Modeling Fluid Flow in Natural Systems, Model Validation and...
Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration Clay and granitic units are ...
Transient Wellbore Fluid Flow Model
Energy Science and Technology Software Center (OSTI)
1982-04-06
WELBORE is a code to solve transient, one-dimensional two-phase or single-phase non-isothermal fluid flow in a wellbore. The primary thermodynamic variables used in solving the equations are the pressure and specific energy. An equation of state subroutine provides the density, quality, and temperature. The heat loss out of the wellbore is calculated by solving a radial diffusion equation for the temperature changes outside the bore. The calculation is done at each node point in themore » wellbore.« less
Modeling fluid flow in deformation bands with stabilized localization...
Office of Scientific and Technical Information (OSTI)
Modeling fluid flow in deformation bands with stabilized localization mixed finite elements. Citation Details In-Document Search Title: Modeling fluid flow in deformation bands...
Can We Accurately Model Fluid Flow in Shale?
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Can We Accurately Model Fluid Flow in Shale? Can We Accurately Model Fluid Flow in Shale? Print Thursday, 03 January 2013 00:00 Over 20 trillion cubic meters of natural gas are...
Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir |
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Department of Energy EGS Reservoir Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir Project objectives: Better understand and model fluid injection into a tight reservoir on the edges of a hydrothermal field. Use seismic data to constrain geomechanical/hydrologic/thermal model of reservoir. seismic_fehler_fluid_flow.pdf (1.15 MB) More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Detection and
Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
in EGS Reservoirs | Department of Energy Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Project objectives: Improve image resolution for microseismicimaging and time-lapse active seismic imaging; Enhance the prediction of fluid flow and temperature distributions and stress changes by coupling fracture flow simulations with reservoir flow simulations; and
Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
EGS Reservoir Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir Project ... More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks ...
Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Enhanced Geothermal System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal System ...
Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
Energy Science and Technology Software Center (OSTI)
1994-06-20
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less
Monitoring and Modeling Fluid Flow in a Developing EGS
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
3 Peer Review Insert photo of your choice Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir April 24, 2013 Michael Fehler Massachusetts Institute of Technology Monitoring and Monitoring Fluid Flow This presentation does not contain any proprietary confidential, or otherwise restricted information. Relevance/Impact of Research 2 | US DOE Geothermal Program eere.energy.gov Project Objective Use Chevron's high-quality data from a long-term injection in the Salak geothermal field to
A preliminary study to Assess Model Uncertainties in Fluid Flows
Marc Oliver Delchini; Jean C. Ragusa
2009-09-01
The goal of this study is to assess the impact of various flow models for a simplified primary coolant loop of a light water nuclear reactor. The various fluid flow models are based on the Euler equations with an additional friction term, gravity term, momentum source, and energy source. The geometric model is purposefully chosen simple and consists of a one-dimensional (1D) loop system in order to focus the study on the validity of various fluid flow approximations. The 1D loop system is represented by a rectangle; the fluid is heated up along one of the vertical legs and cooled down along the opposite leg. A pressurizer and a pump are included in the horizontal legs. The amount of energy transferred and removed from the system is equal in absolute value along the two vertical legs. The various fluid flow approximations are compressible vs. incompressible, and complete momentum equation vs. Darcys approximation. The ultimate goal is to compute the fluid flow models uncertainties and, if possible, to generate validity ranges for these models when applied to reactor analysis. We also limit this study to single phase flows with low-Mach numbers. As a result, sound waves carry a very small amount of energy in this particular case. A standard finite volume method is used for the spatial discretization of the system.
Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
in EGS Reservoirs; II: Full-Waveform Inversion of 3D-9C VSP data from Bradys EGS Site and Update of the Brady Reservoir Scale Model | Department of Energy Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs; II: Full-Waveform Inversion of 3D-9C VSP data from Bradys EGS Site and Update of the Brady Reservoir Scale Model Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs; II: Full-Waveform Inversion of 3D-9C
Monitoring and Modeling Fluid Flow in a Developing EGS | Department of
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Energy and Modeling Fluid Flow in a Developing EGS Monitoring and Modeling Fluid Flow in a Developing EGS Monitoring and Modeling Fluid Flow in a Developing EGS presentation at the April 2013 peer review meeting held in Denver, Colorado. modeling_fluid_flow_egs_peer2013.pdf (1.35 MB) More Documents & Publications Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir Integration of Noise and Coda Correlation Data into Kinematic and Waveform Inversions
Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Enhanced Geothermal System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review seismic_025_fehler.pdf (195.11 KB) More Documents & Publications Analysis of Geothermal
Draft: Modeling Two-Phase Flow in Porous Media Including Fluid-Fluid Interfacial Area
Crandall, Dustin; Niessner, Jennifer; Hassanizadeh, S Majid
2008-01-01
We present a new numerical model for macro-scale twophase flow in porous media which is based on a physically consistent theory of multi-phase flow.The standard approach for modeling the flow of two fluid phases in a porous medium consists of a continuity equation for each phase, an extended form of Darcy’s law as well as constitutive relationships for relative permeability and capillary pressure. This approach is known to have a number of important shortcomings and, in particular, it does not account for the presence and role of fluid - fluid interfaces. An alternative is to use an extended model which is founded on thermodynamic principles and is physically consistent. In addition to the standard equations, the model uses a balance equation for specific interfacial area. The constitutive relationship for capillary pressure involves not only saturation, but also specific interfacial area. We show how parameters can be obtained for the alternative model using experimental data from a new kind of flow cell and present results of a numerical modeling study
Modeling two-fluid-phase flow and species transport in porous...
Office of Scientific and Technical Information (OSTI)
Publisher's Accepted Manuscript: Modeling two-fluid-phase flow and species transport in porous media This content will become publicly available on March 3, 2017 Title: Modeling ...
Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration
Office of Energy Efficiency and Renewable Energy (EERE)
Clay and granitic units are potential host media for future repositories for used nuclear fuel. The report addresses the representation and characterization of flow in these two media within...
Fluid Flow Model Development for Representative Geologic Media
Office of Energy Efficiency and Renewable Energy (EERE)
Clay and granitic geologic rock units are potential host media for future repositories for used nuclear fuel and high level waste. This report addresses the representation of flow in these two media within numerical process (discrete fracture network) models.
Modeling two-fluid-phase flow and species transport in porous...
Office of Scientific and Technical Information (OSTI)
Modeling two-fluid-phase flow and species transport in porous media Citation Details In-Document Search This content will become publicly available on March 3, 2017 Title: Modeling ...
Chang, F.C.; Hull, J.R.; Wang, Y.H.; Blazek, K.E.
1996-02-01
A computer model was developed to predict eddy currents and fluid flows in molten steel. The model was verified by comparing predictions with experimental results of liquid-metal containment and fluid flow in electromagnetic (EM) edge dams (EMDs) designed at Inland Steel for twin-roll casting. The model can optimize the EMD design so it is suitable for application, and minimize expensive, time-consuming full-scale testing. Numerical simulation was performed by coupling a three-dimensional (3-D) finite-element EM code (ELEKTRA) and a 3-D finite-difference fluids code (CaPS-EM) to solve heat transfer, fluid flow, and turbulence transport in a casting process that involves EM fields. ELEKTRA is able to predict the eddy- current distribution and the electromagnetic forces in complex geometries. CaPS-EM is capable of modeling fluid flows with free surfaces. Results of the numerical simulation compared well with measurements obtained from a static test.
Direct pore-level modeling of incompressible fluid flow in porous media
Ovaysi, Saeed; Piri, Mohammad
2010-09-20
We present a dynamic particle-based model for direct pore-level modeling of incompressible viscous fluid flow in disordered porous media. The model is capable of simulating flow directly in three-dimensional high-resolution micro-CT images of rock samples. It is based on moving particle semi-implicit (MPS) method. We modify this technique in order to improve its stability for flow in porous media problems. Using the micro-CT image of a rock sample, the entire medium, i.e., solid and fluid, is discretized into particles. The incompressible Navier-Stokes equations are then solved for each particle using the MPS summations. The model handles highly irregular fluid-solid boundaries effectively. An algorithm to split and merge fluid particles is also introduced. To handle the computational load, we present a parallel version of the model that runs on distributed memory computer clusters. The accuracy of the model is validated against the analytical, numerical, and experimental data available in the literature. The validated model is then used to simulate both unsteady- and steady-state flow of an incompressible fluid directly in a representative elementary volume (REV) size micro-CT image of a naturally-occurring sandstone with 3.398 {mu}m resolution. We analyze the quality and consistency of the predicted flow behavior and calculate absolute permeability using the steady-state flow rate.
Solution Algorithms for Effective-Field Models of Multi-Fluid Flows
Office of Scientific and Technical Information (OSTI)
(Technical Report) | SciTech Connect Technical Report: Solution Algorithms for Effective-Field Models of Multi-Fluid Flows Citation Details In-Document Search Title: Solution Algorithms for Effective-Field Models of Multi-Fluid Flows Authors: Robert Nourgaliev ; Mark Christon Publication Date: 2012-09-01 OSTI Identifier: 1058095 Report Number(s): INL/EXT-12-27187 DOE Contract Number: DE-AC07-05ID14517 Resource Type: Technical Report Research Org: Idaho National Laboratory (INL) Sponsoring
Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.
1976-01-01
A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.
Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code
Banas, A.O.; Carver, M.B.; Unrau, D.
1995-09-01
This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.
Can We Accurately Model Fluid Flow in Shale?
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
The source of shale oil and gas is kerogen, an organic material in the shale, but until now kerogen hasn't been incorporated in mathematical models of shale gas reservoirs. Paulo ...
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-03-06
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-08-06
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow
Donna Post Guillen
2009-07-01
A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.
Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.
2009-01-15
A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.
Moller, Nancy; Weare J. H.
2008-05-29
Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and
Computational Modeling of Fluid Flow through a Fracture in Permeable Rock
Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H
2010-01-01
Laminar, single-phase, finite-volume solutions to the Navier–Stokes equations of fluid flow through a fracture within permeable media have been obtained. The fracture geometry was acquired from computed tomography scans of a fracture in Berea sandstone, capturing the small-scale roughness of these natural fluid conduits. First, the roughness of the two-dimensional fracture profiles was analyzed and shown to be similar to Brownian fractal structures. The permeability and tortuosity of each fracture profile was determined from simulations of fluid flow through these geometries with impermeable fracture walls. A surrounding permeable medium, assumed to obey Darcy’s Law with permeabilities from 0.2 to 2,000 millidarcies, was then included in the analysis. A series of simulations for flows in fractured permeable rocks was performed, and the results were used to develop a relationship between the flow rate and pressure loss for fractures in porous rocks. The resulting frictionfactor, which accounts for the fracture geometric properties, is similar to the cubic law; it has the potential to be of use in discrete fracture reservoir-scale simulations of fluid flow through highly fractured geologic formations with appreciable matrix permeability. The observed fluid flow from the surrounding permeable medium to the fracture was significant when the resistance within the fracture and the medium were of the same order. An increase in the volumetric flow rate within the fracture profile increased by more than 5% was observed for flows within high permeability-fractured porous media.
McKay, Mark D.; Sweeney, Chad E.; Spangler, Jr., B. Samuel
1993-01-01
A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.
McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.
1993-11-30
A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.
Acoustic concentration of particles in fluid flow
Ward, Michael D.; Kaduchak, Gregory
2010-11-23
An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
Fluid Flow Phenomena during Welding
Zhang, Wei
2011-01-01
MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.
Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures.
Cairns, Douglas S. (Montana State University, Bozeman, MT); Rossel, Scott M. (Montana State University, Bozeman, MT)
2004-06-01
Resin transfer molding (RTM) is a closed mold process for making composite materials. It has the potential to produce parts more cost effectively than hand lay-up or other methods. However, fluid flow tends to be unpredictable and parts the size of a wind turbine blade are difficult to engineer without some predictive method for resin flow. There were five goals of this study. The first was to determine permeabilities for three fabrics commonly used for RTM over a useful range of fiber volume fractions. Next, relations to estimate permeabilities in mixed fabric lay-ups were evaluated. Flow in blade substructures was analyzed and compared to predictions. Flow in a full-scale blade was predicted and substructure results were used to validate the accuracy of a full-scale blade prediction.
On the multidimensional modeling of fluid flow and heat transfer in SCWRS
Gallaway, T.; Antal, S. P.; Podowski, M. Z.
2012-07-01
The Supercritical Water Reactor (SCWR) has been proposed as one of the six Generation IV reactor design concepts under consideration. The key feature of the SCWR is that water at supercritical pressures is used as the reactor coolant. Although at such pressures, fluids do not undergo phase change as they are heated, the fluid properties experience dramatic variations throughout what is known as the pseudo-critical region. Highly nonuniform temperature and fluid property distributions are expected in the reactor core, which will have a significant impact on turbulence and heat transfer in future SCWRs. The goal of the present work has been to understand and predict the effects of these fluid property variations on turbulence and heat transfer throughout the reactor core. Spline-type property models have been formulated for water at supercritical pressures in order to include the dependence of properties on both temperature and pressure into a numerical solver. New models of turbulence and heat transfer for variable-property fluids have been developed and implemented into the NPHASE-CMFD software. The results for these models have been compared to experimental data from the Korea Atomic Energy Research Inst. (KAERI) for various heat transfer regimes. It is found that the Low-Reynolds {kappa}-{epsilon} model performs best at predicting the experimental data. (authors)
Insertable fluid flow passage bridgepiece and method
Jones, Daniel O.
2000-01-01
A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.
Fluid Flow Within Fractured Porous Media
Crandall, D.M.; Ahmadi, G.; Smith, D.H.; Bromhal, G.S.
