Powered by Deep Web Technologies
Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fluid Flow Modeling in Fractures  

E-Print Network (OSTI)

In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...

Sarkar, Sudipta

2004-01-01T23:59:59.000Z

2

Fluid flow and solute transport modeling with lattice Boltzmann models  

E-Print Network (OSTI)

Fluid flow and solute transport modeling with lattice Boltzmann models Ph.D. Proposal: Shadab Anwar with solute transport and fluid flow modeling in porous media using lattice Boltzmann model (LBM). LBM

Sukop, Mike

3

Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Detection and Characterization of Natural...

4

Monitoring and Modeling Fluid Flow in a Developing EGS  

Energy.gov (U.S. Department of Energy (DOE))

Monitoring and Modeling Fluid Flow in a Developing EGS presentation at the April 2013 peer review meeting held in Denver, Colorado.

5

Fluid Flow Model Development for Representative Geologic Media | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Clay and granitic geologic rock units are potential host media for future repositories for used nuclear fuel and high level waste. This report addresses the representation of flow in these two media within numerical process models. Discrete fracture network (DFNs) models are an approach to representing flow in fractured granite that explicitly represents the geometry and flow properties of individual fractures. New DFN generation and computational grid generation methods have been developed and tested. Mesh generation and the generation of flow streamlines within the DFN are also included. Traditional form of Darcy's law is not adequate

6

Can We Accurately Model Fluid Flow in Shale?  

NLE Websites -- All DOE Office Websites (Extended Search)

Can We Accurately Model Fluid Flow Can We Accurately Model Fluid Flow in Shale? Can We Accurately Model Fluid Flow in Shale? Print Thursday, 03 January 2013 00:00 Over 20 trillion cubic meters of natural gas are trapped in shale, but many shale oil and gas producers still use models of underground fluid flow that date back to the heyday of easy-to-tap gas and liquid crude. The source of shale oil and gas is kerogen, an organic material in the shale, but until now kerogen hasn't been incorporated in mathematical models of shale gas reservoirs. Paulo Monteiro, Chris Rycroft, and Grigory Isaakovich Barenblatt, with the Computational Research Division and the Advanced Light Source, recently modeled how pressure gradients in the boundary layer between kerogen inclusions and shale matrices affect productivity and can model reservoir longevity.

7

A preliminary study to Assess Model Uncertainties in Fluid Flows  

SciTech Connect

The goal of this study is to assess the impact of various flow models for a simplified primary coolant loop of a light water nuclear reactor. The various fluid flow models are based on the Euler equations with an additional friction term, gravity term, momentum source, and energy source. The geometric model is purposefully chosen simple and consists of a one-dimensional (1D) loop system in order to focus the study on the validity of various fluid flow approximations. The 1D loop system is represented by a rectangle; the fluid is heated up along one of the vertical legs and cooled down along the opposite leg. A pressurizer and a pump are included in the horizontal legs. The amount of energy transferred and removed from the system is equal in absolute value along the two vertical legs. The various fluid flow approximations are compressible vs. incompressible, and complete momentum equation vs. Darcy’s approximation. The ultimate goal is to compute the fluid flow models’ uncertainties and, if possible, to generate validity ranges for these models when applied to reactor analysis. We also limit this study to single phase flows with low-Mach numbers. As a result, sound waves carry a very small amount of energy in this particular case. A standard finite volume method is used for the spatial discretization of the system.

Marc Oliver Delchini; Jean C. Ragusa

2009-09-01T23:59:59.000Z

8

Modeling Fluid Flow in Natural Systems, Model Validation and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

rock, flow is primarily in relatively sparse networks of fractures. Discrete fracture network (DFNs) models are an approach to representing flow in fractured rock that...

9

Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: Improve image resolution for microseismicimaging and time-lapse active seismic imaging; Enhance the prediction of fluid flow and temperature distributions and stress changes by coupling fracture flow simulations with reservoir flow simulations; and integrating imaging into modeling.

10

Convective heat transfer in the vertical channel flow of a clear fluid adjacent to a nanofluid layer: a two-fluid model  

Science Journals Connector (OSTI)

A two-fluid vertical channel flow and convective heat transfer model in which one of the two fluids is a nanofluid demonstrates that the nanofluid can modify the fluid velocity at the interface of the two fluids,...

Robert A. Van Gorder; K. V. Prasad; K. Vajravelu

2012-07-01T23:59:59.000Z

11

Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: Better understand and model fluid injection into a tight reservoir on the edges of a hydrothermal field. Use seismic data to constrain geomechanical/hydrologic/thermal model of reservoir.

12

Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration  

Energy.gov (U.S. Department of Energy (DOE))

Clay and granitic units are potential host media for future repositories for used nuclear fuel. The report addresses the representation and characterization of flow in these two media within...

13

A Model For The Transient Temperature Effects Of Horizontal Fluid Flow In  

Open Energy Info (EERE)

Transient Temperature Effects Of Horizontal Fluid Flow In Transient Temperature Effects Of Horizontal Fluid Flow In Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Model For The Transient Temperature Effects Of Horizontal Fluid Flow In Geothermal Systems Details Activities (1) Areas (1) Regions (0) Abstract: A characteristic temperature versus depth (T-D) profile is observed in various geothermal environments. Particular features of the T-D profile can be explained in terms of a simple time-dependent two-dimensional (x, z) hydrothermal model. In this model a hot fluid is constrained to flow along a thin aquifer buried at a depth l from the surface with conductive heat transfer into the rocks both above and below the aquifer. In many geothermal systems transient changes in the flow

14

A Site-Scale Model For Fluid And Heat Flow In The Unsaturated Zone Of Yucca  

Open Energy Info (EERE)

Site-Scale Model For Fluid And Heat Flow In The Unsaturated Zone Of Yucca Site-Scale Model For Fluid And Heat Flow In The Unsaturated Zone Of Yucca Mountain, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Site-Scale Model For Fluid And Heat Flow In The Unsaturated Zone Of Yucca Mountain, Nevada Details Activities (0) Areas (0) Regions (0) Abstract: A three-dimensional unsaturated-zone numerical model has been developed to simulate flow and distribution of moisture, gas and heat at Yucca Mountain, Nevada, a potential repository site for high-level radioactive waste. The model takes into account the simultaneous flow dynamics of liquid water, vapor, air and heat in the highly heterogeneous, fractured porous rock in the unsaturated zone (UZ). This model is intended for use in the prediction of the current and future conditions in the UZ so

15

Numerical modeling of fluid flow and heat transfer in a narrow Taylor-Couette-Poiseuille system  

E-Print Network (OSTI)

Numerical modeling of fluid flow and heat transfer in a narrow Taylor-Couette-Poiseuille system S [1, 2] widely validated in various rotor-stator cavities with throughflow [3­5] and heat transfer [6: RANS modeling, Reynolds Stress Model, Taylor-Couette-Poiseuille flow, turbulence, heat transfer. hal

Paris-Sud XI, Université de

16

FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES  

E-Print Network (OSTI)

FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES the guidance and direction provided by my advisors: Dr. Mandell, Dr. Cairns and Dr. Larsen. I would also like

17

The Effects of Fluid Flow On Shear Localization and Frictional Strength From Dynamic Models Of Fault Gouge During Earthquakes  

E-Print Network (OSTI)

This thesis explores the effects of fluid flow on shear localization and frictional strength of fault gouge through the use of a coupled 2-phase (pore fluid-grain) Finite Difference-Discrete Element Numerical model. The model simulates slip...

Bianco, Ronald

2013-12-02T23:59:59.000Z

18

Notes 10. A thermohydrodynamic bulk-flow model for fluid film bearings  

E-Print Network (OSTI)

The complete set of bulk-flow equations for the analysis of turbulent flow fluid film bearings. Importance of thermal effects in process fluid applications. A CFD method for solution of the bulk-flow equations....

San Andres, Luis

2009-01-01T23:59:59.000Z

19

NETL: Releases & Briefs - MFIX: Particle-fluid flow modeling, fast and free  

NLE Websites -- All DOE Office Websites (Extended Search)

MFIX: Particle-fluid Flow Modeling, Fast and Free MFIX: Particle-fluid Flow Modeling, Fast and Free Until recently, full solution of the complex set of equations that describe gas-particle flows was nearly impossible. But an open-source code developed by researchers at the National Energy Technology Laboratory (NETL), and designed to run on inexpensive PC (Beowulf) clusters, makes it relatively simple. Called MFIX (Multi-phase Flow with Interphase eXchange), the code incorporates special numerical techniques that provide an efficient solution to the coupled equations, exceeding the capabilities of commercial software. Originally developed at NETL to model fixed, fluidized and bubbling coal gasification technologies, its power has been used in research ranging from catalytic cracking in oil refineries to volcanology. A free, fully-functional version is available at www.mfix.org

20

Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method  

Science Journals Connector (OSTI)

We present a stable numerical scheme for modelling multiphase flow in porous media, where the characteristic size of the flow domain is of the order of microns to millimetres. The numerical method is developed for efficient modelling of multiphase flow ... Keywords: Pore-scale modelling, Porous media, Two-phase flow, Volume of fluid

Ali Q. Raeini; Martin J. Blunt; Branko Bijeljic

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow  

E-Print Network (OSTI)

Numerical modeling of heat transfer and fluid flow in rotor-stator cavities with throughflow S in a rotor-stator cavity subjected to a superimposed throughflow with heat transfer. Nu- merical predictions field from the heat transfer process. The turbulent flux is approximated by a gradient hypothesis

Boyer, Edmond

22

Transient fluid and heat flow modeling in coupled wellbore/reservoir systems  

E-Print Network (OSTI)

showing cleanup period.......................................................... 68 Figure 5.21 Geothermal gradient and sea water temperature profile............................. 68 Figure 5.22 Mimicking oil production rate input... into this category. 5 Miller (1980) developed one of the earliest transient wellbore simulators, which accounts for changes in geothermal-fluid energy while flowing up the wellbore. In this model, mass and momentum equations are combined...

Izgec, Bulent

2009-05-15T23:59:59.000Z

23

CIRQ: Qualitative fluid flow modelling for aerospace FMEA applications Neal Snooke  

E-Print Network (OSTI)

M2 CIRQ: Qualitative fluid flow modelling for aerospace FMEA applications Neal Snooke Department- oped on top of the MCIRQ simulator with the aim to produce an automated FMEA for aircraft fuel systems similar to pre- viously developed automated electrical FMEA. Introduction This paper describes a circuit

Snooke, Neal

24

This is a 1D model of an active magnetic regenerative refrigerator (AMRR) that was developed in MATLAB. The model uses cycle inputs such as the fluid mass flow and  

E-Print Network (OSTI)

in MATLAB. The model uses cycle inputs such as the fluid mass flow and magnetic field profiles, fluid

Wisconsin at Madison, University of

25

Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Also includes relevant well information * Developed sub-grid scale model of fracture permeability as a function of normal and shear displacements - Installed in the fully...

26

MODELING COUPLED FLUID FLOW AND GEOMECHANICAL AND GEOPHYSICAL PHENOMENA WITHIN  

E-Print Network (OSTI)

porosity (range: 5% to 45%) and reservoir permeability (range: 1e-11 m2 to 1e-14 m2 ). Lower reservoir pressure profiles throughout the reservoir during constant production. As the initial reservoir porosity for the modeling of geomechanical effects induced by reservoir production/injection and the cyclic dependence

27

Flow modeling of flat oval ductwork elbows using computational fluid dynamics  

SciTech Connect

Incompressible turbulent flow fields in heating, ventilating, and air-conditioning (HVAC) elbows were computed using an incompressible, three-dimensional computational fluid dynamics (CFD) solver implementing a {kappa}-{epsilon} turbulence model. Two different geometries were investigated, including 90-degree five-gore hard-bend and easy-bend flat oval elbows. The geometries represent a subset of many configurations analyzed in ASHRAE RP-854, Determination of Duct Fitting Resistance by Numerical Analysis. For each configuration, the zero-length pressure loss coefficient was calculated. The flow was described through contours of velocity and plots of static pressure. The Reynolds number for these flows was held constant at 100,000 based on duct diameter and mean fluid velocity.

Mahank, T.A.; Mumma, S.A. [Pennsylvania State Univ., University Park, PA (United States)

1997-12-31T23:59:59.000Z

28

Magnetically stimulated fluid flow patterns  

ScienceCinema (OSTI)

Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

Martin, Jim; Solis, Kyle

2014-08-06T23:59:59.000Z

29

Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model  

Science Journals Connector (OSTI)

Abstract This letter presents a research for coupled flow and heat transfer of an upper-convected Maxwell fluid above a stretching plate with velocity slip boundary. Unlike most classical works, the new heat flux model, which is recently proposed by Christov, is employed. Analytical solutions are obtained by using the homotopy analysis method (HAM). The effects of elasticity number, slip coefficient, the relaxation time of the heat flux and the Prandtl number on velocity and temperature fields are analyzed. A comparison of Fourier’s Law and the Cattaneo–Christov heat flux model is also presented.

Shihao Han; Liancun Zheng; Chunrui Li; Xinxin Zhang

2014-01-01T23:59:59.000Z

30

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network (OSTI)

for Simulating Fluid Flow and Heat Transfer in Unsaturatedcomplex multiphase fluid flow and heat-transfer processes.of the coupled fluid-flow and heat-transfer processes has

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

31

Nanoscale Pore Imaging and Pore Scale Fluid Flow Modeling in Chalk  

SciTech Connect

For many rocks of high economic interest such as chalk, diatomite, tight gas sands or coal, nanometer scale resolution is needed to resolve the 3D-pore structure, which controls the flow and trapping of fluids in the rocks. Such resolutions cannot be achieved with existing tomographic technologies. A new 3D imaging method, based on serial sectioning and using the Focused Ion Beam (FIB) technology has been developed. FIB allows for the milling of layers as thin as 10 nanometers by using accelerated Ga+ ions to sputter atoms from the sample surface. After each milling step, as a new surface is exposed, a 2D image of this surface is generated. Next, the 2D images are stacked to reconstruct the 3D pore or grain structure. Resolutions as high as 10 nm are achievable using such a technique. A new robust method of pore-scale fluid flow modeling has been developed and applied to sandstone and chalk samples. The method uses direct morphological analysis of the pore space to characterize the petrophysical properties of diverse formations. Not only petrophysical properties (porosity, permeability, relative permeability and capillary pressures) can be computed but also flow processes, such as those encountered in various IOR approaches, can be simulated. Petrophysical properties computed with the new method using the new FIB data will be presented. Present study is a part of the development of an Electronic Core Laboratory at LBNL/UCB.

Tomutsa, Liviu; Silin, Dmitriy

2004-08-19T23:59:59.000Z

32

Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow  

E-Print Network (OSTI)

and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluidNumerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative

33

Fluid structure interaction modelling for the vibration of tube bundles, part I: analysis of the fluid flow in a tube bundle  

SciTech Connect

It is well known that a fluid may strongly influence the dynamic behaviour of a structure. Many different physical phenomena may take place, depending on the conditions: fluid flow, fluid at rest, little or high displacements of the structure. Inertial effects can take place, with lower vibration frequencies, dissipative effects also, with damping, instabilities due to the fluid flow (Fluid Induced Vibration). In this last case the structure is excited by the fluid. Tube bundles structures are very common in the nuclear industry. The reactor cores and the steam generators are both structures immersed in a fluid which may be submitted to a seismic excitation or an impact. In this case the structure moves under an external excitation, and the movement is influence by the fluid. The main point in such system is that the geometry is complex, and could lead to very huge sizes for a numerical analysis. Homogenization models have been developed based on the Euler equations for the fluid. Only inertial effects are taken into account. A next step in the modelling is to build models based on the homogenization of the Navier-Stokes equations. The papers presents results on an important step in the development of such model: the analysis of the fluid flow in a oscillating tube bundle. The analysis are made from the results of simulations based on the Navier-Stokes equations for the fluid. Comparisons are made with the case of the oscillations of a single tube, for which a lot of results are available in the literature. Different fluid flow pattern may be found, depending in the Reynolds number (related to the velocity of the bundle) and the Keulegan Carpenter number (related to the displacement of the bundle). A special attention is paid to the quantification of the inertial and dissipative effects, and to the forces exchanges between the bundle and the fluid. The results of such analysis will be used in the building of models based on the homogenization of the Navier-Stokes equations for the fluid. (authors)

Desbonnets, Quentin; Broc, Daniel [CEA, Lab Etudes Mecan Sism, DEN, SEMT, DM2S, F-91191 Gif Sur Yvette, (France)

2012-07-01T23:59:59.000Z

34

Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling  

SciTech Connect

A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

2009-01-15T23:59:59.000Z

35

Acoustic concentration of particles in fluid flow  

SciTech Connect

An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

Ward, Michael D. (Los Alamos, NM); Kaduchak, Gregory (Los Alamos, NM)

2010-11-23T23:59:59.000Z

36

Fluid flow monitoring device  

DOE Patents (OSTI)

A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

1993-11-30T23:59:59.000Z

37

Fluid flow monitoring device  

DOE Patents (OSTI)

A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)

1993-01-01T23:59:59.000Z

38

Update and assessment of geothermal economic models, geothermal fluid flow and heat distribution models, and geothermal data bases  

SciTech Connect

Numerical simulation models and data bases that were developed for DOE as part of a number of geothermal programs have been assessed with respect to their overall stage of development and usefulness. This report combines three separate studies that focus attention upon: (1) economic models related to geothermal energy; (2) physical geothermal system models pertaining to thermal energy and the fluid medium; and (3) geothermal energy data bases. Computerized numerical models pertaining to the economics of extracting and utilizing geothermal energy have been summarized and catalogued with respect to their availability, utility and function. The 19 models that are discussed in detail were developed for use by geothermal operators, public utilities, and lending institutions who require a means to estimate the value of a given resource, total project costs, and the sensitivity of these values to specific variables. A number of the models are capable of economically assessing engineering aspects of geothermal projects. Computerized simulations of heat distribution and fluid flow have been assessed and are presented for ten models. Five of the models are identified as wellbore simulators and five are described as reservoir simulators. Each model is described in terms of its operational characteristics, input, output, and other pertinent attributes. Geothermal energy data bases are reviewed with respect to their current usefulness and availability. Summaries of eight data bases are provided in catalogue format, and an overall comparison of the elements of each data base is included.

Kenkeremath, D. (ed.)

1985-05-01T23:59:59.000Z

39

On the 1D Modeling of Fluid Flowing through a Junction  

E-Print Network (OSTI)

Consider a fluid flowing through a junction between two pipes with different sections. Its evolution is described by the 2D or 3D Euler equations, whose analytical theory is far from complete and whose numerical treatment may be rather costly. This note compares different 1D approaches to this phenomenon.

Rinaldo M. Colombo; Mauro Garavello

2009-03-04T23:59:59.000Z

40

Modeling of gas-solid flow in a CFB riser based on computational particle fluid dynamics  

Science Journals Connector (OSTI)

A three-dimensional model for gas-solid flow in a circulating fluidized bed (CFB) riser was developed based on computational particle ... experimental data validated the CPFD model for the CFB riser. The model pr...

Yinghui Zhang; Xingying Lan; Jinsen Gao

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Acoustic Concentration Of Particles In Fluid Flow  

NLE Websites -- All DOE Office Websites (Extended Search)

in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. Available for thumbnail of...

42

On the multidimensional modeling of fluid flow and heat transfer in SCWRS  

SciTech Connect

The Supercritical Water Reactor (SCWR) has been proposed as one of the six Generation IV reactor design concepts under consideration. The key feature of the SCWR is that water at supercritical pressures is used as the reactor coolant. Although at such pressures, fluids do not undergo phase change as they are heated, the fluid properties experience dramatic variations throughout what is known as the pseudo-critical region. Highly nonuniform temperature and fluid property distributions are expected in the reactor core, which will have a significant impact on turbulence and heat transfer in future SCWRs. The goal of the present work has been to understand and predict the effects of these fluid property variations on turbulence and heat transfer throughout the reactor core. Spline-type property models have been formulated for water at supercritical pressures in order to include the dependence of properties on both temperature and pressure into a numerical solver. New models of turbulence and heat transfer for variable-property fluids have been developed and implemented into the NPHASE-CMFD software. The results for these models have been compared to experimental data from the Korea Atomic Energy Research Inst. (KAERI) for various heat transfer regimes. It is found that the Low-Reynolds {kappa}-{epsilon} model performs best at predicting the experimental data. (authors)

Gallaway, T.; Antal, S. P.; Podowski, M. Z. [Center for Multiphase Research, Rensselaer Polytechnic Inst., 110 8th St., Troy, NY (United States)

2012-07-01T23:59:59.000Z

43

Numerical simulation of fluid flow and heat transfer inside a rotating disk-cylinder configuration by a lattice Boltzmann model  

Science Journals Connector (OSTI)

A simple lattice Boltzmann model for numerical simulation of fluid flow and heat transfer inside a rotating disk-cylinder configuration, which is of fundamental interest and practical importance in science as well as in engineering, is proposed in this paper. Unlike existing lattice Boltzmann models for such flows, which were based on “primitive-variable” Navier-Stokes equations, the target macroscopic equations of the present model for the flow field are vorticity–stream function equations, inspired by our recent work designed for nonrotating flows [S. Chen, J. Tölke, and M. Krafczyk, Phys. Rev. E 79, 016704 (2009); S. Chen, J. Tölke, S. Geller, and M. Krafczyk, Phys. Rev. E 78, 046703 (2008)]. The flow field and the temperature field both are solved by the D2Q5 model. Compared with the previous models, the present model is more efficient, more stable, and much simpler. It was found that, even though with a relatively low grid resolution, the present model can still work well when the Grashof number is very high. The advantages of the present model are validated by numerical experiments.

Sheng Chen; Jonas Tölke; Manfred Krafczyk

2009-07-14T23:59:59.000Z

44

Fluid Gravity Engineering Rocket motor flow analysis  

E-Print Network (OSTI)

Fluid Gravity Engineering Capability · Rocket motor flow analysis -Internal (performance) -External young scientists/engineers Fluid Gravity Engineering Ltd #12;

Anand, Mahesh

45

Nanometer-scale imaging and pore-scale fluid flow modeling inchalk  

SciTech Connect

For many rocks of high economic interest such as chalk,diatomite, tight gas sands or coal, nanometer scale resolution is neededto resolve the 3D-pore structure, which controls the flow and trapping offluids in the rocks. Such resolutions cannot be achieved with existingtomographic technologies. A new 3D imaging method, based on serialsectioning and using the Focused Ion Beam (FIB) technology has beendeveloped. FIB allows for the milling of layers as thin as 10 nanometersby using accelerated Ga+ ions to sputter atoms from the sample surface.After each milling step, as a new surface is exposed, a 2D image of thissurface is generated. Next, the 2D images are stacked to reconstruct the3D pore or grain structure. Resolutions as high as 10 nm are achievableusing this technique. A new image processing method uses directmorphological analysis of the pore space to characterize thepetrophysical properties of diverse formations. In addition to estimationof the petrophysical properties (porosity, permeability, relativepermeability and capillary pressures), the method is used for simulationof fluid displacement processes, such as those encountered in variousimproved oil recovery (IOR) approaches. Computed with the new methodcapillary pressure curves are in good agreement with laboratory data. Themethod has also been applied for visualization of the fluid distributionat various saturations from the new FIB data.

Tomutsa, Liviu; Silin, Dmitriy; Radmilovich, Velimir

2005-08-23T23:59:59.000Z

46

Characterizing fractured rock for fluid-flow, geomechanical, and paleostress modeling: Methods and preliminary results from Yucca Mountain, Nevada  

SciTech Connect

Fractures have been characterized for fluid-flow, geomechanical, and paleostress modeling at three localities in the vicinity of drill hole USW G-4 at Yucca Mountain in southwestern Nevada. A method for fracture characterization is introduced that integrates mapping fracture-trace networks and quantifying eight fracture parameters: trace length, orientation, connectivity, aperture, roughness, shear offset, trace-length density, and mineralization. A complex network of fractures was exposed on three 214- to 260-m 2 pavements cleared of debris in the upper lithophysal unit of the Tiva Canyon Member of the Miocene Paint-brush Tuff. The pavements are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.2 m were mapped and studied.

Barton, C.C.; Larsen, E.; Page, W.R.; Howard, T.M.

1993-12-31T23:59:59.000Z

47

MATHEMATICAL MODELING OF THREE-DIMENSIONAL DIE FLOWS OF VISCOPLASTIC FLUIDS WITH WALL SLIP  

E-Print Network (OSTI)

of filled polymers, and concentrated suspensions in screw extruders and dies of complex shapes is undertaken-dimensional flows including flows through dies, single/twin-screw extruders and other processing geometries m o n p * (1b) where Rs is the screw radius of the twin screw extruder preceding the die

48

Preferential mode of gas invasion in sediments : grain-scale model of coupled multiphase fluid flow and sediment mechanics  

E-Print Network (OSTI)

We present a discrete element model for simulating, at the grain scale, gas migration in brine-saturated deformable media. We rigorously account for the presence of two fluids in the pore space by incorporating forces on ...

Jain, Antone Kumar

2009-01-01T23:59:59.000Z

49

Overview of heat transfer and fluid flow problem areas encountered in stirling engine modeling  

SciTech Connect

NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.

Tew, R.C. Jr.

1988-02-01T23:59:59.000Z

50

Application of Neutron Imaging and Scattering to Fluid Flow and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS...

51

Fracture Network and Fluid Flow Imaging for EGS Applications...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications...

52

Modelling suspended sediment in environmental turbulent fluids  

E-Print Network (OSTI)

Modelling sediment transport in environmental turbulent fluids is a challenge. This article develops a sound model of the lateral transport of suspended sediment in environmental fluid flows such as floods and tsunamis. The model is systematically derived from a 3D turbulence model based on the Smagorinski large eddy closure. Embedding the physical dynamics into a family of problems and analysing linear dynamics of the system, centre manifold theory indicates the existence of slow manifold parametrised by macroscale variables. Computer algebra then constructs the slow manifold in terms of fluid depth, depth-averaged lateral velocities, and suspended sediment concentration. The model includes the effects of sediment erosion, advection, dispersion, and also the interactions between the sediment and turbulent fluid flow. Vertical distributions of the velocity and concentration in steady flow agree with the established experimental data. Numerical simulations of the suspended sediment under large waves show that ...

Cao, Meng

2014-01-01T23:59:59.000Z

53

Transient Temperature Modeling For Wellbore Fluid Under Static and Dynamic Conditions  

E-Print Network (OSTI)

for geothermal wells and prediction of injection fluid temperatures. In this thesis, development and usage of three models for transient fluid temperature are presented. Two models predict transient temperature of flowing fluid under separate flow configurations...

Ali, Muhammad

2014-04-22T23:59:59.000Z

54

Directed flow fluid rinse trough  

DOE Patents (OSTI)

Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.

Kempka, Steven N. (9504 Lona La., Albuquerque, NM 87111); Walters, Robert N. (11872 LaGrange St., Boise, ID 83709)

1996-01-01T23:59:59.000Z

55

Directed flow fluid rinse trough  

DOE Patents (OSTI)

Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.

Kempka, S.N.; Walters, R.N.

1996-07-02T23:59:59.000Z

56

Flow control techniques for real-time media applications in best-effort networks using fluid models  

E-Print Network (OSTI)

at the application layer. An end-to-end ?uid model is used, including the source bu?er, the network and the destination bu?er. Traditional con- trol techniques, along with more advanced adaptive predictive control methods, are considered in order to provide... OF THE END-TO-END FLOW TRANSPORT SYSTEM : : : : : : : : : : : : : : : : : : : : : : 25 A. Source Bu?er Model . . . . . . . . . . . . . . . . . . . . . 25 B. Network Dynamic Model . . . . . . . . . . . . . . . . . . . 27 1. Time-Varying Time Delay Model...

Konstantinou, Apostolos

2004-11-15T23:59:59.000Z

57

Numerical simulation of fluid flow in porous/fractured media  

SciTech Connect

Theoretical models of fluid flow in porous/fractured media can help in the design of in situ fossil energy and mineral extraction technologies. Because of the complexity of these processes, numerical solutions are usually required. Sample calculations illustrate the capabilities of present day computer models.

Travis B.J.; Cook, T.L.

1981-01-01T23:59:59.000Z

58

Newtonian fluid flow through Microfabricated Hyperbolic Contractions  

E-Print Network (OSTI)

spraying (Barnes et al. 1989). Optimization of these processes requires accurate measurements for measurement of extensional viscosity involves studying the fluid flow through contractions profiled to give extensional viscosity. To remove the effect of shear at the walls of contractions Shaw (1975) proposed the use

59

Effect of anatomical fine structure on the flow of cerebrospinal fluid in the spinal subarachnoid space.  

SciTech Connect

The lattice Boltzmann method is used to model oscillatory flow in the spinal subarachnoid space. The effect of obstacles such as trabeculae, nerve bundles, and ligaments on fluid velocity profiles appears to be small, when the flow is averaged over the length of a vertebra. Averaged fluid flow in complex models is little different from flow in corresponding elliptical annular cavities. However, the obstacles stir the flow locally and may be more significant in studies of tracer dispersion.

Stockman, Harlan Wheelock

2005-01-01T23:59:59.000Z

60

A Mountain-Scale Thermal Hydrologic Model for Simulating FluidFlow and Heat Transfer in Unsaturated Fractured Rock  

SciTech Connect

A multidimensional, mountain-scale, thermal-hydrologic (TH) numerical model is presented for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository in the Yucca Mountain unsaturated zone (UZ), Nevada. The model, consisting of both two-dimensional (2-D) and three-dimensional (3-D) representations of the UZ repository system, is based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climate conditions. This mountain-scale TH model evaluates the coupled TH processes related to mountain-scale UZ flow. It also simulates the impact of radioactive waste heat release on the natural hydrogeological system, including heat-driven processes occurring near and far away from the emplacement tunnels or drifts. The model simulations predict thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. These simulations provide mountain-scale thermally perturbed flow fields for assessing the repository performance under thermal loading conditions.

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson,Gudmundur S.

2005-05-25T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Ultrasonic fluid flow measurement method and apparatus  

DOE Patents (OSTI)

An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1993-01-01T23:59:59.000Z

62

Ultrasonic fluid flow measurement method and apparatus  

DOE Patents (OSTI)

An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.

Kronberg, J.W.

1993-10-12T23:59:59.000Z

63

Heat Transfer in Wedge Flow of a Micropolar Fluid  

Science Journals Connector (OSTI)

The theory of fluids with microstructures was first given by Eringen ... , 1965), and they are called micropolar fluids. These fluids exhibit microrotational effects and microrotational inertia. The flow of such

V. M. Soundalgekar; H. S. Takhar

1980-01-01T23:59:59.000Z

64

Heat transfer in channel flow of a micropolar fluid  

Science Journals Connector (OSTI)

The study of heat transfer in channel flow has been done by previous authors for Newtonian and elastico-viscous fluids. It is the aim of the present ... the temperature profile for flow of a micropolar fluid in a...

Renuka Rajagopalan; K. S. Bhatnagar

1969-10-01T23:59:59.000Z

65

Characteristics of Fluid flow and heat transfer in Shellside of Heat Exchangers with Longitudinal Flow of Shellside Fluid with Different Supporting structures  

Science Journals Connector (OSTI)

In the paper, a simplified numerical model-the periodic unit duct model was presented for the numerical simulation of shellside characteristics in heat exchanger with longitudinal flow of shellside fluid, and its...

Yongqing Wang; Qiwu Dong; Minshan Liu

2007-01-01T23:59:59.000Z

66

A Refined Model of Stationary Heat Transfer in Composite Bodies Reinforced with Pipes Containing a Heat-Transfer Fluid Moving in Laminar Flow Conditions  

Science Journals Connector (OSTI)

Equations describing the stationary heat conduction of composite bodies spatially reinforced with ... of smooth pipes, through which an incompressible heat-transfer fluid is pumped in laminar flow conditions, are...

A. P. Yankovskii

2014-03-01T23:59:59.000Z

67

Lattice Boltzmann model of immiscible fluids  

Science Journals Connector (OSTI)

We introduce a lattice Boltzmann model for simulating immiscible binary fluids in two dimensions. The model, based on the Boltzmann equation of lattice-gas hydrodynamics, incorporates features of a previously introduced discrete immiscible lattice-gas model. A theoretical value of the surface-tension coefficient is derived and found to be in excellent agreement with values obtained from simulations. The model serves as a numerical method for the simulation of immiscible two-phase flow; a preliminary application illustrates a simulation of flow in a two-dimensional microscopic model of a porous medium. Extension of the model to three dimensions appears straightforward.

Andrew K. Gunstensen; Daniel H. Rothman; Stéphane Zaleski; Gianluigi Zanetti

1991-04-15T23:59:59.000Z

68

Thermal-fluid and electrochemical modeling and performance study of a planar solid oxide electrolysis cell : analysis on SOEC resistances, size, and inlet flow conditions.  

SciTech Connect

Argonne National Laboratory and Idaho National Laboratory researchers are analyzing the electrochemical and thermal-fluid behavior of solid oxide electrolysis cells (SOECs) for high temperature steam electrolysis using computational fluid dynamics (CFD) techniques. The major challenges facing commercialization of steam electrolysis technology are related to efficiency, cost, and durability of the SOECs. The goal of this effort is to guide the design and optimization of performance for high temperature electrolysis (HTE) systems. An SOEC module developed by FLUENT Inc. as part of their general CFD code was used for the SOEC analysis by INL. ANL has developed an independent SOEC model that combines the governing electrochemical mechanisms based on first principals to the heat transfer and fluid dynamics in the operation of SOECs. The ANL model was embedded into the commercial STAR-CD CFD software, and is being used for the analysis of SOECs by ANL. The FY06 analysis performed by ANL and reported here covered the influence of electrochemical properties, SOEC component resistances and their contributing factors, SOEC size and inlet flow conditions, and SOEC flow configurations on the efficiency and expected durability of these systems. Some of the important findings from the ANL analysis are: (1) Increasing the inlet mass flux while going to larger cells can be a compromise to overcome increasing thermal and current density gradients while increasing the cell size. This approach could be beneficial for the economics of the SOECs; (2) The presence of excess hydrogen at the SOEC inlet to avoid Ni degradation can result in a sizeable decrease in the process efficiency; (3) A parallel-flow geometry for SOEC operation (if such a thing be achieved without sealing problems) yields smaller temperature gradients and current density gradients across the cell, which is favorable for the durability of the cells; (4) Contact resistances can significantly influence the total cell resistance and cell temperatures over a large range of operating potentials. Thus it is important to identify and avoid SOEC stack conditions leading to such high resistances due to poor contacts.

Yildiz, B.; Smith, J.; Sofu, T.; Nuclear Engineering Division

2008-06-25T23:59:59.000Z

69

Fluid breakup during simultaneous two-phase flow through a three-dimensional porous medium  

E-Print Network (OSTI)

We use confocal microscopy to directly visualize the simultaneous flow of both a wetting and a non-wetting fluid through a model three-dimensional (3D) porous medium. We find that, for small flow rates, both fluids flow through unchanging, distinct, connected 3D pathways; in stark contrast, at sufficiently large flow rates, the non-wetting fluid is broken up into discrete ganglia. By performing experiments over a range of flow rates, using fluids of different viscosities, and with porous media having different geometries, we show that this transition can be characterized by a state diagram that depends on the capillary numbers of both fluids, suggesting that it is controlled by the competition between the viscous forces exerted on the flowing oil and the capillary forces at the pore scale. Our results thus help elucidate the diverse range of behaviors that arise in two-phase flow through a 3D porous medium.

Sujit S. Datta; Jean-Baptiste Dupin; David A. Weitz

2014-06-26T23:59:59.000Z

70

Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations  

E-Print Network (OSTI)

multiphase fluid flow, heat transfer, and deformation infor multiphase fluid flow, heat transfer and deformation in

Rutqvist, J.

2011-01-01T23:59:59.000Z

71

UZ Flow Models and Submodels  

SciTech Connect

The purpose of this Model Report is to document the unsaturated zone (UZ) fluid flow and tracer transport models and submodels as well as the flow fields generated utilizing the UZ Flow and Transport Model of Yucca Mountain (UZ Model), Nevada. This work was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10, Work Package AUZM06). The UZ Model has revised, updated, and enhanced the previous UZ Flow Model REV 00 ICN 01 (BSC 2001 [158726]) by incorporation of the conceptual repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates and their spatial distributions as well as moisture conditions in the UZ system. These 3-D UZ flow fields are used directly by Performance Assessment (PA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic conditions. In addition, this Model Report supports several PA activities, including abstractions, particle-tracking transport simulations, and the UZ Radionuclide Transport Model.

