on synchronization dynamics
Yogesh S. Virkar; Juan G. Restrepo; James D. Meiss
2015-03-16T23:59:59.000Z
The Hamiltonian Mean Field (HMF) model of coupled inertial, Hamiltonian rotors is a prototype for conservative dynamics in systems with long-range interactions. We consider the case where the interactions between the rotors are governed by a network described by a weighted adjacency matrix. By studying the linear stability of the incoherent state, we find that the transition to synchrony occurs at a coupling constant $K$ inversely proportional to the largest eigenvalue of the adjacency matrix. We derive a closed system of equations for a set of local order parameters and use these equations to study the effect of network heterogeneity on the synchronization of the rotors. We find that for values of $K$ just beyond the transition to synchronization the degree of synchronization is highly dependent on the network's heterogeneity, but that for large values of $K$ the degree of synchronization is robust to changes in the heterogeneity of the network's degree distribution. Our results are illustrated with numerical simulations on Erd\\"os-Renyi networks and networks with power-law degree distributions.
Keldrauk, Eric Scott
2012-01-01T23:59:59.000Z
until structural and nuclear safety inspections could beSeismic analysis of safety-related nuclear structures anddamage to nuclear equipment or safety related components,
Modeling air pollution in the Tracking and Analysis Framework (TAF)
Shannon, J.D.
1998-12-31T23:59:59.000Z
The Tracking and Analysis Framework (TAF) is a set of interactive computer models for integrated assessment of the Acid Rain Provisions (Title IV) of the 1990 Clean Air Act Amendments. TAF is designed to execute in minutes on a personal computer, thereby making it feasible for a researcher or policy analyst to examine quickly the effects of alternate modeling assumptions or policy scenarios. Because the development of TAF involves researchers in many different disciplines, TAF has been given a modular structure. In most cases, the modules contain reduced-form models that are based on more complete models exercised off-line. The structure of TAF as of December 1996 is shown. Both the Atmospheric Pathways Module produce estimates for regional air pollution variables.
Pizio, O., E-mail: pizio@unam.mx [Instituto de Química, Universidad Nacional Autonoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México, D.F. (Mexico); Soko?owski, S., E-mail: stefan.sokolowski@gmail.com [Department for the Modeling of Physico-Chemical Processes, Maria Curie-Sk?odowska University, 20-031 Lublin (Poland); Soko?owska, Z. [Institute of Agrophysics, Polish Academy of Sciences, Do?wiadczalna 4, 20-290 Lublin (Poland)] [Institute of Agrophysics, Polish Academy of Sciences, Do?wiadczalna 4, 20-290 Lublin (Poland)
2014-05-07T23:59:59.000Z
We investigate microscopic structure, adsorption, and electric properties of a mixture that consists of amphiphilic molecules and charged hard spheres in contact with uncharged or charged solid surfaces. The amphiphilic molecules are modeled as spheres composed of attractive and repulsive parts. The electrolyte component of the mixture is considered in the framework of the restricted primitive model (RPM). The system is studied using a density functional theory that combines fundamental measure theory for hard sphere mixtures, weighted density approach for inhomogeneous charged hard spheres, and a mean-field approximation to describe anisotropic interactions. Our principal focus is in exploring the effects brought by the presence of ions on the distribution of amphiphilic particles at the wall, as well as the effects of amphiphilic molecules on the electric double layer formed at solid surface. In particular, we have found that under certain thermodynamic conditions a long-range translational and orientational order can develop. The presence of amphiphiles produces changes of the shape of the differential capacitance from symmetric or non-symmetric bell-like to camel-like. Moreover, for some systems the value of the potential of the zero charge is non-zero, in contrast to the RPM at a charged surface.
RESIDENTIAL SECTOR END-USE FORECASTING WITH EPRI-REEPS 2.1: SUMMARY INPUT ASSUMPTIONS AND RESULTS
of Energy. We use the Electric Power Research Institute's (EPRI's) REEPS model, as reconfigured to reflect was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building ....................................................................................................1 2. OVERVIEW OF THE REEPS MODEL..............................................................1
Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results
Koomey, Jonathan G.
