National Library of Energy BETA

Sample records for model geologic features

  1. Geographical features of global water cycle during warm geological epochs

    SciTech Connect (OSTI)

    Georgiadi, A.G.

    1996-12-31

    The impact of global warming on the water cycle can be extremely complex and diverse. The goal of the investigation was to estimate the geographic features of the mean annual water budget of the world during climatic optimums of the Holocene and the Eemian interglacial periods. These geological epochs could be used as analogs of climatic warming on 1 degree, centigrade and 2 degrees, centigrade. The author used the results of climatic reconstructions based on a simplified version of a GCM.

  2. FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...

    Open Energy Info (EERE)

    FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: FMI Borehole Geology, Geomechanics and 3D...

  3. High resolution reservoir geological modelling using outcrop information

    SciTech Connect (OSTI)

    Zhang Changmin; Lin Kexiang; Liu Huaibo

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  4. Fluid Flow Model Development for Representative Geologic Media

    Broader source: Energy.gov [DOE]

    Clay and granitic geologic rock units are potential host media for future repositories for used nuclear fuel and high level waste. This report addresses the representation of flow in these two media within numerical process (discrete fracture network) models.

  5. Predictive Modeling of Terrestrial Radiation Exposure from Geologic Materials

    SciTech Connect (OSTI)

    Malchow, Russell L.; Haber, Daniel University of Nevada, Las Vegas; Burnley, Pamela; Marsac, Kara; Hausrath, Elisabeth; Adcock, Christopher

    2015-01-01

    Aerial gamma ray surveys are important for those working in nuclear security and industry for determining locations of both anthropogenic radiological sources and natural occurrences of radionuclides. During an aerial gamma ray survey, a low flying aircraft, such as a helicopter, flies in a linear pattern across the survey area while measuring the gamma emissions with a sodium iodide (NaI) detector. Currently, if a gamma ray survey is being flown in an area, the only way to correct for geologic sources of gamma rays is to have flown the area previously. This is prohibitively expensive and would require complete national coverage. This project’s goal is to model the geologic contribution to radiological backgrounds using published geochemical data, GIS software, remote sensing, calculations, and modeling software. K, U and Th are the three major gamma emitters in geologic material. U and Th are assumed to be in secular equilibrium with their daughter isotopes. If K, U, and Th abundance values are known for a given geologic unit the expected gamma ray exposure rate can be calculated using the Grasty equation or by modeling software. Monte Carlo N-Particle Transport software (MCNP), developed by Los Alamos National Laboratory, is modeling software designed to simulate particles and their interactions with matter. Using this software, models have been created that represent various lithologies. These simulations randomly generate gamma ray photons at energy levels expected from natural radiologic sources. The photons take a random path through the simulated geologic media and deposit their energy at the end of their track. A series of nested spheres have been created and filled with simulated atmosphere to record energy deposition. Energies deposited are binned in the same manner as the NaI detectors used during an aerial survey. These models are used in place of the simplistic Grasty equation as they take into account absorption properties of the lithology which the simplistic equation ignores.

  6. Reservoir architecture modeling: Nonstationary models for quantitative geological characterization. Final report, April 30, 1998

    SciTech Connect (OSTI)

    Kerr, D.; Epili, D.; Kelkar, M.; Redner, R.; Reynolds, A.

    1998-12-01

    The study was comprised of four investigations: facies architecture; seismic modeling and interpretation; Markov random field and Boolean models for geologic modeling of facies distribution; and estimation of geological architecture using the Bayesian/maximum entropy approach. This report discusses results from all four investigations. Investigations were performed using data from the E and F units of the Middle Frio Formation, Stratton Field, one of the major reservoir intervals in the Gulf Coast Basin.

  7. Regional Geologic Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

  8. Regional Geologic Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

  9. A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration

    SciTech Connect (OSTI)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-05-15

    We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcy’s law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

  10. Geology and slope stability in selected parts of The Geysers geothermal resources area: a guide to geologic features indicative of stable and unstable terrain in areas underlain by Franciscan and related rocks

    SciTech Connect (OSTI)

    Bedrossian, T.L.

    1980-01-01

    The results of a 4-month study of various geologic and topographic features related to the stability of Franciscan terrain in The Geysers GRA are presented. The study consisted of investigations of geologic and topographic features, throughout The Geysers GRA, and geologic mapping at a scale of 1:12,000 of approximately 1500 acres (600 hectares) of landslide terrain within the canyon of Big Sulphur Creek in the vicinity of the Buckeye mine (see plate 1). The area mapped during this study was selected because: (1) it is an area of potential future geothermal development, and (2) it illustrates that large areas mapped as landslides on regional scales (McLaughlin, 1974, 1975b; McNitt, 1968a) may contain zones of varying slope stability and, therefore, should be mapped in more detail prior to development of the land.

  11. Assessment of effectiveness of geologic isolation systems. Geologic-simulation model for a hypothetical site in the Columbia Plateau. Volume 2: results

    SciTech Connect (OSTI)

    Foley, M.G.; Petrie, G.M.; Baldwin, A.J.; Craig, R.G.

    1982-06-01

    This report contains the input data and computer results for the Geologic Simulation Model. This model is described in detail in the following report: Petrie, G.M., et. al. 1981. Geologic Simulation Model for a Hypothetical Site in the Columbia Plateau, Pacific Northwest Laboratory, Richland, Washington. The Geologic Simulation Model is a quasi-deterministic process-response model which simulates, for a million years into the future, the development of the geologic and hydrologic systems of the ground-water basin containing the Pasco Basin. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactions of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach.

  12. Modeling and Risk Assessment of CO2 Sequestration at the Geologic-basin Scale

    SciTech Connect (OSTI)

    Juanes, Ruben

    2013-11-30

    The overall objective of this proposal was to develop tools for better understanding, modeling and risk assessment of CO2 permanence in geologic formations at the geologic basin scale.

  13. The effective field theory of inflation models with sharp features

    SciTech Connect (OSTI)

    Bartolo, Nicola; Cannone, Dario; Matarrese, Sabino E-mail: dario.cannone@pd.infn.it

    2013-10-01

    We describe models of single-field inflation with small and sharp step features in the potential (and sound speed) of the inflaton field, in the context of the Effective Field Theory of Inflation. This approach allows us to study the effects of features in the power-spectrum and in the bispectrum of curvature perturbations, from a model-independent point of view, by parametrizing the features directly with modified ''slow-roll'' parameters. We can obtain a self-consistent power-spectrum, together with enhanced non-Gaussianity, which grows with a quantity ? that parametrizes the sharpness of the step. With this treatment it is straightforward to generalize and include features in other coefficients of the effective action of the inflaton field fluctuations. Our conclusion in this case is that, excluding extrinsic curvature terms, the only interesting effects at the level of the bispectrum could arise from features in the first slow-roll parameter ? or in the speed of sound c{sub s}. Finally, we derive an upper bound on the parameter ? from the consistency of the perturbative expansion of the action for inflaton perturbations. This constraint can be used for an estimation of the signal-to-noise ratio, to show that the observable which is most sensitive to features is the power-spectrum. This conclusion would change if we consider the contemporary presence of a feature and a speed of sound c{sub s} < 1, as, in such a case, contributions from an oscillating folded configuration can potentially make the bispectrum the leading observable for feature models.

  14. Role of Geological and Geophysical Data in Modeling a Southwestern...

    Open Energy Info (EERE)

    actual computer time necessary for model calibration was minimal. The conceptually straightforward approach for parameter estimation utilizing existing hydrological, geophysical,...

  15. Conversion of the Big Hill geological site characterization report to a three-dimensional model.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Rautman, Christopher Arthur

    2003-02-01

    The Big Hill salt dome, located in southeastern Texas, is home to one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Big Hill site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 14 oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the Big Hill site that can be used in support of future work.

  16. Conversion of the West Hackberry geological site characterization report to a three-dimensional model.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Rautman, Christopher Arthur; Snider, Anna C.

    2004-08-01

    The West Hackberry salt dome, in southwestern Louisiana, is one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the West Hackberry site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary layers, mapped faults, and a portion of the oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the West Hackberry site that can be used in support of future work.

  17. Conversion of the Bryan Mound geological site characterization reports to a three-dimensional model.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Rautman, Christopher Arthur

    2005-04-01

    The Bryan Mound salt dome, located near Freeport, Texas, is home to one of four underground crude oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Bryan Mound site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 20 oil-storage caverns at the site. This work provides an internally consistent geologic model of the Bryan Mound site that can be used in support of future work.

  18. Conceptual Model Summary Report Simulation Framework for Regional Geologic CO{sub 2} Storage Along Arches Province of Midwestern United States

    SciTech Connect (OSTI)

    2011-06-30

    A conceptual model was developed for the Arches Province that integrates geologic and hydrologic information on the Eau Claire and Mt. Simon formations into a geocellular model. The conceptual model describes the geologic setting, stratigraphy, geologic structures, hydrologic features, and distribution of key hydraulic parameters. The conceptual model is focused on the Mt. Simon sandstone and Eau Claire formations. The geocellular model depicts the parameters and conditions in a numerical array that may be imported into the numerical simulations of carbon dioxide (CO{sub 2}) storage. Geophysical well logs, rock samples, drilling logs, geotechnical test results, and reservoir tests were evaluated for a 500,000 km{sup 2} study area centered on the Arches Province. The geologic and hydraulic data were integrated into a three-dimensional (3D) grid of porosity and permeability, which are key parameters regarding fluid flow and pressure buildup due to CO{sub 2} injection. Permeability data were corrected in locations where reservoir tests have been performed in Mt. Simon injection wells. The final geocellular model covers an area of 600 km by 600 km centered on the Arches Province. The geocellular model includes a total of 24,500,000 cells representing estimated porosity and permeability distribution. CO{sub 2} injection scenarios were developed for on-site and regional injection fields at rates of 70 to 140 million metric tons per year.

  19. Improving Well Productivity Based Modeling with the Incorporation of Geologic Dependencies

    U.S. Energy Information Administration (EIA) Indexed Site

    Improving Well Productivity Based Modeling with the Incorporation of Geologic Dependencies Troy Cook and Dana Van Wagener October 14, 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES October 2014 Tony

  20. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The models represent an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic models served as the framework for the simulations. The geologic-engineering models of the Appleton and Vocation Field reservoirs have been developed. These models are being tested. The geophysical interpretation for the paleotopographic feature being tested has been made, and the study of the data resulting from drilling of a well on this paleohigh is in progress. Numerous presentations on reservoir characterization and modeling at Appleton and Vocation Fields have been made at professional meetings and conferences and a short course on microbial reservoir characterization and modeling based on these fields has been prepared.

  1. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    SciTech Connect (OSTI)

    Kwong, S.; Jivkov, A.P.

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the disposal system to evolve in a physically realistic manner. In the example presented the reactive-transport coupling develops chemically reducing zones, which limit the transport of uranium. This illustrates the potential significance of media degradation and chemical effect on the transport of radionuclides which would need to be taken into account when examining the long-term behaviour and containment properties of the geological disposal system. Microstructure-informed modelling and its potential linkage with continuum flow modelling is a subject of ongoing studies. The approach of microstructure-informed modelling is discussed to provide insight and a mechanistic understanding of macroscopic parameters and their evolution. The proposed theoretical and methodological basis for microstructure-informed modelling of porous quasi-brittle media has the potential to develop into an explanatory and predictive tool for deriving mechanism-based, as opposed to phenomenological, evolution laws for macroscopic properties. These concepts in micro-scale modelling are likely to be applicable to the diffusion process, in addition to advective transport illustrated here for porous media. (authors)

  2. Modeling the degradation of a metallic waste form intended for geologic disposal

    SciTech Connect (OSTI)

    Bauer, T.H.; Morris, E.E.

    2007-07-01

    Nuclear reactors operating with metallic fuels have led to development of robust metallic waste forms intended to immobilize hazardous constituents in oxidizing environments. Release data from a wide range of tests where small waste form samples have been immersed in a variety of oxidizing solutions have been analyzed and fit to a mechanistically-derived 'logarithmic growth' form for waste form degradation. A bounding model is described which plausibly extrapolates these fits to long-term degradation in a geologic repository. The resulting empirically-fit degradation model includes dependence on solution pH, temperature, and chloride concentration as well as plausible estimates of statistical uncertainty. (authors)

  3. Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.; Bryant, Steven L.; Nicot, Jean-Philippe; Kumar, Navanit; Zhang, Yingqi; Jordan, Preston; Pan, Lehua; Granvold, Patrick; Chow, Fotini K.

    2009-06-01

    We have developed a framework for assessing the leakage risk of geologic carbon sequestration sites. This framework, known as the Certification Framework (CF), emphasizes wells and faults as the primary potential leakage conduits. Vulnerable resources are grouped into compartments, and impacts due to leakage are quantified by the leakage flux or concentrations that could potentially occur in compartments under various scenarios. The CF utilizes several model components to simulate leakage scenarios. One model component is a catalog of results of reservoir simulations that can be queried to estimate plume travel distances and times, rather than requiring CF users to run new reservoir simulations for each case. Other model components developed for the CF and described here include fault characterization using fault-population statistics; fault connection probability using fuzzy rules; well-flow modeling with a drift-flux model implemented in TOUGH2; and atmospheric dense-gas dispersion using a mesoscale weather prediction code.

  4. Study on fine geological modelling of the fluvial sandstone reservoir in Daqing oilfield

    SciTech Connect (OSTI)

    Zhoa Han-Qing

    1997-08-01

    These paper aims at developing a method for fine reservoir description in maturing oilfields by using close spaced well logging data. The main productive reservoirs in Daqing oilfield is a set of large fluvial-deltaic deposits in the Songliao Lake Basin, characterized by multi-layers and serious heterogeneities. Various fluvial channel sandstone reservoirs cover a fairly important proportion of reserves. After a long period of water flooding, most of them have turned into high water cut layers, but there are considerable residual reserves within them, which are difficult to find and tap. Making fine reservoir description and developing sound a geological model is essential for tapping residual oil and enhancing oil recovery. The principal reason for relative lower precision of predicting model developed by using geostatistics is incomplete recognition of complex distribution of fluvial reservoirs and their internal architecture`s. Tasking advantage of limited outcrop data from other regions (suppose no outcrop data available in oilfield) can only provide the knowledge of subtle changing of reservoir parameters and internal architecture. For the specific geometry distribution and internal architecture of subsurface reservoirs (such as in produced regions) can be gained only from continuous infilling logging well data available from studied areas. For developing a geological model, we think the first important thing is to characterize sandbodies geometries and their general architecture`s, which are the framework of models, and then the slight changing of interwell parameters and internal architecture`s, which are the contents and cells of the model. An excellent model should possess both of them, but the geometry is the key to model, because it controls the contents and cells distribution within a model.

  5. Replication of surface features from a master model to an amorphous metallic article

    DOE Patents [OSTI]

    Johnson, William L.; Bakke, Eric; Peker, Atakan

    1999-01-01

    The surface features of an article are replicated by preparing a master model having a preselected surface feature thereon which is to be replicated, and replicating the preselected surface feature of the master model. The replication is accomplished by providing a piece of a bulk-solidifying amorphous metallic alloy, contacting the piece of the bulk-solidifying amorphous metallic alloy to the surface of the master model at an elevated replication temperature to transfer a negative copy of the preselected surface feature of the master model to the piece, and separating the piece having the negative copy of the preselected surface feature from the master model.

  6. A novel approach to the exploration of the Southern Apennines, Italy: Geological models and oil discoveries

    SciTech Connect (OSTI)

    Pasi, R.; Dattilo, P.; Bertozzi, G.

    1995-08-01

    The last, successful, exploration phase in the Southern Apennines started in the early eighties after small but encouraging discoveries of oil in the carbonates of the Apulian Platform foreland, in the Basilicata region. The poor seismic definition of the top of this unit and the extremely poor seismic imaging of the overlying {open_quotes}allochthonous{close_quotes}, forced the oil companies active in the area to build geological models in order to constrain the seismic interpretation. The main units within the proposed simplified depositional and structural framework are represented by two carbonate platforms separated by a seaway: the Apenninic Platform to the West, the Apulian Platform to the East and the Lagonegro Basin in between. Due to the Tirrenian Sea spreading and/or subduction of the Adria Plate, the Apenninic Platform, Lagonegro basin-fill and related syntectonic sediments were thrusted over the Apulian Platform and its overlying Pliocene foredeep. According to the proposed model, the Apulian Platform has been differentiated into three main structural domains. These are interpreted as resulting from the decreasing horizontal compressive stress from west to east. All these domains are proved oil producer. The geological modelling of a formerly unknownly structural trend developed during the compressive phases represented the key for major oil discoveries performed at the end of the eighties. The reservoir in this area, homogeneous in first approximation, is characterised by high fracturing, related to the several tectonic regimes that affected the Apulian Platform, moderate matrix and vuggy porosity and several hundreds of meters of oil column.

  7. Pore scale modeling of reactive transport involved in geologic CO2 sequestration

    SciTech Connect (OSTI)

    Kang, Qinjin; Lichtner, Peter C; Viswanathan, Hari S; Abdel-fattah, Amr I

    2009-01-01

    We apply a multi-component reactive transport lattice Boltzmann model developed in previolls studies to modeling the injection of a C02 saturated brine into various porous media structures at temperature T=25 and 80 C. The porous media are originally consisted of calcite. A chemical system consisting of Na+, Ca2+, Mg2+, H+, CO2(aq), and CI-is considered. The fluid flow, advection and diHusion of aqueous species, homogeneous reactions occurring in the bulk fluid, as weB as the dissolution of calcite and precipitation of dolomite are simulated at the pore scale. The effects of porous media structure on reactive transport are investigated. The results are compared with continuum scale modeling and the agreement and discrepancy are discussed. This work may shed some light on the fundamental physics occurring at the pore scale for reactive transport involved in geologic C02 sequestration.

  8. Constructing a large-scale 3D Geologic Model for Analysis of the Non-Proliferation Experiment

    SciTech Connect (OSTI)

    Wagoner, J; Myers, S

    2008-04-09

    We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5{sup o} to -112.6{sup o} and latitude 34.5{sup o} to 39.8{sup o}; the depth ranges from the topographic surface to 150 km below sea level. The model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by both geologic and geophysical studies, while the lower crust and upper mantle are constrained by geophysical studies. The mapped upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks of all ages, and calderas. The lower crust and upper mantle are parameterized with 5 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas geologic maps for California and Utah were scanned and hand-digitized. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and thus estimate the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m lateral resolution DEM elsewhere. Variations in crustal thickness are based on receiver function analysis and a framework compilation of reflection/refraction studies. We used Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. For seismic studies, the geologic units are mapped to specific seismic velocities. The gross geophysical structure of the crust and upper mantle is taken from regional surface-wave studies. For regional seismic simulations we convert this realistic geologic model into elastic parameters. Upper crustal units are treated as seismically homogeneous while the lower crust and upper mantle are parameterized by a smoothly varying velocity profile. In order to mitigate spurious reflections, the lower crust and upper mantle are treated as velocity gradients as a function of depth.

  9. Sensitivity of injection costs to input petrophysical parameters in numerical geologic carbon sequestration models

    SciTech Connect (OSTI)

    Cheng, C. L.; Gragg, M. J.; Perfect, E.; White, Mark D.; Lemiszki, P. J.; McKay, L. D.

    2013-08-24

    Numerical simulations are widely used in feasibility studies for geologic carbon sequestration. Accurate estimates of petrophysical parameters are needed as inputs for these simulations. However, relatively few experimental values are available for CO2-brine systems. Hence, a sensitivity analysis was performed using the STOMP numerical code for supercritical CO2 injected into a model confined deep saline aquifer. The intrinsic permeability, porosity, pore compressibility, and capillary pressure-saturation/relative permeability parameters (residual liquid saturation, residual gas saturation, and van Genuchten alpha and m values) were varied independently. Their influence on CO2 injection rates and costs were determined and the parameters were ranked based on normalized coefficients of variation. The simulations resulted in differences of up to tens of millions of dollars over the life of the project (i.e., the time taken to inject 10.8 million metric tons of CO2). The two most influential parameters were the intrinsic permeability and the van Genuchten m value. Two other parameters, the residual gas saturation and the residual liquid saturation, ranked above the porosity. These results highlight the need for accurate estimates of capillary pressure-saturation/relative permeability parameters for geologic carbon sequestration simulations in addition to measurements of porosity and intrinsic permeability.

  10. GPFA-AB_Phase1GeologicReservoirsContentModel10_26_2015.xls

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Teresa E. Jordan

    2015-09-30

    This dataset conforms to the Tier 3 Content Model for Geologic Reservoirs Version 1.0. It contains the known hydrocarbon reservoirs within the study area of the GPFA-AB Phase 1 Task 2, Natural Reservoirs Quality Analysis (Project DE-EE0006726). The final values for Reservoir Productivity Index (RPI) and uncertainty (in terms of coefficient of variation, CV) are included. RPI is in units of liters per MegaPascal-second (L/MPa-s), quantified using permeability, thickness of formation, and depth. A higher RPI is more optimal. Coefficient of Variation (CV) is the ratio of the standard deviation to the mean RPI for each reservoir. A lower CV is more optimal. Details on these metrics can be found in the Reservoirs_Methodology_Memo.pdf uploaded to the Geothermal Data Repository Node of the NGDS in October of 2015.

  11. Deep geological isolation of nuclear waste: numerical modeling of repository scale hydrology

    SciTech Connect (OSTI)

    Dettinger, M.D.

    1980-04-01

    The Scope of Work undertaken covers three main tasks, described as follows: (Task 1) CDM provided consulting services to the University on modeling aspects of the study having to do with transport processes involving the local groundwater system near the repository and the flow of fluids and vapors through the various porous media making up the repository system. (Task 2) CDM reviewed literature related to repository design, concentrating on effects of the repository geometry, location and other design factors on the flow of fluids within the repository boundaries, drainage from the repository structure, and the eventual transport of radionucldies away from the repository site. (Task 3) CDM, in a joint effort with LLL personnel, identified generic boundary and initial conditions, identified processes to be modeled, and recommended a modeling approach with suggestions for appropriate simplifications and approximations to the problem and identifiying important parameters necessary to model the processes. This report consists of two chapters and an appendix. The first chapter (Chapter III of the LLL report) presents a detailed description and discussion of the modeling approach developed in this project, its merits and weaknesses, and a brief review of the difficulties anticipated in implementing the approach. The second chapter (Chapter IV of the LLL report) presents a summary of a survey of researchers in the field of repository performance analysis and a discussion of that survey in light of the proposed modeling approach. The appendix is a review of the important physical processes involved in the potential hydrologic transport of radionuclides through, around and away from deep geologic nuclear waste repositories.

  12. Feature Based Tolerancing Product Modeling V4.1

    Energy Science and Technology Software Center (OSTI)

    2001-11-30

    FBTol is a component technology in the form of software linkable library. The purpose of FBToI is to augment the shape of a nominal solid model with an explicit representation of a product’s tolerances and other non-shape attributes. This representation enforces a complete and unambiguous definition of non-shape information, permits an open architecture to dynamically create, modify, delete, and query tolerance information, and incorporates verify and checking algorithms to assure the quality of the tolerancemore » design.« less

  13. Gravitational wave background from Standard Model physics: qualitative features

    SciTech Connect (OSTI)

    Ghiglieri, J.; Laine, M.

    2015-07-16

    Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at T>160 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors.

  14. Radioactive Waste Management: Study of Spent Fuel Dissolution Rates in Geological Storage Using Dosimetry Modeling and Experimental Verification

    SciTech Connect (OSTI)

    Hansen, Brady; Miller, William

    2011-10-28

    This research will provide improved predictions into the mechanisms and effects of radiolysis on spent nuclear fuel dissolution in a geological respository through accurate dosimetry modeling of the dose to water, mechanistic chemistry modeling of the resulting radiolytic reactions and confirmatory experimental measurements. This work will combine effort by the Nuclear Science and Engineering Institute (NSEI) and the Missouri University Research Reactor (MURR) at the University of Missouri-Columbia, and the expertise and facilities at the Pacific Northwest National Laboratory (PNNL).

  15. Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes

    SciTech Connect (OSTI)

    Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

    2009-03-31

    Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications, Kansas Geological Survey Open-file reports, Master's theses, and postings on the project website: http://www.kgs.ku.edu/SEISKARST.

  16. Uncertainty Quantification for the Reliability of the Analytical Analysis for the Simplified Model of CO2 Geological Sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Zhijie; Fang, Yilin

    2015-04-01

    A hydro-mechanical model with analytical solutions including pressure evolution and geomechanical deformation for geological CO2 injection and sequestration were introduced in our previous work. However, the reliability and accuracy of the hydro-mechanical model and the companion analytical solution are uncertain because of the assumptions and simplifications in the analytical model, though it was validated by a few example cases. This study introduce the method to efficiently measure the accuracy of the analytical model, and specify the acceptable input parameters range that can guarantee the accuracy and reliability of the analytical solution. A coupled hydro-geomechanical subsurface transport simulator STOMP was adopted as a reference to justify the reliability of the hydro-mechanical model and the analytical solution. A quasi-Monte Carlo sampling method was applied to efficiently sample the input parameter space.

  17. Dynamic-Feature Extraction, Attribution and Reconstruction (DEAR) Method for Power System Model Reduction

    SciTech Connect (OSTI)

    Wang, Shaobu; Lu, Shuai; Zhou, Ning; Lin, Guang; Elizondo, Marcelo A.; Pai, M. A.

    2014-09-04

    In interconnected power systems, dynamic model reduction can be applied on generators outside the area of interest to mitigate the computational cost with transient stability studies. This paper presents an approach of deriving the reduced dynamic model of the external area based on dynamic response measurements, which comprises of three steps, dynamic-feature extraction, attribution and reconstruction (DEAR). In the DEAR approach, a feature extraction technique, such as singular value decomposition (SVD), is applied to the measured generator dynamics after a disturbance. Characteristic generators are then identified in the feature attribution step for matching the extracted dynamic features with the highest similarity, forming a suboptimal ‘basis’ of system dynamics. In the reconstruction step, generator state variables such as rotor angles and voltage magnitudes are approximated with a linear combination of the characteristic generators, resulting in a quasi-nonlinear reduced model of the original external system. Network model is un-changed in the DEAR method. Tests on several IEEE standard systems show that the proposed method gets better reduction ratio and response errors than the traditional coherency aggregation methods.

  18. Integration of geology, geostatistics, well logs and pressure data to model a heterogeneous supergiant field in Iran

    SciTech Connect (OSTI)

    Samimi, B.; Bagherpour, H.; Nioc, A.

    1995-08-01

    The geological reservoir study of the supergiant Ahwaz field significantly improved the history matching process in many aspects, particularly the development of a geostatistical model which allowed a sound basis for changes and by delivering much needed accurate estimates of grid block vertical permeabilities. The geostatistical reservoir evaluation was facilitated by using the Heresim package and litho-stratigraphic zonations for the entire field. For each of the geological zones, 3-dimensional electrolithofacies and petrophysical property distributions (realizations) were treated which captured the heterogeneities which significantly affected fluid flow. However, as this level of heterogeneity was at a significantly smaller scale than the flow simulation grid blocks, a scaling up effort was needed to derive the effective flow properties of the blocks (porosity, horizontal and vertical permeability, and water saturation). The properties relating to the static reservoir description were accurately derived by using stream tube techniques developed in-house whereas, the relative permeabilities of the grid block were derived by dynamic pseudo relative permeability techniques. The prediction of vertical and lateral communication and water encroachment was facilitated by a close integration of pressure, saturation data, geostatistical modelling and sedimentological studies of the depositional environments and paleocurrents. The nature of reservoir barriers and baffles varied both vertically and laterally in this heterogeneous reservoir. Maps showing differences in pressure between zones after years of production served as a guide to integrating the static geological studies to the dynamic behaviour of each of the 16 reservoir zones. The use of deep wells being drilled to a deeper reservoir provided data to better understand the sweep efficiency and the continuity of barriers and baffles.

  19. Bayesian hierarchical models for soil CO{sub 2} flux and leak detection at geologic sequestration sites

    SciTech Connect (OSTI)

    Yang, Ya-Mei; Small, Mitchell J.; Junker, Brian; Bromhal, Grant S.; Strazisar, Brian; Wells, Arthur

    2011-10-01

    Proper characterizations of background soil CO{sub 2} respiration rates are critical for interpreting CO{sub 2} leakage monitoring results at geologic sequestration sites. In this paper, a method is developed for determining temperature-dependent critical values of soil CO{sub 2} flux for preliminary leak detection inference. The method is illustrated using surface CO{sub 2} flux measurements obtained from the AmeriFlux network fit with alternative models for the soil CO{sub 2} flux versus soil temperature relationship. The models are fit first to determine pooled parameter estimates across the sites, then using a Bayesian hierarchical method to obtain both global and site-specific parameter estimates. Model comparisons are made using the deviance information criterion (DIC), which considers both goodness of fit and model complexity. The hierarchical models consistently outperform the corresponding pooled models, demonstrating the need for site-specific data and estimates when determining relationships for background soil respiration. A hierarchical model that relates the square root of the CO{sub 2} flux to a quadratic function of soil temperature is found to provide the best fit for the AmeriFlux sites among the models tested. This model also yields effective prediction intervals, consistent with the upper envelope of the flux data across the modeled sites and temperature ranges. Calculation of upper prediction intervals using the proposed method can provide a basis for setting critical values in CO{sub 2} leak detection monitoring at sequestration sites.

  20. Models of the elastic x-ray scattering feature for warm dense aluminum

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Starrett, Charles Edward; Saumon, Didier

    2015-09-03

    The elastic feature of x-ray scattering from warm dense aluminum has recently been measured by Fletcher et al. [Nature Photonics 9, 274 (2015)] with much higher accuracy than had hitherto been possible. This measurement is a direct test of the ionic structure predicted by models of warm dense matter. We use the method of pseudoatom molecular dynamics to predict this elastic feature for warm dense aluminum with temperatures of 1–100 eV and densities of 2.7–8.1g/cm3. We compare these predictions to experiments, finding good agreement with Fletcher et al. and corroborating the discrepancy found in analyses of an earlier experiment ofmore » Ma et al. [Phys. Rev. Lett. 110, 065001 (2013)]. Lastly, we also evaluate the validity of the Thomas-Fermi model of the electrons and of the hypernetted chain approximation in computing the elastic feature and find them both wanting in the regime currently probed by experiments.« less

  1. Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming

    SciTech Connect (OSTI)

    Jackson, S.

    1993-03-01

    The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO[sub 2] flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

  2. Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming

    SciTech Connect (OSTI)

    Jackson, S.

    1993-03-01

    The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO{sub 2} flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

  3. RELAP5-3D Code Includes Athena Features and Models

    SciTech Connect (OSTI)

    Richard A. Riemke; Cliff B. Davis; Richard R. Schultz

    2006-07-01

    Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, sf6, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5- 3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper.

  4. Evaluation of Features, Events, and Processes (FEP) for the Biosphere Model

    SciTech Connect (OSTI)

    M. Wasiolek; P. Rogers

    2004-10-27

    The purpose of this analysis report is to evaluate and document the inclusion or exclusion of biosphere features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for the license application (LA). A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the corresponding technical basis for the excluded FEPs and the descriptions of how the included FEPs were incorporated in the biosphere model. This information is required by the U.S. Nuclear Regulatory Commission (NRC) regulations at 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs addressed in this report concern characteristics of the reference biosphere, the receptor, and the environmental transport and receptor exposure pathways for the groundwater and volcanic ash exposure scenarios considered in biosphere modeling. This revision provides the summary of the implementation of included FEPs in TSPA-LA, (i.e., how the FEP is included); for excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded). This report is one of the 10 documents constituting the biosphere model documentation suite. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling. The ''Biosphere Model Report'' describes in detail the biosphere conceptual model and mathematical model. The input parameter reports shown to the right of the ''Biosphere Model Report'' contain detailed descriptions of the model input parameters and their development. Outputs from these six reports are used in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis and Disruptive Event Biosphere Dose Conversion Factor Analysis'' to generate the biosphere dose conversion factors (BDCFs), which are input parameters for the TSPA-LA model. The ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' analyzes the output of these two BDCF reports.

  5. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    SciTech Connect (OSTI)

    John Rogers

    2011-12-31

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO{sub 2} injection and a fully saturated CO{sub 2} fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO{sub 2} to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.

  6. Potiguar basin: geologic model and habitat of oil of a Brazilian equatorial basin

    SciTech Connect (OSTI)

    Falkenhein, F.U.; Barros, R.M.; Da Costa, I.G.; Cainelli, C.

    1984-04-01

    The Potiguar basin integrates the eastern part of the Brazilian equatorial Atlantic-type margin. The rifting stage of this basin occurred during the Neocomian and Aptian. The drifting stage and sea-floor spreading began in the Late Albian. The rifting stage clearly was intracratonic during the Neocomian and is recognized as a mosaic of half-grabens trending mostly northeast-southwest and filled with syntectonic lacustrine siliciclastics. The half-graben pattern exhibits rotation of beds into the major fault zone, and the preserved uplifted margins display either paleostructures of paleogeomorphic features with hydrocarbons. A regional pre-Aptian unconformity preceded the Aptian proto-oceanic rifting stage which was characterized by syntectonic fluvio-deltaic sediments. The Aptian tectonics were represented by reactivation of former lineaments superimposed by predominant east-west normal faulting. Structural highs during this stage are so far the most prolific oil accumulations. The most important source beds and reservoir rocks are both Neocomian and Aptian sediments. Geochemistry and hydrodynamics have shown that hydrocarbon migration was driven through fracture or fault zones in both Aptian or Albian plays. Lithofacies maps support this interpretation because pools occur whenever adjacent downthrown blocks present a high shale content.

  7. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2002-09-25

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been essentially completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The model represents an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic model served as the framework for the simulations. A technology workshop on reservoir characterization and modeling at Appleton and Vocation Fields was conducted to transfer the results of the project to the petroleum industry.

  8. Study on detailed geological modelling for fluvial sandstone reservoir in Daqing oil field

    SciTech Connect (OSTI)

    Zhao Hanqing; Fu Zhiguo; Lu Xiaoguang

    1997-08-01

    Guided by the sedimentation theory and knowledge of modern and ancient fluvial deposition and utilizing the abundant information of sedimentary series, microfacies type and petrophysical parameters from well logging curves of close spaced thousands of wells located in a large area. A new method for establishing detailed sedimentation and permeability distribution models for fluvial reservoirs have been developed successfully. This study aimed at the geometry and internal architecture of sandbodies, in accordance to their hierarchical levels of heterogeneity and building up sedimentation and permeability distribution models of fluvial reservoirs, describing the reservoir heterogeneity on the light of the river sedimentary rules. The results and methods obtained in outcrop and modem sedimentation studies have successfully supported the study. Taking advantage of this method, the major producing layers (PI{sub 1-2}), which have been considered as heterogeneous and thick fluvial reservoirs extending widely in lateral are researched in detail. These layers are subdivided into single sedimentary units vertically and the microfacies are identified horizontally. Furthermore, a complex system is recognized according to their hierarchical levels from large to small, meander belt, single channel sandbody, meander scroll, point bar, and lateral accretion bodies of point bar. The achieved results improved the description of areal distribution of point bar sandbodies, provide an accurate and detailed framework model for establishing high resolution predicting model. By using geostatistic technique, it also plays an important role in searching for enriched zone of residual oil distribution.

  9. Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling

    SciTech Connect (OSTI)

    Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A.

    2013-06-18

    High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damage and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments - which involve moderate to extensive levels of particle damage - are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 Multiplication-Sign 105 grains are presented.

  10. Evaluation of experimentally measured and model-calculated pH for rock-brine-CO2 systems under geologic CO2 sequestration conditions

    SciTech Connect (OSTI)

    Shao, Hongbo; Thompson, Christopher J.; Cantrell, Kirk J.

    2013-11-14

    pH is an essential parameter for understanding the geochemical reactions that occur in rock-brine-CO2 systems when CO2 is injected into deep geologic formations for long-term storage. Due to a lack of reliable experimental methods, most laboratory studies conducted under geological CO2 sequestration (GCS) conditions have relied on thermodynamic modeling to estimate pH. The accuracy of these model predictions is typically uncertain. In our previous work, we have developed a method for pH determination by in-situ spectrophotometry. In the present work, we expanded the applicable pH range for this method and measured the pH of several rock-brine-CO2 systems at GCS conditions for five rock samples collected from ongoing GCS demonstration projects. Experimental measurements were compared with pH values calculated using several geochemical modeling approaches. The effect of different thermodynamic databases on the accuracy of model prediction was evaluated. Results indicate that the accuracy of model calculations is rock-dependent. For rocks comprised of carbonate and sandstone, model results generally agreed well with experimentally measured pH; however, for basalt, significant differences were observed. These discrepancies may be due to the models’ failure to fully account for certain reaction occurring between the basalt minerals the CO2-saturated brine solutions.

  11. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2004-02-25

    The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on reservoir architecture and geographic distribution of Smackover reservoirs is the fabric and texture of the depositional lithofacies, diagenesis (chiefly dolomitization) is a significant factor that preserves and enhances reservoir quality. The evaporative pumping mechanism is favored to explain the dolomitization of the thrombolite doloboundstone and dolostone reservoir flow units at Appleton and Vocation Fields. Geologic modeling, reservoir simulation, and the testing and applying the resulting integrated geologic-engineering models have shown that little oil remains to be recovered at Appleton Field and a significant amount of oil remains to be recovered at Vocation Field through a strategic infill drilling program. The drive mechanisms for primary production in Appleton and Vocation Fields remain effective; therefore, the initiation of a pressure maintenance program or enhanced recovery project is not required at this time. The integrated geologic-engineering model developed for a low-relief paleohigh (Appleton Field) was tested for three scenarios involving the variables of present-day structural elevation and the presence/absence of potential reef thrombolite lithofacies. In each case, the predictions based upon the model were correct. From this modeling, the characteristics of the ideal prospect in the basement ridge play include a low-relief paleohigh associated with dendroidal/chaotic thrombolite doloboundstone and dolostone that has sufficient present-day structural relief so that these carbonates rest above the oil-water contact. Such a prospect was identified from the modeling, and it is located northwest of well Permit No. 3854B (Appleton Field) and south of well No. Permit No.11030B (Northwest Appleton Field).