2006-10-01
Fractures provide preferential flow paths to subterranean fluid flows. In reservoir scale modeling of geologic flows fractures must be approximated by fairly simple formulations. Often this is accomplished by assuming fractures are parallel plates subjected to an applied pressure gradient. This is known as the cubic law. An induced fracture in Berea sandstone has been digitized to perform numerical flow simulations. A commercially available computational fluid dynamics software package has been used to solve the flow through this model. Single phase flows have been compared to experimental works in the literature to evaluate the accuracy with which this model can be applied. Common methods of fracture geometry classification are also calculated and compared to experimentally obtained values. Flow through regions of the fracture where the upper and lower fracture walls meet (zero aperture) are shown to induce a strong channeling effect on the flow. This model is expanded to include a domain of surrounding porous media through which the flow can travel. The inclusion of a realistic permeability in this media shows that the regions of small and zero apertures contribute to the greatest pressure losses over the fracture length and flow through the porous media is most prevalent in these regions. The flow through the fracture is shown to be the largest contributor to the net flow through the media. From this work, a novel flow relationship is proposed for flow through fractured media.
Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly. Final CRADA Report.
Tentner, A.; Nuclear Engineering Division
2009-10-13
A direct numerical simulation capability for two-phase flows with heat transfer in complex geometries can considerably reduce the hardware development cycle, facilitate the optimization and reduce the costs of testing of various industrial facilities, such as nuclear power plants, steam generators, steam condensers, liquid cooling systems, heat exchangers, distillers, and boilers. Specifically, the phenomena occurring in a two-phase coolant flow in a BWR (Boiling Water Reactor) fuel assembly include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for this purpose of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Advanced CFD (Computational Fluid Dynamics) codes provide a potential for detailed 3D simulations of coolant flow inside a fuel assembly, including flow around a spacer element using more fundamental physical models of flow regimes and phase interactions than sub-channel codes. Such models can extend the code applicability to a wider range of situations, which is highly important for increasing the efficiency and to prevent accidents.
Effect of Compressibility on Hyperbolicity and Choke Flow Criterion of the Two-phase Two-fluid Model
Suneet Singh; Vincent A. Mousseau
2008-09-01
The standard two-phase two-fluid model lacks hyperbolicity which results in oscillations in the numerical solutions. For the incompressible two-phase flows an exact correction term can be derived which when added to the momentum equations makes the model hyperbolic. No such straightforward approach exists for the similar compressible flows. In the current work, the effect of the compressibility on the characteristic equation is analyzed. It is shown that the hyperbolicity of the system depends only on the slip velocity and not on the phasic velocities, independently. Moreover, a slip Mach number is defined and a non-dimensional characteristic equation is derived. It is shown that for the small values of slip Mach number the effect of the compressibility on the hyperbolicity can be ignored. To verify the above analysis, the characteristic equation for the two-phase compressible flows is numerically solved and results compared with the values obtained with the analytical solution for incompressible flows. Numerical solution of the two-phase two-fluid model for the benchmark problem is used to further verify the abovementioned analysis. Furthermore, the eigenvalues of the characteristic equation are obtained as a power series expansion about the point where the slip Mach number is zero. These eigenvalues are used to develop a choking criterion for the compressible two-phase flows.
Borehole Fluid Conductivity Model
Energy Science and Technology Software Center (OSTI)
2004-03-15
Dynamic wellbore electrical conductivity logs provide a valuable means to determine the flow characteristics of fractures intersectin a wellbore, in order to study the hydrologic behavior of fractured rocks. To expedite the analysis of log data, a computer program called BORE II has been deveoloped that considers multiple inflow or outflow points along the wellbore, including the case of horizontal flow across the wellbore, BORE II calculates the evolution of fluid electrical conducivity (FEC) profilesmorein a wellbore or wellbore section, which may be pumped at a low rate, and compares model results to log data in a variety of ways. FEC variations may arise from inflow under natural-state conditions or due to tracer injected in a neighboring well (interference tests). BORE II has an interactive, graphical user interface and runs on a personal computer under the Windows operating system. BORE II is a modification and extension of older codes called BORE and BOREXT, which considered inflow points only. Finite difference solution of the one-dimensional advection-diffusion equation with explicit time stepping; feed points treated as prescribed-mass sources or sinks; assume quadratic relationship between fluid electrical conductivity and ion consentration. Graphical user interface; interactive modification of model parameters and graphical display of model results and filed data in a variety of ways. Can examine horizontal flow or arbitarily complicated combination of upflow, downflow, and horizontal flow. Feed point flow rate and/or concentration may vary in time.less
General Transient Fluid Flow Algorithm
Energy Science and Technology Software Center (OSTI)
1992-03-12
SALE2D calculates two-dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude resultsmore » from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program.« less
Coupled reactive mass transport and fluid flow: Issues in model verification
Freedman, Vicky L.; Ibaraki, Motomu
2003-01-03
Model verification and validation are both important steps in the development of reactive transport models. In this paper, a distinction is made between verification and validation, and the focus is on codifying the issues of verification for a numerical, reactive transport flow model. First, the conceptual basis of model verification is reviewed, which shows that verification should be understood as a first step in model development, and be followed by a protocol that assures that the model accurately represents system behavior. Second, commonly used procedures and methods of model verification are presented. In the third part of this paper, an intercomparison of models is used to demonstrate that model verification can be performed despite differences in hydrogeochemical transport code formulations. Results of an example simulation of transport are presented in which the numerical model is tested against other hydrogeochemical codes. Different kinetic formulations between solid and aqueous phases used among numerical models complicates model verification. This test problem involves uranium transport under conditions of varying pH and oxidation potential, with reversible precipitation of calcium uranate and coffinite. Results between the different hydrogeochemical transport codes show differences in oxidation potentials, but similarities in mineral assemblages and aqueous transport patterns. Because model verification can be further complicated by differences in the approach for solving redox problems, a comparison of a fugacity approach to both the external approach (based on hypothetical electron activity) and effective internal approach (based on conservation of electrons) is performed. The comparison demonstrates that the oxygen fugacity approach produces different redox potentials and mineral assemblages than both the effective internal and external approaches.
Harvego, Edwin Allan; Siefken, Larry James
2000-04-01
The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the U.S. Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems during severe accidents. This paper describes the modeling approach used in the SCDAP/RELAP5 code to calculate fluid heat transfer and flow losses through porous debris that has accumulated in the vessel lower head and core regions during the latter stages of a severe accident. The implementation of heat transfer and flow loss correlations into the code is discussed, and calculations performed to assess the validity of the modeling approach are described. The different modes of heat transfer in porous debris include: (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, (5) film boiling, and (6) transition from film boiling to convection to vapor. The correlations for flow losses in porous debris include frictional and form losses. The correlations for flow losses were integrated into the momentum equations in the RELAP5 part of the code. Since RELAP5 is a very general non-homogeneous non-equilibrium thermal-hydraulics code, the resulting modeling methodology is applicable to a wide range of debris thermal-hydraulic conditions. Assessment of the SCDAP/RELAP5 debris bed thermal-hydraulic models included comparisons with experimental measurements and other models available in the open literature. The assessment calculations, described in the paper, showed that SCDAP/RELAP5 is capable of calculating the heat transfer and flow losses occurring in porous debris regions that may develop in a light water reactor during a severe accident.
E. A. Harvego; L. J. Siefken
2000-04-02
The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the U.S. Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems during severe accidents. This paper describes the modeling approach used in the SCDAP/RELAP5 code to calculate fluid heat transfer and flow losses through porous debris that has accumulated in the vessel lower head and core regions during the latter stages of a severe accident. The implementation of heat transfer and flow loss correlations into the code is discussed, and calculations performed to assess the validity of the modeling approach are described. The different modes of heat transfer in porous debris include: (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, (5) film boiling, and (6) transition from film boiling to convection to vapor. The correlations for flow losses in porous debris include frictional and form losses. The correlations for flow losses were integrated into the momentum equations in the RELAP5 part of the code. Since RELAP5 is a very general non-homogeneous non-equilibrium thermal-hydraulics code, the resulting modeling methodology is applicable to a wide range of debris thermal-hydraulic conditions. Assessment of the SCDAP/RELAP5 debris bed thermal-hydraulic models included comparisons with experimental measurements and other models available in the open literature. The assessment calculations, described in the paper, showed that SCDAP/RELAP5 is capable of calculating the heat transfer and flow losses occurring in porous debris regions that may develop in a light water reactor during a severe accident.
2-Phase Fluid Flow & Heat Transport
Energy Science and Technology Software Center (OSTI)
1993-03-13
GEOTHER is a three-dimensional, geothermal reservoir simulation code. The model describes heat transport and flow of a single component, two-phase fluid in porous media. It is based on the continuity equations for steam and water, which are reduced to two nonlinear partial differential equations in which the dependent variables are fluid pressure and enthalpy. GEOTHER can be used to simulate the fluid-thermal interaction in rock that can be approximated by a porous media representation. Itmore » can simulate heat transport and the flow of compressed water, two-phase mixtures, and superheated steam in porous media over a temperature range of 10 to 300 degrees C. In addition, it can treat the conversion from single to two-phase flow, and vice versa. It can be used for evaluation of a near repository spatial scale and a time scale of a few years to thousands of years. The model can be used to investigate temperature and fluid pressure changes in response to thermal loading by waste materials.« less
2-Phase Fluid Flow & Heat Transport
Energy Science and Technology Software Center (OSTI)
1993-03-13
GEOTHER is a three-dimensional, geothermal reservoir simulation code. The model describes heat transport and flow of a single component, two-phase fluid in porous media. It is based on the continuity equations for steam and water, which are reduced to two nonlinear partial differential equations in which the dependent variables are fluid pressure and enthalpy. GEOTHER can be used to simulate the fluid-thermal interaction in rock that can be approximated by a porous media representation. Itmorecan simulate heat transport and the flow of compressed water, two-phase mixtures, and superheated steam in porous media over a temperature range of 10 to 300 degrees C. In addition, it can treat the conversion from single to two-phase flow, and vice versa. It can be used for evaluation of a near repository spatial scale and a time scale of a few years to thousands of years. The model can be used to investigate temperature and fluid pressure changes in response to thermal loading by waste materials.less
Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Perkins, William A.
2010-12-01
In 2003, an extension of the existing ice and trash sluiceway was added at Bonneville Powerhouse 2 (B2). This extension started at the existing corner collector for the ice and trash sluiceway adjacent to Bonneville Powerhouse 2 and the new sluiceway was extended to the downstream end of Cascade Island. The sluiceway was designed to improve juvenile salmon survival by bypassing turbine passage at B2, and placing these smolt in downstream flowing water minimizing their exposure to fish and avian predators. In this study, a previously developed computational fluid dynamics model was modified and used to characterized tailrace hydraulics and sluiceway egress conditions for low total river flows and low levels of spillway flow. STAR-CD v4.10 was used for seven scenarios of low total river flow and low spill discharges. The simulation results were specifically examined to look at tailrace hydraulics at 5 ft below the tailwater elevation, and streamlines used to compare streamline pathways for streamlines originating in the corner collector outfall and adjacent to the outfall. These streamlines indicated that for all higher spill percentage cases (25% and greater) that streamlines from the corner collector did not approach the shoreline at the downstream end of Bradford Island. For the cases with much larger spill percentages, the streamlines from the corner collector were mid-channel or closer to the Washington shore as they moved downstream. Although at 25% spill at 75 kcfs total river, the total spill volume was sufficient to "cushion" the flow from the corner collector from the Bradford Island shore, areas of recirculation were modeled in the spillway tailrace. However, at the lowest flows and spill percentages, the streamlines from the B2 corner collector pass very close to the Bradford Island shore. In addition, the very flow velocity flows and large areas of recirculation greatly increase potential predator exposure of the spillway passed smolt. If there is
A Site-Scale Model For Fluid And Heat Flow In The Unsaturated...
surface infiltration, and geothermal conditions are incorporated into the model. The reliability and accuracy of the model have been the subject of a comprehensive model...
Value for controlling flow of cryogenic fluid
Knapp, Philip A.
1996-01-01
A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.
Overview of heat transfer and fluid flow problem areas encountered in stirling engine modeling
Tew, R.C. Jr.
1988-02-01
NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.
Fluid properties determine flow line blockage potential
Hunt, A.
1996-07-15
A thorough understanding of fluid properties helps in determining the potential of hydrates, paraffins, or asphaltenes to block subsea flow lines. Thermal, chemical, and mechanical methods are the main ways for preventing deposition. Already in both the North Sea and the Gulf of Mexico, blockages have led to significant losses in production and reserves recovery. This first article in a two-part series discusses thermal and chemical methods in overcoming fluid behavior problems caused by hydrate and other fluid constituents in subsea multiphase flow. The paper discusses subsea production, possible problems, nucleation, growth, deposition, preventing deposition, hydrate predictions, multiphase flow, and hydrate inhibition.
Method and device for measuring fluid flow
Atherton, Richard; Marinkovich, Phillip S.; Spadaro, Peter R.; Stout, J. Wilson
1976-11-23
This invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution.
Temperature distribution and fluid flow in an enclosure with...
Office of Scientific and Technical Information (OSTI)
Temperature distribution and fluid flow in an enclosure with localized heating and cooling Citation Details In-Document Search Title: Temperature distribution and fluid flow in an ...
Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based...
Office of Scientific and Technical Information (OSTI)
Conference: Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic ... Citation Details In-Document Search Title: Fracture Propagation, Fluid Flow, and ...
Controlling Subsurface Fractures and Fluid Flow: A Basic Research...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda PDF icon BES Report Controlling ...
Application of Neutron Imaging and Scattering to Fluid Flow and...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS ...
Microfluidics: Kinetics of Hybridized DNA With Fluid Flow Variations...
Office of Scientific and Technical Information (OSTI)
Microfluidics: Kinetics of Hybridized DNA With Fluid Flow Variations. Citation Details In-Document Search Title: Microfluidics: Kinetics of Hybridized DNA With Fluid Flow ...
Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based...
Office of Scientific and Technical Information (OSTI)
Conference: Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic ... Title: Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic ...
Apparatus for measuring fluid flow
Smith, Jack E.; Thomas, David G.
1984-01-01
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Apparatus for measuring fluid flow
Smith, J.E.; Thomas, D.G.
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Directed flow fluid rinse trough
Kempka, S.N.; Walters, R.N.
1996-07-02
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.
