Modeling Fluid Flow in Natural Systems, Model Validation and...
Office of Environmental Management (EM)
Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration Clay and granitic units are...
Fluid Flow Modeling in Fractures
Sarkar, Sudipta
2004-01-01T23:59:59.000Z
In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...
MODELING COUPLED FLUID FLOW AND GEOMECHANICAL AND GEOPHYSICAL PHENOMENA WITHIN
MODELING COUPLED FLUID FLOW AND GEOMECHANICAL AND GEOPHYSICAL PHENOMENA WITHIN A FINITE ELEMENT for the modeling of geomechanical effects induced by reservoir production/injection and the cyclic dependence
Can We Accurately Model Fluid Flow in Shale?
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
2013 00:00 Over 20 trillion cubic meters of natural gas are trapped in shale, but many shale oil and gas producers still use models of underground fluid flow that date back to...
A preliminary study to Assess Model Uncertainties in Fluid Flows
Marc Oliver Delchini; Jean C. Ragusa
2009-09-01T23:59:59.000Z
The goal of this study is to assess the impact of various flow models for a simplified primary coolant loop of a light water nuclear reactor. The various fluid flow models are based on the Euler equations with an additional friction term, gravity term, momentum source, and energy source. The geometric model is purposefully chosen simple and consists of a one-dimensional (1D) loop system in order to focus the study on the validity of various fluid flow approximations. The 1D loop system is represented by a rectangle; the fluid is heated up along one of the vertical legs and cooled down along the opposite leg. A pressurizer and a pump are included in the horizontal legs. The amount of energy transferred and removed from the system is equal in absolute value along the two vertical legs. The various fluid flow approximations are compressible vs. incompressible, and complete momentum equation vs. Darcy’s approximation. The ultimate goal is to compute the fluid flow models’ uncertainties and, if possible, to generate validity ranges for these models when applied to reactor analysis. We also limit this study to single phase flows with low-Mach numbers. As a result, sound waves carry a very small amount of energy in this particular case. A standard finite volume method is used for the spatial discretization of the system.
Rutqvist, J.
2014-01-01T23:59:59.000Z
porosity models for fluid transport in jointed rock. Journalof coupled fluid flow, solute transport, and geomechanics ingeomechanics, fluid flow and transport in fractured rock
Fluid flow and heat transfer modeling for castings
Domanus, H.M.; Liu, Y.Y.; Sha, W.T.
1986-01-01T23:59:59.000Z
Casting is fundamental to manufacturing of many types of equipment and products. Although casting is a very old technology that has been in existence for hundreds of years, it remains a highly empirical technology, and production of new castings requires an expensive and time-consuming trial-and-error approach. In recent years, mathematical modeling of casting has received increasing attention; however, a majority of the modeling work has been in the area of heat transfer and solidification. Very little work has been done in modeling fluid flow of the liquid melt. This paper presents a model of fluid flow coupled with heat transfer of a liquid melt for casting processes. The model to be described in this paper is an extension of the COMMIX code and is capable of handling castings with any shape, size, and material. A feature of this model is the ability to track the liquid/gas interface and liquid/solid interface. The flow of liquid melt through the sprue and runners and into the mold cavity is calculated as well as three-dimensional temperature and velocity distributions of the liquid melt throughout the casting process. 14 refs., 13 figs.
Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow
Boyer, Edmond
Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S modeling of the turbulent flow in a rotor-stator cavity subjected to a superimposed throughflow with heat the dynamical effects from the heat transfer process. The fluid flow in an enclosed disk system with axial
2. Some simple models of fluid flow: exact solutions of the N-S equation
Read, Peter L.
2. Some simple models of fluid flow: exact solutions of the N-S equation To construct mathematical. Boundary conditions: fluid comes to rest at the walls z = ±h (`no-slip' condition, since flow is viscous flow remains rectilinear (`laminar'). If Re Recrit, turbulence usually sets in: We say
Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir
Broader source: Energy.gov [DOE]
Project objectives: Better understand and model fluid injection into a tight reservoir on the edges of a hydrothermal field. Use seismic data to constrain geomechanical/hydrologic/thermal model of reservoir.
Coupled fluid flow and geomechanical deformation modeling Susan E. Minkoff a,*, C. Mike Stoneb,1
Minkoff, Susan E.
Coupled fluid flow and geomechanical deformation modeling Susan E. Minkoff a,*, C. Mike Stoneb,1 reservoir properties. Pore pressures from flow are used as loads for the geomechanics code
Network model of fluid flow in semi-solid aluminum alloys W.O. Dijkstra a
Vuik, Kees
Network model of fluid flow in semi-solid aluminum alloys W.O. Dijkstra a , C. Vuik b , L within a semi-solid aluminum alloy. The model consists of a set of connected channels representing; Fluid flow; Aluminum alloys; Permeability; Macrosegregation 1. Introduction Early simulations
Multiphase flow in the advanced fluid dynamics model
Bohl, W.R.; Wilhelm, D.; Berthier, J.; Parker, F.P.; Ichikawa, S.; Goutagny, L.; Ninokata, H.
1988-01-01T23:59:59.000Z
This paper describes the modeling used in the Advanced Fluid Dynamics Model (AFDM), a computer code to investigate new approaches to simulating severe accidents in fast reactors. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, the dominant liquid, and the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow are permitted for the pool situations modeled. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas also are modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer generally is treated using engineering correlations. Liquid/vapor phase transitions are handled with a nonequililbrium heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. The Los Alamos SESAME equation of state (EOS) has been inplemented using densities and temperatures as the independent variables. A summary description of the AFDM numerical algorithm is provided. The AFDM code currently is being debugged and checked out. Two sample three-field calculations also are presented. The first is a three-phase bubble column mixing experiment performed at Argonne National Laboratory; the second is a liquid-liquid mixing experiment performed at Kernforschungszentrum, Karlsruhe, that resulted in rapid vapor production. We conclude that only qualitative comparisons currently are possible for complex multiphase situations. Many further model developments can be pursued, but there are limits because of the lack of a comprehensive theory, the lack of detailed multicomponent experimental data, and the difficulties in keeping the resulting model complexities tractable.
Winters, W.S.
1984-01-01T23:59:59.000Z
An overview of the computer code TOPAZ (Transient-One-Dimensional Pipe Flow Analyzer) is presented. TOPAZ models the flow of compressible and incompressible fluids through complex and arbitrary arrangements of pipes, valves, flow branches and vessels. Heat transfer to and from the fluid containment structures (i.e. vessel and pipe walls) can also be modeled. This document includes discussions of the fluid flow equations and containment heat conduction equations. The modeling philosophy, numerical integration technique, code architecture, and methods for generating the computational mesh are also discussed.
Impact of relative permeability models on fluid flow behavior for gas condensate reservoirs
Zapata Arango, Jose? Francisco
2002-01-01T23:59:59.000Z
more important. Modeling fluid flow in these systems must consider the dependence of relative permeability on both viscous and capillary forces. This research focuses on the evaluation of several recently proposed relative permeability models...
Under consideration for publication in J. Fluid Mech. 1 Edges in Models of Shear Flow
Lebovitz, Norman
Under consideration for publication in J. Fluid Mech. 1 Edges in Models of Shear Flow Norman)). The latter problem is ap- proached theoretically by considering first a laminar shear flow (plane Couette of the laminar flow. This places particular importance on understanding the nature of the boundary of the basin
On the notion of laminar and weakly turbulent elementary fluid flows: a simple mathematical model
Gianluca Argentini
2006-08-28T23:59:59.000Z
An elementary analytical fluid flow is composed by a geometric domain, a list of analytical constraints and by the function which depends on the physical properties, as Reynolds number, of the considered fluid. For this object, notions of laminar or weakly turbulent behavior are described using a simple mathematical model.
Bianco, Ronald
2013-12-02T23:59:59.000Z
This thesis explores the effects of fluid flow on shear localization and frictional strength of fault gouge through the use of a coupled 2-phase (pore fluid-grain) Finite Difference-Discrete Element Numerical model. The model simulates slip...
Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent numerical simulations of multiphase (liquid-gas), multicomponent (H2OÂCO2) hydrothermal fluid flow
Model Reduction of Turbulent Fluid Flows Using the Supply Rate
Sharma, A S
2013-01-01T23:59:59.000Z
A method for finding reduced-order approximations of turbulent flow models is presented. The method preserves bounds on the production of turbulent energy in the sense of the $\\curly{L}_2$ norm of perturbations from a notional laminar profile. This is achieved by decomposing the Navier-Stokes system into a feedback arrangement between the linearised system and the remaining, normally neglected, nonlinear part. The linear system is reduced using a method similar to balanced truncation, but preserving bounds on the supply rate. The method involves balancing two algebraic Riccati equations. The bounds are then used to derive bounds on the turbulent energy production. An example of the application of the procedure to flow through a long straight pipe is presented. Comparison shows that the new method approximates the supply rate at least as well as, or better than, canonical balanced truncation.
Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow
Wang, Chao-Yang
Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow W-dimensional model is developed to simulate discharge of a primary lithium/thionyl chloride battery. The model to the first task with important examples of lead-acid,1-3 nickel-metal hydride,4-8 and lithium-based batteries
Department of Mathematics and Statistics Colloquium Modeling Geophysical Fluid Flows
Arnold, Elizabeth A.
, caves, sinkholes, fissures, etc. Because of this, water can flow through conduits or pipes in addition
Notes 10. A thermohydrodynamic bulk-flow model for fluid film bearings
San Andres, Luis
2009-01-01T23:59:59.000Z
The complete set of bulk-flow equations for the analysis of turbulent flow fluid film bearings. Importance of thermal effects in process fluid applications. A CFD method for solution of the bulk-flow equations....
Fluid-particle flow modelling and validation using two-way-coupled mesoscale SPH-DEM
Robinson, Martin; Ramaioli, Marco
2013-01-01T23:59:59.000Z
We present a meshless simulation method for multiphase fluid-particle flows coupling Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM). Rather than fully resolving the interstitial fluid, which is often infeasible, the unresolved fluid model is based on the locally averaged Navier Stokes equations, which are coupled with a DEM model for the solid phase. In contrast to similar mesh-based Discrete Particle Methods (DPMs), this is a purely particle-based method and enjoys the flexibility that comes from the lack of a prescribed mesh. It is suitable for problems such as free surface flow or flow around complex, moving and/or intermeshed geometries. It can be used for both one and two-way coupling and is applicable to both dilute and dense particle flows. A comprehensive validation procedure for fluid-particle simulations is presented and applied to the SPH-DEM method, using simulations of single and multiple particle sedimentation in a 3D fluid column and comparison with analytical model...
A modeling approach for analysis of coupled multiphase fluid flow ...
2002-07-08T23:59:59.000Z
istry, geomechanics, flow, and transport [3]. Therefore, a coupled THMC ...... Society of Petroleum Engineers, SPE Paper no. 66537, 2001. [28] Fredlund DG ...
Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow
Boyer, Edmond
Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S in a rotor-stator cavity subjected to a superimposed throughflow with heat transfer. Nu- merical predictions field from the heat transfer process. The turbulent flux is approximated by a gradient hypothesis
CIRQ: Qualitative fluid flow modelling for aerospace FMEA applications Neal Snooke
Snooke, Neal
M2 CIRQ: Qualitative fluid flow modelling for aerospace FMEA applications Neal Snooke Department- oped on top of the MCIRQ simulator with the aim to produce an automated FMEA for aircraft fuel systems similar to pre- viously developed automated electrical FMEA. Introduction This paper describes a circuit
FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES
FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES parents and Ashley for their encouragement and patience through out this process. Without your support I and helped with the testing and data acquisition for the fabric compression tests. Russ's help with gathering
MATHEMATICAL MODELING AND SIMULATION FOR FLUID FLOW IN POROUS MEDIA
Ewing, Richard E.
of environmental effects of air polution is extensive. Here we address the need for using similar models
Amber T. Krummel; Sujit S. Datta; Stefan Münster; David A. Weitz
2013-01-21T23:59:59.000Z
We report an approach to fully visualize the flow of two immiscible fluids through a model three-dimensional (3D) porous medium at pore-scale resolution. Using confocal microscopy, we directly image the drainage of the medium by the non-wetting oil and subsequent imbibition by the wetting fluid. During imbibition, the wetting fluid pinches off threads of oil in the narrow crevices of the medium, forming disconnected oil ganglia. Some of these ganglia remain trapped within the medium. By resolving the full 3D structure of the trapped ganglia, we show that the typical ganglion size, and the total amount of residual oil, decreases as the capillary number Ca increases; this behavior reflects the competition between the viscous pressure in the wetting fluid and the capillary pressure required to force oil through the pores of the medium. This work thus shows how pore-scale fluid dynamics influence the trapped fluid configurations in multiphase flow through 3D porous media.
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-03-06T23:59:59.000Z
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-08-06T23:59:59.000Z
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Can We Accurately Model Fluid Flow in Shale?
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirt DocumentationSitesWeather6 Shares of U.S. BuildingsConditionsCompute3-6179PCallCan We Accurately Model
Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow
Donna Post Guillen
2009-07-01T23:59:59.000Z
A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.
A NOVEL FLUID FLOW MODEL WITH MEMORY FOR POROUS MEDIA APPLICATIONS
Hossain, M. Enamul
thickness, rock and fluid properties independent of pressure and laminar flow are reported in many the rock and fluid properties to be constant in time. It is very important to consider the variation to consider the time variation of fluid and rock properties in a proper way. Therefore, Darcys law should
Analysis Of Residence Time Distribution Of Fluid Flow By Axial Dispersion Model
Sugiharto [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132 (Indonesia); Centre for Applications of Isotopes and Radiation Technology-National Nuclear Energy Agency, Jl. Lebak Bulus Raya No. 49, Jakarta 12440 (Indonesia); Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul [Centre for Applications of Isotopes and Radiation Technology-National Nuclear Energy Agency, Jl. Lebak Bulus Raya No. 49, Jakarta 12440 (Indonesia); Abidin, Zainal [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132 (Indonesia)
2010-12-23T23:59:59.000Z
Radioactive tracer {sup 82}Br in the form of KBr-82 with activity {+-} 1 mCi has been injected into steel pipeline to qualify the extent dispersion of water flowing inside it. Internal diameter of the pipe is 3 in. The water source was originated from water tank through which the water flow gravitically into the pipeline. Two collimated sodium iodide detectors were used in this experiment each of which was placed on the top of the pipeline at the distance of 8 and 11 m from injection point respectively. Residence time distribution (RTD) curves obtained from injection of tracer are elaborated numerically to find information of the fluid flow properties. The transit time of tracer calculated from the mean residence time (MRT) of each RTD curves is 14.9 s, therefore the flow velocity of the water is 0.2 m/s. The dispersion number, D/uL, for each RTD curve estimated by using axial dispersion model are 0.055 and 0.06 respectively. These calculations are performed after fitting the simulated axial dispersion model on the experiment curves. These results indicated that the extent of dispersion of water flowing in the pipeline is in the category of intermediate.
Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.
2009-01-15T23:59:59.000Z
A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.
Acoustic concentration of particles in fluid flow
Ward, Michael D. (Los Alamos, NM); Kaduchak, Gregory (Los Alamos, NM)
2010-11-23T23:59:59.000Z
An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.
1993-11-30T23:59:59.000Z
A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.
McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)
1993-01-01T23:59:59.000Z
A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.
Chen, Qingyan "Yan"
Fast and Informative Flow Simulations in a Building by Using Fast Fluid Dynamics Model on Graphics simulations are necessary for building emergency management, preliminary design of sustainable buildings for a whole building. This paper reports our efforts on further accelerating FFD simulation by running
Insertable fluid flow passage bridgepiece and method
Jones, Daniel O. (Glenville, NV)
2000-01-01T23:59:59.000Z
A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.
Proper initial conditions for the lubrication model of the flow of a thin film of fluid
S. A. Suslov; A. J. Roberts
1998-04-08T23:59:59.000Z
A lubrication model describes the dynamics of a thin layer of fluid spreading over a solid substrate. But to make forecasts we need to supply correct initial conditions to the model. Remarkably, the initial fluid thickness is not the correct initial thickness for the lubrication model. Theory recently developed in \\cite{Roberts89b,Roberts97b} provides the correct projection of initial conditions onto a model of a dynamical system. The correct projection is determined by requiring that the model's solution exponentially quickly approaches that of the actual fluid dynamics. For lubrication we show that although the initial free surface shape contributes the most to the model's initial conditions, the initial velocity field is also an influence. The projection also gives a rationale for incorporating miscellaneous small forcing effects into the lubrication model; gravitational forcing is given as one example.
A Site-Scale Model For Fluid And Heat Flow In The Unsaturated...
heat at Yucca Mountain, Nevada, a potential repository site for high-level radioactive waste. The model takes into account the simultaneous flow dynamics of liquid water, vapor,...
Unified formal reduction for fluid models of free-surface shallow gravity-flows
Paris-Sud XI, Université de
modelling of the rheology in e.g. mud flows and land- slides, which are still much investigated model provided the assumptions used for the derivation hold. We obtain a synthetic viewpoint of various
Impact of relative permeability models on fluid flow behavior for gas condensate reservoirs
Zapata Arango, Jose? Francisco
2002-01-01T23:59:59.000Z
. 6 Integral from immiscible to miscible transition models for gas condensate relative permeability. 5 . 6 . . 8 9 . 10 . 12 . 16 . 18 . 20 . 23 CHAPTER III CASE STUDY. . . 27 3. 1 Tuning of the reservoir fluid model 3. 2 Relative... model . 5. 2. 2 Anisotropic model . 64 . 74 . 77 . 90 CHAPTER VI SUMMARY . 105 6. 1 Conclusions. . 6. 1. 1 Conclusions from the literature review and case study . . . . . . 6. 1. 2 Conclusions from the simulation study 6. 1. 3 Conclusions from...
Chevarunotai, Natasha
2014-11-13T23:59:59.000Z
parameters in production optimization and field development planning. Sensitivity analysis results show that production rate, reservoir permeability, fluid viscosity, and J-T coefficient are critical parameters in reservoir flowing-fluid temperature...
Rutqvist, J.
2014-01-01T23:59:59.000Z
and Mining Sciences & Geomechanics Abstracts, 1983, 20:and Mining Sciences & Geomechanics Abstracts, 1985, BerrymanL W. Coupling fluid flow and geomechanics in dual-porosity
Cirpka, Olaf Arie
allows the coupling of a laminar single-phase free flow and a two-phase porous-medium flow under non be necessary Coupling Situation coupling exists for laminar free flow (Mostaf et al. 2011) boundary layer DuMux in use for Darcy flow and laminar Stokes flow no RANS solver in DuMux or DUNE PDELab Open
Chevarunotai, Natasha
2014-11-13T23:59:59.000Z
calculation. Findings from the sensitivity analysis allow us to make a decision whether or not to acquire more data or to perform additional tests for a more reasonable outcome- the flowing-fluid temperature in the reservoir. Bottomhole flowing...
Fluid flow effects on electroplating
Kirkpatrick, J.R.
1990-09-01T23:59:59.000Z
The effects of fluid flow patterns on the electroplating of rotating cylindrically symmetric objects are examined. Ways are outlined for preventing undesirable spiral patterns on the plated surface. Estimates are given for the diffusion boundary later thickness for cylinders, disks, spheres, and cones. 16 refs., 7 figs., 1 tab.
Physics-Based Low Order Galerkin Models in Fluid Dynamics & Flow Control
Gorban, Alexander N.
(Berlin Institute of Technology MB1, Germany) Marek Morzynski (Poznan University of Technology, Poland models of energy supply and consumption. Yet a third principle is the realization that governing flow to time-averaged energy dynamics of Galerkin modes, and gives rise to physically based, nonlinear sub
Fluid Flow Simulation in Fractured Reservoirs
Sarkar, Sudipta
2002-01-01T23:59:59.000Z
The purpose of this study is to analyze fluid flow in fractured reservoirs. In most petroleum reservoirs, particularly carbonate reservoirs and some tight sands, natural fractures play a critical role in controlling fluid ...
Boutchko, R.
2014-01-01T23:59:59.000Z
emission tomography systems and computational fluid dynamicsa computational ?uid dynamics (CFD) model of the systemthe computational domain. A Cartesian coordinate system was
Alfred, Dicman
2004-09-30T23:59:59.000Z
constant width. However, the flow characteristics of an actual fracture surface are quite different, affected by tortuosity and the impact of surface roughness. Though several researchers have discussed the effect of friction on flow reduction...
, and pressure associated with each intra- and extracranial compartment (arteries and arterioles, capillary bed fluid volume] + ["other" volume]) is fixed [7]. Excellent mathematical results and insights, the assumption of fixed brain volume is not ac
Wisconsin at Madison, University of
This is a 1D model of an active magnetic regenerative refrigerator (AMRR) that was developed of an Active Magnetic Regenerator Refrigerator 1. Governing Equations Figure 1 shows a schematic of an active in MATLAB. The model uses cycle inputs such as the fluid mass flow and magnetic field profiles, fluid
Alfred, Dicman
2004-09-30T23:59:59.000Z
This research presents an approach to accurately simulate flow experiments through a fractured core using experimental, stochastic, and simulation techniques. Very often, a fracture is assumed as a set of smooth parallel plates separated by a...
Transient fluid and heat flow modeling in coupled wellbore/reservoir systems
Izgec, Bulent
2009-05-15T23:59:59.000Z
, asphaltene and timing of chemical injection, translating pressure-transient data when gathered above the perforations, production rate estimation by just using wellhead temperatures, and prediction of annular pressure buildup occurring in most subsea... for subsea completed wells. Pressure from fluid expansion is a natural occurrence in all wells. An explanation for the cause and effect of this type of pressure in addition to the cause and effect of pressure from external sources are examined. 8...
Acoustic geometry for general relativistic barotropic irrotational fluid flow
Visser, Matt
2010-01-01T23:59:59.000Z
"Acoustic spacetimes", in which techniques of differential geometry are used to investigate sound propagation in moving fluids, have attracted considerable attention over the last few decades. Most of the models currently considered in the literature are based on non-relativistic barotropic irrotational fluids, defined in a flat Newtonian background. The extension, first to special relativistic barotropic fluid flow, and then to general relativistic barotropic fluid flow in an arbitrary background, is less straightforward than it might at first appear. In this article we provide a pedagogical and simple derivation of the general relativistic "acoustic spacetime" in an arbitrary (d+1) dimensional curved-space background.
Jain, Antone Kumar
2009-01-01T23:59:59.000Z
We present a discrete element model for simulating, at the grain scale, gas migration in brine-saturated deformable media. We rigorously account for the presence of two fluids in the pore space by incorporating forces on ...
Notes 10. A thermohydrodynamic bulk-flow model for fluid film bearings
San Andres, Luis
2009-01-01T23:59:59.000Z
T h wTx z? ? ??? ? ?? ?? ? ?? ?? ? ?? ? (22) * 2 21 1Re 2 2 4tp c x t Js p p p pQ E h u w T h k v u k uhx z x ?? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ?? ?? ? ? ? ? ?? ?? ? ? ?? ? ? ? ? ?? ?? ? The dimensionless flow...: t t p t hS C V?? (Stanton number) (A.3) p r C k ?? ? (Prandtl number) (A.4) 1 me m m m e brf a c H R ? ?? ?? ?? ? ?? ?? ?? ?? ? (A.5) is the Fanning friction factor based on Moody friction diagram. From...
Application of Neutron Imaging and Scattering to Fluid Flow and...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS...
Numerical modeling of fluid flow and time-lapse seismics to monitor ...
santos
May 30, 2014 ... including the presence of shale seals and fractures and fractal variations of the ... In the Black-Oil model employed, brine is NOT present, OIL is.
Transient fluid and heat flow modeling in coupled wellbore/reservoir systems
Izgec, Bulent
2009-05-15T23:59:59.000Z
Modeling of changing pressure, temperature, and density profiles in a wellbore as a function of time is crucial for design and analysis of pressure-transient tests (particularly when data are gathered above perforations), real-time management...
Addendum to fluid flow effects on electroplating
Kirkpatrick, J.R.
1990-10-01T23:59:59.000Z
Expressions are given for concentration boundary layer thickness on complex axisymmetric shapes for use in electroplating calculations. This is an addendum to a discussion of fluid flow effects in electroplating. 6 refs., 1 fig.
Osinski, Charles Anthony
1963-01-01T23:59:59.000Z
/IYR ). 3 E. Basic Results The initial output of the program is a listing of the parameters defined by the computations outlined in the preceding sections. They are as follows: 24 1. Initial input data of shear stress and shear rate. 2. Apparent.... 0013 0. 0001 0. 0003 0. 0129 The fluid is a fictitious pseudoplastic fluid with power law parameters n = 0. 3, k = 10. 0. Table 3. Comparison Test with Pseudoplastic Fluid Shearing Stress Dynes/cm Shearing R3 e / Rafe Qr u R j/sec 1/sec...
Fluid flow control with transformation media
Urzhumov, Yaroslav A
2011-01-01T23:59:59.000Z
We introduce a new concept for the manipulation of fluid flow around three-dimensional bodies. Inspired by transformation optics, the concept is based on a mathematical idea of coordinate transformations, and physically implemented with anisotropic porous media permeable to the flow of fluids. In two different situations - for an impermeable object situated either in a free-flowing fluid or in a fluid-filled porous medium - we show that the object can be coated with a properly chosen inhomogeneous, anisotropic permeable medium, such as to preserve the streamlines of flow and the pressure distribution that would have existed in the absence of the object. The proposed fluid flow cloak completely eliminates any disturbance of the flow by the object, including the downstream wake. Consequently, the structure helps prevent the onset of turbulence by keeping the flow laminar even above the typical critical Reynolds number for the object of the same shape and size. The cloak also cancels the viscous drag force. This...
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael
2009-09-01T23:59:59.000Z
This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.
Transient Temperature Modeling For Wellbore Fluid Under Static and Dynamic Conditions
Ali, Muhammad
2014-04-22T23:59:59.000Z
for geothermal wells and prediction of injection fluid temperatures. In this thesis, development and usage of three models for transient fluid temperature are presented. Two models predict transient temperature of flowing fluid under separate flow configurations...
Transient Temperature Modeling For Wellbore Fluid Under Static and Dynamic Conditions
Ali, Muhammad
2014-04-22T23:59:59.000Z
for geothermal wells and prediction of injection fluid temperatures. In this thesis, development and usage of three models for transient fluid temperature are presented. Two models predict transient temperature of flowing fluid under separate flow configurations...
Directed flow fluid rinse trough
Kempka, S.N.; Walters, R.N.
1996-07-02T23:59:59.000Z
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Franke, Rudiger
2010-01-01T23:59:59.000Z
Ob- ject-Oriented Modeling of Thermo-Fluid Systems, Modelicable and Compressible Thermo-Fluid Pipe Networks, ModelicaStandardization of Thermo-Fluid Modeling in Modelica.Fluid
Method and apparatus for controlling fluid flow
Miller, J.R.
1980-06-27T23:59:59.000Z
A method and apparatus for precisely controlling the rate (and hence amount) of fluid flow are given. The controlled flow rate is finely adjustable, can be extremely small (on the order of microliter-atmospheres per second), can be adjusted to zero (flow stopped), and is stable to better than 1% with time. The dead volume of the valve can be made arbitrarily small, in fact essentially zero. The valve employs no wearing mechanical parts (including springs, stems, or seals). The valve is finely adjustable, has a flow rate dynamic range of many decades, can be made compatible with any fluid, and is suitable for incorporation into an open or closed loop servo-control system.
Microfluidics: Kinetics of Hybridized DNA With Fluid Flow Variations...
Office of Scientific and Technical Information (OSTI)
Conference: Microfluidics: Kinetics of Hybridized DNA With Fluid Flow Variations. Citation Details In-Document Search Title: Microfluidics: Kinetics of Hybridized DNA With Fluid...
Shear flow instabilities in viscoelastic fluids
Miller, Joel C.
2006-05-23T23:59:59.000Z
- stabilities may be desirable: for example in microfluidics it may be necessary 2to mix two fluids together. This is made difficult by the small length scales and resulting low Reynolds number. An instability which mixes the entire flow is needed. Part I...
Flow of Navier-Stokes Fluids in Cylindrical Elastic Tubes
Sochi, Taha
2013-01-01T23:59:59.000Z
Analytical expressions correlating the volumetric flow rate to the inlet and outlet pressures are derived for the time-independent flow of Newtonian fluids in cylindrically-shaped elastic tubes using a one-dimensional Navier-Stokes flow model with two pressure-area constitutive relations. These expressions for elastic tubes are the equivalent of Poiseuille and Poiseuille-type expressions for rigid tubes which were previously derived for the flow of Newtonian and non-Newtonian fluids under various flow conditions. Formulae and procedures for identifying the pressure field and tube geometric profile are also presented. The results are validated by a finite element method implementation. Sensible trends in the analytical and numerical results are observed and documented.
Kim, J.
2014-01-01T23:59:59.000Z
Settari A. Modeling of geomechanics in naturally fracturedway coupled fluid flow and geomechanics in hydrate deposits.for coupled flow and geomechanics: Drained and undrained
Computational Fluids Dynamics and its Application to Multiphase Flows (3 credits)
Chen, Zheng
Computational Fluids Dynamics and its Application to Multiphase Flows (3 credits) Instructor Eric CLIMENT, Dept. of Fluids Mechanics, INP-ENSEEIHT / IMFT (eric.climent@imft.fr) Synopsis Multiphase flows will be introduced, together with their applications to multiphase flows (dispersion, two-way coupling, modelling
Ultrasonic fluid flow measurement method and apparatus
Kronberg, J.W.
1993-10-12T23:59:59.000Z
An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.
Flow control techniques for real-time media applications in best-effort networks using fluid models
Konstantinou, Apostolos
2004-11-15T23:59:59.000Z
- Controller 4 . . . . . . . . 91 6. Importance of the Initial Source Bu?ering . . . . . . . 110 C. E?ectiveness of Flow Controllers for 20% Decrease in Application Send Rate . . . . . . . . . . . . . . . . . . . . 117 1. Open-Loop Simulation... and compared to the initial uncontrolled model. The e?ects of the feedback signal on the end-to-end characteristics, such as bu?er level, packet losses and media playback are explored. Di?erent control strategies are developed and compared. Figure 1 shows...
An Analysis of Heat and Fluid Flow Phenomena 1n Electroslag Welding
Eagar, Thomas W.
and temperature distri- bution~ are given for several idealized models of the electroslag welding process) ) An Analysis of Heat and Fluid Flow Phenomena 1n Electroslag Welding Two physical models created and fluid flow phenom- ena in metals processing operations have been applied to electroslag weld- ing
Flame Enhancement and Quenching in Fluid Flows Natalia Vladimirova
Kiselev, Alex
Flame Enhancement and Quenching in Fluid Flows Natalia Vladimirova , Peter Constantin , Alexander scale of the flow and laminar front thickness. For cellular flow, we obtain v U1/4 . We also study speed of the flame can be significantly altered by the fluid flow. Specifically, moderately intense
Multiphase fluid flow and time lapse UNLP, 11 Octubre de 2012
Santos, Juan
of CO2-brine flow and seismic wave propagation to model and monitor CO2 injection. The model-Oil formulation The simultaneous flow of brine and CO2 is described by the well-known Black-Oil formulation applied to two-phase, two component fluid flow. In this model, CO2 may dissolve in the brine but the brine
Curl-Noise for Procedural Fluid Flow Robert Bridson
Bridson, Robert
Curl-Noise for Procedural Fluid Flow Robert Bridson University of British Columbia Jim Hourihan), exactly respects solid boundaries (not allowing fluid to flow through arbitrarily-specified surfaces, without manually adding many vortices, this approach is restricted to fairly laminar flow, and matching
Fracture Network and Fluid Flow Imaging for EGS Applications...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical...
Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...
of the tracer response exiting from discrete fracture zones permit further characterization of reservoir fluid flow behavior. Tracer experiments conducted in prototype hot...
Fluid flow plate for decreased density of fuel cell assembly
Vitale, Nicholas G. (Albany, NY)
1999-01-01T23:59:59.000Z
A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.
Nonlinear dynamics of three dimensional fluid flow separation
Surana, Amit
2007-01-01T23:59:59.000Z
Flow separation (the detachment of fluid from a no-slip boundary) is a major cause of performance loss in engineering devices, including diffusers, airfoils and jet engines. The systematic study of flow separation dates ...
Electromagnetic Radiations as a Fluid Flow
Daniele Funaro
2009-11-25T23:59:59.000Z
We combine Maxwell's equations with Eulers's equation, related to a velocity field of an immaterial fluid, where the density of mass is replaced by a charge density. We come out with a differential system able to describe a relevant quantity of electromagnetic phenomena, ranging from classical dipole waves to solitary wave-packets with compact support. The clue is the construction of an energy tensor summing up both the electromagnetic stress and a suitable mass tensor. With this right-hand side, explicit solutions of the full Einstein's equation are computed for a wide class of wave phenomena. Since our electromagnetic waves may behave and interact exactly as a material fluid, they can create vortex structures. We then explicitly analyze some vortex ring configurations and examine the possibility to build a model for the electron.
Cai, Xiao-Chuan
to blood flow modeling 6 Andrew T. Barker,a , Xiao-Chuan Caib a Department of Applied Mathematics finite element solver for the simulation of blood flow in compliant arteries. The incompressible Navier-Stokes equations are used to model the fluid and coupled to an incom- pressible linear elastic model for the blood
PARAMETER AND SYSTEM IDENTIFICATION FOR FLUID FLOW IN UNDERGROUND RESERVOIRS
Ewing, Richard E.
associated with two seem ingly disparate applications: production of petroleum and the remediation of water procedures associated with injection and production wells. Equations to describe the flow of fluids in porous. Such data can include pressure and flow rates of various fluid phases obtained during production, or during
Analysis of multiphase fluid flows via high speed and synthetic aperture three dimensional imaging
Scharfman, Barry Ethan
2012-01-01T23:59:59.000Z
Spray flows are a difficult problem within the realm of fluid mechanics because of the complicated interfacial physics involved. Complete models of sprays having even the simplest geometries continue to elude researchers ...
Rutqvist, J.
2014-01-01T23:59:59.000Z
geomechanics in dual-porosity modeling of naturally fractured reservoirs. Society of Petroleum Engineers,
Method and apparatus for chemically altering fluids in continuous flow
Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.
1993-10-19T23:59:59.000Z
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.
Method and apparatus for chemically altering fluids in continuous flow
Heath, William O. (Richland, WA); Virden, Jr., Judson W. (Richland, WA); Richardson, R. L. (West Richland, WA); Bergsman, Theresa M. (Richland, WA)
1993-01-01T23:59:59.000Z
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.
Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.
2005-01-01T23:59:59.000Z
Studies Using the Yucca Mountain Unsaturated Zone Model,Unsaturated Zone at Yucca Mountain, Nevada, to Thermal LoadUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources
Friction-Induced Fluid Heating in Nanoscale Helium Flows
Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)
2010-05-21T23:59:59.000Z
We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.
Shekhar, Ravi
2009-05-15T23:59:59.000Z
and amplitude variation with offset (AVO) results for our example model predicts that CO2 is easier to detect than brine in the fractured reservoirs. The effects of geochemical processes on seismics are simulated by time-lapse modeling for t = 1000 years. My...
Faybishenko, B.; Doughty, C.; Geller, J. [and others
1998-07-01T23:59:59.000Z
Understanding subsurface flow and transport processes is critical for effective assessment, decision-making, and remediation activities for contaminated sites. However, for fluid flow and contaminant transport through fractured vadose zones, traditional hydrogeological approaches are often found to be inadequate. In this project, the authors examine flow and transport through a fractured vadose zone as a deterministic chaotic dynamical process, and develop a model of it in these terms. Initially, the authors examine separately the geometric model of fractured rock and the flow dynamics model needed to describe chaotic behavior. Ultimately they will put the geometry and flow dynamics together to develop a chaotic-dynamical model of flow and transport in a fractured vadose zone. They investigate water flow and contaminant transport on several scales, ranging from small-scale laboratory experiments in fracture replicas and fractured cores, to field experiments conducted in a single exposed fracture at a basalt outcrop, and finally to a ponded infiltration test using a pond of 7 by 8 m. In the field experiments, they measure the time-variation of water flux, moisture content, and hydraulic head at various locations, as well as the total inflow rate to the subsurface. Such variations reflect the changes in the geometry and physics of water flow that display chaotic behavior, which they try to reconstruct using the data obtained. In the analysis of experimental data, a chaotic model can be used to predict the long-term bounds on fluid flow and transport behavior, known as the attractor of the system, and to examine the limits of short-term predictability within these bounds. This approach is especially well suited to the need for short-term predictions to support remediation decisions and long-term bounding studies. View-graphs from ten presentations made at the annual meeting held December 3--4, 1997 are included in an appendix to this report.
Applying uncertainty quantification to multiphase flow computational fluid dynamics
Gel, A.; Garg, R.; Tong, C.; Shahnam, M.; Guenther, C.
2013-07-01T23:59:59.000Z
Multiphase computational fluid dynamics plays a major role in design and optimization of fossil fuel based reactors. There is a growing interest in accounting for the influence of uncertainties associated with physical systems to increase the reliability of computational simulation based engineering analysis. The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has recently undertaken an initiative to characterize uncertainties associated with computer simulation of reacting multiphase flows encountered in energy producing systems such as a coal gasifier. The current work presents the preliminary results in applying non-intrusive parametric uncertainty quantification and propagation techniques with NETL's open-source multiphase computational fluid dynamics software MFIX. For this purpose an open-source uncertainty quantification toolkit, PSUADE developed at the Lawrence Livermore National Laboratory (LLNL) has been interfaced with MFIX software. In this study, the sources of uncertainty associated with numerical approximation and model form have been neglected, and only the model input parametric uncertainty with forward propagation has been investigated by constructing a surrogate model based on data-fitted response surface for a multiphase flow demonstration problem. Monte Carlo simulation was employed for forward propagation of the aleatory type input uncertainties. Several insights gained based on the outcome of these simulations are presented such as how inadequate characterization of uncertainties can affect the reliability of the prediction results. Also a global sensitivity study using Sobol' indices was performed to better understand the contribution of input parameters to the variability observed in response variable.
Flow networks: A characterization of geophysical fluid transport
Enrico Ser-Giacomi; Vincent Rossi; Cristobal Lopez; Emilio Hernandez-Garcia
2015-03-05T23:59:59.000Z
We represent transport between different regions of a fluid domain by flow networks, constructed from the discrete representation of the Perron-Frobenius or transfer operator associated to the fluid advection dynamics. The procedure is useful to analyze fluid dynamics in geophysical contexts, as illustrated by the construction of a flow network associated to the surface circulation in the Mediterranean sea. We use network-theory tools to analyze the flow network and gain insights into transport processes. In particular we quantitatively relate dispersion and mixing characteristics, classically quantified by Lyapunov exponents, to the degree of the network nodes. A family of network entropies is defined from the network adjacency matrix, and related to the statistics of stretching in the fluid, in particular to the Lyapunov exponent field. Finally we use a network community detection algorithm, Infomap, to partition the Mediterranean network into coherent regions, i.e. areas internally well mixed, but with little fluid interchange between them.
Feedback regulated induction heater for a flowing fluid
Migliori, Albert (Santa Fe, NM); Swift, Gregory W. (Los Alamos, NM)
1985-01-01T23:59:59.000Z
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Feedback regulated induction heater for a flowing fluid
Migliori, A.; Swift, G.W.
1984-06-13T23:59:59.000Z
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Flow regimes for fluid injection into a confined porous medium
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.
2015-02-24T23:59:59.000Z
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore »equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less
Greil, Oliver, E-mail: oliver.greil@roe.med.tu-muenchen.de; Kleinschmidt, Thomas; Weiss, Wolfgang [Technical University of Munich, Department of Interventional Radiology, Klinikum rechts der Isar (Germany); Wolf, Oliver; Heider, Peter [Technical University of Munich, Department of Vascular Surgery, Klinikum rechts der Isar (Germany); Schaffner, Silvio; Gianotti, Marc [Abbott Company, Vascular Devices (Switzerland); Schmid, Thomas; Liepsch, Dieter [University of Applied Science Munich, Laboratory for Fluid Mechanics (Germany); Berger, Hermann [Technical University of Munich, Department of Interventional Radiology, Klinikum rechts der Isar (Germany)
2005-01-15T23:59:59.000Z
Purpose. To study the influence of a newly developed membrane stent design on flow patterns in a physiologic carotid artery model. Methods. Three different stents were positioned in silicone models of the carotid artery: a stainless steel stent (Wall-stent), a nitinol stent (SelfX), and a nitinol stent with a semipermeable membrane (MembraX). To increase the contact area of the membrane with the vessel wall, another MembranX model was modified at the outflow tract. The membrane consists of a biocompatible silicone-polyurethane copolymer (Elast-Eon) with a pore size of 100 {mu}m. All stents were deployed across the bifurcation and the external carotid artery origin. Flow velocity measurements were performed with laser Doppler anemometry (LDA), using pulsatile flow conditions (Re = 220; flow 0.39 l/min; flow rate ratio ICA:ECA = 70:30) in hemodynamically relevant cross-sections. The hemodynamic changes were analyzed by comparing velocity fluctuations of corresponding flow profiles. Results. The flow rate ratio ICA:ECA shifted significantly from 70/30 to 73.9/26.1 in the MembraX and remained nearly unchanged in the SelfX and Wallstent. There were no changes in the flow patterns at the inflow proximal to the stents. In the stent no relevant changes were found in the SelfX. In the Wallstent the separation zone shifted from the orifice of the ICA to the distal end of the stent. Four millimeters distal to the SelfX and the Wallstent the flow profile returned to normal. In the MembraX an increase in the central slipstreams was found with creation of a flow separation distal to the stent. With a modification of the membrane this flow separation vanished. In the ECA flow disturbances were seen at the inner wall distal to the stent struts in the SelfX and the Wallstent. With the MembraX a calming of flow could be observed in the ECA with a slight loss of flow volume. Conclusions. Stent placement across the carotid artery bifurcation induces alterations of the physiologic flow behavior. Depending on the stent design the flow alterations are located in different regions. All the stents tested were suitable for the carotid bifurcation. The MembraX prototype has shown promising hemodynamic properties ex vivo.
System and method measuring fluid flow in a conduit
Ortiz, Marcos German (Idaho Falls, ID); Kidd, Terrel G. (Blackfoot, ID)
1999-01-01T23:59:59.000Z
A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.
AFDM: An Advanced Fluid-Dynamics Model
Berthier, J. (CEA Centre d'Etudes Nucleaires de Grenoble, 38 (France)); Wilhelm, D. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.). Inst. fuer Neutronenphysik und Reaktortechnik); Bohl, W.R. (Los Alamos National Lab., NM (USA))
1990-09-01T23:59:59.000Z
This report consists of three parts. First, for the standard Advanced Fluid-Dynamics Model (AFDM), heat-transfer coefficients between components are worked out, depending on the different possible topologies. Conduction, convection, and radiative heat-transfer mechanisms are modeled. For solid particles, discontinuous phases that obey a rigid'' model, and components lacking relative motion, heat transfer is by conduction. Convection is represented for fluids in motion inside circulating'' bubbles and/or droplets. Radiation is considered between droplets in vapor continuous flow. In addition, a film-boiling model has been formulated, where radiation provides the lower limit on the fuel-to-coolant heat-transfer coefficient. Second, the momentum-exchange coefficients are defined for the standard AFDM. Between a continuous and discontinuous phase, the model consists of both laminar and turbulent terms. The most important feature is the drag coefficient in the turbulent term. It is calculated by a drag similarity hypothesis with limits for large Reynolds numbers, distorted particles,'' and churn-turbulent flow. A unique hysteresis algorithm exists to treat the liquid continuous to vapor continuous transition. Two discontinuous components are coupled using a turbulent term with an input drag coefficient. Fluid- structure momentum exchange is represented with a standard friction-factor correlation. Third, the formulas used for the AFDM simplified Step 1 models are discussed. These include the heat-transfer coefficients, the momentum-exchange functions, and the manner in which interfacial areas are determined from input length scales. The simplified modeling uses steady-state engineering correlations, as in SIMMER-II.
Revised: Thursday, February 25, 1999 Dynamics of osmotic fluid flow
Oster, George
Revised: Thursday, February 25, 1999 Dynamics of osmotic fluid flow George Oster Departments The classical thermodynamic treatment of osmotic pressure is quite sufficient to describe equilibrium situations can be quite useful when thinking about osmotic flow in unfamiliar situations. The equilibrium
The Flow of Newtonian Fluids in Axisymmetric Corrugated Tubes
Sochi, Taha
2010-01-01T23:59:59.000Z
This article deals with the flow of Newtonian fluids through axially-symmetric corrugated tubes. An analytical method to derive the relation between volumetric flow rate and pressure drop in laminar flow regimes is presented and applied to a number of simple tube geometries of converging-diverging nature. The method is general in terms of fluid and tube shape within the previous restrictions. Moreover, it can be used as a basis for numerical integration where analytical relations cannot be obtained due to mathematical difficulties.
The Flow of Newtonian Fluids in Axisymmetric Corrugated Tubes
Taha Sochi
2010-06-08T23:59:59.000Z
This article deals with the flow of Newtonian fluids through axially-symmetric corrugated tubes. An analytical method to derive the relation between volumetric flow rate and pressure drop in laminar flow regimes is presented and applied to a number of simple tube geometries of converging-diverging nature. The method is general in terms of fluid and tube shape within the previous restrictions. Moreover, it can be used as a basis for numerical integration where analytical relations cannot be obtained due to mathematical difficulties.
Method, apparatus and system for controlling fluid flow
McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Burch, Joesph V. (Shelley, ID)
2007-10-30T23:59:59.000Z
A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.
AFDM: An Advanced Fluid-Dynamics Model
Bohl, W.R.; Parker, F.R. (Los Alamos National Lab., NM (USA)); Wilhelm, D. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.). Inst. fuer Neutronenphysik und Reaktortechnik); Berthier, J. (CEA Centre d'Etudes Nucleaires de Grenoble, 38 (France)); Goutagny, L. (CEA Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Inst. de Protection et de Surete Nucleaire); Ninokata,
1990-09-01T23:59:59.000Z
AFDM, or the Advanced Fluid-Dynamics Model, is a computer code that investigates new approaches simulating the multiphase-flow fluid-dynamics aspects of severe accidents in fast reactors. The AFDM formalism starts with differential equations similar to those in the SIMMER-II code. These equations are modified to treat three velocity fields and supplemented with a variety of new models. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, on the dominant liquid, and on the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow regimes are permitted for the pool situations modeled. Virtual mass terms are included for vapor in liquid-continuous flow. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas are also modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer is generally treated using engineering correlations. Liquid-vapor phase transitions are handled with the nonequilibrium, heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. Convection is treated using a fractional-step method of time integration, including a semi-implicit pressure iteration. A higher-order differencing option is provided to control numerical diffusion. The Los Alamos SESAME equation-of-state has been implemented using densities and temperatures as the independent variables. AFDM programming has vectorized all computational loops consistent with the objective of producing an exportable code. 24 refs., 4 figs.
Prediction of fluid flow in curved pipe using the finite element method
Maitin, Christopher Benjamin
1987-01-01T23:59:59.000Z
. Therefore mathematical models have been developed to simulate the elfect of these stresses on the flow field. Until recently these models have only been used for simple geometries. With the advancement of the computer, numerical methods have been de... OF SCIENCE May 1987 Major Subject: Mechanical Engineering PREDICTION OF FLUID FLOW IN CURVED PIPE USING THE FINITE ELEMENT METHOD A Thesis CHRISTOPHER B. MAITIN Approved as to style and content by: Dennis L. O'Neal (Chairman of Committee) Warren...
Paris-Sud XI, Université de
SUBMITTED TO THE INTERNATIONAL JOURNAL OF FLOW CONTROL, REVISED VERSION 1 Fluid Flow Control, by visualizing a fluid flow, dense flow velocity maps can be computed via optical flow techniques by diminishing the fuel consumption of their aircrafts through drag reduction [1]. In contrast, in other
Design considerations for inverters in fluid flow control
Guggari, Mallappa Ishwarappa
1989-01-01T23:59:59.000Z
. 18 power circuit of current source inverter 3. 19 Output waveforms of current source inverter 5. 1 Response of fluid flow control system to a ramp reference input . 5. 2 Load torque and acceleration torque characteristics with centrifugal pump.... The process industry specifications for flow control have also become stringent, demanding an alternative to throttle valve control system, which is plagued with problems like poor dynamic response, dead- band, etc. In the literature, most of the attention...
Development of an analytical model for organic-fluid fouling
Panchal, C.B.; Watkinson, A.P.
1994-10-01T23:59:59.000Z
The research goal of this project is to determine ways to effectively mitigate fouling in organic fluids: hydrocarbons and derived fluids. The fouling research focuses on the development of methodology for determining threshold conditions for fouling. Initially, fluid containing chemicals known to produce foulant is analyzed; subsequently, fouling of industrial fluids is investigated. The fouling model developed for determining the effects of physical parameters is the subject of this report. The fouling model is developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermal-boundary layer, or at the fluid/wall interface, depending upon the interactive effects of fluid dynamics, heat and mass transfer, and the controlling chemical reaction. In the analysis, the experimental data are examined for fouling deposition of polyperoxide produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries are analyzed. The results show that the relative effects of physical parameters on the fouling rate differ for the three fouling mechanisms. Therefore, to apply the closed-flow-loop data to industrial conditions, the controlling mechanism must be identified.
Time-lapse seismic monitoring of subsurface fluid flow
Yuh, Sung H.
2004-09-30T23:59:59.000Z
and the efficiency of recovery. The recovery rates of most reservoirs are typically low, about 30 to 40 %, in part, because we do not understand the complexity of subsurface fluid flow. 3D seismic surveys provide images of subsurface structures that are now essential...
DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS
X. Wang; X. Sun; H. Zhao
2011-09-01T23:59:59.000Z
In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in which flow regime transition occurs.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, Marcos G. (Idaho Falls, ID); Boucher, Timothy J. (Helena, MT)
1997-01-01T23:59:59.000Z
A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, M.G.; Boucher, T.J.
1997-06-24T23:59:59.000Z
A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.
Michael R. Gross; Kajari Ghosh; Alex K. Manda; Sumanjit Aich
2006-05-08T23:59:59.000Z
The theory behind how chemically reactive tracers are used to characterize the velocity and temperature distribution in steady flowing systems is reviewed. Kinetic parameters are established as a function of reservoir temperatures and fluid residence times for selecting appropriate reacting systems. Reactive tracer techniques are applied to characterize the temperature distribution in a laminar-flow heat exchanger. Models are developed to predict reactive tracer behavior in fractured geothermal reservoirs of fixed and increasing size.
Gent, Universiteit
of the study is to study internal processes of porous geomaterials by analysis the pore structure in 2D and 3D geomaterials, fluid flow, modelling, optical microscopy and 3D image analysis. Promotor: Prof. Dr. Veerle of the geological material. Petrographical research with optical and fluorescence microscopy and SEM. Non
BAYESIAN INFERENCE ON INTEGRATED CONTINUITY FLUID FLOWS AND THEIR APPLICATION TO DUST AEROSOLS
Garbe, Christoph S.
BAYESIAN INFERENCE ON INTEGRATED CONTINUITY FLUID FLOWS AND THEIR APPLICATION TO DUST AEROSOLS Waterloo, Ontario, Canada ABSTRACT The significant role dust aerosols play in the earth's cli- mate system models for aerosol de- tection and atmospheric transport that rely on latent Gaussian Markov random
Theoretical and Numerical Simulation of Non-Newtonian Fluid Flow in Propped Fractures
Ouyang, Liangchen
2013-12-10T23:59:59.000Z
the original gel. The residual gel exhibits a higher yield stress, and is difficult to remove after fracture closure. But non-Newtonian fluid has complicated rheological equation and its flow behavior in porous media is difficult to be described and modeled...
A Numerical Algorithm for Fluid Flow in 3D Naturally Fractured Porous Media
Kentucky, University of
. Such fractured reservoirs could be modeled by permitting the porosity and permeability to vary rapidly as if the reservoir has two porous structures, one for the fractures and the other for the matrix blocksA Numerical Algorithm for Fluid Flow in 3D Naturally Fractured Porous Media Seongjai Kim Abstract
Fully Coupled Well Models for Fluid Injection and Production
White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.
2013-08-05T23:59:59.000Z
Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving these equations varies from zero coupling to full coupling. In this paper we describe a fully coupled solution approach for well model that allows for a flexible well trajectory and screened interval within a structured hexahedral computational grid. In this scheme the nonlinear well equations have been fully integrated into the Jacobian matrix for the reservoir conservation equations, minimizing the matrix bandwidth.
Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry
Sinha, Dipen N. (Los Alamos, NM)
2007-06-12T23:59:59.000Z
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry
Sinha, Dipen N.
2003-11-11T23:59:59.000Z
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Noninvasive Characterization Of A Flowing Multiphase Fluid Using Ultrasonic Interferometry
Sinha, Dipen N. (Los Alamos, NM)
2005-05-10T23:59:59.000Z
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Su, Susan Shan
2007-01-01T23:59:59.000Z
suggesting that laminar fluid flow may deactivate the cellbe responsive to a laminar fluid flow field, few have beencell response to laminar fluid flow the roundness ratio (see
Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim [Korea Institute of Nuclear Safety, 19 Kusung-dong, Yusung-gu, Taejon 305-338 (Korea, Republic of)
2004-07-01T23:59:59.000Z
This study investigates the fluid-elastic instability characteristics of steam generator helical type tubes in operating nuclear power plants. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted by a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Investigated are the effects of the helix angle, the number of supports and the status of the inner fluid on the modal, and fluid-elastic instability characteristics of the tubes, which are expressed in terms of the natural frequency, corresponding mode shape, and stability ratio. (authors)
Zakaria Mohamed Reda, Ahmed
2014-07-29T23:59:59.000Z
magnetic resonance (NMR) and mercury injection capillary pressure (MICP) measurements, and tracer tests; 2) correlate the parameters that govern the tracer fluid flow through porous media to the acid fluid flow through the porous media of the carbonate...
A Numerical Algorithm for Single Phase Fluid Flow in Elastic Porous ...
2000-11-13T23:59:59.000Z
KEYWORDS: geomechanics, fluid flow, elastic deformation, porous media ... been widely used in civil, mining, petroleum, and environmental engineering.
A compendium of fracture flow models, 1994
Diodato, D.M.
1994-11-01T23:59:59.000Z
The report is designed to be used as a decision-making aid for individuals who need to simulate fluid flow in fractured porous media. Fracture flow codes of varying capability in the public and private domain were identified in a survey of government, academia, and industry. The selection and use of an appropriate code requires conceptualization of the geology, physics, and chemistry (for transport) of the fracture flow problem to be solved. Conceptual models that have been invoked to describe fluid flow in fractured porous media include explicit discrete fracture, dual continuum (porosity and/or permeability), discrete fracture network, multiple interacting continua, multipermeability/multiporosity, and single equivalent continuum. The explicit discrete-fracture model is a ``near-field`` representation, the single equivalent continuum model is a ``far-field`` representation, and the dual-continuum model is intermediate to those end members. Of these, the dual-continuum model is the most widely employed. The concept of multiple interacting continua has been applied in a limited number of examples. Multipermeability/multiporosity provides a unified conceptual model. The ability to accurately describe fracture flow phenomena will continue to improve as a result of advances in fracture flow research and computing technology. This improvement will result in enhanced capability to protect the public environment, safety, and health.
Controlling chaos in a fluid flow past a movable cylinder Juan C. Vallejo a
Rey Juan Carlos, Universidad
mechanisms are not yet well known. This paper analyzes the fluid flow past a cylinder in a laminar regime of an in- compressible, viscid, time-dependent fluid flow past a cylinder in the laminar vortex sheddingControlling chaos in a fluid flow past a movable cylinder Juan C. Vallejo a , Inees P. Mari
FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY
Daripa, Prabir
FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY Prabir Daripa developed flows in enhanced oil recovery (EOR). In a recent exhaustive study [Transport in Porous Media, 93 fluid flows that occur in porous media during tertiary dis- placement process of chemical enhanced oil
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Franke, Rudiger
2010-01-01T23:59:59.000Z
Thermo-Fluid Systems, Modelica 2003 Conference, Linköping,H. Tummescheit: The Modelica Fluid and Media Library forThermo-Fluid Pipe Networks, Modelica 2006 Conference, Vi-
The flow of power law fluids in elastic networks and porous media
Sochi, Taha
2015-01-01T23:59:59.000Z
The flow of power law fluids, which include shear thinning and shear thickening as well as Newtonian as a special case, in networks of interconnected elastic tubes is investigated using a residual based pore scale network modeling method with the employment of newly derived formulae. Two relations describing the mechanical interaction between the local pressure and local cross sectional area in distensible tubes of elastic nature are considered in the derivation of these formulae. The model can be used to describe shear dependent flows of mainly viscous nature. The behavior of the proposed model is vindicated by several tests in a number of special and limiting cases where the results can be verified quantitatively or qualitatively. The model, which is the first of its kind, incorporates more than one major non-linearity corresponding to the fluid rheology and conduit mechanical properties, that is non-Newtonian effects and tube distensibility. The formulation, implementation and performance indicate that the...
Modelling anisotropic fluid spheres in general relativity
Boonserm, Petarpa; Visser, Matt
2015-01-01T23:59:59.000Z
We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.
Modelling anisotropic fluid spheres in general relativity
Petarpa Boonserm; Tritos Ngampitipan; Matt Visser
2015-02-03T23:59:59.000Z
We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.
General single phase wellbore flow model
Ouyang, Liang-Biao; Arbabi, S.; Aziz, K.
1997-02-05T23:59:59.000Z
A general wellbore flow model, which incorporates not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow, is presented in this report. The new wellbore model is readily applicable to any wellbore perforation patterns and well completions, and can be easily incorporated in reservoir simulators or analytical reservoir inflow models. Three dimensionless numbers, the accelerational to frictional pressure gradient ratio R{sub af}, the gravitational to frictional pressure gradient ratio R{sub gf}, and the inflow-directional to accelerational pressure gradient ratio R{sub da}, have been introduced to quantitatively describe the relative importance of different pressure gradient components. For fluid flow in a production well, it is expected that there may exist up to three different regions of the wellbore: the laminar flow region, the partially-developed turbulent flow region, and the fully-developed turbulent flow region. The laminar flow region is located near the well toe, the partially-turbulent flow region lies in the middle of the wellbore, while the fully-developed turbulent flow region is at the downstream end or the heel of the wellbore. Length of each region depends on fluid properties, wellbore geometry and flow rate. As the distance from the well toe increases, flow rate in the wellbore increases and the ratios R{sub af} and R{sub da} decrease. Consequently accelerational and inflow-directional pressure drops have the greatest impact in the toe region of the wellbore. Near the well heel the local wellbore flow rate becomes large and close to the total well production rate, here R{sub af} and R{sub da} are small, therefore, both the accelerational and inflow-directional pressure drops can be neglected.
Reducing or stopping the uncontrolled flow of fluid such as oil from a well
Hermes, Robert E
2014-02-18T23:59:59.000Z
The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.
HYDROLYZED WOOD SLURRY FLOW MODELING
Wrathall, Jim
2012-01-01T23:59:59.000Z
LBL-10090 UC-61 HYDROLYZED WOOD SLURRY FLOW MODELING JimLBL-10090 HYDROLYZED WOOD SLURRY FLOW MODELING Jim Wrathallconversion of hydrolyzed wood slurry to fuel oil, Based on
Guidoboni, Giovanna
2007-01-01T23:59:59.000Z
J. Non-Newtonian Fluid Mech. 142 (2007) 36Â62 Review On the numerical simulation of Bingham visco-plastic various results and methods concerning the numerical simulation of Bingham visco-plastic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2. On the modeling of Bingham viscous plastic flow
Erosion of a granular bed driven by laminar fluid flow
A. E. Lobkovsky; A. V. Orpe; R. Molloy; A. Kudrolli; D. H. Rothman
2008-05-01T23:59:59.000Z
Motivated by examples of erosive incision of channels in sand, we investigate the motion of individual grains in a granular bed driven by a laminar fluid to give us new insights into the relationship between hydrodynamic stress and surface granular flow. A closed cell of rectangular cross-section is partially filled with glass beads and a constant fluid flux $Q$ flows through the cell. The refractive indices of the fluid and the glass beads are matched and the cell is illuminated with a laser sheet, allowing us to image individual beads. The bed erodes to a rest height $h_r$ which depends on $Q$. The Shields threshold criterion assumes that the non-dimensional ratio $\\theta$ of the viscous stress on the bed to the hydrostatic pressure difference across a grain is sufficient to predict the granular flux. Furthermore, the Shields criterion states that the granular flux is non-zero only for $\\theta >\\theta_c$. We find that the Shields criterion describes the observed relationship $h_r \\propto Q^{1/2}$ when the bed height is offset by approximately half a grain diameter. Introducing this offset in the estimation of $\\theta$ yields a collapse of the measured Einstein number $q^*$ to a power-law function of $\\theta - \\theta_c$ with exponent $1.75 \\pm 0.25$. The dynamics of the bed height relaxation are well described by the power law relationship between the granular flux and the bed stress.
Finite volume methods for fluid flow in porous media
Hiptmair, Ralf
. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Multiphase and multicomponent flows . . . . . . . . . . . . . . . 13 2.5.1 Black-oil model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.1 General solution . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.2 Pressure equation . . . . . . . . . . . . . . . . . . . . . . 10 2.3.3 Pressure equation for incompressible immiscible flow . . . 11 2.3.4 Saturation equation
Extended fluid models: Pressure tensor effects and equilibria
Cerri, S. S. [Physics Department “E. Fermi,” University of Pisa and CNISM, Largo B. Pontecorvo 3, 56127 Pisa (Italy) [Physics Department “E. Fermi,” University of Pisa and CNISM, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Max-Planck-Institut für Plasmaphysik, EURATOM association, Boltzmannstr. 2, D-85748 Garching (Germany); Henri, P. [Physics Department “E. Fermi,” University of Pisa and CNISM, Largo B. Pontecorvo 3, 56127 Pisa (Italy) [Physics Department “E. Fermi,” University of Pisa and CNISM, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Université de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, BP 4229 06304, Nice Cedex 4 (France); Califano, F.; Pegoraro, F. [Physics Department “E. Fermi,” University of Pisa and CNISM, Largo B. Pontecorvo 3, 56127 Pisa (Italy)] [Physics Department “E. Fermi,” University of Pisa and CNISM, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Del Sarto, D. [Institut Jean Lamour, UMR 7198 CNRS – Université de Lorraine, BP 239 F-54506 Vandoeuvre les Nancy (France)] [Institut Jean Lamour, UMR 7198 CNRS – Université de Lorraine, BP 239 F-54506 Vandoeuvre les Nancy (France); Faganello, M. [International Institute for Fusion Science/PIIM, UMR 7345 CNRS Aix-Marseille University, Marseille (France)] [International Institute for Fusion Science/PIIM, UMR 7345 CNRS Aix-Marseille University, Marseille (France)
2013-11-15T23:59:59.000Z
We consider the use of “extended fluid models” as a viable alternative to computationally demanding kinetic simulations in order to manage the global large scale evolution of a collisionless plasma while accounting for the main effects that come into play when spatial micro-scales of the order of the ion inertial scale d{sub i} and of the thermal ion Larmor radius ?{sub i} are formed. We present an extended two-fluid model that retains finite Larmor radius (FLR) corrections to the ion pressure tensor while electron inertia terms and heat fluxes are neglected. Within this model we calculate analytic FLR plasma equilibria in the presence of a shear flow and elucidate the role of the magnetic field asymmetry. Using a Hybrid Vlasov code, we show that these analytic equilibria offer a significant improvement with respect to conventional magnetohydrodynamic shear-flow equilibria when initializing kinetic simulations.
Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow
Guidoboni, Giovanna
Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow Giovanna Abstract We introduce a novel loosely coupled-type algorithm for fluid-structure interaction between blood. A major application is blood flow in human arteries. Understanding fluid- structure interaction between
Numerical simulation of flow of shear-thinning fluids in corrugated channels
Aiyalur Shankaran, Rohit
2009-05-15T23:59:59.000Z
A numerical study of flow of a shear thinning fluid through a pair of corrugated plates was carried out. The aim of the study was to observe and understand the behavior of the flow of shear thinning fluids through channels were the fluid...
A STUDY OF COMPUTATIONAL FLUID DYNAMICS APPLIED TO ROOM AIR FLOW
for supplying me a copy of his three-dimensional, laminar, constant density fluid flow computer program, whichi A STUDY OF COMPUTATIONAL FLUID DYNAMICS APPLIED TO ROOM AIR FLOW By JAMES W. WEATHERS Bachelor of the requirements for the Degree of MASTER OF SCIENCE May, 1992 #12;ii A STUDY OF COMPUTATIONAL FLUID DYNAMICS
Parcel EulerianLagrangian fluid dynamics of rotating geophysical flows
Oliver, Marcel
, Gottwald, and Reich (2002) and Frank and Reich (2003, 2004) introduced a Hamiltonian Particle Mesh (HPM integra- tion scheme is used. The HPM method is a parcel EulerianLagrangian method: the fluid particles on the advection time scale. The conservation of mass and circulation in the HPM numerical model is shown
Fluid Flow Phenomena during Welding (Book) | SciTech Connect
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,SeparationConnect Journal Article: DiscreteFELIX: Thenerve agent reaction(Journal Article) |Book: Fluid Flow
Volume-averaged macroscopic equation for fluid flow in moving porous media
Wang, Liang; Guo, Zhaoli; Mi, Jianchun
2014-01-01T23:59:59.000Z
Darcy's law and the Brinkman equation are two main models used for creeping fluid flows inside moving permeable particles. For these two models, the time derivative and the nonlinear convective terms of fluid velocity are neglected in the momentum equation. In this paper, a new momentum equation including these two terms are rigorously derived from the pore-scale microscopic equations by the volume-averaging method, which can reduces to Darcy's law and the Brinkman equation under creeping flow conditions. Using the lattice Boltzmann equation method, the macroscopic equations are solved for the problem of a porous circular cylinder moving along the centerline of a channel. Galilean invariance of the equations are investigated both with the intrinsic phase averaged velocity and the phase averaged velocity. The results demonstrate that the commonly used phase averaged velocity cannot serve as the superficial velocity, while the intrinsic phase averaged velocity should be chosen for porous particulate systems.
arXiv:1301.0752v1[physics.flu-dyn]4Jan2013 Fluid-particle flow modelling and validation using
Luding, Stefan
-way-coupled mesoscale SPH-DEM Martin Robinsona, , Stefan Ludinga , Marco Ramaiolib aMultiscale Mechanics, University to resolve the pore-scale is too great. It then becomes necessary to use unresolved, or mesoscale, fluid simulations. This mesoscale is the focus of this paper and the domain of applicability for the SPH-DEM method
arXiv:1301.0752v1[physics.flu-dyn]4Jan2013 Fluid-particle flow modelling and validation using
Luding, Stefan
-way-coupled mesoscale SPH-DEM Martin Robinsona, , Stefan Ludinga , Marco Ramaiolib aMultiscale Mechanics, University required to resolve the pore-scale is too great. It then becomes necessary to use unresolved, or mesoscale, fluid simulations. This mesoscale is the focus of this paper and the domain of applicability for the SPH
Derivation of Newton's Law of Gravitation Based on a Fluid Mechanical Singularity Model of Particles
Xiao-Song Wang
2006-10-25T23:59:59.000Z
We speculate that the universe may be filled with a kind of fluid which may be called aether or tao. Thus, Newton's law of gravitation is derived by methods of hydrodynamics based on a sink flow model of particles.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1982-05-04T23:59:59.000Z
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.
de Stadler, M; Chand, K
2007-11-12T23:59:59.000Z
Gas centrifuges exhibit very complex flows. Within the centrifuge there is a rarefied region, a transition region, and a region with an extreme density gradient. The flow moves at hypersonic speeds and shock waves are present. However, the flow is subsonic in the axisymmetric plane. The analysis may be simplified by treating the flow as a perturbation of wheel flow. Wheel flow implies that the fluid is moving as a solid body. With the very large pressure gradient, the majority of the fluid is located very close to the rotor wall and moves at an azimuthal velocity proportional to its distance from the rotor wall; there is no slipping in the azimuthal plane. The fluid can be modeled as incompressible and subsonic in the axisymmetric plane. By treating the centrifuge as long, end effects can be appropriately modeled without performing a detailed boundary layer analysis. Onsager's pancake approximation is used to construct a simulation to model fluid flow in a gas centrifuge. The governing 6th order partial differential equation is broken down into an equivalent coupled system of three equations and then solved numerically. In addition to a discussion on the baseline solution, known problems and future work possibilities are presented.
THERMAL FLUID MODELING OF BEPCII IR QUADRUPOLE MAGNET CRYOSTAT.
WANG.L.; TANG,H.M.; ZHANG,X.B.; YANG,G.D.; JIA,L.X.
2004-05-11T23:59:59.000Z
A pair of superconducting interaction region quadrupole magnets for BEPCII was designed and fabricated at Brookhaven National Laboratory, USA. The cryogenic system for the IR magnets was designed at Harbin Institute of Technology, China. This paper provides the results of thermal fluid modeling for the magnet cryostat. The numerical analyses were carried out for two types of cooling methods, the subcooled liquid helium and the supercritical helium flow. The pressure and temperature changes in the cooling circuits are given.
TOUGH Simulations of the Updegraff's Set of Fluid and Heat Flow Problems
Moridis, G.J.; Pruess (editor), K.
1992-11-01T23:59:59.000Z
The TOUGH code [Pruess, 1987] for two-phase flow of water, air, and heat in penneable media has been exercised on a suite of test problems originally selected and simulated by C. D. Updegraff [1989]. These include five 'verification' problems for which analytical or numerical solutions are available, and three 'validation' problems that model laboratory fluid and heat flow experiments. All problems could be run without any code modifications (*). Good and efficient numerical performance, as well as accurate results were obtained throughout. Additional code verification and validation problems from the literature are briefly summarized, and suggestions are given for proper applications of TOUGH and related codes.
Multiphase fluid flow and time lapse seismics UNLP, 11 Octubre de ...
santos
Time-lapse seismic surveys aim to monitor the migration and dispersal of the CO2 plume after injection. Multiphase fluid flow and time lapse seismics – p. 3 ...
Rotation free flow of noncompressible fluid through the rotating wheel of centrifugal pump
Tanski, Igor A
2008-01-01T23:59:59.000Z
The exact analytic solution is built for the plane flow of incompressible fluid through the wheel with profiles of blades approximating logarithmic spirals.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1980-05-02T23:59:59.000Z
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.
Spatial and temporal resolution of fluid flows: LDRD final report
Tieszen, S.R.; O`Hern, T.J.; Schefer, R.W.; Perea, L.D.
1998-02-01T23:59:59.000Z
This report describes a Laboratory Directed Research and Development (LDRD) activity to develop a diagnostic technique for simultaneous temporal and spatial resolution of fluid flows. The goal is to obtain two orders of magnitude resolution in two spatial dimensions and time simultaneously. The approach used in this study is to scale up Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) to acquire meter-size images at up to 200 frames/sec. Experiments were conducted in buoyant, fully turbulent, non-reacting and reacting plumes with a base diameter of one meter. The PIV results were successful in the ambient gas for all flows, and in the plume for non-reacting helium and reacting methane, but not reacting hydrogen. No PIV was obtained in the hot combustion product region as the seed particles chosen vaporized. Weak signals prevented PLIF in the helium. However, in reacting methane flows, PLIF images speculated to be from Poly-Aromatic-Hydrocarbons were obtained which mark the flame sheets. The results were unexpected and very insightful. A natural fluorescence from the seed particle vapor was also noted in the hydrogen tests.
System and method for bidirectional flow and controlling fluid flow in a conduit
Ortiz, M.G.
1999-03-23T23:59:59.000Z
A system for measuring bidirectional flow, including backflow, of fluid in a conduit is disclosed. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit. 3 figs.
System and method for bidirectional flow and controlling fluid flow in a conduit
Ortiz, Marcos German (Idaho Falls, ID)
1999-01-01T23:59:59.000Z
A system for measuring bidirectional flow, including backflow, of fluid in a conduit. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit.
Microgravity Flow Regime Transition Modeling
Shephard, Adam M.
2010-07-14T23:59:59.000Z
Flow regime transitions and the modeling thereof underlie the design of microgravity two-phase systems. Through the use of the zero-g laboratory, microgravity two-phase flows can be studied. Because microgravity two-phase flows exhibit essentially...
Scaled Experimental Modeling of VHTR Plenum Flows
ICONE 15
2007-04-01T23:59:59.000Z
Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (“thermal striping”) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.
STRUCTURAL HETEROGENEITIES AND PALEO FLUID FLOW IN AN ANALOG SANDSTONE RESERVOIR 2001-2004
Pollard, David; Aydin, Atilla
2005-02-22T23:59:59.000Z
Fractures and faults are brittle structural heterogeneities that can act both as conduits and barriers with respect to fluid flow in rock. This range in the hydraulic effects of fractures and faults greatly complicates the challenges faced by geoscientists working on important problems: from groundwater aquifer and hydrocarbon reservoir management, to subsurface contaminant fate and transport, to underground nuclear waste isolation, to the subsurface sequestration of CO2 produced during fossil-fuel combustion. The research performed under DOE grant DE-FG03-94ER14462 aimed to address these challenges by laying a solid foundation, based on detailed geological mapping, laboratory experiments, and physical process modeling, on which to build our interpretive and predictive capabilities regarding the structure, patterns, and fluid flow properties of fractures and faults in sandstone reservoirs. The material in this final technical report focuses on the period of the investigation from July 1, 2001 to October 31, 2004. The Aztec Sandstone at the Valley of Fire, Nevada, provides an unusually rich natural laboratory in which exposures of joints, shear deformation bands, compaction bands and faults at scales ranging from centimeters to kilometers can be studied in an analog for sandstone aquifers and reservoirs. The suite of structures there has been documented and studied in detail using a combination of low-altitude aerial photography, outcrop-scale mapping and advanced computational analysis. In addition, chemical alteration patterns indicative of multiple paleo fluid flow events have been mapped at outcrop, local and regional scales. The Valley of Fire region has experienced multiple episodes of fluid flow and this is readily evident in the vibrant patterns of chemical alteration from which the Valley of Fire derives its name. We have successfully integrated detailed field and petrographic observation and analysis, process-based mechanical modeling, and numerical simulation of fluid flow to study a typical sandstone aquifer/reservoir at a variety of scales. We have produced many tools and insights which can be applied to active subsurface flow systems and practical problems of pressing global importance.
Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing
Freifeld, B.; Finsterle, S.
2010-12-10T23:59:59.000Z
The objective of Task 2 is to develop a numerical method for the efficient and accurate analysis of distributed thermal perturbation sensing (DTPS) data for (1) imaging flow profiles and (2) in situ determination of thermal conductivities and heat fluxes. Numerical forward and inverse modeling is employed to: (1) Examine heat and fluid flow processes near a geothermal well under heating and cooling conditions; (2) Demonstrate ability to interpret DTPS thermal profiles with acceptable estimation uncertainty using inverse modeling of synthetic temperature data; and (3) Develop template model and analysis procedure for the inversion of temperature data collected during a thermal perturbation test using fiber-optic distributed temperature sensors. This status report summarizes initial model developments and analyses.
Mutiscale Modeling of Segregation in Granular Flows
Jin Sun
2007-08-03T23:59:59.000Z
Modeling and simulation of segregation phenomena in granular flows are investigated. Computational models at different scales ranging from particle level (microscale) to continuum level (macroscale) are employed in order to determine the important microscale physics relevant to macroscale modeling. The capability of a multi-fluid model to capture segregation caused by density difference is demonstrated by simulating grain-chaff biomass flows in a laboratory-scale air column and in a combine harvester. The multi-fluid model treats gas and solid phases as interpenetrating continua in an Eulerian frame. This model is further improved by incorporating particle rotation using kinetic theory for rapid granular flow of slightly frictional spheres. A simplified model is implemented without changing the current kinetic theory framework by introducing an effective coefficient of restitution to account for additional energy dissipation due to frictional collisions. The accuracy of predicting segregation rate in a gas-fluidized bed is improved by the implementation. This result indicates that particle rotation is important microscopic physics to be incorporated into the hydrodynamic model. Segregation of a large particle in a dense granular bed of small particles under vertical. vibration is studied using molecular dynamics simulations. Wall friction is identified as a necessary condition for the segregation. Large-scale force networks bearing larger-than-average forces are found with the presence of wall friction. The role of force networks in assisting rising of the large particle is analyzed. Single-point force distribution and two-point spatial force correlation are computed. The results show the heterogeneity of forces and a short-range correlation. The short correlation length implies that even dense granular flows may admit local constitutive relations. A modified minimum spanning tree (MST) algorithm is developed to asymptotically recover the force statistics in the force networks. This algorithm provides a possible route to constructing a continuum model with microstructural information supplied from it. Microstructures in gas fluidized beds are also analyzed using a hybrid method, which couples the discrete element method (DEM) for particle dynamics with the averaged two-fluid (TF) equations for the gas phase. Multi-particle contacts are found in defluidized regions away from bubbles in fluidized beds. The multi-particle contacts invalidate the binary-collision assumption made in the kinetic theory of granular flows for the defluidized regions. Large ratios of contact forces to drag forces are found in the same regions, which confirms the relative importance of contact forces in determining particle dynamics in the defluidized regions.
Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law
Boyer, Edmond
Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law F transfer in a magnetic fluid flow under the action of an applied magnetic field. Instead of the usual heat-Cattaneo law, heat transfer, magnetic field, magnetization AMS subject classifications: 76N10, 35Q35. 1
Vallée, Martin
coupled fluid flow and geomechanical fault-slip analysis J. Rutqvist *, J. Birkholzer, F. Cappa, C demonstrates the use of coupled fluid flow and geomechanical fault slip (fault reactivation) analysis: Geological CO2 sequestration; geomechanics; Fault slip; Stress; Caprock integrity; CO2 injection 1
378 Solutions Manual x Fluid Mechanics, Fifth Edition where heat flow, J/s
Bahrami, Majid
378 Solutions Manual x Fluid Mechanics, Fifth Edition where heat flow, J/s A surface area, m Q 2 'T Ans. L V VV U PU § ·' : 3 3 3 3 ¨ ¸ © ¹ 5.18 Under laminar conditions, the volume flow Q through temperature difference, K The dimensionless form of h, called the Stanton number, is a combination of h, fluid
Measurement Of The Fluid Flow Load On A Globe Valve Stem Under Various Cavitation
Paris-Sud XI, Université de
Measurement Of The Fluid Flow Load On A Globe Valve Stem Under Various Cavitation Conditions-sur-Loing, France. Working on fluid mechanics aspects of nuclear valves since 2004. Zachary Leutwyler zleutwyler and numerical investigation of flow- induced forces and torque acting on linear and quarter turn valves. hal
Device and method for measuring fluid flow in a conduit having a gradual bend
Ortiz, Marcos German (Idaho Falls, ID); Boucher, Timothy J (Helena, MT)
1998-01-01T23:59:59.000Z
A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Device and method for measuring fluid flow in a conduit having a gradual bend
Ortiz, M.G.; Boucher, T.J.
1998-11-10T23:59:59.000Z
A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Nozzle Flow, Spray, Combustion, & Emission Modeling using KH-ACT Primary Breakup Model & Detailed Chemistry Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling using...
Harstad, H. [New Mexico Tech, Socorro, NM (United States); Teufel, L.W.; Lorenz, J.C.; Brown, S.R. [Sandia National Labs., Albuquerque, NM (United States). Geomechanics Dept.
1996-08-01T23:59:59.000Z
Significant gas reserves are present in low-permeability sandstones of the Frontier Formation in the greater Green River Basin, Wyoming. Successful exploitation of these reservoirs requires an understanding of the characteristics and fluid-flow response of the regional natural fracture system that controls reservoir productivity. Fracture characteristics were obtained from outcrop studies of Frontier sandstones at locations in the basin. The fracture data were combined with matrix permeability data to compute an anisotropic horizontal permeability tensor (magnitude and direction) corresponding to an equivalent reservoir system in the subsurface using a computational model developed by Oda (1985). This analysis shows that the maximum and minimum horizontal permeability and flow capacity are controlled by fracture intensity and decrease with increasing bed thickness. However, storage capacity is controlled by matrix porosity and increases linearly with increasing bed thickness. The relationship between bed thickness and the calculated fluid-flow properties was used in a reservoir simulation study of vertical, hydraulically-fractured and horizontal wells and horizontal wells of different lengths in analogous naturally fractured gas reservoirs. The simulation results show that flow capacity dominates early time production, while storage capacity dominates pressure support over time for vertical wells. For horizontal wells drilled perpendicular to the maximum permeability direction a high target production rate can be maintained over a longer time and have higher cumulative production than vertical wells. Longer horizontal wells are required for the same cumulative production with decreasing bed thickness.
Measurement Of The Fluid Flow Load On A Globe Valve Stem Under Various Cavitation Conditions
Ferrari, Jerome
2009-01-01T23:59:59.000Z
The evaluation of fluid forces on the stem is important for wear prediction of valve and actuator guidance parts. While estimating the axial load is straight forward, estimating and/or measuring the side load is more difficult, especially for globe valves. Therefore, measurements are carried out on an ad hoc, scale 1, model of a 2" globe valve. The body is replicated in Plexiglas to enable flow visualization and the original stem is heavily instrumented to allow force measurements in every direction. The flow loop facility used for this experiment is designed to allow fine-tuning of the cavitation intensity. The experiment is run for a set of cavitation conditions, flow rates and disc positions. The results show that the transverse force (perpendicular to the stem) can reach the order of the axial force; thus it should not be ignored. We also observed that it depends very weakly on the cavitation levels. Videos made with a high-speed camera allow an interesting understanding of the fluid flow and the cavitati...
Real-Time Maps of Fluid Flow Fields in Porous Biomaterials
Julia J. Mack; Khalid Youssef; Onika D. V. Noel; Michael Lake; Ashley Wu; M. Luisa Iruela-Arispe; Louis-S. Bouchard
2013-01-13T23:59:59.000Z
Mechanical forces such as fluid shear have been shown to enhance cell growth and differentiation, but knowledge of their mechanistic effect on cells is limited because the local flow patterns and associated metrics are not precisely known. Here we present real-time, noninvasive measures of local hydrodynamics in 3D biomaterials based on nuclear magnetic resonance. Microflow maps were further used to derive pressure, shear and fluid permeability fields. Finally, remodeling of collagen gels in response to precise fluid flow parameters was correlated with structural changes. It is anticipated that accurate flow maps within 3D matrices will be a critical step towards understanding cell behavior in response to controlled flow dynamics.
Real-Time Maps of Fluid Flow Fields in Porous Biomaterials
Mack, Julia J; Noel, Onika D V; Lake, Michael; Wu, Ashley; Iruela-Arispe, M Luisa; Bouchard, Louis-S; 10.1016/j.biomaterials.2012.11.030
2013-01-01T23:59:59.000Z
Mechanical forces such as fluid shear have been shown to enhance cell growth and differentiation, but knowledge of their mechanistic effect on cells is limited because the local flow patterns and associated metrics are not precisely known. Here we present real-time, noninvasive measures of local hydrodynamics in 3D biomaterials based on nuclear magnetic resonance. Microflow maps were further used to derive pressure, shear and fluid permeability fields. Finally, remodeling of collagen gels in response to precise fluid flow parameters was correlated with structural changes. It is anticipated that accurate flow maps within 3D matrices will be a critical step towards understanding cell behavior in response to controlled flow dynamics.
Modeling Traffic Flow Emissions
Cappiello, Alessandra
2002-09-17T23:59:59.000Z
The main topic of this thesis is the development of light-duty vehicle dynamic emission models and their integration with dynamic traffic models. Combined, these models
The mathematical structure of multiphase thermal models of flow in porous media
Bell, John B.
The mathematical structure of multiphase thermal models of flow in porous media By Daniel E.A. van with the formulation and numerical solution of equations for modelling multicomponent, two-phase, thermal fluid flow- tions, Darcy's law for volumetric flow rates and an energy equation in terms of enthalpy. The model
Computational fluid dynamic modeling of fluidized-bed polymerization reactors
Rokkam, Ram [Ames Laboratory
2012-11-02T23:59:59.000Z
Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.
Kandlikar, Satish
, the effect of structured roughness elements on incompress- ible laminar fluid flow is analyzedA numerical study on the effects of 2d structured sinusoidal elements on fluid flow and heat flow Structured roughness elements Laminar flow a b s t r a c t Better understanding of laminar flow
Miniatuization of the flowing fluid electric conductivity loggingtec hnique
Su, Grace W.; Quinn, Nigel W.T.; Cook, Paul J.; Shipp, William
2005-10-19T23:59:59.000Z
An understanding of both the hydraulic properties of the aquifer and the depth distribution of salts is critical for evaluating the potential of groundwater for conjunctive water use and for maintaining suitable groundwater quality in agricultural regions where groundwater is used extensively for irrigation and drinking water. The electrical conductivity profiles recorded in a well using the flowing fluid electric conductivity logging (FEC logging) method can be analyzed to estimate interval specific hydraulic conductivity and estimates of the salinity concentration with depth. However, irrigation wells that are common in agricultural regions have limited access into them because these wells are still in operation, and the traditional equipment used for FEC logging cannot fit through the small access pipe intersecting the well. A modified, miniaturized FEC logging technique was developed such that this logging method could be used in wells with limited access. In addition, a new method for injecting water over the entire screened interval of the well was developed to reduce the time required to perform FEC logging. Results of FEC logging using the new methodology and miniaturized system in two irrigation wells are also summarized.
Multiscale modeling in granular flow
Rycroft, Christopher Harley
2007-01-01T23:59:59.000Z
Granular materials are common in everyday experience, but have long-resisted a complete theoretical description. Here, we consider the regime of slow, dense granular flow, for which there is no general model, representing ...
Multiphase Fluid Flow in Deformable Variable-Aperture Fractures - Final Report
Detwiler, Russell
2014-04-30T23:59:59.000Z
Fractures provide flow paths that can potentially lead to fast migration of fluids or contaminants. A number of energy-?related applications involve fluid injections that significantly perturb both the pressures and chemical composition of subsurface fluids. These perturbations can cause both mechanical deformation and chemical alteration of host rocks with potential for significant changes in permeability. In fractured rock subjected to coupled chemical and mechanical stresses, it can be difficult to predict the sign of permeability changes, let alone the magnitude. This project integrated experimental and computational studies to improve mechanistic understanding of these coupled processes and develop and test predictive models and monitoring techniques. The project involved three major components: (1) study of two-?phase flow processes involving mass transfer between phases and dissolution of minerals along fracture surfaces (Detwiler et al., 2009; Detwiler, 2010); (2) study of fracture dissolution in fractures subjected to normal stresses using experimental techniques (Ameli, et al., 2013; Elkhoury et al., 2013; Elkhoury et al., 2014) and newly developed computational models (Ameli, et al., 2014); (3) evaluation of electrical resistivity tomography (ERT) as a method to detect and quantify gas leakage through a fractured caprock (Breen et al., 2012; Lochbuhler et al., 2014). The project provided support for one PhD student (Dr. Pasha Ameli; 2009-?2013) and partially supported a post-?doctoral scholar (Dr. Jean Elkhoury; 2010-?2013). In addition, the project provided supplemental funding to support collaboration with Dr. Charles Carrigan at Lawrence Livermore National Laboratory in connection with (3) and supported one MS student (Stephen Breen; 2011-?2013). Major results from each component of the project include the following: (1) Mineral dissolution in fractures occupied by two fluid phases (e.g., oil-?water or water-?CO{sub 2}) causes changes in local capillary forces and redistribution of fluids. These coupled processes enhance channel formation and the potential for development of fast flow paths through fractures. (2) Dissolution in fractures subjected to normal stress can result in behaviors ranging from development of dissolution channels and rapid permeability increases to fracture healing and significant permeability decreases. The timescales associated with advective transport of dissolved ions in the fracture, mineral dissolution rates, and diffusion within the adjacent porous matrix dictate the sign and magnitude of the resulting permeability changes. Furthermore, a high-? resolution mechanistic model that couples elastic deformation of contacts and aperture-?dependent dissolution rates predicts the range of observed behaviors reasonably well. (3) ERT has potential as a tool for monitoring gas leakage in deep formations. Using probabilistic inversion methods further enhances the results by providing uncertainty estimates of inverted parameters.
2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 Molecular dynamics methods in
Maruyama, Shigeo
2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 2.13.7 Molecular dynamics methods in microscale heat transfer Shigeo Maruyama A. Introduction In normal heat transfer and fluid flow calculations of molecules. This situation is approached in microscale heat transfer and fluid flow. Molecular level
Rom-Kedar, Vered
flows Phys. Fluids 23, 016603 (2011); 10.1063/1.3531716 Development and characterization of a laminar of immiscible impurities in a two-dimensional flow Phys. Fluids 10, 342 (1998); 10.1063/1.869526 This articleNew Lagrangian diagnostics for characterizing fluid flow mixing Ruty Mundel, Erick Fredj, Hezi
Method and apparatus for measuring the mass flow rate of a fluid
Evans, Robert P. (Idaho Falls, ID); Wilkins, S. Curtis (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Blotter, Jonathan D. (Pocatello, ID)
2002-01-01T23:59:59.000Z
A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.
Laboratory studies of subaqueous debris flows by measurements of pore-fluid pressure and total flows is reported where total stress as well as pore pressure transducers were mounted in the bed; hydroplaning; laboratory experiment; pore pressure measurements 1. Introduction Debris flow is an important
Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation
Tchelepi, Hamdi
2014-11-14T23:59:59.000Z
A multiscale linear-solver framework for the pressure equation associated with flow in highly heterogeneous porous formations was developed. The multiscale based approach is cast in a general algebraic form, which facilitates integration of the new scalable linear solver in existing flow simulators. The Algebraic Multiscale Solver (AMS) is employed as a preconditioner within a multi-stage strategy. The formulations investigated include the standard MultiScale Finite-Element (MSFE) andMultiScale Finite-Volume (MSFV) methods. The local-stage solvers include incomplete factorization and the so-called Correction Functions (CF) associated with the MSFV approach. Extensive testing of AMS, as an iterative linear solver, indicate excellent convergence rates and computational scalability. AMS compares favorably with advanced Algebraic MultiGrid (AMG) solvers for highly detailed three-dimensional heterogeneous models. Moreover, AMS is expected to be especially beneficial in solving time-dependent problems of coupled multiphase flow and transport in large-scale subsurface formations.
A nonlocal model for fluid-structure interaction with applications in hydraulic fracturing
Turner, Daniel Z
2012-01-01T23:59:59.000Z
Modeling important engineering problems related to flow-induced damage (in the context of hydraulic fracturing among others) depends critically on characterizing the interaction of porous media and interstitial fluid flow. This work presents a new formulation for incorporating the effects of pore pressure in a nonlocal representation of solid mechanics. The result is a framework for modeling fluid-structure interaction problems with the discontinuity capturing advantages of an integral based formulation. A number of numerical examples are used to show that the proposed formulation can be applied to measure the effect of leak-off during hydraulic fracturing as well as modeling consolidation of fluid saturated rock and surface subsidence caused by fluid extraction from a geologic reservoir. The formulation incorporates the effect of pore pressure in the constitutive description of the porous material in a way that is appropriate for nonlinear materials, easily implemented in existing codes, straightforward in i...
Lisburne Formation fracture characterization and flow modeling
Karpov, Alexandre Valerievich
2001-01-01T23:59:59.000Z
fracture set; larger fractures influence fluid flow more than smaller fractures. Fracture strike and dip variability increased the system interconnectivity, but did not affect the optimal wellbore orientation. Incorporating ENE fracture termination...
Lisburne Formation fracture characterization and flow modeling
Karpov, Alexandre Valerievich
2001-01-01T23:59:59.000Z
Evaluation of fractured reservoirs for fluid flow and optimal well placement is often very complicated. In general, fractures enhance permeability and increase access to matrix surface, but their random aspects create difficulties for analysis...
IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C...
IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL...
IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF...
OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST...
Vibration of Wires in Liquid Argon Due to Fluid Flow Kirk T McDonald (kirkmcd@princeton.edu)
McDonald, Kirk
Vibration of Wires in Liquid Argon Due to Fluid Flow Kirk T McDonald (kirkmcd. But in these regions, the Reynolds number of the flow is 56/23 = 2.4, in which case the flow is laminar, not turbulent, and there is no excitation of wire vibration. So, I conclude that wire vibration due to fluid flow is negligible (unless
Fluid Dynamic Models of Flagellar and Ciliary Beating
Fauci, Lisa
University, New Orleans, Louisiana, USA ABSTRACT: We have developed a fluidmechanical model of a eucaryotic mechanics of microtubules, and forces due to nexin links with a surrounding incompressible fluid. This model mechanisms, the passive elastic structure of the axoneme, and the external fluid dynamics. These flagellar
Temperature distribution in a flowing fluid heated in a microwave resonant cavity
Thomas, J.R. Jr. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Nelson, E.M.; Kares, R.J.; Stringfield, R.M. [Los Alamos National Lab., NM (United States)
1996-04-01T23:59:59.000Z
This paper presents results of an analytical study of microwave heating of a fluid flowing through a tube situated along the axis of a cylindrical microwave applicator. The interaction of the microwave field pattern and the fluid velocity profiles is illustrated for both laminar and turbulent flow. Resulting temperature profiles are compared with those generated by conventional heating through a surface heat flux. It is found that microwave heating offers several advantages over conventional heating.
NMR imaging techniques and applications in the flow behavior of fluids in porous media
Halimi, Hassan I
1990-01-01T23:59:59.000Z
NMR IMAGING TECHNIQUES AND APPLICATIONS IN THE FLOW BEHAVIOR OF FLUIDS IN POROUS MEDIA A Thesis By HASSAN I. HALIMI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1990 Major Subject: Petroleum Engineering NMR IMAGING TECHNIQUES AND APPLICATIONS IN THE FLOW BEHAVIOR OF FLUIDS IN POROUS MEDIA A Thesis By HASSAN I. HALIMI Approved as to style and content by: S. W. Poston (Chair...
Under consideration for publication in J. Fluid Mech. 1 Conservation Law Modeling of Entrainment
Tabak, Esteban G.
