Sample records for model flume facilities

  1. Hydrodynamic Tesla Wheel Flume for Model and Prototype Testing

    E-Print Network [OSTI]

    Wood, Stephen L.

    The Tesla turbine, U.S. Patent 1,061,206 -- May 6, 1913 was invented by Nikola Tesla as a means to extractHydrodynamic Tesla Wheel Flume for Model and Prototype Testing Spencer Jenkins, Chris Scott, Jacob Engineering department at Florida Institute of Technology (Florida Tech) has developed a Hydrodynamic Tesla

  2. Sectional Model Flume Facilities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAir Jump to:ScottsSearch

  3. DeFrees Flume 2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNew Jersey: EnergyDeForest,DeFrees Flume 2

  4. DeFrees Flume 3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNew Jersey: EnergyDeForest,DeFrees Flume

  5. Stennis Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt.Steep Gradient Flume Jump to:HIF Hydrodynamic Testing

  6. 2-ft Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-M

  7. Facility model for the Los Alamos Plutonium Facility

    SciTech Connect (OSTI)

    Coulter, C.A.; Thomas, K.E.; Sohn, C.L.; Yarbro, T.F.; Hench, K.W.

    1986-01-01T23:59:59.000Z

    The Los Alamos Plutonium Facility contains more than sixty unit processes and handles a large variety of nuclear materials, including many forms of plutonium-bearing scrap. The management of the Plutonium Facility is supporting the development of a computer model of the facility as a means of effectively integrating the large amount of information required for material control, process planning, and facility development. The model is designed to provide a flexible, easily maintainable facility description that allows the faciltiy to be represented at any desired level of detail within a single modeling framework, and to do this using a model program and data files that can be read and understood by a technically qualified person without modeling experience. These characteristics were achieved by structuring the model so that all facility data is contained in data files, formulating the model in a simulation language that provides a flexible set of data structures and permits a near-English-language syntax, and using a description for unit processes that can represent either a true unit process or a major subsection of the facility. Use of the model is illustrated by applying it to two configurations of a fictitious nuclear material processing line.

  8. FLUME-PRISM Workshop Met Office, Exeter, March 15-16, 2004

    E-Print Network [OSTI]

    FLUME-PRISM Workshop Met Office, Exeter, March 15-16, 2004 OASIS3 and OASIS4 : the PRISM couplers G-16, 2004 Slide 2 Outline OASIS historic OASIS community today PRISM first coupler: Oasis3 ·model adaptation ·coupled model configuration ·communication ·interpolations/transformations PRISM final coupler: Oasis4

  9. Alden Small Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to: navigation, searchAlcoa Jump to:Flume

  10. Steep Gradient Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt.Steep Gradient Flume Jump to: navigation, search

  11. Environmental Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolisEnviroMission Ltd JumpFund Place: NewGroup

  12. Adjustable shear stress erosion and transport flume

    DOE Patents [OSTI]

    Roberts, Jesse D. (Carlsbad, NM); Jepsen, Richard A. (Carlsbad, NM)

    2002-01-01T23:59:59.000Z

    A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.

  13. 1.5-ft Wave Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's picture SubmittedSoltech Jump to:

  14. 10-ft Wave Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's picture SubmittedSoltech Jump

  15. 3-ft Wave Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's APTA Basic Specifications

  16. 11-ft Wave Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource HistorykV remote controlOpenOpen

  17. 5-ft Wave Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe Commission |Information EffluentU.S.C. 552 -1.5

  18. 6-ft Wave Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe Commission |Information EffluentU.S.C. Home3:105.2

  19. Model Wind Energy Facility Ordinance

    Broader source: Energy.gov [DOE]

    Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative...

  20. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    SciTech Connect (OSTI)

    Jacobson, Paul T. [Electric Power Research Institute; Amaral, Stephen V. [Alden Research Laboratory; Castro-Santos, Theodore [U.S. Geological Survey; Giza, Dan [Alden Research Laboratory; Haro, Alexander J. [U.S. Geological Survey; Hecker, George [Alden Research Laboratory; McMahon, Brian [Alden Research Laboratory; Perkins, Norman [Alden Research Laboratory; Pioppi, Nick [Alden Research Laboratory

    2012-12-31T23:59:59.000Z

    This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur duri

  1. Bucknell Hydraulic Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to:Brunei: Energy Resources

  2. Flume Studies of Sediment Transportation in Shallow Flow with Simulated Rainfall

    E-Print Network [OSTI]

    Nail, F.M.

    TR-2 1966 Flume Studies of Sediment Transportation in Shallow Flow with Simulated Rainfall F.M. Nail Texas Water Resources Institute Texas A&M University ...

  3. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    SciTech Connect (OSTI)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-07-18T23:59:59.000Z

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  4. Delft Hydraulic's Large Wind-Wave Flume Paul van Vliet 1

    E-Print Network [OSTI]

    Jaehne, Bernd

    499 Delft Hydraulic's Large Wind-Wave Flume Paul van Vliet 1 , Frank Hering 2 , and Bernd J¨ahne 2,3 1 Waterloopkundig Laboratorium, Delft Hydraulics Laboratory Rotterdamseweg 185, NL-2692 HD Delft in the seventies, Delft Hydraulics large wind wave flume was totally overhauled to fit the needs of scientists

  5. Conte Large Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| OpenCongress,ConsolidatedContained Energy Jump to:Conte

  6. HYTEST Phase I Facility Commissioning and Modeling

    SciTech Connect (OSTI)

    Lee P. Shunn; Richard D. Boardman; Shane J. Cherry; Craig G. Rieger

    2009-09-01T23:59:59.000Z

    The purpose of this document is to report the first year accomplishments of two coordinated Laboratory Directed Research and Development (LDRD) projects that utilize a hybrid energy testing laboratory that couples various reactors to investigate system reactance behavior. This work is the first phase of a series of hybrid energy research and testing stations - referred to hereafter as HYTEST facilities – that are planned for construction and operation at the Idaho National Laboratory (INL). A HYTEST Phase I facility was set up and commissioned in Bay 9 of the Bonneville County Technology Center (BCTC). The purpose of this facility is to utilize the hydrogen and oxygen that is produced by the High Temperature Steam Electrolysis test reactors operating in Bay 9 to support the investigation of kinetic phenomena and transient response of integrated reactor components. This facility provides a convenient scale for conducting scoping tests of new reaction concepts, materials performance, new instruments, and real-time data collection and manipulation for advance process controls. An enclosed reactor module was assembled and connected to a new ventilation system equipped with a variable-speed exhaust blower to mitigate hazardous gas exposures, as well as contract with hot surfaces. The module was equipped with a hydrogen gas pump and receiver tank to supply high quality hydrogen to chemical reactors located in the hood.

  7. Effectiveness-Equity Models for Facility Location Problems on Tree ...

    E-Print Network [OSTI]

    2013-01-19T23:59:59.000Z

    pecially in situations that involve public facilities or resources. ... Department of Decision Sciences, School of Business, The George Washington University, Washington, ... First, the proposed models allow one to identify efficient (or Pareto opti-.

  8. DeFrees Flume 1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNew Jersey: EnergyDeForest,

  9. Heat transfer modeling of dry spent nuclear fuel storage facilities

    SciTech Connect (OSTI)

    Lee, S.Y.

    1999-07-01T23:59:59.000Z

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geologic codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geologic repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  10. Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities

    SciTech Connect (OSTI)

    Lee, S.Y.

    1999-01-13T23:59:59.000Z

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  11. Laboratory studies of the adsorption of two pesticides (diuron and tebuconazole) using a batch design and an experimental flume: influence

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (hemp), which was chosen as an analogue for natural substrates often found in agricultural ditches, has for the experiments with a flume initially containing dry hemp. In that case, both the initial condition (hemp to favour adsorption. The lowest adsorption is obtained for the flume containing hemp initially saturated

  12. Earth System Modeling Facility: Linking Climate to Cal-(IT)2 and OptIPuter

    E-Print Network [OSTI]

    Rose, Michael R.

    Earth System Modeling Facility: Linking Climate to Cal-(IT)2 and OptIPuter Charlie Zender in quantitatively-based environmental planning. #12;1. Overview Present: 1. Earth System Modeling Facility (ESMF) 2 and Planning #12;2. Earth System Modeling Facility (ESMF) Background: In 2003, NSF, UCI, & IGPP awarded $1.3M

  13. Fuel Conditioning Facility Electrorefiner Model Predictions versus Measurements

    SciTech Connect (OSTI)

    D Vaden

    2007-10-01T23:59:59.000Z

    Electrometallurgical treatment of spent nuclear fuel is performed in the Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL) by electrochemically separating uranium from the fission products and structural materials in a vessel called an electrorefiner (ER). To continue processing without waiting for sample analyses to assess process conditions, an ER process model predicts the composition of the ER inventory and effluent streams via multicomponent, multi-phase chemical equilibrium for chemical reactions and a numerical solution to differential equations for electro-chemical transport. The results of the process model were compared to the electrorefiner measured data.

  14. State-based Modeling of Buildings and Facilities 

    E-Print Network [OSTI]

    Fisch, M.N.; Pinkernell, C.; Look, M.; Plesser, S.; Rumpe, B.

    2011-01-01T23:59:59.000Z

    State-Based Modeling of Buildings and Facilities Univ.-Prof. Dr. Ing. M. Norbert Fisch IGS TU Braunschweig http://www.igs.bau.tu-bs.de Dipl.-Inform. Claas Pinkernell synavision GmbH http://www.synavision.de Dipl.-Inform. Markus... Look Software Engineering RWTH Aachen University http://www.se-rwth.de Dipl.-Ing. Architekt Stefan Plesser synavision GmbH http://www.synavision.de Univ.-Prof. Dr. Bernhard Rumpe Software Engineering RWTH Aachen University http...

  15. Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)

    SciTech Connect (OSTI)

    Bradley K. Heath

    2014-03-01T23:59:59.000Z

    This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.

  16. Modeling and Control of Three-Phase Gravity Separators in Oil Production Facilities

    E-Print Network [OSTI]

    Taylor, James H.

    Modeling and Control of Three-Phase Gravity Separators in Oil Production Facilities Atalla F. Sayda and James H. Taylor Abstract-- Oil production facilities exhibit complex and challenging dynamic behavior simplicity. I. INTRODUCTION The function of an oil production facility is to separate the oil well stream

  17. Alternative water sources: Desalination model provides life-cycle costs of facility

    E-Print Network [OSTI]

    Supercinski, Danielle

    2009-01-01T23:59:59.000Z

    Story by Danielle Supercinski tx H2O | pg. 8 Alternative water sourcees Desalination model provides life-cycle costs of facility platform and design standards as DESAL ECONOMICS?, but created to analyze con- ventional surface water treatment... to determine the economic and financial life-cycle costs of building and operating four water treatment facilities in South Texas. One facility was the Southmost Regional Water Authority Regional Desalination Plant near Brownsville. Sturdi- vant said...

  18. Alternative water sources: Desalination model provides life-cycle costs of facility 

    E-Print Network [OSTI]

    Supercinski, Danielle

    2009-01-01T23:59:59.000Z

    Story by Danielle Supercinski tx H2O | pg. 8 Alternative water sourcees Desalination model provides life-cycle costs of facility platform and design standards as DESAL ECONOMICS?, but created to analyze con- ventional surface water treatment... to determine the economic and financial life-cycle costs of building and operating four water treatment facilities in South Texas. One facility was the Southmost Regional Water Authority Regional Desalination Plant near Brownsville. Sturdi- vant said...

  19. Cloud Formation in the Plumes of Solar Chimney Power Generation Facilities: A Modeling Study

    E-Print Network [OSTI]

    Nenes, Athanasios

    for a proposed solar chimney facility in southwestern Australia. A range of temperatures and updraft velocities technology for converting solar energy into electricity that has shown promise in recent years is the so1 Cloud Formation in the Plumes of Solar Chimney Power Generation Facilities: A Modeling Study

  20. Laboratory modeling of hydraulic dredges and design of dredge carriage for laboratory facility

    E-Print Network [OSTI]

    Glover, Gordon Jason

    2002-01-01T23:59:59.000Z

    of hydraulic dredge equipment have proven useful for obtaining qualitative results. The new Coastal Engineering Laboratory at Texas A&M University is equipped with model dredge testing facilities ideal for performing such experiments. The tow/dredge carriage...

  1. Energy Savings Through Application of Model Predictive Control to an Air Separation Facility

    E-Print Network [OSTI]

    Hanson, T. C.; Scharf, P. F.

    Energy Savings Through Application of Model Predictive Control to an Air Separation Facility Thomas C. Hanson PauiF. Scharf Manager Senior Engineering Associate Process Development Process Control Technology Praxair, Inc., Tonawanda, New York...

  2. Model training curriculum for Low-Level Radioactive Waste Disposal Facility Operations

    SciTech Connect (OSTI)

    Tyner, C.J.; Birk, S.M.

    1995-09-01T23:59:59.000Z

    This document is to assist in the development of the training programs required to be in place for the operating license for a low-level radioactive waste disposal facility. It consists of an introductory document and four additional appendixes of individual training program curricula. This information will provide the starting point for the more detailed facility-specific training programs that will be developed as the facility hires and trains new personnel and begins operation. This document is comprehensive and is intended as a guide for the development of a company- or facility-specific program. The individual licensee does not need to use this model training curriculum as written. Instead, this document can be used as a menu for the development, modification, or verification of customized training programs.

  3. A binary LP model to the facility layout problem Abstract

    E-Print Network [OSTI]

    Cpu

    2002-04-04T23:59:59.000Z

    model is rather flexible and can be used, with small modifications, for larger ... efficient and solve large problems (with more than 15 functions and locations). .... Limited resources in the public sector necessitate additional measures to .... (

  4. A Study of Building Information Modeling Usage through the Perceived Utilization of Facilities Management Training, Building Information Modeling Technical Specifications, and a Quality Building Information Model for Facilities Management at Higher Educational Institutions in Texas

    E-Print Network [OSTI]

    Thompson, Darrell

    2014-12-15T23:59:59.000Z

    The research for this study investigated the correlation between the perceived usage of Building Information Modeling in Facilities Management and; the perceived training level of the FM personnel, the perceived specification requirement...

  5. State-based Modeling of Buildings and Facilities

    E-Print Network [OSTI]

    Fisch, M.N.; Pinkernell, C.; Look, M.; Plesser, S.; Rumpe, B.

    2011-01-01T23:59:59.000Z

    to an intelligent monitoring. DIN EN ISO 16484 proposes a method to describe functional requirements in an easy to understand way. We extended its use of state machines to our proposed concept of state based modeling. This proved to be a wholesome approach to easily...

  6. A modeling study of the PMK-NVH integral test facility

    SciTech Connect (OSTI)

    Mavko, B.; Parzer, I.; Petelin, S. (Jozef Stefan Inst., Ljubljana (Slovenia))

    1994-02-01T23:59:59.000Z

    A way of modeling the PMK-NVH integral test facility with RELAP5 thermal-hydraulic code is presented. Two code versions, MOD2/36.05 and MOD3 5m5, are compared and assessed. Modeling is demonstrated for the International Atomic Energy Agency standard problem exercise no. 2, a small-break loss-of-coolant accident, performed on the PMK-NVH integral test facility. Three parametric studies of the break vicinity modeling are outlined, testing different ways of connecting the cold leg and hydroaccumulator to the downcomer and determining proper energy loss discharge coefficients at the break. Further, the nodalization study compared four different RELAP5 models, varying from a detailed one with more than 100 nodes, down to the miniature one, with only [approximately] 30 nodes. Modeling of some VVER-440 features, such as horizontal steam generators and hot-leg loop seal, is discussed.

  7. Thesis: Modeling and Evaluation of the NIST Net Zero Energy Residential Test Facility

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Thesis: Modeling and Evaluation of the NIST Net Zero Energy Residential Test Facility Liz Balke M;Motivation · The residential sector consumes over 20% of the total energy use in the U.S. · Net zero energy in building net zero energy houses grows, there is an increased interest in research into optimal residential

  8. Models for environmental impact assessments of releases of radioactive substances from CERN facilities

    E-Print Network [OSTI]

    Vojtyla, P

    2005-01-01T23:59:59.000Z

    The document describes generic models for environmental impact assessments of releases of radioactive substances from CERN facilities. Except for few models developed in the Safety Commission, the models are based on the 1997 Swiss directive HSK-R-41 and on the 2001 IAEA Safety Report No. 19. The writing style is descriptive, facilitating the practical implementation of the models at CERN. There are four scenarios assumed for airborne releases: (1) short-term releases for release limit calculations, (2) actual short-term releases, (3) short-term releases during incidents/accidents, and (4) chronic long-term releases during the normal operation of a facility. For water releases, two scenarios are considered: (1) a release into a river, and (2) a release into a water treatment plant. The document shall be understood as a reference for specific environmental studies involving radioactive releases and as a recommendation of the Safety Commission.

  9. Models for Assessment of the environmental impact of Radioactive releases from CERN facilities

    E-Print Network [OSTI]

    Vojtyla, P

    2002-01-01T23:59:59.000Z

    The document describes generic models for environmental impact assessment of radioactive releases from CERN facilities. Except for few models developed in the TIS Division, the models are based on the 1997 Swiss directive HSK-R-41 and on the 2001 IAEA Safety Report No. 19. The writing style is descriptive, facilitating the practical implementation of the models at CERN. There are four scenarios assumed for airborne releases: (1) short-term releases for release limit calcu¬lations, (2) actual short-term releases, (3) short-term releases during incidents/accidents, and (4) chronic long-term releases during the normal operation of a facility. For water releases, two scenarios are considered: (1) a release into a river, and (2) a release into a water treatment plant. The document shall be understood as a reference for specific environmental studies involving radioactive releases and as a recommendation of the TIS Division.