Directed flow fluid rinse trough
Kempka, Steven N.; Walters, Robert N.
1996-01-01
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.
The effect of fluid flow on coiled tubing reach
Bhalla, K.; Walton, I.C.
1996-12-31
A critical parameter to the success of many coiled tubing (CT) operations in highly deviated or horizontal wells is the depth penetration that can be attained before the CT buckles and locks up. Achieving a desired depth is always critical in CT operations and attaining an additional reach of a few hundred feet can be crucial. This paper addresses the effect of fluid flow in the CT and in the CT/wellbore annulus on the state of force and stress in the CT, and thereby predicts its effect on the reach attainable by the CT. The flow of fluid through the CT and annulus between the CT and borehole modifies the pressures and the effective force which governs the mechanical stability of the CT. The net force per unit length due to fluid flow in the coiled tubing and annulus between the coiled tubing casing/well is calculated in terms of the shear stress and its effect on the onset of buckling and lockup is determined. The model is then implemented in a full tubing forces calculation and the effect of flowing fluids and producing fluids on reach is analyzed. The new model is utilized in the design of commercial jobs. The exact analytic model shows that fluid flow inside the CT has zero impact on reach, that downward flow in the annulus has a favourable impact, and upward flow in the annulus reduces the maximum attainable reach. Using the full tubing forces model, a coiled tubing job can be designed taking into account the flow of a fluid with a specified rheology, density and flow rate. Thus the feasibility of attaining a given reach can be more accurately determined. Results are presented in the form of the surface weight for commercial wells and compared to field jobs.
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael
2009-09-01
This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.
Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube
Nigmatulin, R.I.
1995-09-01
The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered.
MEANS FOR VISUALIZING FLUID FLOW PATTERNS
Lynch, F.E.; Palmer, L.D.; Poppendick, H.F.; Winn, G.M.
1961-05-16
An apparatus is given for determining both the absolute and relative velocities of a phosphorescent fluid flowing through a transparent conduit. The apparatus includes a source for exciting a narrow trsnsverse band of the fluid to phosphorescence, detecting means such as a camera located downstream from the exciting source to record the shape of the phosphorescent band as it passes, and a timer to measure the time elapsed between operation of the exciting source and operation of the camera.
Grant, C.W.; Goggin, D.J.; Harris, P.M. )
1994-01-01
Vertical and horizontal transects were sampled from core and outcrop of the San Andres Formation at Lawyer Canyon, Guadalupe Mountains, New Mexico, to assess permeability variation in a geologic framework of upward-shallowing carbonate cycles and to show the potential effect these variations have on viscous-dominated flow behavior in analogous reservoirs. These cycles occur in a ramp-crest facies, tract, are 3-13 m (10-45 ft) thick, and contain both vertical and lateral variation of lithofacies. Thicker cycles consist of a basal dolomudstone, which is overlain by burrowed dolomudstone, and capped by bar-flank ooid-peloid dolograinstone and bar-crest ooid dolograinstones. In vertical transects, permeability is extremely variable about the mean, yet upward-increasing trends coinciding with the succession of lithofacies typify a given cycle. Semi-variance analysis shows permeability to be uncorrelated vertically at distances greater than 5.5 m (18 ft), which is the average cycle thickness, suggesting that the cycles may equate to fluid-flow unit in a reservoir. Semi-variance analysis of measurements collected along a horizontal transect within bar-crest dolograinstones of a single cycle show permeability is uncorrelated at distances greater than 3.6 m (12 ft). This correlation distance appears to be controlled by alternating porous and tightly cemented zones that formed during dolomitization. Vertical and lateral variogram models were fit to the spatial parameters to generate a variety of conditionally simulated permeability fields. Fluid-flow simulations show viscous-dominated flow behavior is compartmentalized by both the individual cycles and groups of cycles. The basal dolomudstones are potential baffles to flow crossover between cycles, but poorly developed cycles (i.e., those that are mud rich and lack well-developed bar-flank and bar-crest facies) result in the greatest compartmentalization of fluid flow within a succession of cycles.
Method and apparatus for controlling fluid flow
Miller, J.R.
1980-06-27
A method and apparatus for precisely controlling the rate (and hence amount) of fluid flow are given. The controlled flow rate is finely adjustable, can be extremely small (on the order of microliter-atmospheres per second), can be adjusted to zero (flow stopped), and is stable to better than 1% with time. The dead volume of the valve can be made arbitrarily small, in fact essentially zero. The valve employs no wearing mechanical parts (including springs, stems, or seals). The valve is finely adjustable, has a flow rate dynamic range of many decades, can be made compatible with any fluid, and is suitable for incorporation into an open or closed loop servo-control system.
Understanding heat and fluid flow in linear GTA welds
Zacharia, T.; David, S.A.; Vitek, J.M.
1992-12-31
A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.
Understanding heat and fluid flow in linear GTA welds
Zacharia, T.; David, S.A.; Vitek, J.M.
1992-01-01
A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.
International Collaborations on Fluid Flows in Fractured Crystalline...
Office of Scientific and Technical Information (OSTI)
International Collaborations on Fluid Flows in Fractured Crystalline Rocks: FY14 Progress Report. Citation Details In-Document Search Title: International Collaborations on Fluid ...
Carrillo, Jose-Antonio Goudon, Thierry Lafitte, Pauline
2008-08-10
In this work, we propose asymptotic preserving numerical schemes for the bubbling and flowing regimes of particles immersed in a fluid treated by two-phase flow models. The description comprises compressible Euler equations for the dense phase (fluid) and a kinetic Fokker-Planck equation for the disperse phase (particles) coupled through friction terms. We show numerical simulations in the relevant case of gravity in the one-dimensional case demonstrating the overall behavior of the schemes.
Ultrasonic fluid flow measurement method and apparatus
Kronberg, James W.
1993-01-01
An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.
Ultrasonic fluid flow measurement method and apparatus
Kronberg, J.W.
1993-10-12
An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.
Boles, James R.; Garven, Grant
2015-08-04
Our studies have had an important impact on societal issues. Experimental and field observations show that CO_{2} degassing, such as might occur from stored CO_{2} reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, our characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
I: Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs; II: Full-Waveform Inversion of 3D-9C VSP data from Brady's EGS Site and Update of the Brady Reservoir Scale Model Lianjie Huang Los Alamos National Laboratory Fluid Imaging Project Officer: Lauren Boyd Total Project Funding: Part I: $855,430 (LANL), $1M (NETL); Part II: $250,000 (LANL) April 22-25, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted
Solution Algorithms for Effective-Field Models of Multi-Fluid...
Office of Scientific and Technical Information (OSTI)
Solution Algorithms for Effective-Field Models of Multi-Fluid Flows Citation Details In-Document Search Title: Solution Algorithms for Effective-Field Models of Multi-Fluid Flows ...
Fracture Network and Fluid Flow Imaging for EGS Applications from
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Multi-Dimensional Electrical Resistivity Structure | Department of Energy Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure presentation at the April 2013 peer review meeting held in Denver, Colorado.
Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda |
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Department of Energy Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda BES Report Controlling Subsurface Fractures and Fluid Flow.pdf (815.56 KB) More Documents & Publications AGU SubTER Town Hall Presentation 2015 SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical Signals in the Subsurface SubTER Jason Report
Fluid flow plate for decreased density of fuel cell assembly
Vitale, N.G.
1999-11-09
A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.
Fluid flow plate for decreased density of fuel cell assembly
Vitale, Nicholas G.
1999-01-01
A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
EIN Cash Flow Model Energy Independence Now (EIN) Objectives Identify financial risks in early hydrogen infrastructure systems and illustrate hydrogen station cash flows under a ...
Method and apparatus for chemically altering fluids in continuous flow
Heath, William O.; Virden, Jr., Judson W.; Richardson, R. L.; Bergsman, Theresa M.
1993-01-01
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.
Method and apparatus for chemically altering fluids in continuous flow
Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.
1993-10-19
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.
A Model For The Transient Temperature Effects Of Horizontal Fluid...
Transient Temperature Effects Of Horizontal Fluid Flow In Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Model For The...
Friction-Induced Fluid Heating in Nanoscale Helium Flows
Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)
2010-05-21
We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.
Stress and Fluid-Flow Interaction for the Coso Geothermal Field...
Fluid-Flow Interaction for the Coso Geothermal Field Derived from 3D Numerical Models Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...
Feedback regulated induction heater for a flowing fluid
Migliori, A.; Swift, G.W.
1984-06-13
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Feedback regulated induction heater for a flowing fluid
Migliori, Albert; Swift, Gregory W.
1985-01-01
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Apparatus for irradiating a continuously flowing stream of fluid
Speir, Leslie G.; Adams, Edwin L.
1984-01-01
An apparatus for irradiating a continuously flowing stream of fluid is diosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4.pi. radiation geometry. The irradiation source, for example a .sup.252 CF neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.
Fluid mechanics experiments in oscillatory flow. Volume 1
Seume, J.; Friedman, G.; Simon, T.W.
1992-03-01
Results of a fluid mechanics measurement program is oscillating flow within a circular duct are present. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re{sub max}, Re{sub W}, and A{sub R}, embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA`s Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radical components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and in reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two-volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation).
Fluid flow structure around the mixer in a reactor with mechanical mixing
Lecheva, A.; Zheleva, I.
2015-10-28
Fluid flow structure around the mixer in a cylindrical reactor with mechanical mixing is studied and numerical results are presented in this article. The model area is complex because of the presence of convex corners of the mixer in the fluid flow. Proper boundary conditions for the vorticity calculated on the base of the stream function values near solid boundaries of the examined area are presented. The boundary value problem of motion of swirling incompressible viscous fluid in a vertical tank reactor with a mixer is solved numerically. The calculations are made by a computer code, written in MATLAB. The complex structure of the flow around the mixing disk is described and commented.
Flow regimes for fluid injection into a confined porous medium
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.
2015-02-24
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convectiondiffusion equation is derived to describe the time evolution of the fluidfluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convectiondiffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.
Collapsible sheath fluid reservoirs for flow cytometers
Mark, Graham A. (Los Alamos, NM)
2000-01-01
The present invention is a container in the form of a single housing for holding fluid, including a first collapsible reservoir having a first valve. The first reservoir initially contains a volume of fluid. The container also includes a second reservoir, initially empty (or substantially empty), expandable to a second volume. The second reservoir has a second valve. As the volume of said first reservoir decreases, the volume of the second reservoir proportionally increases.
Fracture Network and Fluid Flow Imaging for EGS Applications from
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Multi-Dimensional Electrical Resistivity Structure | Department of Energy Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Project objectives: Develop a 3-D code for simulating EM responses at the surface of the earth with topographic variations. To start; two platform choices will be pursued to determine the superior
Flow regimes for fluid injection into a confined porous medium
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.
2015-02-24
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.
Flow regimes for fluid injection into a confined porous medium
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.
2015-02-24
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less
System and method measuring fluid flow in a conduit
Ortiz, M.G.; Kidd, T.G.
1999-05-18
A system is described for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements. 3 figs.
System and method measuring fluid flow in a conduit
Ortiz, Marcos German; Kidd, Terrel G.
1999-01-01
A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.
Signatures in flowing fluid electric conductivity logs (Journal...
Office of Scientific and Technical Information (OSTI)
including analysis of natural regional flowin the permeable layer. A numerical model simulates flow and transport inthe wellbore during flowing FEC logging, and fracture ...
Modeling shrouded stator cavity flows in axial-flow compressors
Wellborn, S.R.; Tolchinsky, I.; Okiishi, T.H.
2000-01-01
Experiments and computational analyses were completed to understand the nature of shrouded stator cavity flows. From this understanding, a one-dimensional model of the flow through shrouded stator cavities was developed. This model estimates the leakage mass flow, temperature rise, and angular momentum increase through the cavity, given geometry parameters and the flow conditions at the interface between the cavity and primary flow path. This cavity model consists of two components, one that estimates the flow characteristics through the labyrinth seals and the other that predicts the transfer of momentum due to windage. A description of the one-dimensional model is given. The incorporation and use of the one-dimensional model in a multistage compressor primary flow analysis tool is described. The combination of this model and the primary flow solver was used to reliably simulate the significant impact on performance of the increase of hub seal leakage in a twelve-stage axial-flow compressor. Observed higher temperatures of the hub region fluid, different stage matching, and lower overall efficiencies and core flow than expected could be correctly linked to increased hub seal clearance with this new technique. The importance of including these leakage flows in compressor simulations is shown.
Method, apparatus and system for controlling fluid flow
McMurtrey, Ryan D.; Ginosar, Daniel M.; Burch, Joesph V.
2007-10-30
A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.
Computerized tomographic analysis of fluid flow in fractured tuff
Felice, C.W.; Sharer, J.C.; Springer, E.P.
1992-05-01
The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.
Computerized tomographic analysis of fluid flow in fractured tuff
Felice, C.W.; Sharer, J.C. ); Springer, E.P. )
1992-01-01
The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.
Solution Algorithms for Effective-Field Models of Multi-Fluid...
Office of Scientific and Technical Information (OSTI)
Citation Details In-Document Search Title: Solution Algorithms for Effective-Field Models of Multi-Fluid Flows Authors: Robert Nourgaliev ; Mark Christon Publication Date: ...
Apparatus for controlling fluid flow in a conduit wall
Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.
2003-05-13
A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.
L3:MPO.CRUD.P8.02 Two-Phase Fluid Flow
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
CRUD.P8.02 Two-Phase Fluid Flow Modeling in CRUD using MAMBA-BDM Miaomiao Jina and Michael Short Massachusetts Institute of Technology February 17, 2014 CASL-U-2014-0143-000 Two-Phase Fluid Flow Modeling in CRUD using MAMBA-BDM Miaomiao Jin a , Prof. Michael Short a,∗ a Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 Abstract CRUD is a CASL challenge problem with a significant component in the Materials Performance and Optimization (MPO) focus area. CRUD
Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry
Sinha, Dipen N.
2007-06-12
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry
Sinha, Dipen N.
2003-11-11
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Noninvasive Characterization Of A Flowing Multiphase Fluid Using Ultrasonic Interferometry
Sinha, Dipen N.