P. Dixon

2004-02-11T23:59:59.000Z

72

Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived  

Open Energy Info (EERE)

Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived from 3D Numerical Models Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived from 3D Numerical Models Details Activities (1) Areas (1) Regions (0) Abstract: The efficiency of geothermal energy production at the Coso Geothermal Field in eastern California is reliant on the knowledge of fluid flow directions associated with fracture networks. We use finite element analysis to establish the 3D state of stress within the tectonic setting of the Coso Range. The mean and differential stress distributions are used to infer fluid flow vectors and second order fracture likelihood and orientation. The results show that the Coso Range and adjacent areas are

73

Radiative heat transfer in a flow of rheologically complex fluid  

Science Journals Connector (OSTI)

The problem of complex radiative and convective heat transfer in steady-state generalized Couette flow of a nonlinear viscoplastic fluid is examined.

V. F. Volchenok; Z. P. Shul'man

1980-09-01T23:59:59.000Z

74

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Geothermal Prospecting Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Use of Geophysical Techniques...

75

Fracture Network and Fluid Flow Imaging for EGS Applications...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Principal Investigator: Philip E. Wannamaker University of Utah...

76

Fracture Network and Fluid Flow Imaging for EGS Applications...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Principal Investigator: Philip E. Wannamaker University of Utah Energy &...

77

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and test combined geophysical techniques to characterize fluid flow, in relation to fracture orientations and fault distributions in a geothermal system. Average Overall Score:...

78

Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...  

Open Energy Info (EERE)

correlations. Downhole measurements of the tracer response exiting from discrete fracture zones permit further characterization of reservoir fluid flow behavior. Tracer...

79

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or otherwise restricted information. Self-potential 2 | US DOE Geothermal Program eere.energy.gov * Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal...

80

Electromagnetic Radiations as a Fluid Flow  

E-Print Network (OSTI)

We combine Maxwell's equations with Eulers's equation, related to a velocity field of an immaterial fluid, where the density of mass is replaced by a charge density. We come out with a differential system able to describe a relevant quantity of electromagnetic phenomena, ranging from classical dipole waves to solitary wave-packets with compact support. The clue is the construction of an energy tensor summing up both the electromagnetic stress and a suitable mass tensor. With this right-hand side, explicit solutions of the full Einstein's equation are computed for a wide class of wave phenomena. Since our electromagnetic waves may behave and interact exactly as a material fluid, they can create vortex structures. We then explicitly analyze some vortex ring configurations and examine the possibility to build a model for the electron.

Daniele Funaro

2009-11-25T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Lattice Boltzmann models for non-Newtonian flows  

Science Journals Connector (OSTI)

......Issue: Modelling the mesoscale Lattice Boltzmann models for non-Newtonian flows...road, Chester CH1 4BJ, UK The lattice Boltzmann method has been established...the case of inelastic fluids. lattice Boltzmann methods|non-Newtonian fluids......

T. N. Phillips; G. W. Roberts

2011-10-01T23:59:59.000Z

82

Convective heat transfer enhancement of laminar flow of latent functionally thermal fluid in a circular tube with constant heat flux: internal heat source model and its application  

Science Journals Connector (OSTI)

This paper analyzes the convective heat transfer enhancement mechanism of latent heat functionally thermal fluid. By using the proposed internal heat source model, the influence of each factor affecting the heat

Yinping Zhang; Xianxu Hu; Qing Hao; Xin Wang

2003-04-01T23:59:59.000Z

83

The developing heat transfer and fluid flow in micro-channel heat sink with viscous heating effect  

Science Journals Connector (OSTI)

The numerical modeling of the conjugate heat transfer and fluid flow through the micro-heat sink was presented in the paper, considering the viscous dissipation effect. Three different fluids with temperature dep...

Dorin Lelea; Adrian Eugen Cioabla

2011-07-01T23:59:59.000Z

84

Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations  

Science Journals Connector (OSTI)

This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC^3^D geomechanical ... Keywords: FLAC3D, Fluid flow, Geomechanics, Modeling, TOUGH

Jonny Rutqvist

2011-06-01T23:59:59.000Z

85

Device for deriving energy from a flow of fluid  

SciTech Connect

Improved process and device for extracting energy present in a flowing fluid medium wherein a supported hub with propellers or blades is placed in said medium and the blades are provided with a wing or vane at the tip. The wing is of such a form that it generates a ''venturi effect'' in the flowing medium by which a part of the fluid which should normally pass outside the propeller disc area, is drawn into the propeller. The improvement consists of mixing of fluid which normally should pass outside the venturi with fluid which has flowed through the blades by provisions on blades and/or wing or vanes.

van Holten, T.

1982-12-07T23:59:59.000Z

86

Lattice Boltzmann model for compressible fluids  

Science Journals Connector (OSTI)

We formulate a lattice Boltzmann model which simulates compressible fluids. By choosing the parameters of the equilibrium distribution appropriately, we are able to select the sound speed (which may be set arbitrarily low), bulk viscosity, and kinematic viscosity. This model simulates compressible flows and can include shocks. With a proper rescaling and zero-sound speed, this model simulates Burgers’s equation. The viscosity determined by a Chapman-Enskog expansion compares well with that measured from simulations. We also compare the exact solutions of Burgers’s equation on the unit circle to solutions of our lattice Boltzmann model, again finding reasonable agreement.

F. J. Alexander; H. Chen; S. Chen; G. D. Doolen

1992-08-15T23:59:59.000Z

87

A Mountain-Scale Thermal Hydrologic Model for Simulating Fluid Flow and Heat Transfer in Unsaturated Fractured Rock  

E-Print Network (OSTI)

Studies Using the Yucca Mountain Unsaturated Zone Model,Unsaturated Zone at Yucca Mountain, Nevada, to Thermal LoadUnsaturated Zone, Yucca Mountain, Nevada, Water-Resources

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, Gudmundur S.

2005-01-01T23:59:59.000Z

88

Method and apparatus for chemically altering fluids in continuous flow  

DOE Patents (OSTI)

The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.

Heath, William O. (Richland, WA); Virden, Jr., Judson W. (Richland, WA); Richardson, R. L. (West Richland, WA); Bergsman, Theresa M. (Richland, WA)

1993-01-01T23:59:59.000Z

89

Method and apparatus for chemically altering fluids in continuous flow  

DOE Patents (OSTI)

The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.

Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.

1993-10-19T23:59:59.000Z

90

Numerical modeling of time-lapse seismic data from fractured reservoirs including fluid flow and geochemical processes  

E-Print Network (OSTI)

Discrete Fracture Network (DFN) models. My seismic simulation study suggests that CO2 saturated reservoir shows approximately ten times more attenuation than brine saturated reservoir. Similarly, large P-wave velocity variation in CO2 saturated reservoir...

Shekhar, Ravi

2009-05-15T23:59:59.000Z

91

Friction-Induced Fluid Heating in Nanoscale Helium Flows  

SciTech Connect

We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.

Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

2010-05-21T23:59:59.000Z

92

Implementation of surface tension with wall adhesion effects in a three-dimensional finite element model for fluid flow  

E-Print Network (OSTI)

- 1 - Implementation of surface tension with wall adhesion effects in a three-dimensional finite element modelling of surface tension. The external stress vectors associated with surface tension a drop of liquid on a plane is treated. Keywords : surface tension, finite element method, average

Boyer, Edmond

93

Shear-slip analysis in multiphase fluid-flow reservoir engineering ap plications using TOUGH-FLAC  

E-Print Network (OSTI)

IN MULTIPHASE FLUID-FLOW RESERVOIR ENGINEERING APPLICATIONSin multiphase fluid-flow reservoir-engineering applications.in multiphase fluid-flow reservoir engineering applications.

Rutqvist, Jonny; Birkholzer, Jens; Cappa, Frederic; Oldenburg, Curt; Tsang, Chin-Fu

2008-01-01T23:59:59.000Z

94

Thermodynamic Model for Fluid-Fluid Interfacial Areas in Porous...  

NLE Websites -- All DOE Office Websites (Extended Search)

areas are important in controlling the rate of mass and energy transfer between fluid phases in porous media. We present a modified thermodynamically based model (TBM) to...

95

FRACSTIM/I: A Fully Coupled Fluid Flow/Heat Transport and Geomechanica...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and Geomechanical DeformationFracture Generation Simulator FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and...

96

Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing  

E-Print Network (OSTI)

Imaging Fluid Flow in Geothermal Wells Using Distributed16 Imaging Fluid Flow in Geothermal Wells Using Distributedflow processes near a geothermal well under heating and

Freifeld, B.

2011-01-01T23:59:59.000Z

97

Computational Fluid Dynamics Simulation of Open-Channel Flows Over Bridge-Decks Under Various Flooding Conditions  

E-Print Network (OSTI)

. This study simulates limited scaled experimental data conducted elsewhere for bridge flooding in open channel simulation, Computational fluid dynamics, Flooding flows, Turbulence modeling, VOF modeling. 1. IntroductionComputational Fluid Dynamics Simulation of Open-Channel Flows Over Bridge-Decks Under Various

Kostic, Milivoje M.

98

Fluid mechanics experiments in oscillatory flow. Volume 1  

SciTech Connect

Results of a fluid mechanics measurement program is oscillating flow within a circular duct are present. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re{sub max}, Re{sub W}, and A{sub R}, embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA`s Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radical components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and in reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two-volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation).

Seume, J.; Friedman, G.; Simon, T.W. [Univ. of Minnesota, Minneapolis, MN (United States)

1992-03-01T23:59:59.000Z

99

Feedback regulated induction heater for a flowing fluid  

DOE Patents (OSTI)

A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

Migliori, A.; Swift, G.W.

1984-06-13T23:59:59.000Z

100

Feedback regulated induction heater for a flowing fluid  

DOE Patents (OSTI)

A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

Migliori, Albert (Santa Fe, NM); Swift, Gregory W. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Cryogenic Fluid Flow Heat Transfer in a Porous Heat Exchanger  

Science Journals Connector (OSTI)

The recent utilization of porous heat exchangers in various key industries has aroused considerable interest in the heat transfer and fluid dynamics processes in channel flows involving suction...1], suction with...

L. L. Vasiliev; G. I. Bobrova; S. K. Vinokurov…

1978-01-01T23:59:59.000Z

102

MULTIDIMENSIONAL NUMERICAL SIMULATION OF FLUID FLOW IN FRACTURED POROUS MEDIA  

E-Print Network (OSTI)

and fluid flow in the hydraulic fracturing process." Ph.D.depth by means of hydraulic fracturing." in Rock Mechanics:Fig. 13. Simulation of hydraulic fracturing: field data on

Narasimhan, T.N.

2014-01-01T23:59:59.000Z

103

On the acceleration potential in perfect fluid flow  

E-Print Network (OSTI)

ON THE ACCELERATION POTENTIAL IN PERFECT FLUID FLOW A Thesis By RAYMOND RUDOLPH MAESTRI Submitted. to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfrllment of the requirements for the degree of MASTER... OF SCIENCE August, 1960 Department of Aeronautical Engineering Major Subject: Aeronautical Engineering ON THE ACCELERATION POTENTIAL IN PERFECT FLUID FLOW A Thesis RAYMOND RUDOLPH MAESTRI Approved as to style and content by: Chairman of Commit e...

Maestri, Raymond Rudolph

1960-01-01T23:59:59.000Z

104

Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso  

Open Energy Info (EERE)

Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso Geothermal Field, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso Geothermal Field, CA Details Activities (1) Areas (1) Regions (0) Abstract: cap rock, permeability, fault, fracture, clay, Coso Author(s): Davatzes, N.C.; Hickman, S.H. Published: Geothermal Resource Council Transactions 2005, 1/1/2005 Document Number: Unavailable DOI: Unavailable Conceptual Model At Coso Geothermal Area (2005-2007) Coso Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Controls_on_Fault-Hosted_Fluid_Flow:_Preliminary_Results_from_the_Coso_Geothermal_Field,_CA&oldid=473359"

105

A Refined Model of Stationary Heat Transfer in Composite Bodies Reinforced With Pipes Containing a Heat-Transfer Fluid Moving in Laminar Flow Conditions. 2. A Model Problem**  

Science Journals Connector (OSTI)

Particular calculations of temperature fields in cylindrical shells spirally reinforced with pipes in which a heattransfer fluid moves are carried out. The effect of reinforcement parameters, the speed of the ...

A. P. Yankovskii

2014-05-01T23:59:59.000Z

106

PHYSICAL REVIEW E 84, 048302 (2011) Reply to "Comment on `Heat transfer and fluid flow in microchannels and nanochannels  

E-Print Network (OSTI)

PHYSICAL REVIEW E 84, 048302 (2011) Reply to "Comment on `Heat transfer and fluid flow) model for high-Knudsen-number (Kn) flow and heat transfer, in the range of Kn 1. We present various studies employing the LBGK model for high-Kn flow and heat transfer simulations. It is concluded that

Luo, Li-Shi

107

Using x-ray microtomography and pore-scale modeling to quantify sediment mixing and fluid flow in a developing streambed  

SciTech Connect

X-ray micro-tomography (XMT), image processing, and lattice Boltzmann (LB) methods were combined to observe sediment mixing, subsurface structure, and patterns of hydrogeological properties associated with bed sediment transport. Transport and mixing of sand and spherical glass beads were observed in a laboratory flume, beginning from a well-defined layered initial condition. Cores were obtained from the streambed at four different times, and each core was scanned by XMT in order to assess the evolution of spatial patterns within the bed. Image analysis clearly revealed the propagation of a sediment mixing front that began at the bed surface. The image data were used as boundary conditions in 3D LB simulation of pore fluid flow, showing that sediment sorting produced strong vertical gradients in permeability near the streambed surface. This new methodological approach offers potential for greatly improved characterization of mixing and transport of fine sediments in a wide variety of aquatic systems.

Chen, Cheng; Packman, Aaron I.; Gaillard, Jean-Francois; (NWU)

2010-01-22T23:59:59.000Z

108

Two-phase fluid flow through nozzles and abrupt enlargements  

SciTech Connect

The behavior of a fluid undergoing a phase change from liquid to vapor while flowing through a duct is of interest to engineers in many practical situations. For the case of interest to us, geothermal hot water flowing through various channels (well bores, surface pipes, equipment, etc.) may reach its flash point and choke point under appropriate conditions. The proper design of energy conversion systems depends on the ability of the engineer to predict this behavior with an acceptable degree of accuracy. The present study was in part motivated by the task of designing the blow-down, two-phase fluid flow test facility at Brown University. In that facility, a refrigerant (dichlorotetrafluoroethane or R-114) is boosted to a selected stagnation state and allowed to flow through a nozzle orifice into a long straight tube. The operation relies on the fluid being choked at the inlet section, and under certain circumstances, at the downstream section as well. A simple schematic of the test section is shown. This paper treats the problem generically and analytically, making use of the basic laws of fluid mechanics and thermodynamics. Specific calculations have been performed using R-114 as the flowing medium. They attempt to identify and describe all possible flow conditions in and downstream of the nozzle for all possible stagnation conditions.

Olia, H.; Maeder, P.F.; DiPippo, R.; Dickinson, D.A.

1983-10-01T23:59:59.000Z

109

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal  

Open Energy Info (EERE)

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Details Activities (1) Areas (1) Regions (0) Abstract: Cores from two of 13 U.S. Geological Survey research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of

110

Similarity flow solutions of a non-Newtonian power-law fluid Mohamed Guedda, Zakia Hammouch  

E-Print Network (OSTI)

for a steady-state laminar bound- ary layer flow, governed by the Ostwald-de Wael power-law model-Newtonian fluid mechanics is the Ostwald-de Wael model (with a power-law rheology [2, 3, 4, 5, 6]), which

Paris-Sud XI, Université de

111

The flow and heat transfer characteristics of multi-thermal fluid in horizontal wellbore coupled with flow in heavy oil reservoirs  

Science Journals Connector (OSTI)

Abstract As a new improved oil-recovery technique, multi-thermal fluid injection technology through a horizontal well has been widely used in the development process of heavy oil reservoirs. The flow and heat transfer characteristic of multi-thermal fluid in horizontal wellbore is significantly important for the productivity evaluation and parameters design of the horizontal well. Considering the specific physical properties of multi-thermal fluid, fluid absorption in perforation holes and pressure drop characteristics along the horizontal wellbore, this paper developed the flow and heat transfer model of multi-thermal fluid in perforated horizontal wellbore. In order to evaluate the heating effect of the multi-thermal fluid, a concept of effective heating length of a horizontal well is proposed. Then, a sensitivity analysis process is performed to study the influence of reservoir/fluid parameters and operating parameters on the flowing process of multi-thermal fluid in horizontal wellbore. Simultaneously, using the method of orthogonal numerical test, differential analysis and variance analysis are also conducted. Results show that the flowing process of multi-thermal fluid in horizontal wellbore includes a single-phase flowing process and a gas–liquid two-phase flowing process. The influence of oil viscosity on the flow and heat transfer characteristics of multi-thermal fluid in horizontal wellbore is most significant. Thereafter, the solution of our semi-analytical model is compared against the test results of an actual horizontal well from an oilfield in China. It is shown that the model results are in good agreement with the real test results. This model could be used to calculate and predict the flow and heat transfer characteristics of multi-thermal fluid (or saturated steam) in a perforated horizontal wellbore.

Xiaohu Dong; Huiqing Liu; Zhaoxiang Zhang; Changjiu Wang

2014-01-01T23:59:59.000Z

112

Development of an analytical model for organic-fluid fouling  

SciTech Connect

The research goal of this project is to determine ways to effectively mitigate fouling in organic fluids: hydrocarbons and derived fluids. The fouling research focuses on the development of methodology for determining threshold conditions for fouling. Initially, fluid containing chemicals known to produce foulant is analyzed; subsequently, fouling of industrial fluids is investigated. The fouling model developed for determining the effects of physical parameters is the subject of this report. The fouling model is developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermal-boundary layer, or at the fluid/wall interface, depending upon the interactive effects of fluid dynamics, heat and mass transfer, and the controlling chemical reaction. In the analysis, the experimental data are examined for fouling deposition of polyperoxide produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries are analyzed. The results show that the relative effects of physical parameters on the fouling rate differ for the three fouling mechanisms. Therefore, to apply the closed-flow-loop data to industrial conditions, the controlling mechanism must be identified.

Panchal, C.B.; Watkinson, A.P.

1994-10-01T23:59:59.000Z

113

Investigation of Swirling Flow in Rod Bundle Subchannels Using Computational Fluid Dynamics  

SciTech Connect

The fluid dynamics for turbulent flow through rod bundles representative of those used in pressurized water reactors is examined using computational fluid dynamics (CFD). The rod bundles of the pressurized water reactor examined in this study consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids are often used to create swirling flow in the rod bundle in an effort to improve the heat transfer characteristics for the rod bundle during both normal operating conditions and in accident condition scenarios. Computational fluid dynamics simulations for a two subchannel portion of the rod bundle were used to model the flow downstream of a split-vane pair support grid. A high quality computational mesh was used to investigate the choice of turbulence model appropriate for the complex swirling flow in the rod bundle subchannels. Results document a central swirling flow structure in each of the subchannels downstream of the split-vane pairs. Strong lateral flows along the surface of the rods, as well as impingement regions of lateral flow on the rods are documented. In addition, regions of lateral flow separation and low axial velocity are documented next to the rods. Results of the CFD are compared to experimental particle image velocimetry (PIV) measurements documenting the lateral flow structures downstream of the split-vane pairs. Good agreement is found between the computational simulation and experimental measurements for locations close to the support grid. (authors)

Holloway, Mary V. [United States Naval Academy, 117 Decatur Road, Annapolis, MD 21402-5018 (United States); Beasley, Donald E. [Clemson University, Clemson, S.C. 29634 (United States); Conner, Michael E. [Westinghouse Nuclear Fuel (United States)

2006-07-01T23:59:59.000Z

114

Multiphase Flow Modeling Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science Chris Guenther, Director Computational Science Division RUA Spring Meeting, Morgantown, WV March 2013 2 NETL's Multiphase Flow Science Team * The Multiphase Flow Science Team develops physics-based simulation models to conduct applied scientific research. - Development of new theory - Extensive on-site and collaborative V&V efforts and testing - Engages in technology transfer - Applies the models to industrial scale problems. 3 Why is Multiphase Flow Science Needed? * Industry is increasingly relying on multiphase technologies to produce clean and affordable energy with carbon capture. * Unfortunately, the presence of a solid phase reduces the operating capacity of a typical energy device from its original design on average by 40% [1].

115

Experimental study of fluid flow and heat transfer in tortuous microchannels.  

E-Print Network (OSTI)

??Tortuous microchannels have attracted increasing interest due to great potential to enhance fluid mixing and heat transfer. While the fluid flow and heat transfer in… (more)

Dai, Zhenhui

2014-01-01T23:59:59.000Z

116

Leaf Deformation Taking Into Account Fluid Flow Paulo Silva  

E-Print Network (OSTI)

the leaf, and couple the mass-spring parameters with a simulation representing the fluid flow is composed by a mass-spring system embedded in a mesh representing the input leaf. This mass- spring system the parameters of our system. Those parameters include spring constants and spring rest lengths. Then by updating

Ouhyoung, Ming

117

FLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS  

E-Print Network (OSTI)

= heat, f = LO-mode, g = LO, h = LA-mode, i = negligible, j = remote heat sink 7/ 70 #12;Heat conductionFLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS Mihir Sen Department · Shallow water analogy · Vorticity dynamics · Linear stability analysis · Numerical simulations of heat

Sen, Mihir

118

Visualization of the recovery-bioler flow fields predicted by computational fluid dynamics  

SciTech Connect

Flow patterns in the kraft recovery furnace can be simulated using models based on computational fluid dynamics (CFD). The use of CFD is becoming increasingly common as computer workstations become more powerful and CFD software is improved. In this article, the authors present simulated results for flow fields in the lower furnace. Because the flows in the lower furnace are dominated by the air system, the authors chose to simulate flow fields under isothermal conditions. The predicted flow fields were used to supplement results obtained from physical modeling. When a physical model is used for testing, each air-system configuration is typically evaluated based on air and gas velocities and the mixing distribution as measured at a limited number of test planes. Such measurements are commonly used to quantitatively assess air-system configurations for modeling studies or to validate CFD models.

Chapman, P.J.; Janik, S.G. (Kreisinger Development Lab. ABB Combustion Engineering Systems, Windsor, CT (United States)); Jones, A.K. (ABB Canada, Ottawa, ON (Canada))

1992-03-01T23:59:59.000Z

119

Lattice Boltzmann simulations of binary fluid flow through porous media  

Science Journals Connector (OSTI)

...V. Coveney and S. Succi Lattice Boltzmann simulations of binary fluid...D-80290 Munchen, Germany The lattice Boltzmann equation is often advocated...three-dimensional 19 velocity lattice Boltzmann model for immiscible binary...

2002-01-01T23:59:59.000Z

120

Lattice Boltzmann Simulation of Two-Fluid Model Equations  

Science Journals Connector (OSTI)

Lattice Boltzmann Simulation of Two-Fluid Model Equations ... An implicit lattice Boltzmann equation to simulate the locally averaged flow behavior of disperse two-phase mixtures is presented. ... The viability of the lattice Boltzmann approach is demonstrated through illustrative examples. ...

Krishnan Sankaranarayanan; Sankaran Sundaresan

2008-07-02T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A splitting method for numerical simulation of free surface flows of incompressible fluids with surface tension  

E-Print Network (OSTI)

with surface tension Kirill D. Nikitin Maxim A. Olshanskii Kirill M. Terekhov Yuri V. Vassilevski§ Abstract to surface tension forces. The method splits one time step into a semi-Lagrangian treatment of the surface models a free surface flow of viscous incompressible fluid subject to surface tension forces. Further

Olshanskii, Maxim A.

122

The mathematical structure of multiphase thermal models of flow in porous media  

E-Print Network (OSTI)

The mathematical structure of multiphase thermal models of flow in porous media By Daniel E.A. van with the formulation and numerical solution of equations for modelling multicomponent, two-phase, thermal fluid flow typical flow behaviour that occurs during fluid injection into a reservoir. Keywords: porous media flow

123

DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS  

SciTech Connect

In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in which flow regime transition occurs.

X. Wang; X. Sun; H. Zhao

2011-09-01T23:59:59.000Z

124

Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter  

DOE Patents (OSTI)

A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.

Ortiz, Marcos G. (Idaho Falls, ID); Boucher, Timothy J. (Helena, MT)

1997-01-01T23:59:59.000Z

125

Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter  

DOE Patents (OSTI)

A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.

Ortiz, M.G.; Boucher, T.J.

1997-06-24T23:59:59.000Z

126

Standardization of Thermo-Fluid Modeling in Modelica.Fluid  

E-Print Network (OSTI)

Thermo-Fluid Systems, Modelica 2003 Conference, Linköping,H. Tummescheit: The Modelica Fluid and Media Library forThermo-Fluid Pipe Networks, Modelica 2006 Conference, Vi-

Franke, Rudiger

2010-01-01T23:59:59.000Z

127

TOUGH+CO2: A multiphase fluid-flow simulator for CO2 geologic sequestration in saline aquifers  

Science Journals Connector (OSTI)

TOUGH+CO"2 is a new simulator for modeling of CO"2 geologic sequestration in saline aquifers. It is a member of TOUGH+, the successor to the TOUGH2 family of codes for multicomponent, multiphase fluid and heat flow simulation. The code accounts for heat ... Keywords: CO2 geologic sequestration, Modeling, Multiphase flow, Parallel computing, Saline aquifer, TOUGH+, TOUGH2

Keni Zhang; George Moridis; Karsten Pruess

2011-06-01T23:59:59.000Z

128

Modelling anisotropic fluid spheres in general relativity  

E-Print Network (OSTI)

We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.

Boonserm, Petarpa; Visser, Matt

2015-01-01T23:59:59.000Z

129

Fluid flow at the interface between elastic solids with randomly rough surfaces  

E-Print Network (OSTI)

I study fluid flow at the interface between elastic solids with randomly rough surfaces. I use the contact mechanics model of Persson to take into account the elastic interaction between the solid walls and the Bruggeman effective medium theory to account for the influence of the disorder on the fluid flow. I calculate the flow tensor which determines the pressure flow factor and, e.g., the leak-rate of static seals. I show how the perturbation treatment of Tripp can be extended to arbitrary order in the ratio between the root-mean-square roughness amplitude and the average interfacial surface separation. I introduce a matrix D(Zeta), determined by the surface roughness power spectrum, which can be used to describe the anisotropy of the surface at any magnification Zeta. I present results for the asymmetry factor Gamma(Zeta) (generalized Peklenik number) for grinded steel and sandblasted PMMA surfaces.

B. N. J. Persson

2010-04-07T23:59:59.000Z

130

NUMERICAL SIMULATIONS OF HEAT TRANSFER AND FLUID FLOW PROBLEMS USING AN  

E-Print Network (OSTI)

NUMERICAL SIMULATIONS OF HEAT TRANSFER AND FLUID FLOW PROBLEMS USING AN IMMERSED-BOUNDARY FINITE of the immersed boundary technique for simulating fluid flow and heat transfer problems over or inside complex. Several phenomenologically different fluid flow and heat transfer problems are simulated using

Pacheco, Jose Rafael

131

Heat transfer to a fluid flowing in an annulus  

E-Print Network (OSTI)

. ii I ~ DIMENSIONS AND SYMBOLS o ~ ~ ~ . ~ ~ ~ ~ I II e INTRODUCTION AND THEORY ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 3 IXI e APPARATUS AND PROCEDURES ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ 7 XV o RESULTS ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ 17 V, DXSCUSSION OF RESULTS... of times 0 Prandtl nnnber~ e~& dimensionless initial temperature oi' surfaoe and fluids% D equivalent diameter& Di g~ L Q - volume flow rate~ L3/T V~ mass velooity, FT/L3 6 mass floe rate~ FT/L IMTRODUCTIOR AND THEORY This thesis comprises heat tz...

Logan, Earl

2012-06-07T23:59:59.000Z

132

General single phase wellbore flow model  

SciTech Connect

A general wellbore flow model, which incorporates not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow, is presented in this report. The new wellbore model is readily applicable to any wellbore perforation patterns and well completions, and can be easily incorporated in reservoir simulators or analytical reservoir inflow models. Three dimensionless numbers, the accelerational to frictional pressure gradient ratio R{sub af}, the gravitational to frictional pressure gradient ratio R{sub gf}, and the inflow-directional to accelerational pressure gradient ratio R{sub da}, have been introduced to quantitatively describe the relative importance of different pressure gradient components. For fluid flow in a production well, it is expected that there may exist up to three different regions of the wellbore: the laminar flow region, the partially-developed turbulent flow region, and the fully-developed turbulent flow region. The laminar flow region is located near the well toe, the partially-turbulent flow region lies in the middle of the wellbore, while the fully-developed turbulent flow region is at the downstream end or the heel of the wellbore. Length of each region depends on fluid properties, wellbore geometry and flow rate. As the distance from the well toe increases, flow rate in the wellbore increases and the ratios R{sub af} and R{sub da} decrease. Consequently accelerational and inflow-directional pressure drops have the greatest impact in the toe region of the wellbore. Near the well heel the local wellbore flow rate becomes large and close to the total well production rate, here R{sub af} and R{sub da} are small, therefore, both the accelerational and inflow-directional pressure drops can be neglected.

Ouyang, Liang-Biao; Arbabi, S.; Aziz, K.

1997-02-05T23:59:59.000Z

133

Effect of viscosity and shear flow on the nonlinear two fluid interfacial structures  

SciTech Connect

A nonlinear formulation is presented to deal with the combined action of Rayleigh-Taylor and Kelvin-Helmholtz instabilities as well as combined Ricthmyer-Meshkov and Kelvin-Helmholtz instabilities at the two fluid interface under the influence of viscosity and consequent shear flow. Using Layzer's model, the development of the interfacial structures like bubbles is investigated analytically and numerically. It is found that the growth and normal velocity of the structures are dependent on the relative velocity shear and the kinematic coefficient of viscosity of both the fluids. Both the bubble growth and growth rate are reduced significantly for fluids of higher viscosity coefficient with small velocity shear difference. It is also observed that, for viscous fluids, the transverse velocity of the perturbed interface becomes slower under certain conditions.

Banerjee, Rahul [Department of Instrumentation Science and Centre for Plasma Studies, Jadavpur University, Kolkata 700032 (India); St Paul's Cathedral Mission College, 33/1, Raja Rammohan Roy Sarani, Kolkata 700009 (India); Mandal, Labakanta; Khan, M.; Gupta, M. R. [Department of Instrumentation Science and Centre for Plasma Studies, Jadavpur University, Kolkata 700032 (India)

2012-12-15T23:59:59.000Z

134

Convective flow of sisko fluid over a bidirectional stretching sheet  

E-Print Network (OSTI)

The present investigation discusses the flow and heat transfer characteristics of a steady three dimensional Sisko fluid. The flow is induced due to bidirectional stretching sheet. The influence of power-law index and stretching ratio on flow and heat transfer is studied thoroughly. Governing partial differential equations are reduced to coupled ordinary differential equations by suitable similarity variable. The resulting equations are then solved numerically by shooting method using adaptive Runge Kutta algorithm in combination with Broyden's method in the domain . The numerical results for the velocity and temperature fields are graphically presented and effects of the relevant parameters are discussed in detail. Moreover, the skin-friction coefficient and local Nusselt number for different values of the power-law index and stretching ratio are presented through tabulated data. The numerical results are verified with the results obtained by HAM. Additionally, the results are also validated with previously ...

Munir, Asif; Khan, Masood

2014-01-01T23:59:59.000Z

135

Reducing or stopping the uncontrolled flow of fluid such as oil from a well  

DOE Patents (OSTI)

The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.

Hermes, Robert E

2014-02-18T23:59:59.000Z

136

Different approximations of shallow fluid flow over an obstacle  

SciTech Connect

Three different sets of shallow water equations, representing different levels of approximation are considered. The numerical solutions of these different equations for flow past bottom topography in several different flow regimes are compared. For several cases the full Euler solutions are computed as a reference, allowing the assessment of the relative accuracies of the different approximations. Further, the differences between the dispersive shallow water (DSW) solutions and those of the highly simplified, hyperbolic shallow water (SW) equations is studied as a guide to determining what level of approximation is required for a particular flow. First, the Green-Naghdi (GN) equations are derived as a vertically-integrated rational approximation of the Euler equations, and then the generalized Boussinesq (gB) equations are obtained under the further assumption of weak nonlinearity. A series of calculations, each assuming different values of a set of parameters{emdash}undisturbed upstream Froude number, and the height and width of the obstacle, are then presented and discussed. In almost all regions of the parameter space, the SW and DSW theories yield different results; it is only when the flows are entirely subcritical or entirely supercritical and when the obstacles are very wide compared to the depth of the fluid that the SW and DSW theories are in qualitative and quantitative agreement. It is also found that while the gB solutions are accurate only for small bottom topographies (less than 20{percent} of the undisturbed fluid depth), the GN solutions are accurate for much larger topographies (up to 65{percent} of the undisturbed fluid depth). The limitation of the gB approximation to small topographies is primarily due to the generation of large amplitude upstream propagating solitary waves at transcritical Froude numbers, and is consistent with previous analysis. (Abstract Truncated)

Nadiga, B.T.; Margolin, L.G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Smolarkiewicz, P.K. [National Center for Atmospheric Research, Boulder, Colorado 80307 (United States)] [National Center for Atmospheric Research, Boulder, Colorado 80307 (United States)

1996-08-01T23:59:59.000Z

137

Modeling Turbulent Flow  

National Nuclear Security Administration (NNSA)

Turbulent Turbulent Flow with Implicit LES L.G. Margolin 1 Proceedings of the Joint Russian-American Five Laboratory Conference on Computational Mathematics/Physics 19-23 June, 2005 Vienna, Austria 1 Applied Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, len@lanl.gov 1 Abstract Implicit large eddy simulation (ILES) is a methodology for modeling high Reynolds' num- ber flows that combines computational efficiency and ease of implementation with predictive calculations and flexible application. Although ILES has been used for more than fifteen years, it is only recently that significant effort has gone into providing a physical rationale that speaks to its capabilities and its limitations. In this talk, we will present new theoret- ical results aimed toward building a justification and discuss some remaining gaps in our understanding and our practical

138

A model of overall regulation of body fluids  

Science Journals Connector (OSTI)

A large-scale model of body fluid regulation was presented for the purpose of studying problems concerning body fluid disturbances and fluid therapy. This model, containing subsystems of circulation, respirati...

Noriaki Ikeda; Fumiaki Marumo; Masuo Shirataka…

1979-01-01T23:59:59.000Z

139

Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs  

SciTech Connect

This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

Maria Cecilia Bravo

2006-06-30T23:59:59.000Z

140

Numerical simulation of flow of shear-thinning fluids in corrugated channels  

E-Print Network (OSTI)

A numerical study of flow of a shear thinning fluid through a pair of corrugated plates was carried out. The aim of the study was to observe and understand the behavior of the flow of shear thinning fluids through channels were the fluid...

Aiyalur Shankaran, Rohit

2008-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Numerical simulation of flow of shear-thinning fluids in corrugated channels  

E-Print Network (OSTI)

A numerical study of flow of a shear thinning fluid through a pair of corrugated plates was carried out. The aim of the study was to observe and understand the behavior of the flow of shear thinning fluids through channels were the fluid...

Aiyalur Shankaran, Rohit

2009-05-15T23:59:59.000Z

142

Abrupt contraction flow of magnetorheological fluids , M.T. Lpez-Lpez1,2  

E-Print Network (OSTI)

engineering interest, the MR fluids are very attractive from a purely scientific point of view. The coupling1 Abrupt contraction flow of magnetorheological fluids P. Kuzhir1 , M.T. López-López1,2 and G Granada, 18071 Granada, Spain Abstract Contraction and expansion flows of magnetorheological fluids occur

Boyer, Edmond

143

Gas–liquid flow stability and bubble formation in non-Newtonian fluids in microfluidic flow-focusing devices  

Science Journals Connector (OSTI)

This communication describes the gas–liquid two-phase flow patterns and the formation of bubbles in non-Newtonian fluids in microfluidic flow-focusing devices. Experiments were conducted in two different polym...

Taotao Fu; Youguang Ma; Denis Funfschilling; Huai Z. Li

2011-05-01T23:59:59.000Z

144

UZ Flow Models and Submodels  

SciTech Connect

The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

Y. Wu

2004-11-01T23:59:59.000Z

145

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents (OSTI)

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

Fincke, J.R.