Under consideration for publication in J. Fluid Mech. 1 Conservation Law Modeling of Entrainment entrainment in two-layer shallow water flows using non-standard conserved quantities, replacing layer conditions to model entrainment between the layers have not been derived from first principles. In fact
Pattanayak, S.Ch.; Das, R.K. [Indian Institute of Technology, Kharagpur (India)
1995-12-01T23:59:59.000Z
Local void fraction in a vertical cryogenic two-phase flow has been measured with the help of a small capacitance sensor. The time varying capacitance signal of the sensor is used to modulate the pulse width of a multivibrator. The probability distribution function (PDF) of the pulse width data is analysed for identifying the flow regimes, while average pulse width is correlated with the average void fraction. The calibrations of the void fraction sensor are found to be sensitive to the flow regimes. In slug and churn flow regimes the calibrations are also found to be sensitive to fluid flow rates. But no such dependence is observed in bubble and annular flow regimes. The sensitivity towards flow rates could be correlated with the position of PDF peaks of the concerned flow regimes.
Flows of Incompressible Newtonian and Generalized Newtonian Fluids over a Circular Cylinder
Klein, Kayla
2012-05-31T23:59:59.000Z
This thesis presents numerical solutions of the boundary value problems describing the isothermal and non-isothermal steady flows of incompressible Newtonian, power-law and Carreau fluids over a circular cylinder using the hpk-finite element process...g_i...max <= O(10^-6) always ensures that Newton's linear method with line search yields an accurate solution of the system of non-linear algebraic equations resulting from the least squares process. The residual functional values of the order of O (10^-6) or lower ensure that GDEs are satisfied accurately over the entire domain and, thus the numerical solutions presented in this thesis can be viewed as benchmark quality solutions. In cases of generalized Newtonian fluids (power-law and Carreau models) only shear thinning fluids are considered. Numerical studies demonstrate decoupled behavior of the temperature field from the rest of the deformation field. Shear thinning behavior and viscous dissipation for progressively increasing Reynolds numbers are simulated accurately without any difficulty....
Fluid Queue Models of Battery Life Gareth L. Jones, Peter G. Harrison, Uli Harder, Tony Field
Imperial College, London
a conductor and it is quite natural to think of the flow of charge as an incompressible fluid. Batteries canFluid Queue Models of Battery Life Gareth L. Jones, Peter G. Harrison, Uli Harder, Tony Field-mail:{gljones,uh,ajf,pgh}@doc.ic.ac.uk Abstract--We investigate how a power-save mode affects the battery life of a device subject
Numerical simulations of stratified fluid flow over topography near resonance
Brown, Harmony Rose
2008-01-01T23:59:59.000Z
tidal ?ow over isolated topography. Deep Sea Research II,strati?ed ?uid ?ow over topography. J. Fluid Mech. , [22] I.strati?ed ?uid ?ow over topography near resonance A thesis
Multiphase flow and control of fluid path in microsystems
Jhunjhunwala, Manish
2005-01-01T23:59:59.000Z
Miniaturized chemical-systems are expected to have advantages of handling, portability, cost, speed, reproducibility and safety. Control of fluid path in small channels between processes in a chemical/biological network ...
Structure evolution in electrorheological fluids flowing through microchannels
, including valves2,3 , clutches4 and shock absorbers5 . Recently, custom-formulated ER fluids have been that the increasing shear stress passes through three sequential stages17 . In the first stage, the shear stress
Robust processing of optical flow of fluids Ashish Doshi and Adrian G. Bors, Senior Member, IEEE
Bors, Adrian
to the change of illumination, image noise and the perspective projection when representing a 3-D scene in a 2-D1 Robust processing of optical flow of fluids Ashish Doshi and Adrian G. Bors, Senior Member, IEEE changing patterns which poses chal- lenges to existing optical flow estimation methods. The proposed
Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with
Paris-Sud XI, Université de
Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with partial-Newtonian boundary layer flow and heat transfer over an exponentially stretch- ing sheet with partial slip boundary. The heat transfer analysis has been carried out for two heating processes, namely (i) with prescribed sur
J. Non-Newtonian Fluid Mech. 130 (2005) 96109 Forward roll coating flows of viscoelastic liquids
Natelson, Douglas
2005-01-01T23:59:59.000Z
J. Non-Newtonian Fluid Mech. 130 (2005) 96109 Forward roll coating flows of viscoelastic liquids G, USA Received 10 September 2004; received in revised form 23 July 2005 Abstract Roll coating to a substrate. Except at low speed, the two-dimensional film splitting flow that occurs in forward roll coating
Two-fluid flowing equilibria of compact plasmas Loren C. Steinhauer
Washington at Seattle, University of
Two-fluid flowing equilibria of compact plasmas Loren C. Steinhauer Redmond Plasma Physics by limiting attention to compact toroids in a ``stationary-energy'' state with uniform density. Flowing. © 2001 American Institute of Physics. DOI: 10.1063/1.1388034 I. INTRODUCTION In magnetic fusion the need
Adiabatic quantum-fluid transport models N. Ben Abdallah1
Negulescu, Claudia
Adiabatic quantum-fluid transport models N. Ben Abdallah1 , F. M´ehats2 and C. Negulescu1 1 MIP quantum-fluid models are derived by means of a diffusion approxima- tion from adiabatic quantum-kinetic models. These models describe the electron transport of a bidimensional electron gas. Particles
Message Flow Modeling Oscar Nierstrasz
Nierstrasz, Oscar
Message Flow Modeling Oscar Nierstrasz and Dennis Tsichritzis Computer Systems Research Group University of Toronto ABSTRACT A message management system provides users with a facility for automatically handling messages. This paper describes a technique for characterizing the behaviour of such a system
Kim, Jihoon; Um, Evan; Moridis, George
2014-12-01T23:59:59.000Z
We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostly filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow-geomechanical simulator and are transformed via a rock-physics model into electrical conductivity models. It is shown that anomalous conductivity distribution in the resulting models is closely related to injected water saturation, but not closely related to newly created unsaturated fractures. Our numerical modeling experiments demonstrate that the crosswell EM method can be highly sensitive to conductivity changes that directly indicate the migration pathways of the injected fluid. Accordingly, the EM method can serve as an effective monitoring tool for distribution of injected fluids (i.e., migration pathways) during hydraulic fracturing operations
Ortiz, Marcos German (Idaho Falls, ID); Boucher, Timothy J. (Helena, MT)
1998-01-01T23:59:59.000Z
A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Ortiz, M.G.; Boucher, T.J.
1998-10-27T23:59:59.000Z
A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
The Flow of Power-Law Fluids in Axisymmetric Corrugated Tubes
Sochi, Taha
2010-01-01T23:59:59.000Z
In this article we present an analytical method for deriving the relationship between the pressure drop and flow rate in laminar flow regimes, and apply it to the flow of power-law fluids through axially-symmetric corrugated tubes. The method, which is general with regards to fluid and tube shape within certain restrictions, can also be used as a foundation for numerical integration where analytical expressions are hard to obtain due to mathematical or practical complexities. Five converging-diverging geometries are used as examples to illustrate the application of this method.
The Flow of Power-Law Fluids in Axisymmetric Corrugated Tubes
Taha Sochi
2010-06-13T23:59:59.000Z
In this article we present an analytical method for deriving the relationship between the pressure drop and flow rate in laminar flow regimes, and apply it to the flow of power-law fluids through axially-symmetric corrugated tubes. The method, which is general with regards to fluid and tube shape within certain restrictions, can also be used as a foundation for numerical integration where analytical expressions are hard to obtain due to mathematical or practical complexities. Five converging-diverging geometries are used as examples to illustrate the application of this method.
Modelling of multiphase flow in ironmaking blast furnace
Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P. [University of New South Wales, Sydney, NSW (Australia). School for Material Science and Engineering
2009-01-15T23:59:59.000Z
A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.
Fluid and heat flow in gas-rich geothermal reservoirs
O'Sullivan, M.J.; Bodvarsson, G.S.; Pruess, K.; Blakeley, M.R.
1983-07-01T23:59:59.000Z
Numerical-simulation techniques are used to study the effects of noncondensible gases (CO/sub 2/) on geothermal reservoir behavior in the natural state and during exploitation. It is shown that the presence of CO/sub 2/ has large effects on the thermodynamic conditions of a reservoir in the natural state, especially on temperature distributions and phase compositions. The gas will expand two-phase zones and increase gas saturations to enable flow of CO/sub 2/ through the system. During exploitation, the early pressure drop is primarily due to degassing of the system. This process can cause a very rapid initial pressure drop, on the order of tens of bars, depending upon the initial partial pressure of CO/sub 2/. The following gas content from wells can provide information on in-place gas saturations and relative permeability curves that apply at a given geothermal resource. Site-specific studies are made for the gas-rich two-phase reservoir at the Ohaki geothermal field in New Zealand. A simple lumped-parameter model and a vertical column model are applied to the field data. The results obtained agree well with the natural thermodynamic state of the Ohaki field (pressure and temperature profiles) and a partial pressure of 15 to 25 bars is calculated in the primary reservoirs. The models also agree reasonably well with field data obtained during exploitation of the field. The treatment of thermophysical properties of H/sub 2/O-CO/sub 2/ mixtures for different phase compositions is summarized.
Turbulent transition in a truncated 1D model for shear flow
Dawes, Jon
to a `turbulent' state (i) takes place more abruptly, with a boundary between laminar and `turbulent' flow at fixed Reynolds number are found to be consistent with exponential distributions. Keywords: fluid flowTurbulent transition in a truncated 1D model for shear flow By J. H. P. Dawes and W. J. Giles
Nikoleris, Teo
1988-01-01T23:59:59.000Z
Fluid in a Rectangular Channel (December 1988) Teo Nikoleris, B. S. , Reed College Chairman of Advisory Committee: Dr. R. Darby An orthogonal collocation finite element program was used to numerically model the hydrodynamicslly and thermally... in negligible increase of Nw~ ~?. Also, the approach of Chang and Finlayson [6], [7] who applied orthogonal collocation finite elements in conjunction with bicubic Hermitian polynomials to approximate various viscoelastic flow problems, also met with little...
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Franke, Rudiger
2010-01-01T23:59:59.000Z
a replaceable heat transfer model with the flag use_heat transfer. A concrete heat transfer model extending fromcycle. Also note that the heat transfer model of the tank is
Role of viscoelasticity and non-linear rheology in flows of complex fluids at high deformation rates
Ober, Thomas J. (Thomas Joseph)
2013-01-01T23:59:59.000Z
We combine pressure, velocimetry and birefringence measurements to study three phenomena for which the fluid rheology plays a dominant role: 1) shear banding in micellar fluids, 2) extension-dominated flows in microfluidic ...
Helton, Donald McLean
2002-01-01T23:59:59.000Z
The premise of the work presented here is to use a common analytical tool, Computational Fluid Dynamics (CFD), along with a prevalent turbulence model, Large Eddy Simulation (LES), to study the flow past rectangular cylinders. In an attempt to use...
A predictive, size-dependent continuum model for dense granular flows
Henann, David Lee
Dense granular materials display a complicated set of flow properties, which differentiate them from ordinary fluids. Despite their ubiquity, no model has been developed that captures or predicts the complexities of granular ...
Mass-Conserved Phase Field Models for Binary Fluids
2012-07-13T23:59:59.000Z
The commonly used incompressible phase field models for non-reactive, bi- nary fluids, in which the Cahn-Hilliard equation is used for the transport of phase.
Ice Shelves as Floating Channel Flows of Viscous Power-Law Fluids
Banik, Indranil
2013-01-01T23:59:59.000Z
We attempt to better understand the flow of marine ice sheets. Treating ice as a viscous shear-thinning power law fluid, we develop an asymptotic (late-time) theory in two cases - the presence or absence of contact with sidewalls. Most real-world situations fall somewhere between the two extreme cases considered. When sidewalls are absent, we obtain the equilibrium grounding line thickness using a simple computer model and have an analytic approximation. For shelves in contact with sidewalls, we obtain an asymptotic theory, valid for long shelves. Our theory is based on the velocity profile across the channel being a generalised version of Poiseuille flow, which works when lateral shear dominates the force balance. We determine when this is. We conducted experiments using a laboratory model for ice. This was a suspension of xanthan in water, at a concentration of 0.5% by mass. The lab model has $n \\approx 3.8$ (similar to that of ice). The experiments agreed extremely well with our theories for all relevant p...
U-Sr isotopic speedometer: Fluid flow and chemical weatheringrates inaquifers
Maher, Kate; DePaolo, Donald J.; Christensen, John N.
2005-12-27T23:59:59.000Z
Both chemical weathering rates and fluid flow are difficultto measure in natural systems. However, these parameters are critical forunderstanding the hydrochemical evolution of aquifers, predicting thefate and transport of contaminants, and for water resources/water qualityconsiderations. 87Sr/86Sr and (234U/238U) activity ratios are sensitiveindicators of water-rock interaction, and thus provide a means ofquantifying both flow and reactivity. The 87Sr/86Sr values in groundwaters are controlled by the ratio of the dissolution rate to the flowrate. Similarly, the (234U/238U) ratio of natural ground waters is abalance between the flow rate and the dissolution of solids, andalpha-recoil loss of 234U from the solids. By coupling these two isotopesystems it is possible to constrain both the long-term (ca. 100's to1000's of years) flow rate and bulk dissolution rate along the flow path.Previous estimates of the ratio of the dissolution rate to theinfiltration flux from Sr isotopes (87Sr/86Sr) are combined with a modelfor (234U/238U) to constrain the infiltration flux and dissolution ratefor a 70-m deep vadose zone core from Hanford, Washington. The coupledmodel for both (234U/238U) ratios and the 87Sr/86Sr data suggests aninfiltration flux of 5+-2 mm/yr, and bulk silicate dissolution ratesbetween 10-15.7 and 10-16.5 mol/m2/s. The process of alpha-recoilenrichment, while primarily responsible for the observed variation in(234U/238U) of natural systems, is difficult to quantify. However, therate of this process in natural systems affects the interpretation ofmost U-series data. Models for quantifying the alpha-recoil loss fractionbased on geometric predictions, surface area constraints, and chemicalmethods are also presented. The agreement between the chemical andtheoretical methods, such as direct measurement of (234U/238U) of thesmall grain size fraction and geometric calculations for that sizefraction, is quite good.
NMRI methods for characterizing fluid flow in porous media
Yao, Xiaoli
1997-01-01T23:59:59.000Z
for fluids in porous media are very small and the NMR signals decay very fast. Furthermore, a narrow pulse approximation concept was applied so that the velocities of spins don't have to be assumed constant during the entire observation time. Preliminary...
AIR INGRESS ANALYSIS: PART 2 – COMPUTATIONAL FLUID DYNAMIC MODELS
Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang
2011-01-01T23:59:59.000Z
The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.
Stochastic models for turbulent reacting flows
Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01T23:59:59.000Z
The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.
Finite-time barriers to front propagation in two-dimensional fluid flows
Mahoney, John R
2015-01-01T23:59:59.000Z
Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear", introduced by Farazmand, Blazevski, and Haller [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our techniqu...
Microgravity Flow Regime Transition Modeling
Shephard, Adam M.
2010-07-14T23:59:59.000Z
by Ghrist (2008) where an existing computer code, RELAP 5-3D, demonstrated the limitations of currently available computational modeling when applied to zero-g conditions. 1.2.2 EXPERIMENTAL APPARATUS All flow regime mapping experiments consist of a... ............................................................... 9 2.3 Dukler et al. 1988/Janicot 1988 ............................................. 9 2.4 Colin et al. 1991 .................................................................... 11 2.5 Huckerby and Rezkallah 1992...
Hiroyuki Sato; Richard Johnson; Richard Schultz
2009-09-01T23:59:59.000Z
Three dimensional computational fluid dynamic (CFD) calculations of a typical prismatic very high temperature gas-cooled reactor (VHTR) were conducted to investigate the influence of gap geometry on flow and temperature distributions in the reactor core using commercial CFD code FLUENT. Parametric calculations changing the gap width in a whole core length model of fuel and reflector columns were performed. The simulations show the effects of core by-pass flows in the heated core region by comparing results for several gap widths including zero gap width. The calculation results underline the importance of considering inter-column gap width for the evaluation of maximum fuel temperatures and temperature gradients in fuel blocks. In addition, it is shown that temperatures of core outlet flow from gaps and channels are strongly affected by the gap width of by-pass flow in the reactor core.
Numerical simulation of flow separation control by oscillatory fluid injection
Resendiz Rosas, Celerino
2005-08-29T23:59:59.000Z
In this work, numerical simulations of flow separation control are performed. The sep-aration control technique studied is called 'synthetic jet actuation'. The developed code employs a cell centered finite volume scheme which handles viscous...
Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal...
section of the 0.6-Ma Lava Creek ash-flow tuff. In this core, the degree of welding appears to be responsible for most of the variations in porosity, matrix...
Theoretical and Numerical Simulation of Non-Newtonian Fluid Flow in Propped Fractures
Ouyang, Liangchen
2013-12-10T23:59:59.000Z
behavior in hydraulic fracturing theoretically and experimentally. I developed a model to describe the flow behavior of residual polymer gel being displaced by gas in parallel plates. I developed analytical models for gas-liquid two-phase stratified flow...
Magnetohydrodynamic pump with a system for promoting flow of fluid in one direction
Lemoff, Asuncion V. (Union City, CA); Lee, Abraham P. (Irvine, CA)
2010-07-13T23:59:59.000Z
A magnetohydrodynamic pump for pumping a fluid. The pump includes a microfluidic channel for channeling the fluid, a MHD electrode/magnet system operatively connected to the microfluidic channel, and a system for promoting flow of the fluid in one direction in the microfluidic channel. The pump has uses in the medical and biotechnology industries for blood-cell-separation equipment, biochemical assays, chemical synthesis, genetic analysis, drug screening, an array of antigen-antibody reactions, combinatorial chemistry, drug testing, medical and biological diagnostics, and combinatorial chemistry. The pump also has uses in electrochromatography, surface micromachining, laser ablation, inkjet printers, and mechanical micromilling.
Hamel, William R. (Farragut, TN)
1984-01-01T23:59:59.000Z
This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.
The mathematical structure of multiphase thermal models of flow in porous media
- tions, Darcy's law for volumetric flow rates and an energy equation in terms of enthalpy. The model with the formulation and numerical solution of equations for modelling multicomponent, two-phase, thermal fluid flow is closed with an equation of state and phase equilibrium con- ditions that determine the distribution
Adaptive Finite Element Discretization of Flow Problems for Goal-Oriented Model Reduction
. The emphasis is on laminar viscous incompressible flows governed by the Navier-Stokes equations. But also computation in a laminar viscous fluid modeled by the sta- tionary Navier-Stokes equations for velocity vAdaptive Finite Element Discretization of Flow Problems for Goal-Oriented Model Reduction Rolf
Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Ltd., R-2, Ent. Block, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai - 400 094 (India)
2012-07-01T23:59:59.000Z
Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)
Energy of eigen-modes in magnetohydrodynamic flows of ideal fluids
I. V. Khalzov; A. I. Smolyakov; V. I. Ilgisonis
2007-12-11T23:59:59.000Z
Analytical expression for energy of eigen-modes in magnetohydrodynamic flows of ideal fluids is obtained. It is shown that the energy of unstable modes is zero, while the energy of stable oscillatory modes (waves) can assume both positive and negative values. Negative energy waves always correspond to non-symmetric eigen-modes -- modes that have a component of wave-vector along the equilibrium velocity. These results suggest that all non-symmetric instabilities in ideal MHD systems with flows are associated with coupling of positive and negative energy waves. As an example the energy of eigen-modes is calculated for incompressible conducting fluid rotating in axial magnetic field.
Title of dissertation: MODELING, SIMULATING, AND CONTROLLING THE FLUID DYNAMICS
Shapiro, Benjamin
ABSTRACT Title of dissertation: MODELING, SIMULATING, AND CONTROLLING THE FLUID DYNAMICS OF ELECTRO an algorithm to steer indi- vidual particles inside the EWOD system by control of actuators already present number of actuators available in the EWOD system. #12;MODELING, SIMULATING, AND CONTROLLING THE FLUID
Multiscale modeling for fluid transport in nanosystems.
Lee, Jonathan W.; Jones, Reese E.; Mandadapu, Kranthi Kiran; Templeton, Jeremy Alan; Zimmerman, Jonathan A.
2013-09-01T23:59:59.000Z
Atomistic-scale behavior drives performance in many micro- and nano-fluidic systems, such as mircrofludic mixers and electrical energy storage devices. Bringing this information into the traditionally continuum models used for engineering analysis has proved challenging. This work describes one such approach to address this issue by developing atomistic-to-continuum multi scale and multi physics methods to enable molecular dynamics (MD) representations of atoms to incorporated into continuum simulations. Coupling is achieved by imposing constraints based on fluxes of conserved quantities between the two regions described by one of these models. The impact of electric fields and surface charges are also critical, hence, methodologies to extend finite-element (FE) MD electric field solvers have been derived to account for these effects. Finally, the continuum description can have inconsistencies with the coarse-grained MD dynamics, so FE equations based on MD statistics were derived to facilitate the multi scale coupling. Examples are shown relevant to nanofluidic systems, such as pore flow, Couette flow, and electric double layer.
Quantum Simulator for Transport Phenomena in Fluid Flows
Mezzacapo, A; Lamata, L; Egusquiza, I L; Succi, S; Solano, E
2015-01-01T23:59:59.000Z
Transport phenomena are one of the most challenging problems in computational physics. We present a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics problems within a lattice kinetic formalism. This quantum simulator is obtained by exploiting the analogies between Dirac and lattice Boltzmann equations. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.
Quantum Simulator for Transport Phenomena in Fluid Flows
A. Mezzacapo; M. Sanz; L. Lamata; I. L. Egusquiza; S. Succi; E. Solano
2015-08-19T23:59:59.000Z
Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.
Reciprocity Relations Between Stokes Flows of Viscous and Viscoelastic Fluids
Klapper, Isaac
- terpretation: a prescribed velocity on a translating sphere [24, 13, 7] and a stationary point source of force relations, sphere forcing, forced flow. 2 #12;1 Introduction Linear response theory (of thermal fluctuations of slip of the sphere, and inertial effects. They derived the generalized Stokes-Einstein drag law
Peristaltic Transport of a Rheological Fluid: Model for Movement of Food Bolus Through Esophagus
J. C. Misra; S. Maiti
2011-12-28T23:59:59.000Z
Fluid mechanical peristaltic transport through esophagus has been of concern in the paper. A mathematical model has been developed with an aim to study the peristaltic transport of a rheological fluid for arbitrary wave shapes and tube lengths. The Ostwald-de Waele power law of viscous fluid is considered here to depict the non-Newtonian behaviour of the fluid. The model is formulated and analyzed with the specific aim of exploring some important information concerning the movement of food bolus through the esophagus. The analysis has been carried out by using lubrication theory. The study is particularly suitable for cases where the Reynolds number is small. The esophagus is treated as a circular tube through which the transport of food bolus takes places by periodic contraction of the esophageal wall. Variation of different variables concerned with the transport phenomena such as pressure, flow velocity, particle trajectory and reflux are investigated for a single wave as well as for a train of periodic peristaltic waves. Locally variable pressure is seen to be highly sensitive to the flow index `n'. The study clearly shows that continuous fluid transport for Newtonian/rheological fluids by wave train propagation is much more effective than widely spaced single wave propagation in the case of peristaltic movement of food bolus in the esophagus.
MEASURE-EENT OF WATER CONTENT I N POROUS MEDIA UNDER GEOTHERMAL FLUID FLOW CONDITIONS
Stanford University
MEASURE-EENT OF WATER CONTENT I N POROUS MEDIA UNDER GEOTHERMAL FLUID FLOW CONDITIONS for t h e i n - s i t u measurement of water content i n porous media, expressed as a volume f r a c t i o n of t h e pore space; ( 2 ) t o measure water content i n t h e two-phase geothermal f l u i d flow
Ewing, Richard E.
, where the fluid (oil, water, gas) meets no resistance form the surrounding rock [1]. The main difficulty
Statistical mechanical theory for steady-state systems. III. Heat flow in a Lennard-Jones fluid
Attard, Phil
Statistical mechanical theory for steady-state systems. III. Heat flow in a Lennard-Jones fluid March 2005; accepted 4 May 2005; published online 28 June 2005 A statistical mechanical theory for heat distribution for heat flow down an imposed thermal gradient is tested with simulations of a Lennard-Jones fluid
OPTIMAL CONTROL OF THERMALLY CONVECTED FLUID FLOWS \\Lambda K. ITO y AND S.S. RAVINDRAN y
OPTIMAL CONTROL OF THERMALLY CONVECTED FLUID FLOWS \\Lambda K. ITO y AND S.S. RAVINDRAN y Abstract. We examine the optimal control of stationary thermally convected fluid flows from the the oretical and numerical point of view. We use thermal convection as control mechanism, that is, control is effected
Grujicic, Mica
Suitability of boron-nitride single-walled nanotubes as fluid-flow conduits in nano-valve the suitability of boron-nitride single-walled nanotubes (SWNTs) as fluid- flow conduits in the nano-valve reserved. doi:10.1016/j.apsusc.2004.11.007 #12;control nano-valve based on a silicon nano-beam actuator
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, Marcos German (Idaho Falls, ID)
1998-01-01T23:59:59.000Z
A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, M.G.
1998-02-10T23:59:59.000Z
A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Nearby-fluids equilibria. II. Zonal flows in a high-, self-organized plasma experiment
Washington at Seattle, University of
Nearby-fluids equilibria. II. Zonal flows in a high- , self-organized plasma experiment L. C. Steinhauera and H. Y. Guo University of Washington, Redmond Plasma physics Laboratory, Redmond, Washington structure observed in a high- field reversed configuration FRC produced in the translation, confinement
Wake measurements for flow around a sphere in a viscoelastic fluid Drazen Fabrisa)
Liepmann, Dorian
counterpart is made by a drag correction factor, K FD 6 0aUt , 3 where FD is the drag force on the sphere which balances the force due to gravity, ( s f)*( 4 3 ga3 ). The drag correc- tion factor is, in generalWake measurements for flow around a sphere in a viscoelastic fluid Drazen Fabrisa) Department
Cartesian Cut Cell Two-Fluid Solver for Hydraulic Flow Problems
Ingram, David
of high velocity air which in turn drives a turbine also involves the flows of both water and air domain encompasses both water and air regions and the interface between the two fluids is treated; Free surface; Air water interaction. Introduction The development of numerical methods which
Coating Flows of Non-Newtonian Fluids: Weakly and Strongly Elastic Limits
is on viscoelastic effects on single roll coating at low dimensionless speeds, although the analytical results weCoating Flows of Non-Newtonian Fluids: Weakly and Strongly Elastic Limits J. Ashmore(1,a), A February 2007 Abstract. We present an asymptotic analysis of the thickness of the liquid film that coats
Boni, Maria
directly from the low-grade metamorphic lithotypes undergoing dolomitization, nor from the low-temperature across large areas of the IglesienteSulcis mining district (SW Sardinia, Italy). The dolomite crops out within circulation cells, which were driven by high heat flow. Fluids originated in the underlying rocks
Abdou, Mohamed
2007-01-01T23:59:59.000Z
Fusion Engineering and Design 82 (2007) 22172225 Integrated thermo-fluid analysis towards helium Engineering and Design 82 (2007) 22172225 This calls in for an extensive analysis of the various proposed flow path design for an ITER solid breeder blanket module A. Yinga,, M. Narulaa, R. Hunta, M. Abdoua, Y
Under consideration for publication in J. Fluid Mech. 1 Analytical studies of flow effects due to
Sen, Mihir
and temporal behaviour of the specific boundary. Steady streaming induced by oscillatory flows over wavy of the wavy surface in comparison to the viscous boundary layer formed over the vibrating wall. Investigating boundaries is presented. A Newtonian viscous fluid confined in an infinite channel with flexible walls
Dynamics of a confined dusty fluid in a sheared ion flow
Laishram, Modhuchandra; Sharma, Devendra; Kaw, Predhiman K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2014-07-15T23:59:59.000Z
Dynamics of an isothermally driven dust fluid is analyzed which is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in equilibrium with an unconfined sheared flow of a streaming plasma. Cases are analyzed where the confining potential constitutes a barrier for the driven fluid, limiting its spatial extension and boundary velocity. The boundary effects entering the formulation are characterized by applying the appropriate boundary conditions and a range of solutions exhibiting single and multiple vortex are obtained. The equilibrium solutions considered in the cylindrical setup feature a transition from single to multiple vortex state of the driven flow. Effects of (i) the variation in dust viscosity, (ii) coupling between the driving and the driven fluid, and (iii) a friction determining the equilibrium dynamics of the driven system are characterized.
Design considerations for inverters in fluid flow control
Guggari, Mallappa Ishwarappa
1989-01-01T23:59:59.000Z
P owes ~~age yteea &ocuoo g l posulVe & flow Fig. 2. 2 Typical pump performance curves. The variation of head, capacity, and brake horsepower with speed follows definite rules known as affinity laws. These were originally found experimentally... for converter-induction motors outweigh this disadvantage for many applications. SXs Rs s t , Xs' 1 s l~ Fig. 3. 3 Equivalent oircuit of an Induction Motor. Fig. 3. 3 shows the equivalent circuit for one phase of an induction motor. By analyzing...
Approximate Dynamic Programming for Networks: Fluid Models and Constraint Reduction
Veatch, Michael H.
of approximating functions for the differential cost. The first contribution of this paper is identifying new or piece-wise quadratic. Fluid cost has been used to initialize the value iteration algorithm [5Approximate Dynamic Programming for Networks: Fluid Models and Constraint Reduction Michael H
Fractal Potential Flows: An Idealized Model for Fully Developed Turbulence
József Vass
2014-09-22T23:59:59.000Z
Fully Developed Turbulence (FDT) is a theoretical asymptotic phenomenon which can only be approximated experimentally or computationally, so its defining characteristics are hypothetical. It is considered to be a chaotic stationary flow field, with self-similar fractalline features. A number of approximate models exist, often exploiting this self-similarity. The idealized mathematical model of Fractal Potential Flows is hereby presented, and linked philosophically to the phenomenon of FDT on a free surface, based on its experimental characteristics. The model hinges on the recursive iteration of a fluid dynamical transfer operator. The existence of its unique attractor - called the invariant flow - is shown in an appropriate function space, which will serve as our suggested model for the FDT flow field. Its sink singularities are shown to form an IFS fractal, explicitly resolving Mandelbrot's Conjecture. Meanwhile an isometric isomorphism is defined between flows and probability measures, hinting at a wealth of future research. The inverse problem of representing turbulent flow fields with this model is discussed in closing, along with explicit practical considerations for experimental verification and visualization.
Primary pump power as a measure of fluid density during bubbly two-phase flow. [PWR
McCreery, G.E.; Linebarger, J.H.; Koske, J.E.
1983-01-01T23:59:59.000Z
A nuclear plant operator requires other information on reactor coolant system inventory besides just pressurizer liquid level, which often disappears or gives ambiguous indications during a loss-of-coolant accident. Erroneous instrument readings during the Three Mile Island and Ginna accidents are examples. Pump power or current is shown in this paper to provide an additional source of inventory information. When the reactor coolant pumps are operating, it allows the operator to make decisions about the advisability of continued pump- and safety-injection operation. The inventory information is provided by a simple method of calculating fluid density for bubbly two-phase flow by relating pump power or current to fluid density. The calculational method is derived and compared with data in this paper. Calculations using the method agree well with the measured experimental data with increasing void fraction, until the flow transitions from bubbly to partially stratified churn flow within the pump.
Simultaneous Extrema in the Entropy Production for Steady-State Fluid Flow in Parallel Pipes
Niven, Robert K
2009-01-01T23:59:59.000Z
Steady-state flow of an incompressible fluid in parallel pipes can simultaneously satisfy two contradictory extremum principles in the entropy production, depending on the flow conditions. For a constant total flow rate, the flow can satisfy (i) a pipe network minimum entropy production (MinEP) principle with respect to the flow rates, and (ii) the maximum entropy production (MaxEP) principle of Paltridge and Ziegler with respect to the choice of flow regime. The first principle - different to but allied to that of Prigogine - arises from the stability of the steady state compared to non-steady-state flows; it is proven for isothermal laminar and turbulent flows in parallel pipes with a constant power law exponent, but is otherwise invalid. The second principle appears to be more fundamental, driving the formation of turbulent flow in single and parallel pipes at higher Reynolds numbers. For constant head conditions, the flow can satisfy (i) a modified maximum entropy production (MaxEPMod) principle of \\v{Z}u...