  10. Coupled Operation of a Wind Farm and Pumped Storage Facility: Techno-Economic Modelling and Stochastic Optimization

    E-Print Network [OSTI]

    Victoria, University of

    Coupled Operation of a Wind Farm and Pumped Storage Facility: Techno-Economic Modelling Operation of a Wind Farm and Pumped Storage Facility: Techno-Economic Modelling and Stochastic Optimization a stochastic programming approach to the techno-economic analysis of a wind farm coupled with a pumped storage

  11. Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Schrom, Brian T.

    2014-04-06T23:59:59.000Z

    Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8×1014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.2×1016 to 2.5×1016 Bq and estimates for the facility in Indonesia vary from 6.1×1013 to 3.6×1014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.

  12. Modelling of post-fragmentation waste stream processing within UK shredder facilities

    SciTech Connect (OSTI)

    Coates, Gareth [Centre for Sustainable Manufacturing and Reuse/Recycling Technologies (SMART), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom)], E-mail: G.Coates@lboro.ac.uk; Rahimifard, Shahin [Centre for Sustainable Manufacturing and Reuse/Recycling Technologies (SMART), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2009-01-15T23:59:59.000Z

    With the introduction of producer responsibility legislation within the UK (i.e., waste electrical and electronic equipment directive and end-of-life vehicles directive), specific recycling and recovery targets have been imposed to improve the sustainability of end-of-life products. With the introduction of these targets, and the increased investment in post-fragmentation facilities, automated material separation technologies are playing an integral role within the UK's end-of-life waste management strategy. Post-fragmentation facilities utilise a range of purification technologies that target certain material attributes (e.g., density, magnetism, volume) to isolate materials from the shredded waste stream. High ferrous prices have historically meant that UK facilities have been primarily interested in recovering iron and steel, establishing processing routes that are very effective at removing these material types, but as a consequence are extremely rigid and inflexible. With the proliferation of more exotic materials within end-of-life products, combined with more stringent recycling targets, there is therefore a need to optimise the current waste reclamation processes to better realise effort-to-value returns. This paper provides a background as to the current post-fragmentation processing adopted within the UK, and describes the development of a post-fragmentation modelling approach, capable of simulating the value-added processing that a piece of automated separation equipment can have on a fragmented waste stream. These include the modelling of the inefficiencies of the technology, the effects of material entanglement on separation, determination of typical material sizing and an appreciation for compositional value. The implementation of this approach within a software decision-support system is described, before the limitations, calibration and further validation of the approach are discussed.

  13. SPECIAL ANALYSIS AIR PATHWAY MODELING OF E-AREA LOW-LEVEL WASTE FACILITY

    SciTech Connect (OSTI)

    Hiergesell, R.; Taylor, G.

    2011-08-30T23:59:59.000Z

    This Special Analysis (SA) was initiated to address a concern expressed by the Department of Energy's Low Level Waste Disposal Facility Federal Review Group (LFRG) Review Team during their review of the 2008 E-Area Performance Assessment (PA) (WSRC, 2008). Their concern was the potential for overlapping of atmospheric plumes, emanating from the soil surface above SRS LLW disposal facilities within the E-Area, to contribute to the dose received by a member of the public during the Institutional Control (IC) period. The implication of this concern was that the dose to the maximally-exposed individual (MEI) located at the SRS boundary might be underestimated during this time interval. To address this concern a re-analysis of the atmospheric pathway releases from E-Area was required. In the process of developing a new atmospheric release model (ARM) capable of addressing the LFRG plume overlap concern, it became obvious that new and better atmospheric pathway disposal limits should be developed for each of the E-Area disposal facilities using the new ARM. The scope of the SA was therefore expanded to include the generation of these new limits. The initial work conducted in this SA was to develop a new ARM using the GoldSim{reg_sign} program (GTG, 2009). The model simulates the subsurface vapor diffusion of volatile radionuclides as they release from E-Area disposal facility waste zones and migrate to the land surface. In the process of this work, many new features, including several new physical and chemical transport mechanisms, were incorporated into the model. One of the most important improvements was to incorporate a mechanism to partition volatile contaminants across the water-air interface within the partially saturated pore space of the engineered and natural materials through which vapor phase transport occurs. A second mechanism that was equally important was to incorporate a maximum concentration of 1.9E-07 Ci/m{sup 3} of {sup 14}CO{sub 2} in the air-filled pores of cementitious materials. The ARM also combines the individual transport models constructed for each E-Area disposal facility into a single model, and was ultimately used to analyze the LFRG concern regarding the potential for atmospheric plume overlap at the SRS boundary during the IC period. To evaluate the plume overlap issue, a conservative approach was adopted whereby the MEI at the SRS boundary was exposed to the releases from all E-Area disposal facilities simultaneously. This is equivalent to a 100% overlap of all atmospheric plumes emanating from E-Area. Should the dose received from this level of atmospheric plume overlap still fall below the permissible exposure level of 10 mrem/yr, then the LFRG concern would be alleviated. The structuring of the ARM enables this evaluation to be easily performed. During the IC period, the peak of the 'total plume overlap dose' was computed to be 1.9E-05 mrem/yr, which is five orders of magnitude lower than the 10 mrem/yr PA performance objective for the atmospheric release pathway. The main conclusion of this study is that for atmospheric releases from the E-Area disposal facilities, plume overlap does not cause the total dose to the MEI at the SRS boundary during the IC to exceed the Performance Assessment (PA) performance objective. Additionally, the potential for plume overlap was assessed in the post-Institutional Control period. Atmospheric plume overlap is less likely to occur during this period but conceivably could occur if the prevailing wind direction shifted so as to pass directly over all EArea disposal facilities and transport airborne radionuclides to the MEI at the 100 m point of compliance (POC). This concern was also demonstrated of little concern, as the maximum plume overlap dose was found to be 1.45E+00 mrem/yr (or {approx}15% of the performance measure) during this period and under these unlikely conditions.

  14. Application of EMCAS timeliness model to the safeguards/facility interface

    SciTech Connect (OSTI)

    Eggers, R.F.; Giese, E.W.

    1987-01-01T23:59:59.000Z

    The Hanford operating contractor has developed a timeliness model for periodic mass balance tests (MBTs) for loss of special nuclear material (SNM). The purpose of the model is to compute the probability that an adversary will be detected by a periodic MBT before he could escape from a facility with stolen SNM using stealth and deceit to avoid detection. The model considers (a) the loss detection sensitivity of the MBT, (b) the time between MBTs, and (c) the statistical distribution of the total time required to complete stealth and deceit strategies. The model shows whether or not it is cost-effective to conduct frequent MBTs for loss and where improvements should be made. The Evaluation Methods for Material Control and Accountability Safeguards Systems (EMCAS) timeliness model computes the loss detection capability of periodic materials control and accounting (MC A) tests in terms of (a) the ability of the test to detect the specified target quantity and (b) the probability that the MC A test will occur before the adversary can complete the sequence of stealth and deceit strategies required to avoid detection.

  15. Modeling of batch operations in the Defense Waste Processing Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Smith, F.G.

    1995-02-01T23:59:59.000Z

    A computer model is in development to provide a dynamic simulation of batch operations within the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). The DWPF will chemically treat high level waste materials from the site tank farm and vitrify the resulting slurry into a borosilicate glass for permanent disposal. The DWPF consists of three major processing areas: Salt Processing Cell (SPC), Chemical Processing Cell (CPC) and the Melt Cell. Separate models have been developed for each of these process units using the SPEEDUP{trademark} software from Aspen Technology. Except for glass production in the Melt Cell, all of the chemical operations within DWPF are batch processes. Since the SPEEDUP software is designed for dynamic modeling of continuous processes, considerable effort was required to devise batch process algorithms. This effort was successful and the models are able to simulate batch operations and the dynamic behavior of the process. In this paper, we will describe the SPC model in some detail and present preliminary results from a few simulation studies.

  16. Centrifuge modeling of radioactive waste migration through backfill in a near surface disposal facility

    SciTech Connect (OSTI)

    Gurumoorthy, C.; Kusakabe, O. [Geotechnical Engineering Division, Tokyo Institute of Technology, 2-12-1 Ookayama Meguroku, Tokyo 1528552 (Japan)

    2007-07-01T23:59:59.000Z

    Investigations on the performance of backfill barrier in Near Surface Disposal Facility (NSDF) for radioactive wastes are important to ensure the long term safety of such disposal option. Favorable condition to delay migration of radionuclides from disposed waste to far fields is diffusion process. However, advective dispersion/diffusion mechanism plays an important role due to changes in backfill over a period of time. In order to understand these mechanisms, detailed laboratory experiments are usually conducted for developing mathematical models to assess the behaviour of backfill. However, these experiments are time consuming and suffer with the limitations due to material complexity. Also, there are constraints associated with validation of theoretical predictions due to intricacy of boundary conditions as well as the time scale is quite different as compared to the time required for completion of the processes in the field. Keeping in view these aspects, centrifuge modeling technique has been adopted by various researchers to model and understand various geo-environment problems in order to provide a link between the real life situation termed as the 'Prototype' and its model, which is exposed to a higher gravitational field. An attempt has been made in this paper to investigate the feasibility of this technique to model advective dispersion/diffusion mechanism of radionuclides through saturated Bentonite-Sand (B:S) backfill. Various stages of centrifuge modeling are highlighted. Column tests were conducted in the centrifuge to evaluate the hydraulic conductivity of B:S mixture under prototype NSDF stress conditions. Results showed that steady state hydraulic conductivity under saturated conditions was 2.86 10{sup -11} m/sec. Studies indicate the feasibility of centrifuge modeling technique and usefulness to model advective diffusion of radionuclides through B:S backfill. (authors)

  17. Field Calibration Facilities for Environmental Measurement of...

    Broader source: Energy.gov (indexed) [DOE]

    the facilities. Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013) More Documents & Publications Calibration Model...

  18. A Bulk Tungsten Tile for JET: Derivation of Power-Handling Performance and Validation of the Thermal Model, in the MARION Facility

    E-Print Network [OSTI]

    A Bulk Tungsten Tile for JET: Derivation of Power-Handling Performance and Validation of the Thermal Model, in the MARION Facility

  19. Designing a model for the African Science and Innovation Facility to implement the Science and Technology Consolidated Plan of Action

    E-Print Network [OSTI]

    Designing a model for the African Science and Innovation Facility to implement the Science and Technology Consolidated Plan of Action A study commissioned by NEPAD's Office of Science and Technology been prepared in response to a request from NEPAD's Office of Science and Technology for a review

  20. Materials in Extreme Dynamic Environments Georgia Tech has a unique combination of experimental facilities and modeling and

    E-Print Network [OSTI]

    Li, Mo

    response of materials at various critical length and time scales emphasizes both highMaterials in Extreme Dynamic Environments Georgia Tech has a unique combination of experimental facilities and modeling and simulation capabilities to explore the behavior of materials subjected to high

  1. The B00 model coil in the ATLAS Magnet Test Facility

    E-Print Network [OSTI]

    Dudarev, A; ten Kate, H H J; Anashkin, O P; Keilin, V E; Lysenko, V V

    2001-01-01T23:59:59.000Z

    A 1-m size model coil has been developed to investigate the transport properties of the three aluminum-stabilized superconductors used in the ATLAS magnets. The coil, named B00, is also used for debugging the cryogenic, power and control systems of the ATLAS Magnet Test Facility. The coil comprises two double pancakes made of the barrel toroid and end-cap toroid conductors and a single pancake made of the central solenoid conductor. The pancakes are placed inside an aluminum coil casing. The coil construction and cooling conditions are quite similar to the final design of the ATLAS magnets. The B00 coil is well equipped with various sensors to measure thermal and electrodynamic properties of the conductor inside the coils. Special attention has been paid to the study of the current diffusion process and the normal zone propagation in the ATLAS conductors and windings. Special pick-up coils have been made to measure the diffusion at different currents and magnetic field values. (6 refs).

  2. Linking RESRAD-OFFSITE and HYDROGEOCHEM Model for Performance Assessment of Low-Level Radioactive Waste Disposal Facility - 13429

    SciTech Connect (OSTI)

    Lin, Wen-Sheng [Hydrotech Research Institute, National Taiwan University, Taiwan (China)] [Hydrotech Research Institute, National Taiwan University, Taiwan (China); Yu, Charley; Cheng, Jing-Jy; Kamboj, Sunita; Gnanapragasam, Emmanuel [Argonne National Laboratory, Argonne, IL 60439 (United States)] [Argonne National Laboratory, Argonne, IL 60439 (United States); Liu, Chen-Wuing [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan (China)] [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan (China); Li, Ming-Hsu [Institute of Hydrological and Oceanic Sciences, National Central University, Taiwan (China)] [Institute of Hydrological and Oceanic Sciences, National Central University, Taiwan (China)

    2013-07-01T23:59:59.000Z

    Performance assessments are crucial steps for the long-term radiological safety requirements of low-level waste (LLW) disposal facility. How much concentration of radionuclides released from the near-field to biosphere and what radiation exposure levels of an individual can influence on the satisfactory performance of the LLW disposal facility and safety disposal environment. Performance assessment methodology for the radioactive waste disposal consists of the reactive transport modeling of safety-concerned radionuclides released from the near-field to the far-field, and the potential exposure pathways and the movements of radionuclides through the geosphere, biosphere and man of which the accompanying dose. Therefore, the integration of hydrogeochemical transport model and dose assessment code, HYDROGEOCHEM code and RESRAD family of codes is imperative. The RESRAD family of codes such as RESRAD-OFFSITE computer code can evaluate the radiological dose and excess cancer risk to an individual who is exposed while located within or outside the area of initial (primary) contamination. The HYDROGEOCHEM is a 3-D numerical model of fluid flow, thermal, hydrologic transport, and biogeochemical kinetic and equilibrium reactions in saturated and unsaturated media. The HYDROGEOCHEM model can also simulate the crucial geochemical mechanism, such as the effect of redox processes on the adsorption/desorption, hydrogeochemical influences on concrete degradation, adsorption/desorption of radionuclides (i.e., surface complexation model) between solid and liquid phase in geochemically dynamic environments. To investigate the safety assessment of LLW disposal facility, linking RESRAD-OFFSITE and HYDROGEOCHEM model can provide detailed tools of confidence in the protectiveness of the human health and environmental impact for safety assessment of LLW disposal facility. (authors)

  3. Programs & User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Climate, Ocean, and Sea Ice Modeling (COSIM) Terrestrial Ecosystem and Climate Dynamics Fusion Energy Sciences Magnetic Fusion Experiments Plasma Surface...

  4. Tritium monitoring in groundwater and evaluation of model predictions for the Hanford Site 200 Area Effluent Treatment Facility

    SciTech Connect (OSTI)

    Barnett, D.B.; Bergeron, M.P.; Cole, C.R.; Freshley, M.D.; Wurstner, S.K.

    1997-08-01T23:59:59.000Z

    The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than {approximately}1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network.

  5. Recommended Method To Account For Daughter Ingrowth For The Portsmouth On-Site Waste Disposal Facility Performance Assessment Modeling

    SciTech Connect (OSTI)

    Phifer, Mark A.; Smith, Frank G. III

    2013-06-21T23:59:59.000Z

    A 3-D STOMP model has been developed for the Portsmouth On-Site Waste Disposal Facility (OSWDF) at Site D as outlined in Appendix K of FBP 2013. This model projects the flow and transport of the following radionuclides to various points of assessments: Tc-99, U-234, U-235, U-236, U-238, Am-241, Np-237, Pu-238, Pu-239, Pu-240, Th-228, and Th-230. The model includes the radioactive decay of these parents, but does not include the associated daughter ingrowth because the STOMP model does not have the capability to model daughter ingrowth. The Savannah River National Laboratory (SRNL) provides herein a recommended method to account for daughter ingrowth in association with the Portsmouth OSWDF Performance Assessment (PA) modeling.

  6. LANSCE | Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LINAC Outreach Affiliations Visiting LANSCE Facilities Isotope Production Facility Lujan Neutron Scattering Center MaRIE Proton Radiography Ultracold Neutrons Weapons Neutron...

  7. Geophysical InversionFacility

    E-Print Network [OSTI]

    Oldenburg, Douglas W.

    UBC Geophysical InversionFacility Modelling and Inversion of EMI data collected over magnetic soils of EMI data acquired at sites with magnetic soils · Geophysical Proveouts · Geonics EM63 Data · First model parameters: · Location · Orientation · Polarizabilities 4 #12;UBC Geophysical Inversion Facility

  8. Research Support Facility - A Model of Super Efficiency (RSF) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    This fact sheet published by the National Renewable Energy Laboratory discusses the lab's newest building, the Research Support Facility (RSF). The RSF is a showcase for ultra-efficient workplaces. Various renewable energy and energy efficiency features have been employed so that the building achieves a Leadership in Energy and Environmental Design (LEED) Platinum rating from the U.S. Green Building Council.