2005-05-10
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Fully Coupled Well Models for Fluid Injection and Production
White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.
2013-08-05
Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving
Michael R. Gross; Kajari Ghosh; Alex K. Manda; Sumanjit Aich
2006-05-08
The theory behind how chemically reactive tracers are used to characterize the velocity and temperature distribution in steady flowing systems is reviewed. Kinetic parameters are established as a function of reservoir temperatures and fluid residence times for selecting appropriate reacting systems. Reactive tracer techniques are applied to characterize the temperature distribution in a laminar-flow heat exchanger. Models are developed to predict reactive tracer behavior in fractured geothermal reservoirs of fixed and increasing size.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, M.G.; Boucher, T.J.
1997-06-24
A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, Marcos G.; Boucher, Timothy J.
1997-01-01
A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.
Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control
Cary, Robert E.
2015-12-08
Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.
Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim
2004-07-01
This study investigates the fluid-elastic instability characteristics of steam generator helical type tubes in operating nuclear power plants. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted by a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Investigated are the effects of the helix angle, the number of supports and the status of the inner fluid on the modal, and fluid-elastic instability characteristics of the tubes, which are expressed in terms of the natural frequency, corresponding mode shape, and stability ratio. (authors)
Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda
Pyrak-Nolte, Laura J; DePaolo, Donald J.; Pietraß, Tanja
2015-05-22
. In response, the Office of Science, through its Office of Basic Energy Science (BES), convened a roundtable consisting of 15 national lab, university and industry geoscience experts to brainstorm basic research areas that underpin the SubTER goals but are currently underrepresented in the BES research portfolio. Held in Germantown, Maryland on May 22, 2015, the round-table participants developed a basic research agenda that is detailed in this report. Highlights include the following: -A grand challenge calling for advanced imaging of stress and geological processes to help understand how stresses and chemical substances are distributed in the subsurface—knowledge that is critical to all aspects of subsurface engineering; -A priority research direction aimed at achieving control of fluid flow through fractured media; -A priority research direction aimed at better understanding how mechanical and geochemical perturbations to subsurface rock systems are coupled through fluid and mineral interactions; -A priority research direction aimed at studying the structure, permeability, reactivity and other properties of nanoporous rocks, like shale, which have become critical energy materials and exhibit important hallmarks of mesoscale materials; -A cross-cutting theme that would accelerate development of advanced computational methods to describe heterogeneous time-dependent geologic systems that could, among other potential benefits, provide new and vastly improved models of hydraulic fracturing and its environmental impacts; -A cross-cutting theme that would lead to the creation of “geo-architected materials” with controlled repeatable heterogeneity and structure that can be tested under a variety of thermal, hydraulic, chemical and mechanical conditions relevant to subsurface systems; -A cross-cutting theme calling for new laboratory studies on both natural and geo-architected subsurface materials that deploy advanced high-resolution 3D imaging and chemical analysis
Tracking interface and common curve dynamics for two-fluid flow in porous media
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Mcclure, James E.; Miller, Cass T.; Gray, W. G.; Berrill, Mark A.
2016-04-29
Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measuresmore » of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.« less
A compendium of fracture flow models, 1994
Diodato, D.M.
1994-11-01
The report is designed to be used as a decision-making aid for individuals who need to simulate fluid flow in fractured porous media. Fracture flow codes of varying capability in the public and private domain were identified in a survey of government, academia, and industry. The selection and use of an appropriate code requires conceptualization of the geology, physics, and chemistry (for transport) of the fracture flow problem to be solved. Conceptual models that have been invoked to describe fluid flow in fractured porous media include explicit discrete fracture, dual continuum (porosity and/or permeability), discrete fracture network, multiple interacting continua, multipermeability/multiporosity, and single equivalent continuum. The explicit discrete-fracture model is a ``near-field`` representation, the single equivalent continuum model is a ``far-field`` representation, and the dual-continuum model is intermediate to those end members. Of these, the dual-continuum model is the most widely employed. The concept of multiple interacting continua has been applied in a limited number of examples. Multipermeability/multiporosity provides a unified conceptual model. The ability to accurately describe fracture flow phenomena will continue to improve as a result of advances in fracture flow research and computing technology. This improvement will result in enhanced capability to protect the public environment, safety, and health.
DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS
X. Wang; X. Sun; H. Zhao
2011-09-01
In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in
Crandall, Dustin; Bromhal, Grant; Karpyn, Zuleima T.
2010-07-01
Understanding how fracture wall-roughness affects fluid flow is important when modeling many subsurface transport problems. Computed tomography scanning provides a unique view of rock fractures, allowing the measurement of fracture wall-roughness, without destroying the initial rock sample. For this computational fluid dynamics study, we used several different methods to obtain three-dimensional meshes of a computed tomography scanned fracture in Berea sandstone. These volumetric meshes had different wall-roughnesses, which we characterized using the Joint Roughness Coefficient and the fractal dimension of the fracture profiles. We then related these macroscopic roughness parameters to the effective flow through the fractures, as determined from Navier-Stokes numerical models. Thus, we used our fracture meshes to develop relationships between the observed roughness properties of the fracture geometries and flow parameters that are of importance for modeling flow through fractures in field scale models. Fractures with high Joint Roughness Coefficients and fractal dimensions were shown to exhibit tortuous flow paths, be poorly characterized by the mean geometric aperture, and have a fracture transmissivity 35 times smaller than the smoother modeled fracture flows.
Schroth, Martin H.; Oostrom, Mart; Dobson, Richard; Zeyer, Josef
2008-08-01
Fluid/fluid interfacial areas are important in controlling the rate of mass and energy transfer between fluid phases in porous media. We present a modified thermodynamically based model (TBM) to predict fluid/fluid interfacial areas in porous media for arbitrary drainage/imbibition sequences. The TBM explicitly distinguishes between interfacial areas associated with continuous (free) and isolated (entrapped) nonwetting fluids. The model is restricted to two-fluid systems in which (1) no significant conversion of mechanical work into heat occurs, (2) the wetting fluid completely wets the porous mediums solid surfaces, and (3) no changes in interfacial area due to mass transfer between phases occur. We show example calculations for two different drainage/imbibition sequences in two porous media: a highly uniform silica sand and a well-graded silt. The TBMs predictions for interfacial area associated with free nonwetting-fluid are identical to those of a previously published geometry-based model (GBM). However, predictions for interfacial area associated with entrapped nonwetting-fluid are consistently larger in the TBM than in the GBM. Although a comparison of model predictions with experimental data is currently only possible to a limited extent, good general agreement was found for the TBM. As required model parameters are commonly used as inputs for or tracked during multifluid-flow simulations, the modified TBM may be easily incorporated in numerical codes.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Nicole Lautze
2015-01-01
Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume VII – Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.
Computational Fluid Dynamics Modeling of Diesel Engine Combustion...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions 2005 Diesel Engine ...
Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows
Xia Wang; Xiaodong Sun; Benjamin Doup; Haihua Zhao
2012-12-01
In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As twophase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminator s are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.
Reduced order modeling of fluid/structure interaction.
Barone, Matthew Franklin; Kalashnikova, Irina; Segalman, Daniel Joseph; Brake, Matthew Robert
2009-11-01
This report describes work performed from October 2007 through September 2009 under the Sandia Laboratory Directed Research and Development project titled 'Reduced Order Modeling of Fluid/Structure Interaction.' This project addresses fundamental aspects of techniques for construction of predictive Reduced Order Models (ROMs). A ROM is defined as a model, derived from a sequence of high-fidelity simulations, that preserves the essential physics and predictive capability of the original simulations but at a much lower computational cost. Techniques are developed for construction of provably stable linear Galerkin projection ROMs for compressible fluid flow, including a method for enforcing boundary conditions that preserves numerical stability. A convergence proof and error estimates are given for this class of ROM, and the method is demonstrated on a series of model problems. A reduced order method, based on the method of quadratic components, for solving the von Karman nonlinear plate equations is developed and tested. This method is applied to the problem of nonlinear limit cycle oscillations encountered when the plate interacts with an adjacent supersonic flow. A stability-preserving method for coupling the linear fluid ROM with the structural dynamics model for the elastic plate is constructed and tested. Methods for constructing efficient ROMs for nonlinear fluid equations are developed and tested on a one-dimensional convection-diffusion-reaction equation. These methods are combined with a symmetrization approach to construct a ROM technique for application to the compressible Navier-Stokes equations.
General single phase wellbore flow model
Ouyang, Liang-Biao; Arbabi, S.; Aziz, K.
1997-02-05
A general wellbore flow model, which incorporates not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow, is presented in this report. The new wellbore model is readily applicable to any wellbore perforation patterns and well completions, and can be easily incorporated in reservoir simulators or analytical reservoir inflow models. Three dimensionless numbers, the accelerational to frictional pressure gradient ratio R{sub af}, the gravitational to frictional pressure gradient ratio R{sub gf}, and the inflow-directional to accelerational pressure gradient ratio R{sub da}, have been introduced to quantitatively describe the relative importance of different pressure gradient components. For fluid flow in a production well, it is expected that there may exist up to three different regions of the wellbore: the laminar flow region, the partially-developed turbulent flow region, and the fully-developed turbulent flow region. The laminar flow region is located near the well toe, the partially-turbulent flow region lies in the middle of the wellbore, while the fully-developed turbulent flow region is at the downstream end or the heel of the wellbore. Length of each region depends on fluid properties, wellbore geometry and flow rate. As the distance from the well toe increases, flow rate in the wellbore increases and the ratios R{sub af} and R{sub da} decrease. Consequently accelerational and inflow-directional pressure drops have the greatest impact in the toe region of the wellbore. Near the well heel the local wellbore flow rate becomes large and close to the total well production rate, here R{sub af} and R{sub da} are small, therefore, both the accelerational and inflow-directional pressure drops can be neglected.
Reducing or stopping the uncontrolled flow of fluid such as oil from a well
Hermes, Robert E
2014-02-18
The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.
Carter, K.E.; Dworkin, S.I. )
1990-08-01
Geochemical and petrographic studies of the Triassic Portoro limestone of the Tuscan nappe in Liguria, Italy, indicate that fluid flow was channeled through interlayered bedding-parallel shear zones during Miocene shearing and low-grade metamorphism. Carbon, oxygen, and strontium isotopic compositions and trace element concentrations in the Portoro indicate that it was precipitated from normal marine waters. In sheared and unsheared layers these isotopic compositions are indistinguishable, yet sheared layers of microspar contain less than half the amount of strontium preserved in undeformed layers. Wavy grain boundaries and a dimensional preferred orientation of elongated grains indicate that calcite within sheared zones was dynamically recrystallized. On the basis of these observations we suggest that during burial, extraformational fluids were buffered into oxygen isotopic, but not strontium-concentration, equilibrium with the Portoro. These syndeformational fluids were channeled through discrete 1- to 15-cm-thick shear zones in which strontium was expelled from calcite and incorporated into grain-boundary fluids during dynamic recrystallization.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, James R.
1982-01-01
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1982-05-04
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.
PArallel Reacting Multiphase FLOw Computational Fluid Dynamic Analysis
Energy Science and Technology Software Center (OSTI)
2002-06-01
PARMFLO is a parallel multiphase reacting flow computational fluid dynamics (CFD) code. It can perform steady or unsteady simulations in three space dimensions. It is intended for use in engineering CFD analysis of industrial flow system components. Its parallel processing capabilities allow it to be applied to problems that use at least an order of magnitude more computational cells than the number that can be used on a typical single processor workstation (about 106 cellsmore » in parallel processing mode versus about io cells in serial processing mode). Alternately, by spreading the work of a CFD problem that could be run on a single workstation over a group of computers on a network, it can bring the runtime down by an order of magnitude or more (typically from many days to less than one day). The software was implemented using the industry standard Message-Passing Interface (MPI) and domain decomposition in one spatial direction. The phases of a flow problem may include an ideal gas mixture with an arbitrary number of chemical species, and dispersed droplet and particle phases. Regions of porous media may also be included within the domain. The porous media may be packed beds, foams, or monolith catalyst supports. With these features, the code is especially suited to analysis of mixing of reactants in the inlet chamber of catalytic reactors coupled to computation of product yields that result from the flow of the mixture through the catalyst coaled support structure.« less
A review of interaction mechanisms in fluid-solid flows
Johnson, G.; Rajagopal, K.R. . Dept. of Mechanical Engineering); Massoudi, M. )
1990-09-01
Multiphase flows have become the subject of considerable attention because of their importance in many industrial applications, such as fluidized beds, pneumatic transport of solids, coal combustion, etc. Fundamental research into the nature of pneumatic transport has made significant progress in identifying key parameters controlling the characteristics of these processes. The emphasis of this study is on a mixture composed of spherical particles of uniform size and a linearly viscous fluid. Section 1 introduces our approach and the importance of this study. In Section 2, the dynamics of a single particle as studied in classical hydrodynamics and fluid dynamics is presented. This has been a subject of study for more than 200 years. In Section 3, we review the literature for the constitutive relations as given in multiphase studies, i.e., generalization of single particle and as given in literature concerning the continuum theories of mixtures or multicomponent systems. In Section 4, a comparison between these representations and the earlier approach, i.e., forces acting on a single particle will be made. The importance of flow regimes, particle concentration, particle size and shape, rotation of the particle, effect of solid walls, etc. are discussed. 141 refs.
Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs
Maria Cecilia Bravo
2006-06-30
This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.
Y. Wu
2004-11-01
The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1980-05-02
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Nicole Lautze
2015-01-01
Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report Volume IV Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Nicole Lautze
2015-01-01
Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.