1982-05-04T23:59:59.000Z

146

Heat transfer due to stagnation point flow of a non-Newtonian fluid  

Science Journals Connector (OSTI)

Heat transfer analysis for steady, laminar flow of an incompressible, homogeneous, non-Newtonian fluid of second grade at a stagnation point...K, of the fluid. The energy equation is discretized using central ......

V. K. Garg

1994-01-01T23:59:59.000Z

147

Unsteady hydromagnetic free-convection flow with radiative heat transfer in a rotating fluid  

Science Journals Connector (OSTI)

We consider the buoyancy-induced flow of an electrically-conducting fluid with radiative heat transfer past a vertical flat plate of infinite ... vary with temperature, that is a compressible fluid. If the temper...

A. R. Bestman; S. K. Adjepong

148

Prolonged effect of fluid flow stress on the proliferative activity of mesothelial cells after abrupt discontinuation of fluid streaming  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Late-onset peritoneal fibrosis leading to EPS remains to be elucidated. Black-Right-Pointing-Pointer Fluid streaming is a potent factor for peritoneal fibrosis in PD. Black-Right-Pointing-Pointer We focused on the prolonged effect of fluid streaming on mesothelial cell kinetics. Black-Right-Pointing-Pointer A history of fluid streaming exposure promoted mesothelial proliferative activity. Black-Right-Pointing-Pointer We have thus identified a potent new factor for late-onset peritoneal fibrosis. -- Abstract: Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial-mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed. The present findings show that fluid flow stress exerts a prolonged bioactive effect on mesothelial cells after termination of fluid streaming. These findings support the hypothesis that a history of PD for a certain period could serve as a trigger of EPS after stoppage of PD.

Aoki, Shigehisa, E-mail: aokis@cc.saga-u.ac.jp [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)] [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Ikeda, Satoshi [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)] [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Takezawa, Toshiaki [Transgenic Animal Research Center, National Institute of Agrobiological Sciences, Ibaraki (Japan)] [Transgenic Animal Research Center, National Institute of Agrobiological Sciences, Ibaraki (Japan); Kishi, Tomoya [Department of Internal Medicine, Saga University, Saga (Japan)] [Department of Internal Medicine, Saga University, Saga (Japan); Makino, Junichi [Makino Clinic, Saga (Japan)] [Makino Clinic, Saga (Japan); Uchihashi, Kazuyoshi; Matsunobu, Aki [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)] [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Noguchi, Mitsuru [Department of Urology, Faculty of Medicine, Saga University, Saga (Japan)] [Department of Urology, Faculty of Medicine, Saga University, Saga (Japan); Sugihara, Hajime [Department of Physical Therapy, International University of Health and Welfare, Fukuoka (Japan)] [Department of Physical Therapy, International University of Health and Welfare, Fukuoka (Japan); Toda, Shuji [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)] [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)

2011-12-16T23:59:59.000Z

149

Numerical Studies of Fluid Leakage from a Geologic Disposal Reservoir for CO2 Show Self-Limiting Feedback between Fluid Flow and Heat Transfer  

E-Print Network (OSTI)

Feedback between Fluid Flow and Heat Transfer Karsten Pruessfeedback between fluid flow and heat transfer tends to limitfluid mobility (viscosity and relative permeability effects), are countered by effects arising from limitations in the rate of conductive heat transfer.

Pruess, Karsten

2005-01-01T23:59:59.000Z

150

Coupling Lattice Boltzmann and Molecular Dynamics models for dense fluids  

E-Print Network (OSTI)

We propose a hybrid model, coupling Lattice Boltzmann and Molecular Dynamics models, for the simulation of dense fluids. Time and length scales are decoupled by using an iterative Schwarz domain decomposition algorithm. The MD and LB formulations communicate via the exchange of velocities and velocity gradients at the interface. We validate the present LB-MD model in simulations of flows of liquid argon past and through a carbon nanotube. Comparisons with existing hybrid algorithms and with reference MD solutions demonstrate the validity of the present approach.

A. Dupuis; E. M. Kotsalis; P. Koumoutsakos

2006-10-27T23:59:59.000Z

151

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents (OSTI)

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

Fincke, J.R.

1980-05-02T23:59:59.000Z

152

Heat transfer in the nonisothermal flow of an anomalously viscous fluid in a helical duct  

Science Journals Connector (OSTI)

The problem of heat transfer in the initial section of a helical ... with a steady flow of an anomalously viscous fluid is solved numerically.

A. I. Mumladze; Yu. G. Nazmeev; O. V. Maminov

1982-08-01T23:59:59.000Z

153

Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments  

Energy.gov (U.S. Department of Energy (DOE))

Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments presentation at the April 2013 peer review meeting held in Denver, Colorado.

154

Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure  

Energy.gov (U.S. Department of Energy (DOE))

Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure presentation at the April 2013 peer review meeting held in Denver, Colorado.

155

FRACSTIM/I: A Fully Coupled Fluid Flow/Heat Transport and Geomechanica...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FRACSTIMI: A Fully Coupled Fluid FlowHeat Transport and Geomechanical DeformationFracture Generation Simulator aka FALCON: Fracturing and Liquid CONservation Robert K....

156

Stress and Fluid-Flow Interaction for the Coso Geothermal Field...  

Open Energy Info (EERE)

California is reliant on the knowledge of fluid flow directions associated with fracture networks. We use finite element analysis to establish the 3D state of stress within...

157

Reduced order modeling of transient two-phase flows and its application to upward two-phase flows in the under-balanced drilling  

Science Journals Connector (OSTI)

In this paper, reduced order modeling (ROM) of transient two-phase flow equations is performed based on the four-equation two-fluid model, using an equation-free/Galerkin-free proper orthogonal decomposition (POD) method. The AUSMDV^* method is used ... Keywords: Proper orthogonal decomposition, Reduced order modeling, Two-fluid model, Two-phase flow, Under balanced drilling

Younes Shekari, Ebrahim Hajidavalloo, Morteza Behbahani-Nejad

2013-11-01T23:59:59.000Z

158

System and method for bidirectional flow and controlling fluid flow in a conduit  

DOE Patents (OSTI)

A system for measuring bidirectional flow, including backflow, of fluid in a conduit is disclosed. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit. 3 figs.

Ortiz, M.G.

1999-03-23T23:59:59.000Z

159

Mutiscale Modeling of Segregation in Granular Flows  

SciTech Connect

Modeling and simulation of segregation phenomena in granular flows are investigated. Computational models at different scales ranging from particle level (microscale) to continuum level (macroscale) are employed in order to determine the important microscale physics relevant to macroscale modeling. The capability of a multi-fluid model to capture segregation caused by density difference is demonstrated by simulating grain-chaff biomass flows in a laboratory-scale air column and in a combine harvester. The multi-fluid model treats gas and solid phases as interpenetrating continua in an Eulerian frame. This model is further improved by incorporating particle rotation using kinetic theory for rapid granular flow of slightly frictional spheres. A simplified model is implemented without changing the current kinetic theory framework by introducing an effective coefficient of restitution to account for additional energy dissipation due to frictional collisions. The accuracy of predicting segregation rate in a gas-fluidized bed is improved by the implementation. This result indicates that particle rotation is important microscopic physics to be incorporated into the hydrodynamic model. Segregation of a large particle in a dense granular bed of small particles under vertical. vibration is studied using molecular dynamics simulations. Wall friction is identified as a necessary condition for the segregation. Large-scale force networks bearing larger-than-average forces are found with the presence of wall friction. The role of force networks in assisting rising of the large particle is analyzed. Single-point force distribution and two-point spatial force correlation are computed. The results show the heterogeneity of forces and a short-range correlation. The short correlation length implies that even dense granular flows may admit local constitutive relations. A modified minimum spanning tree (MST) algorithm is developed to asymptotically recover the force statistics in the force networks. This algorithm provides a possible route to constructing a continuum model with microstructural information supplied from it. Microstructures in gas fluidized beds are also analyzed using a hybrid method, which couples the discrete element method (DEM) for particle dynamics with the averaged two-fluid (TF) equations for the gas phase. Multi-particle contacts are found in defluidized regions away from bubbles in fluidized beds. The multi-particle contacts invalidate the binary-collision assumption made in the kinetic theory of granular flows for the defluidized regions. Large ratios of contact forces to drag forces are found in the same regions, which confirms the relative importance of contact forces in determining particle dynamics in the defluidized regions.

Jin Sun

2007-08-03T23:59:59.000Z

160

Pulsatile flow of a chemically-reacting non-linear fluid  

E-Print Network (OSTI)

with the fluid undergoing a pulsatile flow are studied numerically. A comparison of the shear-thinning/chemical-thinning fluid to the shear-thinning/chemicalthickening fluid using a new non-dimensional parameter�the competition number (CN) shows that both...

Bridges, Ronald Craig, II

2007-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EXPERIMENTAL INVESTIGATION OF TURBULENT HEAT TRANSFER OF HIGH PRANDTL NUMBER FLUID FLOW UNDER STRONG MAGNETIC FIELD  

E-Print Network (OSTI)

EXPERIMENTAL INVESTIGATION OF TURBULENT HEAT TRANSFER OF HIGH PRANDTL NUMBER FLUID FLOW UNDER to the heat transfer characteristic: Flibe is a high Prandtl number fluid. For high Prandtl number fluid, there is a severe limitation of temperature window due to its high melting point. The turbulent heat transfer is

Abdou, Mohamed

162

New Lagrangian diagnostics for characterizing fluid flow mixing  

E-Print Network (OSTI)

A new kind of Lagrangian diagnostic family is proposed and a specific form of it is suggested for characterizing mixing: the maximal extent of a trajectory (MET). It enables the detection of coherent structures and their dynamics in two- (and potentially three-) dimensional unsteady flows in both bounded and open domains. Its computation is much easier than all other Lagrangian diagnostics known to us and provides new insights regarding the mixing properties on both short and long time scales and on both spatial plots and distribution diagrams. We demonstrate its applicability to two dimensional flows using two toy models and a data set of surface currents from the Mediterranean Sea.

Mundel, Ruty; Gildor, Hezi; Rom-Kedar, Vered

2014-01-01T23:59:59.000Z

163

Numerical Simulation of the Flow of a Power Law Fluid in an Elbow Bend  

E-Print Network (OSTI)

A numerical study of flow of power law fluid in an elbow bend has been carried out. The motivation behind this study is to analyze the velocity profiles, especially the pattern of the secondary flow of power law fluid in a bend as there are several...

Kanakamedala, Karthik

2010-07-14T23:59:59.000Z

164

Review of fluid flow and convective heat transfer within rotating disk cavities  

E-Print Network (OSTI)

Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet * Corresponding author : souad.harmand@univ-valenciennes.fr Abstract Fluid flow and convective heat transfer, are treated in details in this review. The review focuses on convective heat transfer in predominantly outward

Boyer, Edmond

165

Review of fluid flow and convective heat transfer within rotating disk cavities  

E-Print Network (OSTI)

1 Review of fluid flow and convective heat transfer within rotating disk cavities with impinging axial direction #12;5 Introduction Fluid flow and convective heat transfer in rotor-stator configuration heat transfer in rotor-stator configurations, which are of great importance in different engineering

Paris-Sud XI, Université de

166

The effects of topology upon fluid-flow and heat-transfer within cellular copper structures  

E-Print Network (OSTI)

The effects of topology upon fluid-flow and heat-transfer within cellular copper structures J. Tian February 2004 Available online 20 March 2004 Abstract The fluid-flow and heat-transfer features of cellular and packed beds, but also a function of orientation (open area ratio). The overall heat transfer depends

Wadley, Haydn

167

The effects of topology upon fluid-flow and heat-transfer within cellular copper structures  

E-Print Network (OSTI)

1 The effects of topology upon fluid-flow and heat-transfer within cellular copper structures J The fluid-flow and heat-transfer features of copper cellular metal structures made by the transient liquid media. The experimental results for pressure drop and heat transfer were expressed on the basis

Wadley, Haydn

168

Relation Between Flow Enhancement Factor and Structure for Core-Softened Fluids Inside Nanotubes  

E-Print Network (OSTI)

Relation Between Flow Enhancement Factor and Structure for Core-Softened Fluids Inside Nanotubes The relationship between enhancement flow and structure of core-softened fluids confined inside nanotubes has been was employed to create a pressure gradient between two reservoirs connected by a nanotube. We show how

Barbosa, Marcia C. B.

169

Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law  

E-Print Network (OSTI)

Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law F transfer in a magnetic fluid flow under the action of an applied magnetic field. Instead of the usual heat-Cattaneo law, heat transfer, magnetic field, magnetization AMS subject classifications: 76N10, 35Q35. 1

Boyer, Edmond

170

NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER OVER A SERIES OF IN-LINE NONCIRCULAR  

E-Print Network (OSTI)

NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER OVER A SERIES OF IN-LINE NONCIRCULAR TUBES CONFINED, Texas A&M University, College Station, Texas, USA Two-dimensional steady developing fluid flow and heat-volume technique. Grid independence study was carried out by running the developed code for several different grid

Bahaidarah, Haitham M.

171

Notes 09. Fluid inertia and turbulence in fluid film bearings  

E-Print Network (OSTI)

When fluid inertia effects are important. Bulk-flow model for inertial flows. Turbulence and inertia in short length journal bearings and open end dampers....

San Andres, Luis

2009-01-01T23:59:59.000Z

172

Three-dimensional analysis of fluid flow and heat transfer in single- and two-layered micro-channel heat sinks  

Science Journals Connector (OSTI)

A three-dimensional numerical analysis of laminar fluid flow and conjugate heat transfer has been conducted for single- and two-layered micro-channel heat sinks. The validity of the numerical model ... power, the...

M. L.-J. Levac; H. M. Soliman; S. J. Ormiston

2011-11-01T23:59:59.000Z

173

Characterization and fluid flow simulation of naturally fractured Frontier sandstone, Green River Basin, Wyoming  

SciTech Connect

Significant gas reserves are present in low-permeability sandstones of the Frontier Formation in the greater Green River Basin, Wyoming. Successful exploitation of these reservoirs requires an understanding of the characteristics and fluid-flow response of the regional natural fracture system that controls reservoir productivity. Fracture characteristics were obtained from outcrop studies of Frontier sandstones at locations in the basin. The fracture data were combined with matrix permeability data to compute an anisotropic horizontal permeability tensor (magnitude and direction) corresponding to an equivalent reservoir system in the subsurface using a computational model developed by Oda (1985). This analysis shows that the maximum and minimum horizontal permeability and flow capacity are controlled by fracture intensity and decrease with increasing bed thickness. However, storage capacity is controlled by matrix porosity and increases linearly with increasing bed thickness. The relationship between bed thickness and the calculated fluid-flow properties was used in a reservoir simulation study of vertical, hydraulically-fractured and horizontal wells and horizontal wells of different lengths in analogous naturally fractured gas reservoirs. The simulation results show that flow capacity dominates early time production, while storage capacity dominates pressure support over time for vertical wells. For horizontal wells drilled perpendicular to the maximum permeability direction a high target production rate can be maintained over a longer time and have higher cumulative production than vertical wells. Longer horizontal wells are required for the same cumulative production with decreasing bed thickness.

Harstad, H. [New Mexico Tech, Socorro, NM (United States); Teufel, L.W.; Lorenz, J.C.; Brown, S.R. [Sandia National Labs., Albuquerque, NM (United States). Geomechanics Dept.

1996-08-01T23:59:59.000Z

174

Subcritical finite-amplitude solutions in plane Couette flow of visco-elastic fluids  

E-Print Network (OSTI)

Plane Couette flow of visco-elastic fluids is shown to exhibit a purely elastic subcritical instability in spite of being linearly stable. The mechanism of this instability is proposed and the nonlinear stability analysis of plane Couette flow of the Upper-Convected Maxwell fluid is presented. It is found that above the critical Weissenberg number, a small finite-size perturbation is sufficient to create a secondary flow, and the threshold value for the amplitude of the perturbation decreases as the Weissenberg number increases. The results suggest a scenario for weakly turbulent visco-elastic flow which is similar to the one for Newtonian fluids as a function of Reynolds number.

Alexander N. Morozov; Wim van Saarloos

2004-11-10T23:59:59.000Z

175

Modeling of thermally driven hydrological processes in partially saturated fractured rock  

E-Print Network (OSTI)

multiphase fluid flow, heat transfer, and deformation insimulations of fluid flow, heat transfer, and phaseeither included no fluid flow and modeled heat transfer by

Tsang, Yvonne

2010-01-01T23:59:59.000Z

176

Modeling multiphase flow for high viscosity liquids: a study of vertical/inclined zero net liquid flow  

E-Print Network (OSTI)

° for higher viscosities. The trend suggests that the flow distribution coefficient, C[], varies with fluid viscosity and inclination angle, therefore affecting the liquid holdup in the pipe. A new model is proposed to take into account these factors and its...

Rodriguez, Jose Ramon

2012-06-07T23:59:59.000Z

177

Time-lapse seismic monitoring of subsurface fluid flow  

E-Print Network (OSTI)

Time-lapse seismic monitoring repeats 3 D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic...

Yuh, Sung H.

2004-09-30T23:59:59.000Z

178

Synthetic aperture imaging for three dimensional resolution of fluid flows  

E-Print Network (OSTI)

Fluid mechanics and instrumentation have a long history together, as experimental fluids studies play an important role in describing a more complete physical picture in a variety of problems. Presently. state-of-the-art ...

Belden, Jesse (Jesse Levi)

2011-01-01T23:59:59.000Z

179

Effect of heat transfer on the plane-channel poiseuille flow of a thermo-viscous fluid  

Science Journals Connector (OSTI)

A steady-state plane channel flow of viscous incompressible fluid with no-slip and heat transfer boundary conditions is considered. The flow is ... induced by a fixed pressure difference and the fluid viscosity d...

S. N. Aristov; V. G. Zelenina

180

Effect of mean fluid flow on an acoustic standing wave in an open cavity  

Science Journals Connector (OSTI)

Acoustic radiation pressure can be used to concentrate or remove small particles from an airborne aerosol. In this application an ultrasonic transducer mounted flush to one wall of a channel is used to excite an integer half?wavelength standing wave of high amplitude that propagates perpendicular to the aerosol flow direction. An expression for the Fourier transform of the acoustic pressure in a semi?infinite channel including the effect of mean fluid flow and finite transducer aperture has been obtained. A parabolic (laminar) mean flow was assumed. The acoustic pressure was found to be governed by the Mach number of the flow defined by the projection of the propagation direction relative to the mean flow velocity vector; and the aperture function of the transducer. Near a frequency of 50 kHz numerical inversions of the acoustic pressure transform showed that the presence of mean flow in the velocity range 0?2 m/s caused changes in acoustic pressure on the order of 1%–4%. Corresponding experimental measurements showed changes in acoustic pressure up to 10%. The highest changes in measured acoustic pressure were found to occur up? and down stream relative to the transducer and these patterns were in agreement with predictions of the analytical model.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Conversion model aids scale-up of mobil's fluid-bed MTG process  

Science Journals Connector (OSTI)

Mobil's fluid-bed Methanol-to-Gasoline (MTG) process was successfully scaled-up, from 0.04m diameter reactor, through 0.1m, to 0.6m diameter demonstration plant. Gas tracer responses in cold flow models were interpreted by a one-dimensional axial dispersion model, and combined with reaction kinetics to develop a conversion model.

M. Edwards; A. Avidan

1986-01-01T23:59:59.000Z

182

A numerical study on the effects of 2d structured sinusoidal elements on fluid flow and heat transfer at microscale  

E-Print Network (OSTI)

Computational fluid dynamics Microchannel Minichannel Surface roughness Roughness elements Heat transfer Fluid to achieve enhancement in heat transfer with relatively low cooling fluid flow rate [1]. In spite of havingA numerical study on the effects of 2d structured sinusoidal elements on fluid flow and heat

Kandlikar, Satish

183

Multiscale modeling in granular flow  

E-Print Network (OSTI)

Granular materials are common in everyday experience, but have long-resisted a complete theoretical description. Here, we consider the regime of slow, dense granular flow, for which there is no general model, representing ...

Rycroft, Christopher Harley

2007-01-01T23:59:59.000Z

184

Multiphase Fluid Flow in Deformable Variable-Aperture Fractures - Final Report  

SciTech Connect

Fractures provide flow paths that can potentially lead to fast migration of fluids or contaminants. A number of energy-­?related applications involve fluid injections that significantly perturb both the pressures and chemical composition of subsurface fluids. These perturbations can cause both mechanical deformation and chemical alteration of host rocks with potential for significant changes in permeability. In fractured rock subjected to coupled chemical and mechanical stresses, it can be difficult to predict the sign of permeability changes, let alone the magnitude. This project integrated experimental and computational studies to improve mechanistic understanding of these coupled processes and develop and test predictive models and monitoring techniques. The project involved three major components: (1) study of two-­?phase flow processes involving mass transfer between phases and dissolution of minerals along fracture surfaces (Detwiler et al., 2009; Detwiler, 2010); (2) study of fracture dissolution in fractures subjected to normal stresses using experimental techniques (Ameli, et al., 2013; Elkhoury et al., 2013; Elkhoury et al., 2014) and newly developed computational models (Ameli, et al., 2014); (3) evaluation of electrical resistivity tomography (ERT) as a method to detect and quantify gas leakage through a fractured caprock (Breen et al., 2012; Lochbuhler et al., 2014). The project provided support for one PhD student (Dr. Pasha Ameli; 2009-­?2013) and partially supported a post-­?doctoral scholar (Dr. Jean Elkhoury; 2010-­?2013). In addition, the project provided supplemental funding to support collaboration with Dr. Charles Carrigan at Lawrence Livermore National Laboratory in connection with (3) and supported one MS student (Stephen Breen; 2011-­?2013). Major results from each component of the project include the following: (1) Mineral dissolution in fractures occupied by two fluid phases (e.g., oil-­?water or water-­?CO{sub 2}) causes changes in local capillary forces and redistribution of fluids. These coupled processes enhance channel formation and the potential for development of fast flow paths through fractures. (2) Dissolution in fractures subjected to normal stress can result in behaviors ranging from development of dissolution channels and rapid permeability increases to fracture healing and significant permeability decreases. The timescales associated with advective transport of dissolved ions in the fracture, mineral dissolution rates, and diffusion within the adjacent porous matrix dictate the sign and magnitude of the resulting permeability changes. Furthermore, a high-­? resolution mechanistic model that couples elastic deformation of contacts and aperture-­?dependent dissolution rates predicts the range of observed behaviors reasonably well. (3) ERT has potential as a tool for monitoring gas leakage in deep formations. Using probabilistic inversion methods further enhances the results by providing uncertainty estimates of inverted parameters.

Detwiler, Russell

2014-04-30T23:59:59.000Z

185

2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 Molecular dynamics methods in  

E-Print Network (OSTI)

2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 2.13.7 Molecular dynamics methods in microscale heat transfer Shigeo Maruyama A. Introduction In normal heat transfer and fluid flow calculations of molecules. This situation is approached in microscale heat transfer and fluid flow. Molecular level

Maruyama, Shigeo

186

A nonlocal model for fluid-structure interaction with applications in hydraulic fracturing  

E-Print Network (OSTI)

Modeling important engineering problems related to flow-induced damage (in the context of hydraulic fracturing among others) depends critically on characterizing the interaction of porous media and interstitial fluid flow. This work presents a new formulation for incorporating the effects of pore pressure in a nonlocal representation of solid mechanics. The result is a framework for modeling fluid-structure interaction problems with the discontinuity capturing advantages of an integral based formulation. A number of numerical examples are used to show that the proposed formulation can be applied to measure the effect of leak-off during hydraulic fracturing as well as modeling consolidation of fluid saturated rock and surface subsidence caused by fluid extraction from a geologic reservoir. The formulation incorporates the effect of pore pressure in the constitutive description of the porous material in a way that is appropriate for nonlinear materials, easily implemented in existing codes, straightforward in i...

Turner, Daniel Z

2012-01-01T23:59:59.000Z

187

Challenges in plasma edge fluid modelling  

Science Journals Connector (OSTI)

Plasma fluid models like B2, UEDGE or EDGE2D are the standard tools for simulation of scrape-off layer physics, both for design and experimental support. The concept of a numerical tokamak, aiming at a predictive code for ITER, triggers the need to re-assess the available tools and their necessary extensions. These additional physics issues will be summarized. The experience existing in other scientific fields with multi-scale problems and modelling should be used as a guide. Here, the coupling strategies are in particular of interest for fusion problems. As a consequence, a certain construction of integrated modelling codes is needed: depending on the specific problem, models allowing different levels of complexity will be needed. Therefore, a hierarchy of tools is necessary, which will be discussed.

R Schneider; A Runov

2007-01-01T23:59:59.000Z

188

Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation  

SciTech Connect

A multiscale linear-solver framework for the pressure equation associated with flow in highly heterogeneous porous formations was developed. The multiscale based approach is cast in a general algebraic form, which facilitates integration of the new scalable linear solver in existing flow simulators. The Algebraic Multiscale Solver (AMS) is employed as a preconditioner within a multi-stage strategy. The formulations investigated include the standard MultiScale Finite-Element (MSFE) andMultiScale Finite-Volume (MSFV) methods. The local-stage solvers include incomplete factorization and the so-called Correction Functions (CF) associated with the MSFV approach. Extensive testing of AMS, as an iterative linear solver, indicate excellent convergence rates and computational scalability. AMS compares favorably with advanced Algebraic MultiGrid (AMG) solvers for highly detailed three-dimensional heterogeneous models. Moreover, AMS is expected to be especially beneficial in solving time-dependent problems of coupled multiphase flow and transport in large-scale subsurface formations.

Tchelepi, Hamdi

2014-11-14T23:59:59.000Z

189

Mathematical Model for Heavy Oil–Water–Gas Stratified Flow in Horizontal Pipes  

Science Journals Connector (OSTI)

A one-dimensional, isothermal, transient model for the stratified flow of heavy oil, water and gas, in horizontal pipelines, is presented. The two-fluid mathematical model consists of mass, momentum and energy...

C. Centeno-Reyes; O. Cazarez-Candia

2012-01-01T23:59:59.000Z

190

Fluid flow through very low permeability materials: A concern in the geological isolation of waste  

SciTech Connect

The geological isolation of waste usually involves the selection of sites where very low permeability materials exist, but there are few earth materials that are truly impermeable. Regulatory concerns for the containment of radioactive material extend for geologic periods of time (i.e., 10,000 years or more), and it becomes nearly impossible to ``assure`` the behavior of the site for such long periods of time. Experience at the Waste Isolation Pilot Plant (WIPP) shows that very slow movements of fluid can take place through materials that may, in fact, have no intrinsic permeability in their undisturbed condition. Conventional hydrologic models may not be appropriate to describe flow, may provide modeling results that could be in significant variance with reality, and may not be easy to defend during the compliance process. Additionally, the very small volumes of fluid and very slow flow rates involved are difficult to observe, measure, and quantify. The WIPP disposal horizon is excavated 655 m below the surface in bedded salt of Permian age. Salt has some unique properties, but similar hydrologic problems can be expected in site investigations were other relatively impermeable beds occur, and especially in deep sites where significant overburden and confining pressures may be encountered. Innovative techniques developed during the investigations at the WIPP may find utility when investigating other disposal sites. Ongoing work at the WIPP is expected to continue to advance understanding of flow through very low permeability materials. The study of flow under these conditions will become increasingly important as additional waste disposal sites are designed that require assurance of their safety for geological periods of time.

Deal, D.E.

1992-12-31T23:59:59.000Z

191

OnLine IPA Gradient Estimators in Stochastic Continuous Fluid Models  

E-Print Network (OSTI)

On­Line IPA Gradient Estimators in Stochastic Continuous Fluid Models Yorai Wardi # School Perturbation Analysis (IPA) to loss­related and workload­ related metrics in a class of Stochastic Flow Models parameters of interest, such as bu#er size, service rate and inflow rate. The IPA estimators derived

192

In situ stress, fracture, and fluid flow analysis in Well 38C-9: an  

Open Energy Info (EERE)

In situ stress, fracture, and fluid flow analysis in Well 38C-9: an In situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: In situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Abstract Geoscientists from the Coso Operating Company, EGI-Utah, GeoMechanics International, and the U.S. Geological Survey are cooperating in a multi-year study to develop an Enhanced Geothermal System (EGS) in the Coso Geothermal Field. Key to the creation of an EGS is an understanding of the relationship among natural fracture distribution, fluid flow, and the ambient tectonic stresses that exist within the resource in order to design

193

IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED  

Open Energy Info (EERE)

FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Details Activities (2) Areas (1) Regions (0) Abstract: Geoscientists from the Coso Operating Company, EGI-Utah, GeoMechanics International, and the U.S. Geological Survey are cooperating in a multi-year study to develop an Enhanced Geothermal System (EGS) in the Coso Geothermal Field. Key to the creation of an EGS is an understanding of the relationship among natural fracture distribution, fluid flow, and the ambient tectonic stresses that exist within the resource in order to design

194

Lattice-Boltzmann Simulations of Three-Dimensional Fluid Flow on a Desktop Computer  

Science Journals Connector (OSTI)

Lattice-Boltzmann Simulations of Three-Dimensional Fluid Flow on a Desktop Computer ... Algorithms for building lattices and solving the equations are not trivial, and memory demands are relatively high. ...

Jeffrey D. Brewster

2007-02-24T23:59:59.000Z

195

Heat transfer during laminar fluid flow in a pipe with radiative heat removal  

Science Journals Connector (OSTI)

The heat-transfer problem is analyzed for laminar fluid flow in the initial section of a ... pipe having a parabolic entry velocity distribution and heat removal by radiation from the surface of...

Ya. S. Kadaner; Yu. P. Rassadkin; É. L. Spektor

1971-01-01T23:59:59.000Z

196

Second-order fluid flow past a stretching sheet with heat transfer  

Science Journals Connector (OSTI)

The heat transfer in the flow of a second-order fluid, obeying Coleman and Noll's constitutive equation...KC/v. The thermal boundary layer thickness decreases and the Nusselt numberNu x increases ...

N. M. Bujurke; S. N. Biradar; P. S. Hiremath

1987-07-01T23:59:59.000Z

197

Heat transfer in a radiating fluid with slug flow in a parallel-plate channel  

Science Journals Connector (OSTI)

As a step towards a better understanding of combined conduction, convection, and radiation, fully developed heat transfer in slug flow in a flat duct ... , nonblack, isothermal surfaces. The gray radiating fluid ...

R. Viskanta

1964-01-01T23:59:59.000Z

198

Heat transfer in the flow of a viscoelastic fluid over a stretching sheet  

Science Journals Connector (OSTI)

The problem of heat transfer in the viscoelastic fluid flow over a stretching sheet is examined. ... such as the skin-friction coefficient and the heat transfer coefficient, are determined. It is found that the heat

P. Sam Lawrence; Dr. B. Nageswara Rao

1992-01-01T23:59:59.000Z

199

The stability of viscoelastic fluids in complex flows : the role of shear and extensional rheology  

E-Print Network (OSTI)

Understanding the flow of polymeric fluids is important for optimizing commercial processes such as injection molding and fiber spinning. The combination of streamwise curvature and elastic normal stresses can lead to the ...

Rothstein, Jonathan P. (Jonathan Philip), 1974-

2001-01-01T23:59:59.000Z

200

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF...  

Open Energy Info (EERE)

FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: IN SITU STRESS,...

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C...  

Open Energy Info (EERE)

FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library...

202

In situ stress, fracture, and fluid flow analysis in Well 38C...  

Open Energy Info (EERE)

situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to...

203

Permeability of illite-bearing shale: 2. Influence of fluid chemistry on flow and functionally  

E-Print Network (OSTI)

of the Wilcox formation has been investigated using distilled water and 1 M solutions of NaCl, KCl, and CaCl2 and permeabilities depend on fluid composition. Permeabilities to flow of 1 M CaCl2 are 3­5 times greater than values is greater for transport of 1 M CaCl2 than that for transport of the other pore fluids. Assuming that fluid

Herbert, Bruce

204

Computational fluid dynamics combustion modelling--A comparison of secondary air system designs  

SciTech Connect

A newly developed computer simulation of the combustion process in a kraft recovery furnace uses computational fluid dynamics to model the processes of mass, momentum, and energy transport. This paper describes two models and a presentation of the flow fields obtained. The results predict a dramatic improvement in combustion behavior using a refined secondary air system with reduction in particulate carryover, enhanced operating temperatures, more uniform gas flow, and less carbon monoxide at the furnace exit.

Jones, A.K. (ABB Combustion Engineering Systems, Ottawa, Ontario (Canada)); Chapman, P.J. (ABB Combustion Engineering Systems, Windsor, CT (United States))

1993-07-01T23:59:59.000Z

205

Semester project Lattice Boltzmann simulations of fluid flow: An unconventional approach to CFD  

E-Print Network (OSTI)

Semester project Lattice Boltzmann simulations of fluid flow: An unconventional approach to CFD Background: The lattice Boltzmann method is a new numerical method of computational fluid dynamics (CFD). Con on a continuous picture of matter. The lattice Boltzmann method instead relies on discrete particles having

Müller,Bernhard

206

Flows of Incompressible Newtonian and Generalized Newtonian Fluids over a Circular Cylinder  

E-Print Network (OSTI)

for progressively increasing flow rates corresponding to Re = 20, 40, 60, 100 and 200 for Newtonian and Carreau fluids and Re_n = 15.6, 37.2, 64.2, 118.8 and 285.0 for power-law fluids. The inlet length and the height of the domain are established so that boundaries...

Klein, Kayla

2012-05-31T23:59:59.000Z

207

A weakly nonlocal anisotropic fluid model for inhomogeneous Stokesian suspensions  

Science Journals Connector (OSTI)

A continuum model is proposed for a weakly inhomogeneous Stokesian suspensions as an extension with minor amendments of a previous work on homogeneous suspensions [J. D. Goddard J. Fluid Mech.568 1 (2006)]. In the present model stress and particle flux are given as invariant tensor functions of particle volume fraction ? deformation rate E and second-rank anisotropytensor A in a form that is also linear in E and the gradients of ? E and A . In contrast to models without history dependence all nonlinear dependence of particle flux on E arises from the evolution of A . Detailed attention is paid to unsteady viscometric flow where a contribution of streamline curvature to particle migration emerges as a natural consequence of tensorial gradients. The model predicts equal curvature-induced fluxes in gradient and vorticity directions but there is an unexplained disagreement with recent experiments on Couette and torsional flows. A previously proposed corotational evolution equation for A with a two-mode exponential relaxation is employed to investigate the transient response following the reversal of shearing in sinusoidal and in steady shear. The model predicts roughly equal response for the two flows if sinusoidal strains are of order unity which is consistent with some but not all experiments. The model for particle flux admits an asymmetric diffusiontensor which owing to Stokesian reversibility can become nonpositive upon abrupt reversal of shearing. This effect is diminished by non-Stokesian response on short strain scales which although poorly understood appears essential to elementary models without dependence on shear history. A synthesis is given of multipolar Stokesian resistance and the associated Stokesian dynamics showing how these follow from a single grand resistance kernel. In addition to unifying and extending large literature on Stokesian resistance formulae this provides some justification for the proposed continuum model and possible multipolar extensions.

J. D. Goddard

2008-01-01T23:59:59.000Z

208

Quantum Rainbow Cosmological Model With Perfect Fluid  

E-Print Network (OSTI)

Isotropic quantum cosmological perfect fluid model is studied in the formalism of Rainbow gravity. It is found that the only surviving matter degree of freedom played the role of cosmic time. With the suitable choice of the Rainbow functions it is possible to find the wave packet naturally from the superposition of the wave functions of the Schr$\\ddot{o}$dinger-Wheeler-deWitt equation. The many-worlds interpretation of quantum mechanics is applied to investigate the behavior of the scale factor and the behavior is found to depend on the operator ordering. It is shown that the model in the Rainbow framework may avoid singularity yielding a bouncing non-singular universe.

Majumder, Barun

2013-01-01T23:59:59.000Z

209

Finite Element Modeling of Suspended Particle Migration in Non-Newtonian Fluids  

SciTech Connect

Shear-induced migration of particles is studied during the slow flow of suspensions of spheres (particle volume fraction {phi} = 0.50) in an inelastic but shear-thinning, suspending fluid in flow between counterrotating concentric cylinders, The conditions are such that nonhydrodynamic effects are negligible. The movement of particles away from the high shear rate region is more pronounced than in a Newtonian suspending liquid. We test a continuum constitutive model for the evolution of particle concentration in a flowing suspension proposed by Phillips et al. (1992) by using shear-thinning, suspending fluids. The fluid constitutive equation is Carreau-like in its shear-thinning behavior but also varies with the local particle concentration. The model is compared with the experimental data gathered with nuclear magnetic resonance (NMR) imaging.