  9. Facility Microgrids

    SciTech Connect (OSTI)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01T23:59:59.000Z

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  10. Modeling of Non-Homogeneous Containment Atmosphere in the ThAI Experimental Facility Using a CFD Code

    SciTech Connect (OSTI)

    Babic, Miroslav; Kljenak, Ivo; Mavko, Borut [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia)

    2006-07-01T23:59:59.000Z

    The CFD code CFX4.4 was used to simulate an experiment in the ThAI facility, which was designed for investigation of thermal-hydraulic processes during a severe accident inside a Light Water Reactor containment. In the considered experiment, air was initially present in the vessel, and helium and steam were injected during different phases of the experiment at various mass flow rates and at different locations. The main purpose of the simulation was to reproduce the non-homogeneous temperature and species concentration distributions in the ThAI experimental facility. A three-dimensional model of the ThAI vessel for the CFX4.4 code was developed. The flow in the simulation domain was modeled as single-phase. Steam condensation on vessel walls was modeled as a sink of mass and energy using a correlation that was originally developed for an integral approach. A simple model of bulk phase change was also introduced. The calculated time-dependent variables together with temperature and concentration distributions at the end of experiment phases are compared to experimental results. (authors)

  11. National Ignition Facility computational fluid dynamics modeling and light fixture case studies

    SciTech Connect (OSTI)

    Martin, R.; Bernardin, J.; Parietti, L.; Dennison, B.

    1998-02-01T23:59:59.000Z

    This report serves as a guide to the use of computational fluid dynamics (CFD) as a design tool for the National Ignition Facility (NIF) program Title I and Title II design phases at Lawrence Livermore National Laboratory. In particular, this report provides general guidelines on the technical approach to performing and interpreting any and all CFD calculations. In addition, a complete CFD analysis is presented to illustrate these guidelines on a NIF-related thermal problem.

  12. Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro IncEnergyInformationOpenOpen

  13. Chemical modeling of arsenic(III, V) and selenium(IV, VI) adsorption by soils surrounding ash disposal facilities

    SciTech Connect (OSTI)

    Goldberg, S.; Hyun, S.; Lee, L.S. [USDA, Riverside, CA (United States). US Salinity Laboratory

    2008-11-15T23:59:59.000Z

    Leachate derived from coal ash disposal facilities is a potential anthropogenic source of As and Se to the environment. To establish a practical framework for predicting attenuation and transport of As and Se in ash leachates, the adsorption of As(III), As(V), Se(IV), and Se(VI) had been characterized in prior studies for 18 soils obtained downgradient from ash landfill sites and representing a wide range of soil properties. The constant capacitance model was applied for the first time to describe As(III), As(V), Se(IV), and Se(VI) adsorption on soils as a function of equilibrium solution As(III), As(V), Se(IV), and Se(VI) concentrations. Prior applications of the model had been restricted to describing Se(IV) and As(V) adsorption by soils as a function of solution pH. The constant capacitance model was applied for the first time to describe As(III) and Se(VI) adsorption by soils. The model was able to describe adsorption of these ions on all soils as a function of solution ion concentration by optimizing only one adjustable parameter, the anion surface complexation constant. This chemical model represents an advancement over adsorption isotherm equation approaches that contain two empirical adjustable parameters. Incorporation of these anion surface complexation constants obtained with the constant capacitance model into chemical speciation transport models will allow simulation of soil solution anion concentrations under diverse environmental and agricultural conditions.

  14. Regional Radiological Security Partnership in Southeast Asia – Increasing the Sustainability of Security Systems at the Site-Level by Using a Model Facility Approach

    SciTech Connect (OSTI)

    Chamberlain, Travis L.; Dickerson, Sarah; Ravenhill, Scott D.; Murray, Allan; Morris, Frederic A.; Herdes, Gregory A.

    2009-10-07T23:59:59.000Z

    In 2004, Australia, through the Australian Nuclear Science and Technology Organisation (ANSTO), created the Regional Security of Radioactive Sources (RSRS) project and partnered with the U.S. Department of Energy’s Global Threat Reduction Initiative (GTRI) and the International Atomic Energy Agency (IAEA) to form the Southeast Asian Regional Radiological Security Partnership (RRSP). The intent of the RRSP is to cooperate with countries in Southeast Asia to improve the security of their radioactive sources. This Southeast Asian Partnership supports objectives to improve the security of high risk radioactive sources by raising awareness of the need and developing national programs to protect and control such materials, improve the security of such materials, and recover and condition the materials no longer in use. The RRSP has utilized many tools to meet those objectives including: provision of physical protection upgrades, awareness training, physical protection training, regulatory development, locating and recovering orphan sources, and most recently - development of model security procedures at a model facility. This paper discusses the benefits of establishing a model facility, the methods employed by the RRSP, and three of the expected outcomes of the Model Facility approach. The first expected outcome is to increase compliance with source security guidance materials and national regulations by adding context to those materials, and illustrating their impact on a facility. Second, the effectiveness of each of the tools above is increased by making them part of an integrated system. Third, the methods used to develop the model procedures establishes a sustainable process that can ultimately be transferred to all facilities beyond the model. Overall, the RRSP has utilized the Model Facility approach as an important tool to increase the security of radioactive sources, and to position facilities and countries for the long term secure management of those sources.

  15. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  16. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  17. RELAP5 Model of a Two-phase ThermoSyphon Experimental Facility for Fuels and Materials Irradiation

    SciTech Connect (OSTI)

    Carbajo, Juan J [ORNL] [ORNL; McDuffee, Joel Lee [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) does not have a separate materials-irradiation flow loop and requires most materials and all fuel experiments to be placed inside a containment. This is necessary to ensure that internal contaminants such as fission products cannot be released into the primary coolant. As part of the safety basis justification, HFIR also requires that all experiments be able to withstand various accident conditions (e.g., loss of coolant) without generating vapor bubbles on the surface of the experiment in the primary coolant. As with any parallel flow system, HFIR is vulnerable to flow excursion events when vapor is generated in one of those flow paths. The effects of these requirements are to artificially increase experiment temperatures by introducing a barrier between the experimental materials and the HFIR coolant and to reduce experiment heat loads to ensure boiling doesn t occur. A new experimental facility for materials irradiation and testing in the HFIR is currently being developed to overcome these limitations. The new facility is unique in that it will have its own internal cooling flow totally independent of the reactor primary coolant and boiling is permitted. The reactor primary coolant will cool the outside of this facility without contacting the materials inside. The ThermoSyphon Test Loop (TSTL), a full scale prototype of the proposed irradiation facility to be tested outside the reactor, is being designed and fabricated (Ref. 1). The TSTL is a closed system working as a two-phase thermosyphon. A schematic is shown in Fig. 1. The bottom central part is the boiler/evaporator and contains three electric heaters. The vapor generated by the heaters will rise and be condensed in the upper condenser, the condensate will drain down the side walls and be circulated via a downcomer back into the bottom of the boiler. An external flow system provides coolant that simulates the HFIR primary coolant. The two-phase flow code RELAP5-3D (Ref. 2) is the main tool employed in this design. The model has multiple challenges: boiling, condensation and natural convection flows need to be modeled accurately.

  18. Application of EMCAS timeliness model to the safeguards facility interface: (Final report)

    SciTech Connect (OSTI)

    Eggers, R.F.; Giese, E.W.

    1987-11-01T23:59:59.000Z

    This paper provides a method of computing the probability that a nuclear material control and accounting test will detect and insider theft of special nuclear material (SNM) in a timely fashion. Often, when nuclear facilities are evaluated for their ability to defend against this threat, the detection capability of the material accounting system is considered to be late. However, a careful examination of the adversary's most likely stealth and deceit scenarios shows that several hours or more are often required to move material beyond the protected area. If material accounting tests are conducted and verified before material leaves the protected area, they are timely. This paper shows how to compute the probability of timely detection by the material accounting system.

  19. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 4. Atmospheric dispersion and deposition modeling of emissions. Draft report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume IV describes the air dispersion model used to estimate air concentrations and particle deposition, as well as the results of the modeling exercise.

  20. Interaction of waves and currents with kelp forests (Macrocystis pyrifera): Insights from a dynamically scaled laboratory model

    E-Print Network [OSTI]

    Denny, Mark

    a dynamically matched 1/25-scale physical model in a laboratory flume. In experiments with kelp mimics, waves a dynamically scaled laboratory model Johanna H. Rosman,a,* Mark W. Denny,b Robert B. Zeller,c Stephen G between model kelp and water under waves increased wake generation of turbulence, resulting in turbulent

  1. Preliminary studies of tunnel interface response modeling using test data from underground storage facilities.

    SciTech Connect (OSTI)

    Sobolik, Steven Ronald; Bartel, Lewis Clark

    2010-11-01T23:59:59.000Z

    In attempting to detect and map out underground facilities, whether they be large-scale hardened deeply-buried targets (HDBT's) or small-scale tunnels for clandestine border or perimeter crossing, seismic imaging using reflections from the tunnel interface has been seen as one of the better ways to both detect and delineate tunnels from the surface. The large seismic impedance contrast at the tunnel/rock boundary should provide a strong, distinguishable seismic response, but in practice, such strong indicators are often lacking. One explanation for the lack of a good seismic reflection at such a strong contrast boundary is that the damage caused by the tunneling itself creates a zone of altered seismic properties that significantly changes the nature of this boundary. This report examines existing geomechanical data that define the extent of an excavation damage zone around underground tunnels, and the potential impact on rock properties such as P-wave and S-wave velocities. The data presented from this report are associated with sites used for the development of underground repositories for the disposal of radioactive waste; these sites have been excavated in volcanic tuff (Yucca Mountain) and granite (HRL in Sweden, URL in Canada). Using the data from Yucca Mountain, a numerical simulation effort was undertaken to evaluate the effects of the damage zone on seismic responses. Calculations were performed using the parallelized version of the time-domain finitedifference seismic wave propagation code developed in the Geophysics Department at Sandia National Laboratories. From these numerical simulations, the damage zone does not have a significant effect upon the tunnel response, either for a purely elastic case or an anelastic case. However, what was discovered is that the largest responses are not true reflections, but rather reradiated Stoneley waves generated as the air/earth interface of the tunnel. Because of this, data processed in the usual way may not correctly image the tunnel. This report represents a preliminary step in the development of a methodology to convert numerical predictions of rock properties to an estimation of the extent of rock damage around an underground facility and its corresponding seismic velocity, and the corresponding application to design a testing methodology for tunnel detection.

  2. Model As-of Right Zoning Ordinance or Bylaw: Allowing Use of Wind Energy Facilities

    Broader source: Energy.gov [DOE]

    Note: This model ordinance was designed to provide guidance to local governments seeking to develop their own siting rules for wind turbines. While it was developed as part of a cooperative effort...

  3. System Design Description and Requirements for Modeling the Off-Gas Systems for Fuel Recycling Facilities

    SciTech Connect (OSTI)

    Daryl R. Haefner; Jack D. Law; Troy J. Tranter

    2010-08-01T23:59:59.000Z

    This document provides descriptions of the off-gases evolved during spent nuclear fuel processing and the systems used to capture the gases of concern. Two reprocessing techniques are discussed, namely aqueous separations and electrochemical (pyrochemical) processing. The unit operations associated with each process are described in enough detail so that computer models to mimic their behavior can be developed. The document also lists the general requirements for the desired computer models.

  4. X-ray spectroscopic diagnostics and modeling of polar-drive implosion experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Hakel, P., E-mail: hakel@lanl.gov; Kyrala, G. A.; Bradley, P. A.; Krasheninnikova, N. S.; Murphy, T. J.; Schmitt, M. J.; Tregillis, I. L.; Kanzleieter, R. J.; Batha, S. H.; Fontes, C. J.; Sherrill, M. E.; Kilcrease, D. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States)

    2014-06-15T23:59:59.000Z

    A series of experiments featuring laser-imploded plastic-shell targets filled with hydrogen or deuterium were performed on the National Ignition Facility. The shells (some deuterated) were doped in selected locations with Cu, Ga, and Ge, whose spectroscopic signals (indicative of local plasma conditions) were collected with a time-integrated, 1-D imaging, spectrally resolved, and absolute-intensity calibrated instrument. The experimental spectra compare well with radiation hydrodynamics simulations post-processed with a non-local thermal equilibrium atomic kinetics and spectroscopic-quality radiation-transport model. The obtained degree of agreement between the modeling and experimental data supports the application of spectroscopic techniques for the determination of plasma conditions, which can ultimately lead to the validation of theoretical models for thermonuclear burn in the presence of mix. Furthermore, the use of a lower-Z dopant element (e.g., Fe) is suggested for future experiments, since the ?2?keV electron temperatures reached in mixed regions are not high enough to drive sufficient H-like Ge and Cu line emissions needed for spectroscopic plasma diagnostics.

  5. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  6. Heating requirements and non-adiabatic surface effects for a model in the National Transonic Facility

    E-Print Network [OSTI]

    Pare, Louis Alphonse

    1984-01-01T23:59:59.000Z

    insulated, adiabatic surface. A heat transfer analysis intended to yield a conservative estimate of the non-adiabatic condition was performed. A Finite element heat transfer computer code was developed and used to compute the steady state temperature... identified regions on the surface of the model susceptible to surface heating and the magnitude of the respective surface temperatures. The addition of insulation within the cavity to limit surface heating was also investigated. The geometry...

  7. OTR measurements and modeling of the electron beam optics at the E-cooling facility

    SciTech Connect (OSTI)

    Warner, A.; Burov, Alexey V.; Carlson, K.; Kazakevich, G.; Nagaitsev, S.; Prost, L.; Sutherland, M.; Tiunov, M.; /Fermilab /Novosibirsk, IYF

    2005-11-01T23:59:59.000Z

    Optics of the electron beam accelerated in the Pelletron, intended for the electron cooling of 8.9 GeV antiprotons in the Fermilab recycler storage ring, has been studied. The beam profile parameters were measured under the accelerating section using Optical Transition Radiation (OTR) monitor. The monitor employs a highly-reflective 2 inch-diameter aluminum OTR-screen with a thickness of 5 {micro}m and a digital CCD camera. The measurements were done in a pulse-signal mode in the beam current range of 0.03-0.8 A and at pulse durations ranging from 1 {micro}s to 4 {micro}s. Differential profiles measured in pulsed mode are compared with results obtained by modeling of the DC beam dynamics from the Pelletron cathode to the OTR monitor. The modeling was done with SAM, ULTRASAM and BEAM programs. An adjustment of the magnetic fields in the lenses of the accelerating section was done in the simulations. The simulated electron beam optics downstream of the accelerating section was in good agreement with the measurements made with pulsed beam.

  8. Utility of Social Modeling for Proliferation Assessment - Enhancing a Facility-Level Model for Proliferation Resistance Assessment of a Nuclear Enegry System

    SciTech Connect (OSTI)

    Coles, Garill A.; Brothers, Alan J.; Gastelum, Zoe N.; Olson, Jarrod; Thompson, Sandra E.

    2009-10-26T23:59:59.000Z

    The Utility of Social Modeling for Proliferation Assessment project (PL09-UtilSocial) investigates the use of social and cultural information to improve nuclear proliferation assessments, including nonproliferation assessments, Proliferation Resistance (PR) assessments, safeguards assessments, and other related studies. These assessments often use and create technical information about a host State and its posture towards proliferation, the vulnerability of a nuclear energy system (NES) to an undesired event, and the effectiveness of safeguards. This objective of this project is to find and integrate social and technical information by explicitly considering the role of cultural, social, and behavioral factors relevant to proliferation; and to describe and demonstrate if and how social science modeling has utility in proliferation assessment. This report describes a modeling approach and how it might be used to support a location-specific assessment of the PR assessment of a particular NES. The report demonstrates the use of social modeling to enhance an existing assessment process that relies on primarily technical factors. This effort builds on a literature review and preliminary assessment performed as the first stage of the project and compiled in PNNL-18438. [ T his report describes an effort to answer questions about whether it is possible to incorporate social modeling into a PR assessment in such a way that we can determine the effects of social factors on a primarily technical assessment. This report provides: 1. background information about relevant social factors literature; 2. background information about a particular PR assessment approach relevant to this particular demonstration; 3. a discussion of social modeling undertaken to find and characterize social factors that are relevant to the PR assessment of a nuclear facility in a specific location; 4. description of an enhancement concept that integrates social factors into an existing, technically based nuclear facility assessment; 5. a discussion of a way to engage with the owners of the PR assessment methodology to assess and improve the enhancement concept; 6. a discussion of implementation of the proposed approach, including a discussion of functionality and potential users; and 7. conclusions from the research. This report represents technical deliverables for the NA-22 Simulations, Algorithms, and Modeling program. Specifically this report is the Task 2 and 3 deliverables for project PL09-UtilSocial.

  9. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20T23:59:59.000Z

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  11. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21T23:59:59.000Z

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  12. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20T23:59:59.000Z

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  13. Summary of Conceptual Models and Data Needs to Support the INL Remote-Handled Low-Level Waste Disposal Facility Performance Assessment and Composite Analysis

    SciTech Connect (OSTI)

    A. Jeff Sondrup; Annette L. Schafter; Arthur S. Rood

    2010-09-01T23:59:59.000Z

    An overview of the technical approach and data required to support development of the performance assessment, and composite analysis are presented for the remote handled low-level waste disposal facility on-site alternative being considered at Idaho National Laboratory. Previous analyses and available data that meet requirements are identified and discussed. Outstanding data and analysis needs are also identified and summarized. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of facility performance and of the composite performance are required to meet the Department of Energy’s Low-Level Waste requirements (DOE Order 435.1, 2001) which stipulate that operation and closure of the disposal facility will be managed in a manner that is protective of worker and public health and safety, and the environment. The corresponding established procedures to ensure these protections are contained in DOE Manual 435.1-1, Radioactive Waste Management Manual (DOE M 435.1-1 2001). Requirements include assessment of (1) all-exposure pathways, (2) air pathway, (3) radon, and (4) groundwater pathway doses. Doses are computed from radionuclide concentrations in the environment. The performance assessment and composite analysis are being prepared to assess compliance with performance objectives and to establish limits on concentrations and inventories of radionuclides at the facility and to support specification of design, construction, operation and closure requirements. Technical objectives of the PA and CA are primarily accomplished through the development of an establish inventory, and through the use of predictive environmental transport models implementing an overarching conceptual framework. This document reviews the conceptual model, inherent assumptions, and data required to implement the conceptual model in a numerical framework. Available site-specific data and data sources are then addressed. Differences in required analyses and data are captured as outstanding data needs.