Non-Invasive Characterization Of A Flowing Multi-Phase Fluid Using Ultrasonic Interferometry
Sinha, Dipen N. (Los Alamos, NM)
2005-11-01T23:59:59.000Z
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Armstrong, William D. (Laramie, WY); Naughton, Jonathan (Laramie, WY); Lindberg, William R. (Laramie, WY)
2008-09-02T23:59:59.000Z
A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.
1. INTRODUCTION Fluid flows are often so complicated that laboratory
Stocker, Thomas
stud- ies from a zonally averaged model based on a less elaborate closure for the zonal pressure is presented. 33 1Department of Geology and Geophysics, Woods Hole Oceano- graphic Institution, Massachusetts
Time-lapse seismic monitoring of subsurface fluid flow
Yuh, Sung H.
2004-09-30T23:59:59.000Z
amplitude and porosity. The rapid time-lapse modeling schemes also allow statistical analysis of the uncertainty in seismic response associated with poorly known values of reservoir parameters such as permeability and dry bulk modulus. Results show...
SALE: a simplified ALE computer program for fluid flow at all speeds
Amsden, A.A.; Ruppel, H.M.; Hirt, C.W.
1980-06-01T23:59:59.000Z
A simplified numerical fluid-dynamics computing technique is presented for calculating two-dimensional fluid flows at all speeds. It combines an implicit treatment of the pressure equation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique with the grid rezoning philosophy of the Arbitrary Lagrangian-Eulerian (ALE) method. As a result, it can handle flow speeds from supersonic to the incompressible limit in a grid that may be moved with the fluid in typical Lagrangian fashion, or held fixed in an Eulerian manner, or moved in some arbitrary way to give a continuous rezoning capability. The report describes the combined (ICEd-ALE) technique in the framework of the SALE (Simplified ALE) computer program, for which a general flow diagram and complete FORTRAN listing are included. A set of sample problems show how to use or modify the basic code for a variety of applications. Numerical listings are provided for a sample problem run with the SALE program.
Analytical modeling for the heat transfer in sheared flows of nanofluids
Ferrari, Claudio; L'vov, Victor S; Procaccia, Itamar; Rudenko, Oleksii; Boonkkamp, J H M ten Thije; Toschi, Federico
2012-01-01T23:59:59.000Z
We developed a model for the enhancement of the heat flux by spherical and elongated nano- particles in sheared laminar flows of nano-fluids. Besides the heat flux carried by the nanoparticles the model accounts for the contribution of their rotation to the heat flux inside and outside the particles. The rotation of the nanoparticles has a twofold effect, it induces a fluid advection around the particle and it strongly influences the statistical distribution of particle orientations. These dynamical effects, which were not included in existing thermal models, are responsible for changing the thermal properties of flowing fluids as compared to quiescent fluids. The proposed model is strongly supported by extensive numerical simulations, demonstrating a potential increase of the heat flux far beyond the Maxwell-Garnet limit for the spherical nanoparticles. The road ahead which should lead towards robust predictive models of heat flux enhancement is discussed.
Analytical modeling for the heat transfer in sheared flows of nanofluids
Claudio Ferrari; Badr Kaoui; Victor S. L'vov; Itamar Procaccia; Oleksii Rudenko; J. H. M. ten Thije Boonkkamp; Federico Toschi
2012-04-12T23:59:59.000Z
We developed a model for the enhancement of the heat flux by spherical and elongated nano- particles in sheared laminar flows of nano-fluids. Besides the heat flux carried by the nanoparticles the model accounts for the contribution of their rotation to the heat flux inside and outside the particles. The rotation of the nanoparticles has a twofold effect, it induces a fluid advection around the particle and it strongly influences the statistical distribution of particle orientations. These dynamical effects, which were not included in existing thermal models, are responsible for changing the thermal properties of flowing fluids as compared to quiescent fluids. The proposed model is strongly supported by extensive numerical simulations, demonstrating a potential increase of the heat flux far beyond the Maxwell-Garnet limit for the spherical nanoparticles. The road ahead which should lead towards robust predictive models of heat flux enhancement is discussed.
King, Bradley Donald
2013-12-31T23:59:59.000Z
controlled during calcite precipitation. Ouachita tectonism caused tectonically valved and gravity-driven fluid flow sourced from the Anadarko basin and possibly involved sandstone aquifers or basement. Mechanisms of ancient fluid flow appear to contrast...
A turnstile mechanism for fronts propagating in fluid flows
John R. Mahoney; Kevin A. Mitchell
2013-05-22T23:59:59.000Z
We consider the propagation of fronts in a periodically driven flowing medium. It is shown that the progress of fronts in these systems may be mediated by a turnstile mechanism akin to that found in chaotic advection. We first define the modified ("active") turnstile lobes according to the evolution of point sources across a transport boundary. We then show that the lobe boundaries may be constructed from stable and unstable \\emph{burning invariant manifolds}---one-way barriers to front propagation analogous to traditional invariant manifolds for passive advection. Because the burning invariant manifolds (BIMs) are one-dimensional curves in a three-dimensional ($xy\\theta$) phase space, their projection into $xy$-space exhibits several key differences from their advective counterparts: (lobe) areas are not preserved, BIMs may self-intersect, and an intersection between stable and unstable BIMs does not map to another such intersection. These differences must be accommodated in the correct construction of the new turnstile. As an application, we consider a lobe-based treatment protocol for protecting an ocean bay from an invading algae bloom.
Donahoe, R.J.
1986-09-01T23:59:59.000Z
A low-temperature hydrothermal flow-through study was conducted experimentally examine fluid/rock interactions brought about in sandstones as a result of fluid injection enhanced oil recovery (EOR) methods. Such studies will eventually enable the development of a predictive model for fluid injection EOR methods. The design of the low-temperature hydrothermal flow-through system allows the accurate control of fluid flow rate (0.002-10 ml/min), temperature (0 to 300/sup 0/C) and pressure (1 to 500 bar) while flowing fluids through disaggregated solid samples. Samples of St. Peter Sandstone and two different sandstones of the Norphlet Formation from southern Alabama were interacted with distilled, deionized water and a 1% HC1 solution at 250/sup 0/C, 300 bar and 0.1 or 0.5 ml/min fluid flow rate. Solids were analyzed by x-ray powder diffraction and scanning electron microscopy. Fluid samples were analyzed by atomic absorption spectrophotometry and combination pH electrode. A variety of processes which occur in sandstones subjected to fluid injection EOR methods were documented experimentally. Processes damaging to reservoir permeability included iron fouling, silica fouling, migration of clay fines, and precipitation of other secondary phases. Processes resulting in reservoir stimulation involved the dissolution of sandstone framework and/or authigenic mineral constituents. The most successful fluid injection stimulation can be expected for arkosic sandstones containing high percentages of K-feldspar and illite relative to kaolinite, chlorite and smectite, using dilute HCl injection solutions and high fluid flow rates. Fluid chemical data indicate that equilibrium between the solid and injection fluid is not approached for any of the experiments. Therefore, it does not appear that chemical equilibrium computer programs can be used to model these low-temperature reactions. 12 refs., 11 figs., 4 tabs.
Classical analogous of quantum cosmological perfect fluid models
A. B. Batista; J. C. Fabris; S. V. B. Goncalves; J. Tossa
2000-11-28T23:59:59.000Z
Quantization in the mini-superspace of a gravity system coupled to a perfect fluid, leads to a solvable model which implies singularity free solutions through the construction of a superposition of the wavefunctions. We show that such models are equivalent to a classical system where, besides the perfect fluid, a repulsive fluid with an equation of state $p_Q = \\rho_Q$ is present. This leads to speculate on the true nature of this quantization procedure. A perturbative analysis of the classical system reveals the condition for the stability of the classical system in terms of the existence of an anti-gravity phase.
Nelson, John Stuart (Laguna Niguel, CA); Milner, Thomas Edward (Irvine, CA); Chen, Zhongping (Irvine, CA)
1999-01-01T23:59:59.000Z
Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.
Particle-fluid-structure interaction for debris flow impact on flexible barriers
A. Leonardi; F. K. Wittel; M. Mendoza; R. Vetter; H. J. Herrmann
2014-09-29T23:59:59.000Z
Flexible barriers are increasingly used for the protection from debris flow in mountainous terrain due to their low cost and environmental impact. However, a numerical tool for rational design of such structures is still missing. In this work, a hybrid computational framework is presented, using a total Lagrangian formulation of the Finite Element Method (FEM) to represent a flexible barrier. The actions exerted on the structure by a debris flow are obtained from simultaneous simulations of the flow of a fluid-grain mixture, using two conveniently coupled solvers: the Discrete Element Method (DEM) governs the motion of the grains, while the free-surface non-Newtonian fluid phase is solved using the Lattice-Boltzmann Method (LBM). Simulations on realistic geometries show the dependence of the momentum transfer on the barrier on the composition of the debris flow, challenging typical assumptions made during the design process today. In particular, we demonstrate that both grains and fluid contribute in a non-negligible way to the momentum transfer. Moreover, we show how the flexibility of the barrier reduces its vulnerability to structural collapse, and how the stress is distributed on its fabric, highlighting potential weak points.
Numerical Simulation of Compositional Fluid Flow in Porous Media
Ewing, Richard E.
variables is developed for modeling the enhanced oil recovery pro- cesses. A mixed #12;nite element method to predict the reservoir performance under various exploita- tion schemes. In many enhanced oil recovery. Computational results for two- and three-phase multi-component uid ow occurring in enhanced oil re- covery
Numerical studies on two-way coupled fluid flow and geomechanics in hydrate deposits
Kim, J.
2014-01-01T23:59:59.000Z
A. 2008. Modeling of Geomechanics in Naturally Fracturedcoupling porous flow and geomechanics. Soc. Pet. Eng. J. 11(a reservoir simulator and a geomechanics module. Soc. Pet.
Geologic constraints to fluid flow in the Jurassic Arab D reservoir, eastern Saudi Arabia
Laing, J.E. (Saudi Aramco, Dhahran (Saudi Arabia))
1991-08-01T23:59:59.000Z
A giant oil field located in eastern Saudi Arabia has produced several billion barrels of 37{degree} API oil from fewer than 100 wells. The Upper Jurassic Arab Formation is the main producing unit, and is made up of a series of upward-shoaling carbonate and anhydrite members. Porous carbonates of the Arab D member make up the principle oil reservoir, and overlying Arab D anhydrite provides the seal. Principal reservoir facies are stromatoporoid-coral and skeletal grainstones. Reservoir drive is currently provided by flank water injection. Despite more than 30 years of flank water injection (1.5 billion bbl) into the northern area of the field, a thick oil column remains in the Arab D reservoir. Geological factors which affect fluid flow in this area are (1) a downdip facies change from permeable skeletal-stromatoporoid limestone to less permeable micritic limestone, (2) vertical permeability barriers resulting from shoaling-upward cycles, (3) a downdip tar mat, (4) dolomite along the flanks in the upper portion of the reservoir, (5) highly permeable intervals within the skeletal-stromatoporoid limestone, and (6) an updip, north to south facies change from predominantly stromatoporoid-coral grainstone to skeletal grainstone. These factors are considered in reservoir modeling, simulation studies, and planning locations for both water injection and producer wells.
McGrail, B.P.; Trent, D.S.; Terrones, G.; Hudson, J.D.; Michener, T.E.
1993-10-01T23:59:59.000Z
Safety of single-shell tanks containing ferrocyanide wastes is of concern. Ferrocyanide in the presence of an oxidizer such as NaNO{sub 3} or NaNO{sub 2} is explosively combustible when concentrated and heated. Evaluating the processes that could affect the fuel content of waste and distribution of the tank heat load is important. Highly alkaline liquid wastes were transferred in and out of the tanks over several years. Since Na{sub 2}NiFe(CN){sub 6} is much more soluble in alkaline media, the ferrocyanide could be dispersed from the tank more easily. If Cs{sub 2}NiFe(CN){sub 6} or CsNaNiFe(CN){sub 6} are also soluble in alkaline media, solubilization and transport of {sup 137}Cs could also occur. Transporting this heat generating radionuclide to a localized area in the tanks is a potential mechanism for generating a ``hot spot.`` Fluid convection could potentially speed the transport process considerably over aqueous diffusion alone. A stability analysis was performed for a dense fluid layer overlying a porous medium saturated by a less dense fluid with the finding that the configuration is unconditionally unstable and independent of the properties of the porous medium or the magnitude of the fluid density difference. A parametric modeling study of the buoyancy-driven flow due to a thermal gradient was combusted to establish the relationship between the waste physical and thermal properties and natural convection heat transfer. The effects of diffusion and fluid convection on the redistribution of the {sup 137}Cs were evaluated with a 2-D coupled heat and mass transport model. The maximum predicted temperature rise associated with the formation of zones was only 5{degrees}C and thus is of no concern in terms of generating a localized ``hot spot.``
COMPUTATIONAL FLUID DYNAMICS MODELING OF SOLID OXIDE FUEL CELLS
COMPUTATIONAL FLUID DYNAMICS MODELING OF SOLID OXIDE FUEL CELLS Ugur Pasaogullari and Chao-dimensional model has been developed to simulate solid oxide fuel cells (SOFC). The model fully couples current density operation. INTRODUCTION Solid oxide fuel cells (SOFC) are among possible candidates
Fakcharoenphol, Perapon [Colorado School of Mines; Xiong, Yi [Colorado School of Mines; Hu, Litang; Winterfeld, Philip H. [Colorado School of Mines; Xu, Tianfu [Lawrence Berkeley National Laboratory; Wu, Yu-Shu [Colorado School of Mines
2013-05-01T23:59:59.000Z
TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transport calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.
Fluid flow release regulating device, ERIP {number_sign}624: Final report
NONE
1997-12-01T23:59:59.000Z
DOE/ERIP project {number_sign}624 ``Fluid Flow Release Regulating Device`` designed, constructed, tested, and installed a rubber crest gate for regulating water levels at an impoundment such as a hydroelectric dam. A 92 foot long by 27 inch high rubber panel was installed in January 1997. Initial results were good until fabric degradation internal to the rubber caused loss of stiffness. Substitutes for the failed fabric are being tested. The project will continue after DOE participation terminates.
Viscous quark-gluon plasma model through fluid QCD approach
Djun, T. P., E-mail: tpdjun@teori.fisika.lipi.go.id [Graduate Study in Material Science, University of Indonesia, Kampus UI Salemba, Jakarta 10430, Indonesia and Group for Theoretical and Computational Physics, Research Center for Physics, Indonesian Institute of Sciences, Kompleks Puspiptek Serpong, T (Indonesia); Soegijono, B.; Mart, T. [Graduate Study in Material Science, University of Indonesia, Kampus UI Salemba, Jakarta 10430, Indonesia and Department of Physics, University of Indonesia, Kampus UI Depok, Depok 16424 (Indonesia); Handoko, L. T., E-mail: Handoko@teorifisika.lipi.go.id, E-mail: Laksana.tri.handoko@lipi.go.id [Group for Theoretical and Computational Physics, Research Center for Physics, Indonesian Institute of Sciences, Kompleks Puspiptek Serpong, Tangerang 15310, Indonesia and Research Center for Informatics, Indonesia Institute of Sciences, Kompleks LIPI (Indonesia)
2014-09-25T23:59:59.000Z
A Lagrangian density for viscous quark-gluon plasma has been constructed within the fluid-like QCD framework. Gauge symmetry is preserved for all terms inside the Lagrangian, except for the viscous term. The transition mechanism from point particle field to fluid field, and vice versa, are discussed. The energy momentum tensor that is relevant to the gluonic plasma having the nature of fluid bulk of gluon sea is derived within the model. By imposing conservation law in the energy momentum tensor, shear viscosity appears as extractable from the equation.
Doughty, C.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)
1991-06-01T23:59:59.000Z
Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.
Electromechanics and electrorheology of fluid flow with internal micro-particle electrorotation
Huang, Hsin-Fu
2010-01-01T23:59:59.000Z
The negative electrorheological responses of two dimensional Couette and Poiseuille flows with internal micro-particle electrorotation are modeled and analyzed via a set of "fully continuum mechanical modeling field ...
Porosity, permeability and fluid flow in the YellowstoneGeothermal System, Wyoming
Dobson, Patrick F.; Kneafsey, Timothy J.; Hulen, Jeffrey; Simmons, Ardyth
2002-03-29T23:59:59.000Z
Cores from two of 13 U.S. Geological Survey (USGS) research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of the convective geothermal reservoir. Variations in porosity and matrix permeability observed in the Y-5 and Y-8 cores are primarily controlled by lithology. Y-8 intersects three distinct lithologies: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous ash-flow tuff. The sandstone typically has high permeability and porosity, and the tuff has very high porosity and moderate permeability, while the perlitic lava has very low porosity and is essentially impermeable. Hydrothermal self-sealing appears to have generated localized permeability barriers within the reservoir. Changes in pressure and temperature in Y-8 correspond to a zone of silicification in the volcaniclastic sandstone just above the contact with the perlitic rhyolite; this silicification has significantly reduced porosity and permeability. In rocks with inherently low matrix permeability (such as densely welded ash-flow tuff), fluid flow is controlled by the fracture network. The Y-5 core hole penetrates a thick intracaldera section of the0.6 Ma Lava Creek ash-flow tuff. In this core, the degree of welding appears to be responsible for most of the variations in porosity, matrix permeability, and the frequency of fractures and veins. Fractures are most abundant within the more densely welded sections of the tuff. However, the most prominent zones of fracturing and mineralization are associated with hydrothermal breccias within densely welded portions of the tuff. These breccia zones represent transient conduits of high fluid flow that formed by the explosive release of overpressure in the underlying geothermal reservoir and that were subsequently sealed by supersaturated geothermal fluids. In addition to this fracture sealing, hydrothermal alteration at Yellowstone appears generally to reduce matrix permeability and focus flow along fractures, where multiple pulses of fluid flow and self-sealing have occurred.
A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure
Mori, Yoichiro; Eisenberg, Robert S
2011-01-01T23:59:59.000Z
We introduce a model for ionic electrodiffusion and osmotic water flow through cells and tissues. The model consists of a system of partial differential equations for ionic concentration and fluid flow with interface conditions at deforming membrane boundaries. The model satisfies a natural energy equality, in which the sum of the entropic, elastic and electrostatic free energies are dissipated through viscous, electrodiffusive and osmotic flows. We discuss limiting models when certain dimensionless parameters are small. Finally, we develop a numerical scheme for the one-dimensional case and present some simple applications of our model to cell volume control.
A Model of Electrodiffusion and Osmotic Water Flow and its Energetic Structure
Yoichiro Mori; Chun Liu; Robert S. Eisenberg
2011-01-27T23:59:59.000Z
We introduce a model for ionic electrodiffusion and osmotic water flow through cells and tissues. The model consists of a system of partial differential equations for ionic concentration and fluid flow with interface conditions at deforming membrane boundaries. The model satisfies a natural energy equality, in which the sum of the entropic, elastic and electrostatic free energies are dissipated through viscous, electrodiffusive and osmotic flows. We discuss limiting models when certain dimensionless parameters are small. Finally, we develop a numerical scheme for the one-dimensional case and present some simple applications of our model to cell volume control.
Discrete-element modeling of particulate aerosol flows
Marshall, J.S. [School of Engineering, University of Vermont, 33 Colchecter Avenue, Burlington, Vermont 05405 (United States)], E-mail: jeffm@cems.uvm.edu
2009-03-20T23:59:59.000Z
A multiple-time step computational approach is presented for efficient discrete-element modeling of aerosol flows containing adhesive solid particles. Adhesive aerosol particulates are found in numerous dust and smoke contamination problems, including smoke particle transport in the lungs, particle clogging of heat exchangers in construction vehicles, industrial nanoparticle transport and filtration systems, and dust fouling of electronic systems and MEMS components. Dust fouling of equipment is of particular concern for potential human occupation on dusty planets, such as Mars. The discrete-element method presented in this paper can be used for prediction of aggregate structure and breakup, for prediction of the effect of aggregate formation on the bulk fluid flow, and for prediction of the effects of small-scale flow features (e.g., due to surface roughness or MEMS patterning) on the aggregate formation. After presentation of the overall computational structure, the forces and torques acting on the particles resulting from fluid motion, particle-particle collision, and adhesion under van der Waals forces are reviewed. The effect of various parameters of normal collision and adhesion of two particles are examined in detail. The method is then used to examine aggregate formation and particle clogging in pipe and channel flow.
Haghshenas, Arash
2013-04-24T23:59:59.000Z
The worst scenario of drilling operation is blowout which is uncontrolled flow of formation fluid into the wellbore. Blowouts result in environmental damage with potential risk of injuries and fatalities. Although not all blowouts result in disaster...
Abu-Hassoun, Amer H.
2009-05-15T23:59:59.000Z
Fluid flow mechanisms in a large naturally fractured heterogeneous carbonate reservoir were investigated in this manuscript. A very thin layer with high permeability that produces the majority of production from specific wells and is deemed...
Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed
Zhongyi Deng; Rui Xiao; Baosheng Jin; He Huang; Laihong Shen; Qilei Song; Qianjun Li [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education
2008-05-15T23:59:59.000Z
Computational fluid dynamics (CFD) modeling, which has recently proven to be an effective means of analysis and optimization of energy-conversion processes, has been extended to coal gasification in this paper. A 3D mathematical model has been developed to simulate the coal gasification process in a pressurized spout-fluid bed. This CFD model is composed of gas-solid hydrodynamics, coal pyrolysis, char gasification, and gas phase reaction submodels. The rates of heterogeneous reactions are determined by combining Arrhenius rate and diffusion rate. The homogeneous reactions of gas phase can be treated as secondary reactions. A comparison of the calculated and experimental data shows that most gasification performance parameters can be predicted accurately. This good agreement indicates that CFD modeling can be used for complex fluidized beds coal gasification processes. 37 refs., 7 figs., 5 tabs.
Continuum-particle hybrid coupling for mass, momentum and energy transfers in unsteady fluid flow
R. Delgado-Buscalioni; P. V. Coveney
2003-02-25T23:59:59.000Z
The aim of hybrid methods in simulations is to communicate regions with disparate time and length scales. Here, a fluid described at the atomistic level within an inner region P is coupled to an outer region C described by continuum fluid dynamics. The matching of both descriptions of matter is made across an overlapping region and, in general, consists of a two-way coupling scheme (C->P and P->C) which conveys mass, momentum and energy fluxes. The contribution of the hybrid scheme hereby presented is two-fold: first it treats unsteady flows and, more importantly, it handles energy exchange between both C and P regions. The implementation of the C->P coupling is tested here using steady and unsteady flows with different rates of mass, momentum and energy exchange. In particular, relaxing flows described by linear hydrodynamics (transversal and longitudinal waves) are most enlightening as they comprise the whole set of hydrodynamic modes. Applying the hybrid coupling scheme after the onset of an initial perturbation, the cell-averaged Fourier components of the flow variables in the P region (velocity, density, internal energy, temperature and pressure) evolve in excellent agreement with the hydrodynamic trends. It is also shown that the scheme preserves the correct rate of entropy production. We discuss some general requirements on the coarse-grained length and time scales arising from both the characteristic microscopic and hydrodynamic scales.
Fossen, Haakon
Deformation bands and their impact on fluid flow in sandstone reservoirs: the role of natural Cataclastic deformation bands, which are common in sandstone reservoirs and which may negatively affect fluid simulation of an array of cataclastic deformation bands in Cretaceous sandstones in in the Bassin de Sud
Nikoleris, Teo
1988-01-01T23:59:59.000Z
NUMERICAL SIMULATION OF THE NON-ISOTHERMAL DEVELOPING FLOXV OF A NONLINEAR VISCOELASTIC FLUID IN A RECTANGULAR CHANNEL A Thesis by TEO NIKOLERIS Submitted to the Graduate College of Texas A&M University in partial fulfillment... developing flow of a nonlinear viscoelas- tic fluid. The temperature dependence of the rheological parameters was imposed using an Arrhenius-like exponential relationship. The flow was creeping, at the early stages of thermal development and wall cooling...
Computational Fluid Dynamics (CFD) Modelling on Soot Yield for Fire
Computational Fluid Dynamics (CFD) Modelling on Soot Yield for Fire Engineering Assessment Yong S (CFD) Modelling is now widely used by fire safety engineers throughout the world as a tool of the smoke control design as part of the performance based fire safety design in the current industry
Boles, James [Professor
2013-05-24T23:59:59.000Z
Our study targets recent (Plio-Pleistocene) faults and young (Tertiary) petroleum fields in southern California. Faults include the Refugio Fault in the Transverse Ranges, the Ellwood Fault in the Santa Barbara Channel, and most recently the Newport- Inglewood in the Los Angeles Basin. Subsurface core and tubing scale samples, outcrop samples, well logs, reservoir properties, pore pressures, fluid compositions, and published structural-seismic sections have been used to characterize the tectonic/diagenetic history of the faults. As part of the effort to understand the diagenetic processes within these fault zones, we have studied analogous processes of rapid carbonate precipitation (scaling) in petroleum reservoir tubing and manmade tunnels. From this, we have identified geochemical signatures in carbonate that characterize rapid CO2 degassing. These data provide constraints for finite element models that predict fluid pressures, multiphase flow patterns, rates and patterns of deformation, subsurface temperatures and heat flow, and geochemistry associated with large fault systems.
Donald M. McEligot; Stefan Becker; Hugh M. McIlroy, Jr.
2010-07-01T23:59:59.000Z
In recent international collaboration, INL and Uni. Erlangen have developed large MIR flow systems which can be ideal for joint graduate student education and research. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The MIR technique is not new itself; others employed it earlier. The innovation of these MIR systems is their large size relative to previous experiments, yielding improved spatial and temporal resolution. This report will discuss the benefits of the technique, characteristics of the systems and some examples of their applications to complex situations. Typically their experiments have provided new fundamental understanding plus benchmark data for assessment and possible validation of computational thermal fluid dynamic codes.
Modeling Flow Past a Tilted Vena Cava Filter
Singer, M A; Wang, S L
2009-06-29T23:59:59.000Z
Inferior vena cava filters are medical devices used to prevent pulmonary embolism (PE) from deep vein thrombosis. In particular, retrievable filters are well-suited for patients who are unresponsive to anticoagulation therapy and whose risk of PE decreased with time. The goal of this work is to use computational fluid dynamics to evaluate the flow past an unoccluded and partially occluded Celect inferior vena cava filter. In particular, the hemodynamic response to thrombus volume and filter tilt is examined, and the results are compared with flow conditions that are known to be thrombogenic. A computer model of the filter inside a model vena cava is constructed using high resolution digital photographs and methods of computer aided design. The models are parameterized using the Overture software framework, and a collection of overlapping grids is constructed to discretize the flow domain. The incompressible Navier-Stokes equations are solved, and the characteristics of the flow (i.e., velocity contours and wall shear stresses) are computed. The volume of stagnant and recirculating flow increases with thrombus volume. In addition, as the filter increases tilt, the cava wall adjacent to the tilted filter is subjected to low velocity flow that gives rise to regions of low wall shear stress. The results demonstrate the ease of IVC filter modeling with the Overture software framework. Flow conditions caused by the tilted Celect filter may elevate the risk of intrafilter thrombosis and facilitate vascular remodeling. This latter condition also increases the risk of penetration and potential incorporation of the hook of the filter into the vena caval wall, thereby complicating filter retrieval. Consequently, severe tilt at the time of filter deployment may warrant early clinical intervention.
Quantum cosmological perfect fluid model and its classical analogue
A. B. Batista; J. C. Fabris; S. V. B. Goncalves; Joel Tossa
2001-08-22T23:59:59.000Z
The quantization of gravity coupled to a perfect fluid model leads to a Schr\\"odinger-like equation, where the matter variable plays the role of time. The wave function can be determined, in the flat case, for an arbitrary barotropic equation of state $p = \\alpha\\rho$; solutions can also be found for the radiative non-flat case. The wave packets are constructed, from which the expectation value for the scale factor is determined. The quantum scenarios reveal a bouncing Universe, free from singularity. We show that such quantum cosmological perfect fluid models admit a universal classical analogue, represented by the addition, to the ordinary classical model, of a repulsive stiff matter fluid. The meaning of the existence of this universal classical analogue is discussed. The quantum cosmological perfect fluid model is, for a flat spatial section, formally equivalent to a free particle in ordinary quantum mechanics, for any value of $\\alpha$, while the radiative non-flat case is equivalent to the harmonic oscillator. The repulsive fluid needed to reproduce the quantum results is the same in both cases.
Russell, Lynn
Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect Corporation for Atmospheric Research, Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA V. Ramaswamy, Paul A. Ginoux, and Larry W. Horowitz Geophysical Fluid Dynamics Laboratory, Princeton, New
Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g e OctoberEnergy FormerSites |BGE's SMART ENERGYMilestones KeepMissouriIllness| Department of
ES2A7 -Fluid Mechanics Example Classes Model Answers to Example Questions (Set III)
Thomas, Peter J.
ES2A7 - Fluid Mechanics Example Classes Model Answers to Example Questions (Set III) Question 1 10610 40031.8 -- ×=×= × × == APN RT d Question 2: Type of Fluid #12;Consider 2 identical vertical tubes are filled with the same height of fluid: A Newtonian fluid is used with tube X whereas a non-Newtonian fluid
Potential Hydraulic Modelling Errors Associated with Rheological Data Extrapolation in Laminar Flow
Shadday, Martin A., Jr.
1997-03-20T23:59:59.000Z
The potential errors associated with the modelling of flows of non-Newtonian slurries through pipes, due to inadequate rheological models and extrapolation outside of the ranges of data bases, are demonstrated. The behaviors of both dilatant and pseudoplastic fluids with yield stresses, and the errors associated with treating them as Bingham plastics, are investigated.
Rutqvist, J.
2010-06-01T23:59:59.000Z
This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC{sup 3D} geomechanical simulator. The most significant new TOUGH-FLAC development in the past few years is a revised architecture, enabling a more rigorous and tight coupling procedure with improved computational efficiency. The applications presented in this paper are related to modeling of crustal deformations caused by deep underground fluid movements and pressure changes as a result of both industrial activities (the In Salah CO{sub 2} Storage Project and the Geysers Geothermal Field) and natural events (the 1960s Matsushiro Earthquake Swarm). Finally, the paper provides some perspectives on the future of TOUGH-FLAC in light of its applicability to practical problems and the need for high-performance computing capabilities for field-scale problems, such as industrial-scale CO{sub 2} storage and enhanced geothermal systems. It is concluded that despite some limitations to fully adapting a commercial code such as FLAC{sup 3D} for some specialized research and computational needs, TOUGH-FLAC is likely to remain a pragmatic simulation approach, with an increasing number of users in both academia and industry.
Turbulence Modeling for Compressible Shear Flows
Gomez Elizondo, Carlos Arturo 1981-
2012-11-15T23:59:59.000Z
, state, and momentum equations. Closure models that attempt to address compressibility effects must begin their development from sound first-principles related to the changing nature of pressure as a flow goes from incompressible to compressible regime...
Journal of Fluid Mechanics A furtive stare at an
Goldstein, Raymond E.