Altobelli, S.; Baer, T.; Mondy, L.; Rao, R.; Stephens, T.

1999-03-04T23:59:59.000Z

210

Inhomogeneity of fluid flow in Stirling engine regenerators  

SciTech Connect

The literature relating to inhomogeneity of flow regenerators is briefly reviewed. It is noted that, in contrast to other applications of regenerators, relatively little attention has been paid to the consequences of flow inhomogeneity for thermal regeneration in Stirling cycle machines. The construction of regenerator capsules for a large stationary Stirling engine is described. A test rig is developed to measure the gas velocity profile across the face of the packed regenerator capsules under steady flow conditions. Measured flow profiles for a number of different matrix materials and construction techniques are presented, and it is noted that stacked-mesh regenerator matrices tend to display marked inhomogeneities of flow. The consequences of flow inhomogeneity for flow friction and regenerator effectiveness are analyzed theoretically, and approximate formulae deduced. One method for reducing flow inhomogeneity in stacked-screen matrice

Jones, J.D. (School of Engineering Science, Simon Fraser Univ. Burnaby, British Columbia (CA))

1989-10-01T23:59:59.000Z

211

Multiphase flow and control of fluid path in microsystems  

E-Print Network (OSTI)

Miniaturized chemical-systems are expected to have advantages of handling, portability, cost, speed, reproducibility and safety. Control of fluid path in small channels between processes in a chemical/biological network ...

Jhunjhunwala, Manish

2005-01-01T23:59:59.000Z

212

Parcel Eulerian–Lagrangian fluid dynamics of rotating geophysical flows  

Science Journals Connector (OSTI)

...J. 1981 Hamiltonian field description of two-dimensional vortex fluids and guiding center plasmas. Plasma Physics Laboratory report, Princeton University. PPPL-1793, p. 20. Morrison, P.J 1998Hamiltonian description of the ideal...

2006-01-01T23:59:59.000Z

213

Flow Of Mantle Fluids Through The Ductile Lower Crust- Helium Isotope  

Open Energy Info (EERE)

Of Mantle Fluids Through The Ductile Lower Crust- Helium Isotope Of Mantle Fluids Through The Ductile Lower Crust- Helium Isotope Trends Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Flow Of Mantle Fluids Through The Ductile Lower Crust- Helium Isotope Trends Details Activities (5) Areas (5) Regions (0) Abstract: Heat and mass are injected into the shallow crust when mantle fluids are able to flow through the ductile lower crust. Minimum He-3/He-4 ratios in surface fluids from the northern Basin and Range Province, western North America, increase systematically from low crustal values in the east to high mantle values in the west, a regional trend that correlates with the rates of active crustal deformation. The highest ratios occur where the extension and shear strain rates are greatest. The

214

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From  

Open Energy Info (EERE)

Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Details Activities (5) Areas (1) Regions (0) Abstract: Temperatures of 100°C are measured at 3 km depth in a well located on the resurgent dome in the center of Long Valley Caldera, California, despite an assumed >800°C magma chamber at 6-8 km depth. Local downflow of cold meteoric water as a process for cooling the resurgent dome is ruled out by a Peclet-number analysis of temperature logs. These analyses reveal zones with fluid circulation at the upper and lower

215

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO  

Open Energy Info (EERE)

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Details Activities (1) Areas (1) Regions (0) Abstract: High rock temperatures, a high degree of fracturing, high tectonic stresses, and low permeability are the combination of qualities that define an ideal candidate-Enhanced Geothermal System (EGS) reservoir. The Coso Geothermal Field is an area where fluid temperatures exceeding 300°C have been measured at depths less than 10,000 feet and the reservoir is both highly fractured and tectonically stressed. Some of the wells within this portion of the reservoir are relatively impermeable,

216

SUBCRITICAL INSTABILITIES IN PLANE COUETTE FLOW OF VISCO-ELASTIC FLUIDS  

E-Print Network (OSTI)

SUBCRITICAL INSTABILITIES IN PLANE COUETTE FLOW OF VISCO-ELASTIC FLUIDS Alexander N. Morozov of an eigenfunction of the linearized equations of motion becomes subcritically unstable, and the threshold value, subcritical instabilities, amplitude equation Introduction In the last decades, stability of flows of polymers

van Saarloos, Wim

217

Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with  

E-Print Network (OSTI)

Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with partial-Newtonian boundary layer flow and heat transfer over an exponentially stretch- ing sheet with partial slip boundary. The heat transfer analysis has been carried out for two heating processes, namely (i) with prescribed sur

Paris-Sud XI, Université de

218

Nonlinear evolution of the magnetized Kelvin-Helmholtz instability: From fluid to kinetic modeling  

SciTech Connect

The nonlinear evolution of collisionless plasmas is typically a multi-scale process, where the energy is injected at large, fluid scales and dissipated at small, kinetic scales. Accurately modelling the global evolution requires to take into account the main micro-scale physical processes of interest. This is why comparison of different plasma models is today an imperative task aiming at understanding cross-scale processes in plasmas. We report here the first comparative study of the evolution of a magnetized shear flow, through a variety of different plasma models by using magnetohydrodynamic (MHD), Hall-MHD, two-fluid, hybrid kinetic, and full kinetic codes. Kinetic relaxation effects are discussed to emphasize the need for kinetic equilibriums to study the dynamics of collisionless plasmas in non trivial configurations. Discrepancies between models are studied both in the linear and in the nonlinear regime of the magnetized Kelvin-Helmholtz instability, to highlight the effects of small scale processes on the nonlinear evolution of collisionless plasmas. We illustrate how the evolution of a magnetized shear flow depends on the relative orientation of the fluid vorticity with respect to the magnetic field direction during the linear evolution when kinetic effects are taken into account. Even if we found that small scale processes differ between the different models, we show that the feedback from small, kinetic scales to large, fluid scales is negligible in the nonlinear regime. This study shows that the kinetic modeling validates the use of a fluid approach at large scales, which encourages the development and use of fluid codes to study the nonlinear evolution of magnetized fluid flows, even in the collisionless regime.

Henri, P. [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy) [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Université de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, BP 4229 06304, Nice Cedex 4 (France); Cerri, S. S. [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy) [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Califano, F.; Pegoraro, F. [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy)] [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Rossi, C. [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy) [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); LPP-CNRS, Ecole Polytechnique, UPMC, Université Paris VI, Université Paris XI, route de Saclay, 91128 Palaiseau (France); Faganello, M. [International Institute for Fusion Science/PIIM, UMR 7345 CNRS, Aix-Marseille University, 13397 Marseille (France)] [International Institute for Fusion Science/PIIM, UMR 7345 CNRS, Aix-Marseille University, 13397 Marseille (France); Šebek, O. [Astronomical Institute and Institute of Atmospheric Physics, AS CR Bocni II/1401, CZ-14131 Prague, Czech Republic and Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, B?ehová 7, 11519 Prague (Czech Republic)] [Astronomical Institute and Institute of Atmospheric Physics, AS CR Bocni II/1401, CZ-14131 Prague, Czech Republic and Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, B?ehová 7, 11519 Prague (Czech Republic); Trávní?ek, P. M. [Space Sciences Laboratory, University of California Berkeley, 7 Gauss Way, Berkeley, California 94720, USA and Astronomical Institute and Institute of Atmospheric Physics, AS CR Bocni II/1401, CZ-14131 Prague (Czech Republic)] [Space Sciences Laboratory, University of California Berkeley, 7 Gauss Way, Berkeley, California 94720, USA and Astronomical Institute and Institute of Atmospheric Physics, AS CR Bocni II/1401, CZ-14131 Prague (Czech Republic); Hellinger, P. [Astronomical Institute and Institute of Atmospheric Physics, AS CR Bocni II/1401, CZ-14131 Prague (Czech Republic)] [Astronomical Institute and Institute of Atmospheric Physics, AS CR Bocni II/1401, CZ-14131 Prague (Czech Republic); and others

2013-10-15T23:59:59.000Z

219

Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spray, Combustion, & Emission Modeling using KH-ACT Primary Breakup Model & Detailed Chemistry Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling using KH-ACT Primary...

220

Role of viscoelasticity and non-linear rheology in flows of complex fluids at high deformation rates  

E-Print Network (OSTI)

We combine pressure, velocimetry and birefringence measurements to study three phenomena for which the fluid rheology plays a dominant role: 1) shear banding in micellar fluids, 2) extension-dominated flows in microfluidic ...

Ober, Thomas J. (Thomas Joseph)

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Visualization of two-fluid flows of superfluid helium-4  

Science Journals Connector (OSTI)

...results on the flow past an oscillating sphere (64) and additional...visualization of unsteady/oscillating flows is a new line of inquiry...of the formation of cosmic strings . Nature 368 : 315 – 317...particles observed near a sphere oscillating in superfluid turbulent 4...

Wei Guo; Marco La Mantia; Daniel P. Lathrop; Steven W. Van Sciver

2014-01-01T23:59:59.000Z

222

Scales and Effects of Fluid Flow in the Upper Crust  

Science Journals Connector (OSTI)

...subsurface reservoirs. The tapping of these reservoirs is the basis...drives the rock cycle and...and a soil porosity of 25...variations in permeability focus or...fracture porosity ofigneous rocks. Fluids...oil reservoirs. ModifiedUpper...can modify permeability and topography...

Lawrence M. Cathles III

1990-04-20T23:59:59.000Z

223

Scales and Effects of Fluid Flow in the Upper Crust  

Science Journals Connector (OSTI)

...preparation. Dendritic river sands formed in deltas later collect...accumulations ofhydrocarbons (tar sands) on our planet were produced...constrained by consideration of phase diagrams for rele-vant bulk...is intimately linked to the behavior of C-O-H fluids (2) at...

Lawrence M. Cathles III

1990-04-20T23:59:59.000Z

224

NMRI methods for characterizing fluid flow in porous media  

E-Print Network (OSTI)

for fluids in porous media are very small and the NMR signals decay very fast. Furthermore, a narrow pulse approximation concept was applied so that the velocities of spins don't have to be assumed constant during the entire observation time. Preliminary...

Yao, Xiaoli

2012-06-07T23:59:59.000Z

225

Scales and Effects of Fluid Flow in the Upper Crust  

Science Journals Connector (OSTI)

...of these reservoirs is the basis...drives the rock cycle and...and a soil porosity of 25...variations in permeability focus or...Mesozoic sandstones, siltstones...fracture porosity ofigneous rocks. Fluids...oil reservoirs. ModifiedUpper...can modify permeability and topography...and water quality), and at...fracture porosity and permeability...

Lawrence M. Cathles III

1990-04-20T23:59:59.000Z

226

Scales and Effects of Fluid Flow in the Upper Crust  

Science Journals Connector (OSTI)

...of these reservoirs is the basis...drives the rock cycle and...and a soil porosity of 25...variations in permeability focus or...fracture porosity ofigneous rocks. Fluids...oil reservoirs. ModifiedUpper...can modify permeability and topography...and water quality), and at...fracture porosity and permeability...

Lawrence M. Cathles III

1990-04-20T23:59:59.000Z

227

ECI International Conference on Heat Transfer and Fluid Flow in Microscale Whistler, 21-26 September 2008  

E-Print Network (OSTI)

ECI International Conference on Heat Transfer and Fluid Flow in Microscale Whistler, 21] studied convective heat transfer of slug flows in a macro-sized tube by using viscoelastic fluids-26 September 2008 NUMERICAL STUDY ON CONVECTIVE HEAT TRANSFER OF GAS-LIQUID SLUG FLOW IN A MICRO TUBE Qunwu He

Kasagi, Nobuhide

228

Abstracts of the symposium on unsaturated flow and transport modeling  

SciTech Connect

Abstract titles are: Recent developments in modeling variably saturated flow and transport; Unsaturated flow modeling as applied to field problems; Coupled heat and moisture transport in unsaturated soils; Influence of climatic parameters on movement of radionuclides in a multilayered saturated-unsaturated media; Modeling water and solute transport in soil containing roots; Simulation of consolidation in partially saturated soil materials; modeling of water and solute transport in unsaturated heterogeneous fields; Fluid dynamics and mass transfer in variably-saturated porous media; Solute transport through soils; One-dimensional analytical transport modeling; Convective transport of ideal tracers in unsaturated soils; Chemical transport in macropore-mesopore media under partially saturated conditions; Influence of the tension-saturated zone on contaminant migration in shallow water regimes; Influence of the spatial distribution of velocities in porous media on the form of solute transport; Stochastic vs deterministic models for solute movement in the field; and Stochastic analysis of flow and solute transport. (DMC)

Not Available

1982-03-01T23:59:59.000Z

229

Stochastic models for turbulent reacting flows  

SciTech Connect

The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

230

Similarity Flow Solutions of a Non-Newtonian Power-law Fluid  

E-Print Network (OSTI)

In this paper we present a mathematical analysis for a steady-state laminar boundary layer flow, governed by the Ostwald-de Wael power-law model of an incompressible non- Newtonian fluid past a semi-infinite power-law stretched flat plate with uniform free stream velocity. A generalization of the usual Blasius similarity transformation is used to find similarity solutions [1]. Under appropriate assumptions, partial differential equations are transformed into an autonomous third-order nonlinear degenerate ordinary differential equation with boundary conditions. Using a shooting method, we establish the existence of an infinite number of global unbounded solutions. The asymptotic behavior is also discussed. Some properties of those solutions depend on the viscosity power-law index.

Guedda, Mohamed

2009-01-01T23:59:59.000Z

231

Lattice Boltzmann simulations of complex fluids  

Science Journals Connector (OSTI)

......research-article Articles Lattice Boltzmann simulations of complex fluids...OX1 3NP, UK We discuss how lattice Boltzmann simulations can be used to model...binary and lamellar fluids. lattice Boltzmann|complex fluids|shear flow......

J. M. YEOMANS; ALEXANDER J. WAGNER

2000-10-01T23:59:59.000Z

232

Electrochemically Actuated Mercury Pump for Fluid Flow and Delivery  

Science Journals Connector (OSTI)

The design and construction of the pump are detailed, and the potential attributes of this design, including the generated pumping pressure, flow rate, and power consumption, are discussed. ... In evaluations of flow rate, a set of ball-style check valves was attached to each end of the flow channel in the top platform with heat-shrinkable tubing. ... Because of the critical nature of the alignment of the two columns, the variability between setups for the smallest of the pumps (i.e., pump 4) can be as large as 15% if not aligned carefully. ...

Jing Ni; Chuan-Jian Zhong; Shelley J. Coldiron; Marc D. Porter

2000-11-22T23:59:59.000Z

233

On the influence of an absorption term in incompressible fluid flows  

E-Print Network (OSTI)

|, they approximate the Ostwald-de Waele model for power law fluids, very often used to model non-Newtonian fluids and q as follows: Newtonian if µ0 > 0 and µ1 = 0 Ostwald-de Waele if µ0 = 0 and µ1 > 0 Bingham

Lisbon, University of

234

A MEMS BODY FLUID FLOW SENSOR Ellis Meng1  

E-Print Network (OSTI)

for its stability, accuracy, and high temperature coefficient of resistivity (TCR). Additional packaging the device using compressed air. The flow rate is adjusted by a metering valve and calibrated using

Meng, Ellis

235

Three-phase fluid flow in porous media  

SciTech Connect

In the regions of two-phase flow, with a third phase stationary, the third phase plays an important role in the resulting relative permeability relationships. Wettability has an extremely significant effect on the permeability and flow behavior of the system. This report presents a review of the literature on three-phase relative permeability, a suggested unsteady-state method for finite-difference calculation procedure.

Donaldson, E.C.; Kayser, M.B.

1981-04-01T23:59:59.000Z

236

Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs  

SciTech Connect

This document reports progress of this research effort in identifying possible relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. Based on a critical review of the available literature, a better understanding of the main weaknesses of the current state of the art of modeling and simulation for tight sand reservoirs has been reached. Progress has been made in the development and implementation of a simple reservoir simulator that is still able to overcome some of the deficiencies detected. The simulator will be used to quantify the impact of microscopic phenomena in the macroscopic behavior of tight sand gas reservoirs. Phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization are being considered as part of this study. To date, the adequate modeling of gas slippage in porous media has been determined to be of great relevance in order to explain unexpected fluid flow behavior in tight sand reservoirs.

Maria Cecilia Bravo; Mariano Gurfinkel

2005-06-30T23:59:59.000Z

237

Conjugated heat transfer in the flow of a non-Newtonian fluid with variable properties in a flat duct  

Science Journals Connector (OSTI)

We solve the problem of the flow of a nonlinearly viscoelastic fluid in the presence of large pressure drops and appreciable nonisothermicity.

N. V. Tyabin; O. Kh. Dakhin; A. V. Baranov…

1983-09-01T23:59:59.000Z

238

Method and apparatus for simultaneous determination of fluid mass flow rate, mean velocity and density  

DOE Patents (OSTI)

This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.

Hamel, William R. (Farragut, TN)

1984-01-01T23:59:59.000Z

239

Peristaltic Transport of a Rheological Fluid: Model for Movement of Food Bolus Through Esophagus  

E-Print Network (OSTI)

Fluid mechanical peristaltic transport through esophagus has been of concern in the paper. A mathematical model has been developed with an aim to study the peristaltic transport of a rheological fluid for arbitrary wave shapes and tube lengths. The Ostwald-de Waele power law of viscous fluid is considered here to depict the non-Newtonian behaviour of the fluid. The model is formulated and analyzed with the specific aim of exploring some important information concerning the movement of food bolus through the esophagus. The analysis has been carried out by using lubrication theory. The study is particularly suitable for cases where the Reynolds number is small. The esophagus is treated as a circular tube through which the transport of food bolus takes places by periodic contraction of the esophageal wall. Variation of different variables concerned with the transport phenomena such as pressure, flow velocity, particle trajectory and reflux are investigated for a single wave as well as for a train of periodic peristaltic waves. Locally variable pressure is seen to be highly sensitive to the flow index `n'. The study clearly shows that continuous fluid transport for Newtonian/rheological fluids by wave train propagation is much more effective than widely spaced single wave propagation in the case of peristaltic movement of food bolus in the esophagus.

J. C. Misra; S. Maiti

2011-12-28T23:59:59.000Z

240

Development of one-dimensional computational fluid dynamics code 'GFLOW' for groundwater flow and contaminant transport analysis  

SciTech Connect

Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)

Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Ltd., R-2, Ent. Block, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai - 400 094 (India)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Lattice Boltzmann model for ultrarelativistic flows  

Science Journals Connector (OSTI)

We develop a relativistic lattice Boltzmann model capable of describing relativistic fluid dynamics at ultra-high velocities, with Lorentz factors up to ??10. To this purpose, we first build a new lattice kinetic scheme by expanding the Maxwell-Jüttner distribution function in an orthogonal basis of polynomials and applying an appropriate quadrature, providing the discrete versions of the relativistic Boltzmann equation and the equilibrium distribution. To achieve ultra-high velocities, we include a flux limiter scheme, and introduce the bulk viscosity by a suitable extension of the discrete relativistic Boltzmann equation. The model is validated by performing simulations of shock waves in viscous quark-gluon plasmas and comparing with existing models, finding very good agreement. To the best of our knowledge, we for the first time successfully simulate viscous shock waves in the highly relativistic regime. Moreover, we show that our model can also be used for near-inviscid flows even at very high velocities. Finally, as an astrophysical application, we simulate a relativistic shock wave, generated by, say, a supernova explosion, colliding with a massive interstellar cloud, e.g., molecular gas.

F. Mohseni; M. Mendoza; S. Succi; H. J. Herrmann

2013-04-11T23:59:59.000Z

242

Scales and Effects of Fluid Flow in the Upper Crust  

Science Journals Connector (OSTI)

...Recent work shows that in the Salton Sea geothermal system a deep saline brine (nearly saturated...variability offluid flow in the Salton Sea geothermal area would be quite different. Perspective...year-'. This heat can be removed by heating 40 km offluids to 350 C (heat capacity...

Lawrence M. Cathles III

1990-04-20T23:59:59.000Z

243

Simulation of swirling coal combustion using a full two-fluid model and an AUSM turbulence-chemistry model?  

Science Journals Connector (OSTI)

A full two-fluid model of reacting gas-particle flows with an algebraic unified second-order moment turbulence-chemistry model for the turbulent reaction rate of NO formation are used to simulate swirling coal combustion. The sub-models are the k–?–kp two-phase turbulence model, the EBU–Arrhenius volatile and CO combustion model, the six-flux radiation model, coal devolatilization model and char combustion model. The prediction results are in good agreement with the experimental results taken from references.

L.X. Zhou; Y. Zhang; J. Zhang

2003-01-01T23:59:59.000Z

244

MICRO/MACROSCOPIC FLUID FLOW IN OPEN CELL FIBROUS STRUCTURES  

E-Print Network (OSTI)

, which is a novel approach in Microfluidics. To verify the developed models, several testbeds have been

Bahrami, Majid

245

Heat source/sink effects on non-Newtonian MHD fluid flow and heat transfer over a permeable stretching surface: Lie group analysis  

Science Journals Connector (OSTI)

An analysis is performed for flow and heat transfer of a non-Newtonian fluid known as Casson fluid over a permeable stretching surface through a...

M. N. Tufail; A. S. Butt; A. Ali

2014-01-01T23:59:59.000Z

246

Interference well testing—variable fluid flow rate  

Science Journals Connector (OSTI)

At present when conducting an interference well test a constant flow rate (at the 'active' well) is utilized and the type-curve matching technique (where only 2–3 values of pressure drops are matched) is used to estimate the porosity–total compressibility product and formation permeability. For oil and geothermal reservoirs with low formation permeability the duration of the test may require a long period of time and it can be difficult to maintain a constant flow rate. The qualitative term 'long' period of time means that (at a given distance between the 'active' and 'observational' well) more test time (for low permeability formations) is needed to obtain tangible pressure drops in the 'observational' well. In this study we present working equations which will allow us to process field data when the flow rate at the 'active' well is a function of time. The shut-in period is also considered. A new method of field data processing, where all measured pressure drops are utilized, is proposed. The suggested method allows us to make use of the statistical theory to obtain error estimates on the regression parameters. It is also shown that when high precision (resolution) pressure gauges are employed the pressure time derivative equations can be used for the determination of formation hydraulic diffusivity. An example is presented to demonstrate the data processing procedure.

I M Kutasov; L V Eppelbaum; M Kagan

2008-01-01T23:59:59.000Z

247

Application of x-ray microtomography to environmental fluid flow D. Wildenschild*a,c  

E-Print Network (OSTI)

environmental processes are controlled by the micro-scale interaction of water and air with the solid phaseApplication of x-ray microtomography to environmental fluid flow problems D. Wildenschild*a,c , K resource management, contaminant remediation, and agriculture. Many of these physical processes operative

Wildenschild, Dorthe

248

Hydrothermal dolomites in SW Sardinia (Italy): evidence for a widespread late-Variscan fluid flow event  

E-Print Network (OSTI)

Hydrothermal dolomites in SW Sardinia (Italy): evidence for a widespread late-Variscan fluid flow, the Cambrian carbonates underwent ductile deformation and greenschist facies metamorphism. The same is true-temperature metamorphic rocks within the overlying nappes. It is assumed that a late-Variscan hydrothermal event, which

Boni, Maria

249

3D MHD Free Surface Fluid Flow Simulation Based on Magnetic-Field Induction Equations  

E-Print Network (OSTI)

1 3D MHD Free Surface Fluid Flow Simulation Based on Magnetic-Field Induction Equations H.L. HUANG Huang@fusion.ucla.edu Abstract: The purpose of this paper is to present our recent efforts on 3D MHD-plane magnetic field configurations have shown that 3D MHD effects from a surface normal field gradient cause

California at Los Angeles, University of

250

Space-Time Discontinuous Galerkin Finite Element Method for Two-Fluid Flows.  

E-Print Network (OSTI)

different fluids, due to surface tension and other effects. In addition, the density and pressure arising from the cut-cell refinement are merged to improve the stability and performance. The interface flows with bubbles, droplets or solid particles, wave-structure interactions, dam breaking, bed

Al Hanbali, Ahmad

251

Coating Flows of Non-Newtonian Fluids: Weakly and Strongly Elastic Limits  

E-Print Network (OSTI)

Coating Flows of Non-Newtonian Fluids: Weakly and Strongly Elastic Limits J. Ashmore(1,a), A.Q. Shen(1,b), H.P. Kavehpour(2,c), H.A. Stone(1) & G.H. McKinley(2) 1: Division of Engineering and Applied of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (a): Current address: TIAX

252

Dynamics of a confined dusty fluid in a sheared ion flow  

SciTech Connect

Dynamics of an isothermally driven dust fluid is analyzed which is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in equilibrium with an unconfined sheared flow of a streaming plasma. Cases are analyzed where the confining potential constitutes a barrier for the driven fluid, limiting its spatial extension and boundary velocity. The boundary effects entering the formulation are characterized by applying the appropriate boundary conditions and a range of solutions exhibiting single and multiple vortex are obtained. The equilibrium solutions considered in the cylindrical setup feature a transition from single to multiple vortex state of the driven flow. Effects of (i) the variation in dust viscosity, (ii) coupling between the driving and the driven fluid, and (iii) a friction determining the equilibrium dynamics of the driven system are characterized.

Laishram, Modhuchandra; Sharma, Devendra; Kaw, Predhiman K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2014-07-15T23:59:59.000Z

253

Boundary layer flow and heat transfer analysis of a second-grade fluid  

SciTech Connect

Boundary layer flow and heat transfer analysis of a homogeneous, incompressible, non-Newtonian fluid of grade two at a stagnation point is presented. The flow is assumed to be steady and laminar. A power-law representation is assumed for the velocity distribution and wall temperature variation. The governing equations are solved using an iterative central difference approximation method in a non-uniform grid domain. This analysis show the effect of non-Newtonian nature of the fluid and the effect of suction/injection on the velocity profile. The effect of non-Newtonian nature of the fluid on the heat transfer coefficient at the wall for different values of Prandtl number and wall-temperature variation is also presented. (VC)

Massoudi, M. [USDOE Pittsburgh Energy Technology Center, PA (United States); Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1992-04-01T23:59:59.000Z

254

Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend  

DOE Patents (OSTI)

A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

Ortiz, M.G.

1998-02-10T23:59:59.000Z

255

MecE 630 Fluid Dynamics (Fall 2013) Course objectives: To explore the essential dynamics of flowing fluids by expanding upon ma-  

E-Print Network (OSTI)

and vortex tubes. · Fluid kinematics and vector calculus ­ Summation notation, ­ Normal vs. shear strain- ing novel research projects. Course topics: · Review of basic concepts ­ Definition of a fluid is Incompressible Flow (fourth edition) by R.L. Panton. Problem sets: Roughly one per course topic. Problem sets

Flynn, Morris R.

256

Advanced Model and Methodology Development [Heat Transfer and Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Model and Advanced Model and Methodology Development Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Advanced Model and Methodology Development Electrorefiner Model for Treatment of Spent Nuclear Fuel Electrorefiner Model for Treatment of Spent Nuclear Fuel. Click on image to

257

Fluid Flow and Heat Transfer in Cellular Solids.  

E-Print Network (OSTI)

??To determine the characteristics and properties of cellular solids for an application, and to allow a systematic practical use by means of correlations and modelling… (more)

Ettrich, Jörg

2014-01-01T23:59:59.000Z

258

Lattice-Boltzmann model for interacting amphiphilic fluids  

Science Journals Connector (OSTI)

We develop our recently proposed lattice-Boltzmann method for the nonequilibrium dynamics of amphiphilic fluids [H. Chen, B. M. Boghosian, P. V. Coveney, and M. Nekovee, Proc. R. Soc. London, Ser. A 456, 2043 (2000)]. Our method maintains an orientational degree of freedom for the amphiphilic species and models fluid interactions at a microscopic level by introducing self-consistent mean-field forces between the particles into the lattice-Boltzmann dynamics, in a way that is consistent with kinetic theory. We present the results of extensive simulations in two dimensions which demonstrate the ability of our model to capture the correct phenomenology of binary and ternary amphiphilic fluids.

Maziar Nekovee; Peter V. Coveney; Hudong Chen; Bruce M. Boghosian

2000-12-01T23:59:59.000Z

259

Coupled fluids model in FRW space-time  

E-Print Network (OSTI)

In this paper, we analyze a two coupled fluids model by investigating several solutions for accelerated universe in flat FRW space-time. One of the fluids can be identified with the matter and the model possesses the standard matter solution also. Beyond the removal of the coincidence problem, we will see how the coupling may change the description of the energy contents of the universe and which features can be aquired with respect to the standard decoupled cases.

Shynaray Myrzakul; Ratbay Myrzakulov; Lorenzo Sebastiani

2014-06-06T23:59:59.000Z

260

Coupled fluids model in FRW space-time  

E-Print Network (OSTI)

In this paper, we analyze a two coupled fluids model by investigating several solutions for accelerated universe in flat FRW space-time. One of the fluids can be identified with the matter and the model possesses the standard matter solution also. Beyond the removal of the coincidence problem, we will see how the coupling may change the description of the energy contents of the universe and which features can be aquired with respect to the standard decoupled cases.

Myrzakul, Shynaray; Sebastiani, Lorenzo

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Investigation of aluminum surface cleaning using cavitating fluid flow  

SciTech Connect

This paper investigates efficiency of specially designed atomizer used to spray water and cavitate microbubbles in water flow. Surface cleaning system was used to clean machined (grinded) aluminum surface from abrasive particles. It is established that cleaning efficiency depends on diameter of the diffuser, water pressure and distance between nozzle and metal surface. It is obtained that the best cleaning efficiency (100%) is achieved at pressure 36 bar, when diameter of diffuser is 0.4 mm and distance between nozzle and surface is 1 mm. It is also established that satisfactory cleaning efficiency (80%) is achieved not only when atomizer is placed closer to metal surface, but also at larger (120 mm) distances.

Ralys, Aurimas; Striška, Vytautas; Mokšin, Vadim [Vilnius Gediminas Technical University, Faculty of Mechanics, Department of Machine Engineering, J. Basanavi?iaus str.28, 03224, Vilnius (Lithuania)

2013-12-16T23:59:59.000Z

262

A method to visualise near wall fluid flow patterns using locally resolved heat transfer experiments  

Science Journals Connector (OSTI)

Abstract The present study demonstrates an alternative approach for describing fluid flow characteristics very close to the wall, using locally resolved convective heat transfer experiments. Heat transfer coefficients on the base surface and around a surface mounted vortex generator of delta-wing shape design, are evaluated with the transient liquid crystal measurement technique and over a range of freestream velocities. Therefore, the local values of exponent m in the equation Nu x ? Re x m , which is directly linked to the structure of the boundary layer, can be determined over the complete heat transfer area. The local distributions of exponent m are then directly compared to the footprint of the flow obtained with typical oil and dye surface flow visualisation. The results indicate that a more appropriate interpretation of the flow structures very close to the wall is possible by analysing the spatial variation of exponent m, which approximates better the flow pattern compared to the heat transfer coefficients. As a result, fluid flow topologies can be directly evaluated from the heat transfer experiments since the distributions of oil-flow visualisation and exponent m are qualitatively similar.

Alexandros Terzis; Jens von Wolfersdorf; Bernhard Weigand; Peter Ott

2015-01-01T23:59:59.000Z

263

Computational Fluid Dynamics (CFD) simulations of dilute fluid-particle flows in aerosol concentrators  

E-Print Network (OSTI)

's turbulent dispersion model. A detailed literature survey revealed the inherent technical deficiencies in the model, even for particle dispersion. Based on the results of this study, it was determined that while the code can be used for simulating aerosol...

Hari, Sridhar

2005-02-17T23:59:59.000Z

264

Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow  

DOE Patents (OSTI)

A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

Armstrong, William D. (Laramie, WY); Naughton, Jonathan (Laramie, WY); Lindberg, William R. (Laramie, WY)

2008-09-02T23:59:59.000Z

265

WHICH HYDRAULIC MODEL TO USE IN VERTICAL FLOW CONSTRUCTED WETLANDS?  

E-Print Network (OSTI)

WHICH HYDRAULIC MODEL TO USE IN VERTICAL FLOW CONSTRUCTED WETLANDS? Ania Morvannoua , Nicolas-equilibrium model, preferential flow path, vertical flow constructed wetlands INTRODUCTION Constructed wetlands (CWs

Paris-Sud XI, Université de

266

Site-Scale Saturated Zone Flow Model  

SciTech Connect

The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being carried out in the model report, ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The velocity fields are calculated by the flow model, described herein, independent of the transport processes, and are then used as inputs to the transport model. Justification for this abstraction is presented in the model report, ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021 (BSC 2003 [164870]).

G. Zyvoloski

2003-12-17T23:59:59.000Z

267

Imaging, Characterizing, and Modeling of Fracture Networks and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS...

268

COMPUTATIONAL FLUID DYNAMICS MODELING OF SOLID OXIDE FUEL CELLS  

E-Print Network (OSTI)

COMPUTATIONAL FLUID DYNAMICS MODELING OF SOLID OXIDE FUEL CELLS Ugur Pasaogullari and Chao-dimensional model has been developed to simulate solid oxide fuel cells (SOFC). The model fully couples current density operation. INTRODUCTION Solid oxide fuel cells (SOFC) are among possible candidates

269

Microbubbles reveal chiral fluid flows in bacterial swarms  

Science Journals Connector (OSTI)

...controlled with an electro-optical deflector (EOD, model # 310A; Conoptics), which deflected the...from this aperture (“off”). The EOD was driven by two power supplies (HP 6515A) set...V in between experiments to protect the EOD crystal. The microscope was modified for...

Yilin Wu; Basarab G. Hosu; Howard C. Berg

2011-01-01T23:59:59.000Z

270

Stable Numerical Approximation of Two-Phase Flow with a Boussinesq--Scriven Surface Fluid  

E-Print Network (OSTI)

We consider two-phase Navier--Stokes flow with a Boussinesq--Scriven surface fluid. In such a fluid the rheological behaviour at the interface includes surface viscosity effects, in addition to the classical surface tension effects. We introduce and analyze parametric finite element approximations, and show, in particular, stability results for semi-discrete versions of the methods, by demonstrating that a free energy inequality also holds on the discrete level. We perform several numerical simulations for various scenarios in two and three dimensions, which illustrate the effects of the surface viscosity.

Barrett, John W; Nürnberg, Robert

2014-01-01T23:59:59.000Z

271

Motion of a Viscoelastic Micellar Fluid Around a Cylinder: Flow and Fracture  

E-Print Network (OSTI)

We present an experimental study of the motion of a viscoelastic micellar material around a moving cylinder, which ranges in response from fluid-like flow to solid-like tearing and fracture, depending on the cylinder radius and velocity. The observation of viscoelastic crack propagation driven by the cylinder indicates an extremely low tear strength, approximately equal to the steady state surface tension of the fluid. At the highest speeds a driven crack is observed in front of the cylinder, propagating with a fluctuating speed equal on average to the cylinder speed, here as low as 5% of the elastic wave speed in the medium.

Joseph R. Gladden; Andrew Belmonte

2006-05-25T23:59:59.000Z

272

Heat and Mass Transfer in the MHD Flow of a Visco-elastic Fluid in a Rotating Porous Channel with Radiative Heat  

Science Journals Connector (OSTI)

This paper deals with heat and mass transfer in the magnetohydrodynamic flow of a visco-elastic fluid in a rotating porous channel with radiative heat. The flow phenomenon has been characterized by the fluid para...

M. Jena; M. Goswami; S. Biswal

2014-12-01T23:59:59.000Z

273

J. Non-Newtonian Fluid Mech., 72 (1997) 7386 Start-up of flow of a FENE-fluid through a 4:1:4 constriction in  

E-Print Network (OSTI)

. Introduction Elastic fluids resist converging flow through an orifice, responding by increasing the pressure drop to good accuracy. As a further numerical convenience, we make the shape of the constriction round the flow through a small orifice in a large plate between two reservoirs. They used HPAM and PEO solutions

Hinch, John

274

A Beale-Kato-Majda breakdown criterion for an Oldroyd-B fluid in the creeping flow regime  

E-Print Network (OSTI)

We derive a criterion for the breakdown of solutions to the Oldroyd-B model in $\\R^3$ in the limit of zero Reynolds number (creeping flow). If the initial stress field is in the Sobolev space $H^m$, $m> 5/2$, then either a unique solution exists within this space indefinitely, or, at the time where the solution breaks down, the time integral of the $L^\\infty$-norm of the stress tensor must diverge. This result is analogous to the celebrated Beale-Kato-Majda breakdown criterion for the inviscid Eluer equations of incompressible fluids.