  14. Advanced Modeling and Evaluation of the Response of Base-Isolated Nuclear Facility Structures to Vertical Earthquake Excitation

    E-Print Network [OSTI]

    Keldrauk, Eric Scott

    2012-01-01T23:59:59.000Z

    Structures . iii 3 Nuclear Power Plants 3.1 Nuclear FacilityKashiwazaki-Kariwa Nuclear Power Plant 3.3.1 2004 Ch¯ uetsuno seismically-isolated nuclear plant has been constructed

  15. Release of UF/sub 6/ from a ruptured Model 48Y cylinder at Sequoyah Fuels Corporation Facility: lessons-learned report

    SciTech Connect (OSTI)

    Not Available

    1986-06-01T23:59:59.000Z

    The uranium hexafluoride (UF/sub 6/) release of January 4, 1986, at the Sequoyah Fuels Corporation facility has been reviewed by a NRC Lessons-Learned Group. A Model 48Y cylinder containing UF/sub 6/ ruptured upon being heated after it was grossly overfilled. The Uf/sub 6/ released upon rupture of the cylinder reacted with airborne moisture to produce hydrofluoric acid (HF) and uranyl fluoride (UO/sub 2/F/sub 2/). One individual died from exposure to airborne HF and several others were injured. There were no significant immediate effects from exposure to uranyl fluoride. This report of the Lessons-Learned Group presents discussions and recommendations on the process, operation and design of the facility, as well as on the responses of the licensee, NRC, and other local, state and federal agencies to the incident. It also provides recommendations in the areas of NRC licensing and inspection of fuel facility and certain other NMSS licensees. The implementation of some recommendations will depend on decisions to be made regarding the scope of NRC responsibilities with respect to those aspects of the design and operation of such facilities that are not directly related to radiological safety.

  16. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04T23:59:59.000Z

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  18. aires tandar facility: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model is never exact in its attempt to simulate Nizkorodov, Sergey 156 Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies...

  19. A method for the assessment of site-specific economic impacts of commercial and industrial biomass energy facilities. A handbook and computer model

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    A handbook on ``A Method for the Assessment of Site-specific Econoomic Impacts of Industrial and Commercial Biomass Energy Facilities`` has been prepared by Resource Systems Group Inc. under contract to the Southeastern Regional Biomass Energy Program (SERBEP). The handbook includes a user-friendly Lotus 123 spreadsheet which calculates the economic impacts of biomass energy facilities. The analysis uses a hybrid approach, combining direct site-specific data provided by the user, with indirect impact multipliers from the US Forest Service IMPLAN input/output model for each state. Direct economic impacts are determined primarily from site-specific data and indirect impacts are determined from the IMPLAN multipliers. The economic impacts are given in terms of income, employment, and state and federal taxes generated directly by the specific facility and by the indirect economic activity associated with each project. A worksheet is provided which guides the user in identifying and entering the appropriate financial data on the plant to be evaluated. The WLAN multipliers for each state are included in a database within the program. The multipliers are applied automatically after the user has entered the site-specific data and the state in which the facility is located. Output from the analysis includes a summary of direct and indirect income, employment and taxes. Case studies of large and small wood energy facilities and an ethanol plant are provided as examples to demonstrate the method. Although the handbook and program are intended for use by those with no previous experience in economic impact analysis, suggestions are given for the more experienced user who may wish to modify the analysis techniques.

  20. Release of UF/sub 6/ from a ruptured model 48Y cylinder at Sequoyah Fuels Corporation Facility: lessons-learned report

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    The uranium hexafluoride (UF/sub 6/) release of January 4, 1986, at the Sequoyah Fuels Corporation facility has been reviewed by a NRC Lessons-Learned Group. A Model 48Y cylinder containing UF/sub 6/ ruptured upon being heated after it was grossly overfilled. The UF/sub 6/ released upon rupture of the cylinder reacted with airborne moisture to produce hydrofluoric acid (HF) and uranyl fluoride (UO/sub 2/F/sub 2/). One individual died from exposure to airborne HF and several others were injured. There were no significant immediate effects from exposure to uranyl fluoride. This supplement report contains NRC's response to the recommendations made in NUREG-1198 by the Lessons Learned Group. In developing a response to each of the recommendations, the staff considered actions that should be taken: (1) for the restart of the Sequoyah Fuels Facility; (2) to make near-term improvement; and (3) to improve the regulatory framework.

  1. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Progress report, August 1993--January 1994

    SciTech Connect (OSTI)

    Hendrickson, S.M. [ed.] [Lawrence Livermore National Lab., CA (United States)] [ed.; Lawrence Livermore National Lab., CA (United States); Hoffman, F.O. [Senes Oak Ridge, Inc., TN (United States). Center for Risk Analysis] [Senes Oak Ridge, Inc., TN (United States). Center for Risk Analysis

    1994-03-01T23:59:59.000Z

    This project, ``Use of International Data Sets to Evaluate and Validate Pathway Assessment Models Applicable to Exposure and Dose Reconstruction at DOE Facilities,`` grew out of several activities being conducted by the Principal Investigator Dr. F Owen Hoffman. One activity was originally part of the Chernobyl Studies Project and began as Task 7.1D, ``Internal Dose From Direct Contamination of Terrestrial Food Sources.`` The objective of Task 7.1D was to (1) establish a collaborative US USSR effort to improve and validate our methods of forecasting doses and dose commitments from the direct contamination of food sources, and (2) perform experiments and validation studies to improve our ability to predict rapidly and accurately the long-term internal dose from the contamination of agricultural soil. The latter was to include the consideration of remedial measures to block contamination of food grown on contaminated soil. The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates the activity of Task 7.1D into a multinational effort to evaluate data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two multinational studies, BIOMOVS (BIOspheric MOdel Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (VAlidation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains.

  2. Establishing nuclear facility drill programs

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

  3. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacility AMF Information Science

  4. Facility Representatives

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd ofEvaluations in Covered Facilities | Department of Energy

  5. Facility Representatives

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd ofEvaluations in Covered Facilities | Department of Energy063-2011

  6. Facility Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederalFYRANDOM DRUG TESTING The requirementFacility

  7. Final Report: Detection and Characterization of Underground Facilities by Stochastic Inversion and Modeling of Data from the New Generation of Synthetic Aperture Satellites

    SciTech Connect (OSTI)

    Foxall, W; Cunningham, C; Mellors, R; Templeton, D; Dyer, K; White, J

    2012-02-27T23:59:59.000Z

    Many clandestine development and production activities can be conducted underground to evade surveillance. The purpose of the study reported here was to develop a technique to detect underground facilities by broad-area search and then to characterize the facilities by inversion of the collected data. This would enable constraints to be placed on the types of activities that would be feasible at each underground site, providing a basis the design of targeted surveillance and analysis for more complete characterization. Excavation of underground cavities causes deformation in the host material and overburden that produces displacements at the ground surface. Such displacements are often measurable by a variety of surveying or geodetic techniques. One measurement technique, Interferometric Synthetic Aperture Radar (InSAR), uses data from satellite-borne (or airborne) synthetic aperture radars (SARs) and so is ideal for detecting and measuring surface displacements in denied access regions. Depending on the radar frequency and the acquisition mode and the surface conditions, displacement maps derived from SAR interferograms can provide millimeter- to centimeter-level measurement accuracy on regional and local scales at spatial resolution of {approx}1-10 m. Relatively low-resolution ({approx}20 m, say) maps covering large regions can be used for broad-area detection, while finer resolutions ({approx}1 m) can be used to image details of displacement fields over targeted small areas. Surface displacements are generally expected to be largest during or a relatively short time after active excavation, but, depending on the material properties, measurable displacement may continue at a decreasing rate for a considerable time after completion. For a given excavated volume in a given geological setting, the amplitude of the surface displacements decreases as the depth of excavation increases, while the area of the discernable displacement pattern increases. Therefore, the ability to detect evidence for an underground facility using InSAR depends on the displacement sensitivity and spatial resolution of the interferogram, as well as on the size and depth of the facility and the time since its completion. The methodology development described in this report focuses on the exploitation of synthetic aperture radar data that are available commercially from a number of satellite missions. Development of the method involves three components: (1) Evaluation of the capability of InSAR to detect and characterize underground facilities ; (2) inversion of InSAR data to infer the location, depth, shape and volume of a subsurface facility; and (3) evaluation and selection of suitable geomechanical forward models to use in the inversion. We adapted LLNL's general-purpose Bayesian Markov Chain-Monte Carlo procedure, the 'Stochastic Engine' (SE), to carry out inversions to characterize subsurface void geometries. The SE performs forward simulations for a large number of trial source models to identify the set of models that are consistent with the observations and prior constraints. The inverse solution produced by this kind of stochastic method is a posterior probability density function (pdf) over alternative models, which forms an appropriate input to risk-based decision analyses to evaluate subsequent response strategies. One major advantage of a stochastic inversion approach is its ability to deal with complex, non-linear forward models employing empirical, analytical or numerical methods. However, while a geomechanical model must incorporate adequate physics to enable sufficiently accurate prediction of surface displacements, it must also be computationally fast enough to render the large number of forward realizations needed in stochastic inversion feasible. This latter requirement prompted us first to investigate computationally efficient empirical relations and closed-form analytical solutions. However, our evaluation revealed severe limitations in the ability of existing empirical and analytical forms to predict deformations from undergro

  8. Horizontal and Vertical Erosion Flume

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy 2010 A File Storage UpdatesA

  9. Kennedy Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,Kas Farms WindKemp, Texas:Wind

  10. Scripps Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAir Jump to:Scotts Bluff County,

  11. Teaching Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpodsSweetwaterTMATalbotTaunton,

  12. Erosion Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLCInsulation Incentives RetrievedOhio:Erie,Erosion

  13. Two dose-estimation models CSA-N288.1 and Nureg 1.109, 1.113 - compared for chronic aquatic releases from nuclear facilities

    E-Print Network [OSTI]

    Sheppard, S C; Peterson, S R

    2000-01-01T23:59:59.000Z

    Both the Canadian Standards Association (CSA) and the United States Nuclear Regulatory Commission (US-NRC) have published guidelines for the calculation of doses to the public due to emissions from nuclear facilities. In the sale of CANDU reactors overseas, either of these guidelines may be used as part of the approval process in the recipient country. This study compares the aquatic exposure pathways described in the guidelines. These include direct consumption of contaminated water and food, and exposure to contaminated sediments. The CSA and US-NRC guidelines for estimating dilution of aquatic emissions are of a general nature and the choice of model used to quantify dilution is left to the user. The models prescribed for the different exposure pathways by these two regulatory guides are similar in many attributes. Many of the recommended parameter values are identical and many of the formulations are either identical, or become identical under general conditions. However, despite these similarities, there...

  14. from Isotope Production Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium 2:32 Isotope cancer treatment...

  15. Fuel Fabrication Facility

    National Nuclear Security Administration (NNSA)

    Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

  16. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Progress report, March--May 1994

    SciTech Connect (OSTI)

    Anspaugh, L.R.; Hendrickson, S.M. [eds.] [Lawrence Livermore National Lab., CA (United States); Hoffman, F.O. [Senes Oak Ridge, Inc., TN (United States). Center for Risk Analysis

    1994-06-01T23:59:59.000Z

    The project described in this report was the result of a Memorandum of Cooperation between the US and the former-USSR following the accident at the Chernobyl Nuclear Power Plant Unit 4. A joint program was established to improve the safety of nuclear power plants and to understand the implications of environmental releases. The task of Working Group 7 was ``to develop jointly methods to project rapidly the health effects of any future nuclear reactor accident.`` The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two multinational studies, BIOMOVS (Biospheric Model Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (Validation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains. In the future, this project will be considered separately from the Chernobyl Studies Project and the essential activities of former Task 7.1D will be folded within the broader umbrella of the BIOMOVS and VAMP projects. The Working Group Leader of Task 7.1D will continue to provide oversight for this project.

  17. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  18. Metering Best Practices Applied in the National Renewable Energy Laboratory's Research Support Facility: A Primer to the 2011 Measured and Modeled Energy Consumption Datasets

    SciTech Connect (OSTI)

    Sheppy, M.; Beach, A.; Pless, S.

    2013-04-01T23:59:59.000Z

    Modern buildings are complex energy systems that must be controlled for energy efficiency. The Research Support Facility (RSF) at the National Renewable Energy Laboratory (NREL) has hundreds of controllers -- computers that communicate with the building's various control systems -- to control the building based on tens of thousands of variables and sensor points. These control strategies were designed for the RSF's systems to efficiently support research activities. Many events that affect energy use cannot be reliably predicted, but certain decisions (such as control strategies) must be made ahead of time. NREL researchers modeled the RSF systems to predict how they might perform. They then monitor these systems to understand how they are actually performing and reacting to the dynamic conditions of weather, occupancy, and maintenance.

  19. Specifying and Testing a Multi-Dimensional Model of Publicness: An Analysis of Mental Health and Substance Abuse Treatment Facilities

    E-Print Network [OSTI]

    Merritt, Cullen

    2014-05-31T23:59:59.000Z

    This study specifies and tests a multi-dimensional model of publicness, building upon extant literature in this area. Publicness represents the degree to which an organization has "public" ties. An organization's degree ...

  20. Model As-of Right Zoning Ordinance or Bylaw: Allowing Use of Large-Scale Solar Energy Facilities

    Broader source: Energy.gov [DOE]

    Note: This model ordinance was designed to provide guidance to local governments seeking to develop siting rules for large-scale, ground-mounted solar (250 kW and above). While it was developed as...

  1. SERAPH facility capabilities

    SciTech Connect (OSTI)

    Castle, J.; Su, W.

    1980-06-01T23:59:59.000Z

    The SERAPH (Solar Energy Research and Applications in Process Heat) facility addresses technical issues concerning solar thermal energy implementation in industry. Work will include computer predictive modeling (refinement and validation), system control and evaluation, and the accumulation of operation and maintenance experience. Procedures will be consistent (to the extent possible) with those of industry. SERAPH has four major components: the solar energy delivery system (SEDS); control and data acquisition (including sequencing and emergency supervision); energy distribution system (EDS); and areas allocated for storage development and load devices.

  2. Future Fixed Target Facilities

    SciTech Connect (OSTI)

    Melnitchouk, Wolodymyr

    2009-01-01T23:59:59.000Z

    We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

  3. Experiments to investigate direct containment heating phenomena with scaled models of the Zion Nuclear Power Plant in the Surtsey Test Facility

    SciTech Connect (OSTI)

    Allen, M.D.; Pilch, M.M.; Blanchat, T.K.; Griffith, R.O. [Sandia National Labs., Albuquerque, NM (United States); Nichols, R.T. [Ktech Corp., Albuquerque, NM (United States)

    1994-05-01T23:59:59.000Z

    The Surtsey Facility at Sandia National Laboratories (SNL) is used to perform scaled experiments that simulate hypothetical high-pressure melt ejection (HPME) accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effect of specific phenomena associated with direct containment heating (DCH) on the containment load, such as the effect of physical scale, prototypic subcompartment structures, water in the cavity, and hydrogen generation and combustion. In the Integral Effects Test (IET) series, 1:10 linear scale models of the Zion NPP structures were constructed in the Surtsey vessel. The RPV was modeled with a steel pressure vessel that had a hemispherical bottom head, which had a 4-cm hole in the bottom head that simulated the final ablated hole that would be formed by ejection of an instrument guide tube in a severe NPP accident. Iron/alumina/chromium thermite was used to simulate molten corium that would accumulate on the bottom head of an actual RPV. The chemically reactive melt simulant was ejected by high-pressure steam from the RPV model into the scaled reactor cavity. Debris was then entrained through the instrument tunnel into the subcompartment structures and the upper dome of the simulated reactor containment building. The results of the IET experiments are given in this report.

  4. MOSE: a feasibility study for optical turbulence forecasts with the Meso-Nh mesoscale model to support AO facilities at ESO sites (Paranal and Armazones)

    E-Print Network [OSTI]

    Masciadri, E; 10.1117/12.925924

    2012-01-01T23:59:59.000Z

    We present very encouraging preliminary results obtained in the context of the MOSE project, an on-going study aiming at investigating the feasibility of the forecast of the optical turbulence and meteorological parameters (in the free atmosphere as well as in the boundary and surface layer) at Cerro Paranal (site of the Very Large Telescope - VLT) and Cerro Armazones (site of the European Extremely Large Telescope - E-ELT), both in Chile. The study employs the Meso-Nh atmospheric mesoscale model and aims at supplying a tool for optical turbulence forecasts to support the scheduling of the scientific programs and the use of AO facilities at the VLT and the E-ELT. In this study we take advantage of the huge amount of measurements performed so far at Paranal and Armazones by ESO and the TMT consortium in the context of the site selection for the E-ELT and the TMT to constraint/validate the model. A detailed analysis of the model performances in reproducing the atmospheric parameters (T, V, p, H, ...) near the g...