Journal of Fluid Mechanics Focus luids on F A furtive stare at an intra-cellular flow T. M. SQUIRES of the fluid flow within individual living cells, which agree quantitatively with their fluid mechanical model. Introduction Nature has long inspired researchers in fluid mechanics to explore the mechanical strategies used
Elmroth, Erik
A Parallel Implementation of the TOUGH2 Software Package for Large Scale Multiphase Fluid and Heat groundwater flow related problems such as nuclear waste isolation, environmental remediation, and geothermal with ¢¡¤£¦¥§ ¨¡© blocks in a Yucca Mountain nuclear waste site study. Keywords. Ground water flow, grid partitioning
Elmroth, Erik
A Parallel Implementation of the TOUGH2 Software Package for Large Scale Multiphase Fluid and Heat groundwater flow related problems such as nuclear waste isolation, environmental remediation, and geothermal 6 blocks in a Yucca Mountain nuclear waste site study. Keywords. Ground water flow, grid
Hagen, Stephen J.
Laminar-Flow Fluid Mixer for Fast Fluorescence Kinetics Studies Suzette A. Pabit and Stephen J i.d.) at a speed 20 cm/s, under laminar flow conditions (Re 14). Construction from a fused silica studies of fast protein and nucleic acid interactions and folding. We have constructed a laminar coaxial
Study of Laminar Flow Forced Convection Heat Transfer Behavior of a Phase Change Material Fluid
Ravi, Gurunarayana
2010-01-14T23:59:59.000Z
with constant peripheral temperature and uniform axial and peripheral temperature, were considered in the case of circular tubes. An effective specific heat technique was used to model the phase change process assuming a hydrodynamically fully-developed flow...
Study of Laminar Flow Forced Convection Heat Transfer Behavior of a Phase Change Material Fluid
Ravi, Gurunarayana
2010-01-14T23:59:59.000Z
with constant peripheral temperature and uniform axial and peripheral temperature, were considered in the case of circular tubes. An effective specific heat technique was used to model the phase change process assuming a hydrodynamically fully-developed flow...
Phase-separation models for swimming enhancement in complex fluids
Man, Yi
2015-01-01T23:59:59.000Z
Swimming cells often have to self-propel through fluids displaying non-Newtonian rheology. While past theoretical work seems to indicate that stresses arising from complex fluids should systematically hinder low-Reynolds number locomotion, experimental observations suggest that locomotion enhancement is possible. In this paper we propose a physical mechanism for locomotion enhancement of microscopic swimmers in a complex fluid. It is based on the fact that micro-structured fluids will generically phase-separate near surfaces, leading to the presence of low-viscosity layers which promote slip and decrease viscous friction near the surface of the swimmer. We use two models to address the consequence of this phase separation: a nonzero apparent slip length for the fluid and then an explicit modeling of the change of viscosity in a thin layer near the swimmer. Considering two canonical setups for low-Reynolds number locomotion, namely the waving locomotion of a two-dimensional sheet and that of a three-dimensiona...
GROUNDWATER FLOW MODELS C. P. Kumar
Kumar, C.P.
GROUNDWATER FLOW MODELS C. P. Kumar Scientist `E1' National Institute of Hydrology Roorkee 247667 (Uttaranchal) 1.0 INTRODUCTION The use of groundwater models is prevalent in the field of environmental science, groundwater models are being applied to predict the transport of contaminants for risk evaluation. In general
Energy Flow Models for the Steel Industry
Hyman, B.; Andersen, J. P.
1998-01-01T23:59:59.000Z
Energy patterns in the U. S. steel industry are examined using several models. First is an end-use model based on data in the 1994 Manufacturing Energy Consumption Survey (MECS). Then a seven-step process model is presented and material flow through...
Energy Flow Models for the Steel Industry
Hyman, B.; Andersen, J. P.
Energy patterns in the U. S. steel industry are examined using several models. First is an end-use model based on data in the 1994 Manufacturing Energy Consumption Survey (MECS). Then a seven-step process model is presented and material flow through...
The flow and heat transfer in a viscous fluid over an unsteady stretching surface
Ene, Remus-Daniel; Marinca, Bogdan
2015-01-01T23:59:59.000Z
In this paper we have studied the flow and heat transfer in a viscous fluid by a horizontal sheet. The stretching rate and temperature of the sheet vary with time. The governing equations for momentum and thermal energy are reduced to ordinary differential equations by means of similarity transformation. These equations are solved approximately by means of the Optimal Homotopy Asymptotic Method (OHAM) which provides us with a convenient way to control the convergence of approximation solutions and adjust convergence rigorous when necessary. Some examples are given and the results obtained reveal that the proposed method is effective and easy to use.
The Properties of Confined Water and Fluid Flow at the Nanoscale
Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G
2009-03-09T23:59:59.000Z
This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.
MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION
Lippmann, M.J.
2011-01-01T23:59:59.000Z
t al. , "Modeling Geothermal Systems," A t t i dei Convegnio f L i q u i d Geothermal Systems," Open-File Report 75-i q u i d Dominated Geothermal Systems," Proceedings o f t h
Fluid Model of the Outage Probability in Sectored Wireless Networks
Coupechoux, Marceau
Fluid Model of the Outage Probability in Sectored Wireless Networks Jean-Marc Kelif France Telecom to derive the global outage probability and the spatial outage probability, which depends on the location the derivation of outage probabilities, capacity evaluation and then, the definition of Call Admission Control
Fuel cell assembly fluid flow plate having conductive fibers and rigidizing material therein
Walsh, Michael M. (Fairfield, CT)
2000-01-01T23:59:59.000Z
A fluid flow plate is preferably formed with three initial sections, for instance, two layers of conductive (e.g., metal) fibers and a barrier material (e.g., metal foil) which is interposed between the two layers. For example, sintering of these three sections can provide electrical path(s) between outer faces of the two layers. Then, the sintered sections can be, for instance, placed in a mold for forming of flow channel(s) into one or more of the outer faces. Next, rigidizing material (e.g., resin) can be injected into the mold, for example, to fill and/or seal space(s) about a conductive matrix of the electrical path(s). Preferably, abrading of surface(s) of the outer face(s) serves to expose electrical contact(s) to the electrical path(s).
Mukhopadhyay, Sumit; Tsang, Yvonne W.
2008-08-01T23:59:59.000Z
Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper [Mukhopadhyay et al., 2008], we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks.
Dr. Chenn Zhou
2008-10-15T23:59:59.000Z
Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.
Christian Kreuzer; Endre Süli
2015-03-18T23:59:59.000Z
We develop the a posteriori error analysis of finite element approximations of implicit power-law-like models for viscous incompressible fluids. The Cauchy stress and the symmetric part of the velocity gradient in the class of models under consideration are related by a, possibly multi--valued, maximal monotone $r$-graph, with $\\frac{2d}{d+1}finite element residual, as well as the local stability of the error bound. We then consider an adaptive finite element approximation of the problem, and, under suitable assumptions, we show the weak convergence of the adaptive algorithm to a weak solution of the boundary-value problem. The argument is based on a variety of weak compactness techniques, including Chacon's biting lemma and a finite element counterpart of the Acerbi--Fusco Lipschitz truncation of Sobolev functions, introduced by L. Diening, C. Kreuzer and E. S\\"uli [Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal., 51(2), 984--1015].
Dynamical Instability of Laminar Axisymmetric Flow of Perfect Fluid with Stratification
V. V. Zhuravlev; N. I. Shakura
2007-09-12T23:59:59.000Z
The instability of non-homoentropic axisymmetric flow of perfect fluid with respect to non-axisymmetric infinitesimal perturbations was investigated by numerical integration of hydrodynamical differential equations in two-dimensional approximation. The non-trivial influence of entropy gradient on unstable sound and surface gravity waves was revealed. In particular, both decrease and growth of entropy against the direction of effective gravitational acceleration $g_{eff}$ give rise to growing surface gravity modes which are stable with the same parameters in the case of homoentropic flow. At the same time increment of sound modes either grows monotonically while the rate of entropy decrease against $g_{eff}$ gets higher or vanishes at some values of positive and negative entropy gradient in the basic flow. The calculations have showed also that growing internal gravity modes appear only in the flow unstable to axisymmetric perturbations. At last, the analysis of boundary problem with free boundaries uncovered that's incorrect to set the entropy distribution according to polytropic law with polytropic index different from adiabatic value, since in this case perturbations don't satisfy the free boundary conditions.
Taitel, Y. (Tel-Aviv Univ., Israel); Bornea, D.; Dukler, A.E.
1980-05-01T23:59:59.000Z
Models for predicting flow patterns in steady upward gas-liquid flow in vertical tubes (such as production-well tubing) delineate the transition boundaries between each of the four basic flow patterns for gas-liquid flow in vertical tubes: bubble, slug, churn, and dispersed-annular. Model results suggest that churn flow is the development region for the slug pattern and that bubble flow can exist in small pipes only at high liquid rates, where turbulent dispersion forces are high. Each transition depends on the flow-rate pair, fluid properties, and pipe size, but the nature of the dependence is different for each transition because of differing control mechanisms. The theoretical predictions are in reasonably good agreement with a variety of published flow maps based on experimental data.
PROBABILISTIC SIMULATION OF SUBSURFACE FLUID FLOW: A STUDY USING A NUMERICAL SCHEME
Buscheck, Timothy Eric
1980-03-01T23:59:59.000Z
There has been an increasing interest in probabilistic modeling of hydrogeologic systems. The classical approach to groundwater modeling has been deterministic in nature, where individual layers and formations are assumed to be uniformly homogeneous. Even in the case of complex heterogeneous systems, the heterogeneities describe the differences in parameter values between various layers, but not within any individual layer. In a deterministic model a single-number is assigned to each hydrogeologic parameter, given a particular scale of interest. However, physically there is no such entity as a truly uniform and homogeneous unit. Single-number representations or deterministic predictions are subject to uncertainties. The approach used in this work models such uncertainties with probabilistic parameters. The resulting statistical distributions of output variables are analyzed. A numerical algorithm, based on axiomatic principles of probability theory, performs arithmetic operations between probability distributions. Two subroutines are developed from the algorithm and incorporated into the computer program TERZAGI, which solves groundwater flow problems in saturated, multi-dimensional systems. The probabilistic computer program is given the name, PROGRES. The algorithm has been applied to study the following problems: one-dimensional flow through homogeneous media, steady-state and transient flow conditions, one-dimensional flow through heterogeneous media, steady-state and transient flow conditions, and two-dimensional steady-stte flow through heterogeneous media. The results are compared with those available in the literature.
Review and selection of unsaturated flow models
Reeves, M.; Baker, N.A.; Duguid, J.O. [INTERA, Inc., Las Vegas, NV (United States)
1994-04-04T23:59:59.000Z
Since the 1960`s, ground-water flow models have been used for analysis of water resources problems. In the 1970`s, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970`s and well into the 1980`s focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M&O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing.
A model for transonic plasma flow
Guazzotto, Luca, E-mail: luca.guazzotto@rochester.edu [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Hameiri, Eliezer, E-mail: hameiri@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)] [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)
2014-02-15T23:59:59.000Z
A linear, two-dimensional model of a transonic plasma flow in equilibrium is constructed and given an explicit solution in the form of a complex Laplace integral. The solution indicates that the transonic state can be solved as an elliptic boundary value problem, as is done in the numerical code FLOW [Guazzotto et al., Phys. Plasmas 11, 604 (2004)]. Moreover, the presence of a hyperbolic region does not necessarily imply the presence of a discontinuity or any other singularity of the solution.
Towards a model of large scale dynamics in transitional wall-bounded flows
Manneville, Paul
2015-01-01T23:59:59.000Z
A system of simplified equations is proposed to govern the feedback interactions of large-scale flows present in laminar-turbulent patterns of transitional wall-bounded flows, with small-scale Reynolds stresses generated by the self-sustainment process of turbulence itself modeled using an extension of Waleffe's approach (Phys. Fluids 9 (1997) 883-900), the detailed expression of which is displayed as an annex to the main text.
Mechanical Engineering ME 3720 FLUID MECHANICS
Panchagnula, Mahesh
. Fundamentals of fluid flow; fluid statics; systems, and control volumes; continuity, momentum and energy physical model results to prototype 10. Use Moody chart to calculate friction losses in pipe flows 11 equations; dynamic similitude; One-dimensional compressible flow. The objective(s) of this course is (are
Spane, Frank A.
2013-04-29T23:59:59.000Z
Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects
in the fractured media results in changes in the pore pressure and consequently causes changes in the effective of fluids is accompanied by substantial change in the pore pressure field. As fluids drain, pore pressure velocities) and decreasing permeability (Schoenberg, 2002). Conversely, pore pressure buildup due
Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture Networks
Ogbechie, Joachim Nwabunwanne
2012-02-14T23:59:59.000Z
Fluid flow process in fractured reservoirs is controlled primarily by the connectivity of fractures. The presence of fractures in these reservoirs significantly affects the mechanism of fluid flow. They have led to problems in the reservoir which...
Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture Networks
Ogbechie, Joachim Nwabunwanne
2012-02-14T23:59:59.000Z
Fluid flow process in fractured reservoirs is controlled primarily by the connectivity of fractures. The presence of fractures in these reservoirs significantly affects the mechanism of fluid flow. They have led to problems in the reservoir which...
Gomez, Hector
Experimental and computational modeling of oscillatory flow within a baffled tube containing describes numerical simulation and matching experimental results for oscillatory flow within a baffled tube the basic mechanism of OFM in a horizontal single-orifice baffled tube. As the fluid passes through
Bolster, Diogo
, demonstrated that at asymptotic times, for laminar flow conditions transport in a cylindrical tube canModeling preasymptotic transport in flows with significant inertial and trapping effects Borgne b , Jérémy Bouquain b , Phillipe Davy b a Environmental Fluid Dynamics Laboratories, Dept
Modeling Physical Quantities in Industrial Systems using Fluid Stochastic Petri Nets
Gribaudo, Marco
of a case study, in which the quantity to be regulated is a real fluid quantity: the fuel demand in a gas: Start Fuel Controller 2 Fluid Stochastic Petri Nets Fluid Stochastic Petri Nets are Petri net basedModeling Physical Quantities in Industrial Systems using Fluid Stochastic Petri Nets M. Gribaudo
Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry
Hassan, T.A.
1992-12-01T23:59:59.000Z
The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.
Chaos control in traffic flow models
Elman Mohammed Shahverdiev; Shin-ichi Tadaki
1998-11-30T23:59:59.000Z
Chaos control in some of the one- and two-dimensional traffic flow dynamical models in the mean field theory is studied.One dimensional model is investigated taking into account the effect of random delay. Two dimensional model takes into account the effects of overpasses, symmetric distribution of cars and blockages of cars moving in the same direction. Chaos synchronization is performed within both replica and nonreplica approaches, and using parameter perturbation method.
Siddiqui, Abuzar A
2011-01-01T23:59:59.000Z
Analytic expressions for the speed, flux, microrotation, stress, and couple stress in a micropolar fluid exhibiting steady, symmetric and one-dimensional electro-osmotic flow in a uniform cylindrical microcapillary were derived under the constraint of the Debye-Hueckel approximation, which is applicable when the cross-sectional radius of the microcapillary exceeds the Debye length, provided that the zeta potential is sufficiently small in magnitude. As the aciculate particles in a micropolar fluid can rotate without translation, micropolarity influences fluid speed, fluid flux, and one of the two non-zero components of the stress tensor. The axial speed in a micropolar fluid intensifies as the radius increases. The stress tensor is confined to the region near the wall of the microcapillary but the couple stress tensor is uniform across the cross-section.
Wind Turbine Modeling for Computational Fluid Dynamics: December 2010 - December 2012
Tossas, L. A. M.; Leonardi, S.
2013-07-01T23:59:59.000Z
With the shortage of fossil fuel and the increasing environmental awareness, wind energy is becoming more and more important. As the market for wind energy grows, wind turbines and wind farms are becoming larger. Current utility-scale turbines extend a significant distance into the atmospheric boundary layer. Therefore, the interaction between the atmospheric boundary layer and the turbines and their wakes needs to be better understood. The turbulent wakes of upstream turbines affect the flow field of the turbines behind them, decreasing power production and increasing mechanical loading. With a better understanding of this type of flow, wind farm developers could plan better-performing, less maintenance-intensive wind farms. Simulating this flow using computational fluid dynamics is one important way to gain a better understanding of wind farm flows. In this study, we compare the performance of actuator disc and actuator line models in producing wind turbine wakes and the wake-turbine interaction between multiple turbines. We also examine parameters that affect the performance of these models, such as grid resolution, the use of a tip-loss correction, and the way in which the turbine force is projected onto the flow field.
Lopez, Jose M; Avila, Marc
2015-01-01T23:59:59.000Z
The flow of fluid confined between a heated rotating cylinder and a cooled stationary cylinder is a canonical experiment for the study of heat transfer in engineering. The theoretical treatment of this system is greatly simplified if the cylinders are assumed to be of infinite length or periodic in the axial direction, in which cases heat transfer occurs only through conduction as in a solid. We here investigate numerically heat transfer and the onset of turbulence in such flows by using both periodic and no-slip boundary conditions in the axial direction. We obtain a simple linear criterion that determines whether the infinite-cylinder assumption can be employed. The curvature of the cylinders enters this linear relationship through the slope and additive constant. For a given length-to-gap aspect ratio there is a critical Rayleigh number beyond which the laminar flow in the finite system is convective and so the behaviour is entirely different from the periodic case. The criterion does not depend on the Pra...
Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography
Wang, Xiao-Jun; Milner, T.E.; Chen, Zhongping; Nelson, J.S. [Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, California 92715 (United States)]|[Department of Physics, Georgia Southern University, Statesboro, Georgia 30460 (United States)
1997-01-01T23:59:59.000Z
Optical Doppler tomography is demonstrated to be a simple, accurate, and noncontact method for measuring the fluid velocity of laminar flow in small-diameter ({approximately}0.5-mm) ducts. Studies are described that utilize circular (square) plastic (glass) ducts infused with a moving suspension of polymer micro-spheres in air and buried in an optically turbid medium. The measurement of Doppler-shifted frequencies of backscattered light from moving microspheres is used to construct a high-resolution spatial profile of fluid-flow velocity in the ducts. {copyright} 1997 Optical Society of America
The conformation change of model polymers in stochastic flow fields: Flow through fixed beds
Shaqfeh, Eric
The conformation change of model polymers in stochastic flow fields: Flow through fixed beds Alisa that as a polymer solution flows through a fixed bed, the pressure drop neces- sary to pump the solution may
Internal Stress in a Model Elasto-Plastic Fluid
Takeshi Ooshida; Ken Sekimoto
2005-12-03T23:59:59.000Z
Plastic materials can carry memory of past mechanical treatment in the form of internal stress. We introduce a natural definition of the vorticity of internal stress in a simple two-dimensional model of elasto-plastic fluids, which generates the internal stress. We demonstrate how the internal stress is induced under external loading, and how the presence of the internal stress modifies the plastic behavior.
Boyce, Scott Elliott
2015-01-01T23:59:59.000Z
to solve unconfined groundwater flow. Advances in Waterreduction of transient groundwater flow models: Applicationreduction of transient groundwater flow models: Application
Etheridge, William B. (William Bruce)
2007-01-01T23:59:59.000Z
An experimental study was undertaken to investigate if a loosely-packed particle layer can induce mixing due to diffusion-driven Phillips-Wunsch boundary flows in a quiescent stratified fluid. Diffusion-driven flows can ...
SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION
B.W. ARNOLD
2004-10-27T23:59:59.000Z
The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.
A New Unified Dark Fluid Model and Its Cosmic Constraint
Xu, Lixin
2012-01-01T23:59:59.000Z
In this paper, we propose a new unified dark fluid (UDF) model with equation of state (EoS) $w(a)=-\\alpha/(\\beta a^{-n}+1)$, which includes the generalized Chaplygin gas model (gGg) as its special case, where $\\alpha$, $\\beta$ and $n$ are three positive numbers. It is clear that this model reduces to the gCg model with EoS $w(a)=-B_s/(B_s+(1-B_s)a^{-3(1+\\alpha)})$, when $\\alpha=1$, $\\beta=(1-B_s)/B_s$ and $n=3(1+\\alpha)$. By combination the cold dark matter and the cosmological constant, one can coin a EoS of unified dark fluid in the form of $w(a)=-1/(1+(1-\\Omega_{\\Lambda})a^{-3}/\\Omega_{\\Lambda})$. With this observations, our proposed EoS provides a possible deviation from $\\Lambda$CDM model when the model parameters $\\alpha$ and $n$ deviate from 1 and 3 respectively. By using the currently available cosmic observations from type Ia supernovae (SN Ia) Union2.1, baryon acoustic oscillation (BAO) and cosmic microwave background radiation (CMB), we test the viability of this model and detect the possible devot...
European Journal of Mechanics B/Fluids 25 (2006) 9871007 Wave propagation in a fluid flowing through
Pontrelli, Giuseppe
2006-01-01T23:59:59.000Z
oscillatory flow has been considered in many studies. This work was initiated by Lyne [5] who used boundary-layer
MINET: transient analysis of fluid-flow and heat-transfer networks
Van Tuyle, G.J.; Guppy, J.G.; Nepsee, T.C.
1983-01-01T23:59:59.000Z
MINET, a computer code developed for the steady-state and transient analysis of fluid-flow and heat-transfer networks, is described. The code is based on a momentum integral network method, which offers significant computational advantages in the analysis of large systems, such as the balance of plant in a power-generating facility. An application is discussed in which MINET is coupled to the Super System Code (SSC), an advanced generic code for the transient analysis of loop- or pool-type LMFBR systems. In this application, the ability of the Clinch River Breeder Reactor Plant to operate in a natural circulation mode following an assumed loss of all electric power, was assessed. Results from the MINET portion of the calculations are compared against those generated independently by the Clinch River Project, using the DEMO code.
Feeny, Brian
was restricted to the region near the jet exit and it involved jet--to--free stream velocity ratios (R v~/u0ABSTRACT The subject flow was created by the discharge of jet fluid, from a circular orifice by the free stream velocity, U, extant above the thin boundary layer (o
MODELING BLOOD FLOW IN THE CARDIOVASCULAR
Olufsen, Mette Sofie
MODELING BLOOD FLOW IN THE CARDIOVASCULAR SYSTEM MA432 Spring 2013 Department of Mathematics (Greek),...; Two distinct types of blood were thought to exist: § "Nutritive blood" was thought to be made by the liver and carried through veins to the organs, where it was consumed § "Vital blood
MODELING BLOOD FLOW IN THE CARDIOVASCULAR
Olufsen, Mette Sofie
MODELING BLOOD FLOW IN THE CARDIOVASCULAR SYSTEM MA325 Spring 2013 Department of Mathematics (Greek),...; Two distinct types of blood were thought to exist: § Nutritive blood was thought to be made by the liver and carried through veins to the organs, where it was consumed § Vital blood was thought
The Product Flow Model Gio Wiederhold
Wiederhold, Gio
(IT) operations for software then little overall lifetime cost reduction has been achieved by reduced Boehm has demonstrated, a modest initial investment, say 20% over the most economical cost of deliveringThe Product Flow Model Gio Wiederhold Stanford University 14 May 2003 Abstract We observed a new
Computer Vision in Fluid Mechanics
Aminfar, AmirHessam
2015-01-01T23:59:59.000Z
Laminar flows are usually unidirectional flows, which the fluidlaminar flows ? Streak line: Streak line is locus of fluid
CFD modeling of entrained-flow coal gasifiers with improved physical and chemical sub-models
Ma, J.; Zitney, S.
2012-01-01T23:59:59.000Z
Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. While the turbulent multiphase reacting flow inside entrained-flow gasifiers has been modeled through computational fluid dynamic (CFD), the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented here include a moisture vaporization model with consideration of high mass transfer rate, a coal devolatilization model with more species to represent coal volatiles and heating rate effect on volatile yield, and careful selection of global gas phase reaction kinetics. The enhanced CFD model is applied to simulate two typical oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here indicate that the gasifier models reported in this paper are reliable and accurate enough to be incorporated into process/CFD co-simulations of IGCC power plants for systemwide design and optimization.
RIS-M-2357 MULTILEVEL FLOW MODELLING OF PROCESS
of complex systems. A model of a nuclear power plant (PWR) is presented in the paper for illustration. Due SPECIFICATIONS 19 A MULTILEVEL FLOW MODEL OF A PWR 22 APPLICATIONS OF MULTILEVEL FLOW MODELS 24 ACKNOWLEDGEMENTS
Green Algae as Model Organisms for Biological Fluid Dynamics
Goldstein, Raymond E
2014-01-01T23:59:59.000Z
In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these re...
Green Algae as Model Organisms for Biological Fluid Dynamics
Raymond E. Goldstein
2014-09-08T23:59:59.000Z
In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.
A bulk-flow model of angled injection Lomakin bearings
Soulas, Thomas Antoine Theo
2001-01-01T23:59:59.000Z
A bulk-flow model for determination of the leakage and dynamic force characteristics of angled injection Lomakin bearings is presented. Zeroth- and first-order equations describe the equilibrium flow for a centered bearing and the perturbed flow...
INCORPORATION OF GROUNDWATER FLOW INTO NUMERICAL MODELS AND DESIGN MODELS
03/10/99 1 INCORPORATION OF GROUNDWATER FLOW INTO NUMERICAL MODELS AND DESIGN MODELS Jeffrey D-coupled, ground-source heat pumps, groundwater, heat pump, heat exchanger, heat transfer, numerical models transport of heat by moving groundwater may be an important factor in reducing the necessary size of closed
A STOCHASTIC METHOD FOR MODELING FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS
Anderson, C.
2011-01-01T23:59:59.000Z
FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andFLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andachieve optimal recovery of petroleum from a reservoir, it
A realistic modeling of fluid infiltration in thin fibrous sheets Sudhakar Jaganathan,1
Tafreshi, Hooman Vahedi
. Many authors have used the pioneering model of Washburn3 to study the fluid infiltration.49 Washburn track, fluid infiltration problems have also been studied using the so-called Richards' equation15 origiA realistic modeling of fluid infiltration in thin fibrous sheets Sudhakar Jaganathan,1 Hooman
Catalytic Micropumps: Microscopic Convective Fluid Flow and Pattern Formation Timothy R. Kline of the driving forces for developing micro/nanofluidics. Engineering fluid flows at this scale remains a "fuel" can be converted locally at a catalyst surface, possibly eliminating external pumps or power
Bier, Martin
will show that a sufficiently large boundary vor- ticity layer is required for stationary vortices and that a suf- ficiently high Reynolds number with a boundary shear stress is required for traveling oscillatoryStable stationary vortices and traveling oscillatory vortices in a stenotic fluid-flow channel
One Time-step Finite Element Discretization of the Equation of Motion of Two-fluid Flows
Maury, Bertrand
obtained at each time step when dis- cretizing the lubricated transportation of heavy crude oil in a horizontal pipeline. In the petroleum industry, an efficient way for transporting heavy crude oil to the pipe wall and it surrounds the fluid with high viscosity (heavy oil). It is assumed that the flow
Global Stability Analysis of Fluid Flows using Sum-of-Squares
2011-07-01T23:59:59.000Z
Jul 1, 2011 ... For finite dimensional approximations of fluid ...... if and only if there exist non-
Modelling the Fluid Mechanics of Cilia and Flagella in Reproduction and Development
Thomas D. Montenegro-Johnson; Andrew A. Smith; David J. Smith; Daniel Loghin; John R. Blake
2013-09-04T23:59:59.000Z
Cilia and flagella are actively bending slender organelles, performing functions such as motility, feeding and embryonic symmetry breaking. We review the mechanics of viscous-dominated microscale flow, including time-reversal symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the fundamental force singularity, higher order multipoles, and the method of images, providing physical insight and forming a basis for computational approaches. Two biological problems are then considered in more detail: (1) left-right symmetry breaking flow in the node, a microscopic structure in developing vertebrate embryos, and (2) motility of microswimmers through non-Newtonian fluids. Our model of the embryonic node reveals how particle transport associated with morphogenesis is modulated by the gradual emergence of cilium posterior tilt. Our model of swimming makes use of force distributions within a body-conforming finite element framework, allowing the solution of nonlinear inertialess Carreau flow. We find that a three-sphere model swimmer and a model sperm are similarly affected by shear-thinning; in both cases swimming due to a prescribed beat is enhanced by shear-thinning, with optimal Deborah number around 0.8. The sperm exhibits an almost perfect linear relationship between velocity and the logarithm of the ratio of zero to infinite shear viscosity, with shear-thickening hindering cell progress.
Matzen, G.W.
1997-01-01T23:59:59.000Z
Three-dimensional creeping flow around single, axisymmetric protrusions is studied numerically using the boundary-integral technique. Emphasis is placed upon cylindrical protrusions on plane walls for various height-to-radius (h-to-a) aspect ratios, but cones and sections of spheres protruding from plane walls are also briefly examined. The presented items include shear-stress distributions, shear-stress contours, extents of the fluid-flow disturbance, total forces and torques on the cylinders, streamlines, and skin-friction lines. Also included is a discussion of flow topology around axisymmetric geometries. No flow reversal is observed for cylindrical protrusions with aspect ratios greater than 2.4 to 2.6. At higher aspect ratios, the fluid tends to be swept around cylindrical protrusions with little vertical motion. At lower aspect ratios, the strength of the recirculation increases, and the recirculation region becomes wider in the transverse direction and narrower in the flow direction. Also, the recirculation pattern begins to resemble the closed streamline patterns in two-dimensional flow over square ridges. However, unlike two-dimensional flow, closed streamline patterns are not observed. For arbitrary axisymmetric geometries, the extent of the fluid-flow disturbance can be estimated with the total force that is exerted on the protrusion. When the same force is exerted on protrusions with different aspect ratios, the protrusion with the higher aspect ratio tends to have a greater disturbance in the flow direction and a smaller disturbance in the transverse direction. The total force exerted on cylindrical protrusions with rounded corners is only slightly lower than the total force exerted on cylindrical protrusions with sharp corners.
Fluid Dynamics Models for Low Rank Discriminant Analysis Yung-Kyun Noh1,2
and velocity flow fields. We show how to apply the Gauss principle of least con- straint in fluids to obtain., 2000). Projection pursuit is a canonical approach to find a low dimen- sional subspace where
Unit physics performance of a mix model in Eulerian fluid computations
Vold, Erik [Los Alamos National Laboratory; Douglass, Rod [Los Alamos National Laboratory
2011-01-25T23:59:59.000Z
In this report, we evaluate the performance of a K-L drag-buoyancy mix model, described in a reference study by Dimonte-Tipton [1] hereafter denoted as [D-T]. The model was implemented in an Eulerian multi-material AMR code, and the results are discussed here for a series of unit physics tests. The tests were chosen to calibrate the model coefficients against empirical data, principally from RT (Rayleigh-Taylor) and RM (Richtmyer-Meshkov) experiments, and the present results are compared to experiments and to results reported in [D-T]. Results show the Eulerian implementation of the mix model agrees well with expectations for test problems in which there is no convective flow of the mass averaged fluid, i.e., in RT mix or in the decay of homogeneous isotropic turbulence (HIT). In RM shock-driven mix, the mix layer moves through the Eulerian computational grid, and there are differences with the previous results computed in a Lagrange frame [D-T]. The differences are attributed to the mass averaged fluid motion and examined in detail. Shock and re-shock mix are not well matched simultaneously. Results are also presented and discussed regarding model sensitivity to coefficient values and to initial conditions (IC), grid convergence, and the generation of atomically mixed volume fractions.
Several applications of a model for dense granular flows
Cawthorn, Christopher John
2011-03-15T23:59:59.000Z
model for the dense flow of dry granular materials (Jop, Forterre & Pouliquen, 2006, Nature, 441, 167-192). The model, based upon a generalisation of Coulomb sliding friction, is known to perform well when modelling certain simple free surface flows. We... such model was proposed by Savage & Hutter (1989), who accounted for simple Coulomb sliding friction at the base of the flow, and neglected internal stresses. This simple model, and its later generalisation to two-dimensional flows over complex topography...