Raz Kupferman; Claude Mangoubi; Edriss S. Titi

2007-09-10T23:59:59.000Z

275

Particle-fluid-structure interaction for debris flow impact on flexible barriers  

E-Print Network (OSTI)

Flexible barriers are increasingly used for the protection from debris flow in mountainous terrain due to their low cost and environmental impact. However, a numerical tool for rational design of such structures is still missing. In this work, a hybrid computational framework is presented, using a total Lagrangian formulation of the Finite Element Method (FEM) to represent a flexible barrier. The actions exerted on the structure by a debris flow are obtained from simultaneous simulations of the flow of a fluid-grain mixture, using two conveniently coupled solvers: the Discrete Element Method (DEM) governs the motion of the grains, while the free-surface non-Newtonian fluid phase is solved using the Lattice-Boltzmann Method (LBM). Simulations on realistic geometries show the dependence of the momentum transfer on the barrier on the composition of the debris flow, challenging typical assumptions made during the design process today. In particular, we demonstrate that both grains and fluid contribute in a non-negligible way to the momentum transfer. Moreover, we show how the flexibility of the barrier reduces its vulnerability to structural collapse, and how the stress is distributed on its fabric, highlighting potential weak points.

A. Leonardi; F. K. Wittel; M. Mendoza; R. Vetter; H. J. Herrmann

2014-09-29T23:59:59.000Z

276

Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media  

DOE Patents (OSTI)

Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.

Nelson, John Stuart (Laguna Niguel, CA); Milner, Thomas Edward (Irvine, CA); Chen, Zhongping (Irvine, CA)

1999-01-01T23:59:59.000Z

277

Numerical modeling of deep groundwater flow and heat transport in the Williston Basin  

SciTech Connect

A numerical modeling approach has been used to evaluate quantitatively the effects of fluid flow on contemporary heat flow in an intracratonic basin. The authors have selected the Williston basin for this hydrodynamic study because of the opportunity it presents to assess the relation of deep groundwater flow to basin geothermics and the associated features of diagenesis and petroleum accumulation. The finite element method is used to solve the coupled equations of fluid flow and heat transport in two-dimensional sections of the basin. Both the fluid- and heat-flow regime are assumed to be at steady state, and the fluid flow is driven primarily by the water-table relief which is taken to be a subdued replica of land-surface topography. Buoyancy forces may also affect flow through fluid density gradients created by temperature and salinity effects. Three southwest-northwest oriented sections across the basin were modeled using available and estimated parameter data. The predicted flow patterns are most strongly affected by the topography, but the Devonian salt unit and Cretaceous shale unit exert some control. Cross-formational flow is especially important near the downdip, solution edge of the salt beds. Flow rates rarely exceed 0.5 m/year in the deep-central part of the basin, yet there does exist a marked effect on heat flow, albeit subdued by the blanket effect of the low-permeability Cretaceous shales. The regional effect of the topography-driven flow system is reflected in present-day salinity patterns and heat-flow data.

Garven, G.; Vigrass, L.

1985-01-01T23:59:59.000Z

278

Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed  

SciTech Connect

Computational fluid dynamics (CFD) modeling, which has recently proven to be an effective means of analysis and optimization of energy-conversion processes, has been extended to coal gasification in this paper. A 3D mathematical model has been developed to simulate the coal gasification process in a pressurized spout-fluid bed. This CFD model is composed of gas-solid hydrodynamics, coal pyrolysis, char gasification, and gas phase reaction submodels. The rates of heterogeneous reactions are determined by combining Arrhenius rate and diffusion rate. The homogeneous reactions of gas phase can be treated as secondary reactions. A comparison of the calculated and experimental data shows that most gasification performance parameters can be predicted accurately. This good agreement indicates that CFD modeling can be used for complex fluidized beds coal gasification processes. 37 refs., 7 figs., 5 tabs.

Zhongyi Deng; Rui Xiao; Baosheng Jin; He Huang; Laihong Shen; Qilei Song; Qianjun Li [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education

2008-05-15T23:59:59.000Z

279

A computational fluid dynamics model for wind simulation: model implementation and experimental validation  

Science Journals Connector (OSTI)

To provide physically based wind modelling for wind erosion research at regional scale, a 3D computational fluid dynamics (CFD) wind model was developed. The model was programmed ... analysis and modelling tool (...

Zhuo-dong Zhang; Ralf Wieland; Matthias Reiche…

2012-04-01T23:59:59.000Z

280

Equipment and procedures for fluid flow and wettability tests of geological materials  

SciTech Connect

The Bartlesville Energy Technology Center, US Department of Energy, has developed several unique types of laboratory apparatus: (1) equipment for measurement of petroleum reservoir fluids at simulated subsurface conditions of temperature and pressure, (2) apparatus for saturation of geological cores with liquids, (3) design of a low internal volume pressure relief valve, and (4) apparatus and procedures for the quantitative determination of the relative wetting of oil and water on geologic materials. The fluid flow apparatus operates on the principles of liquid chromatography except for the replacement of the standard chromatographic column by a geologic core sample; it can be operated at an internal pore pressure of 400 atmospheres and 150/sup 0/C. The apparatus can be applied to the measurement of the adsorption characteristics of reservoir fluids such as surfactants, polymers, chemical tracers and biocides; it is also applicable to the determination of relative permeability relationships and miscible and immiscible fluid flow behavior. The apparatus for the saturation of geologic cores is adaptable for simultaneous saturation of several small cores or a single core up to 50 cm in length and 4 cm in diameter. The pressure relief valve has an internal volume less than 0.5 ml and can operate at pressures as high as 500 atmospheres. The apparatus for determination of wettability was constructed by modification of a commercial centrifuge and the procedure is based on the thermodynamic work required for fluid displacement from a porous medium. This paper incorporates the design features and operational procedures of the apparatus in addition to the computer programs for calculation of miscible phase dispersion of reservoir fluids and adsorption characteristics of reservoir chemicals.

Donaldson, E.C.; Kendall, R.F.; Pavelka, E.A.; Crocker, M.E.

1980-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fluid flow release regulating device, ERIP {number_sign}624: Final report  

SciTech Connect

DOE/ERIP project {number_sign}624 ``Fluid Flow Release Regulating Device`` designed, constructed, tested, and installed a rubber crest gate for regulating water levels at an impoundment such as a hydroelectric dam. A 92 foot long by 27 inch high rubber panel was installed in January 1997. Initial results were good until fabric degradation internal to the rubber caused loss of stiffness. Substitutes for the failed fabric are being tested. The project will continue after DOE participation terminates.

NONE

1997-12-01T23:59:59.000Z

282

On the 3D steady flow of a second grade fluid past an obstacle  

E-Print Network (OSTI)

We study steady flow of a second grade fluid past an obstacle in three space dimensions. We prove existence of solution in weighted Lebesgue spaces with anisotropic weights and thus existence of the wake region behind the obstacle. We use properties of the fundamental Oseen tensor together with results achieved in \\cite{Koch} and properties of solutions to steady transport equation to get up to arbitrarily small $\\ep$ the same decay as the Oseen fundamental solution.

Pawe? Konieczny; Ond?ej Kreml

2010-10-29T23:59:59.000Z

283

Numerical simulation of fluid flow and heat transfer in a passage with moving boundary  

Science Journals Connector (OSTI)

In this paper, a method is presented in detail that can be used to solve the fluid flow and heat transfer in domains with moving boundaries. The primitive variables formulation is adopted and a non-staggered grid, with Cartesian velocity components used as the primary unkowns in the momentum equations, is utilised. Discretisation is carried out using a control-volume method, the simplified QUICK scheme combined with a deferred correction approach is adopted for the convective fluxes and implicit time stepping is used for temporal differencing. The well-known SIMPLE algorithm is employed for handling the velocityâ??pressure coupling. The computational method is applied for the prediction of fluid flow and heat transfer in a channel with a boundary moving in a prescribed manner. Results show that both the amplitude and Strouhal number have great influences on the characteristics of fluid flow and heat transfer, and in the range studied, the heat transfer rate increases monotonously with the amplitude, whereas the Strouhal number only has a small effect on heat transfer.

D. S. Zhang; Q. W. Wang; W. Q. Tao

2002-01-01T23:59:59.000Z

284

Molecular-dynamics simulation of compressible fluid flow in two-dimensional channels  

Science Journals Connector (OSTI)

We study compressible fluid flow in narrow two-dimensional channels using a molecular-dynamics simulation method. In the simulation area, an upstream source is maintained at constant density and temperature while a downstream reservoir is kept at vacuum. The channel is sufficiently long in the direction of the flow that the finite length has little effect on the properties of the fluid in the central region. The simulated system is represented by an efficient data structure, whose internal elements are created and manipulated dynamically in a layered fashion. Consequently the computer code is highly efficient and manifests completely linear performance in simulations of large systems. We obtain the steady-state velocity, temperature, and density distributions in the system. The velocity distribution across the channel is very nearly a quadratic function of the distance from the center of the channel and reveals velocity slip at the boundaries; the temperature distribution is only approximately a quartic function of this distance from the center to the channel. The density distribution across the channel is nonuniform. We attribute this nonuniformity to the relatively high Mach number, approximately 0.5, in the fluid flow. An equation for the density distribution based on simple compressibility arguments is proposed; its predictions agree well with the simulation results. The validity of the concept of local dynamic temperature and the variation of the temperature along the channel are discussed.

M. Sun and C. Ebner

1992-10-15T23:59:59.000Z

285

Heat-transfer mechanism in turbulent flow of fluid at supercritical pressures  

Science Journals Connector (OSTI)

A hypothetical physical model of the heat-transfer process accompanying a forced flow of liquid at supercritical pressures is proposed. This model accounts for the anomalous improvements and deteriorations in ...

Sh. G. Kaplan

1971-09-01T23:59:59.000Z

286

Continued development of a semianalytical solution for two-phase fluid and heat flow in a porous medium  

SciTech Connect

Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.

Doughty, C.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)

1991-06-01T23:59:59.000Z

287

Fluid flow and conjugated heat transfer in arbitrarily shaped channels via single domain formulation and integral transforms  

Science Journals Connector (OSTI)

Abstract The present work advances a recently introduced approach based on combining the Generalized Integral Transform Technique (GITT) and a single domain reformulation strategy, aimed at providing hybrid numerical–analytical solutions to convection–diffusion problems in complex physical configurations and irregular geometries. The methodology has been previously considered in the analysis of conjugated conduction–convection heat transfer problems, simultaneously modeling the heat transfer phenomena at both the fluid streams and the channels walls, by making use of coefficients represented as space variable functions with abrupt transitions occurring at the fluid–wall interfaces. The present work is aimed at extending this methodology to deal with both fluid flow and conjugated heat transfer within arbitrarily shaped channels and complex multichannel configurations, so that the solution of a cumbersome system of coupled partial differential equations defined for each individual sub-domain of the problem is avoided, with the proposition of the single-domain formulation. The reformulated problem is integral transformed through the adoption of eigenvalue problems containing the space variable coefficients, which provide the basis of the eigenfunction expansions and are responsible for recovering the transitional behavior among the different regions in the original formulation. For demonstration purposes, an application is first considered consisting of a microchannel with an irregular cross-section shape, representing a typical channel micro-fabricated through laser ablation, in which heat and fluid flow are investigated, taking into account the conjugation with the polymeric substrate. Then, a complex configuration consisting of multiple irregularly shaped channels is more closely analyzed, in order to illustrate the flexibility and robustness of the advanced hybrid approach. In both cases, the convergence behavior of the proposed expansions is presented and critical comparisons against purely numerical approaches are provided.

Diego C. Knupp; Renato M. Cotta; Carolina P. Naveira-Cotta

2014-01-01T23:59:59.000Z

288

Physiochemical Evidence of Faulting Processes and Modeling of Fluid in Evolving Fault Systems in Southern California  

SciTech Connect

Our study targets recent (Plio-Pleistocene) faults and young (Tertiary) petroleum fields in southern California. Faults include the Refugio Fault in the Transverse Ranges, the Ellwood Fault in the Santa Barbara Channel, and most recently the Newport- Inglewood in the Los Angeles Basin. Subsurface core and tubing scale samples, outcrop samples, well logs, reservoir properties, pore pressures, fluid compositions, and published structural-seismic sections have been used to characterize the tectonic/diagenetic history of the faults. As part of the effort to understand the diagenetic processes within these fault zones, we have studied analogous processes of rapid carbonate precipitation (scaling) in petroleum reservoir tubing and manmade tunnels. From this, we have identified geochemical signatures in carbonate that characterize rapid CO2 degassing. These data provide constraints for finite element models that predict fluid pressures, multiphase flow patterns, rates and patterns of deformation, subsurface temperatures and heat flow, and geochemistry associated with large fault systems.

Boles, James [Professor

2013-05-24T23:59:59.000Z

289

Lattice Boltzmann model for traffic flow  

Science Journals Connector (OSTI)

Mesoscopic models for traffic flows are usually difficult to be employed because of the appearance of integro-differential terms in the models. In this work, a lattice Boltzmann model for traffic flow is introduced on the basis of the existing kinetics models by using the Bhatnagar-Gross-Krook-type approximation interaction term in the Boltzmann equation and discretizing it in time and phase space. The so-obtained model is simple while the relevant parameters are physically meaningful. Together with its discrete feature, the model can be easily used to investigate numerically the behavior of traffic flows. In consequence, the macroscopic dynamics of the model is derived using the Taylor and Chapman-Enskog expansions. For validating the model, numerical simulations are conducted under the periodic boundary conditions. It is found that the model could reasonably reproduce the fundamental diagram. Moreover, certain interesting physical phenomena can be captured by the model, such as the metastability and stop-and-go phenomena.

Jianping Meng; Yuehong Qian; Xingli Li; Shiqiang Dai

2008-03-06T23:59:59.000Z

290

A STUDY OF THE STRUCTURAL CONTROL OF FLUID FLOW WITHIN THE CERRO PRIETO GEOTHERMAL FIELD, BAJA CALIFORNIA, MEXICO  

E-Print Network (OSTI)

Imperial and Mexicali Valleys. 8 A Study of the Structural Control of Fluid Flow within the Cerro Prieto GeothermalImperial-Mexicali Valley is recognized as having a potential for large scale production of elec- dominated geothermal

Noble, John E.

2011-01-01T23:59:59.000Z

291

Melting heat transfer effects on stagnation point flow of micropolar fluid saturated in porous medium with internal heat generation (absorption)  

Science Journals Connector (OSTI)

The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is i...

M. A. A. Mahmoud; S. E. Waheed

2014-08-01T23:59:59.000Z

292

Heat and mass transfer on MHD heat generating flow through a porous medium in a rotating fluid  

Science Journals Connector (OSTI)

The problem of the free-convection flow of a viscous heat generating fluid through porous media in a rotating frame of reference is considered for the case when a strong magnetic field is imposed in a directio...

P. C. Ram

293

Flow and heat transfer from a continuous surface in a parallel free stream of viscoelastic second-order fluid  

Science Journals Connector (OSTI)

Boundary layer solutions are presented to investigate the steady flow and heat transfer characteristics from a continuous flat surface moving in a parallel free stream of viscoelastic fluid. Numerical results are...

I. A. Hassanien

1992-10-01T23:59:59.000Z

294

3D Numerical heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with electrohydrodynamic enhancement  

Science Journals Connector (OSTI)

Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes...V E...=0–16 kV) are investigated in detail...

Chia-Wen Lin; Jiin-Yuh Jang

2005-05-01T23:59:59.000Z

295

Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems  

Energy.gov (U.S. Department of Energy (DOE))

Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

296

A Robust Four-Fluid Transient Flow Simulator as an Analysis and Decision Making Tool for Dynamic Kill Operation  

E-Print Network (OSTI)

The worst scenario of drilling operation is blowout which is uncontrolled flow of formation fluid into the wellbore. Blowouts result in environmental damage with potential risk of injuries and fatalities. Although not all blowouts result in disaster...

Haghshenas, Arash

2013-04-24T23:59:59.000Z

297

Simulation of coal combustion by AUSM turbulence-chemistry char combustion model and a full two-fluid model  

Science Journals Connector (OSTI)

An algebraic unified second-order moment (AUSM) turbulence-chemistry model of char combustion is introduced in this paper, to calculate the effect of particle temperature fluctuation on char combustion. The AUSM model is used to simulate gas-particle flows, in coal combustion in a pulverized coal combustor, together with a full two-fluid model for reacting gas-particle flows and coal combustion, including the sub-models as the k-?-kp two-phase turbulence model, the EBU-Arrhenius volatile and CO combustion model, and the six-flux radiation model. A new method for calculating particle mass flow rate is also used in this model to correct particle outflow rate and mass flow rate for inside sections, which can obey the principle of mass conservation for the particle phase and can also speed up the iterating convergence of the computation procedure effectively. The simulation results indicate that, the AUSM char combustion model is more preferable to the old char combustion model, since the later totally eliminate the influence of particle temperature fluctuation on char combustion rate.

Yu Zhang; Xiao-Lin Wei; Li-Xing Zhou; Hong-Zhi Sheng

2005-01-01T23:59:59.000Z

298

Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations  

SciTech Connect

This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC{sup 3D} geomechanical simulator. The most significant new TOUGH-FLAC development in the past few years is a revised architecture, enabling a more rigorous and tight coupling procedure with improved computational efficiency. The applications presented in this paper are related to modeling of crustal deformations caused by deep underground fluid movements and pressure changes as a result of both industrial activities (the In Salah CO{sub 2} Storage Project and the Geysers Geothermal Field) and natural events (the 1960s Matsushiro Earthquake Swarm). Finally, the paper provides some perspectives on the future of TOUGH-FLAC in light of its applicability to practical problems and the need for high-performance computing capabilities for field-scale problems, such as industrial-scale CO{sub 2} storage and enhanced geothermal systems. It is concluded that despite some limitations to fully adapting a commercial code such as FLAC{sup 3D} for some specialized research and computational needs, TOUGH-FLAC is likely to remain a pragmatic simulation approach, with an increasing number of users in both academia and industry.

Rutqvist, J.

2010-06-01T23:59:59.000Z

299

Flow and Heat Transfer of a MHD Viscoelastic Fluid in a Channel with Stretching Walls: Some Applications to Haemodynamics  

E-Print Network (OSTI)

Of concern in the paper is a study of steady incompressible viscoelastic and electrically conducting fluid flow and heat transfer in a parallel plate channel with stretching walls in the presence of a magnetic field applied externally. The flow is considered to be governed by Walter's liquid B fluid. The problem is solved by developing a suitable numerical method. The results are found to be in good agrement with those of earlier investigations reported in existing scientific literatures. The study reveals that a back flow occurs near the central line of the channel due to the stretching walls and further that this flow reversal can be stopped by applying a strong external magnetic field. The study also shows that with the increase in the strength of the magnetic field, the fluid velocity decreases but the temperature increases. Thus the study bears potential applications in the study of the haemodynamic flow of blood in the cardiovascular system when subjected to an external magnetic field.

Misra, J C; Rath, H J

2010-01-01T23:59:59.000Z

300

Lattice Boltzmann model for incompressible axisymmetric flows  

Science Journals Connector (OSTI)

A lattice Boltzmann model for incompressible axisymmetric flow is proposed in this paper. Unlike previous axisymmetric lattice Boltzmann models, which were based on “primitive-variables” Navier-Stokes equations, the target macroscopic equations of the present model are vorticity-stream-function formulations. Due to the intrinsic features of vorticity-stream-function formulations, the present model is more efficient, more stable, and much simpler than the existing models. The advantages of the present model are validated by numerical experiments.

Sheng Chen; Jonas Tölke; Sebastian Geller; Manfred Krafczyk

2008-10-08T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fluid flow and heat transfer across an elliptical hollow fiber membrane tube bank with randomly distributed features  

Science Journals Connector (OSTI)

Abstract An elliptical hollow fiber membrane tube bank (EHFMTB) has better performances while being employed for air humidification. The EHFMTB is populated in a plastic shell to form a shell-and-tube heat exchanger like membrane contactor. The tube bank is always randomly populated in practical applications because of convenience and randomness in the manufacturing process. The fluid flow and heat transfer across a randomly distributed elliptical hollow fiber membrane tube bank (REHFMTB) are investigated. To disclose the influences of the fiber arrangements on the performances, three unit cells containing 20 fibers with different randomly distributions are selected as the calculating domains. A renormalization group k–? (RNG KE) turbulence model with enhanced wall treatment is used for solving the equations governing the momentum and heat transports. The friction factor and Nusselt number across the REHFMTB under various fiber distributions, Reynolds numbers (Re), packing fractions (?) and elliptical semiaxis ratios (b/a) are numerically obtained and experimentally validated. It is found that the comprehensive heat transfer performance is deteriorated for the fluid flow across the REHFMTB.

Runhua Jiang; Minlin Yang; Sheng Chen; Si-Min Huang; Xiaoxi Yang

2014-01-01T23:59:59.000Z

302

Heat transfer and fluid flow over a single disk in a fluid rotating as a rigid body  

Science Journals Connector (OSTI)

Laminar heat transfer problem is analyzed for a disk rotating ... the angular speed ? in a co-rotating fluid (with the angular speed ?). The fluid is swirled in accordance with a forced- ... self-similar profiles...

Igor V. Shevchuk Ph.D.; Matthias H. Buschmann

2004-08-01T23:59:59.000Z

303

Viscous potential flow analysis of electrified miscible finitely conducting fluid through porous media  

SciTech Connect

In this work, a viscous potential flow analysis is used to investigate capillary surface waves between two horizontal finite fluid layers. The two layers have finite conductivities and admit mass and heat transfer. A general dispersion relation is derived. The presence of finite conductivities together with the dielectric permeabilities makes the horizontal electric field play a dual role in the stability criterion. The phenomenon of negative viscosity is observed. A new growth rate parameter, depending on the kinematical viscosity of the lower fluid layer, is found and has a stabilizing effect on the unstable modes. The growth rates and neutral stability curve are given and applied to air-water interface. The effects of various parameters are discussed for the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities.

Obied Allah, M. H. [Department of Mathematics, Faculty of Science, Assiut University, Assiut (Egypt)

2013-04-15T23:59:59.000Z

304

Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace  

SciTech Connect

Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

Dr. Chenn Zhou

2008-10-15T23:59:59.000Z

305

Microgravity Flow Regime Transition Modeling  

E-Print Network (OSTI)

apparatus have been used in past flow regime mapping experiments such as Venturi, perforated pipe, annular, and t-junction mixers. The mixing apparatus used in a particular experiment determines the bubble size distribution at the inlet... pressure of 80 kPa was reported, however, the temperature was not. The orientation and location of the test section with respect to the aircraft are unknown. The mixing apparatus used in the experiment was a Venturi mixer. This data set does...

Shephard, Adam M.

2010-07-14T23:59:59.000Z

306

Subcritical Finite-Amplitude Solutions for Plane Couette Flow of Viscoelastic Fluids Alexander N. Morozov and Wim van Saarloos  

E-Print Network (OSTI)

Subcritical Finite-Amplitude Solutions for Plane Couette Flow of Viscoelastic Fluids Alexander N is shown to exhibit a purely elastic subcritical instability at a very small-Reynolds number in spite. In this Letter we show that visco- elastic plane Couette flow (PCF) exhibits a subcritical instability to finite

van Saarloos, Wim

307

J. Non-Newtonian Fluid Mech. 130 (2005) 128 The dynamics of single-molecule DNA in flow  

E-Print Network (OSTI)

J. Non-Newtonian Fluid Mech. 130 (2005) 1­28 Review The dynamics of single-molecule DNA in flow Abstract Within the last decade, fluorescence microscopy of single molecules of DNA in a plethora of flow of the microscopy, employing a spectrum of possible DNA molecules, fragments, and concatemers with dynamic

Shaqfeh, Eric

308

Journal of Fluids and Structures 20 (2005) 129140 Blood flow and damage by the roller pumps during  

E-Print Network (OSTI)

Journal of Fluids and Structures 20 (2005) 129­140 Blood flow and damage by the roller pumps during created in a centrifugal pump used for a cardiopulmonary bypass, little is known about the blood flow and consequent damage in a roller pump. A time- dependent moving boundary problem is solved in this paper

Luo, Xiaoyu

309

The Properties of Confined Water and Fluid Flow at the Nanoscale  

SciTech Connect

This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.

Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G

2009-03-09T23:59:59.000Z

310

Self-assembly of magnetically interacting cubes by a turbulent fluid flow  

Science Journals Connector (OSTI)

Previous work has demonstrated that combining mechanical vibration with magnetic interactions can result in the self-assembly of complex structures, albeit at low yield. Here we introduce a system where the yield of self-assembled structures is quantitatively predicted by a theoretical analysis. Millimeter-sized magnetic blocks, designed to form chains as their minimal energy state, are placed in a turbulent fluid flow. The distribution of chain lengths that form is quantitatively consistent with predictions, showing that the chain length distribution coincides with that of monomers or polymers in a thermal bath, with the turbulence strength parametrizing the effective temperature.

Filip Ilievski; Madhav Mani; George M. Whitesides; Michael P. Brenner

2011-01-05T23:59:59.000Z

311

Instrumentation development for multi-dimensional two-phase flow modeling  

SciTech Connect

A multi-faceted instrumentation approach is described which has played a significant role in obtaining fundamental data for two-phase flow model development. This experimental work supports the development of a three-dimensional, two-fluid, four field computational analysis capability. The goal of this development is to utilize mechanistic models and fundamental understanding rather than rely on empirical correlations to describe the interactions in two-phase flows. The four fields (two dispersed and two continuous) provide a means for predicting the flow topology and the local variables over the full range of flow regimes. The fidelity of the model development can be verified by comparisons of the three-dimensional predictions with local measurements of the flow variables. Both invasive and non-invasive instrumentation techniques and their strengths and limitations are discussed. A critical aspect of this instrumentation development has been the use of a low pressure/temperature modeling fluid (R-134a) in a vertical duct which permits full optical access to visualize the flow fields in all two-phase flow regimes. The modeling fluid accurately simulates boiling steam-water systems. Particular attention is focused on the use of a gamma densitometer to obtain line-averaged and cross-sectional averaged void fractions. Hot-film anemometer probes provide data on local void fraction, interfacial frequency, bubble and droplet size, as well as information on the behavior of the liquid-vapor interface in annular flows. A laser Doppler velocimeter is used to measure the velocity of liquid-vapor interfaces in bubbly, slug and annular flows. Flow visualization techniques are also used to obtain a qualitative understanding of the two-phase flow structure, and to obtain supporting quantitative data on bubble size. Examples of data obtained with these various measurement methods are shown.

Kirouac, G.J.; Trabold, T.A.; Vassallo, P.F.; Moore, W.E.; Kumar, R. [Lockheed Martin Corp., Schenectady, NY (United States)

1999-06-01T23:59:59.000Z

312

Peristaltic Transport of a Rheological Fluid: Model for Movement of Food Bolus Through Esophagus  

E-Print Network (OSTI)

Fluid mechanical peristaltic transport through esophagus has been of concern in the paper. A mathematical model has been developed with an aim to study the peristaltic transport of a rheological fluid for arbitrary wave shapes and tube lengths. The Ostwald-de Waele power law of viscous fluid is considered here to depict the non-Newtonian behaviour of the fluid. The model is formulated and analyzed with the specific aim of exploring some important information concerning the movement of food bolus through the esophagus. The analysis has been carried out by using lubrication theory. The study is particularly suitable for cases where the Reynolds number is small. The esophagus is treated as a circular tube through which the transport of food bolus takes places by periodic contraction of the esophageal wall. Variation of different variables concerned with the transport phenomena such as pressure, flow velocity, particle trajectory and reflux are investigated for a single wave as well as for a train of periodic per...

Misra, J C

2011-01-01T23:59:59.000Z

313

Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet  

E-Print Network (OSTI)

Fluid flow and convective heat transfer in rotor-stator configurations, which are of great importance in different engineering applications, are treated in details in this review. The review focuses on convective heat transfer in predominantly outward air flow in the rotor-stator geometries with and without impinging jets and incorporates two main parts, namely, experimental/theoretical methodologies and geometries/results. Experimental methodologies include naphthalene sublimation techniques, steady state (thin layer) and transient (thermochromic liquid crystals) thermal measurements, thermocouples and infra-red cameras, hot-wire anemometry, laser Doppler and particle image velocimetry, laser plane and smoke generator. Theoretical approaches incorporate modern CFD computational tools (DNS, LES, RANS etc). Geometries and results part being mentioned starting from simple to complex elucidates cases of a free rotating disk, a single disk in the crossflow, single jets impinging onto stationary and rotating disk,...

Harmand, Souad; Poncet, Sébastien; Shevchuk, Igor V; 10.1016/j.ijthermalsci.2012.11.009

2013-01-01T23:59:59.000Z

314

Determination of Transport Properties From Flowing Fluid Temperature LoggingIn Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution  

SciTech Connect

Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper [Mukhopadhyay et al., 2008], we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks.

Mukhopadhyay, Sumit; Tsang, Yvonne W.

2008-08-01T23:59:59.000Z

315

Three-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Electrolysis Cells and Stacks  

SciTech Connect

A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created for detailed analysis of a high-temperature electrolysis stack (solid oxide fuel cells operated as electrolyzers). Inlet and outlet plenum flow distributions are discussed. Maldistribution of plena flow show deviations in per-cell operating conditions due to non-uniformity of species concentrations. Models have also been created to simulate experimental conditions and for code validation. Comparisons between model predictions and experimental results are discussed. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the electrolysis mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Variations in flow distribution, and species concentration are discussed. End effects of flow and per-cell voltage are also considered. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition.

Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring

2008-07-01T23:59:59.000Z

316

Evaluation of a CFD-model for simulation of simplified flow conditioners  

SciTech Connect

Perforated plate flow conditioners are used to generate a fully developed turbulent flow profile upstream of an orifice meter. It is very time-consuming to measure the effect of a flow conditioner for different upstream flow profiles. Therefore a project is initiated to evaluate the performance of a computational fluid computer code for this purpose. If the code correctly predicts the flow characteristics downstream of more complex flow conditioners. In this study a k-{var_epsilon} CFD-model was used to predict the flow downstream of obstruction plates having one large or nine small holes. Both mean velocity, turbulent kinetic energy, k, and the dissipation rate of turbulent kinetic energy, {var_epsilon}, were calculated and compared against measured data. The results indicate that it is possible to predict the mean velocity well and that the accuracy of the predicted k and {var_epsilon} depends on the complexity of the flow.

Erdal, A. [Statoil/K-LAB, Haugesund (Norway); Torbergsen, L.E.; Rimestad, S.; Krogstad, P.A. [Norwegian Inst. of Technology, Trondheim (Norway)

1995-12-31T23:59:59.000Z

317

Reynolds-stress model prediction of 3-D duct flows  

E-Print Network (OSTI)

The paper examines the impact of different modelling choices in second-moment closures by assessing model performance in predicting 3-D duct flows. The test-cases (developing flow in a square duct [Gessner F.B., Emery A.F.: {\\em ASME J. Fluids Eng.} {\\bf 103} (1981) 445--455], circular-to-rectangular transition-duct [Davis D.O., Gessner F.B.: {\\em AIAA J.} {\\bf 30} (1992) 367--375], and \\tsn{S}-duct with large separation [Wellborn S.R., Reichert B.A., Okiishi T.H.: {\\em J. Prop. Power} {\\bf 10} (1994) 668--675]) include progressively more complex strains. Comparison of experimental data with selected 7-equation models (6 Reynolds-stress-transport and 1 scale-determining equations), which differ in the closure of the velocity/pressure-gradient tensor $\\Pi_{ij}$, suggests that rapid redistribution controls separation and secondary-flow prediction, whereas, inclusion of pressure-diffusion modelling improves reattachment and relaxation behaviour.

Gerolymos, G A

2014-01-01T23:59:59.000Z

318

Fluid Flow, Thermal History, and Diagenesis of the Cambrian-Ordovician Arbuckle Group and Overlying Units in South-Central Kansas  

E-Print Network (OSTI)

A diagenetic study of the Cambrian-Ordovician Arbuckle Group to the Middle Pennsylvanian Cherokee Group in south-central Kansas produced evidence of regional advective fluid flow and more localized fracture-controlled fluid ...

King, Bradley Donald

2013-12-31T23:59:59.000Z

319

Geothermal electric cash flow model (GCFM)  

SciTech Connect

The Geothermal Cash Flow Model (GCFM) is a user-interactive computer model that estimates the costs and cash flow patterns of geothermal electric development projects. It was developed as a financial analysis tool for the US Department of Energy Geothermal Loan Guaranty Program. It contains a power-plant sizing and costing routine that is useful for preliminary feasibility studies of geothermal projects. The model can be operated using either a few preliminary estimates of geothermal resource characteristics or detailed estimates from reservoir engineering and power plant engineering studies. GCFM is available for public distribution.

Entingh, D.J.; Keimig, M.A.

1981-10-01T23:59:59.000Z

320

Computational fluid dynamics simulation of the air/suppressant flow in an uncluttered F18 engine nacelle  

SciTech Connect

For the purposes of designing improved Halon-alternative fire suppression strategies for aircraft applications, Computational Fluid Dynamics (CFD) simulations of the air flow, suppressant transport, and air-suppressant mixing within an uncluttered F18 engine nacelle were performed. The release of inert gases from a Solid Propellant Gas Generator (SPGG) was analyzed at two different injection locations in order to understand the effect of injection position on the flow patterns and the mixing of air and suppression agent. An uncluttered engine nacelle was simulated to provide insight into the global flow features as well as to promote comparisons with previous nacelle fire tests and recent water tunnel tests which included little or no clutter. Oxygen concentration levels, fuel/air residence times that would exist if a small fuel leak were present, velocity contours, and streamline patterns are presented inside the engine nacelle. The numerical results show the influence of the gent release location on regions of potential flame extinction due to oxygen inerting and high flame strain. The occurrence of inflow through the exhaust ducts on the aft end of the nacelle is also predicted. As expected, the predicted oxygen concentration levels were consistently higher than the measured levels since a fire was not modeled in this analysis. Despite differences in the conditions of these simulations and the experiments, good agreement was obtained between the CFD predictions and the experimental measurements.

Lopez, A.R.; Gritzo, L.A.; Hassan, B.

1997-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE Hydrogen Analysis Repository: FLOW Model  

NLE Websites -- All DOE Office Websites (Extended Search)

FLOW Model FLOW Model Project Summary Full Title: Chemical Engineering Process Simulation Platform - FLOW Project ID: 131 Principal Investigator: Juan Ferrada Brief Description: FLOW is a steady-state chemical process simulator. Modules have been developed for supply chain calculations, micro-economic calculations, and other calculations. Purpose Simulate steady-state chemical processes to support hydrogen infrastructure and transition analysis. Performer Principal Investigator: Juan Ferrada Organization: Oak Ridge National Laboratory (ORNL) Address: Bethel Valley 1, Bldg 5700, N217 Oak Ridge, TN 37831-6166 Telephone: 865-574-4998 Email: ferradajj@ornl.gov Sponsor(s) Name: Fred Joseck Organization: DOE Hydrogen Program Telephone: 202-586-7932 Email: Fred.Joseck@ee.doe.gov

322

PROBABILISTIC SIMULATION OF SUBSURFACE FLUID FLOW: A STUDY USING A NUMERICAL SCHEME  

SciTech Connect

There has been an increasing interest in probabilistic modeling of hydrogeologic systems. The classical approach to groundwater modeling has been deterministic in nature, where individual layers and formations are assumed to be uniformly homogeneous. Even in the case of complex heterogeneous systems, the heterogeneities describe the differences in parameter values between various layers, but not within any individual layer. In a deterministic model a single-number is assigned to each hydrogeologic parameter, given a particular scale of interest. However, physically there is no such entity as a truly uniform and homogeneous unit. Single-number representations or deterministic predictions are subject to uncertainties. The approach used in this work models such uncertainties with probabilistic parameters. The resulting statistical distributions of output variables are analyzed. A numerical algorithm, based on axiomatic principles of probability theory, performs arithmetic operations between probability distributions. Two subroutines are developed from the algorithm and incorporated into the computer program TERZAGI, which solves groundwater flow problems in saturated, multi-dimensional systems. The probabilistic computer program is given the name, PROGRES. The algorithm has been applied to study the following problems: one-dimensional flow through homogeneous media, steady-state and transient flow conditions, one-dimensional flow through heterogeneous media, steady-state and transient flow conditions, and two-dimensional steady-stte flow through heterogeneous media. The results are compared with those available in the literature.