Aoki, Shigehisa; Ikeda, Satoshi; Takezawa, Toshiaki; Kishi, Tomoya; Makino, Junichi; Uchihashi, Kazuyoshi; Matsunobu, Aki; Noguchi, Mitsuru; Sugihara, Hajime; Toda, Shuji
2011-12-16
Highlights: Black-Right-Pointing-Pointer Late-onset peritoneal fibrosis leading to EPS remains to be elucidated. Black-Right-Pointing-Pointer Fluid streaming is a potent factor for peritoneal fibrosis in PD. Black-Right-Pointing-Pointer We focused on the prolonged effect of fluid streaming on mesothelial cell kinetics. Black-Right-Pointing-Pointer A history of fluid streaming exposure promoted mesothelial proliferative activity. Black-Right-Pointing-Pointer We have thus identified a potent new factor for late-onset peritoneal fibrosis. -- Abstract: Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial-mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed
TOUGH Simulations of the Updegraff's Set of Fluid and Heat Flow Problems
Moridis, G.J.; Pruess , K.
1992-11-01
The TOUGH code [Pruess, 1987] for two-phase flow of water, air, and heat in penneable media has been exercised on a suite of test problems originally selected and simulated by C. D. Updegraff [1989]. These include five 'verification' problems for which analytical or numerical solutions are available, and three 'validation' problems that model laboratory fluid and heat flow experiments. All problems could be run without any code modifications (*). Good and efficient numerical performance, as well as accurate results were obtained throughout. Additional code verification and validation problems from the literature are briefly summarized, and suggestions are given for proper applications of TOUGH and related codes.
On fluid flow in a heterogeneous medium under nonisothermal conditions
D.W., Vasco
2010-11-01
An asymptotic technique, valid in the presence of smoothly-varying heterogeneity, provides explicit expressions for the velocity of a propagating pressure and temperature disturbance. The governing equations contain nonlinear terms due to the presence of temperature-dependent coefficients and due to the advection of fluids with differing temperatures. Two cases give well-defined expressions in terms of the parameters of the porous medium: the uncoupled propagation of a pressure disturbance and the propagation of a fully coupled temperature and pressure disturbance. The velocity of the coupled disturbance or front, depends upon the medium parameters and upon the change in temperature and pressure across the front. For uncoupled flow, the semi-analytic expression for the front velocity reduces to that associated with a linear diffusion equation. A comparison of the asymptotic travel time estimates with calculations from a numerical simulator indicates reasonably good agreement for both uncoupled and coupled disturbances.
System and method for bidirectional flow and controlling fluid flow in a conduit
Ortiz, Marcos German
1999-01-01
A system for measuring bidirectional flow, including backflow, of fluid in a conduit. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit.
System and method for bidirectional flow and controlling fluid flow in a conduit
Ortiz, M.G.
1999-03-23
A system for measuring bidirectional flow, including backflow, of fluid in a conduit is disclosed. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit. 3 figs.
Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
EGS Environments | Department of Energy Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments presentation at the April 2013 peer review meeting held in Denver, Colorado. neutrons_peer2013.pdf (1.51 MB) More Documents & Publications Development of a Geological and
de Stadler, M; Chand, K
2007-11-12
Gas centrifuges exhibit very complex flows. Within the centrifuge there is a rarefied region, a transition region, and a region with an extreme density gradient. The flow moves at hypersonic speeds and shock waves are present. However, the flow is subsonic in the axisymmetric plane. The analysis may be simplified by treating the flow as a perturbation of wheel flow. Wheel flow implies that the fluid is moving as a solid body. With the very large pressure gradient, the majority of the fluid is located very close to the rotor wall and moves at an azimuthal velocity proportional to its distance from the rotor wall; there is no slipping in the azimuthal plane. The fluid can be modeled as incompressible and subsonic in the axisymmetric plane. By treating the centrifuge as long, end effects can be appropriately modeled without performing a detailed boundary layer analysis. Onsager's pancake approximation is used to construct a simulation to model fluid flow in a gas centrifuge. The governing 6th order partial differential equation is broken down into an equivalent coupled system of three equations and then solved numerically. In addition to a discussion on the baseline solution, known problems and future work possibilities are presented.
Nearby-fluids equilibria. II. Zonal flows in a high-{beta}, self-organized plasma experiment
Steinhauer, L.C.; Guo, H.Y.
2006-05-15
The field and flow structure observed in a high-{beta} field reversed configuration (FRC) produced in the translation, confinement, and sustainment (TCS) experiment are modeled using the newly developed nearby-fluids equilibrium model. These results are the first evidence that experimental FRCs have complex flows, that is nonrigid rotational flow and poloidal flow, both with maximum speeds nearly half the Alfven speed. The interpretive approach is an innovative 'backwards' method using the nearby-fluids platform for two-fluid equilibria. The most remarkable outcome is the prediction of a poloidal flow structure with significant zonal features. The poloidal flow has never been directly measured in FRCs; thus this discovery results from applying the flowing equilibrium model as an interpretive tool. The poloidal flows explain the unusual toroidal field structure observed in TCS. Zonal features in the rotational flow are also inferred from the unfolding of chord-integrated measurements. The results also indicated that a broad core of the FRC is very close to a minimum energy state.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
scour-tracc-cfd TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computational Fluid Dynamics Overview of CFD: Video Clip with Audio Computational fluid dynamics (CFD) research uses mathematical and computational models of flowing fluids to describe and predict fluid response in problems of interest, such as the flow of air around a moving vehicle or the flow of water and sediment in a river. Coupled with appropriate and prototypical
Scaled Experimental Modeling of VHTR Plenum Flows
ICONE 15
2007-04-01
Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (thermal striping) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.
STRUCTURAL HETEROGENEITIES AND PALEO FLUID FLOW IN AN ANALOG SANDSTONE RESERVOIR 2001-2004
Pollard, David; Aydin, Atilla
2005-02-22
Fractures and faults are brittle structural heterogeneities that can act both as conduits and barriers with respect to fluid flow in rock. This range in the hydraulic effects of fractures and faults greatly complicates the challenges faced by geoscientists working on important problems: from groundwater aquifer and hydrocarbon reservoir management, to subsurface contaminant fate and transport, to underground nuclear waste isolation, to the subsurface sequestration of CO2 produced during fossil-fuel combustion. The research performed under DOE grant DE-FG03-94ER14462 aimed to address these challenges by laying a solid foundation, based on detailed geological mapping, laboratory experiments, and physical process modeling, on which to build our interpretive and predictive capabilities regarding the structure, patterns, and fluid flow properties of fractures and faults in sandstone reservoirs. The material in this final technical report focuses on the period of the investigation from July 1, 2001 to October 31, 2004. The Aztec Sandstone at the Valley of Fire, Nevada, provides an unusually rich natural laboratory in which exposures of joints, shear deformation bands, compaction bands and faults at scales ranging from centimeters to kilometers can be studied in an analog for sandstone aquifers and reservoirs. The suite of structures there has been documented and studied in detail using a combination of low-altitude aerial photography, outcrop-scale mapping and advanced computational analysis. In addition, chemical alteration patterns indicative of multiple paleo fluid flow events have been mapped at outcrop, local and regional scales. The Valley of Fire region has experienced multiple episodes of fluid flow and this is readily evident in the vibrant patterns of chemical alteration from which the Valley of Fire derives its name. We have successfully integrated detailed field and petrographic observation and analysis, process-based mechanical modeling, and numerical
DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 2
Not Available
1992-06-01
The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.
DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 1
Not Available
1992-06-01
The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.
DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 3
Not Available
1992-06-01
The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.
Device and method for measuring fluid flow in a conduit having a gradual bend
Ortiz, M.G.; Boucher, T.J.
1998-11-10
A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Device and method for measuring fluid flow in a conduit having a gradual bend
Ortiz, Marcos German; Boucher, Timothy J
1998-01-01
A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Mutiscale Modeling of Segregation in Granular Flows
Jin Sun
2007-08-03
Modeling and simulation of segregation phenomena in granular flows are investigated. Computational models at different scales ranging from particle level (microscale) to continuum level (macroscale) are employed in order to determine the important microscale physics relevant to macroscale modeling. The capability of a multi-fluid model to capture segregation caused by density difference is demonstrated by simulating grain-chaff biomass flows in a laboratory-scale air column and in a combine harvester. The multi-fluid model treats gas and solid phases as interpenetrating continua in an Eulerian frame. This model is further improved by incorporating particle rotation using kinetic theory for rapid granular flow of slightly frictional spheres. A simplified model is implemented without changing the current kinetic theory framework by introducing an effective coefficient of restitution to account for additional energy dissipation due to frictional collisions. The accuracy of predicting segregation rate in a gas-fluidized bed is improved by the implementation. This result indicates that particle rotation is important microscopic physics to be incorporated into the hydrodynamic model. Segregation of a large particle in a dense granular bed of small particles under vertical. vibration is studied using molecular dynamics simulations. Wall friction is identified as a necessary condition for the segregation. Large-scale force networks bearing larger-than-average forces are found with the presence of wall friction. The role of force networks in assisting rising of the large particle is analyzed. Single-point force distribution and two-point spatial force correlation are computed. The results show the heterogeneity of forces and a short-range correlation. The short correlation length implies that even dense granular flows may admit local constitutive relations. A modified minimum spanning tree (MST) algorithm is developed to asymptotically recover the force statistics in the
Computational fluid dynamic modeling of fluidized-bed polymerization reactors
Rokkam, Ram
2012-01-01
Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.
Two-phase flow modeling with discrete particles
Mortensen, G.A.; Trapp, J.A. |
1992-03-23
The design of efficient heat exchangers in which the working fluid changes phase requires accurate modeling of two-phase fluid flow. The local Navier-Stokes equations form the basic continuum equations for this flow situation. However, the local instantaneous model using these equations is intractable for afl but the simplest problems. AH the practical models for two-phase flow analysis are based on equations that have been averaged over control volumes. These models average out the detailed description within the control volumes and rely on flow regime maps to determine the distribution of the two phases within a control volume. Flow regime maps depend on steady state models and probably are not correct for dynamic models. Numerical simulations of the averaged two-phase flow models are usually performed using a two-fluid Eulerian description for the two phases. Eulerian descriptions have the advantage of having simple boundary conditions, but the disadvantage of introducing numerical diffusion, i.e., sharp interfaces are not maintained as the flow develops, but are diffused. Lagrangian descriptions have the advantage of being able to track sharp interfaces without diffusion, but they have the disadvantage of requiring more complicated boundary conditions. This paper describes a numerical scheme and attendant computer program, DISCON2, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between the intractable local instantaneous and the averaged two-fluid model. This new model uses a combination of an Eulerian and a Lagrangian representation of the two phases. The dispersed particles (bubbles or drops) are modeled individually using a large representative number of particles, each with their own Lagrangian description. The continuous phases (liquid or gas) use an Eulerian description.
Fluid-structure interactions in compressible cavity flows
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Hunter, Patrick S.; Spillers, Russell Wayne; Henfling, John F.; Mayes, Randall L.
2015-06-08
Experiments were performed to understand the complex fluid-structure interactions that occur during aircraft internal store carriage. A cylindrical store was installed in a rectangular cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 to 2.5 and the incoming boundary layer was turbulent. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionallymore » dependent response to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas a spanwise response was observed only occasionally. Also, the streamwise and wall-normal responses were attributed to the longitudinal pressure waves and shear layer vortices known to occur during cavity resonance. Although the spanwise response to cavity tones was limited, broadband pressure fluctuations resulted in significant spanwise accelerations at store natural frequencies. As a result, the largest vibrations occurred when a cavity tone matched a structural natural frequency, although energy was transferred more efficiently to natural frequencies having predominantly streamwise and wall-normal motions.« less
Fluid-structure interactions in compressible cavity flows
Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Hunter, Patrick S.; Spillers, Russell Wayne; Henfling, John F.; Mayes, Randall L.
2015-06-08
Experiments were performed to understand the complex fluid-structure interactions that occur during aircraft internal store carriage. A cylindrical store was installed in a rectangular cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 to 2.5 and the incoming boundary layer was turbulent. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas a spanwise response was observed only occasionally. Also, the streamwise and wall-normal responses were attributed to the longitudinal pressure waves and shear layer vortices known to occur during cavity resonance. Although the spanwise response to cavity tones was limited, broadband pressure fluctuations resulted in significant spanwise accelerations at store natural frequencies. As a result, the largest vibrations occurred when a cavity tone matched a structural natural frequency, although energy was transferred more efficiently to natural frequencies having predominantly streamwise and wall-normal motions.
Othman, M. N. K. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Hazry, D. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Khairunizam, Wan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Shahriman, A. B. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Yaacob, S. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; and others
2014-12-04
This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.
Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation
Tchelepi, Hamdi
2014-11-14
A multiscale linear-solver framework for the pressure equation associated with flow in highly heterogeneous porous formations was developed. The multiscale based approach is cast in a general algebraic form, which facilitates integration of the new scalable linear solver in existing flow simulators. The Algebraic Multiscale Solver (AMS) is employed as a preconditioner within a multi-stage strategy. The formulations investigated include the standard MultiScale Finite-Element (MSFE) andMultiScale Finite-Volume (MSFV) methods. The local-stage solvers include incomplete factorization and the so-called Correction Functions (CF) associated with the MSFV approach. Extensive testing of AMS, as an iterative linear solver, indicate excellent convergence rates and computational scalability. AMS compares favorably with advanced Algebraic MultiGrid (AMG) solvers for highly detailed three-dimensional heterogeneous models. Moreover, AMS is expected to be especially beneficial in solving time-dependent problems of coupled multiphase flow and transport in large-scale subsurface formations.
Tartakovsky, Alexandre M.
2010-06-24
A new Lagrangian particle model based on smoothed particle hydrodynamics (SPH) was developed and used to simulate Darcy scale flow and transport in porous media. The proposed numerical method has excellent conservation properties and treats advection exactly. The method was used in stochastic analysis of miscible density driven fluid flows. It was found that heterogeneity significantly increases dispersion and slows development of Rayleigh-Taylor instability. The presented numerical examples illustrate the advantages of Lagrangian methods for stochastic transport simulations.
Flow Of Mantle Fluids Through The Ductile Lower Crust- Helium...
ratios and active transtensional deformation indicates a deformation-enhanced permeability and that mantle fluids can penetrate the ductile lithosphere, even in regions where...
