Powered by Deep Web Technologies
Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Evaluation study of building-resolved urban dispersion models  

SciTech Connect

For effective emergency response and recovery planning, it is critically important that building-resolved urban dispersion models be evaluated using field data. Several full-physics computational fluid dynamics (CFD) models and semi-empirical building-resolved (SEB) models are being advanced and applied to simulating flow and dispersion in urban areas. To obtain an estimate of the current state-of-readiness of these classes of models, the Department of Homeland Security (DHS) funded a study to compare five CFD models and one SEB model with tracer data from the extensive Midtown Manhattan field study (MID05) conducted during August 2005 as part of the DHS Urban Dispersion Program (UDP; Allwine and Flaherty 2007). Six days of tracer and meteorological experiments were conducted over an approximately 2-km-by-2-km area in Midtown Manhattan just south of Central Park in New York City. A subset of these data was used for model evaluations. The study was conducted such that an evaluation team, independent of the six modeling teams, provided all the input data (e.g., building data, meteorological data and tracer release rates) and run conditions for each of four experimental periods simulated. Tracer concentration data for two of the four experimental periods were provided to the modeling teams for their own evaluation of their respective models to ensure proper setup and operation. Tracer data were not provided for the second two experimental periods to provide for an independent evaluation of the models. The tracer concentrations resulting from the model simulations were provided to the evaluation team in a standard format for consistency in inter-comparing model results. An overview of the model evaluation approach will be given followed by a discussion on the qualitative comparison of the respective models with the field data. Future model developments efforts needed to address modeling gaps identified from this study will also be discussed.

Flaherty, Julia E.; Allwine, K Jerry; Brown, Mike J.; Coirier, WIlliam J.; Ericson, Shawn C.; Hansen, Olav R.; Huber, Alan H.; Kim, Sura; Leach, Martin J.; Mirocha, Jeff D.; Newsom, Rob K.; Patnaik, Gopal; Senocak, Inanc

2007-09-10T23:59:59.000Z

2

Mirant Potomac River, LLC, Monthly Model Evaluation Study Report, December  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River, LLC, Monthly Model Evaluation Study Report, River, LLC, Monthly Model Evaluation Study Report, December 2006 Mirant Potomac River, LLC, Monthly Model Evaluation Study Report, December 2006 Docket No. EO-05-01. Order No. 202-07-02: As you are aware, Mirant Potomac River, L.L.C, (Mirant) is operating per the terms and conditions of the Administrative Compliance Order (ACO) dated June 1, 2006. Under the terms of ACO, Mirant is to deliver a monthly report to include: (1) the modeled input files and results of the daily Predictive Modeling for the preceding month, including the hourly average heat input in the MMBtu for each unit and the exit velocity (or exhaust volume) for each unit; (2) verification that the planned Operating Parameters utilized for Predictive Modeling in the preceding month were not exceeded, or if exceeded, documentation

3

NETL: Predictive Modeling and Evaluation - CMU Regional Modeling Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Source-Receptor Modeling Study Regional Source-Receptor Modeling Study The Pittsburgh Air Quality Study (PAQS) [PDF-744KB] is comprised of three inter-related components: 1) ambient PM measurements, 2) source characterization, and 3) deterministic and statistical air quality modeling. This effort will permit clarification of the contribution of coal-fired power plants to fine ambient PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm). The resources from the Department of Energy (DOE) will be leveraged with resources from the Environmental Protection Agency (EPA) and other organizations. Clarkson University (Hopke group) will apply advanced receptor models to identify the nature, location and contribution of the sources of particulate matter observed by the measurements made as part of the PAQS. Several forms of factor analysis including Positive Matrix Factorization (PMF) and UNMIX will be applied in order to identify the composition and contributions of the sources. Potential Source Contribution Function analysis as well as Residence Time Weighted Concentration analysis will be applied to the determination of the locations of the likely major contributing sources. The aforementioned factor analysis methods will also be applied to the spatially distributed data both on a single species and multiple species basis and to compare these results with those obtained utilizing the back-trajectory-based methods. The availability of highly time resolved data should permit greater source resolution and will be examined to determine how much increased source specificity can be obtained from the increased time resolution in the data. Assistance will be provided with the multivariate calibration that will permit the use of single-particle mass spectrometry data to estimate ambient concentrations of particulate species. These analyses should provide a better understanding of the source/receptor relationships that lead to the observed particle concentrations in the Pittsburgh area.

4

Mirant Potomac River, LLC, Monthly Model Evaluation Study Report, February  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 2007 February 2007 Mirant Potomac River, LLC, Monthly Model Evaluation Study Report, February 2007 Docket No. EO-05-01. Order No. 202-07-02: As you are aware, Mirant Potomac River, L.L.C, (Mirant) is operating per the terms and conditions of the Administrative Compliance Order (ACO) dated June 1, 2006. Under the terms of ACO, Mirant is to deliver a monthly report to include: (1) the modeled input files and results of the daily Predictive Modeling for the preceding month, including the hourly average heat input in the MMBtu for each unit and the exit velocity (or exhaust volume) for each unit; (2) verification that the planned Operating Parameters utilized for Predictive Modeling in the preceding month were not exceeded, or if exceeded, documentation describing that exceedance: (3) the inputs and results of the "follow-up"

5

Mirant Potomac River, LLC, Monthly Model Evaluation Study Report, November  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 2006 November 2006 Mirant Potomac River, LLC, Monthly Model Evaluation Study Report, November 2006 Docket No. EO-05-01. Order No. 202-07-02: As you are aware, Mirant Potomac River, L.L.C, (Mirant) is operating per the terms and conditions of the Administrative Compliance Order (ACO) dated June 1, 2006. Under the terms of ACO, Mirant is to deliver a monthly report to include: (1) the modeled input files and results of the daily Predictive Modeling for the preceding month, including the hourly average heat input in the MMBtu for each unit and the exit velocity (or exhaust volume) for each unit; (2) verification that the planned Operating Parameters utilized for Predictive Modeling in the preceding month were not exceeded, or if exceeded, documentation describing that exceedance: (3) the inputs and results of the "follow-up"

6

Mirant Potomac River, LLC, Monthly Model Evaluation Study Report, March  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2007 March 2007 Mirant Potomac River, LLC, Monthly Model Evaluation Study Report, March 2007 Docket No. EO-05-01. Order No. 202-07-02: As you are aware, Mirant Potomac River, L.L.C, (Mirant) is operating per the terms and conditions of the Administrative Compliance Order (ACO) dated June 1, 2006. Under the terms of ACO, Mirant is to deliver a monthly report to include: (1) the modeled input files and results of the daily Predictive Modeling for the preceding month, including the hourly average heat input in the MMBtu for each unit and the exit velocity (or exhaust volume) for each unit; (2) verification that the planned Operating Parameters utilized for Predictive Modeling in the preceding month were not exceeded, or if exceeded, documentation describing that exceedance: (3) the inputs and results of the "follow-up"

7

Mirant Potomac River, LLC, Monthly Model Evaluation Study Report, January  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2007 January 2007 Mirant Potomac River, LLC, Monthly Model Evaluation Study Report, January 2007 Docket No. EO-05-01. Order No. 202-07-02: As you are aware, Mirant Potomac River, L.L.C, (Mirant) is operating per the terms and conditions of the Administrative Compliance Order (ACO) dated June 1, 2006. Under the terms of ACO, Mirant is to deliver a monthly report to include: (1) the modeled input files and results of the daily Predictive Modeling for the preceding month, including the hourly average heat input in the MMBtu for each unit and the exit velocity (or exhaust volume) for each unit; (2) verification that the planned Operating Parameters utilized for Predictive Modeling in the preceding month were not exceeded, or if exceeded, documentation describing that exceedance: (3) the inputs and results of the "follow-up"

8

Evaluation of Snow Albedo in Land Models for Weather and Climate Studies  

Science Conference Proceedings (OSTI)

Snow albedo plays an important role in land models for weather, climate, and hydrometeorological studies, but its treatment in various land models still contains significant deficiencies. Complementary to previous studies that evaluated the snow ...