Buscheck, Timothy Eric

1980-03-01T23:59:59.000Z

323

Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows  

SciTech Connect

The quantification of uncertainties is critical when systems are nonlinear and have uncertain terms in their governing equations or are constrained by limited knowledge of initial and boundary conditions. Such situations are common in multiscale, intermittent and non-homogeneous fluid and ocean flows. The dynamically orthogonal (DO) field equations provide an adaptive methodology to predict the probability density functions of such flows. The present work derives efficient computational schemes for the DO methodology applied to unsteady stochastic Navier-Stokes and Boussinesq equations, and illustrates and studies the numerical aspects of these schemes. Semi-implicit projection methods are developed for the mean and for the DO modes, and time-marching schemes of first to fourth order are used for the stochastic coefficients. Conservative second-order finite-volumes are employed in physical space with new advection schemes based on total variation diminishing methods. Other results include: (i) the definition of pseudo-stochastic pressures to obtain a number of pressure equations that is linear in the subspace size instead of quadratic; (ii) symmetric advection schemes for the stochastic velocities; (iii) the use of generalized inversion to deal with singular subspace covariances or deterministic modes; and (iv) schemes to maintain orthonormal modes at the numerical level. To verify our implementation and study the properties of our schemes and their variations, a set of stochastic flow benchmarks are defined including asymmetric Dirac and symmetric lock-exchange flows, lid-driven cavity flows, and flows past objects in a confined channel. Different Reynolds number and Grashof number regimes are employed to illustrate robustness. Optimal convergence under both time and space refinements is shown as well as the convergence of the probability density functions with the number of stochastic realizations.

Ueckermann, M.P., E-mail: mpuecker@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139 (United States); Lermusiaux, P.F.J., E-mail: pierrel@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139 (United States)] [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139 (United States); Sapsis, T.P., E-mail: sapsis@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139 (United States)

2013-01-15T23:59:59.000Z

324

A model for transonic plasma flow  

SciTech Connect

A linear, two-dimensional model of a transonic plasma flow in equilibrium is constructed and given an explicit solution in the form of a complex Laplace integral. The solution indicates that the transonic state can be solved as an elliptic boundary value problem, as is done in the numerical code FLOW [Guazzotto et al., Phys. Plasmas 11, 604 (2004)]. Moreover, the presence of a hyperbolic region does not necessarily imply the presence of a discontinuity or any other singularity of the solution.

Guazzotto, Luca, E-mail: luca.guazzotto@rochester.edu [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Hameiri, Eliezer, E-mail: hameiri@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)] [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)

2014-02-15T23:59:59.000Z

325

Internal Stress in a Model Elasto-Plastic Fluid  

E-Print Network (OSTI)

Plastic materials can carry memory of past mechanical treatment in the form of internal stress. We introduce a natural definition of the vorticity of internal stress in a simple two-dimensional model of elasto-plastic fluids, which generates the internal stress. We demonstrate how the internal stress is induced under external loading, and how the presence of the internal stress modifies the plastic behavior.

Takeshi Ooshida; Ken Sekimoto

2005-12-03T23:59:59.000Z

326

Application of the ``Ke'' model to open channel flows in a magnetic field  

E-Print Network (OSTI)

,* , Mohamed Abdou a , Neil Morley a , Alice Ying a , Tomoaki Kunugi b a Mechanical and Aerospace Engineering-133 Engineering IV, Los Angeles, CA 90095-1597, USA b Department of Nuclear Engineering, Kyoto University, Japan-conductivity fluids such as molten salts. In the present study, the ``K­e'' model equations for turbulent flows

Abdou, Mohamed

327

Improved low-order model for shear flow driven by Rayleigh-Benard convection  

SciTech Connect

An analysis of the low-order model for two-dimensional fluid flow with shear proposed by Drake [ital et] [ital al]. [Phys. Fluids B 4, 488 (1992)] is undertaken. Their two-term model for the shear is an extension of the model put forth by Howard and Krisnamurti [J. Fluid Mech. 170, 385 (1986)], and is shown to be an improved model in the sense that it respects certain conditions for vorticity conservation arising directly from the Boussinesq equations. In so doing, it provides a more realistic model of the physics involved. An important consequence of the improved model is the appearance of cutoff values for the shear instability that are dependent upon the aspect ratio of the interacting Rayleigh-Taylor cell. Numerical results are presented as confirmation of this prediction.

Hermiz, K.B. (Department of Mathematics, University of Maryland, College Park, Maryland 20742-3511 (United States)); Guzdar, P.N.; Finn, J.M. (Institute for Plasma Research, University of Maryland, College Park, Maryland 20742-3511 (United States))

1995-01-01T23:59:59.000Z

328

Introduction Fluid/Jeans  

E-Print Network (OSTI)

Introduction Fluid/DMSC Fluid/Jeans Comments Fluid/Kinetic Hybrid Modeling of the Thermosphere;Introduction Fluid/DMSC Fluid/Jeans Comments Outline 1 Fluid/DMSC 2 Fluid/Jeans 3 Comments Justin Erwin Fluid/Kinetic Hybrid Modeling of the Thermosphere of Pluto #12;Introduction Fluid/DMSC Fluid/Jeans Comments Motivation

Johnson, Robert E.

329

DOE-HDBK-1012/3-92; DOE Fundamentals Handbook Thermodynamics, Heat Transfer, and Fluid Flow Volume 3 of 3  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-92 3-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 3 of 3 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information. P. O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576- 8401. FTS 626-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE92019791 THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Rev. 0 HT ABSTRACT The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was

330

DOE-HDBK-1012/2-92; DOE Fundamentals Handbook Thermodynamics, Heat Transfer, and Fluid Flow Volume 2 of 3  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-92 2-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 2 of 3 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information. P. O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576- 8401. FTS 626-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE92019790 THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Rev. 0 HT ABSTRACT The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was

331

DOE-HDBK-1012/1-92; DOE Fundamentals Handbook Thermodynamics, Heat Transfer, and Fluid Flow Volume 1 of 3  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-92 1-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 1 of 3 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information. P. O. Box 62, Oak Ridge, TN 37831; (615) 576-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE92019789 THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Rev. 0 HT ABSTRACT The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance

332

Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture Networks  

E-Print Network (OSTI)

Fluid flow process in fractured reservoirs is controlled primarily by the connectivity of fractures. The presence of fractures in these reservoirs significantly affects the mechanism of fluid flow. They have led to problems in the reservoir which...

Ogbechie, Joachim Nwabunwanne

2012-02-14T23:59:59.000Z

333

Green Algae as Model Organisms for Biological Fluid Dynamics  

E-Print Network (OSTI)

In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

Raymond E. Goldstein

2014-09-08T23:59:59.000Z

334

Green Algae as Model Organisms for Biological Fluid Dynamics  

E-Print Network (OSTI)

In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these re...

Goldstein, Raymond E

2014-01-01T23:59:59.000Z

335

SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION  

SciTech Connect

The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.

B.W. ARNOLD

2004-10-27T23:59:59.000Z

336

The Influence of Proposed Repository Thermal Load on Multiphase Flow and Heat Transfer in the Unsaturated Zone of Yucca Mountain  

E-Print Network (OSTI)

development of fluid flow and heat transfer models at otherTOUGH2 code [22]. Fluid flow and heat-transfer processes inand heat transfer through fractured rock is based on the DKM method. This approach considers global fluid and

Wu, Y.-S.; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, G.S.

2006-01-01T23:59:59.000Z

337

Slurry fired heater cold-flow modelling  

SciTech Connect

This report summarizes the experimental and theoretical work leading to the scale-up of the SRC-I Demonstration Plant slurry fired heater. The scale-up involved a theoretical model using empirical relations in the derivation, and employed variables such as flow conditions, liquid viscosity, and slug frequency. Such variables have been shown to affect the heat transfer characteristics ofthe system. The model assumes that, if all other variables remain constant, the heat transfer coefficient can be scaled up proportional to D/sup -2/3/ (D = inside diameter of the fired heater tube). All flow conditions, liquid viscosities, and pipe inclinations relevant to the demonstration plant have indicated a slug flow regime in the slurry fired heater. The annular and stratified flow regimes should be avoided to minimize the potential for excessive pipe erosion and to decrease temperature gradients along the pipe cross section leading to coking and thermal stresses, respectively. Cold-flow studies in 3- and 6.75-in.-inside-diameter (ID) pipes were conducted to determine the effect of scale-up on flow regime, slug frequency, and slug dimensions. The developed model assumes that conduction heat transfer occurs through the liquid film surrounding the gas slug and laminar convective heat transfer to the liquid slug. A weighted average of these two heat transfer mechanisms gives a value for the average pipe heat transfer coefficient. The cold-flow work showed a decrease in the observed slug frequency between the 3- and 6.75-ID pipes. Data on the ratio of gas to liquid slug length in the 6.75-in. pipe are not yet complete, but are expected to yield generally lower values than those obtained in the 3-in. pipe; this will probably affect the scale-up to demonstration plant conditions. 5 references, 15 figures, 7 tables.

Moujaes, S.F.

1983-07-01T23:59:59.000Z

338

Lattice Versus Lennard-Jones Models with a Net Particle Flow  

E-Print Network (OSTI)

. Such phenomenol- ogy occurs in flowing fluids [3], and during phase separation in colloidal [4], granular [5, 6

Garrido, Pedro L.

339

Lattice Boltzmann models for nonequilibrium gas flows  

Science Journals Connector (OSTI)

Due to its computational efficiency, the kinetic-based lattice Boltzmann method has recently been used to model nonequilibrium gas dynamics. With appropriate boundary conditions, lattice Boltzmann models have been able to capture both velocity slip and temperature jump at a solid surface. To enable these models to simulate flows in the transition regime, both high-order and modified lattice Boltzmann models have been proposed. In this paper, we demonstrate the advantages of the standard lattice Bhatnagar-Gross-Krook model in predicting high-order rarefaction phenomenon. In addition, we show that current high-order lattice Boltzmann models are not yet able to capture the nonlinear constitutive relation for the stress in the Knudsen layer, despite the improved predictions of the wall slip-velocity, especially for Poiseuille flow. By considering how the wall affects the gas mean free path, we present a simplified high-order lattice Boltzmann model that can predict flow in the transition regime and is also able to capture the essential characteristics of the Knudsen layer.

Gui-Hua Tang; Yong-Hao Zhang; David R. Emerson

2008-04-21T23:59:59.000Z

340

Convective flow and heat transfer of a viscous heat generating fluid in the presence of a moving, infinite, vertical, porous plate  

Science Journals Connector (OSTI)

The analysis of convective flow and heat transfer of a viscous heat generating fluid past a uniformly moving, infinite, vertical, ... of the plate-motion and the presence of heat generation/absorption on the flow...

K. Vajravelu

1978-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

An Anisotropic Fluid-Solid Model of the Mouse Heart  

SciTech Connect

A critical challenge in biomechanical simulations is the spatial discretization of complex fluid-solid geometries created from imaging. This is especially important when dealing with Lagrangian interfaces, as there must be at a minimum both geometric and topological compatibility between fluid and solid phases, with exact matching of the interfacial nodes being highly desirable. We have developed a solution to this problem and applied the approach to the creation of a 3D fluidsolid mesh of the mouse heart. First, a 50 micron isotropic MRI dataset of a perfusion-fixed mouse heart was segmented into blood, tissue, and background using a customized multimaterial connected fuzzy thresholding algorithm. Then, a multimaterial marching cubes algorithm was applied to produce two compatible isosurfaces, one for the blood-tissue boundary and one for the tissue-background boundary. A multimaterial smoothing algorithm that rigorously conserves volume for each phase simultaneously smoothed the isosurfaces. Next we applied novel automated meshing algorithms to generate anisotropic hybrid meshes with the number of layers and the desired element anisotropy for each material as the only input parameters. As the meshes are scale-invariant within a material and include boundary layer prisms, fluid-structure interaction computations would have a relative error equilibrated over the entire mesh. The resulting model is highly detailed mesh representation of the mouse heart, including features such as chordae and coronary vasculature, that is also maximally efficient to produce the best simulation results for the computational resources available

Carson, James P.; Kuprat, Andrew P.; Jiao, Xiangmin; del Pin, Facundo; Einstein, Daniel R.

2010-01-01T23:59:59.000Z

342

CFD modeling of entrained-flow coal gasifiers with improved physical and chemical sub-models  

SciTech Connect

Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. While the turbulent multiphase reacting flow inside entrained-flow gasifiers has been modeled through computational fluid dynamic (CFD), the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented here include a moisture vaporization model with consideration of high mass transfer rate, a coal devolatilization model with more species to represent coal volatiles and heating rate effect on volatile yield, and careful selection of global gas phase reaction kinetics. The enhanced CFD model is applied to simulate two typical oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here indicate that the gasifier models reported in this paper are reliable and accurate enough to be incorporated into process/CFD co-simulations of IGCC power plants for systemwide design and optimization.

Ma, J.; Zitney, S.

2012-01-01T23:59:59.000Z

343

Three-dimensional Computational Fluid Dynamics (CFD) modeling of dry spent nuclear fuel storage canisters  

SciTech Connect

One of the interim storage configurations being considered for aluminum-clad foreign research reactor fuel, such as the Material and Testing Reactor (MTR) design, is in a dry storage facility. To support design studies of storage options, a computational and experimental program was conducted at the Savannah River Site (SRS). The objective was to develop computational fluid dynamics (CFD) models which would be benchmarked using data obtained from a full scale heat transfer experiment conducted in the SRS Experimental Thermal Fluids Laboratory. The current work documents the CFD approach and presents comparison of results with experimental data. CFDS-FLOW3D (version 3.3) CFD code has been used to model the 3-dimensional convective velocity and temperature distributions within a single dry storage canister of MTR fuel elements. For the present analysis, the Boussinesq approximation was used for the consideration of buoyancy-driven natural convection. Comparison of the CFD code can be used to predict reasonably accurate flow and thermal behavior of a typical foreign research reactor fuel stored in a dry storage facility.

Lee, S.Y.

1997-06-01T23:59:59.000Z

344

Gamma-ray free-electron lasers: Quantum fluid model  

E-Print Network (OSTI)

A quantum fluid model is used to describe the interacion of a nondegenerate cold relativistic electron beam with an intense optical wiggler taking into account the beam space-charge potential and photon recoil effect. A nonlinear set of coupled equations are obtained and solved numerically. The numerical results shows that in the limit of plasma wave-breaking an ultra-high power radiation pulse are emitted at the$\\gamma$-ray wavelength range which can reach an output intensity near the Schwinger limit depending of the values of the FEL parameters such as detuning and input signal initial phase at the entrance of the interaction region.

Silva, H M

2014-01-01T23:59:59.000Z

345

Unit physics performance of a mix model in Eulerian fluid computations  

SciTech Connect

In this report, we evaluate the performance of a K-L drag-buoyancy mix model, described in a reference study by Dimonte-Tipton [1] hereafter denoted as [D-T]. The model was implemented in an Eulerian multi-material AMR code, and the results are discussed here for a series of unit physics tests. The tests were chosen to calibrate the model coefficients against empirical data, principally from RT (Rayleigh-Taylor) and RM (Richtmyer-Meshkov) experiments, and the present results are compared to experiments and to results reported in [D-T]. Results show the Eulerian implementation of the mix model agrees well with expectations for test problems in which there is no convective flow of the mass averaged fluid, i.e., in RT mix or in the decay of homogeneous isotropic turbulence (HIT). In RM shock-driven mix, the mix layer moves through the Eulerian computational grid, and there are differences with the previous results computed in a Lagrange frame [D-T]. The differences are attributed to the mass averaged fluid motion and examined in detail. Shock and re-shock mix are not well matched simultaneously. Results are also presented and discussed regarding model sensitivity to coefficient values and to initial conditions (IC), grid convergence, and the generation of atomically mixed volume fractions.

Vold, Erik [Los Alamos National Laboratory; Douglass, Rod [Los Alamos National Laboratory

2011-01-25T23:59:59.000Z

346

Model system for classical fluids out of equilibrium  

Science Journals Connector (OSTI)

A model system for classical fluids out of equilibrium, referred to as a dissipative particles dynamics (DPD) solid, is studied by analytical and simulation methods. The time evolution of a DPD particle is described by a fluctuating heat equation. This DPD solid with transport based on collisional transfer (high-density mechanism) is complementary to the Lorentz gas with only kinetic transport (low-density mechanism). Combination of both models covers the qualitative behavior of transport properties of classical fluids over the full-density range. The heat diffusivity is calculated using a mean-field theory, leading to a linear-density dependence of this transport coefficient, which is exact at high densities. Subleading density corrections are obtained as well. At lower densities the model has a conductivity threshold below which heat conduction is absent. The observed threshold is explained in terms of percolation diffusion on a random proximity network. The geometrical structure of this network is the same as in continuum percolation of completely overlapping spheres, but the dynamics on this network differs from continuum percolation diffusion. Furthermore, the kinetic theory for DPD is extended to the generalized hydrodynamic regime, where the wave-number-dependent decay rates of the Fourier modes of the energy and temperature fields are calculated.

M. Ripoll and M. H. Ernst

2005-04-12T23:59:59.000Z

347

A bulk-flow model of angled injection Lomakin bearings  

E-Print Network (OSTI)

A bulk-flow model for determination of the leakage and dynamic force characteristics of angled injection Lomakin bearings is presented. Zeroth- and first-order equations describe the equilibrium flow for a centered bearing and the perturbed flow...

Soulas, Thomas Antoine Theo

2001-01-01T23:59:59.000Z

348

Magnetic fabrics and fluid flow directions in hydrothermal systems. A case study in the Chaillac BaFFe deposits  

E-Print Network (OSTI)

of anisotropy of magnetic susceptibility (AMS) to describe the mineralizing process in hydrothermal systems. BaMagnetic fabrics and fluid flow directions in hydrothermal systems. A case study in the Chaillac Ba hydrothermal textures and tectonic structures have been described in veins, sinters, and sandstone cemented

Paris-Sud XI, Université de

349

Abstract 4455: Influence of convective fluid flow on the penetration of anti-cancer drugs through multicell layers  

Science Journals Connector (OSTI)

...drives convective fluid flow, the rate of which can be varied by increasing...When CFF was 0.19 ml/min, the penetration of gefitinib, imatinib and doxorubicin...CFF was zero. The enhancement of penetration rates was 75 fold for doxorubicin, 53...

Roger M. Phillips; Hafiz Makeen; Raj Periasamy; Paul M. Loadman; Pamela F. Jones; Brian D. Sleeman; Stephen W. Smye; and Chris Twelves

2011-04-15T23:59:59.000Z

350

Nested Cartesian grid method in incompressible viscous fluid flow Yih-Ferng Peng a,*, Rajat Mittal b  

E-Print Network (OSTI)

Nested Cartesian grid method in incompressible viscous fluid flow Yih-Ferng Peng a,*, Rajat Mittal form 16 April 2010 Accepted 28 May 2010 Available online 8 June 2010 Keywords: Nested Cartesian grid procedure is focused by using a nested Cartesian grid formulation. The method is developed for simulating

Mittal, Rajat

351

Temporal evolution of pore geometry, fluid flow, and solute transport resulting from colloid deposition  

SciTech Connect

Deposition of colloidal particles is one of many processes that lead to the evolution of the structure of natural porous media in groundwater aquifers, oil reservoirs, and sediment beds. Understanding of the mechanisms and effects of this type of structural evolution has been limited by a lack of direct observations of pore structure. Here, synchrotron X-ray difference microtomography (XDMT) was used to resolve the temporal evolution of pore structure and the distribution of colloidal deposits within a granular porous medium. Column filtration experiments were performed to observe the deposition of relatively high concentrations of colloidal zirconia (200 mg/l of particles having diameter {approx}1 {micro}m) in a packed bed of glass beads (diameters 210-300 {micro}m). Noninvasive XDMT imaging of the pore structure was performed three separate times during each column experiment. The structural information observed at each time was used to define internal boundary conditions for three-dimensional lattice Boltzmann (LB) simulations that show how the evolving pore structure affects pore fluid flow and solute transport. While the total deposit mass increased continuously over time, colloid deposition was observed to be highly heterogeneous and local colloid detachment was observed at some locations in a low ionic strength medium. LB simulations indicated that particle accumulation greatly reduced the permeability of the porous medium while increasing the tortuosity. The colloidal deposits also increased the spatial variability in pore water velocities, leading to higher dispersion coefficients. Anomalous dispersion behavior was investigated by simulation at the scale of the experimental system: weak tailing was found in the clean bed case, and the extent of tailing greatly increased following colloid deposition because of the development of extensive no-flow regions. As a result of this coupling between pore fluid flow, colloid accumulation, and the pore geometry, colloid deposition is expected to strongly influence long-term solute dynamics in cases where solute transport is either accompanied by high colloid influx or where the passage of the solute front mobilizes and then redistributes material from the porous matrix.

Chen, Cheng; Lau, Boris L.; Gaillard, J.-F.; Packman, A.I.; (NWU)

2010-01-22T23:59:59.000Z

352

Multiphase Flow in Geometrically Simple Fracture Intersections  

SciTech Connect

A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to Study gravity-driven flow in geometrically simple fracture intersections. simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-filin flow oil smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.

Hakan Basagaoglu; Paul Meakin; Sauro Succi; Timothy R. Ginn

2006-03-01T23:59:59.000Z

353

Multiphase flow in geometrically simple fracture intersection  

SciTech Connect

A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phse flow through intersecting fractures, and thin-film flow on smooth and undulating solid surfaces. Qualititative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.

H. Basagaoglu; P. Meakin; M. Mathew

2006-03-01T23:59:59.000Z

354

Force-free swimming of a model helical flagellum in viscoelastic fluids  

E-Print Network (OSTI)

Force-free swimming of a model helical flagellum in viscoelastic fluids Bin Liua,1 , Thomas R. Powersa,b , and Kenneth S. Breuera a School of Engineering, Box D, Brown University, Providence, RI 02912 fluids. The fluids are highly viscous to replicate the low Reynolds number environment of microorgan

Thomases, Becca

355

Review and selection of unsaturated flow models  

SciTech Connect

Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer ground-water flow models; to conduct performance assessments; and to develop performance assessment models, where necessary. In the area of scientific modeling, the M&O CRWMS has the following responsibilities: To provide overall management and integration of modeling activities. To provide a framework for focusing modeling and model development. To identify areas that require increased or decreased emphasis. To ensure that the tools necessary to conduct performance assessment are available. These responsibilities are being initiated through a three-step process. It consists of a thorough review of existing models, testing of models which best fit the established requirements, and making recommendations for future development that should be conducted. Future model enhancement will then focus on the models selected during this activity. Furthermore, in order to manage future model development, particularly in those areas requiring substantial enhancement, the three-step process will be updated and reported periodically in the future.

NONE

1993-09-10T23:59:59.000Z

356

A Preliminary Study to Assess Model Uncertainties in Fluid Flows  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . 22 E. Convergence criteria, scaling and preconditioner . . . . . . 25 F. Numerical flux . . . . . . . . . . . . . . . . . . . . . . . . . 26 G. Complete form of the discretized equations . . . . . . . . . 27 V CODE VERIFICATION... REACTOR (PWR) EXAMPLE . . . 40 A. Characteristic data for PWRs . . . . . . . . . . . . . . . . 40 B. Steady-state and transient . . . . . . . . . . . . . . . . . . 42 1. Steady-state . . . . . . . . . . . . . . . . . . . . . . . 42 2. Pseudo...

Delchini, Marc Olivier

2011-08-08T23:59:59.000Z

357

Generalized hydrodynamic model for fluid flows: From nanoscale to macroscale  

E-Print Network (OSTI)

Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China T. S. Zhaob science, chemistry, biology, and many other subjects. Particularly, with the growing interest

Zhao, Tianshou

358

A modeling approach for analysis of coupled multiphase fluid flow ...  

E-Print Network (OSTI)

several components (e.g., water, CO2, air). The mechan- ... k ¼ w for water, k ¼ CO2 for CO2), we obtain d dt. Mk ? Qk ...... Management, US Department of Energy, through ... Ph.D. Thesis, Department of Civil and Environmental Engineer

2002-07-08T23:59:59.000Z

359

Radiation Modeling In Fluid Flow Iain D. Boyd  

E-Print Network (OSTI)

Collector #12;4 Fundamentals of Radiation (1) � All matter with non-zero temperature emits thermal radiation with energy flux given by the Stefan-Boltzmann Law: e.g., Sun: T=5800 K, total radiated power = 4 distribution (Planck spectrum) !q =T 4 W/m2 #12;5 Planck Radiation Spectrum #12;6 Solar Radiation Spectrum

Wang, Wei

360

A Mixed Finite Element Framework for Modeling Coupled Fluid Flow ...  

E-Print Network (OSTI)

such as recovery from compaction drive, waterflooding, surface subsidence, seal in- tegrity ...... and for rocks and concrete it is in the range of 0.4-0.6. ...... incorporate into the programs an automatic, self-adaptive, procedure which adjusts.

Birendra Jha

2005-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A two-fluid model for avalanche and debris flows  

Science Journals Connector (OSTI)

...Nevertheless, it is natural to identify these phase-averaged...travelling wave solutions in gas fluidized beds. J...DC:The Committee on Natural Disasters National Research...Council1994Mount Rainier: active cascade volcanoWashington, DC...of dry avalanches over natural terrain. J. Volcanol...

2005-01-01T23:59:59.000Z

362

Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salak geothermal field in Indonesia. The ultimate goal is to characterize subsurface fracture system and reservoir permeability (possibly, their temporal evolution) using...

363

Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seismicity; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology...

364

Monitoring and Modeling Fluid Flow in a Developing EGS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

field to better understand stress changes and permeability development during the fracture growth stage of an EGS development Question Why does seismicity appear to be...

365

Numerical modeling of fluid flow and time-lapse seismograms ...  

E-Print Network (OSTI)

which is mainly discharged into the atmosphere, increasing the atmosphere temperature. (greenhouse effect). • To minimize climate change impacts, geological.

gabriela

366

NUMERICAL MODELING OF FLUID FLOW AND TIME-LAPSE ...  

E-Print Network (OSTI)

Abstract. CO2 sequestration in the underground is a valid alternative approach for mitigat- ing the greenhouse effect. Nevertheless, very little is known about the

gabriela

367

Numerical Simulation of Heat Transfer and Fluid Flow Characteristics of Server Rack in Datacenter  

Science Journals Connector (OSTI)

This chapter is studying the fluid mechanics and heat transfer of single server rack using the computational fluid dynamics software. The ... effect of the different structure parameters of server rack in datacen...

Jianfei Zhang; Donghao Liu; Xiping Qiao…

2014-01-01T23:59:59.000Z

368

A Lattice Boltzmann Fictitious Domain Method for Modeling Red Blood Cell Deformation and Multiple-Cell Hydrodynamic Interactions in Flow  

SciTech Connect

To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse and fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.

Shi, Xing; Lin, Guang; Zou, Jianfeng; Fedosov, Dmitry A.

2013-07-20T23:59:59.000Z

369

Traffic flow models and service rules for complex production systems  

E-Print Network (OSTI)

Traffic flow models and service rules for complex production systems C. Ringhofer Abstract We emphasis is given to the implementation of service rules for complex systems, involving multiple product flow type models for complex production systems. Traffic flow models represent, in some sense

Ringhofer, Christian

370

MAX Fluid Dynamics facility  

NLE Websites -- All DOE Office Websites (Extended Search)

MAX Fluid Dynamics facility MAX Fluid Dynamics facility Capabilities Engineering Experimentation Reactor Safety Testing and Analysis Overview Nuclear Reactor Severe Accident Experiments MAX NSTF SNAKE Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr MAX Fluid Dynamics facility Providing high resolution data for development of computational tools that model fluid flow and heat transfer within complex systems such as the core of a nuclear reactor. 1 2 3 4 5 Hot and cold air jets are mixed within a glass tank while laser-based anemometers and a high-speed infrared camera characterize fluid flow and heat transfer behavior. Click on image to view larger size image.

371

Application of Multi-rate Flowing Fluid Electric ConductivityLogging Method to Well DH-2, Tono Site, Japan  

SciTech Connect

The flowing fluid electric conductivity (FEC) logging method, wellbore fluid is replaced with de-ionized water, following which FEC profiles in the wellbore are measured at a series of times while the well is pumped at a constant rate. Locations were fluid enters the wellbore show peaks in the FEC logs, which may be analyzed to infer inflow strengths and salinities of permeable features intersected by the wellbore. In multi-rate flowing FEC logging, the flowing FEC logging method is repeated using two or more pumping rates, which enables the transmissivities and inherent pressure heads of these features to be estimated as well. We perform multi-rate FEC logging on a deep borehole in fractured granitic rock, using three different pumping rates. Results identify 19 hydraulically conducting fractures and indicate that transmissivity, pressure head, and salinity vary significantly among them. By using three pumping rates rather than the minimum number of two, we obtain an internal consistency check on the analysis that provides a measure of the uncertainty of the results. Good comparisons against static FEC profiles and against independent chemical, geological, and hydrogeological data have further enhanced confidence in the results of the multi-rate flowing FEC logging method.

Doughty, Christine; Takeuchi, Shinji; Amano, Kenji; Shimo, Michito; Tsang, Chin-Fu

2004-10-04T23:59:59.000Z

372

NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS  

E-Print Network (OSTI)

Flow in Central High Energy Nuclear Collisions H. Stockera,theoretical models of high energy nuclear collisions andunder Contract High energy nuclear collisions offer a unique

Stocker, H.

2012-01-01T23:59:59.000Z

373

Adaptive h-finite element modeling of wind flow around bridges  

Science Journals Connector (OSTI)

Design of suspension bridge span is known to be very challenging, particularly considering its stability against wind flow. Traditionally, analysis of bridge section is done using wind tunnel and is very time consuming, with normal experimentation and modeling works requiring minimum 6–8 weeks. To reduce cost and time requirements of wind tunnel experiments, as an alternate approach, wind flow around bridges are investigated by application of computer modeling. One challenging aspect of computational approach is to solve the Navier–Stokes (NS) equations accurately. In the present work, automatic mesh generation technique is used to transfer the continuous fluid flow into discrete numerical data, followed by use of h-adaptive technique. The adaptive simulation is carried out using two posteriori error estimations, which are based on the velocity gradient and vorticity. The current study uses the wind flow over the Great Belt East Bridge (GBEB) as a case study.

Sanjaya K. Patro; R. Panneer Selvam; Harold Bosch

2013-01-01T23:59:59.000Z

374

Flow characteristics in an irregular spillway model  

E-Print Network (OSTI)

River Authority. TABLE OF CONTENTS Page ACKNOWLEDGEMENT TABLE OF CONTENTS V1 LIST OF FIGURES LIST OF TABLES INTRODUCTION REVIEW OF LITERATURE Open Channel Flow Spillways Physical Modeling METHODS AND PROCEDURES 5 5 10 16 20 RESULTS... Test Test Test Test Test Test Test Test Test Test Test Test Test Test Test Test 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ? PMF Test 27 27 29 29 32 35 38 43 43 49 49 52 56 63 63 65 65 DISCUSSION S...

Scott, Mary Charlene

1988-01-01T23:59:59.000Z

375

Experimental and Computational Studies of Fluid Flow Phenomena in Carbon Dioxide Sequestration in Brine and Oil Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID FLOW PHENOMENA IN CARBON DIOXIDE SEQUESTRATION IN BRINE AND OIL FIELDS Chuang Ji ( chuang.ji@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 BOX 5725 Clarkson University Potsdam, NY 13699 Goodarz Ahmadi ( ahmadi@clarkson.edu ) BOX 5725 Clarkson University Potsdam, NY 13699 Duane H. Smith ( duane.smith@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 2 INTRODUCTION Sequestration of CO 2 by injection into deep geological formations is a method to reduce CO 2 emissions into the atmosphere. However, when CO 2 is injected underground, it forms fingers extending into the rock pores saturated with brine or petroleum. This flow

376

Investigation of Volume of Fluids (VOF) Method and System Models for Design of Microfluidic Ink Delivery Apparatus for Dip Pen Nanolithography (DPN)  

E-Print Network (OSTI)

Investigation of Volume of Fluids (VOF) Method and System Models for Design of Microfluidic Ink and manufacture of commercial microfluidic systems called "InkwellsTM". In this study VOF method was used sequence of flow in the different parts of the microfluidic network. Keywords: lab-on-chip, micro

Banerjee, Debjyoti

377

Fully Coupled Well Models for Fluid Injection and Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target...

378

Network flow model for multi-energy systems  

Science Journals Connector (OSTI)

This paper describes a novel approach to model networks with multiple energy carrier. The proposed nodal matrix establishes a link between an optimization of enclosed areas and their interconnections via networks. In the envisioned network flow model ... Keywords: energy conversion, energy hubs, grids, line losses, network flow, optimal power flow

Matthias Schulze; Goran Gašparovi?

2010-02-01T23:59:59.000Z

379

Potential Flow Modelling for Wind Turbines Shane Cline  

E-Print Network (OSTI)

Potential Flow Modelling for Wind Turbines by Shane Cline B.Sc., University of Toledo, 2003 M means, without the permission of the author. #12;ii Potential Flow Modelling for Wind Turbines by Shane potential flow methods are a promising alternative to mainstream wind turbine aerodynamics tools

Victoria, University of

380

Analysis of noncircular fluid-filled boreholes in elastic formations using a perturbation model  

E-Print Network (OSTI)

underbalance drilling in the pres- ence of large tectonic stresses, can cause complex perturbationsAnalysis of noncircular fluid-filled boreholes in elastic formations using a perturbation model a perturbation model to obtain flexural mode dispersions of noncircular fluid-filled boreholes in homogeneous

Simsek, Ergun

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Stochastic and deterministic models for dense granular flow  

E-Print Network (OSTI)

Granular materials such as sand or gravel surround us everyday and yet remain poorly understood. In this thesis, two models are developed for dense granular flow, each capable of predicting flows with accuracy in multiple ...

Kamrin, Kenneth Norman

2008-01-01T23:59:59.000Z

382

Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field  

SciTech Connect

Experimental investigation is conducted to get insight into convective heat transfer features of the aqueous magnetic fluid flow over a fine wire under the influence of an external magnetic field. The convective heat transfer coefficient of the aqueous magnetic fluid flow around the heated wire is measured in both the uniform magnetic field and the magnetic field gradient. The effects of the external magnetic field strength and its orientation on the thermal behaviors of the magnetic fluids are analyzed. The experimental results show that the external magnetic field is a vital factor that affects the convective heat transfer performances of the magnetic fluids and the control of heat transfer processes of a magnetic fluid flow can be possible by applying an external magnetic field. (author)

Li, Qiang; Xuan, Yimin [School of Power Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094 (China)

2009-04-15T23:59:59.000Z

383

Hamiltonian structure of reduced fluid models for plasmas obtained from a kinetic description  

E-Print Network (OSTI)

We consider the Hamiltonian structure of reduced fluid models obtained from a kinetic description of collisionless plasmas by Vlasov-Maxwell equations. We investigate the possibility of finding Poisson subalgebras associated with fluid models starting from the Vlasov-Maxwell Poisson algebra. In this way, we show that the only possible Poisson subalgebra involves the moments of zeroth and first order of the Vlasov distribution, meaning the fluid density and the fluid velocity. We find that the bracket derived in [Phys. Rev. Lett. 93, 175002 (2004)] which involves moments of order 2 is not a Poisson bracket since it does not satisfy the Jacobi identity.

Loïc De Guillebon; Cristel Chandre

2012-04-19T23:59:59.000Z

384

Heat and mass transfer in a visco–elastic fluid flow over an accelerating surface with heat source/sink and viscous dissipation  

Science Journals Connector (OSTI)

...?In this paper we present a mathematical analysis of heat and mass transfer phenomena in a visco–elastic fluid flow over an accelerating stretching sheet in the presence of heat source/sink, viscous dissipatio...

R. M. Sonth; S. K. Khan; M. S. Abel; K. V. Prasad

2002-02-01T23:59:59.000Z

385

On the influence of a magnetic field with circular field lines on the gravity flow of a magnetic fluid film down a thin cylinder  

Science Journals Connector (OSTI)

The gravity-induced flow of a magnetic fluid film down a vertical thin current-carrying cylindrical conductor is considered. The relative thickness of the film is small. A nonlinear equation is derived from a ...

V. M. Korovin

2009-10-01T23:59:59.000Z

386

Application of X-ray CT for investigating fluid flow and conformance control during CO2 injection in highly heterogeneous media  

E-Print Network (OSTI)

were performed using homogeneous and heterogeneous cores and a 4th generation X-Ray CT scanner was used to visualize heterogeneity and fluid flow in the core. Porosity and saturation measurements were made during the course of the experiment...

Chakravarthy, Deepak

2005-08-29T23:59:59.000Z

387

Determination of several variables affecting laboratory measurements of cross-linked fracture fluids  

E-Print Network (OSTI)

SHEAR RATE o) PSEUDOPLASTIC NEWTONIAN SHEAR RATE b) Figure 3 ? Fluid Flow Behavior shear rate. These fluids are also called shear-thinning fluids. The power law (Ostwald-dewaele) model is the most popular model used to describe the flow behavior...