2010-01-01T23:59:59.000Z
System (REEPS 2.1) , developed by the Electric Power Research Institute (EPRI), is a forecasting model
Residential Appliance Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1
was developed by the Electric Power Research Institute (McMenamin et al. 1992). In this modeling framework the modeling framework of the Residential End-Use Energy Planning System (REEPS) developed for the Electric provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Terwilliger, Thomas C.; Bricogne, Gerard
2014-09-30T23:59:59.000Z
Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when itmore »was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.« less
A problem of hypothetical emerging of matter objects on horizon in the standard model of universe
V. Skalsky
2000-09-25T23:59:59.000Z
In the standard model of universe the increase in mass of our observed expansive Universe is explained by the assumption of emerging the matter objects on the horizon (of the most remote visibility). However, the physical analysis of the influence of this assumption on the velocity of matter objects shows unambiguously that this hypothetical assumption contradicts the theory of gravity.
Gruben, David Christopher
1987-01-01T23:59:59.000Z
MODEL A Thesis by DAVID CHRISTOPHER GRUBEN Approved as to style and content by: P. Fred Dahm (Chair of Committee) Thomas E. Wehrly (Member) Roy F. Gilbert (Member) ge (Interim Head of Department) August 1987 ABSTRACT Development of a.... Small sample properties of the three estimators will be examined. Key Words: measurement error, structural model, maximum likelihood, in- strumental variable, consistent, asymptotic variance. DEDICATION To my parents, James and Theresa Gruben...
Wirosoetisno, Djoko
ships to oil rigs, repair vessels for offshore wind farms, rescue vessels, and coast guard vessels with structures. We aim to progress nonlinear and breaking wave interactions on offshore structures, in particular
Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1
by the Electric Power Research Institute (McMenamin et al. 1992). This modeling framework treats space System (REEPS) developed for the Electric Power Research Institute (EPRI). This report is one of a series of the thermal shell and HVAC systems, and specifying decision models (both the functional form and equation
Anne-Caroline Genix; Mouna TATOU; Ainara Imaz; Jacqueline Forcada; Ralph Schweins; Isabelle Grillo; Julian Oberdisse
2012-02-29T23:59:59.000Z
The evolution of the polymer structure during nanocomposite formation and annealing of silica-latex nanocomposites is studied using contrast-variation small angle neutron scattering. The experimental system is made of silica nanoparticles (Rsi \\approx 8 nm) and a mixture of purpose-synthesized hydrogenated and deuterated nanolatex (Rlatex \\approx 12.5 nm). The progressive disappearance of the latex beads by chain interdiffusion and release in the nanocomposites is analyzed quantitatively with a model for the scattered intensity of hairy latex beads and an RPA description of the free chains. In silica-free matrices and nanocomposites of low silica content (7%v), the annealing procedure over weeks at up to Tg + 85 K results in a molecular dispersion of chains, the radius of gyration of which is reported. At higher silica content (20%v), chain interdiffusion seems to be slowed down on time-scales of weeks, reaching a molecular dispersion only at the strongest annealing. Chain radii of gyration are found to be unaffected by the presence of the silica filler.
Boyer, Edmond
field receiving repeated urban waste compost application Vilim Filipovi1,2,3 , Yves Coquet2 , Valérie properties. Tillage practices and compost amendments can modify soil structure and create heterogeneity and compost application on transport processes. A modeling study was performed to evaluate how the presence
Paris-Sud XI, Université de
inherent to management accounting innovation and change. Initially, organizational actors can be in three1 Title: The effects of uncertainty, trust, structure and resistance to change in the diffusion of management accounting innovations: an agent based modeling approach. Author 1: Bertrand Masquefa1 , Ph
1 Jitter correction formulae; mmc 11 Oct 97 We start with the assumption that the V 2 reduction can be written V 2 = exp \\Gammaoe 2 h ; where oe 2 h is the highpass phase jitter, given by the frequency \\Gamma2 , C = 0:128. When jitter correction is applied, I have tended to use a conservative value C = 0
1 Jitter correction formulae; mmc 11 Oct 97 We start with the assumption that the V 2 jitter, given by the frequency- domain integral Z oe2h: for W (f) / f-2 , C = 0.128. When jitter correction is applied, I have tended to use a conservative
Liquid-Droplet as a model for the rotation curve problem
F. Darabi
2014-08-04T23:59:59.000Z
The dynamics of large scale gravitational structures like galaxies, local groups and clusters is studied based on the so-called {\\it Liquid-Droplet} model describing the saturation property of the nuclear force. Using the assumption that the gravitational force is also saturated over large scale structures, it is argued that the Newtonian gravitational potential may be replaced by an effective {\\it Machian} gravitational potential. Application of this new potential at these large scale structures may give the rotation curves in good agreement with observations. Then, the virial theorem for this kind of gravitational interaction is developed and also the Tully-Fisher relation is obtained. A physical explanation is given for the so-called {\\it constant} acceleration in the MOND as the {\\it effective} gravitational strength of these structures. Finally, a brief argument is given for comparison with dark matter models.