Zhuo Wang; Xubin Zeng

2010-03-01T23:59:59.000Z

9

The Study of Compost Quality Evaluation Modeling Method Based on Fuzzy Neural Network for Sewage Treatment  

Science Conference Proceedings (OSTI)

Because of the complicated interaction of the sludge compost components, it makes the quality evaluation system of sludge compost appear the fuzziness. According to the physical circumstances of sludge compost, a compost quality evaluation modeling method ...

Jingwen Tian; Meijuan Gao; Yujuan Xiang

2007-07-01T23:59:59.000Z

10

Configuration and Evaluation of the WRF Model for the Study of Hawaiian Regional Climate  

Science Conference Proceedings (OSTI)

The Weather Research and Forecasting (WRF) model V3.3 has been configured for the Hawaiian Islands as a regional climate model for the region (HRCM). This paper documents the model configuration and presents a preliminary evaluation based on a ...

Chunxi Zhang; Yuqing Wang; Axel Lauer; Kevin Hamilton

2012-10-01T23:59:59.000Z

11

Evaluating alternatives for housing India's urban poor : design studies, model and application in Ahmedabad  

E-Print Network (OSTI)

The study evaluates the three alternatives identified by the (National) Planning Commission for housing the Urban Poor in India: Upgrading, site and services, and housing. The basis for evaluation is the relationship of ...

Palamadai, Rajagopalan M

1982-01-01T23:59:59.000Z

12

Study on development of education model and its evaluation system for radiation safety  

E-Print Network (OSTI)

As one of the detailed action strategy of multi object preparedness for strengthening of radiation safety management by MOST, this project was performed, in order to promote the safety culture for user and radiation worker through effective education program. For the prevention of radiological accident and effective implementation of radiation safety education and training, this project has been carried out the development of education model and its evaluation system on radiation safety. In the development of new education model, education course was classified; new and old radiation worker, temporary worker, lecturer and manager. The education model includes the contents of expanding the education opportunity and workplace training. In the development of evaluation system, the recognition criteria for commission-education institute and inside-education institute which should establish by law were suggested for evaluation program. The recognition criteria contains classification, student, method, facilities, ...

Seo, K W; Nam, Y M

2002-01-01T23:59:59.000Z

13

Modeling studies to evaluate performance of the horizontal wells completed in shale.  

E-Print Network (OSTI)

??The results of the modeling studies to determine the production performance of multiple fractured horizontal wells completed in shale formation has been summarized in this… (more)

Belyadi, Abbas.

2011-01-01T23:59:59.000Z

14

Kirkpatrick's Learning Evaluation Model  

Energy.gov (U.S. Department of Energy (DOE))

One of the core principles of training evaluation is the model based on four sequential levels that was developed by Donald Kirkpatrick. The levels, 1) Reaction, 2) Learning, 3) Behavior, and 4)...

15

Evaluating the Use of Ocean Models of Different Complexity in Climate Change Studies  

E-Print Network (OSTI)

The study of the uncertainties in future climate projections requires large ensembles of simulations with different values of model characteristics that define its response to external forcing. These characteristic include ...

Sokolov, Andrei P.

16

Composite Load Model Evaluation  

Science Conference Proceedings (OSTI)

The WECC load modeling task force has dedicated its effort in the past few years to develop a composite load model that can represent behaviors of different end-user components. The modeling structure of the composite load model is recommended by the WECC load modeling task force. GE Energy has implemented this composite load model with a new function CMPLDW in its power system simulation software package, PSLF. For the last several years, Bonneville Power Administration (BPA) has taken the lead and collaborated with GE Energy to develop the new composite load model. Pacific Northwest National Laboratory (PNNL) and BPA joint force and conducted the evaluation of the CMPLDW and test its parameter settings to make sure that: • the model initializes properly, • all the parameter settings are functioning, and • the simulation results are as expected. The PNNL effort focused on testing the CMPLDW in a 4-bus system. An exhaustive testing on each parameter setting has been performed to guarantee each setting works. This report is a summary of the PNNL testing results and conclusions.

Lu, Ning; Qiao, Hong (Amy)

2007-09-30T23:59:59.000Z

17

TWP-ICE Data from the GEWEX Cloud System Study: Data Integration for Model Evaluation (GCSSDIME)  

DOE Data Explorer (OSTI)

One of the most complete data sets of tropical cirrus and convection observations resulted from the Tropical Warm Pool - International Cloud Experiment (TWP-ICE) in the area around Darwin, Australia. The aim of the experiment is to examine convective cloud systems from their initial stages through the decaying and thin high level cirrus and measure their impact on the environment. The experiment design includes an unprecedented array of soundings and other information to support cloud resolving and other modeling studies as well as a large range of in-situ and remotely sensed observation platforms. A key component of the field campaign is a fleet of aircraft including the Dornier, Dimona, Egrett, Twin Otter, and Proteus. Together, these aircraft collected measurements of cloud properties and the meteorological environment from the planetary boundary layer up to 15 km high. The extensive ground network of cloud sensing radar, lidar and passive instruments are located on a ship and several ground sites throughout the experimental domain. This case study presents data from 19 Jan 2006 to 28 Feb 2006 and covers a region from 25S to 10S latitude and from 125E to 140E longitude.[Copied from http://gcss-dime.giss.nasa.gov/twp-ice/twp-ice.html

18

Evaluation Study for Large Prismatic Lithium-Ion Cell Designs Using Multi-Scale Multi-Dimensional Battery Model (Presentation)  

Science Conference Proceedings (OSTI)

Addresses battery requirements for electric vehicles using a model that evaluates physical-chemical processes in lithium-ion batteries, from atomic variations to vehicle interface controls.

Kim, G. H.; Smith, K.

2009-05-01T23:59:59.000Z

19

Evaluation of atmospheric transport models for use in Phase II of the historical public exposures studies at the Rocky Flats Plant  

Science Conference Proceedings (OSTI)

Five atmospheric transport models were evaluated for use in Phase II of the Historical Public Exposures Studies at the Rocky Flats Plant. Models included a simple straight-line Gaussian plume model (ISCST2), several integrated puff models (RATCHET, TRIAD, and INPUFF2), and a complex terrain model (TRAC). Evaluations were based on how well model predictions compared with sulfur hexafluoride tracer measurements taken in the vicinity of Rocky Flats in February 1991. Twelve separate tracer experiments were conducted, each lasting 9 hr and measured at 140 samplers in arcs 8 and 16 km from the release point at Rocky Flats. Four modeling objectives were defined based on the endpoints of the overall study: (1) the unpaired maximum hourly average concentration, (2) paired time-averaged concentration, (3) unpaired time-averaged concentration, and (4) arc-integrated concentration. Performance measures were used to evaluate models and focused on the geometric mean and standard deviation of the predicted-to-observed ratio and the correlation coefficient between predicted and observed concentrations. No one model consistently outperformed the others in all modeling objectives and performance measures. The overall performance of the RATCHET model was somewhat better than the other models.

Rood, A.S.; Killough, G.G.; Till, J.E.