Wilson, Matilda Jane

1982-01-01T23:59:59.000Z

388

Swirling structure for mixing two concentric fluid flows at nozzle outlet  

DOE Patents (OSTI)

A nozzle device is described for causing two fluids to mix together. In particular, a spray nozzle comprises two hollow, concentric housings, an inner housing and an outer housing. The inner housing has a channel formed therethrough for a first fluid. Its outer surface cooperates with the interior surface of the outer housing to define the second channel for a second fluid. The outer surface of the inner housing and the inner surface of the outer housing each carry a plurality of vanes that interleave but do not touch, each vane of one housing being between two vanes of the other housing. The vanes are curved and the inner surface of the outer housing and the outer surface of the inner housing converge to narrow the second channel. The shape of second channel results in a swirling, accelerating second fluid that will impact the first fluid just past the end of the nozzle where mixing will take place.

Mensink, D.L.

1993-07-20T23:59:59.000Z

389

Binary fish passage models for uniform and nonuniform flows  

SciTech Connect

Binary fish passage models are considered by many fisheries managers to be the best 21 available practice for culvert inventory assessments and for fishway and barrier design. 22 Misunderstandings between different binary passage modeling approaches often arise, 23 however, due to differences in terminology, application and presentation. In this paper 24 one-dimensional binary fish passage models are reviewed and refined to clarify their 25 origins and applications. For uniform flow, a simple exhaustion-threshold (ET) model 26 equation is derived that predicts the flow speed threshold in a fishway or velocity barrier 27 that causes exhaustion at a given maximum distance of ascent. Flow speeds at or above 28 the threshold predict failure to pass (exclusion). Flow speeds below the threshold predict 29 passage. The binary ET model is therefore intuitive and easily applied to predict passage 30 or exclusion. It is also shown to be consistent with the distance-maximizing model. The 31 ET model s limitation to uniform flow is addressed by deriving a passage model that 32 accounts for nonuniform flow conditions more commonly found in the field, including 33 backwater profiles and drawdown curves. Comparison of these models with 34 experimental observations of volitional passage for Gambusia affinis in uniform and 35 nonuniform flows indicates reasonable prediction of binary outcomes (passage or 36 exclusion) if the flow speed is not near the threshold flow velocity. More research is 37 needed on fish behavior, passage strategies under nonuniform flow regimes and 38 stochastic methods that account for individual differences in swimming performance at or 39 near the threshold flow speed. Future experiments should track and measure ground 40 speeds of ascending fish to test nonuniform flow passage strategies and to improve model 41 predictions. Stochastic models, such as Monte-Carlo techniques, that account for 42 different passage performance among individuals and allow prediction of the percentage 43 of fish passing would be particularly useful near flow speed thresholds where binary 44 passage models are clearly limited.

Neary, Vincent S [ORNL

2011-01-01T23:59:59.000Z

390

A Penalty Method to Model Particle Interactions in DNA-laden Flows  

SciTech Connect

We present a hybrid fluid-particle algorithm to simulate flow and transport of DNA-laden fluids in microdevices. Relevant length scales in microfluidic systems range from characteristic channel sizes of millimeters to micron scale geometric variation (e.g., post arrays) to 10 nanometers for the length of a single rod in a bead-rod polymer representation of a biological material such as DNA. The method is based on a previous fluid-particle algorithm in which long molecules are represented as a chain of connected rods, but in which the physically unrealistic behavior of rod crossing occurred. We have extended this algorithm to include screened Coulombic forces between particles by implementing a Debye-Hueckel potential acting between rods. In the method an unsteady incompressible Newtonian fluid is discretized with a second-order finite difference method in the interior of the Cartesian grid domain; an embedded boundary volume-of-fluid formulation is used near boundaries. The bead-rod polymer model is fully coupled to the solvent through body forces representing hydrodynamic drag and stochastic thermal fluctuations. While intrapolymer interactions are modeled by a soft potential, polymer-structure interactions are treated as perfectly elastic collisions. We demonstrate this method on flow and transport of a polymer through a post array microchannel in 2D where the polymer incorporates more realistic physical parameters of DNA, and compare to previous simulations where rods are allowed to cross. We also show that the method is capable of simulating 3D flow in a packed bed micro-column.

Trebotich, D; Miller, G H; Bybee, M D

2006-10-06T23:59:59.000Z

391

Numerical analysis of laminar fluid flow and heat transfer in a parallel plate channel with normally in-line positioned plates  

E-Print Network (OSTI)

NUMERICAL ANALYSIS OF LAMINAR FLUID FLOW AND HEAT TRANSFER IN A PARALLEL PLATE CHANNEL WITH NORMALLY IN-LINE POSITIONED PLATES A Thesis by JOHN GRADY iVICMATH Submitted to the Office of Graduate Studies of Texas AkM University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1991 Major Subject: Mechanical Engineering NUMERICAL ANALYSIS OF LAMINAR FLUID FLOW AND HEAT TRANSFER IN A PARALLEL PLATE CHANNEI WITH NORMALLY IN-LINE POSITIONED PLATES A...

McMath, John Grady

2012-06-07T23:59:59.000Z

392

An approximate solution for the start-up flow of a power-law fluid in a tube  

Science Journals Connector (OSTI)

A theoretical solution of the unsteady-state momentum equation for the start-up flow of a power-law fluid in circular tubes is presented. The solution is obtained with an approximate technique which has previously proved to be useful in solving other transport problems involving nonlinear partial differential equations and explicit asymptotic expressions for the velocity profiles and flow-rates as functions of time are given. The accuracy of the method is checked by comparing the results with the existing exact analytical solution of Gromekha—Szymanski which applies for the Newtonian case and the results are believed to be good approximations for moderate and large values of time. An interesting aspect of the results is the effect of the flow behaviour index and the imposed pressure gradient on the start-up time.

J. Sestak; M.E. Charles

1968-01-01T23:59:59.000Z

393

A GENERALIZED ALGEBRAIC RELATION FOR PREDICTING DEVELOPING CURVED CHANNEL FLOW WITH A k-t MODEL OF TURBULENCE  

E-Print Network (OSTI)

S. V. , "Numerical Heat Transfer and Fluid Flow," HemisphereCurvature on Heat Transfer to Incompressible Fluids," Trans.Heat Transfer in a Turbulent Boundary Layer," Journal of Fluid

Humphrey, Joseph A.C.

2014-01-01T23:59:59.000Z

394

Inviscid Limits for a Stochastically Forced Shell Model of Turbulent Flow  

E-Print Network (OSTI)

We establish the anomalous mean dissipation rate of energy in the inviscid limit for a stochastic shell model of turbulent fluid flow. The proof relies on viscosity independent bounds for stationary solutions and on establishing ergodic and mixing properties for the viscous model. The shell model is subject to a degenerate stochastic forcing in the sense that noise acts directly only through one wavenumber. We show that it is hypo-elliptic (in the sense of Hormander) and use this property to prove a gradient bound on the Markov semigroup.

Susan Friedlander; Nathan Glatt-Holtz; Vlad Vicol

2014-04-03T23:59:59.000Z

395

Modeling of fluids and waves with analytics and numerics  

E-Print Network (OSTI)

Capillary instability (Plateau-Rayleigh instability) has been playing an important role in experimental work such as multimaterial fiber drawing and multilayer particle fabrication. Motivated by complex multi-fluid geometries ...

Liang, Xiangdong, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

396

DNS on turbulent heat transfer of viscoelastic fluid flow in a plane channel with transverse rectangular orifices  

Science Journals Connector (OSTI)

Heat-transfer characteristics of a viscoelastic turbulence past rectangular orifices were investigated in the context of the reduction effects of fluid elasticity on drag and heat transfer. To simulate the fully-developed channel flow through transverse orifices located periodically at intervals of 6.4 times channel height, we imposed periodic conditions at the upstream and downstream boundaries. To discuss the dissimilarity between the velocity and thermal fields, the molecular Prandtl number was set to be 1.0 and any temperature dependence of the fluid and rheological properties was not considered. In the present condition, the ratio of the reduction rates in drag and heat transfer was found to be 2.8:1.0, revealing that the present flow configuration is better than a smooth channel for avoiding the heat-transfer reduction. This phenomenon was attributed to the sustainment of the quasi-streamwise vortex downstream of the reattachment point despite the absence of strong spanwise vortices emanating from the orifice edge in the viscoelastic fluid. The longitudinal vortices behind the reattachment point caused a high turbulent heat flux and increased the local Nusselt number.

Takahiro Tsukahara; Tomohiro Kawase; Yasuo Kawaguchi

2013-01-01T23:59:59.000Z

397

Flow in Computer Hacking: A Model  

Science Journals Connector (OSTI)

In this study hackers’ motivation is investigated, using the flow paradigm. It was hypothesized that flow increases with the increase of hackers’ competence in the IT use. An on-line research was administered wit...

Alexander E. Voiskounsky; Olga V. Smyslova

2003-01-01T23:59:59.000Z

398

Water Modeling of Steel Flow, Air Entrainment and Filtration  

E-Print Network (OSTI)

Water Modeling of Steel Flow, Air Entrainment and Filtration Christoph Beckermann Associate Beckermann, C., "Water Modeling of Steel Flow, Air Entrainment and Filtration," in Proceedings of the 46th, 1992. #12;Abstract This paper presents an analysis of water modeling of steel pouring to study (1) air

Beckermann, Christoph

399

Modeling gas flow through microchannels and nanopores Subrata Roya)  

E-Print Network (OSTI)

Modeling gas flow through microchannels and nanopores Subrata Roya) and Reni Raju Computational. A two-dimensional finite-element based microscale flow model is developed to efficiently predict is modeled using either the continuum or the molecular approach.1­4 The con- tinuum approach solves

Roy, Subrata

400

A Mechanical Fluid-Dynamical Model For Ground Movements At Campi Flegrei  

Open Energy Info (EERE)

Mechanical Fluid-Dynamical Model For Ground Movements At Campi Flegrei Mechanical Fluid-Dynamical Model For Ground Movements At Campi Flegrei Caldera Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Mechanical Fluid-Dynamical Model For Ground Movements At Campi Flegrei Caldera Details Activities (0) Areas (0) Regions (0) Abstract: We present here a consistent model, which explains the mechanisms of unrest phenomena at Campi Flegrei (Italy), both at short-term (years) and at secular scales. The model consists basically of two effects: the first one is related to the elastic response of the shallow crust to increasing pressure within a shallow magma chamber; the second involves the fluid-dynamics of shallow aquifers in response to increasing pressure and/or temperature at depth. The most important roles in the proposed model

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Criterion for purely elastic Taylor-Couette instability in the flows of shear-banding fluids  

E-Print Network (OSTI)

In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In micellar solutions, many of the data collected exhibit unexplained spatio-temporal ...

Fardin, M. A.

402

Stochastic flow shop scheduling model for the Panama Canal.  

E-Print Network (OSTI)

??The Panama Canal can be modeled as a stochastic flexible flow shop for the purpose of scheduling. A metaheuristic stochastic optimization method (Nested Partition) was… (more)

de Castillo, Zoila Yadira Guerra

2006-01-01T23:59:59.000Z

403

Flow through porous media : from mixing of fluids to triggering of earthquakes  

E-Print Network (OSTI)

Enhanced oil recovery by displacing oil with solvents such as carbon dioxide requires development of miscibility between the two fluids to maximize the displacement efficiency. Prevention of inadvertent triggering of ...

Jha, Birendra, Ph. D. Massachusetts Institute of Technology. Department of Civil and Environmental Engineering

2014-01-01T23:59:59.000Z

404

L3:MPO.CRUD.P8.02 Two-Phase Fluid Flow  

NLE Websites -- All DOE Office Websites (Extended Search)

or equivalent) m Mobility of a particle in a fluid Pa m s Density kg m 3 Surface tension N m avg Average tortuosity for flowpaths and diffusion - c Contact...

405

Flow in geothermal wells: Part III. Calculation model for self-flowing well  

SciTech Connect

The theoretical model described predicts the temperature, pressure, dynamic dryness fraction, and void fraction along the vertical channel of two-phase flow. The existing data from operating wells indicate good agreement with the model. (MHR)

Bilicki, Z.; Kestin, J.; Michaelides, E.E.

1981-06-01T23:59:59.000Z

406

Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment  

SciTech Connect

The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.

Mitran, Sorin, E-mail: mitran@unc.edu

2013-07-01T23:59:59.000Z

407

Transient Heat and Material Flow Modeling of Friction Stir Processing of Magnesium Alloy using Threaded Tool  

SciTech Connect

A three-dimensional transient computational fluid dynamics (CFD) model was developed to investigate the material flow and heat transfer during friction stir processing (FSP) in an AZ31B magnesium alloy. The material was assumed to be a non-Newtonian viscoplastic fluid, and the Zener-Hollomon parameter was used to describe the dependence of material viscosity on temperature and strain rate. The material constants used in the constitutive equation were determined experimentally from compression tests of the AZ31B Mg alloy under a wide range of strain rates and temperatures. A dynamic mesh method, combining both Lagrangian and Eulerian formulations, was used to capture the material flow induced by the movement of the threaded tool pin. Massless inert particles were embedded in the simulation domain to track the detailed history of material flow. The actual FSP was also carried out on a wrought Mg plate where temperature profiles were recorded by embedding thermocouples. The predicted transient temperature history was found to be consistent with that measured during FSP. Finally, the influence of the thread on the simulated results of thermal history and material flow was studied by comparing two models: one with threaded pin and the other with smooth pin surface.

Yu, Zhenzhen [ORNL; Zhang, Wei [ORNL; Choo, Hahn [ORNL; Feng, Zhili [ORNL

2012-01-01T23:59:59.000Z

408

ShowFlow: A practical interface for groundwater modeling  

SciTech Connect

ShowFlow was created to provide a user-friendly, intuitive environment for researchers and students who use computer modeling software. What traditionally has been a workplace available only to those familiar with command-line based computer systems is now within reach of almost anyone interested in the subject of modeling. In the case of this edition of ShowFlow, the user can easily experiment with simulations using the steady state gaussian plume groundwater pollutant transport model SSGPLUME, though ShowFlow can be rewritten to provide a similar interface for any computer model. Included in this thesis is all the source code for both the ShowFlow application for Microsoft{reg sign} Windows{trademark} and the SSGPLUME model, a User's Guide, and a Developer's Guide for converting ShowFlow to run other model programs. 18 refs., 13 figs.

Tauxe, J.D.

1990-12-01T23:59:59.000Z

409

Proceedings of the Workshop on Numerical Modeling of Thermohydrological Flow in Fractured Rock Masses, Feb. 19-20, 1980, Berkeley, CA  

E-Print Network (OSTI)

the formation i V Coupling of Fluid Plow and Heat Transferof years. In general fluid flow, heat transfer, rock defor­The fluid flow eq'iation and the heat transfer equation are

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

410

Nonlinear elasto-plastic model for dense granular flow  

E-Print Network (OSTI)

This work proposes a model for granular deformation that predicts the stress and velocity profiles in well-developed dense granular flows. Recent models for granular elasticity (Jiang and Liu 2003) and rate-sensitive plastic flow (Jop et al. 2006) are reformulated and combined into one universal granular continuum law, capable of predicting flowing regions and stagnant zones simultaneously in any arbitrary 3D flow geometry. The unification is performed by justifying and implementing a Kroner-Lee elasto-plastic decomposition, with care taken to ensure certain continuum physical principles are necessarily upheld. The model is then numerically implemented in multiple geometries and results are compared to experiments and discrete simulations.

Ken Kamrin

2009-05-07T23:59:59.000Z

411

A Smoothed Particle Hydrodynamics-Based Fluid Model With a Spatially...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Smoothed Particle Hydrodynamics-Based Fluid Model With a Spatially Dependent Viscosity Authors: Martys, N.S., George, W.L., Chun, B., Lootens, D. A smoothed particle...

412

A Mechanical Fluid-Dynamical Model For Ground Movements At Campi...  

Open Energy Info (EERE)

Mechanical Fluid-Dynamical Model For Ground Movements At Campi Flegrei Caldera Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Mechanical...

413

Lattice discretization effects on the critical parameters of model nonpolar and polar fluids  

E-Print Network (OSTI)

Lattice discretization effects on the critical parameters of model nonpolar and polar fluids Sarvin Moghaddam Department of Chemical Engineering, University of Maryland, College Park, Maryland 20742 Athanassios Z. Panagiotopoulosa) Department of Chemical Engineering, Princeton University, Princeton, New

414

Numerical and analytical modeling of heat transfer between fluid and fractured rocks  

E-Print Network (OSTI)

Modeling of heat transfer between fluid and fractured rocks is of particular importance for energy extraction analysis in EGS, and therefore represents a critical component of EGS design and performance evaluation. In ...

Li, Wei, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

415

REYNOLDS STRESS MODEL IMPLEMENTATION FOR HYPERSONIC FLOW SIMULATIONS  

E-Print Network (OSTI)

REYNOLDS STRESS MODEL IMPLEMENTATION FOR HYPERSONIC FLOW SIMULATIONS Arianna Bosco, PhD student, 52056 Aachen, Germany Abstract The simulation of hypersonic flows presents some difficulties due of the model is analyzed. 1 Introduction The aerodynamic design of hypersonic inlets is a criti- cal issue

416

A phenomenological model for the flow resistance over submerged vegetation  

E-Print Network (OSTI)

A phenomenological model for the flow resistance over submerged vegetation Alexandra G. Konings,1: Konings, A. G., G. G. Katul, and S. E. Thompson (2012), A phenomenological model for the flow resistance [2002]. In this paper, a phenomenological approach is used to describe the momentum transfer

Katul, Gabriel

417

Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: Joint inversion of geophysical data for ground water flow imaging; Reduced the cost in geothermal exploration and monitoring; & Combined passive and active geophysical methods.

418

Non-Newtonian Fluids, Mudflows, and Debris Flows: A Rheological Approach  

Science Journals Connector (OSTI)

Just as examples: Pengcheng (1992) describes the turbulent debris flows of the the Jiangja ravine in China in terms of a Chezy-like formula $...

Fabio Vittorio De Blasio

2011-01-01T23:59:59.000Z

419

Numerical and experimental investigations on vibration of simulated CANDU fuel bundles subjected to turbulent fluid flow.  

E-Print Network (OSTI)

??Vibration of simulated CANDU fuel bundles induced by coolant flow is investigated in this thesis through experiments and numerical simulations. Two simulated bundles and a… (more)

Zhang, Xuan

2011-01-01T23:59:59.000Z

420

Influence of viscosity modifier nature and concentration on the viscous flow behaviour of oil-based drilling fluids at high pressure  

Science Journals Connector (OSTI)

Abstract This work deals with the effect of viscosity modifier nature and concentration on the rheological properties of model oil-based drilling fluids (OBM) submitted to high pressure. The oil-based fluids were formulated by dispersing, with a high shear mixer, two selected organobentonites in a mineral oil, at room temperature. The viscous flow behaviour of the corresponding dispersions was characterised as a function of pressure, organoclay nature and organoclay concentration, using a controlled-stress rheometer equipped with both pressure cell and coaxial cylinder geometries. A factorial Sisko–Barus model, which takes into account both shear and pressure effects in the same equation, fitted the experimental pressure–viscosity data fairly well. The influence of disperse phase concentration on the shear-thinning characteristics of these organoclay dispersions is related to the development of different microstructures, which depend on organoclay nature. In this sense, the resulting microstructure has been attributed to the cohesion energy between microgels domains. From the experimental results obtained, it can be concluded that the viscous flow behaviour of the OBM investigated is strongly affected by organoclay nature and concentration. The pressure–viscosity behaviour of these dispersions is mainly influenced by the piezoviscous properties of the oil and the properties of the continuous phase. The Sisko–Barus model proposed can be a useful tool, from an engineering point of view, for calculating pressure losses in the different sections of the bore, as well as being of significant help to solve other additional problems, such as hole cleaning, induced fracturing, and hole erosion during the drilling operation.

J. Hermoso; F. Martinez-Boza; C. Gallegos

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A two-fluid model for relativistic heat conduction  

SciTech Connect

Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.

López-Monsalvo, César S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (Mexico)

2014-01-14T23:59:59.000Z

422

Development and Validation of the 3-D Computational Fluid Dynamics Model for CANDU-6 Moderator Temperature Predictions  

SciTech Connect

A computational fluid dynamics (CFD) model for predicting the moderator circulation inside the Canada deuterium uranium (CANDU) reactor vessel has been developed to estimate the local subcooling of the moderator in the vicinity of the Calandria tubes. The buoyancy effect induced by internal heating is accounted for by Boussinesq approximation. The standard k-[curly epsilon] turbulence model associated with logarithmic wall treatment is applied to predict the turbulent jet flows from the inlet nozzles. The matrix of the Calandria tubes in the core region is simplified to porous media, in which anisotropic hydraulic impedance is modeled using an empirical correlation of the frictional pressure loss. The governing equations are solved by CFX-4.4, a commercial CFD code developed by AEA Technology. The CFD model has been successfully verified and validated against experimental data obtained at Stern Laboratories Inc. in Hamilton, Ontario, Canada.

Yoon, Churl; Rhee, Bo Wook; Min, Byung-Joo [Korea Atomic Energy Research Institute (Korea, Republic of)

2004-12-15T23:59:59.000Z

423

Facilities, testing program and modeling needs for studying liquid metal magnetohydrodynamic flows in fusion blankets  

Science Journals Connector (OSTI)

Abstract Since many years, liquid metal flows for applications in fusion blankets have been investigated worldwide. A review is given about modeling requirements and existing experimental facilities for investigations of liquid metal related issues in blankets with the focus on magnetohydrodynamics (MHD). Most of the performed theoretical and experimental works were dedicated to fundamental aspects of MHD flows under very strong magnetic fields as they may occur in generic elements of fusion blankets like pipes, ducts, bends, expansions and contractions. Those experiments are required to progressively validate numerical tools with the purpose of obtaining codes capable to predict MHD flows at fusion relevant parameters in complex blanket geometries, taking into account electrical and thermal coupling between fluid and structural materials. Scaled mock-up experiments support the theoretical activities and help deriving engineering correlations for cases which cannot be calculated with required accuracy up to now.

L. Bühler; C. Mistrangelo; J. Konys; R. Bhattacharyay; Q. Huang; D. Obukhov; S. Smolentsev; M. Utili

2014-01-01T23:59:59.000Z

424

A Feedback Model for Radio Sources Fueled by Cooling Flows  

Science Journals Connector (OSTI)

In many clusters of galaxies, radiative cooling in the central regions appears to drive an accretion flow. Many of these "cooling-flow clusters" possess strong radio sources in the central regions, which suggests a causal relation between the cooling flow and the radio source. We consider a general model in which a cooling flow produces and interacts with relativistic electrons in the core of the cluster. These electrons heat the inflowing gas, generating negative feedback that reduces the accretion rate. For sufficiently strong feedback, the accretion flow shows an oscillatory behavior on a timescale of several hundred million years.

Wallace Tucker; Laurence

1997-01-01T23:59:59.000Z

425

Vortical Inviscid Flows with Two-Way Solid-Fluid Coupling  

E-Print Network (OSTI)

, the net force acting on a solid immersed in an irrotational and inviscid flow is zero. For instance methods are used to accurately calculate forces in mechanical engineering applications such as airfoils [6, a sphere in an inviscid constant uniform flow would experience zero drag which is clearly incorrect. Our

Lee, WonSook

426

Airfoil Shape Optimization for Transonic Flows of BetheZel'dovichThompson Fluids  

E-Print Network (OSTI)

, in organic Rankine cycles (ORCs). Specific interest has developed in a particular class of dense gases, known in the same way as classical steam Rankine cycles, but due to the use of low-boiling compounds as working by their potential technological advantages as working fluids in energy- conversion cycles and, specifically

Paris-Sud XI, Université de

427

Hydraulic stimulation of geothermal reservoirs: fluid flow, electric potential and microseismicity relationships  

Science Journals Connector (OSTI)

......represents the reservoir relaxation process occurring around the openhole...Li (1987), it is a slow process and, therefore, it may not...to observe fluid diffusion processes is useful for the understanding...Abstracts of Papers , EAGE-56th Mtg. Tech. Exhib., I004. Li......

Mathieu Darnet; Guy Marquis; Pascal Sailhac

2006-07-01T23:59:59.000Z

428

Fusion Engineering and Design 82 (2007) 22172225 Integrated thermo-fluid analysis towards helium flow  

E-Print Network (OSTI)

Fusion Engineering and Design 82 (2007) 2217­2225 Integrated thermo-fluid analysis towards helium. Andob, I. Komadab a Fusion Engineering Sciences, Mechanical and Aerospace Eng. Department, University the ITER test blanket module (TBM) warrants the need of extensive computer aided engineering (CAE

Abdou, Mohamed

429

Study of miscible fluid flows in a porous medium by an acoustical method  

E-Print Network (OSTI)

measurements in a pack of glass beads saturated with water- ethanol mixtures of various concentrations. We thus of glass beads packing a column, saturated with a water-ethanol mixture. We displace the saturating fluid by a water-ethanol mixture ofa different concentration. Concentration profiles (i.e. the concentration time

Boyer, Edmond

430

Heat transfer effectiveness of three-fluid separated heat pipe exchanger  

Science Journals Connector (OSTI)

A heat transfer model for three-fluid separated heat pipe exchanger was analyzed, and the temperature transfer matrix for general three-fluid separated heat exchanger working in parallel-flow or counter- ... It w...

Chengming Shi; Yang Wang; Ying Yang; Quan Liao

2011-02-01T23:59:59.000Z

431

HYSTERESIS IN A ROTATING DIFFERENTIALLY HEATED SPHERICAL SHELL OF BOUSSINESQ FLUID  

E-Print Network (OSTI)

HYSTERESIS IN A ROTATING DIFFERENTIALLY HEATED SPHERICAL SHELL OF BOUSSINESQ FLUID GREGORY M. LEWIS AND WILLIAM F. LANGFORD Abstract. A mathematical model of convection of a Boussinesq fluid, flow transitions, Boussinesq fluid, flow in a rotating spherical shell, numerical computation, large

Lewis, Greg

432

Verification of a VOF-based two-phase flow model for wave breaking and wave–structure interactions  

Science Journals Connector (OSTI)

The objective of the present study is to develop a volume of fluid (VOF)-based two-phase flow model and to discuss the applicability of the model to the simulation of wave–structure interactions. First, an overview of the development of VOF-type models for applications in the field of coastal engineering is presented. The numerical VOF-based two-phase flow model has been developed and applied to the simulations of wave interactions with a submerged breakwater as well as of wave breaking on a slope. Numerical results are then compared with laboratory experimental data in order to verify the applicability of the numerical model to the simulations of complex interactions of waves and permeable coastal structures, including the effects of wave breaking. It is concluded that the two-phase flow model with the aid of the advanced VOF technique can provide with acceptably accurate numerical results on the route to practical purposes.

Phung Dang Hieu; Katsutoshi Tanimoto

2006-01-01T23:59:59.000Z

433

A new analytic-adaptive model for EGS assessment, development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Predicting Stimulation Response...

434

Fluid Volumes: The Program “FLUIDS  

Science Journals Connector (OSTI)

This chapter describes the program FLUIDS. The mathematical model underlying this program contains over 200 variables and describes control mechanisms of body fluid volumes and electrolytes as well as respirat...

Fredericus B. M. Min

1993-01-01T23:59:59.000Z

435

Molecular modelling and simulation of the surface tension of real quadrupolar fluids  

E-Print Network (OSTI)

Molecular modelling and simulation of the surface tension of fluids with force fields is discussed. 29 real fluids are studied, including nitrogen, oxygen, carbon dioxide, carbon monoxide, fluorine, chlorine, bromine, iodine, ethane, ethylene, acetylene, propyne, propylene, propadiene, carbon disulfide, sulfur hexafluoride, and many refrigerants. The fluids are represented by two-centre Lennard-Jones plus point quadrupole models from the literature. These models were adjusted only to experimental data of the vapour pressure and saturated liquid density so that the results for the surface tension are predictions. The deviations between the predictions and experimental data for the surface tension are of the order of 20 percent. The surface tension is usually overestimated by the models. For further improvements, data on the surface tension can be included in the model development. A suitable strategy for this is multi-criteria optimization based on Pareto sets. This is demonstrated using the model for carbon d...

Werth, Stephan; Klein, Peter; Küfer, Karl-Heinz; Horsch, Martin; Hasse, Hans

2014-01-01T23:59:59.000Z

436

Molecular modelling and simulation of the surface tension of real quadrupolar fluids  

E-Print Network (OSTI)

Molecular modelling and simulation of the surface tension of fluids with force fields is discussed. 29 real fluids are studied, including nitrogen, oxygen, carbon dioxide, carbon monoxide, fluorine, chlorine, bromine, iodine, ethane, ethylene, acetylene, propyne, propylene, propadiene, carbon disulfide, sulfur hexafluoride, and many refrigerants. The fluids are represented by two-centre Lennard-Jones plus point quadrupole models from the literature. These models were adjusted only to experimental data of the vapour pressure and saturated liquid density so that the results for the surface tension are predictions. The deviations between the predictions and experimental data for the surface tension are of the order of 20 percent. The surface tension is usually overestimated by the models. For further improvements, data on the surface tension can be included in the model development. A suitable strategy for this is multi-criteria optimization based on Pareto sets. This is demonstrated using the model for carbon dioxide as an example.

Stephan Werth; Katrin Stöbener; Peter Klein; Karl-Heinz Küfer; Martin Horsch; Hans Hasse

2014-08-21T23:59:59.000Z

437

First-principles modeling of fluid and solute exchange in the human during normal and hemodialysis conditions  

Science Journals Connector (OSTI)

A first-principles computer model of fluid and solute exchange under both physiological and hemodialysis condition is presented. The whole system has been modeled and simulated under the MODELICA integrated environment, which uses a hierarchical modeling ... Keywords: First-principles modeling, Fluid and solute balance, Hemodialysis, Hierarchical modeling, MODELICA simulation language

J. Fernandez de Canete; P. Del Saz Huang

2010-09-01T23:59:59.000Z

438

Bypass Flow Study  

SciTech Connect

The purpose of the fluid dynamics experiments in the MIR (Matched Index of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for the flow ratios between coolant channels and bypass gaps in the interstitial regions of typical prismatic standard fuel element (SFE) or upper reflector block geometries of typical Modular High-temperature Gas-cooled Reactors (MHTGR) in the limiting case of negligible buoyancy and constant fluid properties. The experiments use Particle Image Velocimetry (PIV) to measure the velocity fields that will populate the bypass flow study database.

Richard Schultz

2011-09-01T23:59:59.000Z

439

Unsteady hydromagnetic free-convection flow with radiative heat transfer in a rotating fluid  

Science Journals Connector (OSTI)

We study the unsteady free-convection flow near a moving infinite flat plate in a totating medium by imposing a time-dependent perturbation on a constant plate temperature. The temperatures involved are assume...

A. R. Bestman; S. K. Adjepong

440

Multiphase flow and Encapsulation simulations using the moment of fluid method 1  

E-Print Network (OSTI)

, spray cooling, icing, combustion and agricultural irrigation. The instability of the interface, mass exist for the accurate and effi- cient computation of multiphase flows. First, the density and viscosity

Sussman, Mark

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Pulsatile flow and heat transfer of a magneto-micropolar fluid through a stenosed artery under the influence of body acceleration  

E-Print Network (OSTI)

With an aim to investigate the effect of externally imposed body acceleration and magnetic field on pulsatile flow of blood through an arterial segment having stenosis is under consideration in this paper. The flow of blood is presented by a unsteady micropolar fluid and the heat transfer characteristics have been taken into account. The non-linear equations that governing the flow are solved numerically using finite difference technique by employing a suitable coordinate transformation. The numerical results have been observed for axial and microrotation component of velocity, fluid acceleration, wall shear stress(WSS), flow resistance, temperature and the volumetric flow rate. It thus turns out that the rate of heat transfer increases with the increase of Hartmann number $H$, while the wall shear stress has a reducing effect on the Hartmann number $H$ and an enhancing effect on microrotation parameter $K$ as well as the constriction height $\\delta$.

Shit, G C

2012-01-01T23:59:59.000Z

442

Under consideration for publication in J. Fluid Mech. 1 Nonlinear free surface flows past a semi-  

E-Print Network (OSTI)

- infinite flat plate in water of finite depth M. M A L E E W O N G 1 AND R. H. J. G R I M S H A W2 1 ??) We consider the steady free surface two-dimensional flow past a semi-infinite flat plate in water (draft) of the depressed plate. For small d and subcritical flows, we may use the linearized problem

443

COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS  

SciTech Connect

The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

JACKSON VL

2011-08-31T23:59:59.000Z

444

Elevated thermal maturation in Pennsylvanian rocks, Cherokee basin, southeastern Kansas: Importance of regional fluid flow  

SciTech Connect

Thermal history of sedimentary basins is commonly assumed to be dominated by burial heating. Marked contrast between reconstructed burial temperatures and other temperature determinations would suggest alternative processes. In the Cherokee basin of southeastern Kansas, reconstruction of burial and thermal history indicates that basal Pennsylvanian strata were not buried more than 1.8 km, and should have reached only about 90C. However, the study of Pennsylvanian rocks of the Cherokee basin indicates that higher temperatures were reached and that the pattern of thermal maturation is inconsistent with simple burial heating. Regional pattern of vitrinite reflectance reveals several warm spots' where thermal maturation is elevated above the regional background. Primary fluid inclusions in late Ca-Mg-Fe carbonate cements yield homogenization-temperature modes or petrographically consistent populations ranging from 100 to 150C. These data suggest that the samples experienced at least those temperatures, hence fluid inclusions closely agree with vitrinite and Rock-Eval. Elevated temperatures, warm spots, confined thermal spikes, a low R{sub m} gradient argue against simple burial heating. These observations are consistent with regional invasion of warm fluids, probably from the Ouachita-Arkoma system, and their subsequent upward migration into Pennsylvanian strata through faults and fractures. Petroleum exploration should consider the possibility of regionally elevated thermal maturation levels with even more elevated local maxima. Consequences may include local generation of hydrocarbons or local changes in diagenetic patterns.

Wojcik, K.M.; Goldstein, R.H.; Walton, A.W. (Univ. of Kansas, Lawrence (United States)); Barker, C.E. (Geological Survey, Denver, CO (United States))

1991-03-01T23:59:59.000Z

445

A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model  

SciTech Connect

We introduce a novel approach for the hyperbolization of the well-known two-phase six equation flow model. The six-equation model has been frequently used in many two-phase flow applications such as bubbly fluid flows in nuclear reactors. One major drawback of this model is that it can be arbitrarily non-hyperbolic resulting in difficulties such as numerical instability issues. Non-hyperbolic behavior can be associated with complex eigenvalues that correspond to characteristic matrix of the system. Complex eigenvalues are often due to certain flow parameter choices such as the definition of inter-facial pressure terms. In our method, we prevent the characteristic matrix receiving complex eigenvalues by fine tuning the inter-facial pressure terms with an iterative procedure. In this way, the characteristic matrix possesses all real eigenvalues meaning that the characteristic wave speeds are all real therefore the overall two-phase flowmodel becomes hyperbolic. The main advantage of this is that one can apply less diffusive highly accurate high resolution numerical schemes that often rely on explicit calculations of real eigenvalues. We note that existing non-hyperbolic models are discretized mainly based on low order highly dissipative numerical techniques in order to avoid stability issues.

Samet Y. Kadioglu; Robert Nourgaliev; Nam Dinh

2011-10-01T23:59:59.000Z

446

Solyndra Facts vs. Fiction: Cash Flow Modeling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Solyndra Facts vs. Fiction: Cash Flow Modeling Solyndra Facts vs. Fiction: Cash Flow Modeling September 23, 2011 - 5:25pm Addthis Questions have been raised about a quote selectively pulled from an Aug. 20, 2009 email to make it look like Solyndra would run out of cash by Sept. 2011. To be clear, the analysis addressed in that email did not refer to Solyndra's corporate cash flow, but rather the cash flow for a subsidiary of Solyndra - the "Fab 2 Project Company." The cash flow models never said that Solyndra (the parent company) would run short of cash in September 2011. The email noted that the subsidiary was projected to have relatively low levels of cash in one particular month, and that the parent company would need to make up any potential shortfall.