Multiphase Fluid Flow in Deformable Variable-Aperture Fractures - Final Report
Detwiler, Russell
2014-04-30
Fractures provide flow paths that can potentially lead to fast migration of fluids or contaminants. A number of energy-?related applications involve fluid injections that significantly perturb both the pressures and chemical composition of subsurface fluids. These perturbations can cause both mechanical deformation and chemical alteration of host rocks with potential for significant changes in permeability. In fractured rock subjected to coupled chemical and mechanical stresses, it can be difficult to predict the sign of permeability changes, let alone the magnitude. This project integrated experimental and computational studies to improve mechanistic understanding of these coupled processes and develop and test predictive models and monitoring techniques. The project involved three major components: (1) study of two-?phase flow processes involving mass transfer between phases and dissolution of minerals along fracture surfaces (Detwiler et al., 2009; Detwiler, 2010); (2) study of fracture dissolution in fractures subjected to normal stresses using experimental techniques (Ameli, et al., 2013; Elkhoury et al., 2013; Elkhoury et al., 2014) and newly developed computational models (Ameli, et al., 2014); (3) evaluation of electrical resistivity tomography (ERT) as a method to detect and quantify gas leakage through a fractured caprock (Breen et al., 2012; Lochbuhler et al., 2014). The project provided support for one PhD student (Dr. Pasha Ameli; 2009-?2013) and partially supported a post-?doctoral scholar (Dr. Jean Elkhoury; 2010-?2013). In addition, the project provided supplemental funding to support collaboration with Dr. Charles Carrigan at Lawrence Livermore National Laboratory in connection with (3) and supported one MS student (Stephen Breen; 2011-?2013). Major results from each component of the project include the following: (1) Mineral dissolution in fractures occupied by two fluid phases (e.g., oil-?water or water-?CO{sub 2}) causes changes in local
Fluid Flow and Infiltration in Structured Fibrous Porous Media
Papathanasiou, Thanasis D.
2006-08-09
Present the results of an extensive computational investigation of flow through structured fibrous media.
Method and apparatus for measuring the mass flow rate of a fluid
Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.
2002-01-01
A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.
Marc Cremer; Zumao Chen; Dave Wang; Paul Wolff
2004-06-01
This is the extended second Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts.
Oort, E. van; Hale, A.H.; Mody, F.K.
1995-12-31
Coupled osmotic flows have been studied as a means of stabilising shales exposed to water-based muds. The prime factor that governs the magnitude of chemical osmotic flow, i.e. the shale-fluid membrane efficiency, was investigated in detail. Its dependence on shale parameters, fluid parameters and external conditions was quantified. Membrane efficiency was found to increase with an increase in (hydrated) solute-to-pore-size ratio, with an increase in the shale`s high-surface area clay content and with a decrease shale permeability when increasing effective confining stress. Moreover, new drilling fluid chemistries for improving the efficiencies of low- and non-selective shale-fluid systems were identified. Induced osmotic flow with optimised shale-fluid membrane efficiencies in water-based environments is presented as a new strategy for improving wellbore stability in shales.
Apparatus for irradiating a continuously flowing stream of fluid. [For neutron activation analysis
Speir, L.G.; Adams, E.L.
1982-05-13
An apparatus for irradiating a continuously flowing stream of fluid is disclosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4..pi.. radiation geometry. The irradiation source, for example a /sup 252/Cf neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.
Inhomogeneity of fluid flow in Stirling engine regenerators
Jones, J.D. )
1989-10-01
The literature relating to inhomogeneity of flow regenerators is briefly reviewed. It is noted that, in contrast to other applications of regenerators, relatively little attention has been paid to the consequences of flow inhomogeneity for thermal regeneration in Stirling cycle machines. The construction of regenerator capsules for a large stationary Stirling engine is described. A test rig is developed to measure the gas velocity profile across the face of the packed regenerator capsules under steady flow conditions. Measured flow profiles for a number of different matrix materials and construction techniques are presented, and it is noted that stacked-mesh regenerator matrices tend to display marked inhomogeneities of flow. The consequences of flow inhomogeneity for flow friction and regenerator effectiveness are analyzed theoretically, and approximate formulae deduced. One method for reducing flow inhomogeneity in stacked-screen matrice
IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C...
FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library...
Tracking interface and common curve dynamics for two-fluid flow...
Office of Scientific and Technical Information (OSTI)
Tracking interface and common curve dynamics for two-fluid flow in porous media This content will become publicly available on April 29, 2017 Title: Tracking interface and common ...
Similarity Solution for Multi-Phase Fluid and Heat Flow in Radial Geometry
Energy Science and Technology Software Center (OSTI)
1994-12-02
SIMSOL calculates transient fluid and heat flow for a uniform geologic medium containing water (in both liquid and vapor phases) and air, surrounding a constant-strength linear heat source.
Multi-material incompressible flow simulation using the moment-of-fluid method
Garimella, R V; Schofield, S P; Lowrie, R B; Swartz, B K; Christon, M A; Dyadechko, V
2009-01-01
The Moment-of-Fluid interface reconstruction technique is implemented in a second order accurate, unstructured finite element variable density incompressible Navier-Stokes solver. For flows with multiple materials, MOF significantly outperforms existing first and second order interface reconstruction techniques. For two material flows, the performance of MOF is similar to other interface reconstruction techniques. For strongly driven bouyant flows, the errors in the flow solution dominate and all the interface reconstruction techniques perform similarly.
Temperature distribution in a flowing fluid heated in a microwave resonant cavity
Thomas, J.R. Jr. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Nelson, E.M.; Kares, R.J.; Stringfield, R.M. [Los Alamos National Lab., NM (United States)
1996-04-01
This paper presents results of an analytical study of microwave heating of a fluid flowing through a tube situated along the axis of a cylindrical microwave applicator. The interaction of the microwave field pattern and the fluid velocity profiles is illustrated for both laminar and turbulent flow. Resulting temperature profiles are compared with those generated by conventional heating through a surface heat flux. It is found that microwave heating offers several advantages over conventional heating.
Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Yarom Polsky Oak Ridge National Laboratory Track Name Project Officer: Greg Stillman Total Project Funding: $300K April 23, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research Goals: 1) Develop an experimental capability to image/characterize fluid flow through fractures 2)
Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...
Reservoirs- an Analysis of Tracer-Determined Residence Time Distributions Abstract A methodology for analyzing the internal flow characteristics of a fractured geothermal reservoir...
Use of Geophysical Techniques to Characterize Fluid Flow in a...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Project objectives: Joint inversion of geophysical data for ground water flow imaging; ... More Documents & Publications Time-lapse Joint Inversion of Geophysical Data and its ...
Fracture Network and Fluid Flow Imaging for EGS Applications...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Structure FRAC-STIM: A Physics-Based Fracture Simulation, reservoir Flow and Heat Transport Simulator(aka FALCON) Integration of Noise and Coda Correlation Data into ...
Controls on Fault-Hosted Fluid Flow: Preliminary Results from...
Flow: Preliminary Results from the Coso Geothermal Field, CA Abstract cap rock, permeability, fault, fracture, clay, Coso Authors Davatzes, N.C.; Hickman and S.H. Published...
Tao, Y.B.; He, Y.L.
2010-10-15
A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)
Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream
Cochran, Jr., Henry D.
1978-04-11
This invention relates to an improved method of monitoring the mass flow rate of a substance entering a cocurrent fluid stream. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance.
Computational fluid dynamics modeling of proton exchange membrane fuel cells
UM,SUKKEE; WANG,C.Y.; CHEN,KEN S.
2000-02-11
A transient, multi-dimensional model has been developed to simulate proton exchange membrane (PEM) fuel cells. The model accounts simultaneously for electrochemical kinetics, current distribution, hydrodynamics and multi-component transport. A single set of conservation equations valid for flow channels, gas-diffusion electrodes, catalyst layers and the membrane region are developed and numerically solved using a finite-volume-based computational fluid dynamics (CFD) technique. The numerical model is validated against published experimental data with good agreement. Subsequently, the model is applied to explore hydrogen dilution effects in the anode feed. The predicted polarization cubes under hydrogen dilution conditions are found to be in qualitative agreement with recent experiments reported in the literature. The detailed two-dimensional electrochemical and flow/transport simulations further reveal that in the presence of hydrogen dilution in the fuel stream, hydrogen is depleted at the reaction surface resulting in substantial kinetic polarization and hence a lower current density that is limited by hydrogen transport from the fuel stream to the reaction site.
Multiscale modeling for fluid transport in nanosystems.
Lee, Jonathan W.; Jones, Reese E.; Mandadapu, Kranthi Kiran; Templeton, Jeremy Alan; Zimmerman, Jonathan A.
2013-09-01
Atomistic-scale behavior drives performance in many micro- and nano-fluidic systems, such as mircrofludic mixers and electrical energy storage devices. Bringing this information into the traditionally continuum models used for engineering analysis has proved challenging. This work describes one such approach to address this issue by developing atomistic-to-continuum multi scale and multi physics methods to enable molecular dynamics (MD) representations of atoms to incorporated into continuum simulations. Coupling is achieved by imposing constraints based on fluxes of conserved quantities between the two regions described by one of these models. The impact of electric fields and surface charges are also critical, hence, methodologies to extend finite-element (FE) MD electric field solvers have been derived to account for these effects. Finally, the continuum description can have inconsistencies with the coarse-grained MD dynamics, so FE equations based on MD statistics were derived to facilitate the multi scale coupling. Examples are shown relevant to nanofluidic systems, such as pore flow, Couette flow, and electric double layer.
A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing
Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.; Gore, R. A.; Ristorcelli, J. R.
2015-09-08
A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales, as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.
Kim, Jihoon; Um, Evan; Moridis, George
2014-12-01
We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostly filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow
Ortiz, M.G.; Boucher, T.J.
1998-10-27
A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Ortiz, Marcos German; Boucher, Timothy J.
1998-01-01
A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Grossman, S.A.; Trump, D.L.; Chen, D.C.; Thompson, G.; Camargo, E.E.
1982-11-01
Cerebrospinal fluid flow dynamics were evaluated by /sup 111/In-diethylenetriamine pentaacetic acid (/sup 111/In-DTPA) ventriculography in 27 patients with neoplastic meningitis. Nineteen patients (70 percent) had evidence of cerebrospinal fluid flow disturbances. These occurred as ventricular outlet obstructions, abnormalities of flow in the spinal canal, or flow distrubances over the cortical convexities. Tumor histology, physical examination, cerebrospinal fluid analysis, myelograms, and computerized axial tomographic scans were not sufficient to predict cerebrospinal fluid flow patterns. These data indicate that cerebrospinal fluid flow abnormalities are common in patients with neoplastic meningitis and that /sup 111/In-DTPA cerebrospinal fluid flow imaging is useful in characterizing these abnormalities. This technique provides insight into the distribution of intraventricularly administered chemotherapy and may provide explanations for treatment failure and drug-induced neurotoxicity in patients with neoplastic meningitis.
Computational Methods for Analyzing Fluid Flow Dynamics from Digital Imagery
Luttman, A.
2012-03-30
The main goal (long term) of this work is to perform computational dynamics analysis and quantify uncertainty from vector fields computed directly from measured data. Global analysis based on observed spatiotemporal evolution is performed by objective function based on expected physics and informed scientific priors, variational optimization to compute vector fields from measured data, and transport analysis proceeding with observations and priors. A mathematical formulation for computing flow fields is set up for computing the minimizer for the problem. An application to oceanic flow based on sea surface temperature is presented.
U-Sr isotopic speedometer: Fluid flow and chemical weatheringrates inaquifers
Maher, Kate; DePaolo, Donald J.; Christensen, John N.
2005-12-27
Both chemical weathering rates and fluid flow are difficultto measure in natural systems. However, these parameters are critical forunderstanding the hydrochemical evolution of aquifers, predicting thefate and transport of contaminants, and for water resources/water qualityconsiderations. 87Sr/86Sr and (234U/238U) activity ratios are sensitiveindicators of water-rock interaction, and thus provide a means ofquantifying both flow and reactivity. The 87Sr/86Sr values in groundwaters are controlled by the ratio of the dissolution rate to the flowrate. Similarly, the (234U/238U) ratio of natural ground waters is abalance between the flow rate and the dissolution of solids, andalpha-recoil loss of 234U from the solids. By coupling these two isotopesystems it is possible to constrain both the long-term (ca. 100's to1000's of years) flow rate and bulk dissolution rate along the flow path.Previous estimates of the ratio of the dissolution rate to theinfiltration flux from Sr isotopes (87Sr/86Sr) are combined with a modelfor (234U/238U) to constrain the infiltration flux and dissolution ratefor a 70-m deep vadose zone core from Hanford, Washington. The coupledmodel for both (234U/238U) ratios and the 87Sr/86Sr data suggests aninfiltration flux of 5+-2 mm/yr, and bulk silicate dissolution ratesbetween 10-15.7 and 10-16.5 mol/m2/s. The process of alpha-recoilenrichment, while primarily responsible for the observed variation in(234U/238U) of natural systems, is difficult to quantify. However, therate of this process in natural systems affects the interpretation ofmost U-series data. Models for quantifying the alpha-recoil loss fractionbased on geometric predictions, surface area constraints, and chemicalmethods are also presented. The agreement between the chemical andtheoretical methods, such as direct measurement of (234U/238U) of thesmall grain size fraction and geometric calculations for that sizefraction, is quite good.
Modelling of multiphase flow in ironmaking blast furnace
Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P.
2009-01-15
A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.
Stochastic models for turbulent reacting flows
Kerstein, A.
1993-12-01
The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.
Magnetohydrodynamic pump with a system for promoting flow of fluid in one direction
Lemoff, Asuncion V.; Lee, Abraham P.
2010-07-13
A magnetohydrodynamic pump for pumping a fluid. The pump includes a microfluidic channel for channeling the fluid, a MHD electrode/magnet system operatively connected to the microfluidic channel, and a system for promoting flow of the fluid in one direction in the microfluidic channel. The pump has uses in the medical and biotechnology industries for blood-cell-separation equipment, biochemical assays, chemical synthesis, genetic analysis, drug screening, an array of antigen-antibody reactions, combinatorial chemistry, drug testing, medical and biological diagnostics, and combinatorial chemistry. The pump also has uses in electrochromatography, surface micromachining, laser ablation, inkjet printers, and mechanical micromilling.