1999-08-01T23:59:59.000Z

20

The Data Integration for Model Evaluation Web Site: A One-Stop Shop for Model Evaluation  

Science Conference Proceedings (OSTI)

This paper introduces the contents of the Global Energy and Water Experiment (GEWEX) Cloud System Study (GCSS) Data Integration for Model Evaluation (DIME) Web site. The Web site is a resource created for atmospheric modelers who want to run and ...

George Tselioudis; William B. Rossow; Anastasia N. Gentilcore; Jack Katzfey

2004-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Evaluation of uncertainties due to hydrogeological modeling and groundwater flow analysis: Steady flow, transient flow, and thermal studies  

SciTech Connect

Starting with regional geographic, geologic, surface and subsurface hydrologic, and geophysical data for the Tono area in Gifu, Japan, we develop an effective continuum model to simulate subsurface flow and transport in a 4 km by 6 km by 3 km thick fractured granite rock mass overlain by sedimentary layers. Individual fractures are not modeled explicitly. Rather, continuum permeability and porosity distributions are assigned stochastically, based on well-test data and fracture density measurements. Lithologic layering and one major fault, the Tsukiyoshi Fault, are assigned deterministically. We conduct three different studies: (1) the so-called base case, in which the model simulates the steady-state groundwater flow through the site, and then stream trace analysis is used to calculate travel times to the model boundary from specified release points; (2) simulations of transient flow during long term pump tests (LTPT) using the base-case model; and (3) thermal studies in which coupled heat flow and fluid flow are modeled, to examine the effects of the geothermal gradient on groundwater flow. The base-case study indicates that the choice of open or closed lateral boundaries has a strong influence on the regional groundwater flow patterns produced by the models, but no field data exist that can be used to determine which boundary conditions are more realistic. The LTPT study cannot be used to distinguish between the alternative boundary conditions, because the pumping rate is too small to produce an analyzable pressure response at the model boundaries. In contrast, the thermal study shows that the temperature distributions produced by the open and closed models differ greatly. Comparison with borehole temperature data may be used to eliminate the closed model from further consideration.

Doughty, Christine; Karasaki, Kenzi

2002-12-11T23:59:59.000Z

22

Performance Evaluation of Dense Gas Dispersion Models  

Science Conference Proceedings (OSTI)

This paper summarizes the results of a study to evaluate the performance of seven dense gas dispersion models using data from three field experiments. Two models (DEGADIS and SLAB) are in the public domain and the other five (AIRTOX, CHARM, FOCUS,...

Jawad S. Touma; William M. Cox; Harold Thistle; James G. Zapert

1995-03-01T23:59:59.000Z

23

Performance Evaluation (Impact Studies)  

Science Conference Proceedings (OSTI)

... NIST-EEEL: Laser and Fiberoptic Power and Energy Calibration Services ... Also available are Strategic Planning Studies and Policy Studies. ...

2013-12-18T23:59:59.000Z

24

NETL: Predictive Modeling and Evaluation - Evaluation of the Emission,  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the Emission, Transport, and Deposition of Mercury, Arsenic, and Fine Particulate Matter from Coal Based Power Plants in the Ohio River Valley Region Evaluation of the Emission, Transport, and Deposition of Mercury, Arsenic, and Fine Particulate Matter from Coal Based Power Plants in the Ohio River Valley Region Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric Environmental Research, Inc. (AER) as subcontractors will evaluate the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: regional-scale modeling analysis and ambient air monitoring. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions.

25

Infrasound Sensor Models and Evaluations  

Science Conference Proceedings (OSTI)

Sandia National Laboratories has continued to evaluate the performance of infrasound sensors that are candidates for use by the International Monitoring System (IMS) for the Comprehensive Nuclear-Test-Ban Treaty Organization. The performance criteria against which these sensors are assessed are specified in ``Operational Manual for Infra-sound Monitoring and the International Exchange of Infrasound Data''. This presentation includes the results of efforts concerning two of these sensors: (1) Chaparral Physics Model 5; and (2) CEA MB2000. Sandia is working with Chaparral Physics in order to improve the capability of the Model 5 (a prototype sensor) to be calibrated and evaluated. With the assistance of the Scripps Institution of Oceanography, Sandia is also conducting tests to evaluate the performance of the CEA MB2000. Sensor models based on theoretical transfer functions and manufacturer specifications for these two devices have been developed. This presentation will feature the results of coherence-based data analysis of signals from a huddle test, utilizing several sensors of both types, in order to verify the sensor performance.

KROMER,RICHARD P.; MCDONALD,TIMOTHY S.

2000-07-31T23:59:59.000Z

26

Concrete Degradation Modeling in the Evaluation of ...  

Science Conference Proceedings (OSTI)

... as a Decommission Option by ... Page 2. Concrete Degradation Modeling in the Evaluation of Entombment as a Decommissioning Option ...

2004-07-26T23:59:59.000Z

27

Evaluating WRF-Chem multi-scale model in simulating aerosol radiative properties over the tropics – A case study over India  

Science Conference Proceedings (OSTI)

We utilized WRF-Chem multi-scale model to simulate the regional distribution of aerosols, optical properties and its effect on radiation over India for a winter month. The model is evaluated using measurements obtained from upper-air soundings, AERONET sun photometers, various satellite instruments, and pyranometers operated by the Indian Meteorological Department. The simulated downward shortwave flux was overestimated when the effect of aerosols on radiation and clouds was neglected. Downward shortwave radiation from a simulation that included aerosol-radiation interaction processes was 5 to 25 Wm{sup -2} closer to the observations, while a simulation that included aerosol-cloud interaction processes were another 1 to 20 Wm{sup -2} closer to the observations. For the few observations available, the model usually underestimated particulate concentration. This is likely due to turbulent mixing, transport errors and the lack of secondary organic aerosol treatment in the model. The model efficiently captured the broad regional hotspots such as high aerosol optical depth over Indo-Gangetic basin as well as the northwestern and southern part of India. The regional distribution of aerosol optical depth compares well with AVHRR aerosol optical depth and the TOMS aerosol index. The magnitude and wavelength-dependence of simulated aerosol optical depth was also similar to the AERONET observations across India. Differences in surface shortwave radiation between simulations that included and neglected aerosol-radiation interactions were as high as -25 Wm{sup -2}, while differences in surface shortwave radiation between simulations that included and neglect aerosol-radiation-cloud interactions were as high as -30 Wm{sup -2}. The spatial variations of these differences were also compared with AVHRR observation. This study suggests that the model is able to qualitatively simulate the impact of aerosols on radiation over India; however, additional measurements of particulate mass and composition are needed to fully evaluate whether the aerosol precursor emissions are adequate when simulating radiative forcing in the region.

Seethala, C.; Pandithurai, G.; Fast, Jerome D.; Polade, Suraj D.; Reddy, M. S.; Peckham, Steven E.

2012-01-24T23:59:59.000Z

28

Taiwan Power TCSC Evaluation Study  

Science Conference Proceedings (OSTI)

This report evaluates the use of Thyristor Controlled Series Compensation (TCSC) and conventional series compensation to more evenly distribute power flows on the Taiwan Power Company's (TPC) 345-kV Center-North interface and improve system dampings. This study concludes that the proposed compensation scheme would significantly improve the interface's performance capability.

1997-06-10T23:59:59.000Z

29

A Framework for Evaluating Model Credibility for Warm Season Precipitation in the Northeast: A Case Study of CMIP5 Simulations and Projections  

Science Conference Proceedings (OSTI)

Future projections of Northeast warm season precipitation (JJA) indicate substantial uncertainty. Atmospheric processes important to Northeast JJA precipitation are identified and a first evaluation of five CMIP5 models’ ability to simulate these ...