Gamma-ray free-electron lasers: Quantum fluid model
Silva, H M
2014-01-01T23:59:59.000Z
A quantum fluid model is used to describe the interacion of a nondegenerate cold relativistic electron beam with an intense optical wiggler taking into account the beam space-charge potential and photon recoil effect. A nonlinear set of coupled equations are obtained and solved numerically. The numerical results shows that in the limit of plasma wave-breaking an ultra-high power radiation pulse are emitted at the$\\gamma$-ray wavelength range which can reach an output intensity near the Schwinger limit depending of the values of the FEL parameters such as detuning and input signal initial phase at the entrance of the interaction region.
FLUID-STRUCTURE INTERACTION MODELS OF THE MITRAL VALVE: FUNCTION IN NORMAL AND PATHOLOGIC STATES
Kunzelman, K. S.; Einstein, Daniel R.; Cochran, R. P.
2007-08-29T23:59:59.000Z
Successful mitral valve repair is dependent upon a full understanding of normal and abnormal mitral valve anatomy and function. Computational analysis is one such method that can be applied to simulate mitral valve function in order to analyze the roles of individual components, and evaluate proposed surgical repair. We developed the first three-dimensional, finite element (FE) computer model of the mitral valve including leaflets and chordae tendineae, however, one critical aspect that has been missing until the last few years was the evaluation of fluid flow, as coupled to the function of the mitral valve structure. We present here our latest results for normal function and specific pathologic changes using a fluid-structure interaction (FSI) model. Normal valve function was first assessed, followed by pathologic material changes in collagen fiber volume fraction, fiber stiffness, fiber splay, and isotropic stiffness. Leaflet and chordal stress and strain, and papillary muscle force was determined. In addition, transmitral flow, time to leaflet closure, and heart valve sound were assessed. Model predictions in the normal state agreed well with a wide range of available in-vivo and in-vitro data. Further, pathologic material changes that preserved the anisotropy of the valve leaflets were found to preserve valve function. By contrast, material changes that altered the anisotropy of the valve were found to profoundly alter valve function. The addition of blood flow and an experimentally driven microstructural description of mitral tissue represent significant advances in computational studies of the mitral valve, which allow further insight to be gained. This work is another building block in the foundation of a computational framework to aid in the refinement and development of a truly noninvasive diagnostic evaluation of the mitral valve. Ultimately, it represents the basis for simulation of surgical repair of pathologic valves in a clinical and educational setting.
RELAP5 subcooled critical flow model verification
Petelin, S.; Gortnar, O.; Mavko, B. (Institut Jozef Stefan, Ljubljana (Solomon Islands))
1993-01-01T23:59:59.000Z
We discuss some results of the RELAP5 break modeling during the analysis of International Standard Problem 27 (ISP-27) performed on the BETHSY facility. This study deals with the discontinuity of the RELAP5 critical flow prediction in a strongly subcooled region. Such unrealistic behavior was observed during the pretest simulations of ISP-27. Based on the investigation, a RELAP5 code correction is suggested that ensures a more appropriate simulation of the critical discharge of strongly subcooled liquid.
Review and selection of unsaturated flow models
NONE
1993-09-10T23:59:59.000Z
Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer ground-water flow models; to conduct performance assessments; and to develop performance assessment models, where necessary. In the area of scientific modeling, the M&O CRWMS has the following responsibilities: To provide overall management and integration of modeling activities. To provide a framework for focusing modeling and model development. To identify areas that require increased or decreased emphasis. To ensure that the tools necessary to conduct performance assessment are available. These responsibilities are being initiated through a three-step process. It consists of a thorough review of existing models, testing of models which best fit the established requirements, and making recommendations for future development that should be conducted. Future model enhancement will then focus on the models selected during this activity. Furthermore, in order to manage future model development, particularly in those areas requiring substantial enhancement, the three-step process will be updated and reported periodically in the future.
NUMERICAL MODELING FOR MULTIPHASE INCOMPRESSIBLE FLOW WITH PHASE CHANGE
Abdou, Mohamed
NUMERICAL MODELING FOR MULTIPHASE INCOMPRESSIBLE FLOW WITH PHASE CHANGE Xiao-Yong Luo, Ming-Jiu Ni for multiphase flows. A con- tinuum surface force (CSF) tension model is used in the present cases. Phase change
Model Order Reduction in Porous Media Flow Simulation and Optimization
Ghasemi, Mohammadreza
2015-05-06T23:59:59.000Z
Subsurface flow modeling and simulation is ubiquitous in many energy related processes, including oil and gas production. These models are usually large scale and simulating them can be very computationally demanding, particularly in work-flows...
DEVELOPMENT AND VALIDATION OF A MULTIFIELD MODEL OF CHURN-TURBULENT GAS/LIQUID FLOWS
Elena A. Tselishcheva; Steven P. Antal; Michael Z. Podowski; Donna Post Guillen
2009-07-01T23:59:59.000Z
The accuracy of numerical predictions for gas/liquid two-phase flows using Computational Multiphase Fluid Dynamics (CMFD) methods strongly depends on the formulation of models governing the interaction between the continuous liquid field and bubbles of different sizes. The purpose of this paper is to develop, test and validate a multifield model of adiabatic gas/liquid flows at intermediate gas concentrations (e.g., churn-turbulent flow regime), in which multiple-size bubbles are divided into a specified number of groups, each representing a prescribed range of sizes. The proposed modeling concept uses transport equations for the continuous liquid field and for each bubble field. The overall model has been implemented in the NPHASE-CMFD computer code. The results of NPHASE-CMFD simulations have been validated against the experimental data from the TOPFLOW test facility. Also, a parametric analysis on the effect of various modeling assumptions has been performed.
Boundary layer modeling of reactive flow over a porous surface with angled injection
Liu, Shiling; Fotache, Catalin G.; Hautman, Donald J.; Ochs, Stuart S. [United Technologies Research Center, MS 129-29, 411 Silver Lane, East Hartford, CT 06108 (United States); Chao, Beei-Huan [Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)
2008-08-15T23:59:59.000Z
An analytical model was developed to investigate the dynamics of nonpremixed flames in a shear layer established between a mainstream flow of fuel-rich combustion products and a porous surface with an angled injection of air. In the model, a one-step overall chemical reaction was employed, together with boundary layer conservation equations solved using similarity solutions. Parametric studies were performed to understand the effects of equivalence ratio, temperature, and mass flow rate of the fuel and air streams on the flame standoff distance, surface temperature, and heat flux at the surface. The analytical model predictions were compared with computational fluid dynamics results obtained using the FLUENT commercial code for both the laminar and the turbulent flow models. Qualitative agreement in surface temperature was observed. Finally, the flame stability limits predicted by the model were compared with available experimental data and found to agree qualitatively, as well. (author)
Safe Compositional Equationbased Modeling of Constrained Flow Networks 1
of NetSketch and the OpenModelica modeling platform. Keywords Flow networks, Network analysis, Safety
Lymphatic Fluid Mechanics: An In Situ and Computational Analysis of Lymph Flow
Rahbar, Elaheh
2012-10-19T23:59:59.000Z
The lymphatic system is an extensive vascular network responsible for the transport of fluid, immune cells, proteins and lipids. It is composed of thin-walled vessels, valves, nodes and ducts, which work together to collect fluid, approximately 4 L...
A network model for fluid transport through sea ice A. JABINI,1,2
Golden, Kenneth M.
A network model for fluid transport through sea ice J. ZHU,1 A. JABINI,1,2 K.M. GOLDEN,1 H. EICKEN, particularly in the Antarctic (Ackley and others, 1995; Maksym and Jeffries, 2001). Fluid transport through sea of dissolved organic matter (Lizotte, 2003). While fluid transport controls a broad range of sea-ice processes
Buldyrev, Sergey
Fluid transport in branched structures with temporary closures: A model for quasistatic lung, Hungary Received 20 August 2002; published 20 March 2003 We analyze the problem of fluid transport through containing random blockages that can be removed by the pressure of the fluid itself. We obtain
Fluid Flow Model Development for Representative Geologic Media | Department
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23 362Transmission:portion ofProtecting Intelligent04attachmentv1.pdf More2.pdf9.pdfGarygrayTheThe
Numerical modeling of fluid flow and time-lapse seismograms ...
gabriela
1. Inst. del Gas y del Petr´oleo - FI, Univ. de Buenos Aires, ARGENTINA. 2 .... 1 + i??s ). (9) where ?e > ?s are relaxation times and Mr = KG,µm. Numerical ...
Multiscale Modeling and Simulation of Fluid Flows in Inelastic Media
Popov, Peter
in porous media (e.g. soil), Elasticity equations in heterogeneous media (concrete, asphalt), etc permeability K = 0.0045 0.0000 0.0000 0.0000 0.0025 0.0000 0.0000 0.0000 0.0043 #12;- p. 8/42 Nonlinear
Can We Accurately Model Fluid Flow in Shale?
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirt DocumentationSitesWeather6 Shares of U.S. BuildingsConditionsCompute3-6179PCallCan We Accurately
Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasma | Department of EnergyBraking System forBiodiesel and PFI n-Butanol | DepartmentSnyder,in EGS
Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasma | Department of EnergyBraking System forBiodiesel and PFI n-Butanol | DepartmentSnyder,in EGSin EGS
Modeling fluid flow in deformation bands with stabilized localization mixed
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,SeparationConnect Journal Article:UsingMeson to a J/PsiReaction (TechnicalOak(Journalfinite elements.
Radiation Modeling In Fluid Flow Iain D. Boyd
Wang, Wei
Collector #12;4 Fundamentals of Radiation (1) · All matter with non-zero temperature emits thermal radiation with energy flux given by the Stefan-Boltzmann Law: e.g., Sun: T=5800 K, total radiated power = 4 distribution (Planck spectrum) !q =T 4 W/m2 #12;5 Planck Radiation Spectrum #12;6 Solar Radiation Spectrum
NUMERICAL MODELING OF FLUID FLOW AND TIME-LAPSE ...
gabriela
Abstract. CO2 sequestration in the underground is a valid alternative approach for mitigat- ing the greenhouse effect. Nevertheless, very little is known about the
Numerical modeling of fluid flow and time-lapse seismograms ...
gabriela
(greenhouse effect). • To minimize climate change impacts, geological sequestration of CO2 is an immediate option. • Geologic sequestration involves injecting ...
A Mixed Finite Element Framework for Modeling Coupled Fluid Flow ...
Birendra Jha
2005-10-03T23:59:59.000Z
I would like to express my deep sense of gratitude to Prof. Ruben Juanes ... Petroleum Engineering who have provided me with interesting technical feedbacks.
MECH 502: Fluid Mechanics Winter semester 2010
Phani, A. Srikantha
MECH 502: Fluid Mechanics Winter semester 2010 Instructor: I.A. Frigaard Times: Tuesdays week of semester. Location: CHBE 103 Synopsis: This course will focus primarily on fluid mechanics will be to look at fluid mechanics fundamentals, and at the mathematical modeling & analysis of simplified flow
Equilibrium calculation of transport coefficients for a fluid-particle model
Thomas Ihle; Erkan Tuzel; Daniel M. Kroll
2005-09-26T23:59:59.000Z
A recently introduced particle-based model for fluid flow, called Stochastic Rotation Dynamics, can be made Galilean invariant by introducing a random shift of the computational grid before collisions. In this paper, it is shown how the Green-Kubo relations derived previously can be resummed to obtain exact expressions for the collisional contributions to the transport coefficients. It is also shown that the collisional contribution to the microscopic stress tensor is not symmetric, and that this leads to an additional viscosity. The resulting identification of the transport coefficients for the hydrodynamic modes is discussed in detail, and it is shown that this does not impose restrictions on the applicability of the model. The collisional contribution to the thermal conductivity, which becomes important for small mean free path and small average particle number per cell, is also derived.
Stocker, H.
2012-01-01T23:59:59.000Z
Flow in Central High Energy Nuclear Collisions H. Stockera,theoretical models of high energy nuclear collisions andunder Contract High energy nuclear collisions offer a unique
Physical Model Development and Benchmarking for MHD Flows in Blanket Design
Ramakanth Munipalli; P.-Y.Huang; C.Chandler; C.Rowell; M.-J.Ni; N.Morley; S.Smolentsev; M.Abdou
2008-06-05T23:59:59.000Z
An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as “canonical”,) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.
Stanley, H. Eugene
contribution to the laminar fluid flow through the void space. The calcu- lations we perform do not apply on Fluid Flow through Disordered Porous Media J. S. Andrade, Jr.,1,3 U. M. S. Costa,1 M. P. Almeida,1 H. A.11.+j A standard approach in the investigation of single- phase fluid flow in microscopically disordered
Lu, Zhiming
Pajarito Plateau Groundwater Flow and Transport Modeling 1 Process-Level and Systems Models of Groundwater Flow and Transport Beneath the Pajarito Plateau: Migration of High Explosives from Technical Area Groundwater Modeling Project Systems Model Vadose Zone Model Regional Aquifer Model #12;Pajarito Plateau
Slowly rotating superfluid neutron stars with isospin dependent entrainment in a two-fluid model
Kheto, Apurba
2015-01-01T23:59:59.000Z
We investigate the slowly rotating general relativistic superfluid neutron stars including the entrainment effect in a two-fluid model, where one fluid represents the superfluid neutrons and the other is the charge-neutral fluid called the proton fluid, made of protons and electrons. The equation of state and the entrainment effect between the superfluid neutrons and the proton fluid are computed using a relativistic mean field (RMF) model where baryon-baryon interaction is mediated by the exchange of $\\sigma$, $\\omega$, and $\\rho$ mesons and scalar self interactions are also included. The equations governing rotating neutron stars in the slow rotation approximation are second order in rotational velocities of neutron and proton fluids. We explore the effects of the isospin dependent entrainment and the relative rotation between two fluids on the global properties of rotating superfluid neutron stars such as mass, shape, and the mass shedding (Kepler) limit within the RMF model with different parameter sets. ...
Kudrolli, Arshad
Onset of erosion of a granular bed in a channel driven by fluid flow Anyu Hong, Mingjiang Tao); 10.1063/1.4863989 Simulations of granular bed erosion due to laminar shear flow near the critical.1063/1.2213641 Onset of erosion and avalanche for an inclined granular bed sheared by a continuous laminar flow Phys
Elliptic Flow from a Hybrid CGC, Full 3D Hydro and Hadronic Cascade Model
Tetsufumi Hirano; Ulrich W. Heinz; Dmitri Kharzeev; Roy Lacey; Yasushi Nara
2007-03-27T23:59:59.000Z
We investigate the robustness of the discovery of the perfect fluid through comparison of hydrodynamic calculations with the elliptic flow coefficient v_2 at midrapidity in Au+Au collisions at sqrt{s_{NN}}=200 GeV. Employing the Glauber model for initial entropy density distributions, the centrality dependence of v_2 is reasonably reproduced by using an ideal fluid description of the early QGP stage followed by a hadronic cascade in the late hadronic stage. On the other hand, initial conditions based on the Colour Glass Condensate model are found to generate larger elliptic flow due to larger initial eccentricity epsilon. We further predict v_2/epsilon at a fixed impact parameter as a function of collision energy sqrt{s_{NN}} up to the LHC energy.
Computational Fluid Dynamics Modeling of the John Day Dam Tailrace
Rakowski, Cynthia L.; Perkins, William A.; Richmond, Marshall C.; Serkowski, John A.
2010-07-08T23:59:59.000Z
US Army Corps of Engineers - Portland District required that a two-dimensional (2D) depth-averaged and a three-dimensional (3D) free-surface numerical models to be developed and validated for the John Day tailrace. These models were used to assess potential impact of a select group of structural and operational alternatives to tailrace flows aimed at improving fish survival at John Day Dam. The 2D model was used for the initial assessment of the alternatives in conjunction with a reduced-scale physical model of the John Day Project. A finer resolution 3D model was used to more accurately model the details of flow in the stilling basin and near-project tailrace hydraulics. Three-dimensional model results were used as input to the Pacific Northwest National Laboratory particle tracking software, and particle paths and times to pass a downstream cross section were used to assess the relative differences in travel times resulting from project operations and structural scenarios for multiple total river flows. Streamlines and neutrally-buoyant particles were seeded in all turbine and spill bays with flows. For a Total River of 250 kcfs running with the Fish Passage Plan spill pattern and a spillwall, the mean residence times for all particles were little changed; however the tails of the distribution were truncated for both spillway and powerhouse release points, and, for the powerhouse releases, reduced the residence time for 75% of the particles to pass a downstream cross section from 45.5 minutes to 41.3 minutes. For a total river of 125 kcfs configured with the operations from the Fish Passage Plan for the temporary spillway weirs and for a proposed spillwall, the neutrally-buoyant particle tracking data showed that the river with a spillwall in place had the overall mean residence time increase; however, the residence time for 75% of the powerhouse-released particles to pass a downstream cross section was reduced from 102.4 min to 89 minutes.
A thin film model for corotational Jeffreys fluids under strong slip
A. Münch; B. Wagner; M. Rauscher; R. Blossey
2006-05-14T23:59:59.000Z
We derive a thin film model for viscoelastic liquids under strong slip which obey the stress tensor dynamics of corotational Jeffreys fluids.
Corina Fetecau; C. Fetecau; A. Mahmood; E. Axinte
2009-09-16T23:59:59.000Z
Exact and approximate expressions are established for dissipation, the power of the shear stress at the wall and the boundary layer thickness corresponding to the motion of an Oldroyd-B fluid induced by a constantly accelerating plate. The similar expressions for Maxwell, Newtonian and second grade fluids, performing the same motion, are obtained as limiting cases of our general results. The specific features of the four models are emphasized by means of the asymptotic approximations.
Opazo, A; Bustamante, G; Labbé, R
2015-01-01T23:59:59.000Z
We report experimental results for fluctuations of injected power in confined von K\\'arm\\'an swirling flows with constant external torque applied to the stirrers. Two experiments were performed at nearly equal Reynolds numbers in geometrically similar experimental setups, using air in one of them and water in the other. We found that the probability density function of power fluctuations is strongly asymmetric in air, while in water it is closer to a Gaussian, showing that the effect that a big change on the fluid density has on the flow-stirrer interaction is not reflected merely by a change in the amplitude of stirrers' response. In the case of water, with a density roughly 830 times greater than air density, the forcing exerted by the flow on the stirrers is stronger, so that they follow more closely the locally averaged rotation of the flow. When the fluid is air, the forcing is much weaker, resulting not only in a smaller stirrer response to the torque exerted by the flow, but also in power fluctuations ...
Fluid Queue Models of Renewable Energy Storage Gareth L. Jones and Peter G. Harrison
Imperial College, London
Fluid Queue Models of Renewable Energy Storage Gareth L. Jones and Peter G. Harrison Department 30 Source 3 0 30 Source 4 25 25 45 Node 1 Node 2 Node 3 Renewable energy sources are modeled of networks of fluid queues. Such models can be used to describe the generation and storage of renewable
Bahrami, Majid
exiting the tube is negligible because of the low velocity (0.36 m/s). 3.139 The horizontal pump in Fig. P264 Solutions Manual x Fluid Mechanics, Fifth Edition Solution: (a) Write the steady flow energy g g ggd D D P D U U U Noting that, in a tube, Q VSd2/4, we may eliminate V in favor of Q
Pan, Dongqing; Chien Jen, Tien [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (United States); Li, Tao [School of Mechanical Engineering, Dalian University of Technology, Dalian 116024 (China); Yuan, Chris, E-mail: cyuan@uwm.edu [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211 (United States)
2014-01-15T23:59:59.000Z
This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.
Stochastic models of Lagrangian acceleration of fluid particle in developed turbulence
A. K. Aringazin; M. I. Mazhitov
2005-07-27T23:59:59.000Z
Modeling statistical properties of motion of a Lagrangian particle advected by a high-Reynolds-number flow is of much practical interest and complement traditional studies of turbulence made in Eulerian framework. The strong and nonlocal character of Lagrangian particle coupling due to pressure effects makes the main obstacle to derive turbulence statistics from the three-dimensional Navier-Stokes equation; motion of a single fluid-particle is strongly correlated to that of the other particles. Recent breakthrough Lagrangian experiments with high resolution of Kolmogorov scale have motivated growing interest to acceleration of a fluid particle. Experimental stationary statistics of Lagrangian acceleration conditioned on Lagrangian velocity reveals essential dependence of the acceleration variance upon the velocity. This is confirmed by direct numerical simulations. Lagrangian intermittency is considerably stronger than the Eulerian one. Statistics of Lagrangian acceleration depends on Reynolds number. In this review we present description of new simple models of Lagrangian acceleration that enable data analysis and some advance in phenomenological study of the Lagrangian single-particle dynamics. Simple Lagrangian stochastic modeling by Langevin-type dynamical equations is one the widely used tools. The models are aimed particularly to describe the observed highly non-Gaussian conditional and unconditional acceleration distributions. Stochastic one-dimensional toy models capture main features of the observed stationary statistics of acceleration. We review various models and focus in a more detail on the model which has some deductive support from the Navier-Stokes equation. Comparative analysis on the basis of the experimental data and direct numerical simulations is made.
Cihan, Abdullah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trevisan, Luca [Colorado School of Mines, Golden, CO (United States). Center for Experimental Study of Subsurface Environmental Processes (CESEP); Bianchi, Marco [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Quanlin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Illangasekare, Tissa [Colorado School of Mines, Golden, CO (United States). Center for Experimental Study of Subsurface Environmental Processes (CESEP)
2014-12-31T23:59:59.000Z
During CO_{2} injection and storage in deep reservoirs, the injected CO_{2} enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO_{2}, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO_{2}, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space play a major role for the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm), packed with homogeneous and heterogeneous sands. Initial results show that the model can predict spatial and temporal distribution of injected fluid during the experiments reasonably well. However, further analyses are needed for comprehensively testing the ability of the model to predict transient two-phase flow processes and capillary entrapment in geological reservoirs during geological carbon sequestration.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; Bianchi, Marco; Zhou, Quanlin; Illangasekare, Tissa
2014-12-31T23:59:59.000Z
During CO2 injection and storage in deep reservoirs, the injected CO2 enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO2, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO2, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space play a major role formore »the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm), packed with homogeneous and heterogeneous sands. Initial results show that the model can predict spatial and temporal distribution of injected fluid during the experiments reasonably well. However, further analyses are needed for comprehensively testing the ability of the model to predict transient two-phase flow processes and capillary entrapment in geological reservoirs during geological carbon sequestration.« less
Uncertainty quantification in reacting flow modeling.
Le MaÒitre, Olivier P. (UniversitÔe d'Evry Val d'Essonne, Evry, France); Reagan, Matthew T.; Knio, Omar M. (Johns Hopkins University, Baltimore, MD); Ghanem, Roger Georges (Johns Hopkins University, Baltimore, MD); Najm, Habib N.
2003-10-01T23:59:59.000Z
Uncertainty quantification (UQ) in the computational modeling of physical systems is important for scientific investigation, engineering design, and model validation. In this work we develop techniques for UQ based on spectral and pseudo-spectral polynomial chaos (PC) expansions, and we apply these constructions in computations of reacting flow. We develop and compare both intrusive and non-intrusive spectral PC techniques. In the intrusive construction, the deterministic model equations are reformulated using Galerkin projection into a set of equations for the time evolution of the field variable PC expansion mode strengths. The mode strengths relate specific parametric uncertainties to their effects on model outputs. The non-intrusive construction uses sampling of many realizations of the original deterministic model, and projects the resulting statistics onto the PC modes, arriving at the PC expansions of the model outputs. We investigate and discuss the strengths and weaknesses of each approach, and identify their utility under different conditions. We also outline areas where ongoing and future research are needed to address challenges with both approaches.
Potential Flow Modelling for Wind Turbines Shane Cline
Victoria, University of
Potential Flow Modelling for Wind Turbines by Shane Cline B.Sc., University of Toledo, 2003 M means, without the permission of the author. #12;ii Potential Flow Modelling for Wind Turbines by Shane potential flow methods are a promising alternative to mainstream wind turbine aerodynamics tools
Robert Podgorney; Chuan Lu; Hai Huang
2012-01-01T23:59:59.000Z
Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions of EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability evolution.
Williams, P.T.
1993-09-01T23:59:59.000Z
As the field of computational fluid dynamics (CFD) continues to mature, algorithms are required to exploit the most recent advances in approximation theory, numerical mathematics, computing architectures, and hardware. Meeting this requirement is particularly challenging in incompressible fluid mechanics, where primitive-variable CFD formulations that are robust, while also accurate and efficient in three dimensions, remain an elusive goal. This dissertation asserts that one key to accomplishing this goal is recognition of the dual role assumed by the pressure, i.e., a mechanism for instantaneously enforcing conservation of mass and a force in the mechanical balance law for conservation of momentum. Proving this assertion has motivated the development of a new, primitive-variable, incompressible, CFD algorithm called the Continuity Constraint Method (CCM). The theoretical basis for the CCM consists of a finite-element spatial semi-discretization of a Galerkin weak statement, equal-order interpolation for all state-variables, a 0-implicit time-integration scheme, and a quasi-Newton iterative procedure extended by a Taylor Weak Statement (TWS) formulation for dispersion error control. Original contributions to algorithmic theory include: (a) formulation of the unsteady evolution of the divergence error, (b) investigation of the role of non-smoothness in the discretized continuity-constraint function, (c) development of a uniformly H{sup 1} Galerkin weak statement for the Reynolds-averaged Navier-Stokes pressure Poisson equation, (d) derivation of physically and numerically well-posed boundary conditions, and (e) investigation of sparse data structures and iterative methods for solving the matrix algebra statements generated by the algorithm.
Sahota, M.S.; Lime, J.F.
1983-01-01T23:59:59.000Z
The two-phase, two-component choked-flow model implemented in the latest version of the Transient Reactor analysis Code (TRAC-PF1) was developed from first principles using the characteristic analysis approach. The subcooled choked-flow model in TRAC-PF1 is a modified form of the Burnell model. This paper discusses these choked-flow models and their implementation in TRAC-PF1. comparisons using the TRAC-PF1 choked-flow models are made with the Burnell model for subcooled flow and with the homogeneous-equilibrium model (HEM) for two-phae flow. These comparisons agree well under homogeneous conditions. Generally good agreements have been obtained between the TRAC-PF1 results from models using the choking criteria and those using a fine mesh (natural choking). Code-data comparisons between the separate-effects tests of the Marviken facility and the Edwards' blowdown experiment also are favorable. 10 figures.
Modeling flow in a pressure-sensitive, heterogeneous medium
Vasco, Donald W.
2010-01-01T23:59:59.000Z
deformation modeling, J. of Petrol. Sci. and Eng. , 38, 37-sandstone reservoir rocks, J. Petrol. Tech. , March, 15-16.fluid properties, Soc. Petrol. Eng. J. ,, 267-276. Rickett,
Bowman, James Albert
1992-01-01T23:59:59.000Z
DISSOLUTION-INDUCED SURFACE MODIFICATIONS AND PERMEABILITY CHANGES ASSOCIATED WITH FLUID FLOW THROUGH AN ABRADED SAW-CUT IN SINGLE CRYSTAL QUARTZ A Thesis by JAlvlES ALBERT BOWMAN, JR, Submined to the Oflice of Graduate Studies of Texas A8r...M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Xiay I992 Major Subject: Geology DISSOLUTION-INDUCED SURFACE MODIFICATIONS AND PERMEABILITY CHANGES ASSOCIATED WITH FLUID FLOW THROUGH AN ABRADED SAW...
Rates of flow and patterns of fluid circulation Andrew T. Fisher
Fisher, Andrew
control the efficiency of lithospheric heat extraction, the nature of fluidrock interaction, and the extent of seafloor and sub-seafloor biospheres supported by fluid, energy, and solute fluxes. It has been both active and fossil systems, with the former often restricted to widely spaced or isolated boreholes
A Penalty Method to Model Particle Interactions in DNA-laden Flows
Trebotich, D; Miller, G H; Bybee, M D
2006-10-06T23:59:59.000Z
We present a hybrid fluid-particle algorithm to simulate flow and transport of DNA-laden fluids in microdevices. Relevant length scales in microfluidic systems range from characteristic channel sizes of millimeters to micron scale geometric variation (e.g., post arrays) to 10 nanometers for the length of a single rod in a bead-rod polymer representation of a biological material such as DNA. The method is based on a previous fluid-particle algorithm in which long molecules are represented as a chain of connected rods, but in which the physically unrealistic behavior of rod crossing occurred. We have extended this algorithm to include screened Coulombic forces between particles by implementing a Debye-Hueckel potential acting between rods. In the method an unsteady incompressible Newtonian fluid is discretized with a second-order finite difference method in the interior of the Cartesian grid domain; an embedded boundary volume-of-fluid formulation is used near boundaries. The bead-rod polymer model is fully coupled to the solvent through body forces representing hydrodynamic drag and stochastic thermal fluctuations. While intrapolymer interactions are modeled by a soft potential, polymer-structure interactions are treated as perfectly elastic collisions. We demonstrate this method on flow and transport of a polymer through a post array microchannel in 2D where the polymer incorporates more realistic physical parameters of DNA, and compare to previous simulations where rods are allowed to cross. We also show that the method is capable of simulating 3D flow in a packed bed micro-column.
Swirling structure for mixing two concentric fluid flows at nozzle outlet
Mensink, Daniel L. (3578 Gregory La., Lynchburg, VA 24503)
1993-01-01T23:59:59.000Z
A nozzle device for causing two fluids to mix together. In particular, a spray nozzle comprise two hollow, concentric housings, an inner housing and an outer housing. The inner housing has a channel formed therethrough for a first fluid. Its outer surface cooperates with the interior surface of the outer housing to define the second channel for a second fluid. The outer surface of the inner housing and the inner surface of the outer housing each carry a plurality of vanes that interleave but do not touch, each vane of one housing being between two vanes of the other housing. The vanes are curved and the inner surface of the outer housing and the outer surface of the inner housing converge to narrow the second channel. The shape of second channel results in a swirling, accelerating second fluid that will impact the first fluid just past the end of the nozzle where mixing will take place.
Budny, Robert
predictions using the GYRO verified and experimentally validated trapped gyro-Landau fluid transport model JITER predictions using the GYRO verified and experimentally validated trapped gyro-Landau fluid transport model This article has been downloaded from IOPscience. Please scroll down to see the full text
Fluid computation of the performanceenergy trade-off in large scale Markov models
Imperial College, London
Fluid computation of the performanceÂenergy trade-off in large scale Markov models Anton Stefanek energy consumption while maintaining multiple service level agreements. 2. VIRTUALISED EXECUTION MODEL optimisation. We show how the fluid analysis naturally leads to a constrained global optimisation prob- lem
On models for viscoelastic fluid-like materials that are mechanically incompressible and
Cerveny, Vlastislav
of state. Liquids.) Viscoelastic fluid like materials. (Internal energy has a non-thermal contributionOn models for viscoelastic fluid-like materials that are mechanically incompressible and thermallyBoussinesq approximation. Math. Models Methods Appl. Sci., 6(8):11571167, 1996 #12;OberbeckBoussinesq system
Computational Modeling of Blood Flow in the TrapEase Inferior Vena Cava Filter
Singer, M A; Henshaw, W D; Wang, S L
2008-02-04T23:59:59.000Z
To evaluate the flow hemodynamics of the TrapEase vena cava filter using three dimensional computational fluid dynamics, including simulated thrombi of multiple shapes, sizes, and trapping positions. The study was performed to identify potential areas of recirculation and stagnation and areas in which trapped thrombi may influence intrafilter thrombosis. Computer models of the TrapEase filter, thrombi (volumes ranging from 0.25mL to 2mL, 3 different shapes), and a 23mm diameter cava were constructed. The hemodynamics of steady-state flow at Reynolds number 600 was examined for the unoccluded and partially occluded filter. Axial velocity contours and wall shear stresses were computed. Flow in the unoccluded TrapEase filter experienced minimal disruption, except near the superior and inferior tips where low velocity flow was observed. For spherical thrombi in the superior trapping position, stagnant and recirculating flow was observed downstream of the thrombus; the volume of stagnant flow and the peak wall shear stress increased monotonically with thrombus volume. For inferiorly trapped spherical thrombi, marked disruption to the flow was observed along the cava wall ipsilateral to the thrombus and in the interior of the filter. Spherically shaped thrombus produced a lower peak wall shear stress than conically shaped thrombus and a larger peak stress than ellipsoidal thrombus. We have designed and constructed a computer model of the flow hemodynamics of the TrapEase IVC filter with varying shapes, sizes, and positions of thrombi. The computer model offers several advantages over in vitro techniques including: improved resolution, ease of evaluating different thrombus sizes and shapes, and easy adaptation for new filter designs and flow parameters. Results from the model also support a previously reported finding from photochromic experiments that suggest the inferior trapping position of the TrapEase IVC filter leads to an intra-filter region of recirculating/stagnant flow with very low shear stress that may be thrombogenic.