  5. A Cercla-Based Decision Model to Support Remedy Selection for an Uncertain Volume of Contaminants at a DOE Facility

    SciTech Connect (OSTI)

    Christine E. Kerschus

    1999-03-31T23:59:59.000Z

    The Paducah Gaseous Diffusion Plant (PGDP) operated by the Department of Energy is challenged with selecting the appropriate remediation technology to cleanup contaminants at Waste Area Group (WAG) 6. This research utilizes value-focused thinking and multiattribute preference theory concepts to produce a decision analysis model designed to aid the decision makers in their selection process. The model is based on CERCLA's five primary balancing criteria, tailored specifically to WAG 6 and the contaminants of concern, utilizes expert opinion and the best available engineering, cost, and performance data, and accounts for uncertainty in contaminant volume. The model ranks 23 remediation technologies (trains) in their ability to achieve the CERCLA criteria at various contaminant volumes. A sensitivity analysis is performed to examine the effects of changes in expert opinion and uncertainty in volume. Further analysis reveals how volume uncertainty is expected to affect technology cost, time and ability to meet the CERCLA criteria. The model provides the decision makers with a CERCLA-based decision analysis methodology that is objective, traceable, and robust to support the WAG 6 Feasibility Study. In addition, the model can be adjusted to address other DOE contaminated sites.

  6. A Fisheries Evaluation of the Dryden Fish Screening Facility : Annual Report 1994.

    SciTech Connect (OSTI)

    Mueller, Robert P.; Abernethy, C.Scott; Neitzel, Duane A.

    1995-04-01T23:59:59.000Z

    Effectivness was evaluated of the Dryden Fish Screening Facility in the Wenatchee Reclamation District Canal near Dryden in north central Washington State. In situ tests were conducted by releasing groups of hatchery reared salmonids of different ages and sizes. Spring chinook salmon smolts (110-165 mm) were not injured or descaled in passing through the canal forebay. Smolts were not delayed as they migrated in the canal. Most fish released at the canal headworks exited the screening facility in <4 h, with >99% of the test fish captured in the fish bypass in <24 h. Steelhead subyearlings 65-125 mm were not injured or descaled in traveling through the bypass flume and fish return pipe. Average time for steelhead subyearlings to travel through thebypass structure was 70 seconds. Small rainbow trout fry 23-27mm could pass through the 0.125-in. profile bar screen openings and were entrained in the irrigation canal; about 38% was lost to the canal within 48 h of release. Some fry stayed in the forebay and did not migrate during the tests. Wild chinook fry 36-42mm were also entrained. Estimated 34% of emergent wild chinook salmon fry passed through the profile bar screens and were entrained in the canal. Approach velocity at the Dryden screens was {ge}0.4 ft/s; low velocities through the first two screen panels indicated that vertical louvers installed behind each screen panel to balance flow were not totally effective.

  7. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  8. Texas Facilities Commission's Facility Management Strategic Plan

    E-Print Network [OSTI]

    Ramirez, J. A.

    , Texas, November 17 - 19, 2009 Facility Strategic Plan ?High Performance Building Approach ? Envelope ? Load Reduction ? (Re)Design ? Advanced Tactics ?Building Automation ? Sub-metering ? Controls ?Commissioning ? Assessment ? Continuous ?Facility... International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 Commissioning Assessment ?30 buildings ?CC Opportunities ?O&M Improvements ?Energy/Capital Improvement Opportunities ?Quick Payback Implementation ?Levering DM...

  9. Technology Transitions Facilities Database

    Broader source: Energy.gov [DOE]

    The types of R&D facilities at the DOE Laboratories available to the public typically fall into three broad classes depending on the mode of access: Designated User Facilities, Shared R&D...

  10. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models

    SciTech Connect (OSTI)

    Spangler, Lee H.; Dobeck, Laura M.; Repasky, Kevin S.; Nehrir, Amin R.; Humphries, Seth D.; Barr, Jamie L.; Keith, Charlie J.; Shaw, Joseph A.; Rouse, Joshua H.; Cunningham, Alfred B.; Benson, Sally M.; Oldenburg, Curtis M.; Lewicki, Jennifer L.; Wells, Arthur W.; Diehl, J. R.; Strazisar, Brian; Fessenden, Julianna; Rahn, Thom A.; Amonette, James E.; Barr, Jonathan L.; Pickles, William L.; Jacobson, James D.; Silver, Eli A.; Male, Erin J.; Rauch, Henry W.; Gullickson, Kadie; Trautz, Robert; Kharaka, Yousif; Birkholzer, Jens; Wielopolski, Lucien

    2010-03-01T23:59:59.000Z

    A facility has been constructed to perform controlled shallow releases of CO2 at flow rates that challenge near surface detection techniques and can be scalable to desired retention rates of large scale CO2 storage projects. Preinjection measurements were made to determine background conditions and characterize natural variability at the site. Modeling of CO2 transport and concentration in saturated soil and the vadose zone was also performed to inform decisions about CO2 release rates and sampling strategies. Four releases of CO2 were carried out over the summer field seasons of 2007 and 2008. Transport of CO2 through soil, water, plants, and air was studied using near surface detection techniques. Soil CO2 flux, soil gas concentration, total carbon in soil, water chemistry, plant health, net CO2 flux, atmospheric CO2 concentration, movement of tracers, and stable isotope ratios were among the quantities measured. Even at relatively low fluxes, most techniques were able to detect elevated levels of CO2 in the soil, atmosphere, or water. Plant stress induced by CO2 was detectable above natural seasonal variations.

  11. Small Power Production Facilities (Montana)

    Broader source: Energy.gov [DOE]

    For the purpose of these regulations, a small power production facility is defined as a facility that:...

  12. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01T23:59:59.000Z

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  13. ARM Mobile Facilities

    ScienceCinema (OSTI)

    Orr, Brad; Coulter, Rich

    2014-09-15T23:59:59.000Z

    This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

  14. DOE Designated Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor** Lawrence Berkeley National Laboratory Joint Genome Institute - Production Genomics Facility (PGF)** (joint with LLNL, LANL, ORNL and PNNL) Advanced Light Source (ALS)...

  15. Accelerator Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Facility Vitaly Yakimenko October 6-7, 2010 ATF User meeting DOE HE, S. Vigdor, ALD - (Contact) T. Ludlam Chair, Physics Department V. Yakimenko Director ATF, Accelerator...

  16. ACCELERATOR TEST FACILITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY PHYSICS DEPARTMENT Effective: 04012004 Page 1 of 2 Subject: Accelerator Test Facility - Linear Accelerator General Systems Guide Prepared by: Michael Zarcone...

  17. Carbon Fiber Technology Facility

    Broader source: Energy.gov (indexed) [DOE]

    The Carbon Fiber Technology Facility is relevant in proving the scale- up of low-cost carbon fiber precursor materials and advanced manufacturing technologies * Significant...

  18. Science and Technology Facility

    Broader source: Energy.gov (indexed) [DOE]

    IBRF Project Lessons Learned Report Integrated Biorefinery Research Facility Lessons Learned - Stage I Acquisition through Stage II Construction Completion August 2011 This...

  19. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated...

  20. Existing Facilities Program

    Broader source: Energy.gov [DOE]

    The NYSERDA Existing Facilities program merges the former Peak Load Reduction and Enhanced Commercial and Industrial Performance programs. The new program offers a broad array of different...

  1. Facility Survey & Transfer

    Broader source: Energy.gov [DOE]

    As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

  2. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InstituteSandia Photovoltaic Systems Symposium On April 15, 2014, in Concentrating Solar Power, Distribution Grid Integration, Energy, Facilities, Grid Integration, News,...

  3. MINERAL FACILITIES MAPPING PROJECT

    E-Print Network [OSTI]

    Gilbes, Fernando

    MINERAL FACILITIES MAPPING PROJECT Yadira Soto-Viruet Supervisor: David Menzie, Yolanda Fong-Sam Minerals Information Team (MIT) USGS Summer Internship 2009 U.S. Department of the Interior U.S. Geological Minerals Information Team (MIT): Annually reports on the minerals facilities of more than 180 countries

  4. A Materials Facilities Initiative -

    E-Print Network [OSTI]

    A Materials Facilities Initiative - FMITS & MPEX D.L. Hillis and ORNL Team Fusion & Materials for Nuclear Systems Division July 10, 2014 #12;2 Materials Facilities Initiative JET ITER FNSF Fusion Reactor Challenges for materials: fluxes and fluence, temperatures 50 x divertor ion fluxes up to 100 x neutron

  5. Argonne Leadership Computing Facility

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne Leadership Computing Facility Argonne Leadership Computing Facility 2010 ANNUAL REPORT S C I E N C E P O W E R E D B Y S U P E R C O M P U T I N G ANL-11/15 The Argonne Leadership Computing States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees

  6. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  7. Nanotechnology User Facility for

    E-Print Network [OSTI]

    A National Nanotechnology User Facility for Industry Academia Government #12;The National Institute of Commerce's nanotechnology user facility. The CNST enables innovation by providing rapid access to the tools new measurement and fabrication methods in response to national nanotechnology needs. www

  8. Mechanistic facility safety and source term analysis

    SciTech Connect (OSTI)

    PLYS, M.G.

    1999-06-09T23:59:59.000Z

    A PC-based computer program was created for facility safety and source term analysis at Hanford The program has been successfully applied to mechanistic prediction of source terms from chemical reactions in underground storage tanks, hydrogen combustion in double contained receiver tanks, and proccss evaluation including the potential for runaway reactions in spent nuclear fuel processing. Model features include user-defined facility room, flow path geometry, and heat conductors, user-defined non-ideal vapor and aerosol species, pressure- and density-driven gas flows, aerosol transport and deposition, and structure to accommodate facility-specific source terms. Example applications are presented here.

  9. STAR Facility Tritium Accountancy

    SciTech Connect (OSTI)

    R. J. Pawelko; J. P. Sharpe; B. J. Denny

    2007-09-01T23:59:59.000Z

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed.

  10. STAR facility tritium accountancy

    SciTech Connect (OSTI)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2008-07-15T23:59:59.000Z

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  11. DOE/NNSA Facility Management Contracts Facility Owner Contractor

    Broader source: Energy.gov (indexed) [DOE]

    NNSA Facility Management Contracts Facility Owner Contractor Award Date End Date OptionsAward Term Ultimate Potential Expiration Date Contract FY Competed Parent Companies LLC...

  12. Test Facility Daniil Stolyarov, Accelerator Test Facility User...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of the Solid-State Laser System for the Accelerator Test Facility Daniil Stolyarov, Accelerator Test Facility User's Meeting April 3, 2009 Outline Motivation for...

  13. OSHWPP model programs guide

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Descriptions of model occupational health and safety programs implemented at DOE facilities are presented.

  14. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT

    SciTech Connect (OSTI)

    Zamecnik, J.; Choi, A.

    2010-08-18T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that comes in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter offgas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of the mercury fed is expected to get oxidized, mostly as HgCl, while the remaining mercury would exist either as elemental mercury vapor (90%) or HgO (4%). Noting that the measured chloride level in the SB5 qualification sample was an order of magnitude lower than that used in the SB5 simulant, the degree of chloride shortage will be even greater. As a result, the projected level of HgCl in the actual SB5 melter exhaust will be even lower than 6% of the total mercury fed, while that of elemental mercury is likely to be greater than 90%. The homogeneous oxidation of mercury in the off-gas was deemed to be of primary importance based on the postulation that mercury and other volatile salts form submicron sized aerosols upon condensation and thus remain largely in the gas stream downstream of the quencher where they can deposit in the off-gas lines, Steam-Atomized Scrubbers (SAS), and High-Efficiency Mist Eliminator (HEME). Formation of these submicron semi-volatile salts in the condensate liquid is considered to be unlikely, so the liquid phase reactions were considered to be less important. However, subsequent oxidation of mercury in the liquid phase in the off-gas system was examined in a simplified model of the off-gas condensate. It was found that the condensate chemistry was consistent with further oxidation of elemental mercury to Hg{sub 2}Cl{sub 2} and conversion of HgO to chlorides. The results were consistent with the available experimental data. It should also be noted that the model predictions presented in this report do not include any physically entrained solids, which typically account for much of the off-gas carryover on a mass basis. The high elemental mercury vapor content predicted at the DWPF Quencher inlet means that physically entrained solids could provide the necessary surface onto which elemental mercury vapor could condense, thereby coating the solids as well as the internal surfaces of the off-gas system with mercury. Clearly, there are many process benefits to be gained by removing the steam-stripping step from the CPC c

  15. Sandia Energy - About the Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Facility About the FacilityTara Camacho-Lopez2015-05-11T19:38:37+00:00 Test-Bed Wind Turbines Allow Facility Flexibility While Providing Reliable Data in Many Regimes SWiFT...

  16. Facility effluent monitoring plan determinations for the 300 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01T23:59:59.000Z

    Facility Effluent Monitoring Plan determinations were conducted for the Westinghouse Hanford Company 300 Area facilities on the Hanford Site. These determinations have been prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans. Sixteen Westinghouse Hanford Company facilities in the 300 Area were evaluated: 303 (A, B, C, E, F, G, J and K), 303 M, 306 E, 308, 309, 313, 333, 334 A, and the 340 Waste Handling Facility. The 303, 306, 313, 333, and 334 facilities Facility Effluent Monitoring Plan determinations were prepared by Columbia Energy and Environmental Services of Richland, Washington. The 340 Central Waste Complex determination was prepared by Bovay Northwest, Incorporated. The 308 and 309 facility determinations were prepared by Westinghouse Handford Company. Of the 16 facilities evaluated, 3 will require preparation of a Facility effluent Monitoring Plan: the 313 N Fuels Fabrication Support Building, 333 N Fuels fabrication Building, and the 340 Waste Handling Facility. 26 refs., 5 figs., 10 tabs.

  17. Nuclear Power Generating Facilities (Maine)

    Broader source: Energy.gov [DOE]

    The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

  18. Pollution Control Facilities (South Carolina)

    Broader source: Energy.gov [DOE]

    For the purpose of this legislation, pollution control facilities are defined as any facilities designed for the elimination, mitigation or prevention of air or water pollution, including all...

  19. LANL | Physics | Trident Laser Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery science at Trident Laser Facility Several important discoveries and first observations have been made at the Trident Laser Facility, a unique three-beam neodymium-glass...

  20. Hazardous Waste Facilities Siting (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

  1. Sandia National Laboratories: SWIFT Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SWIFT Facility Characterizing Scaled Wind Farm Technology Facility Inflow On April 1, 2014, in Energy, News, News & Events, Partnership, Renewable Energy, Wind Energy The Scaled...

  2. User Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities Advanced Photon Source Argonne Leadership Computing Facility Argonne Tandem Linear Accelerator System Center for Nanoscale Materials Transportation Research and...

  3. Cornell University Facilities Services

    E-Print Network [OSTI]

    Manning, Sturt

    Description: The Large Animal Teaching Complex (LATC) will be a joint facility for the College of Veterinary or increase operating costs of the dairy barn; therefore, the College of Veterinary Medicine has agreed

  4. Photovoltaic Research Facilities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  5. NEW RENEWABLE FACILITIES PROGRAM

    E-Print Network [OSTI]

    's electricity from renewable resources by 2010. The Guidebook outlines eligibility and legal requirementsCALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION

  6. NETL - Fuel Reforming Facilities

    SciTech Connect (OSTI)

    None

    2013-06-12T23:59:59.000Z

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  7. NETL - Fuel Reforming Facilities

    ScienceCinema (OSTI)

    None

    2014-06-27T23:59:59.000Z

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  8. Liquidity facilities and signaling

    E-Print Network [OSTI]

    Arregui, Nicolás

    2010-01-01T23:59:59.000Z

    This dissertation studies the role of signaling concerns in discouraging access to liquidity facilities like the IMF contingent credit lines (CCL) and the Discount Window (DW). In Chapter 1, I analyze the introduction of ...

  9. Facilities Management Department Restructuring

    E-Print Network [OSTI]

    Mullins, Dyche

    ­ Zone 2 ­ Mission Bay/East Side: Includes Mission Bay, Mission Center Bldg, Buchanan Dental, Hunters Point, 654 Minnesota, Oyster Point 2. Recommendation that UCSF align all Facility Services and O

  10. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy, SWIFT, Wind Energy One of the primary roles of Sandia's Scaled Wind Farm Technology (SWiFT) facility will be to conduct detailed experiments on turbine wakes...

  11. Strategies for Facilities Renewal

    E-Print Network [OSTI]

    Good, R. L.

    psig * Plant or Service Air 90 psig * Starting Air for gas engines 220 psig * Instrument Air 80 psig * 02 - process * N2 high purity 4. Water production systems and distribution * Potable water (remote rural site) * Fire water (not treated) * Cooling... sewers 6. Fuel systems * Mixed fuel (both by-product and purchased methane) * Pipeline natural gas * Fuel oil 7. Maintenance and office facilities * Various maintenance/construction shops, stores, offices * Office facilities for technical...

  12. Mound facility physical characterization

    SciTech Connect (OSTI)

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01T23:59:59.000Z

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  13. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 71 The Radiological Research Accelerator Facility the irradiated cells. Both the microbeam and the track segment facilities continue to be utilized in various investigations of this phenomenon. The single- particle microbeam facility provides precise control of the number

  14. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 1 The Radiological Research Accelerator Facility for Radiological Research (CRR). Using the mi- crobeam facility, 10% of the cells were irradiated through particle beam as well as the first fo- cused microbeam in the new microbeam facility. · Another significant

  15. Facility Location with Hierarchical Facility Costs Zoya Svitkina #

    E-Print Network [OSTI]

    Tardos, Ã?va

    Facility Location with Hierarchical Facility Costs Zoya Svitkina # â?? Eva Tardos + Abstract We consider the facility location problem with hierarchi­ cal facility costs, and give a (4 installation costs. Shmoys, Swamy and Levi [13] gave an approxi­ mation algorithm for a two­level version

  16. Sandia National Laboratories: Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On September 19, 2013, in Computational Modeling & Simulation, Distribution Grid Integration, Energy, Facilities, Grid Integration, Modeling, Modeling & Analysis, News, News &...