  12. AASG State Geological Survey

    Broader source: Energy.gov [DOE]

    presentation at the April 2013 peer review meeting held in Denver, Colorado.Contributions to the NGDSAASG State Geological Survey

  13. Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross‐sections in Adobe Illustrator format. Comprehensive catalogue of drill‐hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics.

  14. Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross?sections in Adobe Illustrator format. Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics.

  15. Geologic Map and GIS Data for the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    - 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics (model not in the ESRI geodatabase).

  16. Featured Announcements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2014 NERSC User Announcements RSS Feed June 30, 2014 by Richard Gerber NERSC's User Announcements (not these "Featured Announcements") are now available as an RSS feed. Point...

  17. Featured Announcements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2014 Nobel Lecture Videos Now Available Online May 29, 2014 by Kathy Kincade Three of the NERSC Nobel Lecture Series videos -- featuring John Kuriyan, Warren Washington, George...

  18. Integrated geological-engineering model of Patrick Draw field and examples of similarities and differences among various shoreline barrier systems

    SciTech Connect (OSTI)

    Schatzinger, R.A.; Szpakiewicz, M.J.; Jackson, S.R.; Chang, M.M.; Sharma, B.; Tham, M.K.; Cheng, A.M.

    1992-04-01

    The Reservoir Assessment and Characterization Research Program at NIPER employs an interdisciplinary approach that focuses on the high priority reservoir class of shoreline barrier deposits to: (1) determine the problems specific to this class of reservoirs by identifying the reservoir heterogeneities that influence the movement and trapping of fluids; and (2) develop methods to characterize effectively this class of reservoirs to predict residual oil saturation (ROS) on interwell scales and improve prediction of the flow patterns of injected and produced fluids. Accurate descriptions of the spatial distribution of critical reservoir parameters (e.g., permeability, porosity, pore geometry, mineralogy, and oil saturation) are essential for designing and implementing processes to improve sweep efficiency and thereby increase oil recovery. The methodologies and models developed in this program will, in the near- to mid-term, assist producers in the implementation of effective reservoir management strategies such as location of infill wells and selection of optimum enhanced oil recovery methods to maximize oil production from their reservoirs.

  19. Improving the Monitoring, Verification, and Accounting of CO{sub 2} Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling

    SciTech Connect (OSTI)

    Alkan, Engin; DeAngelo, Michael; Hardage, Bob; Sava, Diana; Sullivan, Charlotte; Wagner, Donald

    2012-12-31

    Research done in this study showed that P-SV seismic data provide better spatial resolution of geologic targets at our Appalachian Basin study area than do P-P data. This finding is important because the latter data (P-P) are the principal seismic data used to evaluate rock systems considered for CO{sub 2} sequestration. The increase in P-SV{sub 1} resolution over P-P resolution was particularly significant, with P-SV{sub 1} wavelengths being approximately 40-percent shorter than P-P wavelengths. CO{sub 2} sequestration projects across the Appalachian Basin should take advantage of the increased resolution provided by converted-shear seismic modes relative to P-wave seismic data. In addition to S-wave data providing better resolution of geologic targets, we found S-wave images described reservoir heterogeneities that P-P data could not see. Specifically, a channel-like anomaly was imaged in a key porous sandstone interval by P-SV{sub 1} data, and no indication of the feature existed in P-P data. If any stratigraphic unit is considered for CO{sub 2} storage purposes, it is important to know all heterogeneities internal to the unit to understand reservoir compartmentalization. We conclude it is essential that multicomponent seismic data be used to evaluate all potential reservoir targets whenever a CO{sub 2} storage effort is considered, particularly when sequestration efforts are initiated in the Appalachian Basin. Significant differences were observed between P-wave sequences and S- wave sequences in data windows corresponding to the Oriskany Sandstone, a popular unit considered for CO{sub 2} sequestration. This example demonstrates that S-wave sequences and facies often differ from P-wave sequences and facies and is a principle we have observed in every multicomponent seismic interpretation our research laboratory has done. As a result, we now emphasis elastic wavefield seismic stratigraphy in our reservoir characterization studies, which is a science based on the concept that the same weight must be given to S-wave sequences and facies as is given to P-wave sequences and facies. This philosophy differs from the standard practice of depending on only conventional P-wave seismic stratigraphy to characterize reservoir units. The fundamental physics of elastic wavefield seismic stratigraphy is that S- wave modes sense different sequences and facies across some intervals than does a P-wave mode because S-wave displacement vectors are orthogonal to P- wave displacement vectors and thus react to a different rock fabric than do P waves. Although P and S images are different, both images can still be correct in terms of the rock fabric information they reveal.

  20. Features, Events, and Processes: Disruptive Events

    SciTech Connect (OSTI)

    J. King

    2004-03-31

    The primary purpose of this analysis is to evaluate seismic- and igneous-related features, events, and processes (FEPs). These FEPs represent areas of natural system processes that have the potential to produce disruptive events (DE) that could impact repository performance and are related to the geologic processes of tectonism, structural deformation, seismicity, and igneous activity. Collectively, they are referred to as the DE FEPs. This evaluation determines which of the DE FEPs are excluded from modeling used to support the total system performance assessment for license application (TSPA-LA). The evaluation is based on the data and results presented in supporting analysis reports, model reports, technical information, or corroborative documents that are cited in the individual FEP discussions in Section 6.2 of this analysis report.

  1. Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Office of Scientific and Technical Information (OSTI)

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Gutierrez, Marte 54 ENVIRONMENTAL...

  2. Featured Announcements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edison is Back and Faster Allocation Year Rollover Help Staff Blogs Request Repository Mailing List Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home » For Users » User Announcements » Featured Announcements Featured Announcements Cori Phase II Preparations May

  3. Hydrologic and geologic aspects of low-level radioactive-waste site management. [Shallow land burial at Oak Ridge

    SciTech Connect (OSTI)

    Cutshall, N.H.; Vaughan, N.D.; Haase, C.S.; Olsen, C.R.; Huff, D.D.

    1982-01-01

    Hydrologic and geologic site characterization is a critical phase in development of shallow land-burial sites for low-level radioactive-waste disposal, especially in humid environments. Structural features such as folds, faults, and bedding and textural features such as formation permeability, porosity, and mineralogy all affect the water balance and water movement and, in turn, radionuclide migration. Where these features vary over short distance scales, detailed mapping is required in order to enable accurate model predictions of site performance and to provide the basis for proper design and planning of site-disposal operations.

  4. Exploration and mining geology. Second edition

    SciTech Connect (OSTI)

    Peters, W.C.

    1987-01-01

    Using the concepts and practices of applied geology as its central theme, here is a balanced and comprehensive treatment of the geological, geochemical, geophysical, and economic elements of exploration and mining. The author offers an overview of the methods and aims in mineral exploration and production and gives coverage of the geologic principles of ore deposits and the geomorphic environment. The text deals with ''hard'' minerals and the nonfluid sources of materials and energy in the continental masses and in ocean basins. This edition has been expanded to include recent advances in applications of satellite imagery, lithogeochemical surveys, isotope geochemistry, and other developments in the field. It also covers current uses of computers in mineral exploration programs and features case histories, a current references section, and financial data.

  5. Features, Events and Processes for the Used Fuel Disposition Campaign

    SciTech Connect (OSTI)

    Blink, J A; Greenberg, H R; Caporuscio, F A; Houseworth, J E; Freeze, G A; Mariner, P; Cunnane, J C

    2010-12-15

    The Used Fuel Disposition (UFD) Campaign within DOE-NE is evaluating storage and disposal options for a range of waste forms and a range of geologic environments. To assess the potential performance of conceptual repository designs for the combinations of waste form and geologic environment, a master set of Features, Events, and Processes (FEPs) has been developed and evaluated. These FEPs are based on prior lists developed by the Yucca Mountain Project (YMP) and the international repository community. The objective of the UFD FEPs activity is to identify and categorize FEPs that are important to disposal system performance for a variety of disposal alternatives (i.e., combinations of waste forms, disposal concepts, and geologic environments). FEP analysis provides guidance for the identification of (1) important considerations in disposal system design, and (2) gaps in the technical bases. The UFD FEPs also support the development of performance assessment (PA) models to evaluate the long-term performance of waste forms in the engineered and geologic environments of candidate disposal system alternatives. For the UFD FEP development, five waste form groups and seven geologic settings are being considered. A total of 208 FEPs have been identified, categorized by the physical components of the waste disposal system as well as cross-cutting physical phenomena. The combination of 35 waste-form/geologic environments and 208 FEPs is large; however, some FEP evaluations can cut across multiple waste/environment combinations, and other FEPs can be categorized as not-applicable for some waste/environment combinations, making the task of FEP evaluation more tractable. A FEP status tool has been developed to document progress. The tool emphasizes three major areas that can be statused numerically. FEP Applicability documents whether the FEP is pertinent to a waste/environment combination. FEP Completion Status documents the progress of the evaluation for the FEP/waste/environment combination. FEP Importance documents the potential importance for the FEP/waste/environment combination to repository performance.

  6. Geologic Map and GIS Data for the Tuscarora Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31

    Tuscarora—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Detailed unit descriptions of stratigraphic units. - Five cross‐sections. - Locations of production, injection, and monitor wells. - 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics (model not in the ESRI geodatabase).

  7. Risk-Informed Monitoring, Verification and Accounting (RI-MVA). An NRAP White Paper Documenting Methods and a Demonstration Model for Risk-Informed MVA System Design and Operations in Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Sadovsky, Artyom; Sullivan, E. C.; Anderson, Richard M.

    2011-09-30

    This white paper accompanies a demonstration model that implements methods for the risk-informed design of monitoring, verification and accounting (RI-MVA) systems in geologic carbon sequestration projects. The intent is that this model will ultimately be integrated with, or interfaced with, the National Risk Assessment Partnership (NRAP) integrated assessment model (IAM). The RI-MVA methods described here apply optimization techniques in the analytical environment of NRAP risk profiles to allow systematic identification and comparison of the risk and cost attributes of MVA design options.

  8. Featured Announcements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2014 NERSC's 40th Anniversary Kicks Off with a Special User Group Meeting January 15, 2014 by Francesca Verdier Registration is now open for NUG 2014, the annual meeting of the NERSC Users' Group, Feb. 3-6, 2014. This year's NUG meeting is special, it kicks off NERSC's 40th anniversary celebration. The highlight of NUG 2014 is a two-day "Celebration of Science and Technology" featuring talks by Berkeley Lab's Horst Simon and Kathy Yelick, NERSC Director Sudip Dosanjh, prominent

  9. Hydrological/Geological Studies

    Office of Legacy Management (LM)

    .\ .8.2 Hydrological/Geological Studies Book 1. Radiochemical Analyses of Water Samples from SelectedT" Streams Wells, Springs and Precipitation Collected During Re-Entry Drilling, Project Rulison-7, 197 1 HGS 8 This page intentionally left blank . . . ... . . . . . . . . , : . . . . . . . . . ' . r - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . ..... . - x ..:; . , ' , . . ' . . . . . . !' r:.::. _. . : _ . . : . . . . \ . . ' - \ , : , . . . . . . . . . . .

  10. Featured Announcements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Challenges. From the 2014 NERSC User's Group Meeting March 20, 2014 by Richard Gerber Modeling the Changing Earth System: Prospects and Challenges, William Collins,...

  11. Modeling CO{sub 2}-Brine-Rock Interaction Including Mercury and H{sub 2}S Impurities in the Context of CO{sub 2} Geologic Storage

    SciTech Connect (OSTI)

    Spycher, N.; Oldenburg, C.M.

    2014-01-01

    This study uses modeling and simulation approaches to investigate the impacts on injectivity of trace amounts of mercury (Hg) in a carbon dioxide (CO{sub 2}) stream injected for geologic carbon sequestration in a sandstone reservoir at ~2.5 km depth. At the range of Hg concentrations expected (7-190 ppbV, or ~ 0.06-1.6 mg/std.m{sup 3}CO{sub 2}), the total volumetric plugging that could occur due to complete condensation of Hg, or due to complete precipitation of Hg as cinnabar, results in a very small porosity change. In addition, Hg concentration much higher than the concentrations considered here would be required for Hg condensation to even occur. Concentration of aqueous Hg by water evaporation into CO{sub 2} is also unlikely because the higher volatility of Hg relative to H{sub 2}O at reservoir conditions prevents the Hg concentration from increasing in groundwater as dry CO{sub 2} sweeps through, volatilizing both H{sub 2}O and Hg. Using a model-derived aqueous solution to represent the formation water, batch reactive geochemical modeling show that the reaction of the formation water with the CO{sub 2}-Hg mixture causes the pH to drop to about 4.7 and then become buffered near 5.2 upon reaction with the sediments, with a negligible net volume change from mineral dissolution and precipitation. Cinnabar (HgS(s)) is found to be thermodynamically stable as soon as the Hg-bearing CO{sub 2} reacts with the formation water which contains small amounts of dissolved sulfide. Liquid mercury (Hg(l)) is not found to be thermodynamically stable at any point during the simulation. Two-dimensional radial reactive transport simulations of CO{sub 2} injection at a rate of 14.8 kg/s into a 400 m-thick formation at isothermal conditions of 106°C and average pressure near 215 bar, with varying amounts of Hg and H{sub 2}S trace gases, show generally that porosity changes only by about ±0.05% (absolute, i.e., new porosity = initial porosity ±0.0005) with Hg predicted to readily precipitate from the CO{sub 2} as cinnabar in a zone mostly matching the single-phase CO{sub 2} plume. The precipitation of minerals other than cinnabar, however, dominates the evolution of porosity. Main reactions include the replacement of primarily Fe-chlorite by siderite, of calcite by dolomite, and of K-feldspar by muscovite. Chalcedony is also predicted to precipitate from the dissolution of feldspars and quartz. Although the range of predicted porosity change is quite small, the amount of dissolution and precipitation predicted for these individual minerals is not negligible. These reactive transport simulations assume that Hg gas behaves ideally. To examine effects of non-ideality on these simulations, approximate calculations of the fugacity coefficient of Hg in CO{sub 2} were made. Results suggest that Hg condensation could be significantly overestimated when assuming ideal gas behavior, making our simulation results conservative with respect to impacts on injectivity. The effect of pressure on Henry’s constant for Hg is estimated to yield Hg solubilities about 10% lower than when this effect is not considered, a change that is considered too small to affect the conclusions of this report. Although all results in this study are based on relatively mature data and modeling approaches, in the absence of experimental data and more detailed site-specific information, it is not possible to fully validate the results and conclusions.

  12. Establishing MICHCARB, a geological carbon sequestration research...

    Office of Scientific and Technical Information (OSTI)

    Western Michigan University 58 GEOSCIENCES Geological carbon sequestration Enhanced oil recovery Characterization of oil, gas and saline reservoirs Geological carbon...

  13. Using computer-extracted image features for modeling of error-making patterns in detection of mammographic masses among radiology residents

    SciTech Connect (OSTI)

    Zhang, Jing Ghate, Sujata V.; Yoon, Sora C.; Lo, Joseph Y.; Kuzmiak, Cherie M.; Mazurowski, Maciej A.

    2014-09-15

    Purpose: Mammography is the most widely accepted and utilized screening modality for early breast cancer detection. Providing high quality mammography education to radiology trainees is essential, since excellent interpretation skills are needed to ensure the highest benefit of screening mammography for patients. The authors have previously proposed a computer-aided education system based on trainee models. Those models relate human-assessed image characteristics to trainee error. In this study, the authors propose to build trainee models that utilize features automatically extracted from images using computer vision algorithms to predict likelihood of missing each mass by the trainee. This computer vision-based approach to trainee modeling will allow for automatically searching large databases of mammograms in order to identify challenging cases for each trainee. Methods: The authors’ algorithm for predicting the likelihood of missing a mass consists of three steps. First, a mammogram is segmented into air, pectoral muscle, fatty tissue, dense tissue, and mass using automated segmentation algorithms. Second, 43 features are extracted using computer vision algorithms for each abnormality identified by experts. Third, error-making models (classifiers) are applied to predict the likelihood of trainees missing the abnormality based on the extracted features. The models are developed individually for each trainee using his/her previous reading data. The authors evaluated the predictive performance of the proposed algorithm using data from a reader study in which 10 subjects (7 residents and 3 novices) and 3 experts read 100 mammographic cases. Receiver operating characteristic (ROC) methodology was applied for the evaluation. Results: The average area under the ROC curve (AUC) of the error-making models for the task of predicting which masses will be detected and which will be missed was 0.607 (95% CI,0.564-0.650). This value was statistically significantly different from 0.5 (p < 0.0001). For the 7 residents only, the AUC performance of the models was 0.590 (95% CI,0.537-0.642) and was also significantly higher than 0.5 (p = 0.0009). Therefore, generally the authors’ models were able to predict which masses were detected and which were missed better than chance. Conclusions: The authors proposed an algorithm that was able to predict which masses will be detected and which will be missed by each individual trainee. This confirms existence of error-making patterns in the detection of masses among radiology trainees. Furthermore, the proposed methodology will allow for the optimized selection of difficult cases for the trainees in an automatic and efficient manner.

  14. Influence of Nuclear Fuel Cycles on Uncertainty of Long Term Performance of Geologic Disposal Systems

    Broader source: Energy.gov [DOE]

    Development and implementation of future advanced fuel cycles including those that recycle fuel materials, use advanced fuels different from current fuels, or partition and transmute actinide radionuclides, will impact the waste management system. The UFD Campaign can reasonably conclude that advanced fuel cycles, in combination with partitioning and transmutation, which remove actinides, will not materially alter the performance, the spread in dose results around the mean, the modeling effort to include significant features, events, and processes (FEPs) in the performance assessment, or the characterization of uncertainty associated with a geologic disposal system in the regulatory environment of the US.

  15. Niagara Falls Storage Site, Lewiston, New York: geologic report

    SciTech Connect (OSTI)

    Not Available

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area.

  16. Development of Science-Based Permitting Guidance for Geological Sequestration of CO2 in Deep Saline Aquifers Based on Modeling and Risk Assessment

    SciTech Connect (OSTI)

    Jean-Philippe Nicot; Renaud Bouroullec; Hugo Castellanos; Susan Hovorka; Srivatsan Lakshminarasimhan; Jeffrey Paine

    2006-06-30

    Underground carbon storage may become one of the solutions to address global warming. However, to have an impact, carbon storage must be done at a much larger scale than current CO{sub 2} injection operations for enhanced oil recovery. It must also include injection into saline aquifers. An important characteristic of CO{sub 2} is its strong buoyancy--storage must be guaranteed to be sufficiently permanent to satisfy the very reason that CO{sub 2} is injected. This long-term aspect (hundreds to thousands of years) is not currently captured in legislation, even if the U.S. has a relatively well-developed regulatory framework to handle carbon storage, especially in the operational short term. This report proposes a hierarchical approach to permitting in which the State/Federal Government is responsible for developing regional assessments, ranking potential sites (''General Permit'') and lessening the applicant's burden if the general area of the chosen site has been ranked more favorably. The general permit would involve determining in the regional sense structural (closed structures), stratigraphic (heterogeneity), and petrophysical (flow parameters such as residual saturation) controls on the long-term fate of geologically sequestered CO{sub 2}. The state-sponsored regional studies and the subsequent local study performed by the applicant will address the long-term risk of the particular site. It is felt that a performance-based approach rather than a prescriptive approach is the most appropriate framework in which to address public concerns. However, operational issues for each well (equivalent to the current underground injection control-UIC-program) could follow regulations currently in place. Area ranking will include an understanding of trapping modes. Capillary (due to residual saturation) and structural (due to local geological configuration) trappings are two of the four mechanisms (the other two are solubility and mineral trappings), which are the most relevant to the time scale of interest. The most likely pathways for leakage, if any, are wells and faults. We favor a defense-in-depth approach, in which storage permanence does not rely upon a primary seal only but assumes that any leak can be contained by geologic processes before impacting mineral resources, fresh ground water, or ground surface. We examined the Texas Gulf Coast as an example of an attractive target for carbon storage. Stacked sand-shale layers provide large potential storage volumes and defense-in-depth leakage protection. In the Texas Gulf Coast, the best way to achieve this goal is to establish the primary injection level below the total depth of most wells (>2,400 m-8,000 ft). In addition, most faults, particularly growth faults, present at the primary injection level do not reach the surface. A potential methodology, which includes an integrated approach comprising the whole chain of potential events from leakage from the primary site to atmospheric impacts, is also presented. It could be followed by the State/Federal Government, as well as by the operators.

  17. Global Warming in Geologic Time

    SciTech Connect (OSTI)

    David Archer

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  18. Global Warming in Geologic Time

    SciTech Connect (OSTI)

    Archer, David

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  19. Global Warming in Geologic Time

    ScienceCinema (OSTI)

    David Archer

    2010-01-08

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  20. Wave Propagation in Jointed Geologic Media (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Wave Propagation in Jointed Geologic Media Citation Details In-Document Search Title: Wave Propagation in Jointed Geologic Media Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate

  1. qFeature

    SciTech Connect (OSTI)

    2015-09-14

    This package contains statistical routines for extracting features from multivariate time-series data which can then be used for subsequent multivariate statistical analysis to identify patterns and anomalous behavior. It calculates local linear or quadratic regression model fits to moving windows for each series and then summarizes the model coefficients across user-defined time intervals for each series. These methods are domain agnostic?but they have been successfully applied to a variety of domains, including commercial aviation and electric power grid data.

  2. qFeature

    Energy Science and Technology Software Center (OSTI)

    2015-09-14

    This package contains statistical routines for extracting features from multivariate time-series data which can then be used for subsequent multivariate statistical analysis to identify patterns and anomalous behavior. It calculates local linear or quadratic regression model fits to moving windows for each series and then summarizes the model coefficients across user-defined time intervals for each series. These methods are domain agnostic—but they have been successfully applied to a variety of domains, including commercial aviation andmore » electric power grid data.« less

  3. Chinese Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    Chinese Geological Survey Jump to: navigation, search Name: Chinese Geological Survey Place: China Sector: Geothermal energy Product: Chinese body which is involved in surveys of...

  4. Idaho Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    The Idaho Geological Survey is located in Boise, Idaho. About Information on past oil and gas exploration wells in Idaho was transferred to the Idaho Geological Survey in...

  5. Geologic interpretation of gravity anomalies

    SciTech Connect (OSTI)

    Andreyev, B.A.; Klushin, I.G.

    1990-04-19

    This Russian textbook provides a sufficiently complete and systematic illumination of physico-geologic and mathematical aspect of complex problem of interpretation of gravity anomalies. The rational methods of localization of anomalies are examined in detail. All methods of interpreting gravity anomalies are described which have found successful application in practice. Also given are ideas of some new methods of the interpretation of gravity anomalies, the prospects for further development and industrial testing. Numerous practical examples to interpretation are given. Partial Contents: Bases of gravitational field theory; Physico-geologic bases of gravitational prospecting; Principles of geologic interpretation of gravity anomalies; Conversions and calculations of anomalies; Interpretation of gravity anomalies for bodies of correct geometric form and for bodies of arbitrary form; Geologic interpretation of the results of regional gravitational photographing; Searches and prospecting of oil- and gas-bearing structures and of deposits of ore and nonmetalliferous useful minerals.

  6. Nature climate change features Los Alamos forest research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature climate change features forest research Nature climate change features Los Alamos forest research The print issue features as its cover story the tree-stress research of LANL scientist A. Park Williams and partners from the U.S. Geological Survey, University of Arizona and several other organizations. February 27, 2013 Burned trees in the Jemez Mountains of New Mexico after the 2011 Las Conchas fire. Image by Craig D. Allen, USGS. Burned trees in the Jemez Mountains of New Mexico after

  7. Jefferson Lab's Spring 2007 Science Series features two lectures in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February | Jefferson Lab 2007 Science Series features two lectures in February Jefferson Lab's Spring 2007 Science Series features two lectures in February January 30, 2007 Jefferson Lab will host two Spring Science Series lectures during February 2007. The first event is set for Tuesday, February 20, and will feature David Powars, with the U.S. Geological Survey (USGS), discussing the Chesapeake Bay Impact Crater. He will share with the audience, recent research from a core hole more than a

  8. Nature Climate Change features Los Alamos forest research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature Climate Change Features Forest Research Nature Climate Change features Los Alamos forest research The print issue features as its cover story the tree-stress research of LANL scientist A. Park Williams and partners from the U.S. Geological Survey, University of Arizona and several other organizations. February 27, 2013 Burned trees in the Jemez Mountains of New Mexico after the 2011 Las Conchas fire. Image by Craig D. Allen, USGS. Burned trees in the Jemez Mountains of New Mexico after

  9. SIMULATION MODEL ANALYSIS OF THE MOST PROMISING GEOLOGIC SEQUESTRATION FORMATION CANDIDATES IN THE ROCKY MOUNTAIN REGION, USA, WITH FOCUS ON UNCERTAINTY ASSESSMENT

    SciTech Connect (OSTI)

    Lee, Si-Yong; Zaluski, Wade; Will, Robert; Eisinger, Chris; Matthews, Vince; McPherson, Brian

    2013-09-01

    The purpose of this report is to report results of reservoir model simulation analyses for forecasting subsurface CO2 storage capacity estimation for the most promising formations in the Rocky Mountain region of the USA. A particular emphasis of this project was to assess uncertainty of the simulation-based forecasts. Results illustrate how local-scale data, including well information, number of wells, and location of wells, affect storage capacity estimates and what degree of well density (number of wells over a fixed area) may be required to estimate capacity within a specified degree of confidence. A major outcome of this work was development of a new workflow of simulation analysis, accommodating the addition of “random pseudo wells” to represent virtual characterization wells.

  10. THERMAL ANALYSIS OF GEOLOGIC HIGH-LEVEL RADIOACTIVE WASTE PACKAGES

    SciTech Connect (OSTI)

    Hensel, S.; Lee, S.

    2010-04-20

    The engineering design of disposal of the high level waste (HLW) packages in a geologic repository requires a thermal analysis to provide the temperature history of the packages. Calculated temperatures are used to demonstrate compliance with criteria for waste acceptance into the geologic disposal gallery system and as input to assess the transient thermal characteristics of the vitrified HLW Package. The objective of the work was to evaluate the thermal performance of the supercontainer containing the vitrified HLW in a non-backfilled and unventilated underground disposal gallery. In order to achieve the objective, transient computational models for a geologic vitrified HLW package were developed by using a computational fluid dynamics method, and calculations for the HLW disposal gallery of the current Belgian geological repository reference design were performed. An initial two-dimensional model was used to conduct some parametric sensitivity studies to better understand the geologic system's thermal response. The effect of heat decay, number of co-disposed supercontainers, domain size, humidity, thermal conductivity and thermal emissivity were studied. Later, a more accurate three-dimensional model was developed by considering the conduction-convection cooling mechanism coupled with radiation, and the effect of the number of supercontainers (3, 4 and 8) was studied in more detail, as well as a bounding case with zero heat flux at both ends. The modeling methodology and results of the sensitivity studies will be presented.

  11. Geologic investigation :an update of subsurface geology on Kirtland Air Force Base, New Mexico.

    SciTech Connect (OSTI)

    Van Hart, Dirk

    2003-06-01

    The objective of this investigation was to generate a revised geologic model of Kirtland Air Force Base (KAFB) incorporating the geological and geophysical data produced since the Site-Wide Hydrogeologic Characterization Project (SWHC) of 1994 and 1995. Although this report has certain stand-alone characteristics, it is intended to complement the previous work and to serve as a status report as of late 2002. In the eastern portion of KAFB (Lurance Canyon and the Hubbell bench), of primary interest is the elevation to which bedrock is buried under a thin cap of alluvium. Elevation maps of the bedrock top reveal the paleodrainage that allows for the interpretation of the area's erosional history. The western portion of KAFB consists of the eastern part of the Albuquerque basin where bedrock is deeply buried under Santa Fe Group alluvium. In this area, the configuration of the down-to-the-west, basin-bounding Sandia and West Sandia faults is of primary interest. New geological and geophysical data and the reinterpretation of old data help to redefine the location and magnitude of these elements. Additional interests in this area are the internal stratigraphy and structure of the Santa Fe Group. Recent data collected from new monitoring wells in the area have led to a geologic characterization of the perched Tijeras Arroyo Groundwater system and have refined the known limits of the Ancestral Rio Grande fluvial sediments within the Santa Fe Group. Both the reinterpretation of the existing data and a review of the regional geology have shown that a segment of the boundary between the eastern and western portions of KAFB is a complicated early Tertiary (Laramide) wrench-fault system, the Tijeras/Explosive Ordnance Disposal Area/Hubbell Spring system. A portion of this fault zone is occupied by a coeval ''pull-apart'' basin filled with early Tertiary conglomerates, whose exposures form the ''Travertine Hills''.

  12. Surficial Geology and Landscape Development in Northern Frenchman Flat, Interim Summary and Soil Data

    SciTech Connect (OSTI)

    Raytheon Services Nevada Environmental Restoration and Waste Management Division

    1995-09-01

    This report summarizes geologic studies by Raytheon Services Nevada near the Area 5 Radioactive Waste Management Site at the Nevada Test Site. These studies are part of a program to satisfy data needs of (1) the Greater Confinement Disposal (GCD) Program Performance Assessment (PA), (2) the low-level waste (LLW) PA, and (3) the Resource Conservation and Recovery Act (RCRA) permit application. The geologic studies were integrated into a single program that worked toward a landscape evolution model of northern Frenchman Flat, with more detailed geologic studies of particular topics as needed. Only the Holocene tectonism and surficial geology components of the landscape model are presented in this report.

  13. Feature Stories | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ----Geology & disposal ---Reactors ----Nuclear reactor ... batteries ----Sodium batteries --Electricity ... Science Bowl is a fast-paced Jeopardy-style ...

  14. Hawaii geologic map data | Open Energy Information

    Open Energy Info (EERE)

    geologic map data Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii geologic map data Published USGS, Date Not Provided DOI Not Provided Check for...

  15. Utah Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    Logo: Utah Geological Survey Name: Utah Geological Survey Address: 1594 W. North Temple Place: Salt Lake City, Utah Zip: 84114-6100 Phone Number: 801.537.3300 Website:...

  16. Hanford Borehole Geologic Information System (HBGIS)

    SciTech Connect (OSTI)

    Last, George V.; Mackley, Rob D.; Saripalli, Ratna R.

    2005-09-26

    This is a user's guide for viewing and downloading borehold geologic data through a web-based interface.

  17. Montana Bureau of Mines and Geology Website | Open Energy Information

    Open Energy Info (EERE)

    Web Site: Montana Bureau of Mines and Geology Website Abstract Provides access to digital information on Montana's geology. Author Montana Bureau of Mines and Geology...

  18. CMI Education Course Inventory: Geology Engineering/Geochemistry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Course Inventory: Geology EngineeringGeochemistry Geology EngineeringGeochemistry Of the six CMI Team members that are educational institutions, five offer courses in Geology....

  19. Oregon Department of Geology and Mineral Industries | Open Energy...

    Open Energy Info (EERE)

    Geology and Mineral Industries Jump to: navigation, search Logo: Oregon Department of Geology and Mineral Industries Name: Oregon Department of Geology and Mineral Industries...

  20. International Collaboration Activities in Different Geologic Disposal

    Energy Savers [EERE]

    Environments | Department of Energy Collaboration Activities in Different Geologic Disposal Environments International Collaboration Activities in Different Geologic Disposal Environments This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. To date, UFD's International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several

  1. Featured Technical Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Storage Experimental Characterization of Marcellus Shale Outcrop Samples, and their Interactions with Carbon Dioxide and Methane (Feb 2015) Imaging Techniques for Analyzing Shale Pores and Minerals (Dec 2014) Investigation of CO2 Storage and Enhanced Gas Recovery in Depleted Shale Gas Formations Using a Dual-Porosity/Dual-Permeability, Multiphase Reservoir Simulator (Sept 2014) Comparison of Publicly Available Methods for Development of Geologic Storage Estimates for Carbon Dioxide in

  2. Preliminary Geologic Characterization of West Coast States for Geologic Sequestration

    SciTech Connect (OSTI)

    Larry Myer

    2005-09-29

    Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have potential for enhanced coal bed methane recovery (ECBM).

  3. Estimating Plume Volume for Geologic Storage of CO2 in Saline Aquifers

    SciTech Connect (OSTI)

    Doughty, Christine

    2008-07-11

    Typically, when a new subsurface flow and transport problem is first being considered, very simple models with a minimal number of parameters are used to get a rough idea of how the system will evolve. For a hydrogeologist considering the spreading of a contaminant plume in an aquifer, the aquifer thickness, porosity, and permeability might be enough to get started. If the plume is buoyant, aquifer dip comes into play. If regional groundwater flow is significant or there are nearby wells pumping, these features need to be included. Generally, the required parameters tend to be known from pre-existing studies, are parameters that people working in the field are familiar with, and represent features that are easy to explain to potential funding agencies, regulators, stakeholders, and the public. The situation for geologic storage of carbon dioxide (CO{sub 2}) in saline aquifers is quite different. It is certainly desirable to do preliminary modeling in advance of any field work since geologic storage of CO{sub 2} is a novel concept that few people have much experience with or intuition about. But the parameters that control CO{sub 2} plume behavior are a little more daunting to assemble and explain than those for a groundwater flow problem. Even the most basic question of how much volume a given mass of injected CO{sub 2} will occupy in the subsurface is non-trivial. However, with a number of simplifying assumptions, some preliminary estimates can be made, as described below. To make efficient use of the subsurface storage volume available, CO{sub 2} density should be large, which means choosing a storage formation at depths below about 800 m, where pressure and temperature conditions are above the critical point of CO{sub 2} (P = 73.8 bars, T = 31 C). Then CO{sub 2} will exist primarily as a free-phase supercritical fluid, while some CO{sub 2} will dissolve into the aqueous phase.

  4. Use of seismic attributes in geological description of carbonate rocks

    SciTech Connect (OSTI)

    Castrejon-Vacio, F.; Porres-Luna, A.A.

    1994-12-31

    Seismic attributes have been used widely in order to obtain geological description of petroleum reservoirs, especially as a support for the definition of horizontal continuity of strata, with special emphasis on terrigeneous formations. Nevertheless the application of seismic attributes to the study of carbonate and naturally fractured reservoirs has been limited. This paper shows the application of seismic attributes and seismic inversion to the geological and petrophysical characterization of a naturally fractured reservoir with complex lithology, which is characteristic of the most important producing formations in Mexico. The results from these techniques provide the basis for the definition of a realistic geological model, which is of prime concern for the reservoir`s characterization, numerical studies and EOR applications.

  5. Feature Stories | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cycle ----Geology & disposal ---Reactors ----Nuclear reactor safety ----Nuclear reactor materials ... This idea, useful for both cost savings and for backup power, moves the main ...

  6. 2003 Feature Stories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feature stories take an in-depth, behind-the-scenes look at how NREL is advancing energy efficiency and renewable energy technologies. September 2003 NREL Scientists Take On...

  7. Hopper Featured Announcements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announcements Hopper Featured Announcements Hopper OS upgrade and new SW set to default next Wed, Feb 27 February 21, 2013 by Helen He | 0 Comments 1) There will be a scheduled...

  8. Hopper Featured Announcements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2012 Cluster Compatibility Mode is now available on Hopper April 10, 2012 We are pleased to announce a new feature on Hopper, Cray Cluster Compatibility Mode (CCM) which...

  9. Feature Characterization Library

    Energy Science and Technology Software Center (OSTI)

    2006-08-03

    FCLib is a data analysis toolkit constructed to meet the needs of data discovery in large-scale, spatio-temporal data such as finite element simulation data. FCLib is a C library toolkit of building blocks that can be assembled into complex analyses. Important features of FCLib include the following: (1) Support of feature-based analysis, (2) minimization of low-oevel processing, (3) ease of use, and (4) applicable to the wide variety of science domains.

  10. Community Feature Stories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community Feature Stories /community/_assets/images/icon-community.jpg Community Feature Stories Our good neighbor pledge: to contribute to quality of life in Northern New Mexico through economic development, excellence in education, and active employee engagement in our communities. Northern New Mexico Micro Grape Growers Association Grape Growers Association enlivens agriculture Growers association unites small parcels of land, enlivens production, protects water rights for Northern New Mexico

  11. 2009 Feature Stories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Feature Stories The following feature stories take an in-depth, behind-the-scenes look at how NREL is advancing energy efficiency and renewable energy technologies. December 2009 New Labs to Concentrate on Solar Thermal Energy New Labs to Concentrate on Solar Thermal Energy DOE funds facilities to advance concentrating solar power technologies; global capacity could reach 20 gigawatts by 2020. NREL Works with Truckers to Reduce Fuel Use NREL Works with Truckers to Reduce Fuel Use Excessive

  12. 2010 Feature Stories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Feature Stories The following feature stories take an in-depth, behind-the-scenes look at how NREL is advancing energy efficiency and renewable energy technologies. December 2010 NREL Helps Corporate Fleets Go Green NREL Helps Corporate Fleets Go Green Researchers work with companies to evaluate the latest technology commercially available in the medium and heavy-duty truck markets. NREL Solar Scientists Epitomize Teamwork NREL Solar Scientists Epitomize Teamwork Collaboration and diversity in

  13. 2011 Feature Stories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Feature Stories The following feature stories take an in-depth, behind-the-scenes look at how NREL is advancing energy efficiency and renewable energy technologies. December 2011 Retailers Checking 'Nice' on Energy Savings List Retailers Checking 'Nice' on Energy Savings List NREL is working with the nation's commercial building owners to discover new and innovative ways to reduce energy use. Tiny Solar Cell Could Make a Big Difference Tiny Solar Cell Could Make a Big Difference Semprius is

  14. Regional geophysics, Cenozoic tectonics and geologic resources...

    Open Energy Info (EERE)

    and geologic resources of the Basin and Range Province and adjoining regions Author G.P. Eaton Conference Basin and Range Symposium and Great Basin Field Conference; Denver,...

  15. Wyoming State Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Wyoming State Geological Survey Abbreviation: WSGS Address: P.O. Box 1347 Place: Laramie, Wyoming Zip: 82073 Year Founded: 1933 Phone Number:...

  16. Application of neutron-activation analysis to geological materials

    SciTech Connect (OSTI)

    Laul, J.C.; Wogman, N.A.