Jeanne M. Thibeault; Anji Seth

30

Model Selection in Summary Evaluation  

E-Print Network (OSTI)

A difficulty in the design of automated text summarization algorithms is in the objective evaluation. Viewing summarization as a tradeoff between length and information content, we introduce a technique based on ...

Perez-Breva, Luis

2002-12-01T23:59:59.000Z

31

Evaluating Energy Efficiency Policies with Energy-Economy Models  

SciTech Connect

The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

2010-08-01T23:59:59.000Z

32

Thermodynamic Modeling Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Studies Modeling Studies J. Lindner, L. T. Smith, J. C. Luthe, L. Pearson. R. K. Toghiani, Y. Xia, and P. Naik Institute for Clean Energy Technology Mississippi State University May 20,2009 Initial Tank Composition Remove liquid to reflect undrained saltcake Stage 1 Dissolution Remove transfer stream 1 liquids transfer stream 0 liquids recycle solids liquids transfer stream 1 liquids recycle solids Next Stage of Dissolution DWPF recycle Thermodynamic Modeling Studies 2 Overview of Presentation * Database Activities and Needs * C farm retrievals and neural network development * Thermodynamic data and computational methods for liquid waste flowsheet modeling (SRS) * Aluminum solubility studies Thermodynamic Modeling Studies 3 Database Activities and Needs * Earlier a mid-term study addressed the solubility of a number of systems if

33

Numerical models for the evaluation of geothermal systems  

DOE Green Energy (OSTI)

We have carried out detailed simulations of various fields in the USA (Bada, New Mexico; Heber, California); Mexico (Cerro Prieto); Iceland (Krafla); and Kenya (Olkaria). These simulation studies have illustrated the usefulness of numerical models for the overall evaluation of geothermal systems. The methodology for modeling the behavior of geothermal systems, different approaches to geothermal reservoir modeling and how they can be applied in comprehensive evaluation work are discussed.

Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

1986-08-01T23:59:59.000Z

34

Recommendations concerning energy information model documentation, public access, and evaluation  

E-Print Network (OSTI)

In this study we provide an analysis of the factors underlying Congressional concern regarding model documentation, policies for public access, and evaluation procedures of the Energy Information Administration (EIA) and ...

Wood, David O.

1979-01-01T23:59:59.000Z

35

Data Assimilation and Model Evaluation Experiment Datasets  

Science Conference Proceedings (OSTI)

The Institute for Naval Oceanography, in cooperation with Naval Research Laboratories and universities, executed the Data Assimilation and Model Evaluation Experiment (DAMÉE) for the Gulf Stream region during fiscal years 1991–1993. Enormous ...

Chung-Chieng A. Lai; Wen Qian; Scott M. Glenn

1994-05-01T23:59:59.000Z

36

EBS Model Development and Evaluation Report  

Energy.gov (U.S. Department of Energy (DOE))

Enginerred Barrier Systems (EBS) model evaluation and development is fundamental to the design and analysis of disposal concepts for generic repository systems; this report centers on progress made on modeling and experimental approaches to analyze physical and chemical interactions affecting clay barrier performance.

37

Evaluating probabilistic models learned from data  

Science Conference Proceedings (OSTI)

Several learning algorithms have been proposed to construct probabilistic models from data using the Bayesian networks mechanism. Some of them permit the participation of human experts in order to create a knowledge representation of the domain. However, ... Keywords: Bayesian networks, learning algorithms, model evaluation, virtual sensors

Pablo H. Ibargüengoytia; Miguel A. Delgadillo; Uriel A. García

2011-11-01T23:59:59.000Z

38

Evaluating the Performance of Land Surface Models  

Science Conference Proceedings (OSTI)

This paper presents a set of analytical tools to evaluate the performance of three land surface models (LSMs) that are used in global climate models (GCMs). Predictions of the fluxes of sensible heat, latent heat, and net CO2 exchange obtained ...

Gab Abramowitz; Ray Leuning; Martyn Clark; Andy Pitman

2008-11-01T23:59:59.000Z

39

Evaluation of technological data in the DFI and PIES models  

DOE Green Energy (OSTI)

This report evaluates the data used in two of the models available to the Energy Information Administration (EIA). Specifically, the study involves updating, reviewing, and documenting the technological data on primary energy conversion, transportation, distribution and end-use conversion. The major focus is upon data used in the Decision Focus, Inc. (DFI), LEAP model. This is an abbreviated version of the Gulf-Stanford Research, Inc., energy model developed to assess the potential future impacts of synthetic fuels in the US energy system. A parallel effort assesses the data used in the model commonly known as the Project Independence Evaluation System (PIES).

Bhagat, N.; Beller, M.; Hermelee, A.; Wagner, J.; Lamontagne, J.

1979-04-01T23:59:59.000Z

40

Evaluating Model Abstractions: A Quantitative Approach  

E-Print Network (OSTI)

An \\evaluation " approach devised for an inductive reasoning system called Logic-based Discrete-event Inductive Reasoner is the focus of this paper. The underlying inductive reasoning methodology utilizes abstractions as its primary means to deal with lack ofknowledge. Based on abstractions and their treatments as assumptions, the Logic-based Discrete-event Inductive Reasoning system allows non-monotonic predictions. The evaluation approach takes into account explicitly the role of abstractions employed in non-monotonically derived multiple predictions. These predictions are ranked according to the type and number of abstractions used. The proposed evaluation approach is also discussed in relation to the dichotomy of model validation and simulation correctness.

Hessam S. Sarjoughian; Bernard P. Zeigler; Francois E. Cellier

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels, Phase 2: Evaluations of Field Samples and Laboratory Blends  

DOE Green Energy (OSTI)

Study to measure the flammability of gasoline/ethanol fuel vapors at low ambient temperatures and develop a mathematical model to predict temperatures at which flammable vapors were likely to form.

Gardiner, D. P.; Bardon, M. F.; LaViolette, M.

2010-04-01T23:59:59.000Z

42

Evaluation of failure probability via surrogate models  

Science Conference Proceedings (OSTI)

Evaluation of failure probability of a given system requires sampling of the system response and can be computationally expensive. Therefore it is desirable to construct an accurate surrogate model for the system response and subsequently to sample the ... Keywords: Failure probability, Polynomial chaos, Sampling, Stochastic computation

Jing Li; Dongbin Xiu

2010-11-01T23:59:59.000Z

43

NETL: IEP - Air Quality Research: Predictive Modeling and Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

Predictive Modeling and Evaluation Predictive Modeling and Evaluation Predictive Modeling and Evaluation Map Click on a Project Name to Get More Information It is likely that most or all State Implementation Plans pertaining to PM2.5 will be developed with the aid of some type of atmospheric modeling to predict the reductions in PM2.5 attainable via reductions in power plant emissions. The accuracy of such predictions depends on how accurately the models represent the actual emissions and atmospheric chemistry/transport phenomena. Modeling studies supported by the NETL fine PM program include: (1) receptor-based (source apportionment) modeling pertinent to electric power sources; (2) model evaluation using ambient PM mass measurements; (3) methods for estimating the lifetime and transport distances of primary and secondary PM; (4) quantifying the relationships between PM (nitric acid and sulfate) and NOx and SO2 emissions in the modeling domain; and (5) quantifying the contribution of primary and secondary organic aerosol emissions from power sources to observed organic PM.

44

Computerized evaluation simulator based on the CIPP model  

Science Conference Proceedings (OSTI)

An attempt was made to build a computer simulation model based on an evaluation model. The model (CIPP) systematically examined each stage of evaluation activities (context, input, process, and product of a project). The administrators, funds, and program ...