A saddle in a corner - a model of collinear triatomic chemical reactions
L. Lerman; V. Rom-Kedar
2011-11-08T23:59:59.000Z
A geometrical model which captures the main ingredients governing atom-diatom collinear chemical reactions is proposed. This model is neither near-integrable nor hyperbolic, yet it is amenable to analysis using a combination of the recently developed tools for studying systems with steep potentials and the study of the phase space structure near a center-saddle equilibrium. The nontrivial dependence of the reaction rates on parameters, initial conditions and energy is thus qualitatively explained. Conditions under which the phase space transition state theory assumptions are satisfied and conditions under which these fail are derived.
Protein Structure Analysis Iosif Vaisman
Vaisman, Iosif
Biology Crystallography NMR Spectroscopy Protein Informatics Structural Bioinformatics Computational Structural Biology Protein Engineering Protein Design Drug Design Molecular Modeling Proteomics Structural Weissig (Eds) Structural bioinformatics Hoboken, N.J. : Wiley-Liss, 2003. Jenny Gu, Philip Bourne (Eds
Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87507 (United States); Bricogne, Gerard, E-mail: terwilliger@lanl.gov [Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX (United Kingdom); Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87507 (United States)
2014-10-01T23:59:59.000Z
Macromolecular structures deposited in the PDB can and should be continually reinterpreted and improved on the basis of their accompanying experimental X-ray data, exploiting the steady progress in methods and software that the deposition of such data into the PDB on a massive scale has made possible. Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.
Electronic structure of the SiN{sub x}/TiN interface: A model system for superhard nanocomposites
Patscheider, Joerg [EMPA, Laboratory for Nanoscale Materials Science, Ueberlandstrasse 129 CH-8600 Duebendorf (Switzerland); Department of Materials Science and Frederick Seitz Materials Research Laboratory University of Illinois, 104 S. Goodwin Avenue, Urbana, Illinois 61801 (United States); Hellgren, Niklas [Department of Materials Science and Frederick Seitz Materials Research Laboratory University of Illinois, 104 S. Goodwin Avenue, Urbana, Illinois 61801 (United States); Messiah College, Department of Mathematical Sciences, P.O. Box 3041, One College Ave., Grantham, Pennsylvania 17027 (United States); Haasch, Richard T.; Petrov, Ivan; Greene, J. E. [Department of Materials Science and Frederick Seitz Materials Research Laboratory University of Illinois, 104 S. Goodwin Avenue, Urbana, Illinois 61801 (United States)
2011-03-15T23:59:59.000Z
Nanostructured materials such as nanocomposites and nanolaminates--subjects of intense interest in modern materials research--are defined by internal interfaces, the nature of which is generally unknown. Nevertheless, the interfaces often determine the bulk properties. An example of this is superhard nanocomposites with hardness approaching that of diamond. TiN/Si{sub 3}N{sub 4} nanocomposites (TiN nanocrystals encapsulated in a fully percolated SiN{sub x} tissue phase) and nanolaminates, in particular, have attracted much attention as model systems for the synthesis of such superhard materials. Here, we use in situ angle-resolved x-ray photoelectron spectroscopy to probe the electronic structure of Si{sub 3}N{sub 4}/TiN(001), Si/TiN(001), and Ti/TiN(001) bilayer interfaces, in which 4-ML-thick overlayers are grown in an ultrahigh vacuum system by reactive magnetron sputter deposition onto epitaxial TiN layers on MgO(001). The thickness of the Si{sub 3}N{sub 4}, Si, and Ti overlayers is chosen to be thin enough to insure sufficient electron transparency to probe the interfaces, while being close to values reported in typical nanocomposites and nanolaminates. The results show that these overlayer/TiN(001) interfaces have distinctly different bonding characteristics. Si{sub 3}N{sub 4} exhibits interface polarization through the formation of an interlayer, in which the N concentration is enhanced at higher substrate bias values during Si{sub 3}N{sub 4} deposition. The increased number of Ti-N bonds at the interface, together with the resulting polarization, strengthens interfacial bonding. In contrast, overlayers of Si and, even more so, metallic Ti weaken the interface by minimizing the valence band energy difference between the two phases. A model is proposed that provides a semiquantitative explanation of the interfacial bond strength in nitrogen-saturated and nitrogen-deficient Ti-Si-N nanocomposites.