    1980-12-01

    Neutron activation analysis (NAA) is an extremely sensitive, selective, and precise method, which yields a wealth of elemental information from even a small-sized sample. By varying neutron fluxes, irradiation times, decay and counting intervals in instrumental NAA, it is possible to accurately determine about 35 elements in a geological aliquot. When INAA is coupled with coincidence-noncoincidence Ge(Li)-Na(Tl) counting, it enhances the sensitivities of various elements by order of magnitude. The attractive features of INAA are that it is fast, nondestructive and economical.

  17. Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography

    SciTech Connect (OSTI)

    Garland, P.A.; Thomas, J.M.; Brock, M.L.; Daniel, E.W.

    1980-06-01

    A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, and (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.

  18. Geologic Map of the Neal Hot Springs Geothermal Area - GIS Data

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-03-31

    Neal Hot Springs—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Three cross‐sections. - Locations of production, injection, and exploration wells. - Locations of 40Ar/39Ar samples. - Location of XRF geochemical samples. - 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics (model not in the ESRI geodatabase).

  19. SRS Geology/Hydrogeology Environmental Information Document

    SciTech Connect (OSTI)

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  20. Generic Deep Geologic Disposal Safety Case

    Broader source: Energy.gov [DOE]

    The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options (e.g., salt, shale, granite, deep borehole) in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW).

  1. Feature Based Measuring, Version 2.1

    Energy Science and Technology Software Center (OSTI)

    2002-07-22

    A model-based tool that uses Measurement Features for generating measurement plans that facilitate DMIS compliant CMM Measurement part programs for both manufacturing verification and/or product acceptance.

  2. Intrinsic Feature Motion Tracking

    Energy Science and Technology Software Center (OSTI)

    2013-03-19

    Subject motion during 3D medical scanning can cause blurring and artifacts in the 3D images resulting in either rescans or poor diagnosis. Anesthesia or physical restraints may be used to eliminate motion but are undesirable and can affect results. This software measures the six degree of freedom 3D motion of the subject during the scan under a rigidity assumption using only the intrinsic features present on the subject area being monitored. This movement over timemore » can then be used to correct the scan data removing the blur and artifacts. The software acquires images from external cameras or images stored on disk for processing. The images are from two or three calibrated cameras in a stereo arrangement. Algorithms extract and track the features over time and calculate position and orientation changes relative to an initial position. Output is the 3D position and orientation change measured at each image.« less

  3. Featured Topic Pages

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Featured Topic Pages * Renowned scientists, with information about the scientists' R&D results * Significant DOE research disciplines, with R&D results * Manhattan Project, including scientists and key events Laureates * Nobel Prize winners associated with DOE and predecessor agencies * Winners of the Enrico Fermi Award, a U.S. Presidential award Database * Selected documents about noteworthy R&D results * Documents and individual pages searchable by word or phrase * Tag cloud

  4. Hopper Featured Announcements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2012 Cluster Compatibility Mode is now available on Hopper April 10, 2012 We are pleased to announce a new feature on Hopper, Cray Cluster Compatibility Mode (CCM) which allows applications that previously could only run on Carver to run on Hopper. Cluster Compatibility Mode (CCM) is a Cray software solution that provides services needed to run most cluster-based independent software vendor (ISV) applications on the Cray XE6. It supports the standard Linux services, such as ssh, rsh, nscd,

  5. Environment Feature Stories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories /environment/_assets/images/icon_earthday.jpg Environment Feature Stories Our environmental stewardship commitment: we will clean up the past, minimize impacts for current environmental operations, and create a sustainable future. image description Los Alamos National Laboratory recognizes employee teams with 2015 Pollution Prevention Awards Nearly 400 Lab employees on 32 teams received Pollution Prevention awards during an Earth Day awards ceremony - 4/23/15 Haze of smoke emanating from

  6. Hopper Featured Announcements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announcements Hopper Featured Announcements Hopper OS upgrade and new SW set to default next Wed, Feb 27 February 21, 2013 by Helen He 1) There will be a scheduled hardware and software maintenance for Hopper next Wednesday, February 27, from 7 am to 7 pm Pacific time. This is a major OS upgrade. Most applications are highly recommended to recompile (or at least relink) after the maintenance. C++ and PGAS applications are recommended to recompile and relink. Please plan your work accordingly and

  7. 2012 Feature Stories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Conference) | SciTech Connect Conference: 2012 Community Earth System Model (CESM) Tutorial - Proposal to DOE Citation Details In-Document Search Title: 2012 Community Earth System Model (CESM) Tutorial - Proposal to DOE The Community Earth System Model (CESM) is a fully-coupled, global climate model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. This document provides the agenda and list of participants for the conference. Web

  8. Idaho Geological Survey and University of Idaho Explore for Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Geological Survey and University of Idaho Explore for Geothermal Energy Idaho Geological Survey and University of Idaho Explore for Geothermal Energy January 11, 2013 -...

  9. Recovery Act: Geologic Sequestration Training and Research (Technical...

    Office of Scientific and Technical Information (OSTI)

    Recovery Act: Geologic Sequestration Training and Research Citation Details In-Document Search Title: Recovery Act: Geologic Sequestration Training and Research Work under the ...

  10. Summary of geology of Colorado related to geothermal potential...

    Open Energy Info (EERE)

    Journal Article: Summary of geology of Colorado related to geothermal potential Author L.T. Grose Published Journal Colorado Geological Survey Bulletin, 1974 DOI Not Provided...

  11. Rock Physics of Geologic Carbon Sequestration/Storage (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Rock Physics of Geologic Carbon SequestrationStorage Citation Details In-Document Search Title: Rock Physics of Geologic Carbon SequestrationStorage This report ...

  12. Rock Physics of Geologic Carbon Sequestration/Storage (Technical...

    Office of Scientific and Technical Information (OSTI)

    Rock Physics of Geologic Carbon SequestrationStorage Citation Details In-Document Search Title: Rock Physics of Geologic Carbon SequestrationStorage This report covers the ...

  13. Rock Physics of Geologic Carbon Sequestration/Storage (Technical...

    Office of Scientific and Technical Information (OSTI)

    Rock Physics of Geologic Carbon SequestrationStorage Citation Details In-Document Search Title: Rock Physics of Geologic Carbon SequestrationStorage You are accessing a ...

  14. North Carolina Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    Address: 1612 Mail Service Center Place: North Carolina Zip: 27699-1612 Website: www.geology.enr.state.nc.us Coordinates: 35.67, -78.66 Show Map Loading map......

  15. Panel 2, Geologic Storage of Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    under contract DE-AC04-94AL85000. SAND2014-3954P Geologic Storage of Hydrogen Anna S. Lord Geologist Geotechnology & Engineering Department & Peter H. Kobos Principal ...

  16. Geologic Sequestration Training and Research Projects

    Broader source: Energy.gov [DOE]

    In September 2009, the U.S. Department of Energy announced more than $12.7 million in funding for geologic sequestration training and research projects. The 43 projects will offer training...

  17. A STUDY ON GEOTHERMAL RESERVOIR ENGlNEERING APPROACH COMBINED WITH GEOLOGICAL INFORMATIONS

    SciTech Connect (OSTI)

    Hirakawa, S.; Yamaguchi, S.; Yoshinobu, F.

    1985-01-22

    This paper presents the combined approaches of reservoir geology and engineering to a geothermal field where geological characteristics are highly complex and heterogeneous.Especially,the concrete approaches are discussed for the case of geothermal reservoir performance studies with a developed numerical model, by showing example cases accompanied with reinjection of produced disposal hot water into underground in an object geothermal reservoir. This combined approach will be a great help in solving complicated problems encountered during the development of a geothermal field.

  18. Recursive Feature Extraction in Graphs

    Energy Science and Technology Software Center (OSTI)

    2014-08-14

    ReFeX extracts recursive topological features from graph data. The input is a graph as a csv file and the output is a csv file containing feature values for each node in the graph. The features are based on topological counts in the neighborhoods of each nodes, as well as recursive summaries of neighbors' features.

  19. Conceptual Geologic Model and Native State Model of the Roosevelt...

    Open Energy Info (EERE)

    (Faulder, 1991) Geothermometry At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Ground Gravity Survey At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Isotopic...

  20. Web Feature Service Validator

    Energy Science and Technology Software Center (OSTI)

    2013-08-01

    This site allows state data contributors to validate their WFS services against a specified schema for tier 3 data. The application uses the USGIN models API at https://github.com/usgin/usginmodels.

  1. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.

    2016-02-18

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks providemore » the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. As a result, testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.« less

  2. Geologic and geotechnical assessment RFETS Building 371, Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Maryak, M.E.; Wyatt, D.E.; Bartlett, S.F.; Lewis, M.R.; Lee, R.C.

    1995-12-13

    This report describes the review and evaluation of the geological, geotechnical and geophysical data supporting the design basis analysis for the Rocky Flats Environmental Test Site (RFETS) Building 371. The primary purpose of the geologic and geotechnical reviews and assessments described herein are to assess the adequacy of the crustal and near surface rock and soil model used in the seismic analysis of Building 371. This review was requested by the RFETS Seismic Evaluation Program. The purpose was to determine the adequacy of data to support the design basis for Building 371, with respect to seismic loading. The objectives required to meet this goal were to: (1) review techniques used to gather data (2) review analysis and interpretations of the data; and (3) make recommendations to gather additional data if required. Where there were questions or inadequacies in data or interpretation, recommendations were made for new data that will support the design basis analysis and operation of Building 371. In addition, recommendations are provided for a geologic and geophysical assessment for a new facility at the Rocky Flats Site.

  3. Special Feature: Supercomputers Map Our Changing Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers Map Our Changing Climate Special Feature: Supercomputers Map Our Changing Climate September 23, 2013 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 cam5-hurricane-2145950x400.jpg In this simulation, Berkeley researchers used the finite volume version of NCAR's Community Atmosphere Model to see how well the model can reproduced observed tropical cyclone statistics. The simulated storms seen in this animation are generated spontaneously from the model's simulated weather

  4. Geologic and tectonic characteristics of rockbursts

    SciTech Connect (OSTI)

    Adushkin, V.V.; Charlamov, V.A.; Kondratyev, S.V.; Rybnov, Y.S.; Shemyakin, V.M.; Sisov, I.A.; Syrnikov, N.M.; Turuntaev, S.B.; Vasilyeva, T.V.

    1995-06-01

    The modern mining enterprises have attained such scales of engineering activity that their direct influence to a rock massif and in series of cases to the region seismic regime doesn`t provoke any doubts. Excavation and removal of large volumes of rock mass, industrial explosions and other technological factors during long time can lead to the accumulation of man-made changes in rock massifs capable to cause catastrophic consequences. The stress state changes in considerable domains of massif create dangerous concentration of stresses at large geological heterogeneities - faults localized in the mining works zone. External influence can lead in that case to such phenomena as tectonic rockbursts and man-made earthquakes. The rockbursts problem in world mining practice exists for more than two hundred years. So that its actuality not only doesn`t decrease but steadily mounts up as due to the mining works depth increase, enlargement of the useful minerals excavations volumes as due to the possibility of safe use of the rock massif potential energy for facilitating the mastering of the bowels of the Earth and for making that more cheap. The purpose of present work is to study the engineering activity influence to processes occurring in the upper part of Earth crust and in particular in a rock massif. The rock massif is treated in those studies as a geophysical medium - such approach takes into account the presence of block structure of medium and the continuous exchange of energy between parts of that structure. The idea ``geophysical medium`` is applied in geophysics sufficiently wide and stresses the difference of actual Earth crust and rock massifs from the continuous media models discussed in mechanics.

  5. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  6. Newsletter Features | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Newsletter Features Newsletter Features Below are featured articles from the Indian Energy Beat newsletter. Download full issues of the newsletter. October 22, 2015 Leading the Charge: Doug MacCourt Advises Tribes on Energy Policy Leading the Charge is a regular feature spotlighting the movers and shakers in energy development on tribal lands. October 22, 2015 Winning the Future: Navajo-Hopi Land Commission Leverages DOE Grant to Advance Solar Ranch Project Under the Navajo-Hopi Land Settlement

  7. Method of fracturing a geological formation

    DOE Patents [OSTI]

    Johnson, James O.

    1990-01-01

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  8. Principles of isotope geology. Second edition

    SciTech Connect (OSTI)

    Faure, G.

    1986-01-01

    This is a text in isotope geology/geoscience that integrates material taught in various courses into a unified picture of the earth sciences. It presents an exposition of the principles used in the interpretation of isotopic data and shows how such interpretations apply to the solution of geological problems. References up to 1985 are included with chapters in this edition. New chapters on Sm-Nd, Lu-Hf Re-Os, and K-Ca decay schemes and cosmogenic radionuclides have been added. Data summaries and references have been expanded.

  9. Feature recognition applications in mesh generation

    SciTech Connect (OSTI)

    Tautges, T.J.; Liu, S.S.; Lu, Y.; Kraftcheck, J.; Gadh, R.

    1997-06-01

    The use of feature recognition as part of an overall decomposition-based hexahedral meshing approach is described in this paper. The meshing approach consists of feature recognition, using a c-loop or hybrid c-loop method, and the use of cutting surfaces to decompose the solid model. These steps are part of an iterative process, which proceeds either until no more features can be recognized or until the model has been completely decomposed into meshable sub-volumes. This method can greatly reduce the time required to generate an all-hexahedral mesh, either through the use of more efficient meshing algorithms on more of the geometry or by reducing the amount of manual decomposition required to mesh a volume.

  10. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO₂) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO₂ storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  11. Feature Detection, Characterization and Confirmation Methodology: Final Report

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Apps, John; Doughty, Christine; Gwatney, Hope; Onishi, Celia Tiemi; Trautz, Robert; Tsang, Chin-Fu

    2007-03-01

    This is the final report of the NUMO-LBNL collaborative project: Feature Detection, Characterization and Confirmation Methodology under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix. We examine site characterization projects from several sites in the world. The list includes Yucca Mountain in the USA, Tono and Horonobe in Japan, AECL in Canada, sites in Sweden, and Olkiluoto in Finland. We identify important geologic features and parameters common to most (or all) sites to provide useful information for future repository siting activity. At first glance, one could question whether there was any commonality among the sites, which are in different rock types at different locations. For example, the planned Yucca Mountain site is a dry repository in unsaturated tuff, whereas the Swedish sites are situated in saturated granite. However, the study concludes that indeed there are a number of important common features and parameters among all the sites--namely, (1) fault properties, (2) fracture-matrix interaction (3) groundwater flux, (4) boundary conditions, and (5) the permeability and porosity of the materials. We list the lessons learned from the Yucca Mountain Project and other site characterization programs. Most programs have by and large been quite successful. Nonetheless, there are definitely 'should-haves' and 'could-haves', or lessons to be learned, in all these programs. Although each site characterization program has some unique aspects, we believe that these crosscutting lessons can be very useful for future site investigations to be conducted in Japan. One of the most common lessons learned is that a repository program should allow for flexibility, in both schedule and approach. We examine field investigation technologies used to collect site characterization data in the field. An extensive list of existing field technologies is presented, with some discussion on usage and limitations. Many of the technologies on the list were in fact used during the characterization of Yucca Mountain and elsewhere by LBNL personnel. The study also includes emerging technologies and identifies the need to develop better estimation of important parameters for repository siting. Notable emerging technologies include 3-D seismic and satellite-based remote sensing and wireless micro electro mechanical systems (MEMS) sensors. They enable cost-effective and ubiquitous monitoring to be applied for site characterization. We list and classify the types of uncertainties involved in site characterization. Uncertainties can exist in all aspects of site characterization: data, interpretation, conceptualization, and modeling. We use the Swedish program to exemplify such uncertainties. We also devote a chapter on geochemical issues regarding the interaction between groundwater and natural and engineered barrier materials. A recommendation has been made to take advantage of the recent advancement in geochemical modeling capabilities in natural systems. Although it is not of immediate relevance at the preliminary investigation stage, it serves as a good reminder that geochemical investigation efforts should not be overlooked at any stage in the repository program. We construct a synthetic preliminary-investigation site based on an extensive data set available from a geoscientific project in Japan, which we use as a 'real' site to evaluate uncertainties resulting from hydrogeological modeling and examine strategies for characterizing a new site. We plan various preliminary-investigation configurations and conduct preliminary numerical investigations at the synthetic site. We construct a model of the 'real' site for each PI configuration, make predictions of particle travel times, and compare against the 'real' data obtained from the 'real' model. We conclude that drilling as many as nine boreholes does not necessarily improve the understanding of the site compared to drilling as few as three boreholes, unless there is an underlying structure that is larger than the spacing of the boreholes. The

  12. Feature Stories | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feature Stories Date Posted sort ascending "I was interested in mathematics and problem solving from a very early age," said Katrin Heitmann, a computational physicist and ...

  13. ORS 516 - Department of Geology and Mineral Industries | Open...

    Open Energy Info (EERE)

    6 - Department of Geology and Mineral Industries Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ORS 516 - Department of Geology...

  14. Subsurface geology of the Raft River geothermal area, Idaho ...

    Open Energy Info (EERE)

    geology of the Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Subsurface geology of the Raft River...

  15. Map of Geologic Sequestration Training and Research Projects

    Broader source: Energy.gov [DOE]

    A larger map of FE's Geologic Sequestration Training and Research Projects awarded as part of the Recovery Act.

  16. License for the Konrad Deep Geological Repository

    SciTech Connect (OSTI)

    Biurrun, E.; Hartje, B.

    2003-02-24

    Deep geological disposal of long-lived radioactive waste is currently considered a major challenge. Until present, only three deep geological disposal facilities have worldwide been operated: the Asse experimental repository (1967-1978) and the Morsleben repository (1971-1998) in Germany as well as the Waste Isolation Pilot Plant (WIPP) in the USA (1999 to present). Recently, the licensing procedure for the fourth such facility, the German Konrad repository, ended with a positive ''Planfeststellung'' (plan approval). With its plan approval decision, the licensing authority, the Ministry of the Environment of the state of Lower Saxony, approved the single license needed pursuant to German law to construct, operate, and later close down this facility.

  17. geologic-sequestration | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture Project No.: DE-FE0001953 NETL has partnered with Tuskegee University (TU) to provide fundamental research and hands-on training and networking opportunities to undergraduate students at TU in the area of CO2 capture and transport with a focus on the development of the most economical separation methods for pre-combustion CO2 capture. The bulk of

  18. Geological problems in radioactive waste isolation

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  19. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advancedmore » understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.« less

  20. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    SciTech Connect (OSTI)

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.

  1. Features

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top Ten Innovations of 2013 Science and technology for a secure nation Faces of Science The people behind our science Radical Supercomputing Extreme speeds, big data, powerful ...

  2. Hanford Site Guidelines for Preparation and Presentation of Geologic Information

    SciTech Connect (OSTI)

    Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

    2010-04-30

    A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

  3. The role of optimality in characterizing CO2 seepage from geological carbon sequestration sites

    SciTech Connect (OSTI)

    Cortis, Andrea; Oldenburg, Curtis M.; Benson, Sally M.

    2008-09-15

    Storage of large amounts of carbon dioxide (CO{sub 2}) in deep geological formations for greenhouse gas mitigation is gaining momentum and moving from its conceptual and testing stages towards widespread application. In this work we explore various optimization strategies for characterizing surface leakage (seepage) using near-surface measurement approaches such as accumulation chambers and eddy covariance towers. Seepage characterization objectives and limitations need to be defined carefully from the outset especially in light of large natural background variations that can mask seepage. The cost and sensitivity of seepage detection are related to four critical length scales pertaining to the size of the: (1) region that needs to be monitored; (2) footprint of the measurement approach, and (3) main seepage zone; and (4) region in which concentrations or fluxes are influenced by seepage. Seepage characterization objectives may include one or all of the tasks of detecting, locating, and quantifying seepage. Each of these tasks has its own optimal strategy. Detecting and locating seepage in a region in which there is no expected or preferred location for seepage nor existing evidence for seepage requires monitoring on a fixed grid, e.g., using eddy covariance towers. The fixed-grid approaches needed to detect seepage are expected to require large numbers of eddy covariance towers for large-scale geologic CO{sub 2} storage. Once seepage has been detected and roughly located, seepage zones and features can be optimally pinpointed through a dynamic search strategy, e.g., employing accumulation chambers and/or soil-gas sampling. Quantification of seepage rates can be done through measurements on a localized fixed grid once the seepage is pinpointed. Background measurements are essential for seepage detection in natural ecosystems. Artificial neural networks are considered as regression models useful for distinguishing natural system behavior from anomalous behavior suggestive of CO{sub 2} seepage without need for detailed understanding of natural system processes. Because of the local extrema in CO{sub 2} fluxes and concentrations in natural systems, simple steepest-descent algorithms are not effective and evolutionary computation algorithms are proposed as a paradigm for dynamic monitoring networks to pinpoint CO{sub 2} seepage areas.

  4. 1999 Commercial Buildings Characteristics--Conservation Features...

    U.S. Energy Information Administration (EIA) Indexed Site

    Conservation Features and Practices Topics: Energy Sources and End Uses End-Use Equipment Conservation Features and Practices Conservation Features and Practices The 1999 CBECS...

  5. ARM - Features and Releases Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP 6 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field...

  6. The Role of the Engineered Barrier System in Safety Cases for Geological Radioactive Waste Repoitories: An NEA Initiaive in Co-Operations with the EC, Process Issues and Modeling

    SciTech Connect (OSTI)

    D.G. Bennett; A.J. Hooper; S. Voinis; H. Umeki; A.V. Luik; J. Alonso

    2006-02-07

    The Integration Group for the Safety Case (IGSC) of the Nuclear Energy Agency (NEA) Radioactive Waste Management Committee in co-operation with the European Commission (EC) is conducting a project to develop a greater understanding of how to achieve the necessary integration for successful design, construction, testing, modeling, and assessment of engineered barrier systems. The project also seeks to clarify the role that the EBS plays in assuring the overall safety of a repository. A framework for the EBS Project is provided by a series of workshops that allow discussion of the wide range of activities necessary for the design, assessment and optimization of the EBS, and the integration of this information into the safety case. The topics of this series of workshops have been planned so that the EBS project will work progressively through the main aspects comprising one cycle of the design and optimization process. This paper seeks to communicate key results from the EBS project to a wider audience. The paper focuses on two topics discussed at the workshops: process issues and the role of modeling.

  7. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2007 [Feature Stories and Releases] Researchers Combine Atmospheric Science with Heartland Farming Bookmark and Share Field studies use aircraft, satellite and ground-based sensors to examine effects of land use on regional climate This week, two major scientific field studies begin in Oklahoma to investigate major uncertainties in climate models-aerosols and clouds. Both campaigns are focused on fair weather clouds, but one is studying the influence of land surface changes, such as soil

  8. Quick Links to Featured Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quick Links to Featured Reports Quick Links to Featured Reports Quick Links to Featured Reports The Office of Electricity Delivery and Energy Reliability (OE) leads the Department of Energy's efforts to ensure a resilient, reliable, and flexible electricity system. OE accomplishes this mission through research, partnerships, facilitation, modeling and analytics, and emergency preparedness. Below is a sampling of the wide range of OE's reports, fact sheets, case studies, and other materials.

  9. Cigeo, the French Geological Repository Project - 13022

    SciTech Connect (OSTI)

    Labalette, Thibaud; Harman, Alain; Dupuis, Marie-Claude; Ouzounian, Gerald

    2013-07-01

    The Cigeo industrial-scale geological disposal centre is designed for the disposal of the most highly-radioactive French waste. It will be built in an argillite formation of the Callovo-Oxfordian dating back 160 million years. The Cigeo project is located near the Bure village in the Paris Basin. The argillite formation was studied since 1974, and from the Meuse/Haute-Marne underground research laboratory since end of 1999. Most of the waste to be disposed of in the Cigeo repository comes from nuclear power plants and from reprocessing of their spent fuel. (authors)

  10. Environmental resources of selected areas of Hawaii: Geological hazards

    SciTech Connect (OSTI)

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  11. Precise rare earth analysis of geological materials

    SciTech Connect (OSTI)

    Laul, J.C.; Wogman, N.A.

    1982-01-01

    Rare earth element (REE) concentrations are very informative in revealing chemical fractionation processs in geological systems. The REE's (La-Lu) behavior is characteristic of various primary and secondary minerals which comprise a rock. The REE's contents and their patterns provide a strong fingerprint in distinguishing among various rock types and in understanding the partial melting and/or fractional crystallization of the source region. The REE contents in geological materials are usually at trace levels. To measure all the REE at such levels, radiochemical neutron activation analysis (RNAA) has been used with a REE group separation scheme. To maximize detection sensitivites for individual REE, selective ..gamma..-ray/x-ray measurements have been made using normal Ge(Li) and low-energy photon detectors (LEPD), and Ge(Li)-NaI(Tl) coincidence-noncoincidence spectrometer systems. Using these detection methods an individual REE can be measured at or below the ppB levels; chemical yields of the REE are determined by reactivation.

  12. Geologic development and characteristics of continental margins, Gulf of Mexico

    SciTech Connect (OSTI)

    Coleman, J.M.; Prior, D.B.; Roberts, H.H.

    1986-09-01

    The continental slope of the Gulf basin covers more than 500,000 km/sup 2/ and consists of smooth and gently sloping surfaces, prominent escarpments, knolls, intraslope basins, and submarine canyons and channels. It is an area of extremely diverse topographic and sedimentologic conditions. The slope extends from the shelf break, roughly at the 200-m isobath, to the upper limit of the continental rise at a depth of 2800 m. The most complex province in the basin, and the one of most interest to the petroleum industry, is the Texas-Louisiana slope, occupying 120,000 km/sup 2/ and in which bottom slopes range from less than 1/sup 0/ to greater than 20/sup 0/ around the knolls and basins. The near-surface geology and topography of the slope is a function of the interplay between episodes of rapid shelf-edge and slope progradation and contemporaneous modification of the depositional sequence by diapirism. Development of discrete depocenters throughout the Neogene results in rapid shelf-edge progradation, often exceeding 15-20 km/m.y. This rapid progradation of the shelf edge leads to development of thick wedges of sediment accumulation on the continental slope. Slope oversteepening, high pore pressures in rapidly deposited soft sediments, and changes in eustatic sea level cause subaqueous slope instabilities such as landslides and debris flows. Large-scale features such as shelf-edge separation scars and landslide-related canyons often result from such processes.

  13. Reservoir geology of Landslide field, southern San Joaquin basin, California

    SciTech Connect (OSTI)

    Carr, T.R.; Tucker, R.D.; Singleton, M.T. )

    1991-02-01

    The Landslide field, which is located on the southern margin of the San Joaquin basin, was discovered in 1985 and consists of 13 producers and six injectors. Cumulative production as of mid-1990 was approximately 10 million bbl of oil with an average daily production of 4700 BOPD. Production is from a series of late Miocene turbidite sands (Stevens Sand) that were deposited as a small constructional submarine fan (less than 2 mi in diameter). Based on interpretation of wireline logs and engineering data, deposition of the fan and of individual lobes within the fan was strongly influenced by preexisting paleotopography and small syndepositional slump features. Based on mapping of individual depositional units and stratigraphic dipmeter analysis, transport direction of the sand was to the north-north across these paleotopographic breaks in slope. Dipmeter data and pressure data from individual sands are especially useful for recognition and mapping of individual flow units between well bores. Detailed engineering, geophysical and geological studies have increased our understanding of the dimensions, continuity, geometry, and inherent reservoir properties of the individual flow units within the reservoir. Based on the results of these studies a series of water isolation workovers and extension wells were proposed and successfully undertaken. This work has increased recoverable reserves and arrested the rapid production decline.

  14. A fluid pressure and deformation analysis for geological sequestration of carbon dioxide

    SciTech Connect (OSTI)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-06-07

    We present a hydro-mechanical model and deformation analysis for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the two-way coupling between the geomechanical response and the fluid flow process in greater detail. In order for analytical solutions, the simplified hydro-mechanical model includes the geomechanical part that relies on the theory of linear elasticity, while the fluid flow is based on the Darcy’s law. The model was derived through coupling the two parts using the standard linear poroelasticity theory. Analytical solutions for fluid pressure field were obtained for a typical geological sequestration scenario and the solutions for ground deformation were obtained using the method of Green’s function. Solutions predict the temporal and spatial variation of fluid pressure, the effect of permeability and elastic modulus on the fluid pressure, the ground surface uplift, and the radial deformation during the entire injection period.

  15. Physics Features of TRU-Fueled VHTRs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Tom G.; Tsvetkov, Pavel V.

    2009-01-01

    The current waste management strategy for spent nuclear fuel (SNF) mandated by the US Congress is the disposal of high-level waste (HLW) in a geological repository at Yucca Mountain. Ongoing efforts on closed-fuel cycle options and difficulties in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy for the US fuel cycle would be to make use of fuel loadings containing high concentrations of transuranic (TRU) nuclides in the next-generation reactors. The use of such fuels would not only increase fuel supply but could also potentially facilitate prolonged operation modes (viamore » fertile additives) on a single fuel loading. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units as nuclear batteries for worldwide deployment. Studies have already shown that high-temperature gas-cooled reactors (HTGRs) and their Generation IV (GEN IV) extensions, very-high-temperature reactors (VHTRs), have encouraging performance characteristics. This paper is focused on possible physics features of TRU-fueled VHTRs. One of the objectives of a 3-year U.S. DOE NERI project was to show that TRU-fueled VHTRs have the possibility of prolonged operation on a single fuel loading. A 3D temperature distribution was developed based on conceivable operation conditions of the 600 MWth VHTR design. Results of extensive criticality and depletion calculations with varying fuel loadings showed that VHTRs are capable for autonomous operation and HLW waste reduction when loaded with TRU fuel.« less

  16. The MCLIB library: New features

    SciTech Connect (OSTI)

    Seeger, P.A.

    1996-12-31

    This report describes the philosophy and structure of MCLIB, A Fortran library of Monte Carlo subroutines which has been developed to test designs of neutron scattering instruments. Emphasis is placed on new features added to the library since the previous presentation of MCLIB at ICANS-XIII in October, 1995. These new features include toroidal mirrors, writing and reading source files, splitting and banking of histories, and a Maxwellian probability distribution. The only change of a program structure has been to include charge and polarization vector in the description of a particle. The latest release of the source code and documentation may be obtained by anonymous ftp. Work is also continuing on a more friendly web-based user interface, and user input is requested for additional features to be added to the library.

  17. Modeling Solute Diffusion in the Presence of Pore-Scale Heterogeneity...

    Office of Scientific and Technical Information (OSTI)

    with bulk porosity and the quantity of macroscopic features such as vugs and fractures. ... Subject: 54 ENVIRONMENTAL SCIENCES; DIFFUSION; DOLOMITE; GEOLOGIC FRACTURES; POROSITY; ...

  18. A Hydrostratigraphic Model of the Pahute Mesa - Oasis Valley Area, Nye County, Nevada

    SciTech Connect (OSTI)

    S. L. Drellack, Jr.; L. B. Prothro; J. L. Gonzales

    2001-12-01

    A 3-D hydrostratigraphic framework model has been built for the use of hydrologic modelers who are tasked with developing a model to determine how contaminants are transported by groundwater flow in an area of complex geology. The area of interest includes Pahute Mesa, a former nuclear testing area at the Nevada Test Site (NTS), and Oasis Valley, a groundwater discharge area down-gradient from contaminant source areas on Pahute Mesa. To build the framework model, the NTS hydrogeologic framework was integrated with an extensive collection of drill-hole data (stratigraphic, lithologic, and alteration data); a structural model; and several recent geophysical, geological, and hydrological studies to formulate a hydrostratigraphic system. The authors organized the Tertiary volcanic units in the study area into 40 hydrostratigraphic units that include 16 aquifers, 13 confining units, and 11 composite units. The underlying pre-Tertiary rocks were divided into six hydrostratigraphic units, including two aquifers and four confining units. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with all the major structural features that control them, including calderas and faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to address alternative interpretations for some of the major features in the model. Six of these alternatives were developed so they could be modeled in the same fashion as the base model.

  19. Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)

    SciTech Connect (OSTI)

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift zone of Kilauea.

  20. Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wastes Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine Wastes Christopher S. Kim,1 James J. Rytuba,2 Gordon E. Brown, Jr.3 1Department of Physical Sciences, Chapman University, Orange, CA 92866 2U.S. Geological Survey, Menlo Park, CA 94025 3Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 Introduction Figure 1. Dr. Christopher Kim collects a mine waste sample from the Oat Hill mercury mine in Northern California. The

  1. Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement

    SciTech Connect (OSTI)

    Dershowitz, William S.; Curran, Brendan; Einstein, Herbert; LaPointe, Paul; Shuttle, Dawn; Klise, Kate

    2002-07-26

    The report presents summaries of technology development for discrete feature modeling in support of the improved oil recovery (IOR) for heterogeneous reservoirs. In addition, the report describes the demonstration of these technologies at project study sites.

  2. PARC Seminar Series featuring Jan Jaworski | Photosynthetic Antenna...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jaworski PARC Seminar Series featuring Jan Jaworski Camelina as a model for oilseed biotechnology April 16, 2013 - 11:00am to 12:00pm Brauer 012, Washington University in St. Louis...

  3. Feature Stories | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feature Stories Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ---Fuel injection ---Heavy-duty vehicles ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction ---Industrial heating & cooling ---Industrial

  4. Feature Stories | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feature Stories Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ---Fuel injection ---Heavy-duty vehicles ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction ---Industrial heating & cooling ---Industrial

  5. NIF featured on BBC "Horizon"

    SciTech Connect (OSTI)

    Brian Cox

    2010-01-12

    The National Ignition Facility, the world's largest laser system, located at Lawrence Livermore National Laboratory, was featured in the BBC broadcast "Horizon" hosted by physicist Brian Cox. Here is the NIF portion of the program, which was entitled "Can We Make A Star On Earth?" This video is used with the express permission of the BBC.

  6. NIF featured on BBC "Horizon"

    ScienceCinema (OSTI)

    Brian Cox

    2010-09-01

    The National Ignition Facility, the world's largest laser system, located at Lawrence Livermore National Laboratory, was featured in the BBC broadcast "Horizon" hosted by physicist Brian Cox. Here is the NIF portion of the program, which was entitled "Can We Make A Star On Earth?" This video is used with the express permission of the BBC.

  7. Geologic Study of the Coso Formation | Open Energy Information

    Open Energy Info (EERE)

    Coso geothermal field. These studies have provided a wealth of knowledge concerning the geology of the area, including general structural characteristics and kinematic history....

  8. Comparison of methods for geologic storage of carbon dioxide...

    Office of Scientific and Technical Information (OSTI)

    United States Geological Survey (Brennan et al., 2010); ... generated by multiple methods revealed that assessments ... Research Org: National Energy Technology Laboratory - ...

  9. Co2 geological sequestration (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Co2 geological sequestration Citation Details In-Document Search Title: Co2 ... Publication Date: 2004-11-18 OSTI Identifier: 881725 Report Number(s): ...

  10. Geology and Mineral Deposits of Churchill County, Nevada | Open...

    Open Energy Info (EERE)

    Mineral Deposits of Churchill County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology and Mineral Deposits of Churchill County, Nevada...

  11. Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...

    Open Energy Info (EERE)

    a Quaternary Lake of Northwestern Nevada Abstract Abstract unavailable. Author Israel C. Russell Organization U.S. Geological Survey Published U.S. Government Printing...

  12. Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic Sequestration Conditions Using X-ray Computed Microtomography Citation Details In-Document ...

  13. Pre-Investigation Geological Appraisal Of Geothermal Fields ...

    Open Energy Info (EERE)

    by few or faults. The probable conditions are therefore inferred from study of geological environment, structure and stratigraphy, and the type and distribution of thermal springs...

  14. United States Geological Survey, LSC | Open Energy Information

    Open Energy Info (EERE)

    Testing Facilities Name United States Geological Survey, LSC Address Leetown Science Center, Conte Anadromous Fish Laboratory, 1 Migratory Way Place Turners Falls,...

  15. Geology and alteration of the Coso Geothermal Area, Inyo County...

    Open Energy Info (EERE)

    Deep thermal fluid flow at Coso will be controlled entirely by structural permeability developed in otherwise tight and impermeable host rocks. Neither geologic mapping...

  16. Chena Hot Springs GRED III Project: Final Report Geology, Petrology...

    Open Energy Info (EERE)

    Springs GRED III Project: Final Report Geology, Petrology, Geochemistry, Hydrothermal Alteration, and Fluid Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to...

  17. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Office of Scientific and Technical Information (OSTI)

    Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Arnold, Bill W.; Brady, Patrick; Sutton, Mark; Travis, Karl; MacKinnon, Robert; Gibb, Fergus;...

  18. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Citation Details In-Document Search Title: Deep Borehole Disposal Research:...

  19. Geology and alteration of the Raft River geothermal system, Idaho...

    Open Energy Info (EERE)

    Raft River geothermal system, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geology and alteration of the Raft River geothermal...

  20. International Symposium on Site Characterization for CO2Geological...

    Office of Scientific and Technical Information (OSTI)

    International Symposium on Site Characterization for CO2Geological Storage Citation ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  1. Geologic map of the Sulphur Springs Area, Valles Caldera Geothermal...

    Open Energy Info (EERE)

    and geologic deposits are indicated on the map. (MHR) Cartographers Fraser E. Goff and J. N. Gardner Published Los Alamos National Laboratory, NM, 1980 DOI Not Provided...

  2. Rock Physics of Geologic Carbon Sequestration/Storage Dvorkin...

    Office of Scientific and Technical Information (OSTI)

    Rock Physics of Geologic Carbon SequestrationStorage Dvorkin, Jack; Mavko, Gary 54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES This report covers the results of developing the rock...

  3. Carbon Geological Sequestration Systems Bau, Domenico 54 ENVIRONMENTAL

    Office of Scientific and Technical Information (OSTI)

    Multi-Objective Optimization Approaches for the Design of Carbon Geological Sequestration Systems Bau, Domenico 54 ENVIRONMENTAL SCIENCES The main objective of this project is to...

  4. State Geological Survey Contributions to NGDS Data Development...

    Open Energy Info (EERE)

    Arizona Geological Survey Awardee Website http:www.azgs.az.gov Partner 1 Microsoft Research Partner 2 Energy Industry Metadata Standards Working Group Partner 4 String...