  17. NREL: Energy Systems Integration Facility - Facility Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster ToStaffCapabilities TheFacility

  18. Radiation Effects Facility - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiation Effects Facility

  19. UNIVERSITY BOULEVARD FAU Research Facility

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Harriet L.Wilkes Honors College FAU Research Facility Expansion Satellite Utility Plant Chiller Lift

  20. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 4. Atmospheric dispersion and deposition modeling of emissions

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    Contents: Introduction; Technical Description of ISC-COMPDEP; Modeling Input Parameters; Discussion of Modeling Results; Summary and Major Assumptions; and References.

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31, 2005 [Facility

  2. Facilities | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007FY 2014Facilities Facilities

  3. Facility Disposition Projects

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007FY 2014Facilities Facilities

  4. Facility Data Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014Facilities FusionFacility Data Policy

  5. FACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES

    E-Print Network [OSTI]

    Laughlin, Robert B.

    to the repair of hydraulic turbine runners and large pump impellers. Reclamation operates and maintains a wideFACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES VOLUME 2-5 TURBINE REPAIR Internet Version variety of reaction and impulse turbines as well as axial flow, mixed flow, radial flow pumps and pump

  6. Facilities Management Field Services

    E-Print Network [OSTI]

    Hickman, Mark

    Facilities Management Field Services FieldStationsAnnualReport2006 #12;Cover Photo by Dr Mark Jermy coast #12; Introduction A very wet Steve Weaver emerges from the river. Ah, field work! The Government broadband, at least there is now an alternative to the telephone line. Electrical power spikes (and outages

  7. Graph algorithms experimentation facility

    E-Print Network [OSTI]

    Sonom, Donald George

    1994-01-01T23:59:59.000Z

    DRAWADJMAT 2 ~e ~l 2. ~f ~2 2 ~t ~& [g H 2 O? Z Mwd a P d ed d Aid~a sae R 2-BE& T C dbms Fig. 2. External Algorithm Handler The facility is menu driven and implemented as a client to XAGE. Our implementation follows very closely the functionality...

  8. NEW RENEWABLE FACILITIES PROGRAM

    E-Print Network [OSTI]

    for and receive production incentives, referred to as supplemental energy payments (SEPs), from the New RenewableCALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable

  9. Sandia National Laboratories Combustion Research Facility

    E-Print Network [OSTI]

    transfer systems: · high-P real-gas eqn-of-state, gas dynamics & heat transfer, solid storage & materials of demonstration facilities ­ Library of component models: · Existing: Reformers (SMR, ATR), electrolyzer, PV collector, compressor, high-P storage, pump, FC stack (efficiency vs power) · Developing: ICE gen-set, wind

  10. Alden Large Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to: navigation, searchAlcoa Jump to:

  11. Sediment Basin Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAir Jump to:ScottsSearchSt. Louis, MissouriBasin

  12. Conte Small Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSC Hydrodynamic Testing

  13. Nano Research Facility Lab Safety Manual Nano Research Facility

    E-Print Network [OSTI]

    Subramanian, Venkat

    1 Nano Research Facility Lab Safety Manual Nano Research Facility: Weining Wang Office: Brauer---chemical, biological, or radiological. Notify the lab manager, Dr. Yujie Xiong at 5-4530. Eye Contact: Promptly flush

  14. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Monthly progress reports and final report, October--December 1994

    SciTech Connect (OSTI)

    Hoffman, F.O. [Senes Oak Ridge, Inc., TN (United States). Center for Risk Analysis

    1995-04-01T23:59:59.000Z

    The objective of Task 7.lD was to (1) establish a collaborative US-USSR effort to improve and validate our methods of forecasting doses and dose commitments from the direct contamination of food sources, and (2) perform experiments and validation studies to improve our ability to predict rapidly and accurately the long-term internal dose from the contamination of agricultural soil. At early times following an accident, the direct contamination of pasture and food stuffs, particularly leafy vegetation and grain, can be of great importance. This situation has been modeled extensively. However, models employed then to predict the deposition, retention and transport of radionuclides in terrestrial environments employed concepts and data bases that were more than a decade old. The extent to which these models have been tested with independent data sets was limited. The data gathered in the former-USSR (and elsewhere throughout the Northern Hemisphere) offered a unique opportunity to test model predictions of wet and dry deposition, agricultural foodchain bioaccumulation, and short- and long-term retention, redistribution, and resuspension of radionuclides from a variety of natural and artificial surfaces. The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates the activity of Task 7.lD into a multinational effort to evaluate models and data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two studies, BIOMOVS (BIOspheric MOdel Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (VAlidation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains.

  15. The DOE ARM Aerial Facility

    SciTech Connect (OSTI)

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01T23:59:59.000Z

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  16. Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

  17. The Caterpillar Coal Gasification Facility 

    E-Print Network [OSTI]

    Welsh, J.; Coffeen, W. G., III

    1983-01-01T23:59:59.000Z

    This paper is a review of one of America's premier coal gasification installations. The caterpillar coal gasification facility located in York, Pennsylvania is an award winning facility. The plant was recognized as the 'pace setter plant of the year...

  18. Facilities Automation and Energy Management

    E-Print Network [OSTI]

    Jen, D. P.

    1983-01-01T23:59:59.000Z

    Computerized facilities automation and energy management systems can be used to maintain high levels of facilities operations efficiencies. The monitoring capabilities provides the current equipment and process status, and the analysis...

  19. Biomass Feedstock National User Facility

    Broader source: Energy.gov [DOE]

    Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

  20. Matched Index of Refraction Flow Facility

    SciTech Connect (OSTI)

    Mcllroy, Hugh

    2010-01-01T23:59:59.000Z

    What's 27 feet long, 10 feet tall and full of mineral oil (3000 gallons' worth)? If you said INL's Matched Index of Refraction facility, give yourself a gold star. Scientists use computers to model the inner workings of nuclear reactors, and MIR helps validate those models. INL's Hugh McIlroy explains in this video. You can learn more about INL energy research at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  1. Matched Index of Refraction Flow Facility

    ScienceCinema (OSTI)

    Mcllroy, Hugh

    2013-05-28T23:59:59.000Z

    What's 27 feet long, 10 feet tall and full of mineral oil (3000 gallons' worth)? If you said INL's Matched Index of Refraction facility, give yourself a gold star. Scientists use computers to model the inner workings of nuclear reactors, and MIR helps validate those models. INL's Hugh McIlroy explains in this video. You can learn more about INL energy research at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  2. Reed Reactor Facility Annual Report

    SciTech Connect (OSTI)

    Frantz, Stephen G.

    2000-09-01T23:59:59.000Z

    This is the report of the operations, experiments, modifications, and other aspects of the Reed Reactor Facility for the year.

  3. CFTF | Carbon Fiber Technology Facility | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BTRIC CNMS CSMB CFTF Working with CFTF HFIR MDF NTRC OLCF SNS Carbon Fiber Technology Facility Home | User Facilities | CFTF CFTF | Carbon Fiber Technology Facility SHARE Oak...

  4. CRAD, Nuclear Facility Construction - Structural Concrete, May...

    Broader source: Energy.gov (indexed) [DOE]

    CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 May 29, 2009 Nuclear Facility...

  5. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    175 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY #12;176 #12;177 THE RADIOLOGICAL RESEARCH the microbeam and the track-segment facilities have been utilized in various investigations. Table 1 lists-segment facility. Samples are treated with graded doses of radical scavengers to observe changes in the cluster

  6. Midtemperature solar systems test facility predictions for thermal performance based on test data. Polisolar Model POL solar collector with glass reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-05-01T23:59:59.000Z

    Thermal performance predictions based on test data are presented for the Polisolar Model POL solar collector, with glass reflector surfaces, for three output temperatures at five cities in the United States.

  7. Measuring and modeling solids movement in a large, cold fluidized bed test facility. Second quarterly report, January 1, 1980-March 31, 1980

    SciTech Connect (OSTI)

    Fitzgerald, T. J.; Mrazek, R. V.; Crane, S. D.

    1980-03-01T23:59:59.000Z

    The plume model is developed to represent a tube-filled AFBC with large particles, in which air-entrained coal enters in a number of feed ports from below. It assumes that the volatiles are rapidly released from the coal at the feed entry ports to rise as plumes of combustible vapors. Graphs have been prepared to display the predictions of this model for narrow size cuts of a typical coal feed. For a feed of wide size distribution, use these single size charts and properly sum. The lowest carbon efficiency always comes with an intermediate size of feed coal, not with very large or very small feed sizes. Thus the coal feed to the AFBC should try to avoid this critical size. The plume behavior, whether it breaks the surface of the bed, the temperature jump above the bed, concentration variations across the bed, etc., are all governed by one dimensionless group HD/u/sub 0/L/sub 2//sup 2/, which depends primarily on the spacing of feed ports in the bed. For a given coal feed, the carbon efficiency depends only on superficial gas velocity in the bed, the excess air, and elutriation rate constant. A special case and simplification of this model views the coal as being uniformly distributed all over the bed before the volatiles are released. Here analysis is very much simpler, not involving plumes and no volatiles leaving the bed. This plumeless model should reasonably represent AFBC using large feed particles, introduced across the top of the bed and then rapidly mixed by large scale convective flow of solids. The analysis shows that, even in beds with plumes, the simpler plumeless model can be used with negligible error to calculate carbon efficiency; for volatile efficiency, temperature jumps and composition variations across the bed, the complete plume model must be used.

  8. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and...

  9. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations Waste Characterization, Reduction, and Repackaging Facility (WCRRF)...

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature Stories and8, 2015 [Facility News] Flynn,

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature Stories and8, 2015 [Facility News]

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature Stories and8, 2015 [Facility News]June 15,

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature Stories and8, 2015 [Facility News]June

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature Stories and8, 2015 [Facility

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature Stories and8, 2015 [FacilitySeptember 30,

  16. NREL: Photovoltaics Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure TheSolar1855Facilities NREL's

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune 30, 2010ARM31,

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune 30, 2010ARM31,5,

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune 30,

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune 30,YouTube©

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune 30,YouTube©Aide

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31, 2005

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31, 2005November

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31, 2005November8,

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31,

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31,15, 2005

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31,15,

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31,15,October 15,

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31,15,October

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under Control: Scientists

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under Control: Scientists20,

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under Control:

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under Control:From Coastal

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under Control:From

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under Control:FromAugust 31,

  18. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51InstrumentsCentral Facility SGP Related Links

  19. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51InstrumentsCentral Facility SGP RelatedExtended

  20. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51InstrumentsCentral Facility SGPIntermediate

  1. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate

  2. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate3 ARM

  3. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate3 ARM

  4. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate3

  5. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate38

  6. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate383

  7. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM

  8. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARMIngest Status

  9. WIPP - Public Reading Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural Public Reading Facilities/Electronic

  10. User Facilities | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSite Map SiteResearchMichiganAboutFacilities at

  11. NREL: Biomass Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemical and Catalyst ScienceFacilities At

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 2005 [Facility News]

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 2005 [Facility News]28,

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 2005 [Facility News]28,One

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 2005 [Facility

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 2005 [FacilityNew

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 2005 [FacilityNewMobile

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 2005 [FacilityNewMobile15,

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 200515, 2004 [Facility

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15, 200515, 2004 [FacilityNew

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15,15, 2004 [Facility News]

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15,15, 2004 [Facility

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch 15,15, 2004 [FacilityAugust

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility News] Data

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility News] Data23,

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility News]

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility News]31, 2004

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility News]31,

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility30, 2004

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility30, 2004New

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility30,

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility30,October 27,

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility30,October

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility30,OctoberNew

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 2011 [Facility30,OctoberNew,

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 201122, 2011 [Facility News]

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 201122, 2011 [Facility

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 201122, 2011 [Facility22,

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1, 201122, 2011 [Facility22,14,

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1,October 16, 2007 [Facility

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1,October 16,13, 2012 [Facility

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM Education TeamARMMarch1,OctoberAprilStaging Facility

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News] Beat Schmid

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News] Beat

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News] Beat30, 2008

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News] Beat30,

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News]

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News]June 28, 2013

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News]June 28,

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News]June 28,July

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News]June

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility News]JuneDecember

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [Facility

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityApril 30, 2008

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityApril 30, 200815,

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityApril 30, 200815,31,

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityApril 30,

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityApril 30,Farewell to

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityApril 30,Farewell

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityApril 30,Farewell15,

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityApril

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityAprilApril 30, 2008

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityAprilApril 30,

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityAprilApril

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007 [FacilityAprilAprilFebruary

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007April 15, 2008 [Facility News]

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007April 15, 2008 [Facility

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007April 15, 2008 [FacilityJune

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007April 15,23, 2007 [Facility

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007April 15,23, 2007 [Facility21,

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007April 15,23,, 2009 [Facility

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3, 2007April 15,23,, 2009 [Facility5,

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3,January 11, 2007 [Facility News]

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3,January 11, 2007 [Facility

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3,January 11, 2007 [Facility3, 2015

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3,January 11, 2007 [Facility3,

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3,January 11, 2007 [Facility3,3, 2015

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3,January 11, 2007 [Facility3,3,

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3,January 11, 2007 [Facility3,3,April

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugust 3,JanuarySeptember 30, 2009 [Facility

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM EducationAugustMultifilterAugust 31, 2008 [Facility

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA Site Manager Named;

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA Site Manager

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA Site ManagerFebruary

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA Site

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA SiteSeptember 15, 2008

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA SiteSeptember 15,

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA SiteSeptember 15,7,

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA SiteSeptember

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA SiteSeptemberDiffuse

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSA

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping It Up With

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping It Up With15,

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping It Up

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping It Up15, 2006

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping It Up15,

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping It Up15,New

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping It

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping ItJanuary 15,

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping ItJanuary

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping31, 2006

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping31,

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New NSAMapping31,Preparations

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] New

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared Sky Imager Takes a

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared Sky Imager Takes

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared Sky Imager

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared Sky ImagerFebruary

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared Sky

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared SkyMay 31, 2006

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared SkyMay 31,

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared SkyMay 31,31, 2006

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared SkyMay 31,31,

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared SkyMay 31,31,March

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared SkyMay

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared SkyMayApril 30,

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared SkyMayApril

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared SkyMayAprilApril

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfrared

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfraredMarch 27, 2010

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfraredMarch 27, 2010April

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfraredMarch 27,

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfraredMarch 27,April 15,

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfraredMarch 27,April

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfraredMarch

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfraredMarch30, 2010

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfraredMarch30, 201026,

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfraredMarch30,

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfraredMarch30,April 30,

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfraredMarch30,April

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News] NewInfraredMarch30,AprilARM

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUS Flight Operations

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUS Flight

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUS Flight31, 2010

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUS Flight31, 2010January

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUS Flight31,

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUS Flight31,January 15,

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUS Flight31,January

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUS Flight31,January10,

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUS

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune 30, 2010

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune 30, 2010ARM Kiosk

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune 30, 2010ARM

  7. Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederal FacilityAprilAre Earths Rare?OakLea

  8. Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederal FacilityAprilAre Earths Rare?OakLea Argonne

  9. Integrated Facilities Disposition Program

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved onIngrid Milton SEMIANNUALC:\DocumentsFacilities

  10. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Caterpillar, Sandia CRADA Opens Door to Multiple Research Projects On April 17, 2013, in Capabilities, Computational Modeling & Simulation, CRF, Materials Science, Modeling,...

  11. Studsvik Processing Facility Update

    SciTech Connect (OSTI)

    Mason, J. B.; Oliver, T. W.; Hill, G. M.; Davin, P. F.; Ping, M. R.

    2003-02-25T23:59:59.000Z

    Studsvik has completed over four years of operation at its Erwin, TN facility. During this time period Studsvik processed over 3.3 million pounds (1.5 million kgs) of radioactive ion exchange bead resin, powdered filter media, and activated carbon, which comprised a cumulative total activity of 18,852.5 Ci (6.98E+08 MBq). To date, the highest radiation level for an incoming resin container has been 395 R/hr (3.95 Sv/h). The Studsvik Processing Facility (SPF) has the capability to safely and efficiently receive and process a wide variety of solid and liquid Low Level Radioactive Waste (LLRW) streams including: Ion Exchange Resins (IER), activated carbon (charcoal), graphite, oils, solvents, and cleaning solutions with contact radiation levels of up to 400 R/hr (4.0 Sv/h). The licensed and heavily shielded SPF can receive and process liquid and solid LLRWs with high water and/or organic content. This paper provides an overview of the last four years of commercial operations processing radioactive LLRW from commercial nuclear power plants. Process improvements and lessons learned will be discussed.

  12. PUREX facility hazards assessment

    SciTech Connect (OSTI)

    Sutton, L.N.

    1994-09-23T23:59:59.000Z

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  13. FRACTURING FLUID CHARACTERIZATION FACILITY

    SciTech Connect (OSTI)

    Subhash Shah

    2000-08-01T23:59:59.000Z

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  14. User`s Manual for the SOURCE1 and SOURCE2 Computer Codes: Models for Evaluating Low-Level Radioactive Waste Disposal Facility Source Terms (Version 2.0)

    SciTech Connect (OSTI)

    Icenhour, A.S.; Tharp, M.L.