Alwan, Abeer
infusion test technique. Keywords - Intracranial pressure, lumped model, venous flow I. INTRODUCTION was considered the "closed-box case". Using the standard infusion test, the kidney capsule compliance (and hence box compliance) was estimated from a p-v curve generated by a controlled arterial volume infusion
Analysis of Asteroid (216) Kleopatra using dynamical and structural constraints
Hirabayashi, Masatoshi
2013-01-01T23:59:59.000Z
Given the spin state by Magnusson (1990), the shape model by Ostro et al. (2000), and the mass by Descamps et al. (2011), this paper evaluates a dynamically and structurally stable size of Asteroid (216) Kleopatra. In particular, we investigate two different failure modes: material shedding from the surface and structural failure of the internal body. We construct zero-velocity curves in the vicinity of this asteroid to determine surface shedding, while we utilize a limit analysis to calculate the lower and upper bounds of structural failure under the zero-cohesion assumption. Surface shedding does not occur at the current spin period (5.385 hr) and cannot directly initiate the formation of the satellites. On the other hand, this body may be close to structural failure; in particular, the neck may be situated near a plastic state. In addition, the neck's sensitivity to structural failure changes as the body size varies. We conclude that plastic deformation has probably occurred around the neck part in the pas...
The National Energy Modeling System: An overview
Not Available
1994-05-01T23:59:59.000Z
The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period of 1990 to 2010. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system. The second chapter describes the modeling structure. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. Additional background on the development of the system is provided in Appendix A of this report, which describes the EIA modeling systems that preceded NEMS. More detailed model documentation reports for all the NEMS modules are also available from EIA.
Structural control of elastic moduli in ferrogels and the importance of non-affine deformations
Giorgio Pessot; Peet Cremer; Dmitry Y. Borin; Stefan Odenbach; Hartmut Löwen; Andreas M. Menzel
2014-10-21T23:59:59.000Z
One of the central appealing properties of magnetic gels and elastomers is that their elastic moduli can reversibly be adjusted from outside by applying magnetic fields. The impact of the internal magnetic particle distribution on this effect has been outlined and analyzed theoretically. In most cases, however, affine sample deformations are studied and often regular particle arrangements are considered. Here we challenge these two major simplifications by a systematic approach using a minimal dipole-spring model. Starting from different regular lattices, we take into account increasingly randomized structures, until we finally investigate an irregular texture taken from a real experimental sample. On the one hand, we find that the elastic tunability qualitatively depends on the structural properties, here in two spatial dimensions. On the other hand, we demonstrate that the assumption of affine deformations leads to increasingly erroneous results the more realistic the particle distribution becomes. Understanding the consequences of the assumptions made in the modeling process is important on our way to support an improved design of these fascinating materials.
Plug-in Hybrid Modeling and Application: Cost/Benefit Analysis (Presentation)
Simpson, A.
2006-08-24T23:59:59.000Z
Presents data from a simulation of plug-in hybrid electric vehicle efficiency and cost, including baseline vehicle assumptions, powertrain technology scenarios, and component modeling.
Bahrami, Majid
7-47 7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. Assumptions The heat pump operates steadily. HP Wnet,in QH QL TL TH Analysis The maximum heat pump coefficient of performance would occur if the heat pump were completely reversible, 5.7 K026K300 K300 COP maxHP, LH H TT
Bhattad, Pradeep; Willson, Clinton S.; Thompson, Karsten E. (LSU)
2012-07-31T23:59:59.000Z
Image-based network modeling has become a powerful tool for modeling transport in real materials that have been imaged using X-ray computed micro-tomography (XCT) or other three-dimensional imaging techniques. Network generation is an essential part of image-based network modeling, but little quantitative work has been done to understand the influence of different network structures on modeling. We use XCT images of three different porous materials (disordered packings of spheres, sand, and cylinders) to create a series of four networks for each material. Despite originating from the same data, the networks can be made to vary over two orders of magnitude in pore density, which in turn affects network properties such as pore-size distribution and pore connectivity. Despite the orders-of-magnitude difference in pore density, single-phase permeability predictions remain remarkably consistent for a given material, even for the simplest throat conductance formulas. Detailed explanations for this beneficial attribute are given in the article; in general, it is a consequence of using physically representative network models. The capillary pressure curve generated from quasi-static drainage is more sensitive to network structure than permeability. However, using the capillary pressure curve to extract pore-size distributions gives reasonably consistent results even though the networks vary significantly. These results provide encouraging evidence that robust network modeling algorithms are not overly sensitive to the specific structure of the underlying physically representative network, which is important given the variety image-based network-generation strategies that have been developed in recent years.