  5. Paleomagnetism, Potassium-Argon Ages, and Geology of Rhyolites...

    Open Energy Info (EERE)

    and Dalrymple, 1966). Authors Richard R. Doell, G. Brent Dalrymple, Robert Leland Smith and Roy A. Bailey Published Journal Geological Society of America Memoirs, 1968 DOI...

  6. Geophysics, Geology and Geothermal Leasing Status of the Lightning...

    Open Energy Info (EERE)

    Leasing Status of the Lightning Dock KGRA, Animas Valley, New Mexico Author C. Smith Published New Mexico Geological Society Guidebook, 1978 DOI Not Provided Check for DOI...

  7. I I Hydrological/Geological Studies Radiochemical Analyses of...

    Office of Legacy Management (LM)

    ' HydrologicalGeological Studies Radiochemical Analyses of Water Samples from Selected Streams, Wells, Springs and Precipitation Collected Prior to Re-Entry . , Drilling, Project ...

  8. Liquid Metal Heat Exchanger for Geologic Deposits - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid Metal Heat Exchanger for Geologic Deposits Oak Ridge National Laboratory Contact ... The apparatus provides more efficient heat transfer than existing technologies for ...

  9. Final Supplemental Environmental Impact Statement for a Geologic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, ...

  10. United States Geological Survey, HIF | Open Energy Information

    Open Energy Info (EERE)

    HIF Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name United States Geological Survey, HIF Address Building 2101 Stennis Space Center Place Mississippi Zip...

  11. Geologic analysis of Devonian Shale cores

    SciTech Connect (OSTI)

    1982-02-01

    Cleveland Cliffs Iron Company was awarded a DOE contract in December 1977 for field retrieval and laboratory analysis of cores from the Devonian shales of the following eleven states: Michigan, Illinois, Indiana, Ohio, New York, Pennsylvania, West Virginia, Maryland, Kentucky, Tennessee and Virginia. The purpose of this project is to explore these areas to determine the amount of natural gas being produced from the Devonian shales. The physical properties testing of the rock specimens were performed under subcontract at Michigan Technological University (MTU). The study also included LANDSAT information, geochemical research, structural sedimentary and tectonic data. Following the introduction, and background of the project this report covers the following: field retrieval procedures; laboratory procedures; geologic analysis (by state); references and appendices. (ATT)

  12. Novel Concepts Research in Geologic Storage of CO2

    SciTech Connect (OSTI)

    Neeraj Gupta

    2006-09-30

    As part of the Department of Energy's (DOE) initiative on developing new technologies for the storage of carbon dioxide (CO{sub 2}) in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs of the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the July-September 2006 period of the project. As discussed in the following report, the main accomplishments were reservoir modeling for the Copper Ridge ''B-zone'' and design and feasibility support tasks. Work continued on the development of injection well design options, engineering assessment of CO2 capture systems, permitting, and assessment of monitoring technologies as they apply to the project site. In addition, an integrated risk analysis of the proposed system was completed. Finally, slipstream capture construction issues were evaluated with AEP to move the project toward an integrated carbon capture and storage system at the Mountaineer site. Overall, the current design feasibility phase project is proceeding according to plans.

  13. Geology And A Working Conceptual Model Of The Obsidian Butte...

    Open Energy Info (EERE)

    with a wealth of subsurface information made available for the first time from the databases of present and prior field operators. The Unit 6 sector of the system is hosted by...

  14. The Rosetta Resources CO2 Storage Project - A WESTCARB GeologicPilot Test

    SciTech Connect (OSTI)

    Trautz, Robert; Benson, Sally; Myer, Larry; Oldenburg, Curtis; Seeman, Ed; Hadsell, Eric; Funderburk, Ben

    2006-01-30

    WESTCARB, one of seven U.S. Department of Energypartnerships, identified (during its Phase I study) over 600 gigatonnesof CO2 storage capacity in geologic formations located in the Westernregion. The Western region includes the WESTCARB partnership states ofAlaska, Arizona, California, Nevada, Oregon and Washington and theCanadian province of British Columbia. The WESTCARB Phase II study iscurrently under way, featuring three geologic and two terrestrial CO2pilot projects designed to test promising sequestration technologies atsites broadly representative of the region's largest potential carbonsinks. This paper focuses on two of the geologic pilot studies plannedfor Phase II -referred to-collectively as the Rosetta-Calpine CO2 StorageProject. The first pilot test will demonstrate injection of CO2 into asaline formation beneath a depleted gas reservoir. The second test willgather data for assessing CO2 enhanced gas recovery (EGR) as well asstorage in a depleted gas reservoir. The benefit of enhanced oil recovery(EOR) using injected CO2 to drive or sweep oil from the reservoir towarda production well is well known. EaR involves a similar CO2 injectionprocess, but has received far less attention. Depleted natural gasreservoirs still contain methane; therefore, CO2 injection may enhancemethane production by reservoir repressurization or pressure maintenance.CO2 injection into a saline formation, followed by injection into adepleted natural gas reservoir, is currently scheduled to start inOctober 2006.

  15. Design of Roadside Safety Features

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis and Design of the Roadside Safety Features for Safety Performance Texas Transportation Institute (TTI) researchers are investigating the performance of a crash wall design to determine its effectiveness in reducing the damage to mechanically supported earth (MSE) wall panels during a vehicular impact. The simulations are based on Test Level 4 impact conditions of the new AASHTO Manual for Assessing Safety Hardware (MASH). This involves a 10,000-kg single unit truck (SUT) impacting at 90

  16. Features | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Library Features NNSA's Office of Congressional, Intergovernmental, and Public Affairs regularly updates the web site with current press releases, newsletters, fact sheets and other documents that highlight some of NNSA's current activity in areas such as nuclear nonproliferation and defense programs. NNSA's Office of Congressional, Intergovernmental, and Public Affairs regularly updates the web site with current press releases, newsletters, fact sheets and other documents that highlight some of

  17. Behavior of REE in geological and biological systems

    SciTech Connect (OSTI)

    Laul, J.C.; Weimer, W.C.

    1981-05-01

    The REE abundances when normalized to primordial (chondritic) abundances behave as a smooth function of the REE ionic radii in both the geological and biological systems. The REE are hardly fractionated chemically through various stages of their transformation from soil-soil extract-plant-geological systems.

  18. A Catalog of Geologic Data for the Hanford Site

    SciTech Connect (OSTI)

    Horton, Duane G.; Last, George V.; Gilmore, Tyler J.; Bjornstad, Bruce N.; Mackley, Rob D.

    2005-08-01

    This revision of the geologic data catalog incorporates new boreholes drilled after September 2002 as well as other older wells, particularly from the 600 Area, omitted from the earlier catalogs. Additionally, borehole geophysical log data have been added to the catalog. This version of the geologic data catalog now contains 3,519 boreholes and is current with boreholes drilled as of November 2004.

  19. Geologic Map and GIS Data for the Wabuska Geothermal Area

    SciTech Connect (OSTI)

    Hinz, Nick

    2013-09-30

    Wabuska—ESRI geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata. - List of stratigraphic units and stratigraphic correlation diagram. - One cross‐section.

  20. Geologic Map and GIS Data for the Patua Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2011-10-31

    Patua—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units. - Locations of geothermal wells. - Locations of 40Ar/39Ar and tephra samples.

  1. Programming models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Task-based models Task-based models and abstractions (such as offered by CHARM++, Legion and HPX, for example) offer many attractive features for mapping computations onto...

  2. Alternative Fuels Data Center: News and Features

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities News Stay current on Clean Cities with news sources and media resources. AFDC Features Learn about alternative transportation through AFDC feature stories: Test Your ...

  3. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magazine Features Mobile Facility Deployment In China Bookmark and Share A news feature published in Vol. 461 of Nature magazine covers the ARM Mobile Facility deployment in China. ...

  4. New DOE Best Practices Manual Features Top Strategies for Carbon Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wells | Department of Energy DOE Best Practices Manual Features Top Strategies for Carbon Storage Wells New DOE Best Practices Manual Features Top Strategies for Carbon Storage Wells June 7, 2012 - 1:00pm Addthis Washington, DC - Best practices for managing wells used to store carbon dioxide (CO2) in geologic formations are the focus of a publication just released by the U.S. Department of Energy (DOE)'s National Energy Technology Laboratory (NETL). The newest manual in the Department's

  5. Handling encapsulated spent fuel in a geologic repository environment

    SciTech Connect (OSTI)

    Ballou, L.B.

    1983-02-01

    In support of the Spent Fuel Test-Climate at the U.S. Department of Energy`s Nevada Test Site, a spent-fuel canister handling system has been designed, deployed, and operated successfully during the past five years. This system transports encapsulated commercial spent-fuel assemblies between the packaging facility and the test site ({similar_to}100 km), transfers the canisters 420 m vertically to and from a geologic storage drift, and emplaces or retrieves the canisters from the storage holes in the floor of the drift. The spent-fuel canisters are maintained in a fully shielded configuration at all times during the handling cycle, permitting manned access at any time for response to any abnormal conditions. All normal operations are conducted by remote control, thus assuring as low as reasonably achievable exposures to operators; specifically, we have had no measurable exposure during 30 canister transfer operations. While not intended to be prototypical of repository handling operations, the system embodies a number of concepts, now demonstrated to be safe, reliable, and economical, which may be very useful in evaluating full-scale repository handling alternatives in the future. Among the potentially significant concepts are: Use of an integral shielding plug to minimize radiation streaming at all transfer interfaces. Hydraulically actuated transfer cask jacking and rotation features to reduce excavation headroom requirements. Use of a dedicated small diameter (0.5 m) drilled shaft for transfer between the surface and repository workings. A wire-line hoisting system with positive emergency braking device which travels with the load. Remotely activated grapples - three used in the system - which are insensitive to load orientation. Rail-mounted underground transfer vehicle operated with no personnel underground.

  6. Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site

    SciTech Connect (OSTI)

    Reidel, Steve P.; Chamness, Mickie A.

    2007-01-01

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  7. Constructing Hydraulic Barriers in Deep Geologic Formations

    SciTech Connect (OSTI)

    Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

    2008-07-01

    Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

  8. Multipurpose bedrock surficial, and environmental geologic maps, New River valley, southwest Virginia

    SciTech Connect (OSTI)

    Schultz, A. ); Collins, T. )

    1994-03-01

    Multipurpose bedrock, surficial, and environmental geologic maps have recently been completed for portions of the Valley and Ridge province of southwest VA. The maps, at both 1:100,000 and 1:24,000 scales, show generalized and detailed bedrock geology grouped by lithology and environmental hazard associations. Also shown are a variety of alluvial, colluvial, debris flow, and landslide deposits, as well as karst features. Multidisciplinary research topics addressed during the mapping included slope evolution and geomorphology, drainage history and terrace distribution, ancient large-scale landsliding, and sinkhole development. The maps have been used by land-use planners and engineering firms in an evaluation of Appalachian paleoseismicity and to assess potential groundwater contamination and subsidence in karst areas. The maps are being used for environmental hazard assessment and site selection of a proposed large electric powerline that crosses the Jefferson National Forest. Also, the maps are proving useful in planning for a public access interpretive geologic enter focused on large-scale slope failures. Some of the largest known landslides in eastern North America took place within the map area. Field comparisons and detailed structure mapping of similar features along the Front Range of the Colorado Rockies indicate that the landslides were probably emplaced during a single catastrophic event of short duration. Although the giles County seismic zone is nearby, stability analyses of slopes in the map area have shown that failure need not have been initiated by a seismic event. Several distinct colluvial units mapped within the area of landslides document a period of extensive weathering that postdates slide emplacement. Radiocarbon dates from landslide sag ponds indicate a minimum age of 9,860 B.P. for emplacement of some of the landslides. These results indicate that pre-slide colluvial and debris flow deposits are at least Pleistocene in age.

  9. Subsurface geological and geophysical study of the Cerro Prieto geothermal field, Baja California, Mexico

    SciTech Connect (OSTI)

    Lyons, D.J.; van de Kamp, P.C.

    1980-01-01

    The subsurface investigation of the Cerro Prieto field and surrounding area is described including the stratigraphy, structure, hydrothermal alteration, and reservoir properties for use in designing reservoir simulation models and planning development of the field. Insights into the depositional, tectonic, and thermal history of the area are presented. The following types of data were used: well sample descriptions and analyses, well logs, geophysical surveys; physiography, and regional geology. (MHR)

  10. Modeling dolomitized carbonate-ramp reservoirs: A case study of the Seminole San Andres unit. Part 2 -- Seismic modeling, reservoir geostatistics, and reservoir simulation

    SciTech Connect (OSTI)

    Wang, F.P.; Dai, J.; Kerans, C.

    1998-11-01

    In part 1 of this paper, the authors discussed the rock-fabric/petrophysical classes for dolomitized carbonate-ramp rocks, the effects of rock fabric and pore type on petrophysical properties, petrophysical models for analyzing wireline logs, the critical scales for defining geologic framework, and 3-D geologic modeling. Part 2 focuses on geophysical and engineering characterizations, including seismic modeling, reservoir geostatistics, stochastic modeling, and reservoir simulation. Synthetic seismograms of 30 to 200 Hz were generated to study the level of seismic resolution required to capture the high-frequency geologic features in dolomitized carbonate-ramp reservoirs. Outcrop data were collected to investigate effects of sampling interval and scale-up of block size on geostatistical parameters. Semivariogram analysis of outcrop data showed that the sill of log permeability decreases and the correlation length increases with an increase of horizontal block size. Permeability models were generated using conventional linear interpolation, stochastic realizations without stratigraphic constraints, and stochastic realizations with stratigraphic constraints. Simulations of a fine-scale Lawyer Canyon outcrop model were used to study the factors affecting waterflooding performance. Simulation results show that waterflooding performance depends strongly on the geometry and stacking pattern of the rock-fabric units and on the location of production and injection wells.

  11. Status report on the geology of the Oak Ridge Reservation

    SciTech Connect (OSTI)

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L.; Dreier, R.B.; Ketelle, R.H.; Lee, R.R.; Lee, Suk Young; Lietzke, D.A.; McMaster, W.M.

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth.

  12. A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool.

    SciTech Connect (OSTI)

    Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James; Klise, Geoffrey T.

    2011-09-01

    The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino et al., 2008; Panfilov et al., 2006). These existing H{sub 2} facilities are quite small by natural gas storage standards. The second stage of the analysis involved providing ANL with estimated geostorage costs of hydrogen within salt caverns for various market penetrations for four representative cities (Houston, Detroit, Pittsburgh and Los Angeles). Using these demand levels, the scale and cost of hydrogen storage necessary to meet 10%, 25% and 100% of vehicle summer demands was calculated.

  13. ENGINEERED BARRIER SYSTEM FEATURES, EVENTS AND PROCESSES

    SciTech Connect (OSTI)

    Jaros, W.

    2005-08-30

    The purpose of this report is to evaluate and document the inclusion or exclusion of engineered barrier system (EBS) features, events, and processes (FEPs) with respect to models and analyses used to support the total system performance assessment for the license application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for exclusion screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs addressed in this report deal with those features, events, and processes relevant to the EBS focusing mainly on those components and conditions exterior to the waste package and within the rock mass surrounding emplacement drifts. The components of the EBS are the drip shield, waste package, waste form, cladding, emplacement pallet, emplacement drift excavated opening (also referred to as drift opening in this report), and invert. FEPs specific to the waste package, cladding, and drip shield are addressed in separate FEP reports: for example, ''Screening of Features, Events, and Processes in Drip Shield and Waste Package Degradation'' (BSC 2005 [DIRS 174995]), ''Clad Degradation--FEPs Screening Arguments (BSC 2004 [DIRS 170019]), and Waste-Form Features, Events, and Processes'' (BSC 2004 [DIRS 170020]). For included FEPs, this report summarizes the implementation of the FEP in the TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded). This report also documents changes to the EBS FEPs list that have occurred since the previous versions of this report. These changes have resulted due to a reevaluation of the FEPs for TSPA-LA as identified in Section 1.2 of this report and described in more detail in Section 6.1.1. This revision addresses updates in Yucca Mountain Project (YMP) administrative procedures as they pertain to this report; the current procedures are addressed in Section 2. This revision also addresses updates to the technical basis in supporting analysis and model reports and corroborative documentation, as presented in Sections 4 and 6 of this report. Finally, Sections 4, 5, and 6 of this report provide additional information pertaining to the relevant FEPs-related Acceptance Criteria presented in ''Yucca Mountain Review Plan, Final Report'' (YMRP) (NRC 2003 [DIRS 163274], Sections 2.2.1.2.1.3 and 2.2.1.3.3.3).

  14. Unsupervised Feature Learning for High-Resolution Satellite Image Classification

    SciTech Connect (OSTI)

    Cheriyadat, Anil M

    2013-01-01

    The rich data provided by high-resolution satellite imagery allow us to directly model geospatial neighborhoods by understanding their spatial and structural patterns. In this paper we explore an unsupervised feature learning approach to model geospatial neighborhoods for classification purposes. While pixel and object based classification approaches are widely used for satellite image analysis, often these approaches exploit the high-fidelity image data in a limited way. In this paper we extract low-level features to characterize the local neighborhood patterns. We exploit the unlabeled feature measurements in a novel way to learn a set of basis functions to derive new features. The derived sparse feature representation obtained by encoding the measured features in terms of the learned basis function set yields superior classification performance. We applied our technique on two challenging image datasets: ORNL dataset representing one-meter spatial resolution satellite imagery representing five land-use categories and, UCMERCED dataset consisting of 21 different categories representing sub-meter resolution overhead imagery. Our results are highly promising and, in the case of UCMERCED dataset we outperform the best results obtained for this dataset. We show that our feature extraction and learning methods are highly effective in developing a detection system that can be used to automatically scan large-scale high-resolution satellite imagery for detecting large-facility.

  15. The French Geological Repository Project Cigeo - 12023

    SciTech Connect (OSTI)

    Harman, Alain; Labalette, Thibaud; Dupuis, Marie-Claude; Ouzounian, Gerald [ANDRA, Chatenay-Malabry (France)

    2012-07-01

    The French Agency for Radioactive Waste Management, ANDRA, was launched by law in 1991 to perform and develop the research programme for managing high level and intermediate level long-lived radioactive waste generated by the French nuclear fleet. After a 15-year intensive research programme, including the study of alternative solutions, an overall review and assessment of the results was organized, including a national public debate. As a result, the Parliament passed a Planning Act on radioactive waste management in 2006. Commissioning of a geological repository by 2025 was one of the most important decisions taken at that time. To reach this goal, a license application must be submitted and reviewed by the competent authorities by 2015. A detailed review and consultation process is, as well, defined in the Planning Act. Beside the legal framework the project needs to progress on two fronts. The first one is on siting. A significant milestone was reached in 2009 with the definition of a defined area to locate the underground repository facilities. This area was approved in March 2010 by the Government, after having collected the opinions and positions of all the interested parties, at both National and local levels. A new phase of dialogue with local players began to refine the implementation scenarios of surface facilities. The final site selection will be approved after a public debate planned for 2013. The second one is the industrial organization, planning and costing. The industrial project of this geological repository was called Cigeo (Centre Industriel de Stockage Geologique). Given the amount of work to be done to comply with the given time framework, a detailed organization with well-defined milestones must be set-up. Cigeo will be a specific nuclear facility, built and operated underground for over a hundred years. The consequence of this long duration is that the development of the repository facilities will take place in successive operational phases. The characteristics of the first waste packages received will determine the work and the corresponding investments by 2025 on the repository site. One of the main challenges will be to accommodate both activities of mining and nuclear operations at the same time and at the same location. From the technical standpoint, ventilation and fire risk cannot be managed through a simple transposition from current nuclear industry practices. The reversibility demand also leads to concrete proposals with regard to repository management flexibility and waste package retrievability. These proposals contribute to the dialogue with stakeholders to prepare for the public debate and a future law which will determine the reversibility conditions. New design developments are expected to be introduced in the application from the current studies conducted until 2014. The possibility of optimization beyond 2015 will be kept open taking into account the one hundred years operating time as well as the capability to integrate feedback gained from the first construction and operation works. The industrial committed work aims to reach the application stage by 2015. The license application procedure was defined by the 2006 Act. Subject to authorization, the construction might begin in 2017. (authors)

  16. Federal Control of Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Reitze, Arnold

    2011-04-11

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­‐year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-­‐burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-­‐fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  17. Source: U.S. Energy Information Administration, based on DrillingInfo Inc., New York State Geological Survey, Ohio State Geological Survey, Pennsylvania Bureau of

    U.S. Energy Information Administration (EIA) Indexed Site

    Source: U.S. Energy Information Administration, based on DrillingInfo Inc., New York State Geological Survey, Ohio State Geological Survey, Pennsylvania Bureau of Topographic & Geologic Survey, West Virginia Geological & Economic Survey, and U.S. Geological Survey. Note: Map includes production wells from January 2003 through December 2014. Structure map of the Marcellus Formation Thickness map of the Marcellus Formation Source: U.S. Energy Information Administration, based on

  18. Feature Based Machining Process Planning V5.1

    Energy Science and Technology Software Center (OSTI)

    2001-07-30

    The purpose of the FB-Machining Advisor product is to provide industry with an end user product that will enable end users to more effectively interact with a solid model for manufacturing applications. The product allows end users to visualize and organize their manufacturing process plans as they are being conceived; avoid redundant and time consuming geometric construction and calculation; automate geometric reasoning processes, and automate downstream manufacturing applications. The product augments a solid model representationmore » of the part with a set of machining features (e.g., pockets, steps, holes, cutouts). The product also enables end users to interact with a solid model to create process plans. It will automatically recognize, or interactively create and modify surface based machining features (represented by sets of faces on the solid model) and volumetric machining features which are represented by delta volumes (solid bodies representing volumes of material to be removed from the part). The FB-Machining Advisor will generate “in process shapes” that represent the shape of the work piece prior or subsequent to a material removal operation. It is designed to facilitate process change propagation in order to minimize rework resulting from process modifications. The machining features will provide vital shape and tolerance information (i.e. depth of pocket, minimum side radius of pocket, diameter of hole, maximum surface finish of side walls). The FB-Machining Advisor also integrates solid model based (3 Dimensional) tolerance information with the machining feature representations.« less

  19. SMALL, GEOLOGICALLY COMPLEX RESERVOIRS CAN BENEFIT FROM RESERVOIR SIMULATION

    SciTech Connect (OSTI)

    Richard E. Bennett

    2002-06-24

    The Cascade Sand zone of the Mission-Visco Lease in the Cascade Oil field of Los Angeles County, California, has been under water flood since 1970. Increasing water injection to increase oil production rates was being considered as an opportunity to improve oil recovery. However, a secondary gas cap had formed in the up-dip portion of the reservoir with very low gas cap pressures, creating concern that oil could be displaced into the gas cap resulting in the loss of recoverable oil. Therefore, injecting gas into the gas cap to keep the gas cap pressurized and restrict the influx of oil during water injection was also being considered. Further, it was recognized that the reservoir geology in the gas cap area is very complex with numerous folding and faulting and thus there are potential pressure barriers in several locations throughout the reservoir. With these conditions in mind, there were concerns regarding well to well continuity in the gas cap, which could interfere with the intended repressurization impact. Concerns about the pattern of gas flow from well to well, the possibilities of cycling gas without the desired increased pressure, and the possible loss of oil displaced into the gas cap resulted in the decision to conduct a gas tracer survey in an attempt to better define inter-well communication. Following the gas tracer survey, a reservoir model would be developed to integrate the findings of the gas tracer survey, known geologic and reservoir data, and historic production data. The reservoir model would be used to better define the reservoir characteristics and provide information that could help optimize the waterflood-gas injection project under consideration for efficient water and gas injection management to increase oil production. However, due to inadequate gas sampling procedures in the field and insufficiently developed laboratory analytical techniques, the laboratory was unable to detect the tracer in the gas samples taken. At that point, focus on, and an expansion of the scope of the reservoir simulation and modeling effort was initiated, using DOE's BOAST98 (a visual, dynamic, interactive update of BOAST3), 3D, black oil reservoir simulation package as the basis for developing the reservoir model. Reservoir characterization, modeling, and reservoir simulation resulted in a significant change in the depletion strategy. Information from the reservoir characterization and modeling effort indicate that in-fill drilling and relying on natural water influx from the aquifer could increase remaining reserves by 125,000 barrels of oil per well, and that up to 10 infill wells could be drilled in the field. Through this scenario, field production could be increased two to three times over the current 65 bopd. Based on the results of the study, permits have been applied for to drill a directional infill well to encounter the productive zone at a high angle in order to maximize the amount of pay and reservoirs encountered.

  20. Interplay between microorganisms and geochemistry in geological carbon storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.; Bennett, Philip C.

    2016-02-28

    Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO2 conditions and identify factors that may influence survival of cells to CO2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure to acidic water, biomassmore » can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less

  1. FEM: Feature-enhanced map

    SciTech Connect (OSTI)

    Afonine, Pavel V.; Moriarty, Nigel W.; Mustyakimov, Marat; Sobolev, Oleg V.; Terwilliger, Thomas C.; Turk, Dusan; Urzhumtsev, Alexandre; Adams, Paul D.

    2015-02-26

    A method is presented that modifies a 2mFobs-DFmodelσA-weighted map such that the resulting map can strengthen a weak signal, if present, and can reduce model bias and noise. The method consists of first randomizing the starting map and filling in missing reflections using multiple methods. This is followed by restricting the map to regions with convincing density and the application of sharpening. The final map is then created by combining a series of histogram-equalized intermediate maps. In the test cases shown, the maps produced in this way are found to have increased interpretability and decreased model bias compared with the starting 2mFobs-DFmodelσA-weighted map.

  2. Gable named Geological Society of America Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applications, computational modeling of fluid flow and reactive transport in porous and fractured media, hydrothermal systems, geodynamics, mantle convection and plate...

  3. Novel Concepts Research in Geologic Storage of CO2

    SciTech Connect (OSTI)

    Neeraj Gupta

    2007-03-31

    As part of the Department of Energy's (DOE) initiative on developing new technologies for the storage of carbon dioxide (CO{sub 2}) in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs of the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the January-March 2007 period of the project. As discussed in the report, the main accomplishment was an announcement by AEP to move forward with a {approx}100,000 metric tons CO{sub 2}/year capture and sequestration project at the Mountaineer site. This decision was the outcome of last several years of research under the current DOE funded project involving the technology, site-specific characterization, modeling, risk assessment, etc. This news marks a significant accomplishment for DOE's research program to translate the theoretical potential for carbon sequestration into tangible measures and approaches for the region. The program includes a 30-megawatt thermal product validation at the Mountaineer Plant where up to 100,000 metric tons CO{sub 2}/year will be captured and sequestered in deep rock formations identified in this work. Plans include further steps at Mountaineer with capture and storage at a very expedited pace. Work continued on the design and feasibility support tasks such as development of injection well design options, engineering assessment of CO{sub 2} capture systems, permitting, and assessment of monitoring technologies as they apply to the project site. Overall, the current design feasibility phase of the project has reached a major milestone. Plans to facilitate the next steps of the project will be the main work remaining in this portion of the project as the program moves toward the proposed capture and sequestration system.

  4. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Caterpillar, Sandia CRADA Opens Door to Multiple Research Projects Capabilities, Computational Modeling & Simulation, CRF, Materials Science, Modeling, Modeling, Modeling & ...

  5. Geology of Southwestern New Mexico | Open Energy Information

    Open Energy Info (EERE)

    to library Conference Paper: Geology of Southwestern New Mexico Authors R.E. Clemons and G.H. Mack Conference 39th Field Conference; ConferencePlace"ConferencePlace"...

  6. Geological and geophysical studies of a geothermal area in the...

    Open Energy Info (EERE)

    geology; structure; surveys; tectonics; United States; volcanic rocks Authors Williams, P.L.; Mabey, D.R.; Pierce, K.L.; Zohdy, A.A.R.; Ackermann, H.; Hoover and D.B. Published U....

  7. DOE Manual Studies 11 Major CO2 Geologic Storage Formations

    Broader source: Energy.gov [DOE]

    A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy.

  8. Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea...

    Open Energy Info (EERE)

    Kilauea Volcano, HawaiiInfo GraphicMapChart Authors Frank A. Trusdell and Richard B. Moore Published U.S. GEOLOGICAL SURVEY, 2006 DOI Not Provided Check for DOI availability:...

  9. Geology of the Florida Canyon gold deposit, Pershing County,...

    Open Energy Info (EERE)

    Pershing County, Nevada, in: Gold and Silver Deposits of Western Nevada Authors Hastings, J.S., Burkhart, T.H., and Richardson and R.E. Published Geological Society of Nevada 1993...

  10. Geologic interpretation of gravity and magnetic data in the Salida...

    Open Energy Info (EERE)

    interpretation of gravity and magnetic data in the Salida region, Colorado Authors J.E. Case and R.F. Sikora Published U.S. Geological Survey Open-File Report, 1984 Report...

  11. Geological Society of America selects Los Alamos scientist Claudia...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is a stable-isotope geochemist whose research spans the traditional fields of geology, soil science and climate science. July 9, 2015 Claudia Mora Claudia Mora Contact Los Alamos...

  12. Geological aspects of the nuclear waste disposal problem

    SciTech Connect (OSTI)

    Laverov, N.P.; Omelianenko, B.L.; Velichkin, V.I.

    1994-06-01

    For the successful solution of the high-level waste (HLW) problem in Russia one must take into account such factors as the existence of the great volume of accumulated HLW, the large size and variety of geological conditions in the country, and the difficult economic conditions. The most efficient method of HLW disposal consists in the maximum use of protective capacities of the geological environment and in using inexpensive natural minerals for engineered barrier construction. In this paper, the principal trends of geological investigation directed toward the solution of HLW disposal are considered. One urgent practical aim is the selection of sites in deep wells in regions where the HLW is now held in temporary storage. The aim of long-term investigations into HLW disposal is to evaluate geological prerequisites for regional HLW repositories.

  13. Process for structural geologic analysis of topography and point data

    DOE Patents [OSTI]

    Eliason, Jay R.; Eliason, Valerie L. C.

    1987-01-01

    A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

  14. Title Geology of the Great Basin. Copyright Issue Entire Book

    National Nuclear Security Administration (NNSA)

    Fiero, B. 101084 Document Date 1186 Document Type Book ERC Index number 05.09.128 Box Number 1672-1 Recipients Unversity of Nevada Reno Press ADI " Geology of the Great...

  15. A Geological and Geophysical Study of Chena Hot Springs, Alaksa...

    Open Energy Info (EERE)

    Alaksa Jump to: navigation, search OpenEI Reference LibraryAdd to library M.Sc. Thesis: A Geological and Geophysical Study of Chena Hot Springs, AlaksaThesisDissertation...

  16. Geologic Mapping of the Valles Caldera National Preserve, New...

    Open Energy Info (EERE)

    and Bland) are now complete and two others will be finished by 2006 (Valle Toledo and Valle San Antonio). Eventually, the geology of the Valles caldera will be published as a...

  17. Geologic Map of the Jemez Mountains, New Mexico | Open Energy...

    Open Energy Info (EERE)

    MexicoInfo GraphicMapChart Abstract Abstract unavailable Cartographers Robert Leland Smith, Roy A. Bailey and Clarence Samuel Ross Published U.S. Geological Survey, 1970 DOI Not...

  18. Geology, Water Geochemistry And Geothermal Potential Of The Jemez...

    Open Energy Info (EERE)

    Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  19. Regional Geology: GIS Database for Alternative Host Rocks and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The objective of this work is to develop a spatial database that integrates both geologic data for alternative host-rock formations and information that has been historically used ...

  20. Geological Carbon Sequestration, Spelunking and You | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You August 11, 2010 - 2:45pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this project do? Develops and tests technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts Here's a riddle for you: What do spelunkers, mineralogists and the latest Carbon Capture and Sequestration (CCS) awardees have in common? They're all

  1. Research Portfolio Report Ultra-Deepwater: Geologic Uncertainty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geologic Uncertainty Cover Image: 3D visualization of directionally drilled boreholes in the Gulf of Mexico, field MC109, showing NETL's interpretation of two reservoir sand intervals. Research Portfolio Report Ultra-Deepwater: Geologic Uncertainty DOE/NETL-2015/1694 Prepared by: Mari Nichols-Haining, Jennifer Funk, Kathy Bruner, John Oelfke, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract

  2. Thermodynamic stability of actinide pyrochlore minerals in deep geologic

    Office of Scientific and Technical Information (OSTI)

    repository environments (Conference) | SciTech Connect Thermodynamic stability of actinide pyrochlore minerals in deep geologic repository environments Citation Details In-Document Search Title: Thermodynamic stability of actinide pyrochlore minerals in deep geologic repository environments Crystalline phases of pyrochlore (e.g., CaPuTi{sub 2}O{sub 7}, CaUTi{sub 2}O{sub 7}) have been proposed as a durable ceramic waste form for disposal of high level radioactive wastes including surplus

  3. Summary of key directives governing permanent disposal in a geologic repository

    SciTech Connect (OSTI)

    Sands, S.C. III

    1993-11-01

    This document was developed in support of the Idaho National Engineering Laboratory (INEL) Spent Fuel and Waste Management Technology Development Program (SF&WMTDP). It is largely comprised of flow diagrams summarizing the key regulatory requirements which govern permanent disposal in a geologic repository. The key purposes are (1) to provide an easy and effective tool for referencing or cross referencing federal directives (i.e., regulations and orders), (2) to provide a method for examining the requirements in one directive category against the requirements in another, and (3) to list actions that must be taken to ensure directive compliance. The document is categorically broken down into a Transportation section and a Mined Geologic Disposal System (MGDS) section to ensure that the interrelationship of the entire disposal system is considered. The Transportation section describes the transportation packaging requirements, testing methods, and safety requirements imposed on fissile material shipments. The MGDS section encompasses technical aspects involved in siting, licensing, waste interaction with the container, container design features, physical characteristics of the surrounding environment, facility design features, barrier systems, safety features, criticality considerations, migration restrictions, implementation guidelines, and so forth. For purposes of illustration, the worst case scenario is outlined. It is important that the approaches and considerations contained in this document be integrated into the efforts of the SF&WMTDP so that every applicable aspect of the regulatory requirements can be evaluated to avoid investing large sums of money into projects that do not take into account all of the aspects of permanent waste disposal. Not until an overall picture and clear understanding of these regulations is established can a basis be developed to govern the direction of future activities of the SF&WMTDP.

  4. A Feasibility Study of Non-Seismic Geophysical Methods forMonitoring Geologic CO2 Sequestration

    SciTech Connect (OSTI)

    Gasperikova, Erika; Hoversten, G. Michael

    2006-07-01

    Because of their wide application within the petroleumindustry it is natural to consider geophysical techniques for monitoringof CO2 movement within hydrocarbon reservoirs, whether the CO2 isintroduced for enhanced oil/gas recovery or for geologic sequestration.Among the available approaches to monitoring, seismic methods are by farthe most highly developed and applied. Due to cost considerations, lessexpensive techniques have recently been considered. In this article, therelative merits of gravity and electromagnetic (EM) methods as monitoringtools for geological CO2 sequestration are examined for two syntheticmodeling scenarios. The first scenario represents combined CO2 enhancedoil recovery (EOR) and sequestration in a producing oil field, theSchrader Bluff field on the north slope of Alaska, USA. The secondscenario is a simplified model of a brine formation at a depth of 1,900m.

  5. @ work' video segment features Robotic Software Engineer

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08

    @ work highlights Idaho National Laboratory employees and the jobs they perform.This segment features Robotic Software Engineer Miles Walton.

  6. @ work' video segment features Robotic Software Engineer

    SciTech Connect (OSTI)

    Idaho National Laboratory

    2008-03-27

    @ work highlights Idaho National Laboratory employees and the jobs they perform.This segment features Robotic Software Engineer Miles Walton.

  7. DOE - NNSA/NFO -- Featured Items

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Featured Items [includes/language.htm] Featured Items The Nevada Field Office Featured Items section provides quick access to brief program updates and some of the more popular new content posted to our internet site. Publications listed or referenced in the featured item section on the main web page can be found in the Library section under publications. Instructions: Click the document title to view or download the Adobe PDF file marked with this icon ( PDF icon ) [ PDF Help | Free Viewer ]

  8. FEM: Feature-enhanced map

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Afonine, Pavel V.; Moriarty, Nigel W.; Mustyakimov, Marat; Sobolev, Oleg V.; Terwilliger, Thomas C.; Turk, Dusan; Urzhumtsev, Alexandre; Adams, Paul D.

    2015-02-26

    A method is presented that modifies a 2mFobs-DFmodelσA-weighted map such that the resulting map can strengthen a weak signal, if present, and can reduce model bias and noise. The method consists of first randomizing the starting map and filling in missing reflections using multiple methods. This is followed by restricting the map to regions with convincing density and the application of sharpening. The final map is then created by combining a series of histogram-equalized intermediate maps. In the test cases shown, the maps produced in this way are found to have increased interpretability and decreased model bias compared with themore » starting 2mFobs-DFmodelσA-weighted map.« less

  9. Feature-Based Measuring Advisor, Version 2.1

    Energy Science and Technology Software Center (OSTI)

    2002-07-22

    The purpose of Feature-Based Measuring Advisor (FBMeas Advisor) is a graphical user interface enabling users to more effectively interact with a solid model for measuring applications. Specifically, the FBMeas Advisor provides a user interface to the functions and capabilities of the FBMeas component technology. The FBMeas Advisor allows end users to visualize, organize, and document their measuring process plans and to facilitate the generation of a coordinate measuring machine part programs before a workpiece ismore » fabricated. The FBMeas Advisor permits the user to interact with an FBTol-enabled solid model to interactively and/or automatically create a set of measuring features (e.g., cylinders, planes, slots) that comply with national and international interface standards (i.e., DMIS (Dimensional Measuring Interface Standard, ISO 22063)). Measuring plans include defining measuring features interactively or automatically. Associating measuring features with appropriate tolerances and datum features via FBTol. Determining what measuring tasks (e.g., measure this feature to validate a size tolerance, measure this feature to establish a primary datum for a specific datum reference frame) are necessary to measure the feature. Assigning a measuring method to perform the task. For coordinate metrology measuring methods, measure points are determined interactively or automatically. Sensors and sensor configurations are defined, represented, and assigned to measuring methods. Measuring machines are defined, represented, and assigned to measure operations. Upon completion of a coordinate metrology measuring plan, FBMeas allows DMIS code segments to be generated, which can be used for DMIS-based CMM part programs.« less

  10. Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis

    SciTech Connect (OSTI)

    Morris, J P; Johnson, S M

    2008-03-26

    An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDEC now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.