Takeshi Ohara; Kenneth Pickard

1985-12-01T23:59:59.000Z

45

NETL: Predictive Modeling and Evaluation - TVA Model Comparison  

NLE Websites -- All DOE Office Websites (Extended Search)

Ozone/PM2.5 Formation & Transport Model Comparison Ozone/PM2.5 Formation & Transport Model Comparison Future regulatory actions for mitigating PM2.5 concentrations will rely, to some extent, on results from large-scale atmospheric models. The most efficient approach to evaluating regulatory actions is to use an integrated approach that examines multiple air quality impacts simultaneously. This is because of the strong linkage between PM2.5 levels, visibility degradation, ozone and acidic deposition. Thus, regional modeling of the impacts on PM2.5 levels from proposed emission reductions should be evaluated in terms of computed impacts not only on PM2.5 levels, but on ozone and acidic deposition as well. TVA is an active participant in the only ongoing assessment of this type, which is being done for the Southern Appalachian Mountains Initiative (SAMI) as part of its integrated assessment in the southeastern United States. SAMI, with its focus on protecting PSD Class I areas, is using a model called URM that can examine all the aforementioned phenomena at once. In addition, URM has the capability, which SAMI intends to use, of efficiently examining the sensitivity of model outputs to changes in emissions across the entire modeling domain. Finally, SAMI will use URM to test various emission management options (EMOs) for mitigating impacts in the southern Appalachians. These EMOs will include controls on various source sectors, including energy.

46

A Performance Modeling and Evaluation of the Cambridge Fast Ring  

Science Conference Proceedings (OSTI)

Performance of the Cambridge Fast Ring (CFR), a high-speed slotted ring with normal slots, is studied. It is shown that the CFR can be represented by a multiqueue multiple cyclic server model with a 1-limited service discipline and with a restriction ... Keywords: 1-limited service discipline, Cambridge Fast Ring, approximate analytic M/G/1 vacation model, exact necessary and sufficient stability conditions, high-speed slotted ring, local area networks, message waiting times, multiqueue multiple cyclic server model, normal slots, performance evaluation, performance modeling, queueing theory., vacation period

Mirjana Zafirovic-Vukotic; Ignas G. Niemegeers

1992-09-01T23:59:59.000Z

47

A probabilistic multimedia retrieval model and its evaluation  

Science Conference Proceedings (OSTI)

We present a probabilistic model for the retrieval of multimodal documents. The model is based on Bayesian decision theory and combines models for text-based search with models for visual search. The textual model is based on the language modelling approach ... Keywords: Gaussian mixture models, evaluation, language models, multimedia retrieval, probabilistic models

Thijs Westerveld; Arjen P. de Vries; Alex van Ballegooij; Franciska de Jong; Djoerd Hiemstra

2003-01-01T23:59:59.000Z

48

1-D fluid model of atmospheric-pressure rf He+O{sub 2} cold plasmas: Parametric study and critical evaluation  

SciTech Connect

In this paper atmospheric-pressure rf He+O{sub 2} cold plasmas are studied by means of a 1-D fluid model. 17 species and 60 key reactions selected from a study of 250+ reactions are incorporated in the model. O{sub 2}{sup +}, O{sub 3}{sup -}, and O are the dominant positive ion, negative ion, and reactive oxygen species, respectively. Ground state O is mainly generated by electron induced reactions and quenching of atomic and molecular oxygen metastables, while three-body reactions leading to the formation of O{sub 2} and O{sub 3} are the main mechanisms responsible for O destruction. The fraction of input power dissipated by ions is {approx}20%. For the conditions considered in the study {approx}6% of the input power is coupled to ions in the bulk and this amount will increase with increasing electronegativity. Radial and electrode losses of neutral species are in most cases negligible when compared to gas phase processes as these losses are diffusion limited due to the large collisionality of the plasma. The electrode loss rate of neutral species is found to be nearly independent of the surface adsorption probability p for p > 0.001 and therefore plasma dosage can be quantified even if p is not known precisely.

Yang Aijun; Wang Xiaohua; Rong Mingzhe; Liu Dingxin [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); Iza, Felipe [School of Electronic, Electrical and Systems Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Kong, Michael G. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); School of Electronic, Electrical and Systems Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom)

2011-11-15T23:59:59.000Z

49

Evaluation of an Incremental Ventilation Energy Model for Estimating  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of an Incremental Ventilation Energy Model for Estimating Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Title Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Publication Type Report LBNL Report Number LBNL-5796E Year of Publication 2012 Authors Logue, Jennifer M., William J. N. Turner, Iain S. Walker, and Brett C. Singer Date Published 06/2012 Abstract Changing the rate of airflow through a home affects the annual thermal conditioning energy.Large-scale changes to airflow rates of the housing stock can significantly alter the energy consumption of the residential energy sector. However, the complexity of existing residential energy models hampers the ability to estimate the impact of policy changes on a state or nationwide level. The Incremental Ventilation Energy (IVE) model developed in this study was designed to combine the output of simple airflow models and a limited set of home characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modelers to use existing databases of home characteristics to determine the impact of policy on ventilation at a population scale. In this report, we describe the IVE model and demonstrate that its estimates of energy change are comparable to the estimates of a well-validated, complex residential energy model when applied to homes with limited parameterization. Homes with extensive parameterization would be more accurately characterized by complex residential energy models. The demonstration included a range of home types, climates, and ventilation systems that cover a large fraction of the residential housing sector.

50

Geothermal Electricity Technology Evaluation Model (GETEM) | Open Energy  

Open Energy Info (EERE)

Electricity Technology Evaluation Model (GETEM) Electricity Technology Evaluation Model (GETEM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Electricity Technology Evaluation Model (GETEM) Agency/Company /Organization: National Renewable Energy Laboratory Sector: Climate Focus Area: Geothermal Phase: Evaluate Options Topics: Opportunity Assessment & Screening Resource Type: Software/modeling tools User Interface: Desktop Application Website: www1.eere.energy.gov/geothermal/getem.html OpenEI Keyword(s): EERE tool Equivalent URI: cleanenergysolutions.org/content/geothermal-electricity-technology-eva Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance References: Geothermal Electricity Technology Evaluation Model[1] Model the estimated performance and costs of available U.S. geothermal

51

Evaluation of Relap5 Reactor Core Modeling Capability  

E-Print Network (OSTI)

of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science EVALUATION OF RELAP5 REACTOR CORE MODELING CAPABILITY By Vincent J.-P. Roux August 2001 Chairman: Professor Samim Anghaie Major Department: Nuclear and Radiological Engineering RELAP5 is a one-dimensional reactor-system simulation code with additional cross-flow calculation capability to include two- and three-dimensional effects in light water nuclear reactor cores. The code is used to model the core, steam generator, and the balance of the Surry reactor, which is a three-loop Westinghouse Pressurized Water Reactor (PWR) system. A detailed RELAP5 model including full nodalization of the system is developed and implemented for this study. The RELAP5 Surry core model uses one or several parallel channels to compare and assess the performance of the cross-flow model. Several inlet flow rates and core power distributions are considered and modeled. Results of the analysis showed the significant contribution of cross-flow in overall temperature and flow distributions in the core. Results of the study also showed that the RELAP5 predictions of cross-flow, at least for single-phase cases, are not consistent with the theory. xi To evaluate the accuracy of RELAP5 cross-flow model, an industry standard Computational Fluid Dynamics code, FLUENT, is used to perform two- and threedimensional calculations. Initial and boundary conditions for the RELAP5 model are used to develop a high-resolution FLUENT model for a pair of parallel reactor core channels. Two models were developed for FLUENT calculation of cross-flow. The first model is a simple tube with axisymmetric non-uniform inlet flow velocities. The second model included differen...