Hamel, William R.
1984-01-01
This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.
Computational Fluid Dynamics Modeling of Diesel Engine Combustion and
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Emissions | Department of Energy Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_reitz.pdf (682.47 KB) More Documents & Publications Experiments and Modeling of Two-Stage Combustion in Low-Emissions Diesel Engines Comparison of Conventional Diesel and Reactivity Controlled Compression
Dynamics of a confined dusty fluid in a sheared ion flow
Laishram, Modhuchandra; Sharma, Devendra; Kaw, Predhiman K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2014-07-15
Dynamics of an isothermally driven dust fluid is analyzed which is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in equilibrium with an unconfined sheared flow of a streaming plasma. Cases are analyzed where the confining potential constitutes a barrier for the driven fluid, limiting its spatial extension and boundary velocity. The boundary effects entering the formulation are characterized by applying the appropriate boundary conditions and a range of solutions exhibiting single and multiple vortex are obtained. The equilibrium solutions considered in the cylindrical setup feature a transition from single to multiple vortex state of the driven flow. Effects of (i) the variation in dust viscosity, (ii) coupling between the driving and the driven fluid, and (iii) a friction determining the equilibrium dynamics of the driven system are characterized.
Flow of mantle fluids through the ductile lower crust: Heliumisotope trends
Kennedy, B. Mack; van Soest, Matthijs C.
2007-10-07
Heat and mass are injected into the shallow crust when mantle fluids are able to flow through the ductile lower crust. Minimum 3He/4He ratios in surface fluids from the northern Basin and Range province, western North America increase systematically from low, crustal values in the east to high, mantle values in the west, a regional trend that correlates with the rates of active crustal deformation. The highest ratios occur where the extension and shear strain rates are greatest. The correspondence of helium isotope ratios and active trans-tensional deformation indicates a deformation enhanced permeability and that mantle fluids can penetrate the ductile lithosphere in regions even where there is no significant magmatism. Superimposed on the regional trend are local, high-{sup 3}He/{sup 4}He anomalies signifying hidden magmatic activity and/or deep fluid production with locally enhanced permeability, identifying zones with high resource potential, particularly for geothermal energy development.
West Maui Groundwater Flow Model
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Nicole Lautze
2015-01-01
Groundwater flow model for West Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report Volume V Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.
East Maui Groundwater Flow Model
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Nicole Lautze
2015-01-01
Groundwater flow model for East Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.
Hawaii Island Groundwater Flow Model
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Nicole Lautze
2015-01-01
Groundwater flow model for Hawaii Island. Data is from the following sources: Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume II – Island of Hawaii Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008; and Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.
West Maui Groundwater Flow Model
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Nicole Lautze
2015-01-01
Groundwater flow model for West Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, M.G.
1998-02-10
A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, Marcos German
1998-01-01
A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Gen Purpose 1-D Finite Element Network Fluid Flow Heat Transfer System Simulator
Energy Science and Technology Software Center (OSTI)
1993-08-02
SAFSIM (System Analysis Flow Simulator) is a FORTRAN computer program to simulate the integrated performance of systems involving fluid mechanics, heat transfer, and reactor dynamics. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a one-dimensional finite element fluid mechanicsmore » module with multiple flow network capability; (2) a one-dimensional finite element structure heat transfer module with multiple convection and radiation exchange capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems.« less
Armstrong, William D.; Naughton, Jonathan; Lindberg, William R.
2008-09-02
A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.
Non-Invasive Characterization Of A Flowing Multi-Phase Fluid Using Ultrasonic Interferometry
Sinha, Dipen N.
2005-11-01
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
SALE: a simplified ALE computer program for fluid flow at all speeds
Amsden, A.A.; Ruppel, H.M.; Hirt, C.W.
1980-06-01
A simplified numerical fluid-dynamics computing technique is presented for calculating two-dimensional fluid flows at all speeds. It combines an implicit treatment of the pressure equation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique with the grid rezoning philosophy of the Arbitrary Lagrangian-Eulerian (ALE) method. As a result, it can handle flow speeds from supersonic to the incompressible limit in a grid that may be moved with the fluid in typical Lagrangian fashion, or held fixed in an Eulerian manner, or moved in some arbitrary way to give a continuous rezoning capability. The report describes the combined (ICEd-ALE) technique in the framework of the SALE (Simplified ALE) computer program, for which a general flow diagram and complete FORTRAN listing are included. A set of sample problems show how to use or modify the basic code for a variety of applications. Numerical listings are provided for a sample problem run with the SALE program.
A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.; Gore, R. A.; Ristorcelli, J. R.
2015-09-08
A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales,more » as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.« less
Scalability of preconditioners as a strategy for parallel computation of compressible fluid flow
Hansen, G.A.
1996-05-01
Parallel implementations of a Newton-Krylov-Schwarz algorithm are used to solve a model problem representing low Mach number compressible fluid flow over a backward-facing step. The Mach number is specifically selected to result in a numerically {open_quote}stiff{close_quotes} matrix problem, based on an implicit finite volume discretization of the compressible 2D Navier-Stokes/energy equations using primitive variables. Newton`s method is used to linearize the discrete system, and a preconditioned Krylov projection technique is used to solve the resulting linear system. Domain decomposition enables the development of a global preconditioner via the parallel construction of contributions derived from subdomains. Formation of the global preconditioner is based upon additive and multiplicative Schwarz algorithms, with and without subdomain overlap. The degree of parallelism of this technique is further enhanced with the use of a matrix-free approximation for the Jacobian used in the Krylov technique (in this case, GMRES(k)). Of paramount interest to this study is the implementation and optimization of these techniques on parallel shared-memory hardware, namely the Cray C90 and SGI Challenge architectures. These architectures were chosen as representative and commonly available to researchers interested in the solution of problems of this type. The Newton-Krylov-Schwarz solution technique is increasingly being investigated for computational fluid dynamics (CFD) applications due to the advantages of full coupling of all variables and equations, rapid non-linear convergence, and moderate memory requirements. A parallel version of this method that scales effectively on the above architectures would be extremely attractive to practitioners, resulting in efficient, cost-effective, parallel solutions exhibiting the benefits of the solution technique.
Viscous quark-gluon plasma model through fluid QCD approach
Djun, T. P.; Soegijono, B.; Mart, T.; Handoko, L. T. E-mail: Laksana.tri.handoko@lipi.go.id
2014-09-25
A Lagrangian density for viscous quark-gluon plasma has been constructed within the fluid-like QCD framework. Gauge symmetry is preserved for all terms inside the Lagrangian, except for the viscous term. The transition mechanism from point particle field to fluid field, and vice versa, are discussed. The energy momentum tensor that is relevant to the gluonic plasma having the nature of fluid bulk of gluon sea is derived within the model. By imposing conservation law in the energy momentum tensor, shear viscosity appears as extractable from the equation.
Site-Scale Saturated Zone Flow Model
G. Zyvoloski
2003-12-17
The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being
Nelson, John Stuart; Milner, Thomas Edward; Chen, Zhongping
1999-01-01
Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.
Energy flow in passive and active 3D cochlear model
Wang, Yanli; Steele, Charles; Puria, Sunil
2015-12-31
Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.
Shock Desensitization Experiments and Reactive Flow Modeling...
Office of Scientific and Technical Information (OSTI)
Shock Desensitization Experiments and Reactive Flow Modeling on Self-Sustaining LX-17 Detonation Waves Citation Details In-Document Search Title: Shock Desensitization Experiments ...
Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed
Zhongyi Deng; Rui Xiao; Baosheng Jin; He Huang; Laihong Shen; Qilei Song; Qianjun Li
2008-05-15
Computational fluid dynamics (CFD) modeling, which has recently proven to be an effective means of analysis and optimization of energy-conversion processes, has been extended to coal gasification in this paper. A 3D mathematical model has been developed to simulate the coal gasification process in a pressurized spout-fluid bed. This CFD model is composed of gas-solid hydrodynamics, coal pyrolysis, char gasification, and gas phase reaction submodels. The rates of heterogeneous reactions are determined by combining Arrhenius rate and diffusion rate. The homogeneous reactions of gas phase can be treated as secondary reactions. A comparison of the calculated and experimental data shows that most gasification performance parameters can be predicted accurately. This good agreement indicates that CFD modeling can be used for complex fluidized beds coal gasification processes. 37 refs., 7 figs., 5 tabs.
Xu, Ben; Li, Peiwen; Waller, Peter; Huesemann, Michael H.
2015-02-27
This paper analyzes and evaluates the flow mixing in an open channel algal raceway for biofuel production. The flow mixing governs the frequency of how algae cells are exposed to sunlight, due to the fluid movement between the surface and the bottom of the algal raceway, thereby affecting algal growth rate. In this work, we investigated the flow mixing performance in a table-sized model of the High Velocity Algae Raceway Integrated Design (ARID-HV). Various geometries of the raceway channels and dams were considered in both the CFD analysis and experimental flowvisualization. In the CFD simulation, the pathlines of fluid particleswere analyzed to obtain the distribution of the number of times that particles passed across a critical water depth, Dc, defined as a cycle count. In addition, the distribution of the time period fraction that the fluid particles stayed in the zones above and below Dc was recorded. Such information was used to evaluate the flow mixing in the raceway. The CFD evaluation of the flow mixing was validated using experimental flow visualization, which showed a good qualitative agreement with the numerical results. In conclusion, this CFD-based evaluation methodology is recommended for flow field optimization for open channel algal raceways, as well as for other engineering applications in which flow mixing is an important concern.
Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Reservoir; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Reservoir; 2010 Geothermal Technology Program Peer Review Report Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review reservoir_029_revil.pdf (195.46 KB) More Documents & Publications Detection and Characterization of Natural and Induced Fractures for the
Marc Cremer; Dave Wang; Connie Senior; Andrew Chiodo; Steven Hardy; Paul Wolff
2005-07-01
This is the Final Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project was to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. The focus of this project was to quantify the potential impacts of ''fine level'' controls rather than that of ''coarse level'' controls (i.e. combustion tuning). Although it is well accepted that combustion tuning will generally improve efficiency and emissions of an ''out of tune'' boiler, it is not as well understood what benefits can be derived through active multiburner measurement and control systems in boiler that has coarse level controls. The approach used here was to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner air and fuel flow rates. The Electric Power Research Institute (EPRI) provided co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center have been active participants in this project. CFD simulations were completed for five coal fired boilers as planned: (1) 150 MW wall fired, (2) 500 MW opposed wall fired, (3) 600 MW T-Fired, (4) 330 MW cyclone-fired, and (5) 200 MW T-Fired Twin Furnace. In all cases, the unit selections were made in order to represent units that were descriptive of the utility industry as a whole. For each unit, between 25 and 44 furnace simulations were completed in order to evaluate impacts of burner to burner variations in: (1) coal and primary air flow rate, and (2) secondary air flow rate. The parametric matrices of cases that were completed were
Approximate Model for Turbulent Stagnation Point Flow.
Dechant, Lawrence
2016-01-01
Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.
Doughty, C.; Pruess, K.
1991-06-01
Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.
Thermodynamic micellization model of asphaltene precipitation from petroleum fluids
Victorov, A.I.; Firoozabadi, A.
1996-06-01
A thermodynamic micellization model is proposed for the description of asphaltene precipitation from petroleum fluids. It describes the solubilization of asphaltene polar species by resin bipolar molecules in the micelles. A simple form of the standard Gibbs free energy of micellization is used. The petroleum fluid is assumed to be a dilute solution with respect to the monomeric asphaltenes, resins, and micelles. The Peng-Robinson equation of state (PR-EOS) is applied to describe the fugacity of monomeric asphaltene in the bulk of the petroleum fluid. Intermicellar interactions as well as osmotic pressure effects are neglected. The proposed model shows promising results to describe asphaltene deposition from crude mixtures. It predicts the change in precipitation power of different alkane precipitants and the effect of pressure on asphaltene precipitation. The amount and the onset of predicted asphaltene precipitation are sensitive to the amount of resins in the crude. All these results are in line with laboratory observations and oil-field data.
Donald M. McEligot; Stefan Becker; Hugh M. McIlroy, Jr.
2010-07-01
In recent international collaboration, INL and Uni. Erlangen have developed large MIR flow systems which can be ideal for joint graduate student education and research. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The MIR technique is not new itself; others employed it earlier. The innovation of these MIR systems is their large size relative to previous experiments, yielding improved spatial and temporal resolution. This report will discuss the benefits of the technique, characteristics of the systems and some examples of their applications to complex situations. Typically their experiments have provided new fundamental understanding plus benchmark data for assessment and possible validation of computational thermal fluid dynamic codes.
Fakcharoenphol, Perapon; Xiong, Yi; Hu, Litang; Winterfeld, Philip H.; Xu, Tianfu; Wu, Yu-Shu
2013-05-01
TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transport calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.
Boles, James
2013-05-24
Our study targets recent (Plio-Pleistocene) faults and young (Tertiary) petroleum fields in southern California. Faults include the Refugio Fault in the Transverse Ranges, the Ellwood Fault in the Santa Barbara Channel, and most recently the Newport- Inglewood in the Los Angeles Basin. Subsurface core and tubing scale samples, outcrop samples, well logs, reservoir properties, pore pressures, fluid compositions, and published structural-seismic sections have been used to characterize the tectonic/diagenetic history of the faults. As part of the effort to understand the diagenetic processes within these fault zones, we have studied analogous processes of rapid carbonate precipitation (scaling) in petroleum reservoir tubing and manmade tunnels. From this, we have identified geochemical signatures in carbonate that characterize rapid CO2 degassing. These data provide constraints for finite element models that predict fluid pressures, multiphase flow patterns, rates and patterns of deformation, subsurface temperatures and heat flow, and geochemistry associated with large fault systems.
State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems
Lyczkowski, R.W.; Bouillard, J.X.; Ding, J.; Chang, S.L.; Burge, S.W.