  11. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.; Kuprat, Andrew P.; Um, Wooyong; Martin, Paul F.; Dahl, Michael E.; Kafentzis, Tyler A.; Varga, Tamas; Stephens, Sean A.; Arey, Bruce W.; Carroll, KC; Bonneville, Alain; Fernandez, Carlos A.

    2014-08-01

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 șC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.

  12. Optimization of Geological Environments for Carbon Dioxide Disposan in Saline Aquifers in the United States

    SciTech Connect (OSTI)

    Hovorka, Susan

    1999-02-01

    Recent research and applications have demonstrated technologically feasible methods, defined costs, and modeled processes needed to sequester carbon dioxide (CO{sub 2}) in saline-water-bearing formations (aquifers). One of the simplifying assumptions used in previous modeling efforts is the effect of real stratigraphic complexity on transport and trapping in saline aquifers. In this study we have developed and applied criteria for characterizing saline aquifers for very long-term sequestration of CO{sub 2}. The purpose of this pilot study is to demonstrate a methodology for optimizing matches between CO{sub 2} sources and nearby saline formations that can be used for sequestration. This project identified 14 geologic properties used to prospect for optimal locations for CO{sub 2} sequestration in saline-water-bearing formations. For this demonstration, we digitized maps showing properties of saline formations and used analytical tools in a geographic information system (GIS) to extract areas that meet variably specified prototype criteria for CO{sub 2} sequestration sites. Through geologic models, realistic aquifer properties such as discontinuous sand-body geometry are determined and can be used to add realistic hydrologic properties to future simulations. This approach facilitates refining the search for a best-fit saline host formation as our understanding of the most effective ways to implement sequestration proceeds. Formations where there has been significant drilling for oil and gas resources as well as extensive characterization of formations for deep-well injection and waste disposal sites can be described in detail. Information to describe formation properties can be inferred from poorly known saline formations using geologic models in a play approach. Resulting data sets are less detailed than in well-described examples but serve as an effective screening tool to identify prospects for more detailed work.

  13. State and Regional Control of Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Reitze, Arnold; Durrant, Marie

    2011-03-31

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­‐year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-­‐three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­‐and-­‐trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

  14. Use of integrated geologic and geophysical information for characterizing the structure of fracture systems at the US/BK Site, Grimsel Laboratory, Switzerland

    SciTech Connect (OSTI)

    Martel, S.J.; Peterson, J.E. Jr. )

    1990-05-01

    Fracture systems form the primary fluid flow paths in a number of rock types, including some of those being considered for high level nuclear waste repositories. In some cases, flow along fractures must be modeled explicitly as part of a site characterization effort. Fractures commonly are concentrated in fracture zones, and even where fractures are seemingly ubiquitous, the hydrology of a site can be dominated by a few discrete fracture zones. We have implemented a site characterization methodology that combines information gained from geophysical and geologic investigations. The general philosophy is to identify and locate the major fracture zones, and then to characterize their systematics. Characterizing the systematics means establishing the essential and recurring patterns in which fractures are organized within the zones. We make a concerted effort to use information on the systematics of the fracture systems to link the site-specific geologic, borehole and geophysical information. This report illustrates how geologic and geophysical information on geologic heterogeneities can be integrated to guide the development of hydrologic models. The report focuses on fractures, a particularly common type of geologic heterogeneity. However, many aspects of the methodology we present can be applied to other geologic heterogeneities as well. 57 refs., 40 figs., 1 tab.

  15. Volume Decomposition and Feature Recognition for Hexahedral Mesh Generation

    SciTech Connect (OSTI)

    GADH,RAJIT; LU,YONG; TAUTGES,TIMOTHY J.

    1999-09-27

    Considerable progress has been made on automatic hexahedral mesh generation in recent years. Several automatic meshing algorithms have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general algorithms viable on more general geometry, a combination of the well-established algorithms is ready to take on classes of complicated geometry. By partitioning the entire geometry into meshable pieces matched with appropriate meshing algorithm the original geometry becomes meshable and may achieve better mesh quality. Each meshable portion is recognized as a meshing feature. This paper, which is a part of the feature based meshing methodology, presents the work on shape recognition and volume decomposition to automatically decompose a CAD model into meshable volumes. There are four phases in this approach: (1) Feature Determination to extinct decomposition features, (2) Cutting Surfaces Generation to form the ''tailored'' cutting surfaces, (3) Body Decomposition to get the imprinted volumes; and (4) Meshing Algorithm Assignment to match volumes decomposed with appropriate meshing algorithms. The feature determination procedure is based on the CLoop feature recognition algorithm that is extended to be more general. Results are demonstrated over several parts with complicated topology and geometry.

  16. On Leakage from Geologic Storage Reservoirs of CO2

    SciTech Connect (OSTI)

    Pruess, Karsten

    2006-02-14

    Large amounts of CO2 would need to be injected underground to achieve a significant reduction of atmospheric emissions. The large areal extent expected for CO2 plumes makes it likely that caprock imperfections will be encountered, such as fault zones or fractures, which may allow some CO2 to escape from the primary storage reservoir. Leakage of CO2 could also occur along wellbores. Concerns with escape of CO2 from a primary geologic storage reservoir include (1) acidification of groundwater resources, (2) asphyxiation hazard when leaking CO2 is discharged at the land surface, (3) increase in atmospheric concentrations of CO2, and (4) damage from a high-energy, eruptive discharge (if such discharge is physically possible). In order to gain public acceptance for geologic storage as a viable technology for reducing atmospheric emissions of CO2, it is necessary to address these issues and demonstrate that CO2 can be injected and stored safely in geologic formations.

  17. Environmental Responses to Carbon Mitigation through Geological Storage

    SciTech Connect (OSTI)

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives.  Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites.  Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  18. In Situ Spectrophotometric Determination of pH under Geologic CO2 Sequestration Conditions: Method Development and Application

    SciTech Connect (OSTI)

    Shao, Hongbo; Thompson, Christopher J.; Qafoku, Odeta; Cantrell, Kirk J.

    2013-02-25

    Injecting massive amounts of CO2 into deep geologic formations will cause a range of coupled thermal, hydrodynamic, mechanical, and chemical changes. A significant perturbation in water-saturated formations is the pH drop in the reservoir fluids due to CO2 dissolution. Knowing the pH under geological CO2 sequestration conditions is important for a better understanding of the short- and long-term risks associated with geological CO2 sequestration and will help in the design of sustainable sequestration projects. Most previous studies on CO2-rock-brine interactions have utilized thermodynamic modeling to estimate the pH. In this work, a spectrophotometric method was developed to determine the in-situ pH in CO2-H2O-NaCl systems in the presence and absence of reservoir rock by observing the spectra of a pH indicator, bromophenol blue, with a UV-visible spectrophotometer. Effects of temperature, pressure, and ionic strength on the pH measurement were evaluated. Measured pH values in CO2-H2O-NaCl systems were compared with several thermodynamic models. Results indicate that bromophenol blue can be used to accurately determine the pH of brine in contact with supercritical CO2 under geologic CO2 sequestration conditions.

  19. Feature-Based Statistical Analysis of Combustion Simulation Data

    SciTech Connect (OSTI)

    Bennett, J; Krishnamoorthy, V; Liu, S; Grout, R; Hawkes, E; Chen, J; Pascucci, V; Bremer, P T

    2011-11-18

    We present a new framework for feature-based statistical analysis of large-scale scientific data and demonstrate its effectiveness by analyzing features from Direct Numerical Simulations (DNS) of turbulent combustion. Turbulent flows are ubiquitous and account for transport and mixing processes in combustion, astrophysics, fusion, and climate modeling among other disciplines. They are also characterized by coherent structure or organized motion, i.e. nonlocal entities whose geometrical features can directly impact molecular mixing and reactive processes. While traditional multi-point statistics provide correlative information, they lack nonlocal structural information, and hence, fail to provide mechanistic causality information between organized fluid motion and mixing and reactive processes. Hence, it is of great interest to capture and track flow features and their statistics together with their correlation with relevant scalar quantities, e.g. temperature or species concentrations. In our approach we encode the set of all possible flow features by pre-computing merge trees augmented with attributes, such as statistical moments of various scalar fields, e.g. temperature, as well as length-scales computed via spectral analysis. The computation is performed in an efficient streaming manner in a pre-processing step and results in a collection of meta-data that is orders of magnitude smaller than the original simulation data. This meta-data is sufficient to support a fully flexible and interactive analysis of the features, allowing for arbitrary thresholds, providing per-feature statistics, and creating various global diagnostics such as Cumulative Density Functions (CDFs), histograms, or time-series. We combine the analysis with a rendering of the features in a linked-view browser that enables scientists to interactively explore, visualize, and analyze the equivalent of one terabyte of simulation data. We highlight the utility of this new framework for combustion science; however, it is applicable to many other science domains.

  20. Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 2, Geology report

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This report presents geologic considerations that are pertinent to the Remedial Action Plan for Slick Rock mill tailings. Topics covered include regional geology, site geology, geologic stability, and geologic suitability.

  1. The geological structure at Clearlake, California: A preliminary review

    SciTech Connect (OSTI)

    Burns, K.L.

    1992-01-01

    The compilation of geologic exploration data from a complex Franciscan terrain near Clearlake, California, was systematized by dividing the geology into three constituent geometric systems, which are a fault system, a lithotope, and a structural vector field. It is inferred the high heat flow is due to a deepseated magma that fed a line of cinder cones and andesite flows. The country rock of the proposed Hot Dry Rock facility will be autochthonous Franciscan metagreywackes on the south limb of the High Valley antiform. The metagreywacke has a foliate texture resulting in a strong mechanical axial anisotropy that caused exceptional deviation of the Audrey A-1 well.

  2. Application of micro-PIXE method to ore geology

    SciTech Connect (OSTI)

    Murao, S.; Hamasaki, S.; Sie, S. H.; Maglambayan, V. B.; Hu, X.

    1999-06-10

    Specific examples of ore mineral analysis by micro-PIXE are presented in this paper. For mineralogical usage it is essential to construct a specimen chamber which is designed exclusively for mineral analysis. In most of the analysis of natural minerals, selection of absorbers is essential in order to obtain optimum results. Trace element data reflect the crystallographic characteristics of each mineral and also geologic settings of sampling locality, and can be exploited in research spanning mineral exploration to beneficiation. Micro-PIXE thus serves as a bridge between small-scale mineralogical experiments and understanding of large-scale geological phenomenon on the globe.

  3. Satellite stories featured in Lab lecture series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite stories featured Satellite stories featured in Lab lecture series Space adventures will be featured in the upcoming Frontiers in Science lecture series "Small Satellites on a Shoestring: The LANL Experience." February 14, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  4. Composite, ordered material having sharp surface features

    DOE Patents [OSTI]

    D'Urso, Brian R.; Simpson, John T.

    2006-12-19

    A composite material having sharp surface features includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a sharp surface feature. The sharp surface features can be coated to make the surface super-hydrophobic.

  5. Flexible feature interface for multimedia sources

    DOE Patents [OSTI]

    Coffland, Douglas R.

    2009-06-09

    A flexible feature interface for multimedia sources system that includes a single interface for the addition of features and functions to multimedia sources and for accessing those features and functions from remote hosts. The interface utilizes the export statement: export "C" D11Export void FunctionName(int argc, char ** argv,char * result, SecureSession *ctrl) or the binary equivalent of the export statement.

  6. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    features the familiar faces of Professor Polar Bear, Teacher Turtle, and PI Prairie Dog. These "mascots" represent the ARM Climate Research Facility's research locales in...

  7. Digital Mapping Of Structurally Controlled Geothermal Features...

    Open Energy Info (EERE)

    GPS Units And Pocket Computers Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Digital Mapping Of Structurally Controlled Geothermal Features...

  8. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 31, 2012 Feature Stories and Releases Expanding Horizons for Climate Research Bookmark and Share New observation sites in Arctic, Atlantic Ocean provide details of...

  9. LC-IMS-MS Feature Finder

    SciTech Connect (OSTI)

    2013-03-07

    LC-IMS-MS Feature Finder is a command line software application which searches for possible molecular ion signatures in multidimensional liquid chromatography, ion mobility spectrometry, and mass spectrometry data by clustering deisotoped peaks with similar monoisotopic mass values, charge states, elution times, and drift times. The software application includes an algorithm for detecting multiple conformations and co-eluting species in the ion mobility dimension. LC-IMS-MS Feature Finder is designed to create an output file with detected features that includes associated information about the detected features.

  10. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2006 Feature Stories and Releases Synchronized Flights by U.S. and International Research Aircraft Reveal Intriguing Information about Ice Particles in Clouds Bookmark and...

  11. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 26, 2012 Feature Stories and Releases Capturing Aerosol Evolution at Cape Cod Bookmark and Share From July 2012 to June 2013, nearly sixty instruments are obtaining...

  12. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26, 2013 Facility News, Feature Stories and Releases Climate Data Now Flowing from Oliktok, Alaska Bookmark and Share New climate observatory records atmospheric measurements at...

  13. Special Feature: Supercomputers Map Our Changing Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers Map Our Changing Climate Special Feature: Supercomputers Map Our Changing Climate September 23, 2013 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 ...

  14. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 25, 2015 Facility News, Feature Stories and Releases Nature Article: Carbon Dioxide's Greenhouse Effect at Earth's Surface Confirmed Using ARM Data Bookmark and Share...

  15. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Feature Stories and Releases Land, Sea, and Air: ACAPEX Targets Atmospheric Rivers Bookmark and Share Researchers collect rare data linked to rain and drought From left...

  16. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 11, 2009 Feature Stories and Releases Open House Draws Crowd to ARM Climate Research Facility Display Bookmark and Share Mild summer temperatures helped bring thousands...

  17. LC-IMS-MS Feature Finder

    Energy Science and Technology Software Center (OSTI)

    2013-03-07

    LC-IMS-MS Feature Finder is a command line software application which searches for possible molecular ion signatures in multidimensional liquid chromatography, ion mobility spectrometry, and mass spectrometry data by clustering deisotoped peaks with similar monoisotopic mass values, charge states, elution times, and drift times. The software application includes an algorithm for detecting multiple conformations and co-eluting species in the ion mobility dimension. LC-IMS-MS Feature Finder is designed to create an output file with detected features thatmore » includes associated information about the detected features.« less

  18. Evaluation of land ownership, lease status, and surface features in five geopressured geothermal prospects

    SciTech Connect (OSTI)

    Hackenbracht, W.N.

    1981-05-01

    This study was accomplished for the purpose of gathering information pertaining to land and lease ownership, surface features and use and relevant environmental factors in the Lake Theriot (West and East), Kaplan, Bayou Hebert and Freshwater Bayou geopressured geothermal prospects in Louisiana, and the Blessing geopressured geothermal prospect in Texas. This information and recommendations predicated upon it will then be used to augment engineering and geological data utilized to select geopressured geothermal test well sites within the prospects. The five geopressured geothermal prospects are briefly described and recommendations given.

  19. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permalink Wind Generator Modeling Computational Modeling & Simulation, Energy, Energy Surety, Grid Integration, Infrastructure Security, Modeling, Modeling & Analysis, News, News & Events, Renewable Energy, SMART Grid, Systems Analysis, Transmission Grid Integration, Wind Energy Wind Generator Modeling This modular block diagram represents the major components of the generic dynamic wind turbine generator models. Model blocks and parameters are used to represent the different wind

  20. Features, Events, and Processes: Disruptive Events

    SciTech Connect (OSTI)

    P. Sanchez

    2004-11-08

    The purpose of this analysis report is to evaluate and document the inclusion or exclusion of the disruptive events features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment for license application (TSPA-LA). A screening decision, either ''Included'' or ''Excluded,'' is given for each FEP, along with the technical basis for screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), and (f) [DIRS 156605]. The FEPs addressed in this report deal with both seismic and igneous disruptive events, such as fault displacements through the repository and an igneous intrusion into the repository. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded). Previous versions of this report were developed to support the total system performance assessments (TSPA) for various prior repository designs. This revision addresses the repository design for the license application (LA).

  1. Performance assessment for the geological disposal of Deep Burn spent fuel using TTBX

    SciTech Connect (OSTI)

    Van den Akker, B.P.; Ahn, J. [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

    2013-07-01

    The behavior of Deep Burn Modular High Temperature Reactor Spent Fuel (DBSF) is investigated in the Yucca Mountain geological repository (YMR) with respect to the annual dose (Sv/yr) delivered to the Reasonably Maximally Exposed Individual (RMEI) from the transport of radionuclides released from the graphite waste matrix. Transport calculations are performed with a novel computer code, TTBX which is capable of modeling transport pathways that pass through heterogeneous geological formations. TTBX is a multi-region extension of the existing single region TTB transport code. Overall the peak annual dose received by the RMEI is seen to be four orders of magnitude lower than the regulatory threshold for exposure, even under pessimistic scenarios. A number of factors contribute to the favorable performance of DBSF. A reduction of one order of magnitude in the peak annual dose received by the RMEI is observed for every order of magnitude increase in the waste matrix lifetime, highlighting the importance of the waste matrix durability and suggesting graphite's utility as a potential waste matrix for the disposal of high-level waste. Furthermore, we see that by incorporating a higher fidelity far-field model the peak annual dose calculated to be received by the RMEI is reduced by two orders of magnitude. By accounting for the heterogeneities of the far field we have simultaneously removed unnecessary conservatisms and improved the fidelity of the transport model. (authors)

  2. Geologic mapping for groundwater resource protection and assessment

    SciTech Connect (OSTI)

    Shafer, J.M. . Earth Sciences and Resources Inst.); Berg, R.C. )

    1993-03-01

    Groundwater is a vital natural resource in the US and around the world. In order to manage and protect this often threatened resource one must better understand its occurrence, extent, and susceptibility to contamination. Geologic mapping is a fundamental approach to developing more detailed and accurate assessments of groundwater resources. The stratigraphy and lithology of earth materials provide the framework for groundwater systems, whether they are deep confined aquifers or shallow, water table environments. These same earth materials control, in large part, the rates of migration of water and contaminants into and through groundwater systems thus establishing the potential yields of the systems and their vulnerability to contamination. Geologic mapping is used to delineate and display the vertical sequencing of earth materials either in cross-section or over lateral areas as in the stack-unit geologic map. These geologic maps, along with supportive hydrogeologic information, are used to identify the three-dimensional positioning and continuity of aquifer and non-aquifer earth materials. For example, detailed stack-unit mapping to a depth of 30 meters has been completed for a portion of a northern Illinois county. Groundwater contamination potentials were assigned to various vertical sequences of materials. Where aquifers are unconfined, groundwater contamination potentials are greatest. Conversely, other considerations being equal, the thicker the confining unit, the lower the contamination potential. This information is invaluable for land use decision-making; water supply assessment, development, and management; and environmental protection planning.

  3. State Geological Survey Contributions to the National Geothermal Data System

    Broader source: Energy.gov [DOE]

    Project objectives: Deploy and populate the National Geothermal Data System (NGDS) with state-specific data by creating a national, sustainable, distributed, interoperable network of state geological survey-based data providers that will develop, collect, serve, and maintain geothermal-relevant data that operates as an integral compliant component of NGDS.

  4. Geological problems in radioactive waste isolation - second worldwide review

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

  5. UNITED STATES GEOLOGICAL SURVEY DEPARTMENT OF THE INTERIOR F

    Office of Legacy Management (LM)

    I i This page intentionally left blank R u l i s o n - 1 0 , 1971 UNITED STATES GEOLOGICAL ... e d b y a n a l y s i s of samples c o l l e c t e d from t h e network s t a t i o n s . ...

  6. Carbon Trading Protocols for Geologic Sequestration

    SciTech Connect (OSTI)

    Hoversten, Shanna

    2008-08-07

    Carbon capture and storage (CCS) could become an instrumental part of a future carbon trading system in the US. If the US starts operating an emissions trading scheme (ETS) similar to that of the European Union's then limits on CO{sub 2} emissions will be conservative in the beginning stages. The government will most likely start by distributing most credits for free; these free credits are called allowances. The US may follow the model of the EU ETS, which during the first five-year phase distributed 95% of the credits for free, bringing that level down to 90% for the second five-year phase. As the number of free allowances declines, companies will be forced to purchase an increasing number of credits at government auction, or else obtain them from companies selling surplus credits. In addition to reducing the number of credits allocated for free, with each subsequent trading period the number of overall credits released into the market will decline in an effort to gradually reduce overall emissions. Companies may face financial difficulty as the value of credits continues to rise due to the reduction of the number of credits available in the market each trading period. Governments operating emissions trading systems face the challenge of achieving CO{sub 2} emissions targets without placing such a financial burden on their companies that the country's economy is markedly affected.

  7. Bayesian hierarchical models for soil CO{sub 2} flux and leak detection at

    Office of Scientific and Technical Information (OSTI)

    geologic sequestration sites (Journal Article) | SciTech Connect Bayesian hierarchical models for soil CO{sub 2} flux and leak detection at geologic sequestration sites Citation Details In-Document Search Title: Bayesian hierarchical models for soil CO{sub 2} flux and leak detection at geologic sequestration sites Proper characterizations of background soil CO{sub 2} respiration rates are critical for interpreting CO{sub 2} leakage monitoring results at geologic sequestration sites. In this

  8. Features in the primordial power spectrum? A frequentist analysis

    SciTech Connect (OSTI)

    Hamann, Jan; Shafieloo, Arman; Souradeep, Tarun E-mail: a.shafieloo1@physics.ox.ac.uk

    2010-04-01

    Features in the primordial power spectrum have been suggested as an explanation for glitches in the angular power spectrum of temperature anisotropies measured by the WMAP satellite. However, these glitches might just as well be artifacts of noise or cosmic variance. Using the effective Δχ{sup 2} between the best-fit power-law spectrum and a deconvolved primordial spectrum as a measure of ''featureness'' of the data, we perform a full Monte-Carlo analysis to address the question of how significant the recovered features are. We find that in 26% of the simulated data sets the reconstructed spectrum yields a greater improvement in the likelihood than for the actually observed data. While features cannot be categorically ruled out by this analysis, and the possibility remains that simple theoretical models which predict some of the observed features might stand up to rigorous statistical testing, our results suggest that WMAP data are consistent with the assumption of a featureless power-law primordial spectrum.

  9. Database for Regional Geology, Phase 1: A Tool for Informing Regional Evaluations of Alternative Geologic Media and Decision Making

    SciTech Connect (OSTI)

    Perry, Frank Vinton; Kelley, Richard E.; Birdsell, Suzanne M.; Lugo, Alexander Bryan; Dobson, Patrick; Houseworth, James

    2014-11-12

    Reported is progress in the following areas: Phase 1 and 2 websites for the regional geology GIS database; terrane maps of crystalline basement rocks; inventory of shale formations in the US; and rock properties and in-situ conditions for shale estimated from sonic velocity measurements.

  10. Relationship Between Heat Flows and Geological Structures in the Sichuan Basin, P.R. China

    SciTech Connect (OSTI)

    Zeng, Y.; Yu, H.; Wang, X.

    1995-01-01

    Based on an extensive data collection and analysis, this research has provided reliable representations of the features of the geothermal fields, their heat flow, and relationships with geological structures in the Sichuan Basin. The isotherms below a depth of 1,000 m show high values in the Central Uplift and the Southwest Uplift, and low values in the Northwest and Southeast Depressions. These features probably indicate undulation of crystalline basement and structural depression. At depths greater than 3,000 m, the isotherms tend to become simpler and regionalized. The mean heat flow in the basin is 69.1 mW/m{sup 2}. In the Central Uplift, the Northwest Depression and the East of the basin, heat-flow values range from 58.6 to 71.2 mW/m{sup 2}, with a mean value of 66.1 mWE/m{sup 2}. In the south and southwest, it varies from 76.6 to 100.5 mW/m{sup 2}, with a mean value of 86.2 mW/m{sup 2}. High heat-flow values occur within the uplift of the crystalline basement in the southwest Sichuan, and the heat flow decreases from the south, through the central area, to the northwest.

  11. Comparison of Joint Modeling Approaches Including Eulerian Sliding...

    Office of Scientific and Technical Information (OSTI)

    is a key ingredient for high fidelity modeling of shock propagation in geologic media. ... We studied shock propagation in jointedfaulted media using a Lagrangian and two Eulerian ...

  12. Modeling-Computer Simulations (Walker, Et Al., 2005) | Open Energy...

    Open Energy Info (EERE)

    occurrence model for geothermal systems based on fundamental geologic data. References J. D. Walker, A. E. Sabin, J. R. Unruh, J. Combs, F. C. Monastero (2005) Development Of...

  13. Image fusion using sparse overcomplete feature dictionaries

    DOE Patents [OSTI]

    Brumby, Steven P.; Bettencourt, Luis; Kenyon, Garrett T.; Chartrand, Rick; Wohlberg, Brendt

    2015-10-06

    Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.

  14. Nature Climate Change features Los Alamos forest research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature Climate Change Features Forest Research Nature Climate Change features Los Alamos forest research The print issue features as its cover story the tree-stress research of...

  15. The Macolumn: Desperately seeking software. [Geologic software for the Apple Macintosh

    SciTech Connect (OSTI)

    Busbey, A.B.

    1988-08-01

    The Apple Macintosh has been available since 1984, but there has been little development of commercial geological software for it. The author briefly reviews what geological software is available for the Macintosh

  16. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2013 Facility News, Feature Stories and Releases New England Winter No Match for Science on the Cape Bookmark and Share Snow sticking to the sides of these playful statues in...

  17. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feature Stories and Releases Ahoy It's MAGIC in the Pacific Bookmark and Share A crane operator carefully moves the AMF2's Roll-Pitch-Yaw stabilization platform into...

  18. Feature Clustering for Accelerating Parallel Coordinate Descent

    SciTech Connect (OSTI)

    Scherrer, Chad; Tewari, Ambuj; Halappanavar, Mahantesh; Haglin, David J.

    2012-12-06

    We demonstrate an approach for accelerating calculation of the regularization path for L1 sparse logistic regression problems. We show the benefit of feature clustering as a preconditioning step for parallel block-greedy coordinate descent algorithms.

  19. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 13, 2012 Feature Stories and Releases Up Close and Personal at Cape Cod National Seashore Bookmark and Share Visitors make their way to the ARM Mobile Facility, located on...

  20. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2012 Feature Stories and Releases Southern Great Plains Site in Path of Tornado Bookmark and Share Property of several SGP site personnel took a hit during the April 30...

  1. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26, 2015 Feature Stories and Releases Delineating the Sharp Edges of Clouds, Down to the Micrometer Bookmark and Share The HOLODEC, developed in part with funding from the ARM...

  2. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2015 Facility News, Feature Stories and Releases Seeing the Forest Through the Trees-And to the Aerosols Bookmark and Share End of the Biogenic Aerosols - Effects on Clouds...

  3. Category:Topographic Features | Open Energy Information

    Open Energy Info (EERE)

    Features" The following 9 pages are in this category, out of 9 total. C Caldera Depression Cinder Cone F Flat H Horst and Graben L Lava Dome M Mountainous R Resurgent Dome...

  4. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    SciTech Connect (OSTI)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.

  5. Influence of Shrinkage and Swelling Properties of Coal on Geologic Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Siriwardane, H.J.; Gondle, R.; Smith, D.H.

    2007-05-01

    The potential for enhanced methane production and geologic sequestration of carbon dioxide in coalbeds needs to be evaluated before large-scale sequestration projects are undertaken. Geologic sequestration of carbon dioxide in deep unmineable coal seams with the potential for enhanced coalbed methane production has become a viable option to reduce greenhouse gas emissions. The coal matrix is believed to shrink during methane production and swell during the injection of carbon dioxide, causing changes in tlie cleat porosity and permeability of the coal seam. However, the influence of swelling and shrinkage, and the geomechanical response during the process of carbon dioxide injection and methane recovery, are not well understood. A three-dimensional swelling and shrinkage model based on constitutive equations that account for the coupled fluid pressure-deformation behavior of a porous medium was developed and implemented in an existing reservoir model. Several reservoir simulations were performed at a field site located in the San Juan basin to investigate the influence of swelling and shrinkage, as well as other geomechanical parameters, using a modified compositional coalbed methane reservoir simulator (modified PSU-COALCOMP). The paper presents numerical results for interpretation of reservoir performance during injection of carbon dioxide at this site. Available measured data at the field site were compared with computed values. Results show that coal swelling and shrinkage during the process of enhanced coalbed methane recovery can have a significant influence on the reservoir performance. Results also show an increase in the gas production rate with an increase in the elastic modulus of the reservoir material and increase in cleat porosity. Further laboratory and field tests of the model are needed to furnish better estimates of petrophysical parameters, test the applicability of thee model, and determine the need for further refinements to the mathematical model.

  6. FAST v8 Offers New Modeling and Analysis Features

    Broader source: Energy.gov [DOE]

    Researchers at NREL recently released version 8.15 of FAST (FAST v8), an open-source, multiphysics engineering software tool used to design and analyze wind turbines. FAST v8 is also an open-source...

  7. Geologic map and coal resources of the Easton Gulch Quadrangle, Moffat County, Colorado

    SciTech Connect (OSTI)

    Reheis, M.C.

    1981-01-01

    This map of the Easton Gulch Quadrangle, Moffat County, Colorado is color coded to show the location of different age geologic formations. Various thickness coal bed are indicated as are abandoned coal mines or prospects, US Geologic Survey (USGS) test holes, abandoned oil and gas test holes, and USGS Mesozoic fossil localities. Various depth coal beds and other types of geologic structures are indicated on the cross-section geologic map. (BLM)

  8. Geologic Water Storage in Pre-Columbian Peru

    SciTech Connect (OSTI)

    Fairley Jr., Jerry P.

    1997-07-14

    Agriculture in the arid and semi-arid regions that comprise much of present-day Peru, Bolivia, and Northern Chile is heavily dependent on irrigation; however, obtaining a dependable water supply in these areas is often difficult. The precolumbian peoples of Andean South America adapted to this situation by devising many strategies for transporting, storing, and retrieving water to insure consistent supply. I propose that the ''elaborated springs'' found at several Inka sites near Cuzco, Peru, are the visible expression of a simple and effective system of groundwater control and storage. I call this system ''geologic water storage'' because the water is stored in the pore spaces of sands, soils, and other near-surface geologic materials. I present two examples of sites in the Cuzco area that use this technology (Tambomachay and Tipon) and discuss the potential for identification of similar systems developed by other ancient Latin American cultures.

  9. THE ROLE OF PORE PRESSURE IN DEFORMATION IN GEOLOGIC PROCESSES

    SciTech Connect (OSTI)

    Narasimhan, T. N.; Houston, W. N.; Nur, A. M.

    1980-03-01

    A Penrose Conference entitled, "The Role of Pore Pressure in Deformation in Geologic Processes" was convened by the authors at San Diego, California between November 9 and 13, 1979. The conference was sponsored by the Geological Society of America. This report is a summary of the highlights of the issues discussed during the conference. In addition, this report also includes a topical reference list relating to the different subject areas relevant to pore pressure and deformation. The references were compiled from a list suggested by the participants and were available for consultation during the conference. Although the list is far from complete, it should prove to be a good starting point for one who is looking for key papers in the field.

  10. International Collaboration Activities in Different Geologic Disposal Environments

    SciTech Connect (OSTI)

    Birkholzer, Jens

    2015-09-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  11. Geologic report for the Weldon Spring Raffinate Pits Site

    SciTech Connect (OSTI)

    1984-10-01

    A preliminary geologic site characterization study was conducted at the Weldon Spring Raffinate Pits Site, which is part of the Weldon Spring Site, in St. Charles County, Missouri. The Raffinate Pits Site is under the custody of the Department of Energy (DOE). Surrounding properties, including the Weldon Spring chemical plant, are under the control of the Department of the Army. The study determined the following parameters: site stratigraphy, lithology and general conditions of each stratigraphic unit, and groundwater characteristics and their relation to the geology. These parameters were used to evaluate the potential of the site to adequately store low-level radioactive wastes. The site investigation included trenching, geophysical surveying, borehole drilling and sampling, and installing observation wells and piezometers to monitor groundwater and pore pressures.

  12. Primordial features due to a step in the inflaton potential

    SciTech Connect (OSTI)

    Hazra, Dhiraj Kumar; Sriramkumar, L.; Aich, Moumita; Souradeep, Tarun; Jain, Rajeev Kumar E-mail: moumita@iucaa.ernet.in E-mail: sriram@hri.res.in

    2010-10-01

    Certain oscillatory features in the primordial scalar power spectrum are known to provide a better fit to the outliers in the cosmic microwave background data near the multipole moments of l = 22 and 40. These features are usually generated by introducing a step in the popular, quadratic potential describing the canonical scalar field. Such a model will be ruled out, if the tensors remain undetected at a level corresponding to a tensor-to-scalar ratio of, say, r ≅ 0.1. In this work, in addition to the popular quadratic potential, we investigate the effects of the step in a small field model and a tachyon model. With possible applications to future datasets (such as PLANCK) in mind, we evaluate the tensor power spectrum exactly, and include its contribution in our analysis. We compare the models with the WMAP (five as well as seven-year), the QUaD and the ACBAR data. As expected, a step at a particular location and of a suitable magnitude and width is found to improve the fit to the outliers (near l = 22 and 40) in all these cases. We point out that, if the tensors prove to be small (say, r∌<0.01), the quadratic potential and the tachyon model will cease to be viable, and more attention will need to be paid to examples such as the small field models.

  13. Geological and production characteristics of strandplain/barrier island reservoirs in the United States

    SciTech Connect (OSTI)

    Cole, E.L.; Fowler, M.; Jackson, S.; Madden, M.P.; Reeves, T.K.; Salamy, S.P.; Young, M.A.

    1994-12-01

    The Department of Energy`s (DOE`s) primary mission in the oil research program is to maximize the economically and environmentally sound recovery of oil from domestic reservoirs and to preserve access to this resource. The Oil Recovery Field Demonstration Program supports DOE`s mission through cost-shared demonstrations of improved Oil Recovery (IOR) processes and reservoir characterization methods. In the past 3 years, the DOE has issued Program Opportunity Notices (PONs) seeking cost-shared proposals for the three highest priority, geologically defined reservoir classes. The classes have been prioritized based on resource size and risk of abandonment. This document defines the geologic, reservoir, and production characteristics of the fourth reservoir class, strandplain/barrier islands. Knowledge of the geological factors and processes that control formation and preservation of reservoir deposits, external and internal reservoir heterogeneities, reservoir characterization methodology, and IOR process application can be used to increase production of the remaining oil-in-place (IOR) in Class 4 reservoirs. Knowledge of heterogeneities that inhibit or block fluid flow is particularly critical. Using the TORIS database of 330 of the largest strandplain/barrier island reservoirs and its predictive and economic models, the recovery potential which could result from future application of IOR technologies to Class 4 reservoirs was estimated to be between 1.0 and 4.3 billion barrels, depending on oil price and the level of technology advancement. The analysis indicated that this potential could be realized through (1) infill drilling alone and in combination with polymer flooding and profile modification, (2) chemical flooding (sufactant), and (3) thermal processes. Most of this future potential is in Texas, Oklahoma, and the Rocky Mountain region. Approximately two-thirds of the potentially recoverable resource is at risk of abandonment by the year 2000.

  14. SOLAR MAGNETIC TRACKING. IV. THE DEATH OF MAGNETIC FEATURES

    SciTech Connect (OSTI)

    Lamb, D. A.; Howard, T. A.; DeForest, C. E.; Parnell, C. E.; Welsch, B. T.

    2013-09-10

    The removal of magnetic flux from the quiet-Sun photosphere is important for maintaining the statistical steady state of the magnetic field there, for determining the magnetic flux budget of the Sun, and for estimating the rate of energy injected into the upper solar atmosphere. Magnetic feature death is a measurable proxy for the removal of detectable flux, either by cancellation (submerging or rising loops, or reconnection in the photosphere) or by dispersal of flux. We used the SWAMIS feature tracking code to understand how nearly 2 Multiplication-Sign 10{sup 4} magnetic features die in an hour-long sequence of Hinode/SOT/NFI magnetograms of a region of the quiet Sun. Of the feature deaths that remove visible magnetic flux from the photosphere, the vast majority do so by a process that merely disperses the previously detected flux so that it is too small and too weak to be detected, rather than completely eliminating it. The behavior of the ensemble average of these dispersals is not consistent with a model of simple planar diffusion, suggesting that the dispersal is constrained by the evolving photospheric velocity field. We introduce the concept of the partial lifetime of magnetic features, and show that the partial lifetime due to Cancellation of magnetic flux, 22 hr, is three times slower than previous measurements of the flux turnover time. This indicates that prior feature-based estimates of the flux replacement time may be too short, in contrast with the tendency for this quantity to decrease as resolution and instrumentation have improved. This suggests that dispersal of flux to smaller scales is more important for the replacement of magnetic fields in the quiet Sun than observed bipolar cancellation. We conclude that processes on spatial scales smaller than those visible to Hinode dominate the processes of flux emergence and cancellation, and therefore also the quantity of magnetic flux that threads the photosphere.

  15. Topology-based Feature Definition and Analysis

    SciTech Connect (OSTI)

    Weber, Gunther H.; Bremer, Peer-Timo; Gyulassy, Attila; Pascucci, Valerio

    2010-12-10

    Defining high-level features, detecting them, tracking them and deriving quantities based on them is an integral aspect of modern data analysis and visualization. In combustion simulations, for example, burning regions, which are characterized by high fuel-consumption, are a possible feature of interest. Detecting these regions makes it possible to derive statistics about their size and track them over time. However, features of interest in scientific simulations are extremely varied, making it challenging to develop cross-domain feature definitions. Topology-based techniques offer an extremely flexible means for general feature definitions and have proven useful in a variety of scientific domains. This paper will provide a brief introduction into topological structures like the contour tree and Morse-Smale complex and show how to apply them to define features in different science domains such as combustion. The overall goal is to provide an overview of these powerful techniques and start a discussion how these techniques can aid in the analysis of astrophysical simulations.