Vincent J. -p. Roux

2001-01-01T23:59:59.000Z

52

Evaluation framework for the design of an engineering model  

Science Conference Proceedings (OSTI)

According to both cybernetics and general system theory, a subject develops and uses an adequate model of a system to widen his/her knowledge about the system. Models are then the interface between a subject and a real-world system to solve ... Keywords: Cybernetics, Evaluation Criteria, Knowledge Evaluation, Model Evaluation

Walid Ben ahmed; Mounib Mekhilef; Bernard Yannou; Michel Bigand

2010-02-01T23:59:59.000Z

53

Evaluation of Generic EBS Design Concepts and Process Models Implications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generic EBS Design Concepts and Process Models Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization Evaluation of Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization The assessment of generic Engineered Barrier System (EBS) concepts and design optimization to harbor various disposal configurations and waste types needs advanced approaches and methods to analyze barrier performance. The report addresses: 1) Overview of the importance of Thermal-Hydrological-Mechanical-Chemical (THMC) processes to barrier performance, and international collaborations; 2) THMC processes in clay barriers; 3) experimental studies of clay stability and clay-metal interactions at high temperatures and pressures; 4) thermodynamic modeling and database development; 5) Molecular Dynamics (MD) study of clay

54

Evaluation of aerosolcloud interaction in the GISS ModelE using...  

NLE Websites -- All DOE Office Websites (Extended Search)

NASA GISS ModelE global climate model in reproducing observed interactions between aerosols and clouds. Included in the evaluation are comparisons of basic meteorology and...

55

Studying team shared mental models  

Science Conference Proceedings (OSTI)

As technology is used to support team-based activities, one important factor affecting the performance of teams is the kind of mental model shared between team members. This paper describes a novel conceptual graph based methodology to study these mental ... Keywords: conceptual graphs, mental models, shared mental models, taskwork, team communication, team effectiveness, team performance, teamwork

Sandra Carpenter; Julie L. Fortune; Harry S. Delugach; Letha H. Etzkorn; Dawn R. Utley; Phillip A. Farrington; Shamsnaz Virani

2008-11-01T23:59:59.000Z

56

New Categorical Metrics for Air Quality Model Evaluation  

Science Conference Proceedings (OSTI)

Traditional categorical metrics used in model evaluations are “clear cut” measures in that the model’s ability to predict an “exceedance” is defined by a fixed threshold concentration and the metrics are defined by observation–forecast sets that ...

Daiwen Kang; Rohit Mathur; Kenneth Schere; Shaocai Yu; Brian Eder

2007-04-01T23:59:59.000Z

57

Testing and Evaluating Atmospheric Climate Models  

Science Conference Proceedings (OSTI)

Model validation is a crucial process that underpins model development and gives confidence to the results from running models. This article discusses a range of techniques for validating atmosphere models given that the atmosphere is chaotic and incompletely ...

Vicky Pope; Terry Davies

2002-09-01T23:59:59.000Z

58

Evaluation of the CLM4 Lake Model at a Large and Shallow Freshwater Lake  

Science Conference Proceedings (OSTI)

Models of lake physical processes provide the lower flux boundary conditions for numerical predictions of weather and climate in lake basins. So far, there have been few studies on evaluating lake model performance at the diurnal time scale and ...

Bin Deng; Shoudong Liu; Wei Xiao; Wei Wang; Jiming Jin; Xuhui Lee

2013-04-01T23:59:59.000Z

59

Models for the Prediction of Tropical Cyclone Motion over the North Atlantic: An Operational Evaluation  

Science Conference Proceedings (OSTI)

This study provides an operational evaluation of the seven prediction models-five statistical and two dynamical-used at the National Hurricane Center. Following a brief description of the rationale for each model, various performance ...

Charles J. Neumann; Joseph M. Pelissier

1981-03-01T23:59:59.000Z

60

Concrete Degradation Modeling in the Evaluation of ...  

Science Conference Proceedings (OSTI)

... as a Decommission Option by ... in the Evaluation of Entombment as a Decommissioning Option ... Effectiveness Office of Nuclear Regulatory Research ...

2004-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Model Energy Efficiency Program Impact Evaluation Guide | Open Energy  

Open Energy Info (EERE)

Model Energy Efficiency Program Impact Evaluation Guide Model Energy Efficiency Program Impact Evaluation Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Model Energy Efficiency Program Impact Evaluation Guide Focus Area: Energy Efficiency Topics: Best Practices Website: www.epa.gov/cleanenergy/documents/suca/evaluation_guide.pdf Equivalent URI: cleanenergysolutions.org/content/model-energy-efficiency-program-impac Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation This document provides guidance on model approaches for calculating energy, demand and emissions savings resulting from energy efficiency programs. It

62

Modeling for System Integration Studies (Presentation)  

SciTech Connect

This presentation describes some the data requirements needed for grid integration modeling and provides real-world examples of such data and its format. Renewable energy integration studies evaluate the operational impacts of variable generation. Transmission planning studies investigate where new transmission is needed to transfer energy from generation sources to load centers. Both use time-synchronized wind and solar energy production and load as inputs. Both examine high renewable energy penetration scenarios in the future.

Orwig, K. D.

2012-05-01T23:59:59.000Z

63

Summary of California DSM impact evaluation studies  

SciTech Connect

Over the past several years, four of the largest investor-owned California utilities have completed more than 50 evaluation studies designed to measure the energy and demand impacts of their demand-side management (DSM) programs. These four are: Pacific Gas and Electric (PG and E), Southern California Edison (SCE), Southern California Gas (SoCalGas), and San diego Gas and Electric (SDG and E). These studies covered residential, commercial, industrial, and agricultural DSM programs and provided a wealth of information on program impacts. The objective of this report is to summarize the results of these DSM evaluation studies in order to describe what DSM has achieved in California, to assess how well these achievements were forecast, and to compare the effectiveness of different types of DSM programs. This report documents the sizable investment made by the California utilities in their 1990--92 DSM programs. Between 1990 and 1992, the four utilities spent $772 million on energy-efficiency/conservation programs. This report also summarizes the realization rates estimated by the 50+ evaluation studies. Realization rates are defined as ex-post net savings estimates divided by ex-ante net savings estimates. Realization rates are summarized for 158 programs and program segments.

Brown, M.A. [Oak Ridge National Lab., TN (United States); Mihlmester, P.E. [Aspen Systems Corp., Oak Ridge, TN (United States)

1994-10-01T23:59:59.000Z

64

An Evaluation of a Diagnostic Wind Model (CALMET)  

Science Conference Proceedings (OSTI)

A U.S. Environmental Protection Agency (EPA)-approved diagnostic wind model [California Meteorological Model (CALMET)] was evaluated during a typical lake-breeze event under fair weather conditions in the Chicago region. The authors focused on ...

Weiguo Wang; William J. Shaw; Timothy E. Seiple; Jeremy P. Rishel; Yulong Xie

2008-06-01T23:59:59.000Z

65

Meteorological Model Evaluation for CalNex 2010  

Science Conference Proceedings (OSTI)

The performance of mesoscale meteorological models is evaluated for the coastal zone and Los Angeles area of Southern California, and for the San Joaquin Valley. Several configurations of the Weather Research and Forecasting Model (WRF) with ...