    1996-08-01T23:59:59.000Z

    The SOURCE1 and SOURCE2 computer codes calculate source terms (i.e. radionuclide release rates) for performance assessments of low-level radioactive waste (LLW) disposal facilities. SOURCE1 is used to simulate radionuclide releases from tumulus-type facilities. SOURCE2 is used to simulate releases from silo-, well-, well-in-silo-, and trench-type disposal facilities. The SOURCE codes (a) simulate the degradation of engineered barriers and (b) provide an estimate of the source term for LLW disposal facilities. This manual summarizes the major changes that have been effected since the codes were originally developed.

  15. Regulatory facility guide for Ohio

    SciTech Connect (OSTI)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

    1994-02-28T23:59:59.000Z

    The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

  16. Sandia Energy - Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Innovation (CIRI), Computational Modeling & Simulation, Energy, Energy Storage, Energy Storage Systems, Facilities, HITEC, Infrastructure Security,...

  17. Federal Facility Reporting and Data

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides information and tools to help agencies report annual energy and water consumption and resource management efforts within Federal facilities.

  18. Storage Space Request Aurora Facility

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Storage Space Request Aurora Facility (1855 Marika) Department and Division: _______________________________________________________ Storage Contact: ____________________________________________________________ Name Phone and fax Fiscal Footage required: ______________ Brief Description of storage items

  19. Manufacturing Demonstration Facility Workshop Videos

    Broader source: Energy.gov [DOE]

    Session recordings from the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois, on March 12, 2012, and simultaneously broadcast as a webinar.

  20. Toda Cathode Materials Production Facility

    Broader source: Energy.gov (indexed) [DOE]

    Cathode Materials Production Facility 2013 DOE Vehicle Technologies Annual Merit Review May 13-17, 2013 David Han, Yasuhiro Abe Toda America Inc. Project ID: ARRAVT017...

  1. Listing of Defense Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Rocky Flats Environmental Technology Site, including the Oxnard Facility Savannah River Site Los Alamos National Laboratory Sandia National Laboratory Lawrence Livermore...

  2. Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Research and Development manages and oversees the operation of an exceptional suite of science, technology and engineering facilities that support and further the national...

  3. Reed Reactor Facility. Final report

    SciTech Connect (OSTI)

    Frantz, S.G.

    1994-12-31T23:59:59.000Z

    This report discusses the operation and maintenance of the Reed Reactor Facility. The Reed reactor is mostly used for education and train purposes.

  4. Massachusetts Large Blade Test Facility Final Report

    SciTech Connect (OSTI)

    Rahul Yarala; Rob Priore

    2011-09-02T23:59:59.000Z

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  5. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31T23:59:59.000Z

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  6. FMIT facility control system

    SciTech Connect (OSTI)

    Suyama, R.M.; Machen, D.R.; Johnson, J.A.

    1981-01-01T23:59:59.000Z

    The control system for the Fusion Materials Irradiation Test (FMIT) Facility, under construction at Richland, Washington, uses current techniques in distributed processing to achieve responsiveness, maintainability and reliability. Developmental experience with the system on the FMIT Prototype Accelerator (FPA) being designed at the Los Alamos National Laboratory is described as a function of the system's design goals and details. The functional requirements of the FMIT control system dictated the use of a highly operator-responsive, display-oriented structure, using state-of-the-art console devices for man-machine communications. Further, current technology has allowed the movement of device-dependent tasks into the area traditionally occupied by remote input-output equipment; the system's dual central process computers communicate with remote communications nodes containing microcomputers that are architecturally similar to the top-level machines. The system has been designed to take advantage of commercially available hardware and software.

  7. Department of Residential Facilities Facilities Student Employment Office

    E-Print Network [OSTI]

    Hill, Wendell T.

    Department of Residential Facilities Facilities Student Employment Office 1205E Leonardtown Service Building College Park, MD 20742 (301) 314-3486 APPLICATION FOR STUDENT EMPLOYMENT This application: __________________________________ **NOTE: You must be enrolled at a U of MD Systems Campus to be eligible for employment in the Fall

  8. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models

    SciTech Connect (OSTI)

    Spangler, L.H.; Dobeck, L.M.; Nehrir, A.; Humphries, S.; Barr, J.; Keith, C.; Shaw, J.; Rouse, J.; Cunningham, A.; Benson, S.; Repasky, K.S.; Lewicki, J.; Wells, A.; Diehl, R.; Strazisar, B.; Fessenden, J.; Rahn, T.; Amonette, J.; Barr, J.; Pickles, W.; Jacobson, J.; Silver, E.; Male, E.; Rauch, H.; Gullickson, K.; Trautz, R.; Kharaka, Y.; Birkholzer, J.T.; Wielopolski, L.; Oldenburg, C.M.

    2009-10-20T23:59:59.000Z

    A controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO2 transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO2 release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO2 transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO2 from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U.S. Geological Survey investigated movement of CO2 through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented.

  9. Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering

    E-Print Network [OSTI]

    , supplies at facilities, or watering concerns to both the greenhouse manager, Shane Merrell Greenhouses is supplemented by heating and cooling from the main Painter Building. The smaller Painter

  10. Big Explosives Experimental Facility - BEEF

    ScienceCinema (OSTI)

    None

    2015-01-07T23:59:59.000Z

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  11. Alpha Gamma Hot Cell Facility

    E-Print Network [OSTI]

    Kemner, Ken

    -reactor nuclear facility being decommissioned. It is also used to support the de-inventory of other facilities PROGRAM Contact: Yung Y. Liu Senior Nuclear Engineer, Section Manager Argonne National Laboratory yyliu on the Argonne site. As part of decommissioning, large quantities of radioactive material and waste are being

  12. Energy Systems Integration Facility Overview

    SciTech Connect (OSTI)

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-02-28T23:59:59.000Z

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  13. Licensed fuel facility status report

    SciTech Connect (OSTI)

    Joy, D.; Brown, C.

    1993-04-01T23:59:59.000Z

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related NRC investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233.

  14. Thomas Jefferson National Accelerator Facility

    SciTech Connect (OSTI)

    Joseph Grames, Douglas Higinbotham, Hugh Montgomery

    2010-09-01T23:59:59.000Z

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  15. COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES

    E-Print Network [OSTI]

    Krovi, Venkat

    3.E.1 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURES for ACCESS, and the correct way to leave the facility. 2.0 Scope: This procedure applies to all CMLAF staff, maintenance, ENTRY, AND EXIT PROCEDURES FOR THE ANIMAL BIOSAFETY SUITE ROOM 305 BEB 1.0 Purpose: The Biosafety suite

  16. COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES

    E-Print Network [OSTI]

    Krovi, Venkat

    1.E.1 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURE for ENTRY RODENT FACILITY 1. I have read, understand, and will follow the Standard Operating Procedures listed: This procedure applies to all CMLAF, principal investigator and maintenance personnel 3.0 Procedure: 3

  17. Energy Systems Integration Facility Overview

    ScienceCinema (OSTI)

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-06-10T23:59:59.000Z

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  18. Big Explosives Experimental Facility - BEEF

    SciTech Connect (OSTI)

    None

    2014-10-31T23:59:59.000Z

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  19. End points for facility deactivation

    SciTech Connect (OSTI)

    Szilagyi, A.P. [Dept. of Energy, Germantown, MD (United States); Negin, C.A. [Oak Technologies, Washington Grove, MD (United States); Stefanski, L.D. [Westinghouse Hanford, Richland, WA (United States)

    1996-12-31T23:59:59.000Z

    DOE`s Office of Nuclear Material and Facility Stabilization mission includes deactivating surplus nuclear facilities. Each deactivation project requires a systematic and explicit specification of the conditions to be established. End Point methods for doing so have been field developed and implemented. These methods have worked well and are being made available throughout the DOE establishment.

  20. Facility worker technical basis document

    SciTech Connect (OSTI)

    EVANS, C.B.

    2003-03-21T23:59:59.000Z

    This report documents the technical basis for facility worker safety to support the Tank Farms Documented Safety Analysis and described the criteria and methodology for allocating controls to hazardous conditions with significant facility worker consequences and presents the results of the allocation.

  1. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    J.F. Beesley

    2005-04-21T23:59:59.000Z

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

  2. Canastota Renewable Energy Facility Project

    SciTech Connect (OSTI)

    Blake, Jillian; Hunt, Allen

    2013-12-13T23:59:59.000Z

    The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

  3. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 1. Executive summary

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    Contents: Introduction and Summary of Results; Facility Background; Facility Emissions; Atmospheric Dispersion and Deposition Modeling of Emissions; Human Health Risk Assessment; Screening Ecological Risk Assessment; Accident Analysis; Additional Analysis in Response to Peer Review Recommendations; References.

  4. Neutron Scattering Facilities | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Neutron Scattering Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources...

  5. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commissioner, Dave Jones, recognized the value of Sandia's climate-impact modeling and analysis work, led by Stephen Conrad (manager of Sandia's Resilience and Regulatory...

  6. PFBC HGCU Test Facility

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    This is the thirteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1992. The following are highlights of the activities that occurred during this report period: Initial operation of the Advanced Particle Filter (APF) occurred during this quarter. The following table summarizes the operating dates and times. HGCU ash lockhopper valve plugged with ash. Primary cyclone ash pluggage. Problems with the coal water paste. Unit restarted warm 13 hours later. HGCU expansion joint No. 7 leak in internal ply of bellows. Problems encountered during these initial tests included hot spots on the APP, backup cyclone and instrumentation spools, two breakdowns of the backpulse air compressor, pluggage of the APF hopper and ash removal system, failure (breakage) of 21 filter candles, leakage of the inner ply of one (1) expansion joint bellows, and numerous other smaller problems. These operating problems are discussed in detail in a subsequent section of this report. Following shutdown and equipment inspection in December, design modifications were initiated to correct the problems noted above. The system is scheduled to resume operation in March, 1993.

  7. Power Systems Development Facility

    SciTech Connect (OSTI)

    None

    2003-07-01T23:59:59.000Z

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  8. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2004-04-30T23:59:59.000Z

    This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

  9. Facility effluent monitoring plan for the tank farm facility

    SciTech Connect (OSTI)

    Crummel, G.M.

    1998-05-18T23:59:59.000Z

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  10. Hanford surplus facilities programs facilities listings and descriptions. Revision 1

    SciTech Connect (OSTI)

    Kiser, S.K.; Witt, T.L.

    1994-01-01T23:59:59.000Z

    On the Hanford Site, many surplus facilities exist (including buildings, stacks, tanks, cribs, burial grounds, and septic systems) that are scheduled to be decommissioned. Many of these facilities contain large inventories of radionuclides, which present potential radiological hazards on and off the Hanford Site. Some structures with limited structural deterioration present potential radiological and industrial safety hazards to personnel. Because of the condition of these facilities, a systematic surveillance and maintenance program is performed to identify and correct potential hazards to personnel and the environment until eventual decommissioning operations are completed.

  11. Radiological assessments for the National Ignition Facility

    SciTech Connect (OSTI)

    Hong, Kou-John; Lazaro, M.A.

    1996-08-01T23:59:59.000Z

    The potential radiological impacts of the National Ignition Facility (NIF), a proposed facility for fusion ignition and high energy density experiments, were assessed for five candidate sites to assist in site selection. The GENII computer program was used to model releases of radionuclides during normal NIF operations and a postulated accident and to calculate radiation doses to the public. Health risks were estimated by converting the estimated doses into health effects using a standard cancer fatality risk factor. The greatest calculated radiation dose was less than one thousandth of a percent of the dose received from natural background radiation; no cancer fatalities would be expected to occur in the public as the result of normal operations. The highest dose conservatively estimated to result from a postulated accident could lead to one in one million risk of cancer.

  12. CHERNOFF HALL CHEMISTRY FACILITY, Queen's University 2003 R&D Magazine Laboratory of the Year

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    Total) · Avoid placing building air intakes near neighbouring building pollution sources. · High plume of the building in a water flume to simulate exhaust air dispersion patterns. THE NUMBERS Gross Area: 14,247 m2 · Capital Cost Effectiveness · Flexibility · Maintainability · Avoid Campus Pollution PROJECT TEAM Client

  13. Facility effluent monitoring plan for the plutonium uranium extraction facility

    SciTech Connect (OSTI)

    Wiegand, D.L.

    1994-09-01T23:59:59.000Z

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  14. Irradiation facilities at the Los Alamos Meson Physics Facility

    SciTech Connect (OSTI)

    Sandberg, V.

    1990-01-01T23:59:59.000Z

    The irradiation facilities for testing SSC components and detector systems are described. Very high intensity proton, neutron, and pion fluxes are available with beam kinetic energies of up to 800 MeV. 4 refs., 12 figs., 2 tabs.

  15. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    SciTech Connect (OSTI)

    Greager, E.M.

    1997-12-11T23:59:59.000Z

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years.

  16. Hazardous Waste Facility Siting Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level...

  17. Organized By : Supercomputing Facility for Bioinformatics &

    E-Print Network [OSTI]

    Jayaram, Bhyravabotla

    Organized By : Supercomputing Facility for Bioinformatics & Computational Biology, IIT Delhi Phone Facility for Bioinformatics & Computational Biology, 3rd Floor, Synergy Building, Indian Institute the 10th Anniversary of Supercomputer Facility for Bioinformatics and Computational Biology, IIT Delhi

  18. User's guide to DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    The Department of Energy's research laboratories represent valuable, often unique, resources for university and industrial scientists. It is DOE policy to make these laboratories and facilities available to qualified scientists. The answers to such questions as who are eligible, what and where are the facilities, what is the cost, when can they be used, are given. Data sheets are presented for each facility to provide information such as location, user contact, description of research, etc. A subject index refers to areas of research and equipment available.

  19. PLANS FOR FUTURE MEGAWATT FACILITIES.

    SciTech Connect (OSTI)

    ROSER,T.

    2004-10-13T23:59:59.000Z

    Proton accelerators producing beam powers of up to 1 MW are presently either operating or under construction and designs for Multi-Megawatt facilities are being developed. High beam power has applications in the production of high intensity secondary beams of neutrons, muons, kaons and neutrinos as well as in nuclear waste transmutation and accelerator-driven sub-critical reactors. Each of these applications has additional requirements on beam energy and duty cycle. This paper will review how present designs for future Multi-Megawatt facilities meet these requirements and will also review the experience with present high power facilities.

  20. High-Average Power Facilities

    SciTech Connect (OSTI)

    Dowell, David H.; /SLAC; Power, John G.; /Argonne

    2012-09-05T23:59:59.000Z

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  1. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01T23:59:59.000Z

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  2. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    Unknown

    2002-11-01T23:59:59.000Z

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  3. Six-Degree-of-Freedom Sensor Fish Design: Governing Equations and Motion Modeling

    SciTech Connect (OSTI)

    Deng, Zhiqun; Richmond, Marshall C.; Simmons, Carver S.; Carlson, Thomas J.

    2004-08-19T23:59:59.000Z

    The Sensor Fish device is being used at Northwest hydropower projects to better understand the conditions fish experience during passage through hydroturbines and other dam bypass alternatives. Since its initial development in 1997, the Sensor Fish has undergone numerous design changes to improve its function and extend the range of its use. The most recent Sensor Fish design, the three degree of freedom (3DOF) device, has been used successfully to characterize the environment fish experience when passing through turbines, in spill, or in engineered fish bypass facilities at dams. Pacific Northwest National Laboratory (PNNL) is in the process of redesigning the current 3DOF Sensor Fish device package to improve its field performance. Rate gyros will be added to the new six degree of freedom (6DOF) device so that it will be possible to observe the six linear and angular accelerations of the Sensor Fish as it passes the dam. Before the 6DOF Sensor Fish device can be developed and deployed, governing equations of motion must be developed in order to understand the design implications of instrument selection and placement within the body of the device. In this report, we describe a fairly general formulation for the coordinate systems, equations of motion, force and moment relationships necessary to simulate the 6DOF movement of an underwater body. Some simplifications are made by considering the Sensor Fish device to be a rigid, axisymmetric body. The equations of motion are written in the body-fixed frame of reference. Transformations between the body-fixed and interial reference frames are performed using a formulation based on quaternions. Force and moment relationships specific to the Sensor Fish body are currently not available. However, examples of the trajectory simulations using the 6DOF equations are presented using existing low and high-Reynolds number force and moment correlations. Animation files for the test cases are provided in an attached CD. The next phase of the work will focus on the refinement and application of the 6DOF simulator developed in this project. Experimental and computational studies are planned to develop a set of force and moment relationships that are specific to the Sensor Fish body over the range of Reynolds numbers that it experiences. Lab testing of prototype 6DOF Sensor Fish will also allow for refinement of the trajectory simulations through comparison with observations in test flumes. The 6DOF simulator will also be an essential component in tools to analyze field data measured using the next generation Sensor Fish. The 6DOF simulator will be embedded in a moving-machinery computational fluid dynamics (CFD) model for hydroturbines to numerically simulate the 6DOF Sensor Fish.

  4. Facility effluent monitoring plan for 242-A evaporator facility

    SciTech Connect (OSTI)

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01T23:59:59.000Z

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

  5. Facilities: NHMFL 14.5 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Citation: A Pseudoatomic Model of the COPII Cage Obtained from Cryo-Electron Microscopy and Mass Spectrometry,

    E-Print Network [OSTI]

    Weston, Ken

    Facilities: NHMFL 14.5 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Citation ultrahigh-resolution 14.5 tesla Fourier transform ion cyclotron resonance mass spectrometry. The Mag

  6. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...

    Office of Environmental Management (EM)

    Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility October...

  7. Item No. 3 process facilities cost estimates and schedules for facilities capability assurance program nuclear facilities modernization - FY 1989 line item, authorization No. D79

    SciTech Connect (OSTI)

    NONE

    1989-07-01T23:59:59.000Z

    Data is presented concerning cost estimates and schedules for process facilities and nuclear facilities modernization.