  16. Geologic and Environmental Probe System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Energy Analysis Energy Analysis Find More Like This Return to Search Geologic and Environmental Probe System (GEOPS) Idaho National Laboratory Contact INL About This Technology Publications: PDF Document Publication Technology Fact Sheet (144 KB) Installing an instrument in the probe casing is safe and easy. Installing an instrument in the probe casing is safe and easy. Technology Marketing Summary Migration of contaminants from buried waste sites

  17. An Overview of Geologic Carbon Sequestration Potential in California

    SciTech Connect (OSTI)

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

  18. US Geological Survey publications on western tight gas reservoirs

    SciTech Connect (OSTI)

    Krupa, M.P.; Spencer, C.W.

    1989-02-01

    This bibliography includes reports published from 1977 through August 1988. In 1977 the US Geological Survey (USGS), in cooperation with the US Department of Energy's, (DOE), Western Gas Sands Research program, initiated a geological program to identify and characterize natural gas resources in low-permeability (tight) reservoirs in the Rocky Mountain region. These reservoirs are present at depths of less than 2,000 ft (610 m) to greater than 20,000 ft (6,100 m). Only published reports readily available to the public are included in this report. Where appropriate, USGS researchers have incorporated administrative report information into later published studies. These studies cover a broad range of research from basic research on gas origin and migration to applied studies of production potential of reservoirs in individual wells. The early research included construction of regional well-log cross sections. These sections provide a basic stratigraphic framework for individual areas and basins. Most of these sections include drill-stem test and other well-test data so that the gas-bearing reservoirs can be seen in vertical and areal dimensions. For the convenience of the reader, the publications listed in this report have been indexed by general categories of (1) authors, (2) states, (3) geologic basins, (4) cross sections, (5) maps (6) studies of gas origin and migration, (7) reservoir or mineralogic studies, and (8) other reports of a regional or specific topical nature.

  19. A Catalog of Geologic Data for the Hanford Site

    SciTech Connect (OSTI)

    Horton, Duane G.; Last, George V.; Gilmore, Tyler J.; Bjornstad, Bruce N.

    2002-09-30

    This is the first update of the catalog that was published in 2001. This report catalogs the existing geologic data that can be found in various databases, published and unpublished reports, and in individuals' technical files. The scope of this catalog is primarily on the 100, 200, and 300 Areas, with a particular emphasis on the 200 Areas. Over 2,922 wells are included in the catalog. Nearly all of these wells (2,459) have some form of driller's or geologist's log. Archived samples are available for 1,742 wells. Particle size data are available from 1,078 wells and moisture data are available from 356 wells. Some form of chemical property data is available from 588 wells. However, this catalog is by no means complete. Numerous individuals have been involved in various geologic-related studies of the Hanford Site. The true extent of unpublished data retained in their technical files is unknown. However, this data catalog is believed to represent the majority (>90%) of the geologic data that is currently retrievable.

  20. A Catalog of Geologic Data for the Hanford Site

    SciTech Connect (OSTI)

    Horton, Duane G.; Last, George V.; Gilmore, Tyler J.; Bjornstad, Bruce N.

    2001-09-19

    This report catalogs the existing geologic data that can be found in various databases, published and unpublished reports, and in individuals' technical files. The scope of this catalog is primarily on the 100, 200, and 300 Areas, with a particular emphasis on the 200 Areas. Over 2,922 wells are included in the catalog. Nearly all of these wells (2,459) have some form of driller's or geologist's log. Archived samples are available for 1,742 wells. Particle size data are available from 1,078 wells and moisture data are available from 356 wells. Some form of chemical property data is available from 588 wells. However, this catalog is by no means complete. Numerous individuals have been involved in various geologic-related studies of the Hanford Site. The true extent of unpublished data retained in their technical files is unknown. However, this data catalog is believed to represent the majority (>90%) of the geologic data that is currently retrievable.

  1. A Hydrostrat Model and Alternatives for Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainer Mesa-Shoshone Mountain, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Geotechnical Sciences Group

    2007-03-01

    The three-dimensional hydrostratigraphic framework model for the Rainier Mesa-Shoshone Mountain Corrective Action Unit was completed in Fiscal Year 2006. The model extends from eastern Pahute Mesa in the north to Mid Valley in the south and centers on the former nuclear testing areas at Rainier Mesa, Aqueduct Mesa, and Shoshone Mountain. The model area also includes an overlap with the existing Underground Test Area Corrective Action Unit models for Yucca Flat and Pahute Mesa. The model area is geologically diverse and includes un-extended yet highly deformed Paleozoic terrain and high volcanic mesas between the Yucca Flat extensional basin on the east and caldera complexes of the Southwestern Nevada Volcanic Field on the west. The area also includes a hydrologic divide between two groundwater sub-basins of the Death Valley regional flow system. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the model area. Three deep characterization wells, a magnetotelluric survey, and reprocessed gravity data were acquired specifically for this modeling initiative. These data and associated interpretive products were integrated using EarthVision{reg_sign} software to develop the three-dimensional hydrostratigraphic framework model. Crucial steps in the model building process included establishing a fault model, developing a hydrostratigraphic scheme, compiling a drill-hole database, and constructing detailed geologic and hydrostratigraphic cross sections and subsurface maps. The more than 100 stratigraphic units in the model area were grouped into 43 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the volcanic units in the model area into 35 hydrostratigraphic units that include 16 aquifers, 12 confining units, 2 composite units (a mixture of aquifer and confining units), and 5 intrusive confining units. The underlying pre-Tertiary rocks are divided into six hydrostratigraphic units, including three aquifers and three confining units. Other units include an alluvial aquifer and a Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units ('layers' in the model). The model also incorporates 56 Tertiary normal faults and 4 Mesozoic thrust faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Four of these alternatives were developed so they can be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area Subproject of the Environmental Restoration Project.

  2. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PVLibMatlab Permalink Gallery Sandia Labs Releases New Version of PVLib Toolbox Modeling, News, Photovoltaic, Solar Sandia Labs Releases New Version of PVLib Toolbox Sandia has released version 1.3 of PVLib, its widely used Matlab toolbox for modeling photovoltaic (PV) power systems. The version 1.3 release includes the following added functions: functions to estimate parameters for popular PV module models, including PVsyst and the CEC '5 parameter' model a new model of the effects of solar

  3. Geological setting and geodynamical evolution of the central Apennines (Italy)

    SciTech Connect (OSTI)

    Cavinato, G.P. ); Cosentino, D.; Funiciello, R.; Parotto, M. ); Salvini, F. ); Tozzi, M. )

    1990-05-01

    In the peninsula of Italy, new and revised data allow recognition of geodynamic, units: (1) a deformed intraorogenic foreland (Apulia) made up of several blocks with differing sense and amounts of rotation since the Late Cretaceous; (2) a thrust belt (Apennines) that developed from the late Miocene to at least the middle Pliocene; (3) a deformed foredeep (Bradanic trough) that is widely overthrusted by the Apennine chain and (4) a hinterland (Tyrrehenian basin) that is now undergoing extension and includes large volcanic centers. Within this framework the authors have recognized large-scale, spectacular thrust faults and several new features including backthrusts and important strike-slip zones that lead to new interpretations of the tectonics of the Central Apennines. The new data, acquired during the last 10 yr of field mapping and structural analysis, indicate a complexity of geometry and kinematics not previously recognized. The tectonics of this region cannot be explained in terms of simple extensions and compressional phases. They have included the new data on those styles as well as the backthrust and strike-slip faults into our new model. The recognition of strike-slip components suggests that it will be more difficult to balance cross sections through the region.

  4. Absorption Features in Spectra of Magnetized Neutron Stars

    SciTech Connect (OSTI)

    Suleimanov, V.; Hambaryan, V.; Neuhaeuser, R.; Potekhin, A. Y.; Pavlov, G. G.; Adelsberg, M. van; Werner, K.

    2011-09-21

    The X-ray spectra of some magnetized isolated neutron stars (NSs) show absorption features with equivalent widths (EWs) of 50-200 eV, whose nature is not yet well known.To explain the prominent absorption features in the soft X-ray spectra of the highly magnetized (B{approx}10{sup 14} G) X-ray dim isolated NSs (XDINSs), we theoretically investigate different NS local surface models, including naked condensed iron surfaces and partially ionized hydrogen model atmospheres, with semi-infinite and thin atmospheres above the condensed surface. We also developed a code for computing light curves and integral emergent spectra of magnetized neutron stars with various temperature and magnetic field distributions over the NS surface. We compare the general properties of the computed and observed light curves and integral spectra for XDINS RBS 1223 and conclude that the observations can be explained by a thin hydrogen atmosphere above the condensed iron surface, while the presence of a strong toroidal magnetic field component on the XDINS surface is unlikely.We suggest that the harmonically spaced absorption features in the soft X-ray spectrum of the central compact object (CCO) 1E 1207.4-5209 (hereafter 1E 1207) correspond to peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. To explore observable properties of these quantum oscillations, we calculate models of hydrogen NS atmospheres with B{approx}10{sup 10}-10{sup 11} G(i.e., electron cyclotron energy E{sub c,e}{approx}0.1-1 keV) and T{sub eff} = 1-3 MK. Such conditions are thought to be typical for 1E 1207. We show that observable features at the electron cyclotron harmonics with EWs {approx_equal}100-200 eV can arise due to these quantum oscillations.

  5. Studies of the jet in BL Lacertae. I. Recollimation shock and moving emission features

    SciTech Connect (OSTI)

    Cohen, M. H.; Hovatta, T.; Meier, D. L.; Arshakian, T. G.; Homan, D. C.; Kovalev, Y. Y.; Pushkarev, A. B.; Savolainen, T.

    2014-06-01

    Parsec-scale VLBA images of BL Lac at 15 GHz show that the jet contains a permanent quasi-stationary emission feature 0.26 mas (0.34 pc projected) from the core, along with numerous moving features. In projection, the tracks of the moving features cluster around an axis at a position angle of –166.°6 that connects the core with the standing feature. The moving features appear to emanate from the standing feature in a manner strikingly similar to the results of numerical two-dimensional relativistic magneto-hydrodynamic (RMHD) simulations in which moving shocks are generated at a recollimation shock (RCS). Because of this, and the close analogy to the jet feature HST-1 in M87, we identify the standing feature in BL Lac as an RCS. We assume that the magnetic field dominates the dynamics in the jet, and that the field is predominantly toroidal. From this we suggest that the moving features are compressions established by slow and fast mode magneto-acoustic MHD waves. We illustrate the situation with a simple model in which the slowest moving feature is a slow-mode wave, and the fastest feature is a fast-mode wave. In the model, the beam has Lorentz factor ?{sub beam}{sup gal}?3.5 in the frame of the host galaxy and the fast mode wave has Lorentz factor ?{sub Fwave}{sup beam}?1.6 in the frame of the beam. This gives a maximum apparent speed for the moving features, ?{sub app} = v{sub app}/c = 10. In this model the Lorentz factor of the pattern in the galaxy frame is approximately three times larger than that of the beam itself.

  6. Structure of continental rifts: Role of older features and magmatism

    SciTech Connect (OSTI)

    Keller, G.R.

    1996-12-31

    Recent geological and geophysical studies in several continental rifts have begun to shed light on the details of the processes which govern the structural evolution of these important exploration targets. In Kenya and Tanzania, the classic East African rift has been the object of several investigations which reveal that its location follows the boundary (suture ?) between the Tanzanian craton (Archean) and Mozambiquan belt (Proterozoic), The Baikal rift also follows a similar boundary, and the Mid-continent rift of North America appears to do the same. Rifts themselves often act as zones of weakness which are reactivated by younger tectonic regimes. The classic North American example of this effect is the Eocambrian Southern Oklahoma aulacogen which was deformed to create the Anadarko basin and Wichita uplift in the late Paleozoic. The Central basin platform has a similar history although the original rift formed at {approximately}1,100Ma. Integration of geophysical data with petrologic and geochemical data from several rift zones has also provided a new picture of the nature and extent of magmatic modification of the crust. An interesting contradiction is that Phanerozoic rifts, except the Afar region, show little evidence for major magmatic modification of the crust whereas, at least in North America, many Precambrian rifts are associated with very large mafic bodies in the crust. The Kenya rift displays evidence for modification of the lower crust in a two-phase magmatic history, but upper crustal magmatic features are limited to local intrusions associated with volcanoes. In this rift, complex basement structure plays a much more important role than previously realized, and the geophysical signatures of basement structure and magmatism are easy to confuse. If this is also the case in other rifts, additional rift basins remain to be discovered.

  7. Structure of continental rifts: Role of older features and magmatism

    SciTech Connect (OSTI)

    Keller, G.R. )

    1996-01-01

    Recent geological and geophysical studies in several continental rifts have begun to shed light on the details of the processes which govern the structural evolution of these important exploration targets. In Kenya and Tanzania, the classic East African rift has been the object of several investigations which reveal that its location follows the boundary (suture ) between the Tanzanian craton (Archean) and Mozambiquan belt (Proterozoic), The Baikal rift also follows a similar boundary, and the Mid-continent rift of North America appears to do the same. Rifts themselves often act as zones of weakness which are reactivated by younger tectonic regimes. The classic North American example of this effect is the Eocambrian Southern Oklahoma aulacogen which was deformed to create the Anadarko basin and Wichita uplift in the late Paleozoic. The Central basin platform has a similar history although the original rift formed at [approximately]1,100Ma. Integration of geophysical data with petrologic and geochemical data from several rift zones has also provided a new picture of the nature and extent of magmatic modification of the crust. An interesting contradiction is that Phanerozoic rifts, except the Afar region, show little evidence for major magmatic modification of the crust whereas, at least in North America, many Precambrian rifts are associated with very large mafic bodies in the crust. The Kenya rift displays evidence for modification of the lower crust in a two-phase magmatic history, but upper crustal magmatic features are limited to local intrusions associated with volcanoes. In this rift, complex basement structure plays a much more important role than previously realized, and the geophysical signatures of basement structure and magmatism are easy to confuse. If this is also the case in other rifts, additional rift basins remain to be discovered.

  8. Geology and geohydrology of the east Texas Basin. Report on the progress of nuclear waste isolation feasibility studies (1979)

    SciTech Connect (OSTI)

    Kreitler, C.W.; Agagu, O.K.; Basciano, J.M.

    1980-01-01

    The program to investigate the suitability of salt domes in the east Texas Basin for long-term nuclear waste repositories addresses the stability of specific domes for potential repositories and evaluates generically the geologic and hydrogeologic stability of all the domes in the region. Analysis during the second year was highlighted by a historical characterization of East Texas Basin infilling, the development of a model to explain the growth history of the domes, the continued studies of the Quaternary in East Texas, and a better understanding of the near-dome and regional hydrology of the basin. Each advancement represents a part of the larger integrated program addressing the critical problems of geologic and hydrologic stabilities of salt domes in the East Texas Basin.

  9. A Collection of Features for Semantic Graphs

    SciTech Connect (OSTI)

    Eliassi-Rad, T; Fodor, I K; Gallagher, B

    2007-05-02

    Semantic graphs are commonly used to represent data from one or more data sources. Such graphs extend traditional graphs by imposing types on both nodes and links. This type information defines permissible links among specified nodes and can be represented as a graph commonly referred to as an ontology or schema graph. Figure 1 depicts an ontology graph for data from National Association of Securities Dealers. Each node type and link type may also have a list of attributes. To capture the increased complexity of semantic graphs, concepts derived for standard graphs have to be extended. This document explains briefly features commonly used to characterize graphs, and their extensions to semantic graphs. This document is divided into two sections. Section 2 contains the feature descriptions for static graphs. Section 3 extends the features for semantic graphs that vary over time.

  10. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Combustion/Modeling Modelingadmin2015-10-28T01:54:52+00:00 Modelers at the CRF are developing high-fidelity simulation tools for engine combustion and detailed micro-kinetic, surface chemistry modeling tools for catalyst-based exhaust aftertreatment systems. The engine combustion modeling is focused on developing Large Eddy Simulation (LES). LES is being used with closely coupled key target experiments to reveal new understanding of the fundamental processes involved in engine combustion

  11. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reacting Flow/Modeling Modelingadmin2015-10-28T02:39:13+00:00 Turbulence models typically involve coarse-graining and/or time averaging. Though adequate for modeling mean transport, this approach does not address turbulence-microphysics interactions that are important in combustion processes. Subgrid models are developed to represent these interactions. The CRF has developed a fundamentally different representation of these interactions that does not involve distinct coarse-grained and subgrid

  12. Supai salt karst features: Holbrook Basin, Arizona

    SciTech Connect (OSTI)

    Neal, J.T.

    1994-12-31

    More than 300 sinkholes, fissures, depressions, and other collapse features occur along a 70 km (45 mi) dissolution front of the Permian Supai Formation, dipping northward into the Holbrook Basin, also called the Supai Salt Basin. The dissolution front is essentially coincident with the so-called Holbrook Anticline showing local dip reversal; rather than being of tectonic origin, this feature is likely a subsidence-induced monoclinal flexure caused by the northward migrating dissolution front. Three major areas are identified with distinctive attributes: (1) The Sinks, 10 km WNW of Snowflake, containing some 200 sinkholes up to 200 m diameter and 50 m depth, and joint controlled fissures and fissure-sinks; (2) Dry Lake Valley and contiguous areas containing large collapse fissures and sinkholes in jointed Coconino sandstone, some of which drained more than 50 acre-feet ({approximately}6 {times} 10{sup 4} m{sup 3}) of water overnight; and (3) the McCauley Sinks, a localized group of about 40 sinkholes 15 km SE of Winslow along Chevelon Creek, some showing essentially rectangular jointing in the surficial Coconino Formation. Similar salt karst features also occur between these three major areas. The range of features in Supai salt are distinctive, yet similar to those in other evaporate basins. The wide variety of dissolution/collapse features range in development from incipient surface expression to mature and old age. The features began forming at least by Pliocene time and continue to the present, with recent changes reportedly observed and verified on airphotos with 20 year repetition. The evaporate sequence along interstate transportation routes creates a strategic location for underground LPG storage in leached caverns. The existing 11 cavern field at Adamana is safely located about 25 miles away from the dissolution front, but further expansion initiatives will require thorough engineering evaluation.

  13. Hydrologic Modeling Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding complex hydrologic systems requires the ability to develop, utilize, and interpret both numerical and analytical models. The Defense Waste Management Programs has both experience and technical knowledge to use and develop Earth systems models. Hydrological Modeling Models are simplified representations of reality, which we accept do not capture every detail of reality. Mathematical and numerical models can be used to rigorously test geologic and hydrologic assumptions, determine

  14. New Features of the Edison XC30

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Features of the Edison XC30 New Features of the Edison XC30 While the Edison and Hopper systems have similar programming environments and software, there are some key architectural differences between the two systems. This page describes those differences. Compute nodes Edison and Hopper both have a total of 24 cores on each compute node. Edison, like Hopper, has two sockets on each compute node, but instead of four "NUMA" memory domains, Edison has only two. Edison uses Intel

  15. ARM - 2009 AGU Presentations Featuring ARM Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center2009 AGU Presentations Featuring ARM Data Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes110 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 ENA 1 GOAMAZON 7 HI-SCALE 3 MAGIC 15 MC3E 17 PECAN 3 SGP 7 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases

  16. ARM - 2010 AMS Presentations Featuring ARM Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 AMS Presentations Featuring ARM Data Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes110 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 ENA 1 GOAMAZON 7 HI-SCALE 3 MAGIC 15 MC3E 17 PECAN 3 SGP 7 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News

  17. ARM - 2011 AMS Presentations Featuring ARM Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 AMS Presentations Featuring ARM Data Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes110 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 ENA 1 GOAMAZON 7 HI-SCALE 3 MAGIC 15 MC3E 17 PECAN 3 SGP 7 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News

  18. ARM - 2013 AGU Presentations Featuring ARM Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 AGU Presentations Featuring ARM Data Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes110 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 ENA 1 GOAMAZON 7 HI-SCALE 3 MAGIC 15 MC3E 17 PECAN 3 SGP 7 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News

  19. ARM - 2014 AMS Presentations Featuring ARM Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 AMS Presentations Featuring ARM Data Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes110 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 ENA 1 GOAMAZON 7 HI-SCALE 3 MAGIC 15 MC3E 17 PECAN 3 SGP 7 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News

  20. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CenterFeature Stories and ReleasesFeature Stories and Releases Article Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes110 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 ENA 1 GOAMAZON 7 HI-SCALE 3 MAGIC 15 MC3E 17 PECAN 3 SGP 7 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories

  1. Deep PDF parsing to extract features for detecting embedded malware.

    SciTech Connect (OSTI)

    Munson, Miles Arthur; Cross, Jesse S.

    2011-09-01

    The number of PDF files with embedded malicious code has risen significantly in the past few years. This is due to the portability of the file format, the ways Adobe Reader recovers from corrupt PDF files, the addition of many multimedia and scripting extensions to the file format, and many format properties the malware author may use to disguise the presence of malware. Current research focuses on executable, MS Office, and HTML formats. In this paper, several features and properties of PDF Files are identified. Features are extracted using an instrumented open source PDF viewer. The feature descriptions of benign and malicious PDFs can be used to construct a machine learning model for detecting possible malware in future PDF files. The detection rate of PDF malware by current antivirus software is very low. A PDF file is easy to edit and manipulate because it is a text format, providing a low barrier to malware authors. Analyzing PDF files for malware is nonetheless difficult because of (a) the complexity of the formatting language, (b) the parsing idiosyncrasies in Adobe Reader, and (c) undocumented correction techniques employed in Adobe Reader. In May 2011, Esparza demonstrated that PDF malware could be hidden from 42 of 43 antivirus packages by combining multiple obfuscation techniques [4]. One reason current antivirus software fails is the ease of varying byte sequences in PDF malware, thereby rendering conventional signature-based virus detection useless. The compression and encryption functions produce sequences of bytes that are each functions of multiple input bytes. As a result, padding the malware payload with some whitespace before compression/encryption can change many of the bytes in the final payload. In this study we analyzed a corpus of 2591 benign and 87 malicious PDF files. While this corpus is admittedly small, it allowed us to test a system for collecting indicators of embedded PDF malware. We will call these indicators features throughout the rest of this report. The features are extracted using an instrumented PDF viewer, and are the inputs to a prediction model that scores the likelihood of a PDF file containing malware. The prediction model is constructed from a sample of labeled data by a machine learning algorithm (specifically, decision tree ensemble learning). Preliminary experiments show that the model is able to detect half of the PDF malware in the corpus with zero false alarms. We conclude the report with suggestions for extending this work to detect a greater variety of PDF malware.

  2. Dynamic Evolution of Cement Composition and Transport Properties under Conditions Relevant to Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Brunet, Jean-Patrick Leopold; Li, Li; Karpyn, Zuleima T.; Strazisar, Brian; Bromhal Grant

    2013-08-01

    Assessing the possibility of CO{sub 2} leakage is one of the major challenges for geological carbon sequestration. Injected CO{sub 2} can react with wellbore cement, which can potentially change cement composition and transport properties. In this work, we develop a reactive transport model based on experimental observations to understand and predict the property evolution of cement in direct contact with CO{sub 2}-saturated brine under diffusion-controlled conditions. The model reproduced the observed zones of portlandite depletion and calcite formation. Cement alteration is initially fast and slows down at later times. This work also quantified the role of initial cement properties, in particular the ratio of the initial portlandite content to porosity (defined here as ?), in determining the evolution of cement properties. Portlandite-rich cement with large ? values results in a localized “sharp” reactive diffusive front characterized by calcite precipitation, leading to significant porosity reduction, which eventually clogs the pore space and prevents further acid penetration. Severe degradation occurs at the cement–brine interface with large ? values. This alteration increases effective permeability by orders of magnitude for fluids that preferentially flow through the degraded zone. The significant porosity decrease in the calcite zone also leads to orders of magnitude decrease in effective permeability, where fluids flow through the low-permeability calcite zone. The developed reactive transport model provides a valuable tool to link cement–CO{sub 2} reactions with the evolution of porosity and permeability. It can be used to quantify and predict long-term wellbore cement behavior and can facilitate the risk assessment associated with geological CO{sub 2} sequestration.

  3. Geothermal Energy Featured on NBC's Today Show

    Broader source: Energy.gov [DOE]

    In Iceland, there are five major geothermal power plants which produce about 26% (2006) of the country's electricity. In addition, geothermal heating meets the heating and hot water requirements for around 87% of the nation's buildings. As part of its "Ends of the Earth" series, NBC's Today Show presented a feature on the use of geothermal energy in Iceland.

  4. Fizzy. Feature subset selection for metagenomics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ditzler, Gregory; Morrison, J. Calvin; Lan, Yemin; Rosen, Gail L.

    2015-11-04

    Background: Some of the current software tools for comparative metagenomics provide ecologists with the ability to investigate and explore bacterial communities using α– & ÎČ–diversity. Feature subset selection – a sub-field of machine learning – can also provide a unique insight into the differences between metagenomic or 16S phenotypes. In particular, feature subset selection methods can obtain the operational taxonomic units (OTUs), or functional features, that have a high-level of influence on the condition being studied. For example, in a previous study we have used information-theoretic feature selection to understand the differences between protein family abundances that best discriminate betweenmore » age groups in the human gut microbiome. Results: We have developed a new Python command line tool, which is compatible with the widely adopted BIOM format, for microbial ecologists that implements information-theoretic subset selection methods for biological data formats. We demonstrate the software tools capabilities on publicly available datasets. Conclusions: We have made the software implementation of Fizzy available to the public under the GNU GPL license. The standalone implementation can be found at http://github.com/EESI/Fizzy.« less

  5. General features of Hugoniots-II

    SciTech Connect (OSTI)

    Johnson, J.D.

    1997-01-01

    The author has derived a differential version of the Principal Hugoniot jump relations for a shock wave. From this algebraic equation, relating equation of state and U{sub s} - U{sub p} Hugoniot variables, I explain the general features of the Hugoniot, including two regions of linearity, limiting forms, and insensitivity to shell structure.

  6. Fizzy. Feature subset selection for metagenomics

    SciTech Connect (OSTI)

    Ditzler, Gregory; Morrison, J. Calvin; Lan, Yemin; Rosen, Gail L.

    2015-11-04

    Background: Some of the current software tools for comparative metagenomics provide ecologists with the ability to investigate and explore bacterial communities using α– & ÎČ–diversity. Feature subset selection – a sub-field of machine learning – can also provide a unique insight into the differences between metagenomic or 16S phenotypes. In particular, feature subset selection methods can obtain the operational taxonomic units (OTUs), or functional features, that have a high-level of influence on the condition being studied. For example, in a previous study we have used information-theoretic feature selection to understand the differences between protein family abundances that best discriminate between age groups in the human gut microbiome. Results: We have developed a new Python command line tool, which is compatible with the widely adopted BIOM format, for microbial ecologists that implements information-theoretic subset selection methods for biological data formats. We demonstrate the software tools capabilities on publicly available datasets. Conclusions: We have made the software implementation of Fizzy available to the public under the GNU GPL license. The standalone implementation can be found at http://github.com/EESI/Fizzy.

  7. Final Supplemental Environmental Impact Statement for a Geologic Repository

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final En | Department of Energy Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final En Final Supplemental Environmental Impact

  8. Monitored Geologic Repository Life Cycle Cost Estimate Assumptions Document

    SciTech Connect (OSTI)

    R. Sweeney

    2000-03-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost estimate and schedule update incorporating information from the Viability Assessment (VA), License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  9. MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT

    SciTech Connect (OSTI)

    R.E. Sweeney

    2001-02-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  10. Geological hazards programs and research in the U. S. A

    SciTech Connect (OSTI)

    Filson, J.R. )

    1988-01-01

    Geological hazards have been studied for centuries, but government support of research to lessen their effects is relatively new. This article briefly describes government programs and research underway in the U.S.A. that are directed towards reducing losses of life and property from earthquakes, volcanic eruptions and landslides. The National Earthquake program is described, including four basic research areas: plate tectonics; estimation of the earthquakes; and effects and hazards assessment. The Volcano Studies Program has three areas of research: fundamentals of volcanoes; hazards assessments; and volcano monitoring. Three research areas are included in landslide studies: land slide processes; prediction; inventory and susceptibility studies.

  11. COLLOQUIUM: Human Impacts on the Earth's Geologic Carbon Cycle |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab January 15, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Human Impacts on the Earth's Geologic Carbon Cycle Professor David Archer University of Chicago Abstract: PDF icon COLL.01.15.14.pdf When fossil fuel CO2 is released to the atmosphere, it essentially accumulates in the relatively rapidly cycling atmosphere / ocean / land biosphere carbon cycle. The atmospheric concentration of CO2 spikes through a time period of CO2 emissions, then is

  12. Global Sampling for Integrating Physics-Specific Subsystems and Quantifying Uncertainties of CO2 Geological Sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Y.; Tong, C.; Trainor-Guitten, W. J.; Lu, C.; Mansoor, K.; Carroll, S. A.

    2012-12-20

    The risk of CO2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO2/brine saturation are connected to the fault-leakage model as a boundary condition. CO2 andmore » brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.« less

  13. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WVMinputs-outputs Permalink Gallery Sandia Labs releases wavelet variability model (WVM) Modeling, News, Photovoltaic, Solar Sandia Labs releases wavelet variability model (WVM) When a single solar photovoltaic (PV) module is in full sunlight, then is shaded by a cloud, and is back in full sunlight in a matter of seconds, a sharp dip then increase in power output will result. However, over an entire PV plant, clouds will often uncover some modules even as they cover others, [...] By Andrea

  14. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A rail tank car of the type used to transport crude oil across North America. Recent incidents have raised concerns about the safety of this practice, which the DOE-DOT-sponsored team is investigating. (photo credit: Harvey Henkelmann) Permalink Gallery Expansion of DOE-DOT Tight Oil Research Work Capabilities, Carbon Capture & Storage, Carbon Storage, Energy, Energy Assurance, Energy Assurance, Fuel Options, Infrastructure Assurance, Infrastructure Security, Modeling, Modeling, Modeling

  15. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monte Carlo modeling it was found that for noisy signals with a significant background component, accuracy is improved by fitting the total emission data which includes the...

  16. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Renewable Energy, Research & Capabilities, Wind Energy, Wind News|0 Comments Read More ... Energy, Research & Capabilities, Water Power Sandia Modifies Delft3D Turbine Model ...

  17. Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs

    SciTech Connect (OSTI)

    L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

    2005-12-07

    Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR). Although models that simulate the fracturing process exist, they can be significantly improved by extending the models to account for nonsymmetric, nonplanar fractures, coupling the models to more realistic reservoir simulators, and implementing advanced multiphase flow models for the transport of proppant. Third, it may be possible to deviate from current hydraulic fracturing technology by using different proppants (possibly waste materials that need to be disposed of, e.g., asbestos) combined with different hydraulic fracturing carrier fluids (possibly supercritical CO2 itself). Because current technology is mainly aimed at enhanced oil recovery, it may not be ideally suited for the injection and storage of CO2. Finally, advanced concepts such as increasing the injectivity of the fractured geologic formations through acidization with carbonated water will be investigated. Saline formations are located through most of the continental United States. Generally, where saline formations are scarce, oil and gas reservoirs and coal beds abound. By developing the technology outlined here, it will be possible to remove CO2 at the source (power plants, industry) and inject it directly into nearby geological formations, without releasing it into the atmosphere. The goal of the proposed research is to develop a technology capable of sequestering CO2 in geologic formations at a cost of US $10 per ton.

  18. Improved understanding of geologic CO{sub 2} storage processes requires risk-driven field experiments

    SciTech Connect (OSTI)

    Oldenburg, C.M.

    2011-06-01

    The need for risk-driven field experiments for CO{sub 2} geologic storage processes to complement ongoing pilot-scale demonstrations is discussed. These risk-driven field experiments would be aimed at understanding the circumstances under which things can go wrong with a CO{sub 2} capture and storage (CCS) project and cause it to fail, as distinguished from accomplishing this end using demonstration and industrial scale sites. Such risk-driven tests would complement risk-assessment efforts that have already been carried out by providing opportunities to validate risk models. In addition to experimenting with high-risk scenarios, these controlled field experiments could help validate monitoring approaches to improve performance assessment and guide development of mitigation strategies.

  19. Simulating Geologic Co-sequestration of Carbon Dioxide and Hydrogen Sulfide in a Basalt Formation

    SciTech Connect (OSTI)

    Bacon, Diana H.; Ramanathan, Ramya; Schaef, Herbert T.; McGrail, B. Peter

    2014-01-15

    Co-sequestered CO2 with H2S impurities could affect geologic storage, causing changes in pH and oxidation state that affect mineral dissolution and precipitation reactions and the mobility of metals present in the reservoir rocks. We have developed a variable component, non-isothermal simulator, STOMP-COMP (Water, Multiple Components, Salt and Energy), which simulates multiphase flow gas mixtures in deep saline reservoirs, and the resulting reactions with reservoir minerals. We use this simulator to model the co-injection of CO2 and H2S into brecciated basalt flow top. A 1000 metric ton injection of these supercritical fluids, with 99% CO2 and 1% H2S, is sequestered rapidly by solubility and mineral trapping. CO2 is trapped mainly as calcite within a few decades and H2S is trapped as pyrite within several years.

  20. Case studies of the application of the Certification Framework to two geologic carbon sequestration sites

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.; Nicot, J.-P.; Bryant, S.L.

    2008-11-01

    We have developed a certification framework (CF) for certifying that the risks of geologic carbon sequestration (GCS) sites are below agreed-upon thresholds. The CF is based on effective trapping of CO2, the proposed concept that takes into account both the probability and impact of CO2 leakage. The CF uses probability estimates of the intersection of conductive faults and wells with the CO2 plume along with modeled fluxes or concentrations of CO2 as proxies for impacts to compartments (such as potable groundwater) to calculate CO2 leakage risk. In order to test and refine the approach, we applied the CF to (1) a hypothetical large-scale GCS project in the Texas Gulf Coast, and (2) WESTCARB's Phase III GCS pilot in the southern San Joaquin Valley, California.

  1. Swords into plowshares: Military geology and national security projects

    SciTech Connect (OSTI)

    Neal, J.T.

    1994-12-31

    Military geology and national security projects are often comparable, achieving their rai-son d`etre in support of national goals, military operations, and/or systems-all for vital national interests. The application of Geoscience to these ends, especially engineering geology, has occurred from pole to pole and included every conceivable environment and natural condition. In the conduct of such projects, the Geosciences have advanced, and vice versa. Desert trafficability, most notably regarding playa surfaces, is both temporary and variable and not a persistent condition as some early authors believed. Playas in Australia, Iran, and the US show that saline efflorescence is removed following surface water dissolution and subsequent deflation, resulting in very hard crusts. Magadiite, a hydrous sodium silicate and possible precursor of bedded chert, was first discovered in North America at Alkali Lake, OR, during a military project. Pleistocene Lake Trinity, a small and mostly buried evaporate basin in the northern Jornada del Muerto, NM, was discovered during exploratory drilling in support of a military test program.

  2. Geological input to reservoir simulation, Champion Field, offshore Brunei

    SciTech Connect (OSTI)

    Carter, R.; Salahudin, S.; Ho, T.C.

    1994-07-01

    Brunei Shell Petroleum's giant Champion field is in a mature stage of development with about 23 yr of production history to date. The field comprises a complex sequence of Miocene shallow marine and deltaic layered clastic reservoirs cut by numerous growth faults. This study was aimed at providing a quantified estimate of the effect of lateral and vertical discontinuities within the I and J reservoirs on the recovery for both depletion drive and in a waterflood, with a view to identifying the optimal method of completing the development of the oil reserves in this area. Geological input to the ECLIPSE simulator was aimed at quantifying two key parameters: (1) STOIIP connected to the well bore and (2) permeability contrast. Connected STOIIP is a function of the domain size of interconnected sand bodies, and this parameter was quantified by the use of detailed sedimentology resulting in sand-body facies maps for each reservoir sublayer. Permeability contrast was quantified by using a wireline-log based algorithm, calibrated against core data, which improved the existing accuracy of permeability estimates in this part of the field. Results of simulation runs illustrate the importance of quantifying geologic heterogeneity and provide valuable information for future field development planning.

  3. World Energy Resources program U. S. Geological Survey

    SciTech Connect (OSTI)

    Masters, C.D.

    1986-05-01

    In 1973, with the OPEC embargo, the US was jarred into the world of insecure energy supplies - a harsh reality considering that throughout much of our history we had sufficient domestic supplies of oil and gas to meet all of our requirements. The US Government's response in 1973 was to assess domestic oil and gas potential, which was found to be substantial but nonetheless short of long-term requirements. Born of the need to become more certain about foreign as well has domestic resources, and working in conjunction with the Foreign Energy Supply Assessment Program of the US Department of Energy, the US Geological Survey undertook a program to develop a technical understanding of the reserves and undiscovered recoverable resources of petroleum in every basin in the world with petroleum potential. The World Energy Resources Program prepared an assessment of ultimate resources of crude oil for the World Petroleum Congress (WPC) in 1983, and a revision and update (including nature gas, crude oil, extra heavy oil, and tar sands) are planned for WPC in 1987. This poster session attempts to engender awareness of our scenario of world ultimate petroleum occurrence and to show some elements of the geology that guided our thinking.

  4. Geologic Analysis of Priority Basins for Exploration and Drilling

    SciTech Connect (OSTI)

    Carroll, H.B.; Reeves, T.K.

    1999-04-27

    There has been a substantial decline in both exploratory drilling and seismic field crew activity in the United States over the last 10 years, due primarily to the declining price of oil. To reverse this trend and to preserve the entrepreneurial independent operator, the U.S. DOE is attempting to encourage hydrocarbon exploration activities in some of the under exploited regions of the United States. This goal is being accomplished by conducting broad regional reviews of potentially prospective areas within the lower 48 states. Data are being collected on selected areas, and studies are being done on a regional scale generally unavailable to the smaller independent. The results of this work will be made available to the public to encourage the undertaking of operations in areas which have been overlooked until this project. Fifteen criteria have been developed for the selection of study areas. Eight regions have been identified where regional geologic analysis will be performed. This report discusses preliminary findings concerning the geology, early tectonic history, structure and potential unconventional source rocks for the Black Mesa basin and South Central states region, the two highest priority study areas.