Wayne M. Angevine; Lee Eddington; Kevin Durkee; Chris Fairall; Laura Bianco; Jerome Brioude

2012-12-01T23:59:59.000Z

66

Improving Concentration Measures Used for Evaluating Air Quality Models  

Science Conference Proceedings (OSTI)

An unfortunate difficulty in model evaluation is that the concentration measure that most models predict, namely the ensemble mean concentration under the plume centerline (or at some location relative to the plume centerline), cannot be measured ...

Russell F. Lee; John S. Irwin

1997-08-01T23:59:59.000Z

67

Evaluation of Two Gustiness Models for Exposure Correction Calculations  

Science Conference Proceedings (OSTI)

Gustiness models from Wieringa and Beljaars are evaluated. The models are used to relate the gustiness from wind speed records to the local roughness length. The roughness length is used to apply exposure corrections to sheltered wind stations. ...

J. W. Verkaik

2000-09-01T23:59:59.000Z

68

Application of a model to the evaluation of flood damage  

Science Conference Proceedings (OSTI)

This paper presents the initial results of a common methodology for the evaluation of damage produced by a flood. A model has been developed for flood damage estimation based on a geographic information system (GIS). It could be used by land administration ... Keywords: Damage evaluation, Flood, GIS, Hydraulic modelling, Stage---damage curves

F. Luino; C. G. Cirio; M. Biddoccu; A. Agangi; W. Giulietto; F. Godone; G. Nigrelli

2009-09-01T23:59:59.000Z

69

An integrated multi-model approach for air quality assessment: Development and evaluation of the OSCAR Air Quality Assessment System  

Science Conference Proceedings (OSTI)

This paper reports on the development and evaluation of a new modelling system for studying air quality on local scales. A multi-model approach has been adopted to develop the OSCAR Air Quality Modelling System to conduct assessments at different levels ... Keywords: Air quality, Model evaluation, Modelling system, Nitrogen oxides, OSCAR, Particulate matter

Ranjeet S. Sokhi; Hongjun Mao; Srinivas T. G. Srimath; Shiyuan Fan; Nutthida Kitwiroon; Lakhumal Luhana; Jaakko Kukkonen; Mervi Haakana; Ari Karppinen; K. Dick van den Hout; Paul Boulter; Ian S. McCrae; Steinar Larssen; Karl I. Gjerstad; Roberto San José; John Bartzis; Panagiotis Neofytou; Peter van den Breemer; Steve Neville; Anu Kousa; Blanca M. Cortes; Ingrid Myrtveit

2008-03-01T23:59:59.000Z

70

Ground motion input in seismic evaluation studies  

Science Conference Proceedings (OSTI)

This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants.

Sewell, R.T.; Wu, S.C.

1996-07-01T23:59:59.000Z

71

AN EVALUATION OF SELECT PEM FUEL CELL SYSTEM MODELS  

NLE Websites -- All DOE Office Websites (Extended Search)

EVALUATING PEM FUEL CELL SYSTEM MODELS EVALUATING PEM FUEL CELL SYSTEM MODELS Kristina Haraldsson, Keith Wipke National Renewable Energy Laboratory (NREL) 1617 Cole Boulevard, MS 1633 Golden, Colorado, 80401 ABSTRACT Many proton exchange membrane (PEM) fuel cell models have been reported in publications, and some are available commercially. This paper helps users match their modeling needs with specific fuel cell models. The paper has three parts. First, it describes the model selection criteria for choosing a fuel cell model. Second, it applies these criteria to select state- of-the-art fuel cell models available in literature and commercially. The advantages and disadvantages of commercial models are discussed. Third, the paper illustrates the process of choosing a fuel cell model with an

72

External Technical Review for Evaluation of System Level Modeling and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Evaluation of System Level Modeling for Evaluation of System Level Modeling and Simulation Tools in Support of Hanford Site Liquid Waste Process External Technical Review for Evaluation of System Level Modeling and Simulation Tools in Support of Hanford Site Liquid Waste Process Full Document and Summary Versions are available for download External Technical Review for Evaluation of System Level Modeling and Simulation Tools in Support of Hanford Site Liquid Waste Process Summary - System Level Modeling and Simulation Tools for Hanford More Documents & Publications Hanford Site C Tank Farm Meeting Summary - May 2009 System Planning for Low-Activity Waste at Hanford Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External

73

Evaluating the SWAT Model for Hydrological Modeling in the Xixian Watershed and A Comparison with the XAJ Model  

Science Conference Proceedings (OSTI)

Already declining water availability in Huaihe River, the 6th largest river in China, is further stressed by climate change and intense human activities. There is a pressing need for a watershed model to better understand the interaction between land use activities and hydrologic processes and to support sustainable water use planning. In this study, we evaluated the performance of SWAT for hydrologic modeling in the Xixian River Basin, located at the headwaters of the Huaihe River, and compared its performance with the Xinanjiang (XAJ) model that has been widely used in China

Shi, Peng; Chen, Chao; Srinivasan, Raghavan; Zhang, Xuesong; Cai, Tao; Fang, Xiuqin; Qu, Simin; Chen, Xi; Li, Qiongfang

2011-09-10T23:59:59.000Z

74

Arabic texts analysis for topic modeling evaluation  

Science Conference Proceedings (OSTI)

Significant progress has been made in information retrieval covering text semantic indexing and multilingual analysis. However, developments in Arabic information retrieval did not follow the extraordinary growth of Arabic usage in the Web during the ... Keywords: Arabic stemming, Classification, Linguistic analysis, Test collections, Topic model

Abderrezak Brahmi; Ahmed Ech-Cherif; Abdelkader Benyettou

2012-02-01T23:59:59.000Z

75

Further evaluation of a nitric oxide model  

SciTech Connect

Further verification of a predictive model for nitric oxide formation during turbulent combustion of coal containing fuels has been conducted. Computations for pulverized coal combustion in CO/sub 2/-O/sub 2/ mixtures of various percents have been completed. The predictions NO concentrations compare favorably with experimental measurements. Simulations were also completed for entrained-flow gasification in a laboratory-scale combustor. Again, reasonable agreement is demonstrated by comparing laboratory NO maps to predicted NO concentrations. The effects of pressure on NO concentrations were reliably predicted. Calculations were also completed for air-staged combustion in a one-dimensional, laboratory-scale reactor. In general, the trend of decreasing primary zone stoichiometric ratio and variation in staging air location were correctly predicted. The simplified global mechanism expressions of the NO model appear to sufficiently account for the formation and competing destruction of NO in both fuel-lean and fuel-rich environments for different reactor systems and conditions.

Boardman, R.D.; Smoot, L.D.

1987-01-01T23:59:59.000Z

76

Evaluation of Urban Surface Energy Fluxes Using an Open-Air Scale Model  

Science Conference Proceedings (OSTI)

The thermal behavior of an urban surface is crucial to understand, but it is difficult to predict using conventional measurement or modeling approaches. In this study, an integrated method is proposed for evaluating urban energy exchanges with an ...

D. Pearlmutter; P. Berliner; E. Shaviv

2005-04-01T23:59:59.000Z

77

Evaluating Mesoscale Model Predictions of Clouds and Radiation with SGP ARM Data over a Seasonal Timescale  

Science Conference Proceedings (OSTI)

This study evaluates the predictions of radiative and cloud-related processes of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5). It is based on extensive comparison of ...

Françoise Guichard; David B. Parsons; Jimy Dudhia; James Bresch

2003-05-01T23:59:59.000Z

78

Pricing the Internet - A visual 3-Dimensional Evaluation Model  

E-Print Network (OSTI)

We develop a novel visual approach to evaluating an Internet pricing scheme using a 3Dmetric model, which encompasses the dimensions of technical complexity, economic efficiency and social impact. We review the history of Internet pricing research over the last decade, summarizing the key features of the most significant models, and analyzing and evaluating them using our 3D model. Based on the analysis results, we address and discuss important factors that have inhibited the deployment of the reviewed models and suggest what might be future Internet pricing solutions.