  8. Base closure: Environmental concerns for transfer of a ``GOCO`` facility

    SciTech Connect (OSTI)

    Henderson, M.R.; Dent, M.J.; McLaurin, E.S.

    1994-12-31T23:59:59.000Z

    Faced with funding restrictions, cutbacks and fiscal restraints, the United States Department of Defense (DOD), over the next few years will be required to downsize its military personnel and equipment and divest or transfer some of its facilities. A program of procedures used to assess the environmental conditions of a government facility for transfer to non-federal ownership is required. An environmental site assessment or an Environmental Baseline Survey (EBS) is a program that can be used to evaluate the environmental conditions at a facility and whether it is in compliance with existing environmental regulations. An EBS will be required at both the large military bases and the smaller Government Owned Contractor Operated (GOCO) facilities. This presentation focuses on a case study of an EBS conducted at a GOCO facility in the upper midwest. The unique challenge offered at this site, as opposed to other military bases, is that the property consisted primarily of manufacturing areas. The use of hazardous substances and petroleum products by several defense contractors over the years resulted in environmental concerns that may have affected soil and ground water. Since this site is one of the first divestitures of a GOCO facility, the data collection process, environmental findings, recommendations and unique problems associated with a GOCO facility can serve as a model for future GOCO divestitures.

  9. Field's Point Wastewater Treatment Facility (Narragansett Bay...

    Open Energy Info (EERE)

    Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission)...

  10. Montana Major Facility Siting Act (Montana)

    Broader source: Energy.gov [DOE]

    The Montana Major Facility Siting Act aims to protect the environment from unreasonable degradation caused by irresponsible siting of electric transmission, pipeline, and geothermal facilities. The...

  11. Office of Nuclear Facility Safety Programs

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

  12. Independent Oversight Assessment, Salt Waste Processing Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department...

  13. Former Workers Medical Facilities with Experience Evaluating...

    Office of Environmental Management (EM)

    Workers Medical Facilities with Experience Evaluating Chronic Beryllium Disease Former Workers Medical Facilities with Experience Evaluating Chronic Beryllium Disease April 2011...

  14. Scenes from Argonne's Materials Engineering Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scenes from Argonne's Materials Engineering Research Facility Share Description B-roll for the Materials Engineering Research Facility Topic Energy Energy usage Energy storage...

  15. ICF Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Defense Programs Research, Development, Test, and Evaluation Inertial Confinement Fusion ICF Facilities ICF Facilities Nike mirror array and lens array ICF operates a set...

  16. Biosafety Facilities - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G 151.1-5, Biosafety Facilities by David Freshwater Functional areas: Defense Nuclear Facility Safety and Health Requirement, Safety and Security, The Guide assists DOENNSA field...

  17. Uranium Processing Facility Site Readiness Subproject Completed...

    National Nuclear Security Administration (NNSA)

    Field Offices Welcome to the NNSA Production Office NPO News Releases Uranium Processing Facility Site Readiness Subproject Completed ... Uranium Processing Facility Site...

  18. Voluntary Protection Program Onsite Review, Facility Engineering...

    Energy Savers [EERE]

    Voluntary Protection Program Onsite Review, Facility Engineering Services KCP, LLC - September 2012 Voluntary Protection Program Onsite Review, Facility Engineering Services KCP,...

  19. Voluntary Protection Program Onsite Review, Facility Engineering...

    Office of Environmental Management (EM)

    Facility Engineering Services KCP, LLC - November 2008 Voluntary Protection Program Onsite Review, Facility Engineering Services KCP, LLC - November 2008 November 2008 This report...

  20. Carbon Fiber Pilot Plant and Research Facilities

    Broader source: Energy.gov (indexed) [DOE]

    for the U.S. Department of Energy Presentationname Carbon Fiber Facilities Materials Carbon Fiber Research Facility Type Production Fiber Types Tow Size Tensioning Line...

  1. Chapter 47 Solid Waste Facilities (Kentucky)

    Broader source: Energy.gov [DOE]

    This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or facilities, and the standards for certification of...

  2. CMR: Chemistry and Metallurgy Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMR: Chemistry and Metallurgy Research Facility CMR: Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR)...

  3. Freestall Facilities in Central Texas

    E-Print Network [OSTI]

    Stokes, Sandra R.; Gamroth, Mike

    1999-06-04T23:59:59.000Z

    surveyed recently for infor- L-5311 5-99 Freestall Dairy Facilities in Central Texas Sandy Stokes and Mike Gamroth* *Extension Dairy Specialist, Texas A&M University System, and Extension Dairy Specialist, Oregon State University. Freestall housing...

  4. Associate Vice President Facilities Management

    E-Print Network [OSTI]

    Milchberg, Howard

    Operations & Energy Services Jack Baker Executive Director Building & Landscape Maintenance Harry Teabout III Safety HVAC Systems HVAC Systems Administration/ Signs & Graphics Administration/ Signs & Graphics Piped-Campus Facilities Director Department of Engineering & Energy VACANT Energy Management Energy Management Engineering

  5. Utility Lines and Facilities (Montana)

    Broader source: Energy.gov [DOE]

    These regulations apply to the construction of utility and power lines and facilities. They address the use of public right-of-ways for such construction, underground power lines, and construction...

  6. Solid Waste Disposal Facilities (Massachusetts)

    Broader source: Energy.gov [DOE]

    These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the...

  7. Solid Waste Facilities Regulations (Massachusetts)

    Broader source: Energy.gov [DOE]

    This chapter of the Massachusetts General Laws governs the operation of solid waste facilities. It seeks to encourage sustainable waste management practices and to mitigate adverse effects, such as...

  8. Homeland Security Issues for Facilities

    E-Print Network [OSTI]

    McClure, J. D.; Fisher, D.; Fenter, T.

    2004-01-01T23:59:59.000Z

    more aware of safety, security, and protecting property and people should similar incidents occur in the future. The initial steps in facility protection are identifying potential threats and evaluating the condition of existing building infrastructure...

  9. Global Environment Facility Evaluation Office

    E-Print Network [OSTI]

    Pfaff, Alex

    Global Environment Facility Evaluation Office PROTECTED AREAS AND AVOIDED DEFORESTATION #12;Protected Areas and Avoided Deforestation: An Econometric Evaluation - i - TABLE OF CONTENTS 1................................................................................4 3.3 ESTIMATED EFFECTS OF PROTECTED AREAS ON DEFORESTATION

  10. Regulatory Facility Guide for Tennessee

    SciTech Connect (OSTI)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

    1994-02-28T23:59:59.000Z

    This guide provides detailed compilations of international, federal, and state transportation related regulations applicable to shipments originating at or destined to Tennessee facilities. Information on preferred routes is also given.

  11. Facility worker technical basis document

    SciTech Connect (OSTI)

    SHULTZ, M.V.

    2003-08-28T23:59:59.000Z

    This technical basis document was developed to support the Tank Farm Documented Safety Analysis (DSA). It describes the criteria and methodology for allocating controls to hazardous conditions with significant facility work consequence and presents the results of the allocation.

  12. Land and Facility Use Planning

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-07-09T23:59:59.000Z

    The Land and Facility Use Planning process provides a way to guide future site development and reuse based on the shared long-term goals and objectives of the Department, site and its stakeholders. Does not cancel other directives.

  13. Sandia National Laboratories: combustion modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling Direct Measurement of Key Molecule Will Increase Accuracy of Combustion Models On March 3, 2015, in Computational Modeling & Simulation, CRF, Energy, Facilities, News,...

  14. Coastal Harbors Modeling Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFundCo-benefitsCoalogix Inc

  15. Coastal Inlet Model Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFundCo-benefitsCoalogix Inc Basic

  16. FACILITY WORKER TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    SHULTZ, M.V.

    2005-03-31T23:59:59.000Z

    This technical basis document was developed to support RPP-13033, ''Tank Farms Documented Safety Analysis (DSA). It describes the criteria and methodology for allocating controls to hazardous conditions with significant facility worker (FW) consequence and presents the results of the allocation. The criteria and methodology for identifying controls that address FW safety are in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''.

  17. Site maps and facilities listings

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

  18. EARTHQUAKE CAUSED RELEASES FROM A NUCLEAR FUEL CYCLE FACILITY

    SciTech Connect (OSTI)

    Charles W. Solbrig; Chad Pope; Jason Andrus

    2014-08-01T23:59:59.000Z

    The fuel cycle facility (FCF) at the Idaho National Laboratory is a nuclear facility which must be licensed in order to operate. A safety analysis is required for a license. This paper describes the analysis of the Design Basis Accident for this facility. This analysis involves a model of the transient behavior of the FCF inert atmosphere hot cell following an earthquake initiated breach of pipes passing through the cell boundary. The hot cell is used to process spent metallic nuclear fuel. Such breaches allow the introduction of air and subsequent burning of pyrophoric metals. The model predicts the pressure, temperature, volumetric releases, cell heat transfer, metal fuel combustion, heat generation rates, radiological releases and other quantities. The results show that releases from the cell are minimal and satisfactory for safety. This analysis method should be useful in other facilities that have potential for damage from an earthquake and could eliminate the need to back fit facilities with earthquake proof boundaries or lessen the cost of new facilities.

  19. Steve Davis Aquaculture Aquaculture Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt.Steep Gradient FlumeEnergyStettin,

  20. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    Unknown

    2002-05-01T23:59:59.000Z

    This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids circulation rate, and reactor temperature on CO/CO{sub 2} ratio, H{sub 2}/converted carbon ratio, gasification rates, carbon conversion, and cold and hot gas efficiencies. Test run GCT3 was started on December 1, 2000, with the startup of the thermal oxidizer fan, and was completed on February 1, 2001. This test was conducted in two parts; the loop seal was commissioned during the first part of this test run from December 1 through 15, which consisted of hot inert solids circulation testing. These initial tests provided preliminary data necessary to understand different parameters associated with the operation and performance of the loop seal. The loop seal was tested with coal feed during the second part of the test run and additional data was gathered to analyze reactor operations and to identify necessary modifications to improve equipment and process performance. In the second part of GCT3, the gasification portion of the test, from January 20 to February 1, 2001, the mixing zone and riser temperatures were varied between 1,675 and 1,825 F at pressures ranging from 200 to 240 psig. There were 306 hours of solid circulation and 184 hours of coal feed attained in GCT3.

  1. Duluth Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey:Jump to:Dudleyville,

  2. East Bridgewater Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South,Earlsboro, Oklahoma:TurbinesEast BrawleyBridgewater

  3. Diamond Walnut Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan:Dewey-Humboldt, Arizona:ResearchWalnut Biomass

  4. Dinuba Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan: Energy Resources Jump to: navigation,

  5. Dixie Valley Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:Emerling Farm <SiteLtd DiDixie

  6. ESIF 2014 (Energy Systems Integration Facility) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    This report covers research highlights and achievements for the Energy Systems Integration Facility in 2014.

  7. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Manufacturing Demonstration Facility Workshop Critical Materials Workshop Agenda Innovative Manufacturing Initiatives Recognition Day...

  8. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    SciTech Connect (OSTI)

    Coenenberg, J.G.

    1997-08-15T23:59:59.000Z

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating text. 38 39 Information provided in this Liquid Effluent Retention Facility and 40 200 Area Effluent Treatment Facility permit application documentation is 41 current as of June 1, 1997.

  9. AGING FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect (OSTI)

    R.L. Thacker

    2005-03-24T23:59:59.000Z

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Aging Facility performing operations to transfer aging casks to the aging pads for thermal and logistical management, stage empty aging casks, and retrieve aging casks from the aging pads for further processing in other site facilities. Doses received by workers due to aging cask surveillance and maintenance operations are also included. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation. There are no Category 1 event sequences associated with the Aging Facility (BSC 2004 [DIRS 167268], Section 7.2.1). The results of this calculation will be used to support the design of the Aging Facility and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Environmental and Nuclear Engineering.

  10. Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Callaway, Duncan S.; Kiliccote, Sila

    2011-08-16T23:59:59.000Z

    Changes in the electricity consumption of commercial buildings and industrial facilities (C&I facilities) during Demand Response (DR) events are usually estimated using counterfactual baseline models. Model error makes it difficult to precisely quantify these changes in consumption and understand if C&I facilities exhibit event-to-event variability in their response to DR signals. This paper seeks to understand baseline model error and DR variability in C&I facilities facing dynamic electricity prices. Using a regression-based baseline model, we present a method to compute the error associated with estimates of several DR parameters. We also develop a metric to determine how much observed DR variability results from baseline model error rather than real variability in response. We analyze 38 C&I facilities participating in an automated DR program and find that DR parameter errors are large. Though some facilities exhibit real DR variability, most observed variability results from baseline model error. Therefore, facilities with variable DR parameters may actually respond consistently from event to event. Consequently, in DR programs in which repeatability is valued, individual buildings may be performing better than previously thought. In some cases, however, aggregations of C&I facilities exhibit real DR variability, which could create challenges for power system operation.

  11. PRTR/309 building nuclear facility preliminary

    SciTech Connect (OSTI)

    Cornwell, B.C.

    1994-12-08T23:59:59.000Z

    The hazard classification of the Plutonium Recycle Test Reactor (PRTR)/309 building as a ``Radiological Facility`` and the office portions as ``Other Industrial Facility`` are documented by this report. This report provides: a synopsis of the history and facility it`s uses; describes major area of the facility; and assesses the radiological conditions for the facility segments. The assessment is conducted using the hazard category threshold values, segmentation methodology, and graded approach guidance of DOE-STD-1027-92.

  12. Systems reliability analysis for the national ignition facility

    SciTech Connect (OSTI)

    Majumdar, K.C.; Annese, C.E.; MacIntyre, A.T.; Sicherman, A.

    1996-06-12T23:59:59.000Z

    A Reliability, Availability and Maintainability (RAM) analysis was initiated for the National Ignition Facility (NIF). The NIF is an inertial confinement fusion research facility designed to achieve controlled thermonuclear reaction; the preferred site for the NIF is the Lawrence Livermore National Laboratory (LLNL). The NIF RAM analysis has three purposes: (1) to allocate top level reliability and availability goals for the systems, (2) to develop an operability model for optimum maintainability, and (3) to determine the achievability of the allocated goals of the RAM parameters for the NIF systems and the facility operation as a whole. An allocation model assigns the reliability and availability goals for front line and support systems by a top-down approach; reliability analysis uses a bottom-up approach to determine the system reliability and availability from component level to system level.

  13. Compression part of Egan Hub facility`s expansion

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    Egan Hub Partners, L.P. (EHP), a subsidiary of Market Hub Partners (MHP), is the owner and operator of the Egan Hub Partners gas storage facility located near the town of Evangeline in south Louisiana. Located on the Jennings salt dome, EHP provides high-deliverability (injection and/or withdrawal capabilities on demand) salt storage, giving its customers rapid response to market fluctuation and demand. In addition to long-term storage contracts, EHP offers natural gas hub services using interruptible storage entitlements and multiple pipeline interchange flexibility. Hub services include wheeling, parking, loaning and balancing. The EHP facility was put into service in September 1995. EHP just completed the installation of a fourth compressor unit. This is the second unit to be put in service at the facility this year and is identical to the previous one. Hanover Compression packaged both units which consist of a Caterpillar G-3616 engine (4,450 hp) and an Ariel JGC-6 compressor. The units are configured to accommodate the wide operating range encountered at a natural gas salt dome storage facility and are designed to operate with a suction range of 600--900 psi and a discharge range of 800--3,000 psi.

  14. Status of the GRANIT facility

    E-Print Network [OSTI]

    Damien Roulier; Francis Vezzu; Stefan Baessler; Benoît Clément; Daniel Morton; Valery Nesvizhevsky; Guillaume Pignol; Dominique Rebreyend

    2014-10-06T23:59:59.000Z

    The GRANIT facility is a follow-up project, which is motivated by the recent discovery of gravitational quantum states of ultracold neutrons. The goal of the project is to approach the ultimate accuracy in measuring parameters of such quantum states and also to apply this phenomenon and related experimental techniques to a broad range of applications in particle physics as well as in surface and nanoscience studies. We overview the current status of this facility, the recent test measurements and the nearest prospects.

  15. Tandem mirror technology demonstration facility

    SciTech Connect (OSTI)

    Not Available

    1983-10-01T23:59:59.000Z

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  16. Facility Safety | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|JulyR--FOIA SupportDOE's FY3FacilityFacilityIn

  17. Facility Operations | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome |CookingFAQsFacility Operations Facility

  18. Facility Security Officer Contractor Toolcart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014Facilities FusionFacilityOVERVIEW

  19. Nuclear fuel cycle facility accident analysis handbook

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

  20. LHC - a "Why" Facility

    ScienceCinema (OSTI)

    Gordon Kane

    2010-01-08T23:59:59.000Z

    The Standard Models of particle physics and cosmology describe the world we see, and how it works, very well. But we want to understand (not just accommodate) much more ? how does the Higgs mechanism work, what is the dark matter, why is the universe matter and not antimatter, why is parity violated, why are the particles (quarks and leptons) what they are, and why are the forces that act on them to make our world what they are, and more. Today is an exciting time to be doing particle physics ? on the experimental side we have data coming from LHC and dark matter experiments that will provide clues to these questions, and on the theoretical side we have a framework (string theory) that addresses all these ?why? questions. LHC data will not qualitatively improve our description ? rather, it may provide the data that will allow us to learn about the dark matter, the Higgs physics, the matter asymmetry, etc, to test underlying theories such as string theory, and begin to answer the ?why? questions. Supersymmetry is the best motivated discovery, and it would also open a window to the underlying theory near the Planck scale.