  5. Geologic evaluation of the Oasis Valley basin, Nye County, Nevada

    SciTech Connect (OSTI)

    Fridrich, C.J.; Minor, S.A.; and Mankinen, E.A.

    2000-01-13

    This report documents the results of a geologic study of the area between the underground-nuclear-explosion testing areas on Pahute Mesa, in the northwesternmost part of the Nevada Test Site, and the springs in Oasis Valley, to the west of the Test Site. The new field data described in this report are also presented in a geologic map that is a companion product(Fridrich and others, 1999) and that covers nine 7.5-minute quadrangles centered on Thirsty Canyon SW, the quadrangle in which most of the Oasis Valley springs are located. At the beginning of this study, published detailed maps were available for 3 of the 9 quadrangles of the study area: namely Thirsty Canyon (O'Connor and others, 1966); Beatty (Maldonado and Hausback, 1990); and Thirsty Canyon SE (Lipman and others, 1966). Maps of the last two of these quadrangles, however, required extensive updating owing to recent advances in understanding of the regional structure and stratigraphy. The new map data are integrated in this re port with new geophysical data for the Oasis Valley area, include gravity, aeromagnetic, and paleomagnetic data (Grauch and others, 1997; written comm., 1999; Mankinen and others, 1999; Hildenbrand and others, 1999; Hudson and others, 1994; Hudson, unpub. data).

  6. Performance assessment implementation plan for the geologic repository program

    SciTech Connect (OSTI)

    1990-01-01

    Performance assessment is a major constituent of the program being conducted in the Civilian Radioactive Waste Management (CRWM) Program of the US Department of Energy (DOE) to develop a geologic repository. Performance assessment is the set of activities needed for quantitative evaluations of repository-system performance to access compliance with regulations and to support the development of the geologic repository. To define the strategy for these evaluations, the DOE has developed this performance assessment strategy plan. This document discusses the need for such a strategy, the objectives and scope of the strategy plan, the relationship of the plan to other program plans. Additionally, it defines performance assessment and describes the roles of performance assessment in this program, discusses concepts and general strategies needed for performance assessment, outlines the content of the Safety Analysis Report, summarizes the requirements for the repository Environmental Impact Statement, discusses the requirements that apply to the site-suitability analyses and describes the site characterization. 10 figs., 7 tabs.

  7. Geologic development and characteristics of the continental margins, Gulf of Mexico. Research report, 1983-1986

    SciTech Connect (OSTI)

    Coleman, J.M.; Prior, D.B.; Roberts, H.H.

    1986-01-01

    The continental slope of the Gulf Basin covers more than 500,000 sq km and consists of smooth and gently sloping surfaces, prominent escarpments, knolls, intraslope basins, and submarine canyons and channels. It is an area of extremely diverse topographic and sedimentologic conditions. The slope extends from the shelf break, roughly at the 200 m isobath, to the upper limit of the continental rise, at a depth of 2800 m. The most-complex province in the basin, and the one of most interest to the petroleum industry, is the Texas-Louisiana slope, occupying 120,000 sq km and in which bottom slopes range from < 1 deg to > 20 deg around the knolls and basins. The near-surface geology and topography of the slope are functions of the interplay between episodes of rapid shelf-edge and slope progradation and contemporaneous modification of the depositional sequence by diapirism. Development of discrete depo-centers throughout the Neogene results in rapid shelf-edge progradation, often in excess of 15-20 km/my. This rapid progradation of the shelf edge leads to development of thick wedges of sediment accumulation on the continental slope. Oversteeping, high pore pressures in rapidly deposited soft sediments and changes in eustatic sea level cause subaqueous slope instabilities such as landsliding and debris flows. Large scale features such as shelf edge separation scars and landslide related canyons often results from such processes.

  8. The geologic structure of part of the southern Franklin Mountains, El Paso County, Texas

    SciTech Connect (OSTI)

    Smith, W.R.; Julian, F.E. . Dept. of Geosciences)

    1993-02-01

    The Franklin Mountains are a west tilted fault block mountain range which extends northwards from the city of El Paso, Texas. Geologic mapping in the southern portion of the Franklin Mountains has revealed many previously unrecognized structural complexities. Three large high-angle faults define the boundaries of map. Twenty lithologic units are present in the field area, including the southernmost Precambrian meta-sedimentary rocks in the Franklin Mountains (Lanoria Quartzite and Thunderbird group conglomerates). The area is dominated by Precambrian igneous rocks and lower Paleozoic carbonates, but Cenozoic ( ) intrusions are also recognized. Thin sections and rock slabs were used to describe and identify many of the lithologic units. The Franklin Mountains are often referred to as a simple fault block mountain range related to the Rio Grande Rift. Three critical regions within the study area show that these mountains contain structural complexities. In critical area one, Precambrian granites and rhyolites are structurally juxtaposed, and several faults bisecting the area affect the Precambrian/Paleozoic fault contact. Critical area two contains multiple NNW-trending faults, three sills and a possible landslide. This area also shows depositional features related to an island of Precambrian rock exposed during deposition of the lower Paleozoic rocks. Critical area three contains numerous small faults which generally trend NNE. They appear to be splays off of one of the major faults bounding the area. Cenozoic kaolinite sills and mafic intrusion have filled many of the fault zones.

  9. Hawaii Energy Resource Overviews. Volume II. Impact of geothermal development on the geology and hydrology of the Hawaiian Islands

    SciTech Connect (OSTI)

    Feldman, C.; Siegel, B.Z.

    1980-06-01

    The following topics are discussed: the geological setting of the Hawaiian Islands, regional geology of the major islands, geohydrology of the Hawaiian Islands, Hawaiis' geothermal resources, and potential geological/hydrological problems associated with geothermal development. Souces of information on the geology of Hawaii are presented. (MHR)

  10. STOMP-ECKEChem: An Engineering Perspective on Reactive Transport in Geologic Media

    SciTech Connect (OSTI)

    White, Mark D.; Fang, Yilin

    2012-04-04

    ECKEChem (Equilibrium, Conservation, Kinetic Equation Chemistry) is a reactive transport module for the STOMP suite of multifluid subsurface flow and transport simulators that was developed from an engineering perspective. STOMP comprises a suite of operational modes that are distinguished by the solved coupled conservation equations with capabilities for a variety of subsurface applications (e.g., environmental remediation and stewardship, geologic sequestration of greenhouse gases, gas hydrate production, and oil shale production). The ECKEChem module was designed to provide integrated reactive transport capabilities across the suite of STOMP simulator operational modes. The initial application for the ECKEChem module was in the simulation of the mineralization reactions that occurred with the injection of supercritical carbon dioxide into deep Columbia River basalt formations, where it was implemented in the STOMP-CO2 simulator. The STOMP-ECKEChem solution approach to modeling reactive transport in multifluid geologic media is founded on an engineering perspective: (1) sequential non-iterative coupling between the flow and reactive transport is sufficient, (2) reactive transport can be modeled by operator splitting with local geochemistry and global transport, (3) geochemistry can be expressed as a system of coupled nonlinear equilibrium, conservation and kinetic equations, (4) a limited number of kinetic equation forms are used in geochemical practice. This chapter describes the conceptual approach to converting a geochemical reaction network into a series of equilibrium, conservation and kinetic equations, the implementation of ECKEChem in STOMP, the numerical solution approach, and a demonstration of the simulator on a complex application involving desorption of uranium from contaminated field-textured sediments.

  11. Semantic Features for Classifying Referring Search Terms

    SciTech Connect (OSTI)

    May, Chandler J.; Henry, Michael J.; McGrath, Liam R.; Bell, Eric B.; Marshall, Eric J.; Gregory, Michelle L.

    2012-05-11

    When an internet user clicks on a result in a search engine, a request is submitted to the destination web server that includes a referrer field containing the search terms given by the user. Using this information, website owners can analyze the search terms leading to their websites to better understand their visitors needs. This work explores some of the features that can be used for classification-based analysis of such referring search terms. We present initial results for the example task of classifying HTTP requests countries of origin. A system that can accurately predict the country of origin from query text may be a valuable complement to IP lookup methods which are susceptible to the obfuscation of dereferrers or proxies. We suggest that the addition of semantic features improves classifier performance in this example application. We begin by looking at related work and presenting our approach. After describing initial experiments and results, we discuss paths forward for this work.

  12. NREL Open House Features Energy Activities, Tours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open House Features Energy Activities, Tours For more information contact: e:mail: Public Affairs Golden, Colo., July 8, 1999 — Discover the power of clean energy at the nation's premier laboratory for renewable energy and energy efficiency research, development and deployment. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will open its doors 10 a.m. to 3 p.m., Saturday, July 24 for tours of its research facilities and interactive exhibits at the Visitors Center.

  13. Structural features of dielectric oxide laser ceramics

    SciTech Connect (OSTI)

    Kaminskii, Alexandr A; Taranov, A V; Khazanov, E N; Akchurin, M Sh

    2012-10-31

    The relation between the transport characteristics of subterahertz thermal phonons and the structural features of singlephase dielectric crystalline laser ceramics based on cubic oxides synthesised in different technological regimes is studied. The effect of plastic deformation on the formation of the grain structure and intergrain layers (boundaries), as well as on the thermophysical, acoustic, optical, and laser characteristics of the materials is analysed. (active media)

  14. Special Feature: Five Questions for Sudip Dosanjh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Five Questions for Sudip Dosanjh Special Feature: Five Questions for Sudip Dosanjh September 27, 2013 Sudip-wide.jpg Sudip Dosanjh Sudip Dosanjh is Director of the National Energy Research Scientific Computing (NERSC) Center at Lawrence Berkeley National Laboratory. NERSC's mission is to accelerate scientific discovery at the U.S. Department of Energy's Office of Science through high performance computing and extreme data analysis. NERSC deploys leading-edge computational and data resources for

  15. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 2008 [Feature Stories and Releases] Field Campaigns for 2010 Range from the Arctic to the Azores Bookmark and Share With the recent awards, the ARM Mobile Facility deployment on Graciosa Island in the Azores is extended from its original 9-month duration, beginning in May 2009 and now lasting through November 2010. The Department of Energy recently announced the selection of major ARM field campaigns that will take place in 2010. Studies led by principal investigators Rob Wood, Hans

  16. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 19, 2016 [Feature Stories and Releases] Scientists Study Clouds' Impact on West Antarctic Ice Melt Bookmark and Share Antarctic clouds studied for first time in five decades Heath Powers, Los Alamos National Laboratory, and Dan Lubin, AWARE lead scientist, prepare a weather balloon at WAIS Divide Ice Camp. Image courtesy of Dan Lubin. Heath Powers, Los Alamos National Laboratory, and Dan Lubin, AWARE lead scientist, prepare a weather balloon at WAIS Divide Ice Camp. Image courtesy of Dan

  17. The Role of Circulation Features on Black Carbon Transport into the Arctic

    Office of Scientific and Technical Information (OSTI)

    in the Community Atmosphere Model Version 5 (CAM5) (Journal Article) | SciTech Connect The Role of Circulation Features on Black Carbon Transport into the Arctic in the Community Atmosphere Model Version 5 (CAM5) Citation Details In-Document Search Title: The Role of Circulation Features on Black Carbon Transport into the Arctic in the Community Atmosphere Model Version 5 (CAM5) Current climate models generally under-predict the surface concentration of black carbon (BC) in the Arctic due to

  18. Exploration for Hot Dry Rock geothermal resources in the Midcontinent USA. Volume 1. Introduction, geologic overview, and data acquisition and evaluation

    SciTech Connect (OSTI)

    Hinze, W.J.; Braile, L.W.; von Frese, R.R.B.; Lidiak, E.G.; Denison, R.E.; Keller, G.R.; Roy, R.F.; Swanberg, C.A.; Aiken, C.L.V.; Morgan, P.

    1986-02-01

    The Midcontinent of North America is commonly characterized as a stable cratonic area which has undergone only slow, broad vertical movements over the past several hundreds of millions of years. This tectonically stable crust is an unfertile area for hot dry rock (HDR) exploration. However, recent geophysical and geological studies provide evidence for modest contemporary tectonic activity in limited areas within the continent and, therefore, the possibility of localized thermal anomalies which may serve as sites for HDR exploration. HDR, as an energy resource in the Midcontinent, is particularly appealing because of the high population density and the demand upon conventional energy sources. Five generalized models of exploration targets for possible Midcontinent HDR sites are identified: (1) radiogenic heat sources, (2) conductivity-enhanced normal geothermal gradients, (3) residual magnetic heat, (4) sub-upper crustal sources, and (5) hydrothermal generated thermal gradients. Three potential sources of HDR, each covering approximately a 2/sup 0/ x 2/sup 0/ area, were identified and subjected to preliminary evaluation. In the Mississippi Embayment test site, lateral thermal conductivity variations and subcrustal heat sources may be involved in producing abnormally high subsurface temperatures. Studies indicate that enhanced temperatures are associated primarily with basement rift features where vertical displacement of aquifers and faults cause the upward migration of hot waters leading to anomalously high local upper crustal temperatures. The Western Nebraska test site is a potential low temperature HDR source also related, at least in part, to groundwater movement. The Southeast Michigan test site was selected for study because of the possible presence of radiogenic plutons overlain by a thickened sedimentary blanket.

  19. The consequences of failure should be considered in siting geologic carbon sequestration projects

    SciTech Connect (OSTI)

    Price, P.N.; Oldenburg, C.M.

    2009-02-23

    Geologic carbon sequestration is the injection of anthropogenic CO{sub 2} into deep geologic formations where the CO{sub 2} is intended to remain indefinitely. If successfully implemented, geologic carbon sequestration will have little or no impact on terrestrial ecosystems aside from the mitigation of climate change. However, failure of a geologic carbon sequestration site, such as large-scale leakage of CO{sub 2} into a potable groundwater aquifer, could cause impacts that would require costly remediation measures. Governments are attempting to develop regulations for permitting geologic carbon sequestration sites to ensure their safety and effectiveness. At present, these regulations focus largely on decreasing the probability of failure. In this paper we propose that regulations for the siting of early geologic carbon sequestration projects should emphasize limiting the consequences of failure because consequences are easier to quantify than failure probability.

  20. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA Earth at Night Video EC, Energy, Energy Efficiency, Global, Modeling, News & Events, Solid-State Lighting, Videos NASA Earth at Night Video Have you ever wondered what the ...

  1. Geological Society of America selects Los Alamos scientist Claudia Mora as

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    president elect Geological Society of America selects Mora as president elect Geological Society of America selects Los Alamos scientist Claudia Mora as president elect Mora is a stable-isotope geochemist whose research spans the traditional fields of geology, soil science and climate science. July 9, 2015 Claudia Mora Claudia Mora Contact Los Alamos National Laboratory Nancy Ambrosiano Communications Office (505) 667-0471 Email "This is a really great testament to Claudia's impact and

  2. Determining resistivity of a geological formation using circuitry located within a borehole casing

    DOE Patents [OSTI]

    Vail III, William Banning

    2006-01-17

    Geological formation resistivity is determined. Circuitry is located within the borehole casing that is adjacent to the geological formation. The circuitry can measure one or more voltages across two or more voltage measurement electrodes associated with the borehole casing. The measured voltages are used by a processor to determine the resistivity of the geological formation. A common mode signal can also be reduced using the circuitry.

  3. Category:Modern Geothermal Features | Open Energy Information

    Open Energy Info (EERE)

    Modern Geothermal Features Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Category:Modern Geothermal Features Geothermalpower.jpg Looking for the Modern Geothermal...

  4. LSU EFRC - Center for Atomic Level Catalyst Design - Featured...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Featured Videos >> space control Dr. James Spivey featured in ACS: Voices of Research space control Dr. Wayne Goodman's Research Group space control Group of Inorganic Chemistry ...

  5. Chicago Business Features Argonne Woman in Nuclear Physics |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chicago Business Features Argonne Woman in Nuclear Physics Chicago Business Features Argonne Woman in Nuclear Physics January 9, 2012 - 4:08pm Addthis Kawtar Hafidi is an ...

  6. Exploiting New Features of COMSOL Version 4 on Conjugate Heat...

    Office of Scientific and Technical Information (OSTI)

    Exploiting New Features of COMSOL Version 4 on Conjugate Heat Transfer Problems Citation Details In-Document Search Title: Exploiting New Features of COMSOL Version 4 on Conjugate ...

  7. Preliminary paper - Development of the Reference Design Description for a geologic repository

    SciTech Connect (OSTI)

    Daniel, Russell B.; Rindskopf, M. Sam

    1997-11-20

    This report describes the current Reference Design Description (RDD) design expectations for a potential geologic repository that could be located at Yucca Mountain in Nevada.

  8. Soda Lake Well Lithology Data and Geologic Cross-Sections (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Comprehensive catalogue of drill-hole data in spreadsheet, shapefile, and Geosoft database ... area; Well Lithology Data; Drill-hole database; Geologic Cross-Sections; Gravity ...

  9. Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    collected included: geographic coordinates, rock type, magnetic susceptibility, and density. References US Geological Survey (2012) Geophysical Studies in the Vicinity of Blue...

  10. Aeromagnetic Survey At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details...

  11. Ground Magnetics At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Blue Mountain...

  12. Conceptual Model At Coso Geothermal Area (2005-2007) | Open Energy...

    Open Energy Info (EERE)

    Unknown Exploration Basis Determine most productive areas of geothermal field using stress and faulting analysis to develop a geomechanical model Notes New geologic mapping and...

  13. Numerical modeling of self-limiting and self-enhancing caprock...

    Office of Scientific and Technical Information (OSTI)

    2 geological disposal activities currently being planned for the study area are safe and do not induce any undesired environmental impact. In our model, fluid flow and mineral ...

  14. UNITED STATES GEOLOGICAL SURVEY DEPARTMENT OF THE INTERIOR

    Office of Scientific and Technical Information (OSTI)

    GEOLOGICAL SURVEY DEPARTMENT OF THE INTERIOR i ..- - - - . WA-5 PROJECT REPORT West A f r i c a n S t a t e s (ECOWAS) Region I n v e s t i g a t i o n (1R)WA-5 USGS-OFR--82-714 DE84 900493 ASSESSMENT OF THE PETROLEUM, COAL,, AND GEOTHERMAL RESOURCES OF THE ECONOMIC COMMUNITY OF WEST AFRICAN STATES (ECOWAS) REGION Compiled by Robert E. M a t t i c k U.S. G e o l o g i c a l Survey Open-File Report 92 - 7/4! DISCLAIMER This report was prepared as an account of work sponsored by an agency of the

  15. Geology of the lower Yellow Creek Area, Northwestern Colorado

    SciTech Connect (OSTI)

    Hail, W.J.

    1990-01-01

    The lower Yellow Creek area is located in Rio Blanco and Moffat Counties of northwestern Colorado, about midway between the towns of Rangely and Meeker. The study area is in the northwestern part of the Piceance Creek basin, a very deep structural and sedimentary basin that formed during the Laramide orogeny. Potentially important resources in the area are oil shale and related minerals, oil and gas, coal, and uranium. Topics discussed in the report include: Stratigraphy (Subsurface rocks, Cretaceous rocks, Tertiary rocks, and Quaternary deposits); Structure (Midland anticline, graben at Pinyon Ridge, and Crooked Wash syncline, Folds and faults in the vicinity of the White River, Red Wash syncline and central graben zone, Yellow Creek anticlinal nose); Economic geology (Oil shale and associated minerals, Coal, Oil and gas, Uranium, Gravel).

  16. Draft Geologic Disposal Requirements Basis for STAD Specification

    SciTech Connect (OSTI)

    Ilgen, Anastasia G.; Bryan, Charles R.; Hardin, Ernest

    2015-03-25

    This document provides the basis for requirements in the current version of Performance Specification for Standardized Transportation, Aging, and Disposal Canister Systems, (FCRD-NFST-2014-0000579) that are driven by storage and geologic disposal considerations. Performance requirements for the Standardized Transportation, Aging, and Disposal (STAD) canister are given in Section 3.1 of that report. Here, the requirements are reviewed and the rationale for each provided. Note that, while FCRD-NFST-2014-0000579 provides performance specifications for other components of the STAD storage system (e.g. storage overpack, transfer and transportation casks, and others), these have no impact on the canister performance during disposal, and are not discussed here.

  17. Geology and geochemistry of crude oils, Bolivar coastal fields, Venezuela

    SciTech Connect (OSTI)

    Bockmeulen, H.; Barker, C.; Dickey, P.A.

    1983-02-01

    The Bolivar Coastal Fields (BCF) are located on the eastern margin of Lake Maracaibo, Venezuela. They form the largest oil field outside of the Middle East and contain mostly heavy oil with a gravity less than 22/sup 0/ API. Thirty crude oils from the BCF were collected along two parallel and generally southwest-northeast trends. These oils were characterized by their API gravity, percent saturates, aromatics, NSO and asphalitic compounds, gas chromatograms for whole oils, C/sub 4/-C/sub 7/ fractions, and aromatics. Also, 24 associated waters were sampled and analyzed for Ca/sup + +/, Mg/sup + +/, Na/sup +/, HCO/sub 3//sup -/, CO/sub 3//sup - -/, SO/sub 4//sup - -/, pH, and total dissolved solids (TDS). The geological and geochemical significances of these analyses are discussed with particular emphasis on the genesis of the petroleum.

  18. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in warm dense matter experiments with diffuse interface methods in the ALE-AMR code Wangyi Liu ∗ , John Barnard, Alex Friedman, Nathan Masters, Aaron Fisher, Velemir Mlaker, Alice Koniges, David Eder † August 4, 2011 Abstract In this paper we describe an implementation of a single-fluid inter- face model in the ALE-AMR code to simulate surface tension effects. The model does not require explicit information on the physical state of the two phases. The only change to the existing fluid

  19. FEATURES, EVENTS, AND PROCESSES: SYSTEM-LEVEL AND CRITICALITY

    SciTech Connect (OSTI)

    D.L. McGregor

    2000-12-20

    The primary purpose of this Analysis/Model Report (AMR) is to identify and document the screening analyses for the features, events, and processes (FEPs) that do not easily fit into the existing Process Model Report (PMR) structure. These FEPs include the 3 1 FEPs designated as System-Level Primary FEPs and the 22 FEPs designated as Criticality Primary FEPs. A list of these FEPs is provided in Section 1.1. This AMR (AN-WIS-MD-000019) documents the Screening Decision and Regulatory Basis, Screening Argument, and Total System Performance Assessment (TSPA) Disposition for each of the subject Primary FEPs. This AMR provides screening information and decisions for the TSPA-SR report and provides the same information for incorporation into a project-specific FEPs database. This AMR may also assist reviewers during the licensing-review process.

  20. DVU Featured Training & Events Form

    Energy Savers [EERE]

    Featured Training & Events Form Please complete this form in its entirety and email to AskTheDvu@hq.doe.gov 1. Course Title: 2. Course Start/End Date: 3. Start/End Time (Time zone required): 4. Registration Link: Website Name and URL Link: 5. CHRIS Course Code & Session Number: If Applicable, Enter 6-Digit CHRIS Course Number 4-Digit CHRIS Session Number 6. Cost: 7. Course Type: (Ex: Live Webinar, Classroom, Online) 8. Course Location: Training Facility Address, Room # City & State

  1. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2013 [Facility News, Feature Stories and Releases] Cloud Cocktail Melts Greenland Ice Sheet Bookmark and Share Like the partygoer that just won't leave, low-level clouds hang around and cause temperatures to rise Not all clouds are created equal-especially in the Arctic. New research published in the journal Nature shows that low-level clouds in Greenland that contain just the right amount of water are thick enough to block heat from escaping to space, but thin enough to allow sunlight to

  2. Summary Report on CO{sub 2} Geologic Sequestration & Water Resources Workshop

    SciTech Connect (OSTI)

    Varadharajan, C.; Birkholzer, J.; Kraemer, S.; Porse, S.; Carroll, S.; Wilkin, R.; Maxwell, R.; Bachu, S.; Havorka, S.; Daley, T.; Digiulio, D.; Carey, W.; Strasizar, B.; Huerta, N.; Gasda, S.; Crow, W.

    2012-02-15

    The United States Environmental Protection Agency (EPA) and Lawrence Berkeley National Laboratory (LBNL) jointly hosted a workshop on “CO{sub 2} Geologic Sequestration and Water Resources” in Berkeley, June 1–2, 2011. The focus of the workshop was to evaluate R&D needs related to geological storage of CO{sub 2} and potential impacts on water resources. The objectives were to assess the current status of R&D, to identify key knowledge gaps, and to define specific research areas with relevance to EPA’s mission. About 70 experts from EPA, the DOE National Laboratories, industry, and academia came to Berkeley for two days of intensive discussions. Participants were split into four breakout session groups organized around the following themes: Water Quality and Impact Assessment/Risk Prediction; Modeling and Mapping of Area of Potential Impact; Monitoring and Mitigation; Wells as Leakage Pathways. In each breakout group, participants identified and addressed several key science issues. All groups developed lists of specific research needs; some groups prioritized them, others developed short-term vs. long-term recommendations for research directions. Several crosscutting issues came up. Most participants agreed that the risk of CO{sub 2} leakage from sequestration sites that are properly selected and monitored is expected to be low. However, it also became clear that more work needs to be done to be able to predict and detect potential environmental impacts of CO{sub 2} storage in cases where the storage formation may not provide for perfect containment and leakage of CO{sub 2}–brine might occur.

  3. Geology, hydrology, chemistry, and microbiology of the in situ bioremediation demonstration site

    SciTech Connect (OSTI)

    Newcomer, D.R.; Doremus, L.A.; Hall, S.H.; Truex, M.J.; Vermeul, V.R.; Engelman, R.E.

    1995-03-01

    This report summarizes characterization information on the geology, hydrology, microbiology, contaminant distribution, and ground-water chemistry to support demonstration of in situ bioremediation at the Hanford Site. The purpose of this information is to provide baseline conditions, including a conceptual model of the aquifer being utilized for in situ bioremediation. Data were collected from sampling and other characterization activities associated with three wells drilled in the upper part of the suprabasalt aquifer. Results of point-dilution tracer tests, conducted in the upper 9 m (30 ft) of the aquifer, showed that most ground-water flow occurs in the upper part of this zone, which is consistent with hydraulic test results and geologic and geophysical data. Other tracer test results indicated that natural ground-water flow velocity is equal to or less than about 0.03 m/d (0.1 ft/d). Laboratory hydraulic conductivity measurements, which represent the local distribution of vertical hydraulic conductivity, varied up to three orders of magnitude. Based on concentration data from both the vadose and saturated zone, it is suggested that most, if not all, of the carbon tetrachloride detected is representative of the aqueous phase. Concentrations of carbon tetrachloride, associated with a contaminant plume in the 200-West Area, ranged from approximately 500 to 3,800 {mu}g/L in the aqueous phase and from approximately 10 to 290 {mu}g/L in the solid phase at the demonstration site. Carbon tetrachloride gas was detected in the vadose zone, suggesting volatilization and subsequent upward migration from the saturated zone.

  4. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    SciTech Connect (OSTI)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  5. Thermohaline pore water trends of southeastern Louisiana: Geologic applications and controls on fluid movement

    SciTech Connect (OSTI)

    Marlin, D.; Schramm, B.

    1995-10-01

    Previous research has suggested that dissolution of salt diapirs and the formation of dense, saline brines at shallow depths are concurrent with large scale fluid migration. A critical foundation of these studies is the determination of salinity from the spontaneous potential (SP) log and the ability to drive fluid vertically through the sediment. Derivation of salinity using the perfect shale model and contouring iso-salinity values over intervals of Lower Miocene and Upper Oligocene sediments that contain thick, impermeable carbonate deposits cloud these findings. The calculation of salinity is based on water resistivity (Rw) variations and the geological constraints on derivation of this variable. Application of the imperfect shale membrane model to determine Rw from the SP log provided a closer approximation to Rw from produced water samples over St. Gabriel Field in Ascension and Iberville parishes, La than past SP models. Further analyses of temperature, pressure, salinity, and freshwater hydraulic head trends of Lower Miocene and Upper Oligocene deposits over the field and surrounding area suggest that dissolution of salt occurred prior to hydrocarbon generation and large scale fluid migration is not dynamic at present. An important control that should be used in future studies of thermohaline fluid movement is the identification of local structure, stratigraphic variation, shale membrane efficiency, and time of salt diapirism.

  6. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At this year's American Geophysical Union (AGU) Fall Meeting, scientists will present oral and poster sessions of their research using these data for long-term analyses, model...

  7. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weather and climate models. Developed with funding from the Atmospheric Radiation Measurement (ARM) Program, the new components simulate the absorption and scattering of...

  8. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to support climate modeling well into the future. Jim Mather, ARM Technical Director at Pacific Northwest National Laboratory, noted this is due in large part to...

  9. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    user facility to conduct their research, ranging from short-term field campaigns to long-term data analyses, model comparisons, and measurement validation efforts. Check out...

  10. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Co-Hosts "Climate Risk Forum: Bridging Climate Science and Actuarial Practice" This Fall event was a follow-up to a Climate and Environment Program Area meeting with the California governor's office in July. There, the California Insurance Commissioner, Dave Jones, recognized the value of Sandia's climate-impact modeling and analysis work, led by Stephen Conrad (manager of Sandia's Resilience and Regulatory Effects Dept.), and wanted to connect that [...] By

  11. A Hydrostratigraphic Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat-Climax Mine, Lincoln and Nye Counties, Nevada

    SciTech Connect (OSTI)

    Geotechnical Sciences Group Bechtel Nevada

    2006-01-01

    A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive was emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Five of these alternatives were developed so they could be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area subproject of the Environmental Restoration Project.

  12. Study of the isolation system for geologic disposal of radioactive wastes

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    This study was conducted for the US Department of Energy by a Waste Isolation System Panel of the Board on Radioactive Waste Management under the National Research Council's Commission on Physical Sciences, Mathematics, and Resources. The panel was charged to review the alternative technologies available for the isolation of radioactive waste in mined geologic repositories, evaluate the need for and possible performance benefits from these technologies as potential elements of the isolation system, and identify appropriate technical criteria for choosing among them to achieve satisfactory overall performance of a geologic repository. Information has been acquired through examination of a large body of technical literature, briefings by representatives of government agencies and their industrial and university contractors, in-depth discussions with individual experts in the field, site visits, and calculations by panel members and staff, with deliberations extending over a period of approximately two years. The panel's principal findings are given. Chapters are devoted to: the geologic waste-disposal system; waste characteristics; waste package; conceptual design of repositories; geologic hydrologic, and geochemical properties of geologic waste-disposal systems; overall performance criterion for geologic waste disposal; performance analysis of the geologic waste-disposal system; and natural analogs relevant to geologic disposal. 336 references.

  13. Geologic Map and GID Data for the Salt Wells Geothermal Area

    SciTech Connect (OSTI)

    Hinz, Nick

    2011-10-31

    Salt Wells—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Locations of 40Ar/39Ar samples.

  14. Strain Measurement of Geological Samples Subjected to Triaxial Stresses Experienced During Hydraulic Loading

    SciTech Connect (OSTI)

    An, Ke; Anovitz, Lawrence {Larry} M; Dessieux Jr, Luc Lucius

    2014-01-01

    Understanding stress and strain relationships and having the ability to predict these quantities for known load conditions is crucial to all geomechanical and, in some instances, reservoir flow applications. The constitutive equations governing the deformation of geological materials are typically adequate for bulk or large scale deformation and stress analyses. However, these rules are generally less precise in their ability to make accurate predictions in physical processes where highly localized material heterogeneity exists or where the presence of geometric irregularities such as micro-cracks may be present. This is especially relevant to EGS where hydraulic fracture propagation models are needed to develop optimal reservoir creation strategies and where fracture permeability is significantly influenced by regional stress states and may affect reservoir operation strategies. The deficiencies of the models used to describe these physical processes are a practical reality necessitated by the manner in which rock properties must be obtained. Conventional rock mechanics tests subject samples to controlled load conditions and measure bulk deformations of the sample or more localized deformations only on exposed surfaces of the sample. They are currently unable to comprehensively map the deformation state within the sample. For processes such as fracture, however, the state of a particular region within the rock drives the overall failure behavior of the sample. The authors believe that possessing a means to measure strains within samples subjected to hydraulic fracture loading conditions will provide a useful tool for understanding the localized effects not captured by conventional techniques and may serve as a method for improving hydraulic fracture models. An ongoing effort at Oak Ridge National Laboratory endeavors to develop a neutron diffraction based strain measurement capability to interrogate the strain state of a geological sample, at arbitrary internal locations, subjected to a triaxial stress state. The basis of the method and initial results for simple load conditions were reported at last year s Stanford Geothermal Workshop. This work will report results from recent neutron diffraction strain measurement experiments in which marble samples were subjected to load conditions more representative of hydraulic fracturing operations within a pressure cell specially designed for the reported strain measurement technique.

  15. Method of identifying features in indexed data

    DOE Patents [OSTI]

    Jarman, Kristin H. [Richland, WA; Daly, Don Simone [Richland, WA; Anderson, Kevin K. [Richland, WA; Wahl, Karen L. [Richland, WA

    2001-06-26

    The present invention is a method of identifying features in indexed data, especially useful for distinguishing signal from noise in data provided as a plurality of ordered pairs. Each of the plurality of ordered pairs has an index and a response. The method has the steps of: (a) providing an index window having a first window end located on a first index and extending across a plurality of indices to a second window end; (b) selecting responses corresponding to the plurality of indices within the index window and computing a measure of dispersion of the responses; and (c) comparing the measure of dispersion to a dispersion critical value. Advantages of the present invention include minimizing signal to noise ratio, signal drift, varying baseline signal and combinations thereof.

  16. Component with inspection-facilitating features

    DOE Patents [OSTI]

    Marra, John J; Zombo, Paul J

    2014-02-11

    A turbine airfoil can be formed with features to facilitate measurement of its wall thickness. An outer wall of the airfoil can include an outer surface and an inner surface. The outer surface of the airfoil can have an outer inspection target surface, and the inner surface of the airfoil can have an inner inspection target surface. The inner and outer target surfaces can define substantially flat regions in surfaces that are otherwise highly contoured. The inner and outer inspection target surfaces can be substantially aligned with each other. The inner and outer target surfaces can be substantially parallel to each other. As a result of these arrangements, a highly accurate measurement of wall thickness can be obtained. In one embodiment, the outer inspection target surface can be defined by an innermost surface of a groove formed in the outer surface of the outer wall of the airfoil.

  17. Novel Concepts Research in Geologic Storage of CO2

    SciTech Connect (OSTI)

    Neeraj Gupta

    2007-06-30

    As part of the Department of Energy's (DOE) initiative on developing new technologies for the storage of carbon dioxide (CO{sub 2}) in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs of the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the April-June 2007 period of the project. As discussed in the report, the main accomplishments related to preparation to move forward with a 100,000-300,000 metric tons CO{sub 2}/year capture and sequestration project at the Mountaineer site. The program includes a 10 to 30-megawatt thermal product validation at the Mountaineer Plant where up to 300,000 metric tons CO{sub 2}/year will be captured and sequestered in deep rock formations identified in this work. Design and feasibility support tasks such as development of injection well design options, engineering assessment of CO{sub 2} capture systems, permitting, reservoir storage simulations, and assessment of monitoring technologies as they apply to the project site were developed for the project. Plans to facilitate the next steps of the project will be the main work remaining in this portion of the project as the program moves toward the proposed capture and sequestration system.

  18. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect (OSTI)

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 ft of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5-million-year-old Elephant Mountain Member, was emplaced above the Pomona Member.

  19. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffuse interface methods in ALE-AMR code with application in modeling NDCX-II experiments Wangyi Liu 1 , John Barnard 2 , Alex Friedman 2 , Nathan Masters 2 , Aaron Fisher 2 , Alice Koniges 2 , David Eder 2 1 LBNL, USA, 2 LLNL, USA This work was part of the Petascale Initiative in Computational Science at NERSC, supported by the Director, Office of Science, Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was performed

  20. Modeling

    SciTech Connect (OSTI)

    Loth, E.; Tryggvason, G.; Tsuji, Y.; Elghobashi, S. E.; Crowe, Clayton T.; Berlemont, A.; Reeks, M.; Simonin, O.; Frank, Th; Onishi, Yasuo; Van Wachem, B.

    2005-09-01

    Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste.

  1. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of

    Office of Scientific and Technical Information (OSTI)

    Carbon Dioxide Geological Sequestration in Fractured Porous Rocks (Technical Report) | SciTech Connect Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Citation Details In-Document Search Title: Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks × You are accessing a document from the Department of Energy's

  2. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of

    Office of Scientific and Technical Information (OSTI)

    Carbon Dioxide Geological Sequestration in Fractured Porous Rocks (Technical Report) | SciTech Connect Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Citation Details In-Document Search Title: Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Colorado School of Mines conducted research and training in the

  3. Features, Events, and Processes in UZ Flow and Transport

    SciTech Connect (OSTI)

    J.E. Houseworth

    2001-04-10

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS M&O 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which FEPs are included in UZ flow and transport models is discussed in this document.

  4. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clues to Climate Bookmark and Share Research flights will obtain most comprehensive data set to-date for climate models Cirrus clouds can blanket the entire sky, so they...

  5. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gain will be used to improve the way these processes are represented in climate models. Plans to use the data are already in progress, as described in this update from Lewis in...