447

ESS 2012 Peer Review - Flow Battery Modeling - Mario Martinez, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Photos placed in horizontal position with even amount of white space between photos and header Photos placed in horizontal position with even amount of white space between photos and header Flow Battery Modeling Energy Storage Systems Peer Review September 26-28, 2012 MJ Martinez (PI), J Clausen, SM Davison, HK Moffat Flow Battery Modeling Schematic of a Flow Battery PURPOSE: The flow battery modeling task seeks to improve fundamental understanding and enable high-performing, low-cost designs of flow batteries through

448

Numerical Analysis of Heat Transfer and Fluid Characteristics of Flowing Liquid Nitrogen in HTS Cable  

Science Journals Connector (OSTI)

Abstract High-temperature superconducting (HTS) cable has heat intrusion from the termination including joule heat generation at the terminal joint and from the room temperature cable through the Cu current lead. According to the length of the HTS cable, this heat loss may become a considerable amount which cannot be ignored in the HTS cable system. In this study, referring to a high-voltage cable (HV cable) which was developed in M-PACC project, the effect of heat transfer at the interface between the terminal joint and LN2 in the terminal vessel (ho) on the temperature of the HTS cable were calculated and evaluated. The condition of flow in the terminal vessel was assumed to be natural convection, forced flow or static condition for evaluating this effect with various heat transfer condition. As a result, in the case of the natural convection, most of heats flow into the LN2 in the terminal vessel where the volumetric flow of the LN2 is large since ho becomes high. Accordingly, the temperature rise of the LN2 in the inner pipe of Cu former and the terminal vessel can be restricted. However, in the cases of the forced flow and the static condition, most of heats flow into the LN2 in the inner pipe where the volumetric flow of the LN2 is small since ho becomes small. Accordingly, the temperature rise of the LN2 in the inner pipe becomes high. This temperature rise of the LN2 in the inner pipe makes the temperature of the HTS conductor large resulting in remarkable increase of AC losses. Consequently, on the HV cable design, for restriction of the AC loss increase, it is expected that designing the HTS cable termination such as extending outer surface of the terminal joint for increasing of the heat inflow from the terminal joint to the LN2 in the vessel is effective.

O. Maruyama; T. Ohkuma; T. Izumi; Y. Shiohara

2014-01-01T23:59:59.000Z

449

SIMPLIFIED MODEL OF THE AIR FLOW ABOVE WAVES  

E-Print Network (OSTI)

SIMPLIFIED MODEL OF THE AIR FLOW ABOVE WAVES V.N. Kudryavtsev Marine Hydrophysical Institute influenced by the air flow dynamics over the water waves. The exchange of momentum, heat, moisture and gases between the atmosphere and the ocean is determined to a large extent by the wind-wave interaction

Haak, Hein

450

Modeling and Algorithmic Approaches to Constitutively-Complex, Micro-structured Fluids  

SciTech Connect

The team for this Project made significant progress on modeling and algorithmic approaches to hydrodynamics of fluids with complex microstructure. Our advances are broken down into modeling and algorithmic approaches. In experiments a driven magnetic bead in a complex fluid accelerates out of the Stokes regime and settles into another apparent linear response regime. The modeling explains the take-off as a deformation of entanglements, and the longtime behavior is a nonlinear, far-from-equilibrium property. Furthermore, the model has predictive value, as we can tune microstructural properties relative to the magnetic force applied to the bead to exhibit all possible behaviors. Wave-theoretic probes of complex fluids have been extended in two significant directions, to small volumes and the nonlinear regime. Heterogeneous stress and strain features that lie beyond experimental capability were studied. It was shown that nonlinear penetration of boundary stress in confined viscoelastic fluids is not monotone, indicating the possibility of interlacing layers of linear and nonlinear behavior, and thus layers of variable viscosity. Models, algorithms, and codes were developed and simulations performed leading to phase diagrams of nanorod dispersion hydrodynamics in parallel shear cells and confined cavities representative of film and membrane processing conditions. Hydrodynamic codes for polymeric fluids are extended to include coupling between microscopic and macroscopic models, and to the strongly nonlinear regime.

Forest, Mark Gregory [University of North Carolina at Chapel Hill] [University of North Carolina at Chapel Hill

2014-05-06T23:59:59.000Z

451

A Two Pressure Numerical Model of Two Fluid Mixing \\Lambda  

E-Print Network (OSTI)

by comparison to the incompressible limit. For the purpose of this comparison, we present a newly obtained ana, for example in pipeline flow and the performance of inertial confinement fusion reactors; it is important behav­ ior of a multifluid mixture without direct simulation of all its microscopic details. From

New York at Stoney Brook, State University of

452

Modelling vortex-induced fluid–structure interaction  

Science Journals Connector (OSTI)

...Atsavapranee, T Wei, and J McHugh2000The role of turbulent elongational stresses on deflocculation in paper sheet formation. TAPPI J. 83, 70 Sibetheros, I. A., Miskad, R. W., Ventre, A.-V. Lambrakos, K. F. 1994 Flow mapping of the reversing...

2008-01-01T23:59:59.000Z

453

Nuclear Fluid Dynamics versus Intranuclear Cascade—Possible Evidence for Collective Flow in Central High-Energy Nuclear Collisions  

Science Journals Connector (OSTI)

The predictions of a variety of current theoretical models of high-energy nuclear collisions are compared with recent experimental data for central collisions of Ne20 on U238 at Elab=393 MeV/u. The experimental observation of broad sideward maxima in the angular distributions of low- and medium-energy protons is reproduced by a nuclear fluid-dynamical calculation with final freezeout of the protons. In contrast, the current intranuclear-cascade and simplified collision models predict forward-peaked angular distributions.

H. Stöcker; C. Riedel; Y. Yariv; L. P. Csernai; G. Buchwald; G. Graebner; J. A. Maruhn; W. Greiner; K. Frankel; M. Gyulassy; B. Schürmann; G. Westfall; J. D. Stevenson; J. R. Nix; D. Strottman

1981-12-21T23:59:59.000Z

454

Modelling macroeconomic flows related to large ensembles  

E-Print Network (OSTI)

, including, say, oil prices, interest rates, etc; dynamics of shares markets are governed by information are illustrated by flows of a liquid between interconnected reservoirs, where the heights of different reservoirs is changing with time, and movement of the liquid between the reservoirs is governed by gravity, see Figure 1

Schellekens, Michel P.

455

A turbulence model for buoyant flows based on vorticity generation.  

SciTech Connect

A turbulence model for buoyant flows has been developed in the context of a k-{var_epsilon} turbulence modeling approach. A production term is added to the turbulent kinetic energy equation based on dimensional reasoning using an appropriate time scale for buoyancy-induced turbulence taken from the vorticity conservation equation. The resulting turbulence model is calibrated against far field helium-air spread rate data, and validated with near source, strongly buoyant helium plume data sets. This model is more numerically stable and gives better predictions over a much broader range of mesh densities than the standard k-{var_epsilon} model for these strongly buoyant flows.

Domino, Stefan Paul; Nicolette, Vernon F.; O'Hern, Timothy John; Tieszen, Sheldon R.; Black, Amalia Rebecca

2005-10-01T23:59:59.000Z

456

Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combustion, and Emission Modeling Using KH-ACT Primary Breakup Model & Detailed Chemistry Sibendu Som, Douglas E. Longman Engine and Emissions Group (Energy Systems Division)...

457

A Novel Approach For the Simulation of Multiple Flow Mechanisms and Porosities in Shale Gas Reservoirs  

E-Print Network (OSTI)

The state of the art of modeling fluid flow in shale gas reservoirs is dominated by dual porosity models that divide the reservoirs into matrix blocks that significantly contribute to fluid storage and fracture networks which principally control...

Yan, Bicheng

2013-07-15T23:59:59.000Z

458

The Flow of Information in Information Retrieval: its modelling  

E-Print Network (OSTI)

The Flow of Information in Information Retrieval: its modelling Mounia Lalmas Department of Computing Science University of Glasgow Situation Theory for Information Retrieval Information is and intuitively acceptable definition of information; until now, none of these have succeeded. Authors

Lalmas, Mounia

459

Modeling heat transfer in supercritical fluid using the lattice Boltzmann method  

Science Journals Connector (OSTI)

A lattice Boltzmann model has been developed to simulate heat transfer in supercritical fluids. A supercritical viscous fluid layer between two plates heated from the bottom has been studied. It is demonstrated that the model can be used to study heat transfer near the critical point where the so-called piston effect speeds up the transfer of heat and results in homogeneous heating in the bulk of the layer. We have also studied the onset of convection in a Rayleigh-Bénard configuration. It is shown that our model can well predict qualitatively the onset of convection near the critical point, where there is a crossover between the Rayleigh and Schwarzschild criteria.

Gábor Házi and Attila Márkus

2008-02-21T23:59:59.000Z

460

Lattice Boltzmann Simulation of High Reynolds Number Fluid Flow in Two Dimensions  

Science Journals Connector (OSTI)

Lattice Boltzmann models are used to simulate high Reynolds ... models employ the hexagonal symmetry of the FHP lattice gas models, but dispense with the Fermi ... on particle populations in order to remedy the lattice

Guy McNamara; Berni Alder

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Different approximations of shallow fluid flow over an obstacle B. T. Nadiga and L. G. Margolin  

E-Print Network (OSTI)

sets of shallow water equations, representing different levels of approximation are considered the dispersive shallow water DSW solutions and those of the highly simplified, hyperbolic shallow water SW; it is only when the flows are entirely subcritical or entirely supercritical and when the obstacles are very

Nadiga, Balasubramanya T. "Balu"

462

Two-fluid flowing equilibria of compact plasmas Loren C. Steinhauer  

E-Print Network (OSTI)

or presence of a jÃ?B force. The force-free class may have significant flows. Spheromaks are in this class-force-free class is energetically favorable. This sheds light on the FRC-spheromak bifurcation observed- perimentally only in certain arrangements reversed-field pinch, spheromak and then only in the central ``core

Washington at Seattle, University of

463

Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing  

Energy.gov (U.S. Department of Energy (DOE))

Project objective: A New Geothermal Well Imaging Tool. 1.To develop a robust and easily deployable DTPS for monitoring in geothermal wells; and 2. Develop the associated analysis methodology for flow imaging; and?when possible by wellbore conditions?to determine in situthermal conductivity and basal heat flux.

464

Design of a continuous-flow reactor for in situ x-ray absorption spectroscopy of solids in supercritical fluids  

SciTech Connect

This paper presents the design and performance of a novel high-temperature and high-pressure continuous-flow reactor, which allows for x-ray absorption spectroscopy or diffraction in supercritical water and other fluids under high pressure and temperature. The in situ cell consists of a tube of sintered, polycrystalline aluminum nitride, which is tolerant to corrosive chemical media, and was designed to be stable at temperatures up to 500 deg. C and pressures up to 30 MPa. The performance of the reactor is demonstrated by the measurement of extended x-ray absorption fine structure spectra of a carbon-supported ruthenium catalyst during the continuous hydrothermal gasification of ethanol in supercritical water at 400 deg. C and 24 MPa.

Dreher, M.; De Boni, E.; Nachtegaal, M.; Wambach, J.; Vogel, F. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

2012-05-15T23:59:59.000Z

465

Lattice Boltzmann models for nonideal fluids with arrested phase-separation S. Chibbaro  

E-Print Network (OSTI)

Lattice Boltzmann models for nonideal fluids with arrested phase-separation S. Chibbaro Department repulsion in lattice Boltzmann models on the coalescence and/or breakup behavior of single, the lattice-Boltzmann LB ap- proach has emerged as a powerful mesoscopic alternative to classical macroscopic

Chibbaro, Sergio

466

FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY  

E-Print Network (OSTI)

FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY Prabir Daripa. Relevance of this HS model based result to EOR is established by performing direct numerical simulations of fully developed tertiary displacement in porous media. Results of direct numer- ical simulation

Daripa, Prabir

467

The modeling and the simulation of the fluid machines of synthetic biology  

Science Journals Connector (OSTI)

In the past century, several conceptual and technological breakthroughs produced the digital computers and open the digital information age. At the very same time, the Watson --- Crick model of the digital coding of the genetic information was developed. ... Keywords: (DS)2: dynamical systems with a dynamical structure, MGS, computer modeling, domain specific language (DSL), fluid machines, simulation, spatial computing, synthetic biology, topological rewriting

Jean-Louis Giavitto

2011-08-01T23:59:59.000Z

468

Fluid flow in the resurgent dome of Long Valley Caldera: implications from thermal data and deep electrical sounding  

Science Journals Connector (OSTI)

Temperatures of 100°C are measured at 3 km depth in a well located on the resurgent dome in the center of Long Valley Caldera, California, despite an assumed >800°C magma chamber at 6–8 km depth. Local downflow of cold meteoric water as a process for cooling the resurgent dome is ruled out by a Peclét-number analysis of temperature logs. These analyses reveal zones with fluid circulation at the upper and lower boundaries of the Bishop Tuff, and an upflow zone in the metasedimentary rocks. Vertical Darcy velocities range from 10 to 70 cm a?1. A 21-km-long geoelectrical profile across the caldera provides resistivity values to the order of 100 to >103 ?m down to a depth of 6 km, as well as variations of self-potential. Interpretation of the electrical data with respect to hydrothermal fluid movement confirms that there is no downflow beneath the resurgent dome. To explain the unexpectedly low temperatures in the resurgent dome, we challenge the common view that the caldera as a whole is a regime of high temperatures and the resurgent dome is a local cold anomaly. Instead, we suggest that the caldera was cooled to normal thermal conditions by vigorous hydrothermal activity in the past, and that a present-day hot water flow system is responsible for local hot anomalies, such as Hot Creek and the area of the Casa Diablo geothermal power plant. The source of hot water has been associated with recent shallow intrusions into the West Moat. The focus of planning for future power plants should be to locate this present-day flow system instead of relying on heat from the old magma chamber.

Daniel F.C Pribnow; Claudia Schütze; Suzanne J Hurter; Christina Flechsig; John H Sass

2003-01-01T23:59:59.000Z

469

Mathematical modeling of thixotropic drilling mud and crude oil flow in wells and pipelines—A review  

Science Journals Connector (OSTI)

Many drilling muds and crude oils are known to be thixotropic. Under a wide range of pressures, temperatures and flow regimes, they display unusual complex flow properties when flowing through wells (crude oils and drilling muds) and during storage and pipeline transportation (crude oils). Understanding and modeling the deviation from Newtonian behavior of drilling muds and crude oils are essential in accurately and optimally designing the flow systems associated with these fluids. Despite an impressive amount of experimental and rheological modeling studies concerning the non-Newtonian drilling mud and crude oil behavior, mathematical modeling studies taking into account their thixotropic properties are rare. In addition, there was no literature review of the knowledge gained to date. Thus, a review paper on studies addressing the mathematical modeling of thixotropic drilling mud and crude oil flow in wells and pipelines will pinpoint the challenges and limitations encountered in such studies. This will hopefully trigger further development and new research topics. This review paper focuses mainly on mathematical modeling studies concerning the well and pipeline flow of thixotropic drilling muds and crude oils. After describing how thixotropy is understood today inside and outside of the petroleum industry community, several mathematical models available in the literature are examined. Finally, challenges, limitations, and potential areas for the development of these models are presented.

S. Livescu

2012-01-01T23:59:59.000Z

470

Analytical and computational study of the ideal full two-fluid plasma model and asymptotic approximations for Hall-magnetohydrodynamics  

SciTech Connect

The 5-moment two-fluid plasma model uses Euler equations to describe the ion and electron fluids and Maxwell's equations to describe the electric and magnetic fields. Two-fluid physics becomes significant when the characteristic spatial scales are on the order of the ion skin depth and characteristic time scales are on the order of the ion cyclotron period. The full two-fluid plasma model has disparate characteristic speeds ranging from the ion and electron speeds of sound to the speed of light. Two asymptotic approximations are applied to the full two-fluid plasma to arrive at the Hall-MHD model, namely negligible electron inertia and infinite speed of light. The full two-fluid plasma model and the Hall-MHD model are studied for applications to an electromagnetic plasma shock, geospace environmental modeling (GEM challenge) magnetic reconnection, an axisymmetric Z-pinch, and an axisymmetric field reversed configuration (FRC).

Srinivasan, B.; Shumlak, U. [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington 98195 (United States)

2011-09-15T23:59:59.000Z

471

Heat loss model for flow assurance in a deep water riser  

Science Journals Connector (OSTI)

The study is intended to investigate the heat loss phenomenon of oil flow in a riser. This heat loss happens due to the difference between the oil temperature in a riser and the surrounding sea water temperature. It causes the formation of wax that may disturb the flow. Heat loss can be reduced by setting up an insulator in a riser or by selecting appropriate pipeline specifications. It is necessary to determine the possible locations and specifications of insulator and pipeline. A mathematical model is formulated by considering the oil temperature and its flow velocity. Assuming that the density variation is small the fluid behaves as an incompressible fluid. Furthermore numerical solutions with finite difference methods are presented with some hypothetical data to give an overview of how the system works. Two surrounding conditions are taken into account i.e. with and without sea current. From the simulation the location of wax formation can be predicted. At a certain depth region of sea where the sea current is present a greater heat loss take place in which wax may be formed immediately. To overcome the formation of wax we can control the parameters such as conductivity and wall thickness of pipe.

Pudjo Sukarno

2014-01-01T23:59:59.000Z

472

Modeling of Time Varying Slag Flow in Coal Gasifiers  

SciTech Connect

There is considerable interest within government agencies and the energy industries across the globe to further advance the clean and economical conversion of coal into liquid fuels to reduce our dependency on imported oil. To date, advances in these areas have been largely based on experimental work. Although there are some detailed systems level performance models, little work has been done on numerical modeling of the component level processes. If accurate models are developed, then significant R&D time might be saved, new insights into the process might be gained, and some good predictions of process or performance can be made. One such area is the characterization of slag deposition and flow on the gasifier walls. Understanding slag rheology and slag-refractory interactions is critical to design and operation of gasifiers with extended refractory lifetimes and also to better control of operating parameters so that the overall gasifier performance with extended service life can be optimized. In the present work, the literature on slag flow modeling was reviewed and a model similar to Seggiani’s was developed to simulate the time varying slag accumulation and flow on the walls of a Prenflo coal gasifier. This model was further extended and modified to simulate a refractory wall gasifier including heat transfer through the refractory wall with flowing slag in contact with the refractory. The model was used to simulate temperature dependent slag flow using rheology data from our experimental slag testing program. These modeling results as well as experimental validation are presented.

Pilli, Siva Prasad; Johnson, Kenneth I.; Williford, Ralph E.; Sundaram, S. K.; Korolev, Vladimir N.; Crum, Jarrod V.

2008-08-30T23:59:59.000Z

473

Circular hydraulic jump in generalized-Newtonian fluids  

E-Print Network (OSTI)

We carry out an analytical study of laminar circular hydraulic jumps, in generalized-Newtonian fluids obeying the two-parametric power-law model of Ostwald-de Waele. Under the boundary-layer approximation we obtained exact expressions determining the flow, an implicit relation for the jump radius is derived. Corresponding results for Newtonian fluids can be retrieved as a limiting case for the flow behavior index n=1, predictions are made for fluids deviating from Newtonian behavior.

Rai, Ashutosh; Poria, Swarup

2008-01-01T23:59:59.000Z

474

E-Print Network 3.0 - air flow models Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Institute of Aeronautics and Astronautics Numerical Modeling of Doorway Flow Summary: software. The problem that was modeled is that of a flow from an air curtain mounted...

475

Simulations for Complex Fluid Flow Problems from Berkeley Lab's Center for Computational Sciences and Engineering (CCSE)  

DOE Data Explorer (OSTI)

The Center for Computational Sciences and Engineering (CCSE) develops and applies advanced computational methodologies to solve large-scale scientific and engineering problems arising in the Department of Energy (DOE) mission areas involving energy, environmental, and industrial technology. The primary focus is in the application of structured-grid finite difference methods on adaptive grid hierarchies for compressible, incompressible, and low Mach number flows. The diverse range of scientific applications that drive the research typically involve a large range of spatial and temporal scales (e.g. turbulent reacting flows) and require the use of extremely large computing hardware, such as the 153,000-core computer, Hopper, at NERSC. The CCSE approach to these problems centers on the development and application of advanced algorithms that exploit known separations in scale; for many of the application areas this results in algorithms are several orders of magnitude more efficient than traditional simulation approaches.

476

Proceedings: Joint DOE/NSF Workshop on flow of particulates and fluids  

SciTech Connect

These proceedings are the result of the Fifth DOR-NSF Workshop on fundamental research in the area of particulate two-phase flow and granular flow. The present collection of twenty contributions from universities and national laboratories is based on research projects sponsored by either the Department of Energy or the National Science Foundation. These papers illustrate some of the latest advances in theory, simulations, and experiments. The papers from the Workshop held September 29--October 1, 1993 have been separated into three basic areas: experiments, theory, and numerical simulations. A list of attendees at the workshop is included at the end of the proceedings. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Not Available

1993-12-31T23:59:59.000Z

477

Effects of turbulence model on convective heat transfer of coolant flow in a prismatic very high temperature reactor core  

SciTech Connect

The existing study of Spall et al. shows that only {nu}{sup 2}-f turbulence model well matches with the experimental data of Shehata and McEligot which were obtained under strongly heated gas flows. Significant over-predictions in those literatures were observed in the convective heat transfer with the other famous turbulence models such as the k-{epsilon} and k-{omega} models. In spite of such good evidence about the performance of the{nu}{sup 2}-f model, the application of the {nu}{sup 2}-f model to the thermo-fluid analysis of a prismatic core is very rare. In this paper, therefore, the convective heat transfer of the coolant flow in a prismatic core has been investigated using the {nu}{sup 2}-f model. Computational fluid dynamics (CFD) calculations have been carried out for the typical unit cell geometry of a prismatic fuel column with typical operating conditions of prismatic designs. The tested Reynolds numbers of the coolant flow are 10,000, 20,000, 30,000 and 50,000. The predicted Nusselt numbers with the {nu}{sup 2}-f model are compared with the results by the other turbulence models (k-{epsilon} and SST) as well as the empirical correlations. (authors)

Lee, S. N.; Tak, N. I.; Kim, M. H.; Noh, J. M. [Korea Atomic Energy Research Inst., Daedeok-daero 989-11, Yuseong-gu, Daejeon (Korea, Republic of)

2012-07-01T23:59:59.000Z

478

2D Thin-Film Flow of a Non-Newtonian Fluid Between Elastic Boundaries  

E-Print Network (OSTI)

.3.1 Power-law or Ostwald de Waele model ........................................................ 8 1.3.2 Ellis model .................................................................................................... 9 1.3.3 Carreau-Yasuda model... in different regimes of shear rates. The following constitutive models are relevant to this thesis. These do not consider the viscoelastic nature of polymeric liquids, which is outside the scope of this study. 8 1.3.1 Power-law or Ostwald de Waele...

Karri, Sunil

2011-09-08T23:59:59.000Z

479

Isotropic singularities in shear-free perfect fluid cosmologies  

E-Print Network (OSTI)

We investigate barotropic perfect fluid cosmologies which admit an isotropic singularity. From the General Vorticity Result of Scott, it is known that these cosmologies must be irrotational. In this paper we prove, using two different methods, that if we make the additional assumption that the perfect fluid is shear-free, then the fluid flow must be geodesic. This then implies that the only shear-free, barotropic, perfect fluid cosmologies which admit an isotropic singularity are the FRW models.

Geoffery Ericksson; Susan M. Scott

2001-08-02T23:59:59.000Z

480

Extinction properties of single-walled carbon nanotubes: Two-fluid model  

SciTech Connect

The extinction spectra of a single-walled carbon nanotube are investigated, within the framework of the vector wave function method in conjunction with the hydrodynamic model. Both polarizations of the incident plane wave (TE and TM with respect to the x-z plane) are treated. Electronic excitations on the nanotube surface are modeled by an infinitesimally thin layer of a two-dimensional electron gas represented by two interacting fluids, which takes into account the different nature of the ? and ? electrons. Numerical results show that strong interaction between the fluids gives rise to the splitting of the extinction spectra into two peaks in quantitative agreement with the ? and ? + ? plasmon energies.

Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)] [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

2014-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "model fluid flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Theory of the lattice Boltzmann method: Three-dimensional model for linear viscoelastic fluids Pierre Lallemand,1,  

E-Print Network (OSTI)

Theory of the lattice Boltzmann method: Three-dimensional model for linear viscoelastic fluids-dimensional lattice Boltzmann model with thirty two discrete velocity distribution functions for viscoelastic fluid is presented in this work. The model is based upon the generalized lattice Boltzmann equation constructed

Luo, Li-Shi

482

MecE 630 Fluid Dynamics (Fall 2014) Course objectives: To explore the essential dynamics of flowing fluids by expanding upon ma-  

E-Print Network (OSTI)

and vortex tubes. · Fluid kinematics and vector calculus ­ Summation notation, ­ Normal vs. shear strain- ing novel research projects. Course topics: · Review of basic concepts ­ Definition of a fluid. Problem sets: Roughly one per course topic. Problem sets will be due 1-2 weeks after their initial

Flynn, Morris R.

483

Equilibrium and volumetric data and model development of coal fluids  

SciTech Connect

The long term goal of our efforts is to develop accurate predictive methods for description of equilibrium phase properties for a variety of types of mixtures and operating conditions. The specific objectives of the work specified herein include: (1) development of an experimental facility having the capability to provide data on equilibrium phase compositions (solubilities) and liquid densities, and doing so with greater accuracy and speed than our previous facility, (2) measurement of equilibrium phase properties for systematically-selected mixtures-specifically those containing important solute gases (such as hydrogen, carbon monoxide, methane, ethane, carbonyl sulfide, ammonia) in a series of heavy paraffinic, naphthenic and aromatic solvents (e.g., n-decane, n-eicosane, n-octacosane, n-hexatriacontane, cyclohexane, Decalin, perhydrophenanthrene, perhydropyrene, benzene, naphthalene, phenanthrene, pyrene), (3) testing/development of correlation frameworks for representing the phase behavior of fluids of the type encountered in coal conversion processes, and (4) generalization of parameters in the correlation frameworks to enable accurate predictions for systems of the type studied, permitting predictions to be made for systems and conditions other than those for which experimental data are available.

Robinson, R.L. Jr.; Gasem, K.A.M.; Park, J.

1992-04-28T23:59:59.000Z

484

Materials Science and Engineering B 117 (2005) 5361 Finite element analysis-based design of a fluid-flow control nano-valve  

E-Print Network (OSTI)

of a fluid-flow control nano-valve M. Grujicica,, G. Caoa, B. Pandurangana, W.N. Royb a Department A finite element method-based procedure is developed for the design of molecularly functionalized nano-size devices. The procedure is aimed at the single-walled carbon nano-tubes (SWCNTs) used in the construction

Grujicic, Mica

485

CFD evaluation of pipeline gas stratification at low fluid flow due to temperature effects  

E-Print Network (OSTI)

variance in chord averaged velocities is apparent at these conditions. CFD analysis was performed. Low flow velocities of 0.1524 m/sec, 0.3048 m/sec and 0.6096 m/sec and temperature differences of 5.5 o K, 13.8 o K and 27.7 o K were considered. When... with gas velocity below 0.6096 m/sec. v DEDICATION To my family for their love and support. vi ACKNOWLEDGMENTS I would like to express my gratitude to Dr. Gerald Morrison for his valuable guidance and support. I...

Brar, Pardeep Singh

2005-02-17T23:59:59.000Z

486

Potential flow models of thunderstorm-environment interaction  

E-Print Network (OSTI)

the kinematics of the environment around an isolated, growing thunderstozm. Motions employed in the models include storm movement, environmental wind velocity, horizontal mass inflow or outflow (sink or source), and flow around a solid cylinder. The models... are solved using measured data. Streamlines and wind velocities resulting from the models are verified with aircraft data collected near thunderstorms in previous st. udies. Model results show that the ma)or thunderstorm-environment inter- actions...

Gerhard, Myron L

2012-06-07T23:59:59.000Z

487

A New Heat Transfer Fluid for Concentrating Solar Systems: Particle Flow in Tubes  

Science Journals Connector (OSTI)

Abstract This paper demonstrates a new concept of heat transfer fluid (HTF) for CSP applications, developed in the frame of both a National and a European project (CSP2 FP7 project). It involves a dense suspension of small solid particles. This innovation is currently. The dense suspension of particles receiver (DSPR) consists in creating the upward circulation of a dense suspension of particles (solid fraction in the range 30%-40%) in vertical absorbing tubes submitted to concentrated solar energy. So the suspension acts as a heat transfer fluid with a heat capacity similar to a liquid HTF but only limited in temperature by the working temperature limit of the receiver tubes. Suspension temperatures up to 750 °C are expected for metallic tubes, thus opening new opportunities for high efficiency thermodynamic cycles such as supercritical steam and carbon dioxide. First experimental results were obtained during on-sun testing with CNRS solar facility of a single tube DSPR for an outlet temperature lower than 300 °C. In this lab-scale experimental setup, the solar absorber is a single opaque metallic tube, containing upward solid circulation, located inside a cylindrical cavity dug in a receiver made of refractory, and submitted to the concentrated solar radiation through a 0.10m x 0.50m slot. The absorber is a 42.4 mm o.d. stainless steel tube. SiC was used because of its thermal properties, availability and rather low cost. The 63.9 ?m particle mean diameter permits a good fluidization with almost no bubbles, for very low air velocities. Solar flux densities in the range 200-250 kW/m2 were tested resulting in solid temperature increase ranging between 50 and 150 °C. The mean wall-to-suspension heat transfer coefficient (h) was calculated from experimental data. It is very sensitive to the solid fraction of the solid suspension, which was varied from 27% to 36%. These latter values are one order of magnitude larger than the solid fraction in circulating fluidized beds operating at much higher air velocity. Heat transfer coefficients ranging from 140 to 500 W/m2.K have been obtained; i.e. 400 W/m2.K mean value for standard operating conditions at low temperature.

G. Flamant; D. Gauthier; H. Benoit; J.-L. Sans; B. Boissière; R. Ansart; M. Hemati

2014-01-01T23:59:59.000Z

488

CFD modeling of commercial-scale entrained-flow coal gasifiers  

SciTech Connect

Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. Computational fluid dynamics (CFD) has been used to model the turbulent multiphase reacting flow inside commercial-scale entrained-flow coal gasifiers. Due to the complexity of the physical and chemical processes involved, the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented in this paper include a moisture vaporization model with consideration of high mass transfer rate and a coal devolatilization model with more species to represent coal volatiles and the heating rate effect on volatile yield. The global gas phase reaction kinetics is also carefully selected. To predict a reasonable peak temperature of the coal/O{sub 2} flame inside an entrained-flow gasifier, the reserve reaction of H{sub 2} oxidation is included in the gas phase reaction model. The enhanced CFD model is applied to simulate two typical commercial-scale oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here indicate that the gasifier models reported in this paper are reliable and accurate enough to be incorporated into process/CFD co-simulations of IGCC power plants for system-wide design and optimization.

Ma, J.; Zitney, S.

2012-01-01T23:59:59.000Z

489

SHORT-TUBE SUBCRITICAL FLOW Enerag Division  

E-Print Network (OSTI)

#12;SHORT-TUBE SUBCRITICAL FLOW Y. C. Mei Enerag Division Oak Ridge National Laboratory Oak Ridge-tube subcritical flow. For short tubes used as refrigerant expansion devices, the orifice model is found inadequate-TUBE SUBCRITICAL FLOW INTRODUCTION Much theoretical and experimental work regarding short tube fluid flow has

Oak Ridge National Laboratory

490

Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada  

E-Print Network (OSTI)

Unsaturated Zone at Yucca Mountain, Nevada. U.S. Geologicalzone model at Yucca Mountain, Nevada. J. Contaminantinvesti- gations at Yucca Mountain - the potential

Spycher, N.F.; Sonnenthal, E.L.; Apps, J.A.

2002-01-01T23:59:59.000Z

491

A Numerical Algorithm for Single Phase Fluid Flow in Elastic Porous ...  

E-Print Network (OSTI)

Tong Sun. David P. Yale. Abstract. In this paper we consider an integrated model for ... blem has been built based on a finite element object library that we.

2000-11-13T23:59:59.000Z

492

A distributed converging overland flow model: 1. Mathematical solutions  

E-Print Network (OSTI)

MODEL The kinematic wave equations of continuity and momentum for a converging section are [Singh, 1974] 889 890 SHERMAN AND SINGH: FLOW MODELING, 1 X Fig. 1. Geometry of converging overland flow model. Oh O(uh) uh Ot q- Ox - q(x, t) q- L -- x (3...)' Q = uh = a(x,t)h n (4) where L is the length of the converging section (Figure 1). For a specified rainfall duration T, q(x, t) = 0 when t > T. We assume that n > 1. Eliminating u in (3) and (4), .we get Oh q_ na(x t)h \\"- Oh Ot ' Ox a(x, t...

Sherman, Bernard; Singh, Vijay P.

493

Phenomenological model for ordered onions under shear flow  

E-Print Network (OSTI)

We propose a phenomenological model for the multi-lamellar vesicles (onions) formation induced by shear flow. In a nonionic surfactant (C$_{12}$E$_4$) system, onion phases under a fixed shear flow within a certain range show the order-disorder transition accompanied with a size jump by changing temperature. Our model can simulate ordered and disordered onion phases with different onion sizes. We show numerical results of the onion formation simulated by the model and also discuss what factors in this system are critical to cause the transition between these two different onion phases.

Kenta Odagiri; Kazue Kudo

2011-09-02T23:59:59.000Z

494

Wetting and free surface flow modeling for potting and encapsulation.  

SciTech Connect

As part of an effort to reduce costs and improve quality control in encapsulation and potting processes the Technology Initiative Project ''Defect Free Manufacturing and Assembly'' has completed a computational modeling study of flows representative of those seen in these processes. Flow solutions are obtained using a coupled, finite-element-based, numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. In addition, two commercially available codes, ProCAST and MOLDFLOW, are also used on geometries representing encapsulation processes at the Kansas City Plant. Visual observations of the flow in several geometries are recorded in the laboratory and compared to the models. Wetting properties for the materials in these experiments are measured using a unique flowthrough goniometer.

Brooks, Carlton, F.; Brooks, Michael J. (Los Alamos National Laboratory, Los Alamos, NM); Graham, Alan Lyman (Los Alamos National Laboratory, Los Alamos, NM); Noble, David F. (David Frederick) (.; )); Notz, Patrick K.; Hopkins, Matthew Morgan; Castaneda, Jaime N.; Mahoney, Leo James (Kansas City Plant, Kansas City, MO); Baer, Thomas A.; Berchtold, Kathryn (Los Alamos National Laboratory, Los Alamos, NM); Adolf, Douglas Brian; Wilkes, Edward Dean; Rao, Rekha Ranjana; Givler, Richard C.; Sun, Amy Cha-Tien; Cote, Raymond O.; Mondy, Lisa Ann; Grillet, Anne Mary; Kraynik, Andrew Michael

2007-06-01T23:59:59.000Z

495

Modeling and Algorithmic Approaches to Constitutively-Complex, Microstructured Fluids  

SciTech Connect

We present a new multiscale model for complex uids based on three scales: microscopic, kinetic, and continuum. We choose the microscopic level as Kramers' bead-rod model for polymers, which we describe as a system of stochastic di#11;erential equations with an implicit constraint formulation. The associated Fokker-Planck equation is then derived, and adiabatic elimination removes the fast momentum coordinates. Approached in this way, the kinetic level reduces to a dispersive drift equation. The continuum level is modeled with a #12;nite volume Godunov-projection algorithm. We demonstrate computation of viscoelastic stress divergence using this multiscale approach.

Miller, Gregory H.; Forest, Gregory

2011-12-22T23:59:59.000Z

496

Numerical modeling of multiphase plumes: a comparative study between two-fluid and mixed-fluid integral models  

E-Print Network (OSTI)

-field effects of a multiphase plume of liquid CO2 droplets in ocean water finds potential in estimating the environmental risks involved due to deep-ocean sequestration of greenhouse gases like carbon dioxide, which is one of the proposed alternatives (Liro... for the diffuser orifice diameter, air-flow rate and the number of such ports necessary to dissolve a measured quantity of air in a given time of operation will also be studied. 3.3. Case 3: CO2 Sequestration in the Ocean Sequestration of carbon dioxide and other...

Bhaumik, Tirtharaj

2005-11-01T23:59:59.000Z

497

A numerical study of steady fluid flow in the entry region of a straight circular tube  

E-Print Network (OSTI)

region. The Basic Equations The flow under i nves ti gati on is governed by the Navier-Stokes equations p ? = F - . + uv Du Dt x ax p ? = F - @uv v, Dv a A 2 Dt y ay (2) Dw= F ma+ Dt w as and the continuity equation "u av aw + ? = p ay... + w D a a a a Ut = at