Vexler, M. I. [Institut fuer Elektronische Bauelemente und Schaltungstechnik, TU Braunschweig, Hans-Sommer-Strasse 66, D-38106 Braunschweig (Germany); A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Polytechnicheskaya Str., 194021 St.-Petersburg (Russian Federation); Sokolov, N. S.; Suturin, S. M.; Banshchikov, A. G. [A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Polytechnicheskaya Str., 194021 St.-Petersburg (Russian Federation); Tyaginov, S. E. [A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Polytechnicheskaya Str., 194021 St.-Petersburg (Russian Federation); Christian-Dopper-Laboratory and Institut fuer Mikroelektronik, TU Wien, Gusshausstrasse 25-29, A-1040 Vienna (Austria); Grasser, T. [Christian-Dopper-Laboratory and Institut fuer Mikroelektronik, TU Wien, Gusshausstrasse 25-29, A-1040 Vienna (Austria)
2009-04-15T23:59:59.000Z
Au/CaF{sub 2}/nSi(111) structures with 4-5 monolayers of epitaxial fluoride are fabricated and electrically tested. The leakage current in these structures was substantially smaller than in similar samples reported previously. Simulations adopting a Franz-type dispersion relation with Franz mass of m{sub F}approx1.2m{sub 0} for carriers in the forbidden band of CaF{sub 2} reproduced the measured current-voltage curves quite satisfactorily. Roughly, these curves could also be reproduced using the parabolic dispersion law with the electron mass of m{sub e}=1.0m{sub 0}, which is a material constant rather than a fitting parameter. Experimental facts and their comparison to modeling results allow qualification of the crystalline quality of fabricated structures as sufficient for device applications.
A New, Stochastic, Energy Model of the U.S. is Under Construction: SEDS and Its Industrial Structure
Roop, J. M.
2009-01-01T23:59:59.000Z
"A new energy model for the United States is currently being constructed by staff at five National Laboratories for the Office of Energy Efficiency and Renewable Energy at the Department of Energy. This new model, SEDS (Stochastic Energy Deployment...
Solar Structure in terms of Gauss' Hypergeometric Function
H. J. Haubold; A. M. Mathai
1995-02-05T23:59:59.000Z
Hydrostatic equilibrium and energy conservation determine the conditions in the gravitationally stabilized solar fusion reactor. We assume a matter density distribution varying non- linearly through the central region of the Sun. The analytic solutions of the differential equations of mass conservation, hydrostatic equilibrium, and energy conservation, together with the equation of state of the perfect gas and a nuclear energy generation rate $\\epsilon=\\epsilon_0\\rho^nT^m$, are given in terms of Gauss' hypergeometric function. This model for the structure of the Sun gives the run of density, mass pressure, temperature, and nuclear energy generation through the central region of the Sun. Because of the assumption of a matter density distribution, the conditions of hydrostatic equilibrium and energy conservation are separated from the mode of energy transport in the Sun.
Scranton, Katherine
2012-01-01T23:59:59.000Z
cois, 2008. Non-linear regression models for approximateparameters. They use non-linear regression of parameters on
Keldrauk, Eric Scott
2012-01-01T23:59:59.000Z
tsunami and aftershocks), greatly impacted the Fukushima Daiichi and Kashiwazaki-Kariwa nucleartsunami-induced partial meltdown of the Fukushima Daiichi nuclearnear nuclear power structures. In the former case, tsunami
Application of an EASM model for turbulent convective heat transfer in ribbed duct
Saidi, A.; Sunden, B.
1999-07-01T23:59:59.000Z
A numerical investigation is performed to predict local and mean thermal-hydraulic characteristics in rib-roughened ducts. The Navier-Stokes and energy equations, and a low-Re number {kappa}-{epsilon} turbulence model are solved with two methods for determination of the Reynolds stresses, eddy viscosity model (EVM) and explicit algebraic stress model (EASM). The numerical solution procedure uses a collocated grid, and the pressure-velocity coupling is handled by the SIMPLEC algorithm. The assumption of fully developed periodic conditions is applied. The calculated mean and local heat transfer enhancement values are compared with experimental data and fairly good agreement on mean Nu numbers is achieved. The prediction capabilities of the two turbulence models (EVM and EASM) are discussed. Both models have similar ability to predict the mean Nusselt numbers but the EASM model is superior in description of the flow field structure.