  6. Comprehensive, Quantitative Risk Assessment of CO{sub 2} Geologic Sequestration

    SciTech Connect (OSTI)

    Lepinski, James

    2013-09-30

    A Quantitative Failure Modes and Effects Analysis (QFMEA) was developed to conduct comprehensive, quantitative risk assessments on CO{sub 2} capture, transportation, and sequestration or use in deep saline aquifers, enhanced oil recovery operations, or enhanced coal bed methane operations. The model identifies and characterizes potential risks; identifies the likely failure modes, causes, effects and methods of detection; lists possible risk prevention and risk mitigation steps; estimates potential damage recovery costs, mitigation costs and costs savings resulting from mitigation; and ranks (prioritizes) risks according to the probability of failure, the severity of failure, the difficulty of early failure detection and the potential for fatalities. The QFMEA model generates the necessary information needed for effective project risk management. Diverse project information can be integrated into a concise, common format that allows comprehensive, quantitative analysis, by a cross-functional team of experts, to determine: What can possibly go wrong? How much will damage recovery cost? How can it be prevented or mitigated? What is the cost savings or benefit of prevention or mitigation? Which risks should be given highest priority for resolution? The QFMEA model can be tailored to specific projects and is applicable to new projects as well as mature projects. The model can be revised and updated as new information comes available. It accepts input from multiple sources, such as literature searches, site characterization, field data, computer simulations, analogues, process influence diagrams, probability density functions, financial analysis models, cost factors, and heuristic best practices manuals, and converts the information into a standardized format in an Excel spreadsheet. Process influence diagrams, geologic models, financial models, cost factors and an insurance schedule were developed to support the QFMEA model. Comprehensive, quantitative risk assessments were conducted on three (3) sites using the QFMEA model: (1) SACROC Northern Platform CO{sub 2}-EOR Site in the Permian Basin, Scurry County, TX, (2) Pump Canyon CO{sub 2}-ECBM Site in the San Juan Basin, San Juan County, NM, and (3) Farnsworth Unit CO{sub 2}-EOR Site in the Anadarko Basin, Ochiltree County, TX. The sites were sufficiently different from each other to test the robustness of the QFMEA model.

  7. Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review

    SciTech Connect (OSTI)

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Brown, Christopher F.

    2012-07-09

    Leakage from deep storage reservoirs is a major risk factor associated with geologic sequestration of carbon dioxide (CO2). Different scientific theories exist concerning the potential implications of such leakage for near-surface environments. The authors of this report reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of near surface environments such as potable water aquifers and the vadose zone. Experimental and modeling studies highlighted the potential for both beneficial (e.g., CO2 re sequestration or contaminant immobilization) and deleterious (e.g., contaminant mobilization) consequences of CO2 intrusion in these systems. Current knowledge gaps, including the role of CO2-induced changes in redox conditions, the influence of CO2 influx rate, gas composition, organic matter content and microorganisms are discussed in terms of their potential influence on pertinent geochemical processes and the potential for beneficial or deleterious outcomes. Geochemical modeling was used to systematically highlight why closing these knowledge gaps are pivotal. A framework for studying and assessing consequences associated with each factor is also presented in Section 5.6.

  8. Evaluating the impact of aquifer layer properties on geomechanical response during CO2 geological sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Zhijie; Lin, Guang; Fang, Yilin

    2013-04-01

    Numerical models play an essential role in understanding the facts of carbon dioxide (CO2) geological sequestration in the life cycle of a storage reservoir. We present a series of test cases that reflect a broad and realistic range of aquifer reservoir properties to systematically evaluate and compare the impacts on the geomechanical response to CO2 injection. In this study, a coupled hydro-mechanical model was introduced to simulate the sequestration process, and a quasi-Monte Carlo sampling method was introduced to efficiently sample the value of aquifer properties and geometry parameters. Aquifer permeability was found to be of significant importance to the geomechanical response to the injection. To study the influence of uncertainty of the permeability distribution in the aquifer, an additional series of tests is presented, based on a default permeability distribution site sample with various distribution deviations generated by the Monte Carlo sampling method. The results of the test series show that different permeability distributions significantly affect the displacement and possible failure zone.

  9. Reference design description for a geologic repository: Revision 01

    SciTech Connect (OSTI)

    1997-09-01

    This document describes the current design expectations for a potential geologic repository that could be located at Yucca Mountain in Nevada. This Reference Design Description (RDD) looks at the surface and subsurface repository and disposal container design. Additionally, it reviews the expected long-term performance of the potential repository. In accordance with current legislation, the reference design for the potential repository does not include an interim storage option. The reference design presented allows the disposal of highly radioactive material received from government-owned spent fuel custodian sites; produces high-level waste sites, and commercial spent fuel sites. All design elements meet current federal, state, and local regulations governing the disposal of high-level radioactive waste and protection of the public and the environment. Due to the complex nature of developing a repository, the design will be created in three phases to support Viability Assessment, License Application, and construction. This document presents the current reference design. It will be updated periodically as the design progresses. Some of the details presented here may change significantly as more cost-effective solutions, technical advancements, or changes to requirements are identified.

  10. Geology and resources of the Tar Sand Triangle, southeastern Utah

    SciTech Connect (OSTI)

    Dana, G.F.; Oliver, R.L.; Elliott, J.R.

    1984-05-01

    The Tar Sand Triangle is located in southeastern Utah between the Dirty Devil and Colorado Rivers and covers an area of about 200 square miles. The geology of the area consists of gently northwest dipping strata exposed in the box canyons and slopes of the canyonlands morphology. Strata in the area range in age from Jurassic to Permian. The majority of tar sand saturation is found in the Permian White Rim Sandstone Member of the Cutler Formation. The White Rim Sandstone Member consists of a clean, well-sorted sandstone which was deposited in a shallow marine environment. Resources were calculated from analytical data from the three coreholes drilled by the Laramie Energy Technology Center and other available data. The total in-place resources, determined from this study, are 6.3 billion barels. Previous estimates ranged from 2.9 to 16 million barrels. More coring and analyses will be necessary before a more accurate determination of resources can be attempted. 8 references, 11 figures, 7 tables.

  11. Petroleum geology of principal sedimentary basins in eastern China

    SciTech Connect (OSTI)

    Lee, K.Y.

    1986-05-01

    The principal petroliferous basins in eastern China are the Songliao, Ordos, and Sichuan basins of Mesozoic age, and the North China, Jianghan, Nanxiang, and Subei basins of Cenozoic age. These basins contain mostly continental fluvial and lacustrine detrital sediments. Four different geologic ages are responsible for the oil and gas in this region: (1) Mesozoic in the Songliao, Ordos, and Sichuan basins; (2) Tertiary in the North China, Jianghan, Nanxiang, and Subei basins; (3) Permian-Carboniferous in the southern North China basin and the northwestern Ordos basin; and (4) Sinian in the southern Sichuan basin. The most prolific oil and gas sources are the Mesozoic of the Songliao basin and the Tertiary of the North China basin. Although the major source rocks in these basins are lacustrine mudstone and shale, their tectonic settings and the resultant temperature gradients differ. For example, in the Songliao, North China, and associated basins, trapping conditions commonly are associated with block faulting of an extensional tectonic regime; the extensional tectonics in turn contribute to a high geothermal gradient (40/sup 0/-60/sup 0/C/km), which results in early maturation and migration for relatively shallow deposits. However, the Ordos and Sichuan basins formed under compressional conditions and are cooler. Hence, maturation and migration occurred late, relative to reservoir deposition and burial, the result being a poorer quality reservoir.

  12. Certification Framework Based on Effective Trapping for Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.; Bryant, Steven L.; Nicot, Jean-Philippe

    2009-01-15

    We have developed a certification framework (CF) for certifying the safety and effectiveness of geologic carbon sequestration (GCS) sites. Safety and effectiveness are achieved if CO{sub 2} and displaced brine have no significant impact on humans, other living things, resources, or the environment. In the CF, we relate effective trapping to CO{sub 2} leakage risk which takes into account both the impact and probability of leakage. We achieve simplicity in the CF by using (1) wells and faults as the potential leakage pathways, (2) compartments to represent environmental resources that may be impacted by leakage, (3) CO{sub 2} fluxes and concentrations in the compartments as proxies for impact to vulnerable entities, (4) broad ranges of storage formation properties to generate a catalog of simulated plume movements, and (5) probabilities of intersection of the CO{sub 2} plume with the conduits and compartments. We demonstrate the approach on a hypothetical GCS site in a Texas Gulf Coast saline formation. Through its generality and flexibility, the CF can contribute to the assessment of risk of CO{sub 2} and brine leakage as part of the certification process for licensing and permitting of GCS sites around the world regardless of the specific regulations in place in any given country.

  13. THE THOMSON SURFACE. III. TRACKING FEATURES IN 3D

    SciTech Connect (OSTI)

    Howard, T. A.; DeForest, C. E.; Tappin, S. J.; Odstrcil, D.

    2013-03-01

    In this, the final installment in a three-part series on the Thomson surface, we present simulated observations of coronal mass ejections (CMEs) observed by a hypothetical polarizing white light heliospheric imager. Thomson scattering yields a polarization signal that can be exploited to locate observed features in three dimensions relative to the Thomson surface. We consider how the appearance of the CME changes with the direction of trajectory, using simulations of a simple geometrical shape and also of a more realistic CME generated using the ENLIL model. We compare the appearance in both unpolarized B and polarized pB light, and show that there is a quantifiable difference in the measured brightness of a CME between unpolarized and polarized observations. We demonstrate a technique for using this difference to extract the three-dimensional (3D) trajectory of large objects such as CMEs. We conclude with a discussion on how a polarizing heliospheric imager could be used to extract 3D trajectory information about CMEs or other observed features.

  14. Richards Barrier LA Reference Design Feature Evaluation

    SciTech Connect (OSTI)

    N.E. Kramer

    1999-11-17

    The Richards Barrier is one of the design features of the repository to be considered for the License Application (LA), Richards was a soil scientist who first described the diversion of moisture between two materials with different hydrologic properties. In this report, a Richards Barrier is a special type of backfill with a fine-grained material (such as sand) overlaying a coarse-grained material (such as gravel). Water that enters an emplacement drift will first encounter the fine-grained material and be transported around the coarse-grained material covering the waste package, thus protecting the waste package from contact with most of the groundwater. The objective of this report is to discuss the benefits and liabilities to the repository by the inclusion of a Richards Barrier type backfill in emplacement drifts. The Richards Barrier can act as a barrier to water flow, can reduce the waste package material dissolution rate, limit mobilization of the radionuclides, and can provide structural protection for the waste package. The scope of this report is to: (1) Analyze the behavior of barrier materials following the intrusion of groundwater for influxes of 1 to 300 mm per year. The report will demonstrate diversion of groundwater intrusions into the barrier over an extended time period when seismic activity and consolidation may cause the potential for liquefaction and settlement of the Richards Barrier. (2) Review the thermal effects of the Richards Barrier on material behavior. (3) Analyze the effect of rockfall on the performance of the Richards Barrier and the depth of the barrier required to protect waste packages under the barrier. (4) Review radiological and heating conditions on placement of multiple layers of the barrier. Subsurface Nuclear Safety personnel will perform calculations to determine the radiation reduction-time relationship and shielding capacity of the barrier. (5) Evaluate the effects of ventilation on cooling of emplacement drifts and dusting potential. (6) Evaluate drift conditions and configurations to determine the suitability of Richards Barrier installation methodology. (7) Perform cost assessment of barrier material placement. (8) Evaluate the feature with criteria that will be supplied by the License Application Design Selection (LADS) Team. (9) Comment on the use of depleted uranium as a Richards Barrier material.

  15. Features, Events and Processes in UZ Flow and Transport

    SciTech Connect (OSTI)

    P. Persoff

    2005-08-04

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  16. Features, Events, and Processes in UZ and Transport

    SciTech Connect (OSTI)

    P. Persoff

    2004-11-06

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  17. An Assessment of Geological Carbon Storage Options in the Illinois Basin: Validation Phase

    SciTech Connect (OSTI)

    Robert Finley

    2012-12-01

    The Midwest Geological Sequestration Consortium (MGSC) assessed the options for geological carbon dioxide (CO{sub 2}) storage in the 155,400 km{sup 2} (60,000 mi{sup 2}) Illinois Basin, which underlies most of Illinois, western Indiana, and western Kentucky. The region has annual CO{sub 2} emissions of about 265 million metric tonnes (292 million tons), primarily from 122 coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year (U.S. Department of Energy, 2010). Validation Phase (Phase II) field tests gathered pilot data to update the Characterization Phase (Phase I) assessment of options for capture, transportation, and storage of CO{sub 2} emissions in three geological sink types: coal seams, oil fields, and saline reservoirs. Four small-scale field tests were conducted to determine the properties of rock units that control injectivity of CO{sub 2}, assess the total storage resources, examine the security of the overlying rock units that act as seals for the reservoirs, and develop ways to control and measure the safety of injection and storage processes. The MGSC designed field test operational plans for pilot sites based on the site screening process, MVA program needs, the selection of equipment related to CO{sub 2} injection, and design of a data acquisition system. Reservoir modeling, computational simulations, and statistical methods assessed and interpreted data gathered from the field tests. Monitoring, Verification, and Accounting (MVA) programs were established to detect leakage of injected CO{sub 2} and ensure public safety. Public outreach and education remained an important part of the project; meetings and presentations informed public and private regional stakeholders of the results and findings. A miscible (liquid) CO{sub 2} flood pilot project was conducted in the Clore Formation sandstone (Mississippian System, Chesterian Series) at Mumford Hills Field in Posey County, southwestern Indiana, and an immiscible CO{sub 2} flood pilot was conducted in the Jackson sandstone (Mississippian System Big Clifty Sandstone Member) at the Sugar Creek Field in Hopkins County, western Kentucky. Up to 12% incremental oil recovery was estimated based on these pilots. A CO{sub 2} huff ñ€˜nñ€™ puff (HNP) pilot project was conducted in the Cypress Sandstone in the Loudon Field. This pilot was designed to measure and record data that could be used to calibrate a reservoir simulation model. A pilot project at the Tanquary Farms site in Wabash County, southeastern Illinois, tested the potential storage of CO{sub 2} in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO{sub 2} storage and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot results from all four sites showed that CO{sub 2} could be injected into the subsurface without adversely affecting groundwater. Additionally, hydrocarbon production was enhanced, giving further evidence that CO{sub 2} storage in oil reservoirs and coal beds offers an economic advantage. Results from the MVA program at each site indicated that injected CO{sub 2} did not leave the injection zone. Topical reports were completed on the Middle and Late Devonian New Albany Shale and Basin CO{sub 2} emissions. The efficacy of the New Albany Shale as a storage sink could be substantial if low injectivity concerns can be alleviated. CO{sub 2} emissions in the Illinois Basin were projected to be dominated by coal-fired power plants.

  18. Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

    SciTech Connect (OSTI)

    Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

    2010-03-31

    The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

  19. Monitored Geologic Repository Operations Monitoring and Control System Description Document

    SciTech Connect (OSTI)

    E.F. Loros

    2000-06-29

    The Monitored Geologic Repository Operations Monitoring and Control System provides supervisory control, monitoring, and selected remote control of primary and secondary repository operations. Primary repository operations consist of both surface and subsurface activities relating to high-level waste receipt, preparation, and emplacement. Secondary repository operations consist of support operations for waste handling and treatment, utilities, subsurface construction, and other selected ancillary activities. Remote control of the subsurface emplacement operations, as well as, repository performance confirmation operations are the direct responsibility of the system. In addition, the system monitors parameters such as radiological data, air quality data, fire detection status, meteorological conditions, unauthorized access, and abnormal operating conditions, to ensure a safe workplace for personnel. Parameters are displayed in a real-time manner to human operators regarding surface and subsurface conditions. The system performs supervisory monitoring and control for both important to safety and non-safety systems. The system provides repository operational information, alarm capability, and human operator response messages during emergency response situations. The system also includes logic control to place equipment, systems, and utilities in a safe operational mode or complete shutdown during emergency response situations. The system initiates alarms and provides operational data to enable appropriate actions at the local level in support of emergency response, radiological protection response, evacuation, and underground rescue. The system provides data communications, data processing, managerial reports, data storage, and data analysis. This system's primary surface and subsurface operator consoles, for both supervisory and remote control activities, will be located in a Central Control Center (CCC) inside one of the surface facility buildings. The system consists of instrument and control equipment and components necessary to provide human operators with sufficient information to monitor and control the operation of the repository in an efficient and safe manner. The system consists of operator consoles and workstations, multiple video display terminals, communications and interfacing equipment, and instrument and control software with customized configuration to meet the needs of the Monitored Geologic Repository (MGR). Process and logic controllers and the associated input/output units of each system interfaced with this system will be configured into Remote Terminal Units (RTU) and located close to the systems to be monitored and controlled. The RTUs are configured to remain operational should communication with CCC operations be lost. The system provides closed circuit television to selectively view systems, operations, and equipment areas and to aid in the operation of mechanical systems. Control and monitoring of site utility systems will be located in the CCC. Site utilities include heating, ventilation, and air conditioning equipment; plant compressed air; plant water; firewater; electrical systems; and inert gases, such as nitrogen, if required. This system interfaces with surface and subsurface systems that either generate output data or require remote control input. The system interfaces with the Site Communications System for bulk storage of operational data, on-site and off-site communication, and a plant-wide public announcement system. The system interfaces with the Safeguards and Security System to provide operational status and emergency alarm indications. The system interfaces with the Site Operation System to provide site wide acquisition of data for analysis and reports, historical information for trends, utility information for plant operation, and to receive operating plans and procedures.

  20. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect (OSTI)

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5 million year old Elephant Mountain Member was emplaced above the Pomona Member.

  1. Feb. 9 Event at Jefferson Lab Features Chemistry Demonstrations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feb. 9 Event at Jefferson Lab Features Chemistry Demonstrations Set to Pop Music NEWPORT NEWS, Va., Feb. 2, 2010 - Jefferson Lab's Feb. 9 Science Series event will feature members...

  2. ARPA-E Announces 2012 Energy Innovation Summit Featuring Bill...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summit Featuring Bill Gates, Fred Smith and Lee Scott ARPA-E Announces 2012 Energy Innovation Summit Featuring Bill Gates, Fred Smith and Lee Scott September 9, 2011 - 9:25am ...

  3. PARC Seminar Series featuring David Tiede | Photosynthetic Antenna...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PARC Seminar Series featuring David Tiede PARC Seminar Series featuring David Tiede Wiring Photosynthetic and Redox Proteins for Solar Fuels Function April 21, 2015 - 11:00am Rodin...

  4. NNSA's National Laboratories Engage in Climate Modeling, Data...

    National Nuclear Security Administration (NNSA)

    National Laboratories Engage in Climate Modeling, Data Gathering | National Nuclear ... Home Library Features NNSA's National Laboratories Engage in Climate Modeling, ... ...

  5. Systems and processes for identifying features and determining feature associations in groups of documents

    DOE Patents [OSTI]

    Rose, Stuart J.; Cowley, Wendy E.; Crow, Vernon L.

    2016-01-12

    Systems and computer-implemented processes for identification of features and determination of feature associations in a group of documents can involve providing a plurality of keywords identified among the terms of at least some of the documents. A value measure can be calculated for each keyword. High-value keywords are defined as those keywords having value measures that exceed a threshold. For each high-value keyword, term-document associations (TDA) are accessed. The TDA characterize measures of association between each term and at least some documents in the group. A processor quantifies similarities between unique pairs of high-value keywords based on the TDA for each respective high-value keyword and generates a similarity matrix that indicates one or more sets that each comprise highly associated high-value keywords.

  6. Automation World Features New White Paper on Wireless Security | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Automation World Features New White Paper on Wireless Security Automation World Features New White Paper on Wireless Security The April 2009 issue of Automation World magazine features the white paper Wireless Systems Considerations When Implementing NERC Critical Infrastructure Protection Standards. PDF icon Automation World Features New White Paper on Wireless Security More Documents & Publications Wireless System Considerations When Implementing NERC Critical Infrastructure

  7. Technology Deployment Featured Case Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Deployment » Technology Deployment Featured Case Studies Technology Deployment Featured Case Studies These case studies feature evaluations of energy-efficient technologies being used in federal applications. See additional technology deployment case studies. Photo of men working on a boiler. Boiler Combustion Control and Monitoring System: The Department of Defense Environmental Security Technology Certification Program tested a boiler combustion control and monitoring system

  8. A compound power-law model for volcanic eruptions: Implications for risk assessment of volcanism at the proposed nuclear waste repository at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Ho, Chih-Hsiang

    1994-10-17

    Much of the ongoing debate on the use of nuclear power plants in U.S.A. centers on the safe disposal of the radioactive waste. Congress, aware of the importance of the waste issue, passed the Nuclear Waste Policy Act of 1982, requiring the federal government to develop a geologic repository for the permanent disposal of high level radioactive wastes from civilian nuclear power plants. The Department of Energy (DOE) established the Office of Civilian Radioactive Waste Management (OCRWM) in 1983 to identify potential sites. When OCRWM had selected three potential sites to study, Congress enacted the Nuclear Waste Policy Amendments Act of 1987, which directed the DOE to characterize only one of those sites, Yucca Mountain, in southern Nevada. For a site to be acceptable, theses studies must demonstrate that the site could comply with regulations and guidelines established by the federal agencies that will be responsible for licensing, regulating, and managing the waste facility. Advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Recent volcanism in the vicinity of Yucca Mountain is readily recognized as an important factor in determining future public and environmental safety because of the possibility of direct disruption of a repository site by volcanism. In particular, basaltic volcanism is regarded as direct and unequivocal evidence of deep-seated geologic instability. In this paper, statistical analysis of volcanic hazard assessment at the Yucca Mountain site is discussed, taking into account some significant geological factors raised by experts. Three types of models are considered in the data analysis. The first model assumes that both past and future volcanic activities follow a homogeneous Poisson process (HPP).

  9. OPERATION OF A PUBLIC GEOLOGIC CORE AND SAMPLE REPOSITORY IN HOUSTON TEXAS

    SciTech Connect (OSTI)

    Scott W. Tinker

    2003-06-01

    In the spring of 2002, the Department of Energy provided an initial 1-year grant to the Bureau of Economic Geology (BEG) at The University of Texas at Austin (UT). The grant covered the one-year operational expenses of a worldclass core and cuttings facility located in Houston, Texas, that BP America donated to the BEG. The DOE investment of $300,000, matched by a $75,000 UT contribution, provided critical first-year funds that were heavily leveraged by the BP gift of $7.0 million in facilities and cash. DOE also provided a one-month extension and grant of $30,000 for the month of May 2003. A 5-year plan to grow a permanent endowment in order to manage the facility in perpetuity is well under way and on schedule. The facility, named the Houston Research Center, represents an ideal model for a strong Federal, university, and private partnership to accomplish a national good. This report summarizes the activities supported by the initial DOE grant during the first 13 months of operation and provides insight into the activities and needs of the facility in the second year of operation.

  10. Leakage of CO2 from geologic storage: Role of secondaryaccumulation at shallow depth

    SciTech Connect (OSTI)

    Pruess, K.

    2007-05-31

    Geologic storage of CO2 can be a viable technology forreducing atmospheric emissions of greenhouse gases only if it can bedemonstrated that leakage from proposed storage reservoirs and associatedhazards are small or can be mitigated. Risk assessment must evaluatepotential leakage scenarios and develop a rational, mechanisticunderstanding of CO2 behavior during leakage. Flow of CO2 may be subjectto positive feedbacks that could amplify leakage risks and hazards,placing a premium on identifying and avoiding adverse conditions andmechanisms. A scenario that is unfavorable in terms of leakage behavioris formation of a secondary CO2 accumulation at shallow depth. This paperdevelops a detailed numerical simulation model to investigate CO2discharge from a secondary accumulation, and evaluates the role ofdifferent thermodynamic and hydrogeologic conditions. Our simulationsdemonstrate self-enhancing as well as self-limiting feedbacks.Condensation of gaseous CO2, 3-phase flow of aqueous phase -- liquid CO2-- gaseous CO2, and cooling from Joule-Thomson expansion and boiling ofliquid CO2 are found to play important roles in the behavior of a CO2leakage system. We find no evidence that a subsurface accumulation of CO2at ambient temperatures could give rise to a high-energy discharge, aso-called "pneumatic eruption."

  11. Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines

    Broader source: Energy.gov [DOE]

    The objective of this work is to develop a spatial database that integrates both geologic data for alternative host-rock formations and information that has been historically used for siting...

  12. An overview of the geology and secondary mineralogy of the high...

    Open Energy Info (EERE)

    the geology and secondary mineralogy of the high temperature geothermal system in Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  13. A Review of Methods Applied by the US Geological Survey in the...

    Open Energy Info (EERE)

    Methods Applied by the US Geological Survey in the Assessment of Identified Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: A Review...

  14. Nevada Bureau of Mines and Geology Open-File Report 12-3: Data...

    Open Energy Info (EERE)

    2012 Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Nevada Bureau of Mines and Geology Open-File Report 12-3: Data Tables and graphs of geothermal power...

  15. A Geological and Hydro-Geochemical Study of the Animas Geothermal...

    Open Energy Info (EERE)

    Hydro-Geochemical Study of the Animas Geothermal Area, Hidalgo County, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Geological...

  16. Idaho Geological Survey and University of Idaho Explore for Geothermal Energy

    Broader source: Energy.gov [DOE]

    The University of Idaho's Idaho Geological Survey recently drilled new wells in southeastern Idaho to provide the most accurate assessment of high-temperature geothermal energy potential in the region.

  17. DOE Research Projects to Examine Promising Geologic Formations for CO2 Storage

    Broader source: Energy.gov [DOE]

    The Department of Energy today announced 11 projects valued at $75.5 million aimed at increasing scientific understanding about the potential of promising geologic formations to safely and permanently store carbon dioxide (CO2).

  18. DOE Selects Projects to Monitor and Evaluate Geologic CO2 Storage

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today announced the selection of 19 projects to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide (CO2) storage in geologic formations.

  19. DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic Formations

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today issued a Funding Opportunity Announcement (FOA) to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide storage in geologic formations.

  20. DOE Releases Report on Techniques to Ensure Safe, Effective Geologic Carbon Sequestration

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory has created a comprehensive new document that examines existing and emerging techniques to monitor, verify, and account for carbon dioxide stored in geologic formations.

  1. Geology of Geothermal Test Hole GT-2 Fenton Hill Site, July 1974...

    Open Energy Info (EERE)

    Geothermal Test Hole GT-2 Fenton Hill Site, July 1974 Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology of Geothermal Test Hole GT-2 Fenton Hill...

  2. Geological challenges in radioactive waste isolation: Third worldwide review

    SciTech Connect (OSTI)

    Witherspoon Editor, P.A.; Bodvarsson Editor, G.S.

    2001-12-01

    The broad range of activities on radioactive waste isolation that are summarized in Table 1.1 provides a comprehensive picture of the operations that must be carried out in working with this problem. A comparison of these activities with those published in the two previous reviews shows the important progress that is being made in developing and applying the various technologies that have evolved over the past 20 years. There are two basic challenges in perfecting a system of radioactive waste isolation: choosing an appropriate geologic barrier and designing an effective engineered barrier. One of the most important developments that is evident in a large number of the reports in this review is the recognition that a URL provides an excellent facility for investigating and characterizing a rock mass. Moreover, a URL, once developed, provides a convenient facility for two or more countries to conduct joint investigations. This review describes a number of cooperative projects that have been organized in Europe to take advantage of this kind of a facility in conducting research underground. Another critical development is the design of the waste canister (and its accessory equipment) for the engineered barrier. This design problem has been given considerable attention in a number of countries for several years, and some impressive results are described and illustrated in this review. The role of the public as a stakeholder in radioactive waste isolation has not always been fully appreciated. Solutions to the technical problems in characterizing a specific site have generally been obtained without difficulty, but procedures in the past in some countries did not always keep the public and local officials informed of the results. It will be noted in the following chapters that this procedure has caused some problems, especially when approval for a major component in a project was needed. It has been learned that a better way to handle this problem is to keep all stakeholders fully informed of project plans and hold periodic meetings to brief the public, especially in the vicinity of the selected site. This procedure has now been widely adopted and represents one of the most important developments in the Third Worldwide Review.

  3. Adapting Dry Cask Storage for Aging at a Geologic Repository

    SciTech Connect (OSTI)

    C. Sanders; D. Kimball

    2005-08-02

    A Spent Nuclear Fuel (SNF) Aging System is a crucial part of operations at the proposed Yucca Mountain repository in the United States. Incoming commercial SNF that does not meet thermal limits for emplacement will be aged on outdoor pads. U.S. Department of Energy SNF will also be managed using the Aging System. Proposed site-specific designs for the Aging System are closely based upon designs for existing dry cask storage (DCS) systems. This paper evaluates the applicability of existing DCS systems for use in the SNF Aging System at Yucca Mountain. The most important difference between existing DCS facilities and the Yucca Mountain facility is the required capacity. Existing DCS facilities typically have less than 50 casks. The current design for the aging pad at Yucca Mountain calls for a capacity of over 2,000 casks (20,000 MTHM) [1]. This unprecedented number of casks poses some unique problems. The response of DCS systems to off-normal and accident conditions needs to be re-evaluated for multiple storage casks. Dose calculations become more complicated, since doses from multiple or very long arrays of casks can dramatically increase the total boundary dose. For occupational doses, the geometry of the cask arrays and the order of loading casks must be carefully considered in order to meet ALARA goals during cask retrieval. Due to the large area of the aging pad, skyshine must also be included when calculating public and worker doses. The expected length of aging will also necessitate some design adjustments. Under 10 CFR 72.236, DCS systems are initially certified for a period of 20 years [2]. Although the Yucca Mountain facility is not intended to be a storage facility under 10 CFR 72, the operational life of the SNF Aging System is 50 years [1]. Any cask system selected for use in aging will have to be qualified to this design lifetime. These considerations are examined, and a summary is provided of the adaptations that must be made in order to use DCS technologies successfully at a geologic repository.

  4. Features, Events, and Processes in SZ Flow and Transport

    SciTech Connect (OSTI)

    K. Economy

    2004-11-16

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  5. Features, Events, and Processes in SZ Flow and Transport

    SciTech Connect (OSTI)

    S. Kuzio

    2005-08-20

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  6. Basic features of the pion valence-quark distribution function

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, Lei; Mezrag, Cédric; Moutarde, Hervé; Roberts, Craig D.; Rodríguez-Quintero, Jose; Tandy, Peter C.

    2014-10-07

    The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbow–ladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables amore »realistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, q?(x); namely, at a characteristic hadronic scale, q?(x)~(1-x)2 for x?0.85; and the valence-quarks carry approximately two-thirds of the pion's light-front momentum.« less

  7. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2011-04-28

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  8. Soda Lake Well Lithology Data and Geologic Cross-Sections (Dataset) | Data

    Office of Scientific and Technical Information (OSTI)

    Explorer Soda Lake Well Lithology Data and Geologic Cross-Sections Title: Soda Lake Well Lithology Data and Geologic Cross-Sections Comprehensive catalogue of drill-hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. Plus, 13 cross-sections in Adobe Illustrator format. Authors: Faulds, James E. Publication Date: 2013-12-31

  9. Center for Nanoscale Controls on Geologic CO2 (NCGC) | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Center for Nanoscale Controls on Geologic CO2 (NCGC) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Nanoscale Controls on Geologic CO2 (NCGC) Print Text Size: A A A FeedbackShare Page NCGC Header Director Donald DePaolo Lead Institution Lawrence Berkeley National Laboratory Year Established 2009 Mission To enhance the performance and

  10. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Oldenburg, Curtis M

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  11. Development of a Geological and Geomechanical Framwork for the Analysis of

    Broader source: Energy.gov (indexed) [DOE]

    MEQ in EGS Experiments | Department of Energy a Geological and Geomechanical Framwork for the Analysis of MEQ in EGS Experiments presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon ghassemi_meq_peer2013.pdf More Documents & Publications Development of a Geological and GeomechanicalFramework for the Analysis of MEQ in EGS Experiments Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity

  12. FY12 ARRA-NRAP Report – Studies to Support Risk Assessment of Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Shao, Hongbo; Thompson, C. J.; Zhong, Lirong; Jung, Hun Bok; Um, Wooyong

    2011-09-27

    This report summarizes results of research conducted during FY2012 to support the assessment of environmental risks associated with geologic carbon dioxide (CO2) sequestration and storage. Several research focus areas are ongoing as part of this project. This includes the quantification of the leachability of metals and organic compounds from representative CO2 storage reservoir and caprock materials, the fate of metals and organic compounds after release, and the development of a method to measure pH in situ under supercritical CO2 (scCO2) conditions. Metal leachability experiments were completed on 6 different rock samples in brine in equilibrium with scCO2 at representative geologic reservoir conditions. In general, the leaching of RCRA metals and other metals of concern was found to be limited and not likely to be a significant issue (at least, for the rocks tested). Metals leaching experiments were also completed on 1 rock sample with scCO2 containing oxygen at concentrations of 0, 1, 5, and 10% to simulate injection of CO2 originating from the oxy-fuel combustion process. Significant differences in the leaching behavior of certain metals were observed when oxygen is present in the CO2. These differences resulted from oxidation of sulfides, release of sulfate, ferric iron and other metals, and subsequent precipitation of iron oxides and some sulfates such as barite. Experiments to evaluate the potential for mobilization of organic compounds from representative reservoir materials and cap rock and their fate in porous media (quartz sand) have been conducted. Results with Fruitland coal and Gothic shale indicate that lighter organic compounds were more susceptible to mobilization by scCO2 compared to heavier compounds. Alkanes demonstrated very low extractability by scCO2. No significant differences were observed between the extractability of organic compounds by dry or water saturated scCO2. Reaction equilibrium appears to have been reached by 96 hours. When the scCO2 was released from the reactor, less than 60% of the injected lighter compounds (benzene, toluene) were transported through dry sand column by the CO2, while more than 90% of the heavier organics were trapped in the sand column. For wet sand columns, most (80% to 100%) of the organic compounds injected into the sand column passed through, except for naphthalene which was substantial removed from the CO2 within the column. A spectrophotometric method was developed to measure pH in brines in contact with scCO2. This method provides an alternative to fragile glass pH electrodes and thermodynamic modeling approaches for estimating pH. The method was tested in simulated reservoir fluids (CO2–NaCl–H2O) at different temperatures, pressures, and ionic strength, and the results were compared with other experimental studies and geochemical models. Measured pH values were generally in agreement with the models, but inconsistencies were present between some of the models.

  13. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Eby, D.E.

    1996-12-31

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO{sub 2}-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO{sub 2} miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  14. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr. ); Eby, D.E. )

    1996-01-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO[sub 2]-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO[sub 2] miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  15. Internal Geology and Evolution of the Redondo Dome, Valles Caldera...

    Open Energy Info (EERE)

    dome. A comparison of the uplift with a model for formation of the laccoliths of the Henry Mountains indicated the magma was 4700 m thick, in line with the fact that the 3243 m...

  16. Dose masking feature for BNCT radiotherapy planning

    DOE Patents [OSTI]

    Cook, Jeremy L.; Wessol, Daniel E.; Wheeler, Floyd J.

    2000-01-01

    A system for displaying an accurate model of isodoses to be used in radiotherapy so that appropriate planning can be performed prior to actual treatment on a patient. The nature of the simulation of the radiotherapy planning for BNCT and Fast Neutron Therapy, etc., requires that the doses be computed in the entire volume. The "entire volume" includes the patient and beam geometries as well as the air spaces in between. Isodoses derived from the computed doses will therefore extend into the air regions between the patient and beam geometries and thus depict the unrealistic possibility that radiation deposition occurs in regions containing no physical media. This problem is solved by computing the doses for the entire geometry and then masking the physical and air regions along with the isodose contours superimposed over the patient image at the corresponding plane. The user is thus able to mask out (remove) the contour lines from the unwanted areas of the image by selecting the appropriate contour masking region from the raster image.

  17. Global Sampling for Integrating Physics-Specific Subsystems and Quantifying Uncertainties of CO2 Geological Sequestration

    SciTech Connect (OSTI)

    Sun, Y.; Tong, C.; Trainor-Guitten, W. J.; Lu, C.; Mansoor, K.; Carroll, S. A.

    2012-12-20

    The risk of CO2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO2/brine saturation are connected to the fault-leakage model as a boundary condition. CO2 and brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.

  18. 3D Geological Modelling In Bavaria - State-Of-The-Art At A State...

    Open Energy Info (EERE)

    variety of applications. Initially many 3D tools were designed for the exploitation of digital seismic mass data existing in hydrocarbon exploration industry. Accordingly, GSOs...

  19. Experimental and Modeling Investigation of Radionuclide Interaction and Transport in Representative Geologic Media

    Broader source: Energy.gov [DOE]

    This work on the natural barrier system is conducted to reduce uncertainty in natural system performance and to fully exploit the credits that can be taken for the natural system barrier; several potential enhancements to describing barrier performance capabilities are presented.

  20. Numerical Modeling of CO2 Sequestration in Geologic Formations -Recent Results and Open Challenges

    SciTech Connect (OSTI)

    Pruess, Karsten

    2006-03-08

    Rising atmospheric concentrations of CO2, and their role inglobal warming, have prompted efforts to reduce emissions of CO2 fromburning of fossil fuels. An attractive mitigation option underconsideration in many countries is the injection of CO2 from stationarysources, such as fossil-fueled power plants, into deep, stable geologicformations, where it would be stored and kept out of the atmosphere fortime periods of hundreds to thousands of years or more. Potentialgeologic storage reservoirs include depleted or depleting oil and gasreservoirs, unmineable coal seams, and saline formations. While oil andgas reservoirs may provide some attractive early targets for CO2 storage,estimates for geographic regions worldwide have suggested that onlysaline formations would provide sufficient storage capacity tosubstantially impact atmospheric releases. This paper will focus on CO2storage in saline formations.Injection of CO2 into a saline aquifer willgive rise to immiscible displacement of brine by the advancing CO2. Thelower viscosity of CO2 relative to aqueous fluids provides a potentialfor hydrodynamic instabilities during the displacement process. Attypical subsurface conditions of temperature and pressure, CO2 is lessdense than aqueous fluids and is subject to upward buoyancy force inenvironments where pressures are controlled by an ambient aqueous phase.Thus CO2 would tend to rise towards the top of a permeable formation andaccumulate beneath the caprock. Some CO2 will also dissolve in theaqueous phase, while the CO2-rich phase may dissolve some formationwaters, which would tend to dry out the vicinity of the injection wells.CO2 will make formation waters more acidic, and will induce chemicalrections that may precipitate and dissolve mineral phases (Xu et al.,2004). As a consequence of CO2 injection, significant pressurization offormation fluids would occur over large areas. These pressurizationeffects will change effective stresses, and may cause movement alongfaults with associated seismicity and increases in permeability thatcould lead to leakage from the storage reservoir (Rutqvist and Tsang,2005).