1994-05-12
As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBRS) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBRs and pneumatic and slurry components are computed by ANL`s EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.
Obied Allah, M. H.
2013-04-15
In this work, a viscous potential flow analysis is used to investigate capillary surface waves between two horizontal finite fluid layers. The two layers have finite conductivities and admit mass and heat transfer. A general dispersion relation is derived. The presence of finite conductivities together with the dielectric permeabilities makes the horizontal electric field play a dual role in the stability criterion. The phenomenon of negative viscosity is observed. A new growth rate parameter, depending on the kinematical viscosity of the lower fluid layer, is found and has a stabilizing effect on the unstable modes. The growth rates and neutral stability curve are given and applied to air-water interface. The effects of various parameters are discussed for the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities.
Multiphase flow modeling based on the hyperbolic thermodynamically compatible systems theory
Romenski, E.
2015-03-10
An application of the theory of thermodynamically compatible hyperbolic systems to design a multiphase compressible flow models is discussed. With the use of such approach the governing equations are derived from the first principles, formulated in a divergent form and can be transformed to a symmetric hyperbolic system in the sense of Friedrichs. A usage of the proposed approach is described for the development of multiphase compressible fluid models, including two-phase flow models.
Rutqvist, J.
2010-06-01
This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC{sup 3D} geomechanical simulator. The most significant new TOUGH-FLAC development in the past few years is a revised architecture, enabling a more rigorous and tight coupling procedure with improved computational efficiency. The applications presented in this paper are related to modeling of crustal deformations caused by deep underground fluid movements and pressure changes as a result of both industrial activities (the In Salah CO{sub 2} Storage Project and the Geysers Geothermal Field) and natural events (the 1960s Matsushiro Earthquake Swarm). Finally, the paper provides some perspectives on the future of TOUGH-FLAC in light of its applicability to practical problems and the need for high-performance computing capabilities for field-scale problems, such as industrial-scale CO{sub 2} storage and enhanced geothermal systems. It is concluded that despite some limitations to fully adapting a commercial code such as FLAC{sup 3D} for some specialized research and computational needs, TOUGH-FLAC is likely to remain a pragmatic simulation approach, with an increasing number of users in both academia and industry.
Direct numerical simulations of fluid flow, heat transfer and phase changes
Juric, D.; Tryggvason, G.; Han, J.
1997-04-01
Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.
The Properties of Confined Water and Fluid Flow at the Nanoscale
Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G
2009-03-09
This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.
A Landau fluid model for dissipative trapped electron modes
Hedrick, C.L.; Leboeuf, J.N.; Sidikman, K.L.
1995-09-01
A Landau fluid model for dissipative trapped electron modes is developed which focuses on an improved description of the ion dynamics. The model is simple enough to allow nonlinear calculations with many harmonics for the times necessary to reach saturation. The model is motivated by a discussion that starts with the gyro-kinetic equation and emphasizes the importance of simultaneously including particular features of magnetic drift resonance, shear, and Landau effects. To ensure that these features are simultaneously incorporated in a Landau fluid model with only two evolution equations, a new approach to determining the closure coefficients is employed. The effect of this technique is to reduce the matching of fluid and kinetic responses to a single variable, rather than two, and to allow focusing on essential features of the fluctuations in question, rather than features that are only important for other types of fluctuations. Radially resolved nonlinear calculations of this model, advanced in time to reach saturation, are presented to partially illustrate its intended use. These calculations have a large number of poloidal and toroidal harmonics to represent the nonlinear dynamics in a converged steady state which includes cascading of energy to both short and long wavelengths.
A computational model for thermal fluid design analysis of nuclear thermal rockets
Given, J.A.; Anghaie, S.
1997-01-01
A computational model for simulation and design analysis of nuclear thermal propulsion systems has been developed. The model simulates a full-topping expander cycle engine system and the thermofluid dynamics of the core coolant flow, accounting for the real gas properties of the hydrogen propellant/coolant throughout the system. Core thermofluid studies reveal that near-wall heat transfer models currently available may not be applicable to conditions encountered within some nuclear rocket cores. Additionally, the possibility of a core thermal fluid instability at low mass fluxes and the effects of the core power distribution are investigated. Results indicate that for tubular core coolant channels, thermal fluid instability is not an issue within the possible range of operating conditions in these systems. Findings also show the advantages of having a nonflat centrally peaking axial core power profile from a fluid dynamic standpoint. The effects of rocket operating conditions on system performance are also investigated. Results show that high temperature and low pressure operation is limited by core structural considerations, while low temperature and high pressure operation is limited by system performance constraints. The utility of these programs for finding these operational limits, optimum operating conditions, and thermal fluid effects is demonstrated.
Fuel cell assembly fluid flow plate having conductive fibers and rigidizing material therein
Walsh, Michael M.
2000-01-01
A fluid flow plate is preferably formed with three initial sections, for instance, two layers of conductive (e.g., metal) fibers and a barrier material (e.g., metal foil) which is interposed between the two layers. For example, sintering of these three sections can provide electrical path(s) between outer faces of the two layers. Then, the sintered sections can be, for instance, placed in a mold for forming of flow channel(s) into one or more of the outer faces. Next, rigidizing material (e.g., resin) can be injected into the mold, for example, to fill and/or seal space(s) about a conductive matrix of the electrical path(s). Preferably, abrading of surface(s) of the outer face(s) serves to expose electrical contact(s) to the electrical path(s).
Dr. Chenn Zhou
2008-10-15
Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.
Potential Hydraulic Modelling Errors Associated with Rheological Data Extrapolation in Laminar Flow
Shadday, Martin A., Jr.
1997-03-20
The potential errors associated with the modelling of flows of non-Newtonian slurries through pipes, due to inadequate rheological models and extrapolation outside of the ranges of data bases, are demonstrated. The behaviors of both dilatant and pseudoplastic fluids with yield stresses, and the errors associated with treating them as Bingham plastics, are investigated.
Paul Meakin; Zhijie Xu
2008-06-01
Particle methods are much less computationally efficient than grid based numerical solution of the Navier Stokes equation, and they have been used much less extensively, particularly for engineering applications. However, they have important advantages for some applications. These advantages include rigorous mast conservation, momentum conservation and isotropy. In addition, there is no need for explicit interface tracking/capturing. Code development effort is relatively low, and it is relatively simple to simulate flows with moving boundaries. In addition, it is often quite easy to include coupling of fluid flow with other physical phenomena such a phase separation. Here we describe the application of three particle methods: molecular dynamics, dissipative particle dynamics and smoothed particle hydrodynamics. While these methods were developed to simulate fluids and other materials on three quite different scales the molecular, meso and continuum scales, they are very closely related from a computational point of view. The mesoscale (between the molecular and continuum scales) dissipative particle dynamics method can be used to simulate systems that are too large to simulate using molecular dynamics but small enough for thermal fluctuations to play an important role. Important examples include polymer solutions, gels, small particle suspensions and membranes. In these applications inter particle and intra molecular hydrodynamic interactions are automatically included
PROBABILISTIC SIMULATION OF SUBSURFACE FLUID FLOW: A STUDY USING A NUMERICAL SCHEME
Buscheck, Timothy Eric
1980-03-01
There has been an increasing interest in probabilistic modeling of hydrogeologic systems. The classical approach to groundwater modeling has been deterministic in nature, where individual layers and formations are assumed to be uniformly homogeneous. Even in the case of complex heterogeneous systems, the heterogeneities describe the differences in parameter values between various layers, but not within any individual layer. In a deterministic model a single-number is assigned to each hydrogeologic parameter, given a particular scale of interest. However, physically there is no such entity as a truly uniform and homogeneous unit. Single-number representations or deterministic predictions are subject to uncertainties. The approach used in this work models such uncertainties with probabilistic parameters. The resulting statistical distributions of output variables are analyzed. A numerical algorithm, based on axiomatic principles of probability theory, performs arithmetic operations between probability distributions. Two subroutines are developed from the algorithm and incorporated into the computer program TERZAGI, which solves groundwater flow problems in saturated, multi-dimensional systems. The probabilistic computer program is given the name, PROGRES. The algorithm has been applied to study the following problems: one-dimensional flow through homogeneous media, steady-state and transient flow conditions, one-dimensional flow through heterogeneous media, steady-state and transient flow conditions, and two-dimensional steady-stte flow through heterogeneous media. The results are compared with those available in the literature.
Mukhopadhyay, Sumit; Tsang, Yvonne W.
2008-08-01
Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper [Mukhopadhyay et al., 2008], we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks.
Modeling interfacial area transport in multi-fluid systems
Yarbro, S.L.
1996-11-01
Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.
Xiong, Yi; Fakcharoenphol, Perapon; Wang, Shihao; Winterfeld, Philip H.; Zhang, Keni; Wu, Yu-Shu
2013-12-01
TOUGH2-EGS-MP is a parallel numerical simulation program coupling geomechanics with fluid and heat flow in fractured and porous media, and is applicable for simulation of enhanced geothermal systems (EGS). TOUGH2-EGS-MP is based on the TOUGH2-MP code, the massively parallel version of TOUGH2. In TOUGH2-EGS-MP, the fully-coupled flow-geomechanics model is developed from linear elastic theory for thermo-poro-elastic systems and is formulated in terms of mean normal stress as well as pore pressure and temperature. Reservoir rock properties such as porosity and permeability depend on rock deformation, and the relationships between these two, obtained from poro-elasticity theories and empirical correlations, are incorporated into the simulation. This report provides the user with detailed information on the TOUGH2-EGS-MP mathematical model and instructions for using it for Thermal-Hydrological-Mechanical (THM) simulations. The mathematical model includes the fluid and heat flow equations, geomechanical equation, and discretization of those equations. In addition, the parallel aspects of the code, such as domain partitioning and communication between processors, are also included. Although TOUGH2-EGS-MP has the capability for simulating fluid and heat flows coupled with geomechanical effects, it is up to the user to select the specific coupling process, such as THM or only TH, in a simulation. There are several example problems illustrating applications of this program. These example problems are described in detail and their input data are presented. Their results demonstrate that this program can be used for field-scale geothermal reservoir simulation in porous and fractured media with fluid and heat flow coupled with geomechanical effects.
Charge flow model for atomic ordering in nonisovalent alloys...
Office of Scientific and Technical Information (OSTI)
Charge flow model for atomic ordering in nonisovalent alloys Title: Charge flow model for atomic ordering in nonisovalent alloys Authors: Wang, Shuzhi ; Wang, Lin-Wang Publication ...
Review and selection of unsaturated flow models
Reeves, M.; Baker, N.A.; Duguid, J.O.
1994-04-04
Since the 1960`s, ground-water flow models have been used for analysis of water resources problems. In the 1970`s, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970`s and well into the 1980`s focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M&O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing.
A Multidimensional Eulerian Model for Simulating Gas-Solids Flow
Energy Science and Technology Software Center (OSTI)
1993-12-13
FORCE2 is a fundamentally based three-dimensional numerical model for simulating fluid-bed hydrodynamics for a wide range of fluid beds, from laboratory to plant scale. It is based upon the ''two-fluid'' modeling approach and includes surface permeabilities, volume porosities, and distributed resistances.
A model for transonic plasma flow
Guazzotto, Luca; Hameiri, Eliezer
2014-02-15
A linear, two-dimensional model of a transonic plasma flow in equilibrium is constructed and given an explicit solution in the form of a complex Laplace integral. The solution indicates that the transonic state can be solved as an elliptic boundary value problem, as is done in the numerical code FLOW [Guazzotto et al., Phys. Plasmas 11, 604 (2004)]. Moreover, the presence of a hyperbolic region does not necessarily imply the presence of a discontinuity or any other singularity of the solution.
Lopez, A.R.; Gritzo, L.A.; Hassan, B.
1997-06-01
For the purposes of designing improved Halon-alternative fire suppression strategies for aircraft applications, Computational Fluid Dynamics (CFD) simulations of the air flow, suppressant transport, and air-suppressant mixing within an uncluttered F18 engine nacelle were performed. The release of inert gases from a Solid Propellant Gas Generator (SPGG) was analyzed at two different injection locations in order to understand the effect of injection position on the flow patterns and the mixing of air and suppression agent. An uncluttered engine nacelle was simulated to provide insight into the global flow features as well as to promote comparisons with previous nacelle fire tests and recent water tunnel tests which included little or no clutter. Oxygen concentration levels, fuel/air residence times that would exist if a small fuel leak were present, velocity contours, and streamline patterns are presented inside the engine nacelle. The numerical results show the influence of the gent release location on regions of potential flame extinction due to oxygen inerting and high flame strain. The occurrence of inflow through the exhaust ducts on the aft end of the nacelle is also predicted. As expected, the predicted oxygen concentration levels were consistently higher than the measured levels since a fire was not modeled in this analysis. Despite differences in the conditions of these simulations and the experiments, good agreement was obtained between the CFD predictions and the experimental measurements.
Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry
Hassan, T.A.
1992-12-01
The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.
Wind Turbine Modeling for Computational Fluid Dynamics: December 2010 - December 2012
Tossas, L. A. M.; Leonardi, S.
2013-07-01
With the shortage of fossil fuel and the increasing environmental awareness, wind energy is becoming more and more important. As the market for wind energy grows, wind turbines and wind farms are becoming larger. Current utility-scale turbines extend a significant distance into the atmospheric boundary layer. Therefore, the interaction between the atmospheric boundary layer and the turbines and their wakes needs to be better understood. The turbulent wakes of upstream turbines affect the flow field of the turbines behind them, decreasing power production and increasing mechanical loading. With a better understanding of this type of flow, wind farm developers could plan better-performing, less maintenance-intensive wind farms. Simulating this flow using computational fluid dynamics is one important way to gain a better understanding of wind farm flows. In this study, we compare the performance of actuator disc and actuator line models in producing wind turbine wakes and the wake-turbine interaction between multiple turbines. We also examine parameters that affect the performance of these models, such as grid resolution, the use of a tip-loss correction, and the way in which the turbine force is projected onto the flow field.