Rodriguez, Jose Ramon
2001-01-01T23:59:59.000Z
This experimental study investigates the effects of inclination angle and fluid viscosity on zero net liquid flow (ZNLF). Predicting liquid holdup under ZNLF conditions is necessary in several types of petroleum industry operations. These include...
Methods for Numerical Flow Simulation Rolf Rannacher
models of laminar hemodynamical flows. We discuss space and time dis- cretization with emphasis as flow control and model calibration. We concen- trate on laminar flows in which all relevant spatial-Stokes equations The continuum mechanical model of the flow of a viscous Newtonian fluid is the system
Flow of wet powder in a conical centrifugal filter--an analytical model A.F.M. Bizard, D.D. Symons n
Symons, Digby
Flow of wet powder in a conical centrifugal filter--an analytical model A.F.M. Bizard, D.D. Symons 14 August 2011 Available online 25 August 2011 Keywords: Centrifugation Filtration Laminar flow the wall of the cone along a generator under centrifugal force, which also forces the fluid out of the cone
Elliptic flow fluctuations in heavy ion collisions at RHIC and the perfect fluid hypothesis
Sascha Vogel; Giorgio Torrieri; Marcus Bleicher
2010-08-05T23:59:59.000Z
We analyse the recently measured $v_2$ fluctuation in the context of establishing the degree of fluidity of the matter produced in heavy ion collisions. We argue that flow observables within systems with a non-negligible mean free path should acquire a "dynamical" fluctuation, due to the random nature of each collision between the system's degrees of freedom. Because of this, $v_2$ fluctuations can be used to estimate the Knudsen number of the system produced at RHIC. To illustrate this quantitatively, we apply the UrQMD model, with scaled cross sections, to show that collisions at RHIC have a Knudsen number at least one order of magnitude above the expected value for an interacting hadron gas. Furthermore, we argue that the Knudsen number is also bound from above by the $v_2$ fluctuation data, because too large a Knudsen number would break the observed scaling of $v_2$ fluctuations due to the onset of turbulent flow. We propose, therefore that $v_2$ fluctuation measurements, together with an understanding of the turbulent regime for relativistic hydrodynamics, will provide an upper as well as a lower limit for the Knudsen number.
Evolution of elliptic and triangular flow as a function of collision energy in a hybrid model
Jussi Auvinen; Hannah Petersen
2014-04-10T23:59:59.000Z
We study the collision energy dependence of elliptic flow v_2 and triangular flow v_3 in Au+Au collisions within the energy range sqrt(s_{NN}) = 5-200 GeV, utilizing a transport + hydrodynamics hybrid model. The transport part is described by the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) approach, combined with an intermediate (3+1)-dimensional ideal hydrodynamical evolution phase using a chiral model equation of state. We find the decrease of v_2 produced by hydrodynamics at lower collision energies partially compensated by the transport dynamics. This does not apply to v_3, which falls to 0 in midcentral collisions at sqrt(s_{NN}) = 5 GeV. We conclude that the triangular flow provides the clearer signal for the formation of low-viscous fluid in heavy ion collisions.
Water Modeling of Steel Flow, Air Entrainment and Filtration
Beckermann, Christoph
Water Modeling of Steel Flow, Air Entrainment and Filtration Christoph Beckermann Associate Beckermann, C., "Water Modeling of Steel Flow, Air Entrainment and Filtration," in Proceedings of the 46th, 1992. #12;Abstract This paper presents an analysis of water modeling of steel pouring to study (1) air
A Kinetic-Fluid Model C. Z. Cheng and Jay R. Johnson
A Kinetic-Fluid Model C. Z. Cheng and Jay R. Johnson Princeton University, Plasma Physics developed a kinetic-MHD model [Cheng, 1991] to study particle kinetic eects on MHD phenomena by taking
A KineticFluid Model C. Z. Cheng and Jay R. Johnson
A KineticÂFluid Model C. Z. Cheng and Jay R. Johnson Princeton University, Plasma Physics have previously developed a kineticÂMHD model [Cheng, 1991] to study particle kinetic effects on MHD
Combining Symbolic Execution and Model Checking for Data Flow Testing
Su, Zhendong
. Dynamic Symbolic Execution [14], [15] (DSE) is a widely accepted and effective approach for automatic testCombining Symbolic Execution and Model Checking for Data Flow Testing Ting Su Zhoulai Fu Geguang Pu@cs.ucdavis.edu Abstract--Data flow testing (DFT) focuses on the flow of data through a program. Despite its higher fault
Stability and angular-momentum transport of fluid flows between corotating cylinders
Avila, Marc
2012-01-01T23:59:59.000Z
Turbulent transport of angular momentum is a necessary process to explain accretion in astrophysical disks. Although the hydrodynamic stability of disk-like flows has been tested in experiments, results are contradictory and suggest either laminar or turbulent flow. Direct numerical simulations reported here show that currently investigated laboratory flows are hydrodynamically unstable and become turbulent at low Reynolds numbers. The underlying instabilities stem from the axial boundary conditions, affect the flow globally and enhance angular-momentum transport.
Fluid Flow and Thermodynamic Analysis of a Wing Anti-Icing System
is controlled through regulating the hot flow passing a wing anti-icing valve by an automatic control system
Space-Time Discontinuous Galerkin Finite Element Method for Two-Fluid Flows.
Al Hanbali, Ahmad
flows with bubbles, droplets or solid particles, wave-structure interactions, dam breaking, bed columns, fluidized beds, granular flows and ink spraying. The flow patterns in these problems are complex evolution, Rayleigh-Taylor and Kelvin-Helmholtz instabil- ities and industrial processes such as bubble
Flow through porous media : from mixing of fluids to triggering of earthquakes
Jha, Birendra, Ph. D. Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
2014-01-01T23:59:59.000Z
Enhanced oil recovery by displacing oil with solvents such as carbon dioxide requires development of miscibility between the two fluids to maximize the displacement efficiency. Prevention of inadvertent triggering of ...
Pulsatile flow of a chemically-reacting non-linear fluid
Bridges, Ronald Craig, II
2007-09-17T23:59:59.000Z
Many complex biological systems, such as blood and polymeric materials, can be approximated as single constituent homogeneous fluids whose properties can change because of the chemical reactions that take place. For instance, ...
Roy, Subrata
by fabrication on the order of micrometers to draw or drain the working fluid in the microfluidic system miniaturization, so that it improves the integration into the microfluidic system. Non-mechanical micropumps
Interfacial exchange relations for two-fluid vapor-liquid flow : a simplified regime map approach
Kelly, J. E.
1981-01-01T23:59:59.000Z
A simplified approach is described for selection of the constitutive relations for the inter-phase exchange terms in the two-fluid code, THERMIT. The approach used distinguishes between pre-CHF and post-CHF conditions. ...
Xiong, Yi [Colorado School of Mines; Fakcharoenphol, Perapon [Colorado School of Mines; Wang, Shihao [Colorado School of Mines; Winterfeld, Philip H. [Colorado School of Mines; Zhang, Keni [Lawrence Berkeley National Laboratory; Wu, Yu-Shu [Colorado School of Mines
2013-12-01T23:59:59.000Z
TOUGH2-EGS-MP is a parallel numerical simulation program coupling geomechanics with fluid and heat flow in fractured and porous media, and is applicable for simulation of enhanced geothermal systems (EGS). TOUGH2-EGS-MP is based on the TOUGH2-MP code, the massively parallel version of TOUGH2. In TOUGH2-EGS-MP, the fully-coupled flow-geomechanics model is developed from linear elastic theory for thermo-poro-elastic systems and is formulated in terms of mean normal stress as well as pore pressure and temperature. Reservoir rock properties such as porosity and permeability depend on rock deformation, and the relationships between these two, obtained from poro-elasticity theories and empirical correlations, are incorporated into the simulation. This report provides the user with detailed information on the TOUGH2-EGS-MP mathematical model and instructions for using it for Thermal-Hydrological-Mechanical (THM) simulations. The mathematical model includes the fluid and heat flow equations, geomechanical equation, and discretization of those equations. In addition, the parallel aspects of the code, such as domain partitioning and communication between processors, are also included. Although TOUGH2-EGS-MP has the capability for simulating fluid and heat flows coupled with geomechanical effects, it is up to the user to select the specific coupling process, such as THM or only TH, in a simulation. There are several example problems illustrating applications of this program. These example problems are described in detail and their input data are presented. Their results demonstrate that this program can be used for field-scale geothermal reservoir simulation in porous and fractured media with fluid and heat flow coupled with geomechanical effects.
User's manual for the Sandia Waste-Isolation Flow and Transport model (SWIFT).
Reeves, Mark; Cranwell, Robert M.
1981-11-01T23:59:59.000Z
This report describes a three-dimensional finite-difference model (SWIFT) which is used to simulate flow and transport processes in geologic media. The model was developed for use by the Nuclear Regulatory Commission in the analysis of deep geologic nuclear waste-disposal facilities. This document, as indicated by the title, is a user's manual and is intended to facilitate the use of the SWIFT simulator. Mathematical equations, submodels, application notes, and a description of the program itself are given herein. In addition, a complete input data guide is given along with several appendices which are helpful in setting up a data-input deck. Computer code SWIFT (Sandia Waste Isolation, Flow and Transport Model) is a fully transient, three-dimensional model which solves the coupled equations for transport in geologic media. The processes considered are: (1) fluid flow; (2) heat transport; (3) dominant-species miscible displacement; and (4) trace-species miscible displacement. The first three processes are coupled via fluid density and viscosity. Together they provide the velocity field on which the fourth process depends.
Model for the spatio-temporal intermittency of the energy dissipation in turbulent flows
Fabio Lepreti; Vincenzo Carbone; Pierluigi Veltri
2007-02-08T23:59:59.000Z
Modeling the intermittent behavior of turbulent energy dissipation processes both in space and time is often a relevant problem when dealing with phenomena occurring in high Reynolds number flows, especially in astrophysical and space fluids. In this paper, a dynamical model is proposed to describe the spatio-temporal intermittency of energy dissipation rate in a turbulent system. This is done by using a shell model to simulate the turbulent cascade and introducing some heuristic rules, partly inspired by the well known $p$-model, to construct a spatial structure of the energy dissipation rate. In order to validate the model and to study its spatially intermittency properties, a series of numerical simulations have been performed. These show that the level of spatial intermittency of the system can be simply tuned by varying a single parameter of the model and that scaling laws in agreement with those obtained from experiments on fully turbulent hydrodynamic flows can be recovered. It is finally suggested that the model could represent a useful tool to simulate the spatio-temporal intermittency of turbulent energy dissipation in those high Reynolds number astrophysical fluids where impulsive energy release processes can be associated to the dynamics of the turbulent cascade.
Model for Fracturing Fluid Flowback and Characterization of Flowback Mechanisms
Song, Bo
2014-08-28T23:59:59.000Z
A large volume of fracturing fluid that may include slick water and various sorts of additives is injected into shale formations along with proppant to create hydraulic fractures which define a stimulated shale volume a shale gas well will actually...
Enhancements to Model-reduced Fluid Simulation Dan Gerszewski
Plotkin, Joshua B.
]. In this short paper, we present several enhancements to the basic reduced fluid simulation pipeline the training data and requiring signif- icantly less source data without the risk of over-fitting. We treat two
Modeling of fluids and waves with analytics and numerics
Liang, Xiangdong, Ph. D. Massachusetts Institute of Technology
2013-01-01T23:59:59.000Z
Capillary instability (Plateau-Rayleigh instability) has been playing an important role in experimental work such as multimaterial fiber drawing and multilayer particle fabrication. Motivated by complex multi-fluid geometries ...
Model for Fracturing Fluid Flowback and Characterization of Flowback Mechanisms
Song, Bo
2014-08-28T23:59:59.000Z
A large volume of fracturing fluid that may include slick water and various sorts of additives is injected into shale formations along with proppant to create hydraulic fractures which define a stimulated shale volume a shale gas well will actually...
An improved model for flashing flow in short tubes
Tilton, J.D.; Kornhauser, A.A. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical Engineering
1996-12-31T23:59:59.000Z
Short tube restrictors are commonly used as expansion devices in refrigeration and heat pumping systems. Flashing flow through short tubes is choked, i.e. independent of downstream conditions. Flow rate is typically predicted by empirically correcting the flow rate of compressed liquid from upstream pressure to saturation pressure at upstream temperature. The empirical correction factors depend on pressure and temperature, on short tube geometry, and on the refrigerant used. This work extends and improves a model of short tube flow based on the physics of the observed flow phenomena. Short tube flow is believed to consist of a core of superheated liquid surrounded by an annulus of vapor. Evaporation is driven by heat transfer form the core to tine interface, and the flow is choked by the evaporated vapor. Flow rate is modeled by calculating the heat transfer rate, the evaporation rate, and the choking effect of the vapor. The model attempts to improve on previous work by improving the accuracy with which thermodynamic properties are approximated, by improving the heat transfer model, and by including the effects of frictional heating of the liquid. In comparisons with experimental data it is found that the improved thermodynamic modeling increases accuracy, but the change to the heat transfer model reduces accuracy. For the data examined the effects of the frictional heating are small. The heat transfer model is based on an existing analytic solution with a mixing-length turbulence model. It appears that this model must be further improved, perhaps through empirical modification.
ShowFlow: A practical interface for groundwater modeling
Tauxe, J.D.
1990-12-01T23:59:59.000Z
ShowFlow was created to provide a user-friendly, intuitive environment for researchers and students who use computer modeling software. What traditionally has been a workplace available only to those familiar with command-line based computer systems is now within reach of almost anyone interested in the subject of modeling. In the case of this edition of ShowFlow, the user can easily experiment with simulations using the steady state gaussian plume groundwater pollutant transport model SSGPLUME, though ShowFlow can be rewritten to provide a similar interface for any computer model. Included in this thesis is all the source code for both the ShowFlow application for Microsoft{reg sign} Windows{trademark} and the SSGPLUME model, a User's Guide, and a Developer's Guide for converting ShowFlow to run other model programs. 18 refs., 13 figs.
A Model for TSUnami FLow INversion from Deposits (TSUFLIND)
Tang, Hui
2015-01-01T23:59:59.000Z
Modern tsunami deposits are employed to estimate the overland flow characteristics of tsunamis. With the help of the overland-flow characteristics, the characteristics of the causative tsunami wave can be estimated. The understanding of tsunami deposits has tremendously improved over the last decades. There are three prominent inversion models: Moore advection model, Soulsby's model and TsuSedMod model. TSUFLIND incorporates all three models and adds new modules to better simulate tsunami deposit formation and calculate flow condition. TSUFLIND takes grain-size distribution, thickness, water depth and topography information as inputs. TSUFLIND computes sediment concentration, grain-size distribution of sediment source and initial flow condition to match the sediment thickness and grain size distribution from field observation. Furthermore, TSUFLIND estimates the flow speed, Froude number and representative wave amplitude. The model is tested by using field data collected at Ranganathapuram, India after the 20...
Nonlinear elasto-plastic model for dense granular flow
Ken Kamrin
2009-05-07T23:59:59.000Z
This work proposes a model for granular deformation that predicts the stress and velocity profiles in well-developed dense granular flows. Recent models for granular elasticity (Jiang and Liu 2003) and rate-sensitive plastic flow (Jop et al. 2006) are reformulated and combined into one universal granular continuum law, capable of predicting flowing regions and stagnant zones simultaneously in any arbitrary 3D flow geometry. The unification is performed by justifying and implementing a Kroner-Lee elasto-plastic decomposition, with care taken to ensure certain continuum physical principles are necessarily upheld. The model is then numerically implemented in multiple geometries and results are compared to experiments and discrete simulations.
Modeling of a MEMS Floating Element Shear Sensor Nikolas Kastor 1
White, Robert D.
, a computational fluid dynamics (CFD) model is described. The CFD model directly models a laminar flow cell, there are concerns about the validity of laminar flow cell calibration to measurement in turbulent flows by the flowing fluid; the deflection of the sensing element as a result of those fluid forces
Bahrami, Majid
rise due to gravity. Assuming laminar flow and noting that 'z L, the pipe length, we get f 4 4 3 128 LQ is 30 cm higher than the surface of tank 2. (a) Estimate the flow rate in m3/h. Is the flow laminar? (b448 Solutions Manual x Fluid Mechanics, Fifth Edition f 1 2Thus h z z 0 by definition. Therefore
Fair Internet traffic integration: network flow models and analysis
Kelly, Frank
Fair Internet traffic integration: network flow models and analysis Peter Key, Laurent Massoulié the integration of two types of Internet traffic, elastic file transfers and streaming traffic. Previous studies have concentrated on just one type of traffic, such as the flow level models of Internet congestion
Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir
Broader source: Energy.gov [DOE]
Project objectives: Joint inversion of geophysical data for ground water flow imaging; Reduced the cost in geothermal exploration and monitoring; & Combined passive and active geophysical methods.
Electrochemical Model of the Fe/V Redox Flow Battery
Stephenson, David E.; Kim, Soowhan; Chen, Feng; Thomsen, Edwin C.; Viswanathan, Vilayanur V.; Wang, Wei; Sprenkle, Vincent L.
2012-11-05T23:59:59.000Z
This paper presents a mathematical model for the new Fe/V redox flow battery chemistry. The model is designed to be useful for stack development and cost analysis purposes.
Turbulent Flow and Transport Modeling by Long Waves and Currents
Kim, Dae Hong
2010-10-12T23:59:59.000Z
This dissertation presents models for turbulent flow and transport by currents and long waves in large domain. From the Navier-Stokes equations, a fully nonlinear depth-integrated equation model for weakly dispersive, ...
Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment
Mitran, Sorin, E-mail: mitran@unc.edu
2013-07-01T23:59:59.000Z
The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.
Liles, D.R.
1982-01-01T23:59:59.000Z
Internal boundaries in multiphase flow greatly complicate fluid-dynamic and heat-transfer descriptions. Different flow regimes or topological configurations can have radically dissimilar interfacial and wall mass, momentum, and energy exchanges. To model the flow dynamics properly requires estimates of these rates. In this paper the common flow regimes for gas-liquid systems are defined and the techniques used to estimate the extent of a particular regime are described. Also, the current computer-code procedures are delineated and introduce a potentially better method is introduced.
Glenn E McCreery; Keith G Condie
2006-09-01T23:59:59.000Z
The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. The present document addresses experimental modeling of flow and thermal mixing phenomena of importance during normal or reduced power operation and during a loss of forced reactor cooling (pressurized conduction cooldown) scenario. The objectives of the experiments are, 1), provide benchmark data for assessment and improvement of codes proposed for NGNP designs and safety studies, and, 2), obtain a better understanding of related phenomena, behavior and needs. Physical models of VHTR vessel upper and lower plenums which use various working fluids to scale phenomena of interest are described. The models may be used to both simulate natural convection conditions during pressurized conduction cooldown and turbulent lower plenum flow during normal or reduced power operation.
Advanced Fluid Dynamics 2014 Sheet 5 Stokes flow around spherical particles
Hogg, Andrew
with no body force, where µ denotes the dynamic viscosity. Show that the stress tensor is given by ij = -2µ Ak xk ij + 2µ 2 xixj + xk 2 Ak xixj . (2) (b) Now consider the flow past a stationary sphere of radius the drag on the particle. 2. (a) Axisymmetric flow may be expressed in terms of spherical polar coordinates
Paden, Brad
Elimination of Adverse Leakage Flow in a Miniature Pediatric Centrifugal Blood Pump levitated centrifugal blood pump intended to deliver 0.31.5 l/min of support to neo- nates and infants by centrifugal force to flow radially outwards toward the outlet of the impeller against an unfavorable pressure
Local entropy generation for saturated two-phase flow Remi Revellin a,*, Stephane Lips a
Khandekar, Sameer
promoted. Bejan [1] studied entropy generation through heat and fluid flow of a single-phase fluid. He- and Y-shaped assemblies of ducts, channels and streams. They assumed a laminar and fully developed flow the porous medium approach based on extended Darcy equation for fluid flow, and two-equation model for heat
Analysis of fluid flow and heat transfer in a rib grit roughened surface solar air heater using CFD
Karmare, S.V. [Department of Mechanical Engineering, Government College Engineering, Karad 415 124, Maharashtra (India); Shivaji University, Kolhapur, Maharashtra (India); Tikekar, A.N. [Department of Mechanical Engineering, Walchand College of Engineering, Sangli (India); Shivaji University, Kolhapur, Maharashtra (India)
2010-03-15T23:59:59.000Z
This paper presents the study of fluid flow and heat transfer in a solar air heater by using Computational Fluid Dynamics (CFD) which reduces time and cost. Lower side of collector plate is made rough with metal ribs of circular, square and triangular cross-section, having 60 inclinations to the air flow. The grit rib elements are fixed on the surface in staggered manner to form defined grid. The system and operating parameters studied are: e/D{sub h} = 0.044, p/e = 17.5 and l/s = 1.72, for the Reynolds number range 3600-17,000. To validate CFD results, experimental investigations were carried out in the laboratory. It is found that experimental and CFD analysis results give the good agreement. The optimization of rib geometry and its angle of attack is also done. The square cross-section ribs with 58 angle of attack give maximum heat transfer. The percentage enhancement in the heat transfer for square plate over smooth surface is 30%. (author)
DENSE MULTIPHASE FLOW SIMULATION: CONTINUUM MODEL FOR POLY-DISPERSED SYSTEMS USING KINETIC THEORY
Moses Bogere
2011-08-31T23:59:59.000Z
The overall objective of the project was to verify the applicability of the FCMOM approach to the kinetic equations describing the particle flow dynamics. For monodispersed systems the fundamental equation governing the particle flow dynamics is the Boltzmann equation. During the project, the FCMOM was successfully applied to several homogeneous and in-homogeneous problems in different flow regimes, demonstrating that the FCMOM has the potential to be used to solve efficiently the Boltzmann equation. However, some relevant issues still need to be resolved, i.e. the homogeneous cooling problem (inelastic particles cases) and the transition between different regimes. In this report, the results obtained in homogeneous conditions are discussed first. Then a discussion of the validation results for in-homogeneous conditions is provided. And finally, a discussion will be provided about the transition between different regimes. Alongside the work on development of FCMOM approach studies were undertaken in order to provide insights into anisotropy or particles kinetics in riser hydrodynamics. This report includes results of studies of multiphase flow with unequal granular temperatures and analysis of momentum re-distribution in risers due to particle-particle and fluid-particle interactions. The study of multiphase flow with unequal granular temperatures entailed both simulation and experimental studies of two particles sizes in a riser and, a brief discussion of what was accomplished will be provided. And finally, a discussion of the analysis done on momentum re-distribution of gas-particles flow in risers will be provided. In particular a discussion of the remaining work needed in order to improve accuracy and predictability of riser hydrodynamics based on two-fluid models and how they can be used to model segregation in risers.
Geodinamira Acta (Paris) 1998, 11, 2-3, 55-84 Compaction-driven fluid flow
Podladchikov, Yuri
geothermal gradients, thermally activated creep stabilizes hori- zontal waves, a geometry that was thought scales. In viscous rock, inverted geothermal gradients stabilize vertically elon- gated waves or vertical of the by dilational deformation due to an effective pressure gradient background fluid flux. Periodic solutions
High Flash-point Fluid Flow System Aerosol Flammability Study and Combustion Mechanism Analysis
Huang, Szu-Ying
2013-12-02T23:59:59.000Z
-flash point materials. On the other hand, the process of combustion from initial stage to global flame formation was simulated with COMSOL-multi-physics in terms of heat transfer, droplet evaporation, and fluid dynamics of liquid-air interaction. The local...
A model for P-wave attenuation and dispersion in a porous medium ...
lll
2005-09-05T23:59:59.000Z
Theoretical models of attenuation and dispersion due to wave-induced fluid flow ...... anisotropic layered fluid- and gas-saturated sediments, Geophysics, 62,.
Modeling and Control of High-Velocity Oxygen-Fuel (HVOF) Thermal Spray: A Tutorial Review
Li, Mingheng; Christofides, Panagiotis D.
2009-01-01T23:59:59.000Z
Fluid Dynamics Analysis of a Wire- Feed, High-Velocity Oxygen Fuel (Fluid Dynamic Modeling of Gas Flow Charac- teristics in a High-Velocity Oxy-Fuel
Christopher Ness; Jin Sun
2014-12-11T23:59:59.000Z
Shear flow of dense, non-Brownian suspensions is simulated using the discrete element method, taking particle contact and hydrodynamic lubrication into account. The resulting flow regimes are mapped in the parametric space of solid volume fraction, shear rate, fluid viscosity and particle stiffness. Below a critical volume fraction $\\phi_c$, the rheology is governed by the Stokes number, which distinguishes between viscous and inertial flow regimes. Above $\\phi_c$, a quasistatic regime exists for low and moderate shear rates. At very high shear rates, the $\\phi$ dependence is lost and soft particle rheology is explored. The transitions between rheological regimes are associated with the evolving contribution of lubrication to the suspension stress. Transitions in microscopic phenomena such as inter-particle force distribution, fabric and correlation length are found to correspond to those in the macroscopic flow. Motivated by the bulk rheology, a constitutive model is proposed combining a viscous pressure term with a dry granular model presented by Chialvo, Sun and Sundaresan [Phys. Rev. E. \\textbf{85}, 021305 (2012)]. The model is shown to successfully capture the flow regime transitions.
A refined volume-of-fluid algorithm for capturing sharp fluid interfaces on arbitrary meshes
Zhang, Di; Jiang, Chunbo; Liang, Dongfang; Chen, Zhengbing; Yang, Yan; Shi, Ying
2014-06-30T23:59:59.000Z
conserve mass, and can be easily extended to unstructured meshes and three dimensions, so they are capable of accurately capturing the free surface and modelling merging and fragmentation in multiphase flows. In this article, a new blended high... -tracking method for the computations of multiphase flow. Journal of Computational Physics 2001; 169(2): 708–759. 21 14. Harlow FH, Welch JE. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids...
Integration of an Aggregate Flow Model with a Traffic Flow Simulator
Integration of an Aggregate Flow Model with a Traffic Flow Simulator Robert Hoffman , Dengfeng Sun restrictions to aircraft movement are applied by air traffic controllers and traffic managers in response to demand overages or capacity shortfalls in sectors of airspace. To estimate and assess the efficiency
A Smoothed Particle Hydrodynamics-Based Fluid Model With a Spatially...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
A Smoothed Particle Hydrodynamics-Based Fluid Model With a Spatially Dependent Viscosity Authors: Martys, N.S., George, W.L., Chun, B., Lootens, D. A smoothed particle...
Numerical and analytical modeling of heat transfer between fluid and fractured rocks
Li, Wei, S.M. Massachusetts Institute of Technology
2014-01-01T23:59:59.000Z
Modeling of heat transfer between fluid and fractured rocks is of particular importance for energy extraction analysis in EGS, and therefore represents a critical component of EGS design and performance evaluation. In ...
Reduced model for particle laden flow
Zhou, Junjie, 1979-
2004-01-01T23:59:59.000Z
The flow of thin liquid films on solid surfaces is a significant phenomenon in nature and in industrial processes where uniformity and completeness of wetting are paramount in importance. It is well known that when a clear ...
Measurement of Flow Phenomena in a Lower Plenum Model of a Prismatic Gas-Cooled Reactor
Hugh M. McIlroy, Jr.; Doanld M. McEligot; Robert J. Pink
2010-02-01T23:59:59.000Z
Mean-velocity-field and turbulence data are presented that measure turbulent flow phenomena in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor (GCR) similar to a General Atomics Gas-Turbine-Modular Helium Reactor (GTMHR) design. The data were obtained in the Matched-Index-of-Refraction (MIR) facility at Idaho National Laboratory (INL) and are offered for assessing computational fluid dynamics (CFD) software. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). The flow in the lower plenum consists of multiple jets injected into a confined cross flow - with obstructions. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to approximate geometry scaled to that expected from the staggered parallel rows of posts in the reactor design. The model is fabricated from clear, fused quartz to match the refractive-index of the working fluid so that optical techniques may be employed for the measurements. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages in and around objects to be obtained without locating intrusive transducers that will disturb the flow field and without distortion of the optical paths. An advantage of the INL system is its large size, leading to improved spatial and temporal resolution compared to similar facilities at smaller scales. A three-dimensional (3-D) Particle Image Velocimetry (PIV) system was used to collect the data. Inlet jet Reynolds numbers (based on the jet diameter and the time-mean bulk velocity) are approximately 4,300 and 12,400. Uncertainty analyses and a discussion of the standard problem are included. The measurements reveal developing, non-uniform, turbulent flow in the inlet jets and complicated flow patterns in the model lower plenum. Data include three-dimensional vector plots, data displays along the coordinate planes (slices) and presentations that describe the component flows at specific regions in the model. Information on inlet conditions is also presented.
Submarine landslide flows simulation through centrifuge modelling
Gue, Chang Shin
2012-05-08T23:59:59.000Z
) ...... . . . . . . . . 166 Figure 5.2: Illustration of DAM PM (after Abe, 2008) ............................................... 167 Figure 5.3: Condition of a unit of a mass in submerged case ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Figure 5... height ph average prototype flow height i hydraulic Gradient K hydraulic conductivity k hydraulic permeability act/passk lateral stress coefficient L horizontal length or flow distance L max maximum runout distance M mass N Normal...
A new, efficient computational model for the prediction of fluid seal flowfields
Hibbs, Robert Irwin
1988-01-01T23:59:59.000Z
A NEW) EFFICIENT COMPUTATIONAL MODEL FOR THE PREDICTION OF FLUID SEAL FLOWFIELDS A Thesis by ROBERT IRWIN HIBBS, JR. Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE December 1988 Major Subject: Mechanical Engineering A NEW, EFFICIENT COMPUTATIONAL MODEL FOR THE PREDICTION OF FLUID SEAL FLOWFIELDS A Thesis by ROBERT IRWIN HIBBS, JR. Approved as to style and content by: David L. Rhode...
A two-fluid model for relativistic heat conduction
López-Monsalvo, César S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (Mexico)
2014-01-14T23:59:59.000Z
Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.
Spectral/hp Finite Element Models for Fluids and Structures
Payette, Gregory
2012-07-16T23:59:59.000Z
We consider the application of high-order spectral/hp finite element technology to the numerical solution of boundary-value problems arising in the fields of fluid and solid mechanics. For many problems in these areas, high-order finite element...
Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications...
Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Jump to: navigation, search OpenEI Reference LibraryAdd to library...
Ground-penetrating radar imaging of fluid flow through a discrete fracture
Baker, Matthew Peter
2014-12-31T23:59:59.000Z
Predicting groundwater flow and transport of contaminants in fractured rock is challenging due to the heterogeneity of hydraulic properties that are difficult to characterize using conventional hydraulic testing methods. Heterogeneity is often...