Thuy T.T. Nguyen; Grenville J. Armitage

2003-01-01T23:59:59.000Z

79

Evaluating Single Column Models using an ensemble approach  

NLE Websites -- All DOE Office Websites (Extended Search)

sites at Manus and Nauru. The SCMs of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Bureau of Meteorology (BOM) forecasts model are being evaluated...

80

Evaluating NCEP Eta Model–Derived Data against Observations  

Science Conference Proceedings (OSTI)

Data derived at the National Centers for Environmental Prediction via four-dimensional data assimilation using the Eta Model were evaluated against surface observations from two observational arrays, one located in the semihumid, continental ...

Ismail Yucel; W. James Shuttleworth; James Washburne; Fei Chen

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Evaluation of Statistically Based Cloudiness Parameterizations Used in Climate Models  

Science Conference Proceedings (OSTI)

Existing cloudiness parameterizations based on specified probability distribution functions (PDFs) and large-scale relative humidity (RH) in climate-models are evaluated with data produced from explicit simulations of observed tropical cloud ...

Kuan-Man Xu; David A. Randall

1996-11-01T23:59:59.000Z

82

An evaluation of the ORNL residential energy use model  

E-Print Network (OSTI)

This report provides an evaluation of the architecture, empirical foundation, and applications of the Oak Ridge National Laboratory (ORNL) residential energy use model. A particular effort is made to identify the strengths ...

McFadden, Daniel

1981-01-01T23:59:59.000Z

83

Stochastic computational models for accurate reliability evaluation of logic circuits  

Science Conference Proceedings (OSTI)

As reliability becomes a major concern with the continuous scaling of CMOS technology, several computational methodologies have been developed for the reliability evaluation of logic circuits. Previous accurate analytical approaches, however, have a ... Keywords: fault tolerance, logic circuits, reliability evaluation, stochastic computation, stochastic computational model

Hao Chen; Jie Han

2010-05-01T23:59:59.000Z

84

Extruded Dielectrics for Transmission Cables: Evaluation of Aging Models  

Science Conference Proceedings (OSTI)

One of the tasks proposed at the 2002 EPRI workshop on the aging of extruded transmission cables was to evaluate three recently developed theoretical aging models of electrical insulation. The three models were (1) the Thermodynamic Model of Aging of Extruded Insulation by J.P. Crine; (2) the Space Charge Aging Model by L.A. Dissado, G. Mazzanti, and G.C. Montanari (DMM); and (3) the Electromechanical Aging Model by T.J. Lewis. These three models are considered to be significant improvements over the emp...

2003-12-31T23:59:59.000Z

85

Scoping Study to Evaluate Feasibility of National Databases for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scoping Study to Evaluate Feasibility of National Databases for EM&V Documents and Measure Savings: Appendices Scoping Study to Evaluate Feasibility of National Databases for EM&V...

86

Biomass Reburning: Modeling/Engineering Studies  

SciTech Connect

Reburning is a mature fuel staging NO{sub x} control technology which has been successfully demonstrated at full scale by Energy and Environmental Research Corporation (EER) and others on numerous occasions. Based on chemical kinetic modeling and experimental combustion studies, EER is currently developing novel concepts to improve the efficiency of the basic gas reburning process and to utilize various renewable and waste fuels for NO{sub x} control. This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. Basic and advanced biomass reburning have the potential to achieve 60-90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The scope of work includes modeling studies (kinetic, CFD, and physical modeling), experimental evaluation of slagging and fouling associated with biomass reburning, and economic study of biomass handling requirements. Project participants include: EER, FETC R and D group, Niagara Mohawk Power Corporation and Antares, Inc. Most of the combustion experiments on development of biomass reburning technologies are being conducted in the scope of coordinated SBIR program funded by USDA. The first reporting period (October 1--December 31, 1997) included preparation of project management plan and organization of project kick-off meeting at DOE FETC. The quarterly report briefly describes the management plan and presents basic information about the kick-off meeting.

Vladimir M. Zamansky

1998-01-20T23:59:59.000Z

87

Evaluating Air-Quality Models: Review and Outlook  

Science Conference Proceedings (OSTI)

Over the past decade, much attention has been devoted to the evaluation of air-quality models with emphasis on model performance in predicting the high concentrations that are important in air-quality regulations. This paper stems from our belief ...

J. C. Weil; R. I. Sykes; A. Venkatram

1992-10-01T23:59:59.000Z

88

DEUS Computer Evaluation Model, Volume 1: Program Descriptive Manual  

Science Conference Proceedings (OSTI)

This report presents DEUS, a computer simulation model of duel energy use systems. The model is designed for the evaluation of cogeneration systems and is a useful tool for utilities as well as cogenerators. Volume 1 describes the program methodology and its data base; Volume 2 is a user's manual.

1982-12-01T23:59:59.000Z

89

Study on Data Quality Evaluation of Coal and Gas Outburst  

Science Conference Proceedings (OSTI)

Data quality evaluation is an important part of the process of data mining. This article has build the information quality evaluation index system and evaluation model, determines the quantitative index for each quality dimension, and also demonstrates ... Keywords: coal and gas outburst, data quality, dimension, assessment metadata, data warehousing

Dong Lihong; Hou Yunbing

2010-05-01T23:59:59.000Z

90

The Pantex Process model: Formulations of the evaluation planning module  

SciTech Connect

This paper describes formulations of the Evaluation Planning Module that have been developed since its inception. This module is one of the core algorithms in the Pantex Process Model, a computerized model to support production planning in a complex manufacturing system at the Pantex Plant, a US Department of Energy facility. Pantex is responsible for three major DOE programs -- nuclear weapons disposal, stockpile evaluation, and stockpile maintenance -- using shared facilities, technicians, and equipment. The model reflects the interactions of scheduling constraints, material flow constraints, and the availability of required technicians and facilities.

JONES,DEAN A.; LAWTON,CRAIG R.; LIST,GEORGE FISHER; TURNQUIST,MARK ALAN

1999-12-01T23:59:59.000Z

91

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Speaker(s): James Axley Date: March 12, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro Developments in mathematical models for building air quality and ventilation analysis have changed the way we idealize buildings for purposes of analysis, the way we form system equations to effect the analysis, and the way we solve these equations to realize the analysis. While much has been achieved more is possible. This presentation will review the current state of the art - the building idealizations used, the system equations formed, and the solution methods applied - critically evaluate the completeness, complexity and utility of the most advanced models, and present proposals for future development

92

Evaluation of a Data Assimilation Technique for a Mesoscale Meteorological Model Used for Air Quality Modeling  

Science Conference Proceedings (OSTI)

An observational data assimilation (ODA) technique was evaluated based on both its direct effect on meteorological model fields and its indirect effect on the results of two air quality models that input these meteorological fields: a Lagrangian ...

Takato Umeda; Philip T. Martien

2002-01-01T23:59:59.000Z

93

Evaluation of an in vitro toxicogenetic mouse model for hepatotoxicity  

Science Conference Proceedings (OSTI)

Numerous studies support the fact that a genetically diverse mouse population may be useful as an animal model to understand and predict toxicity in humans. We hypothesized that cultures of hepatocytes obtained from a large panel of inbred mouse strains can produce data indicative of inter-individual differences in in vivo responses to hepato-toxicants. In order to test this hypothesis and establish whether in vitro studies using cultured hepatocytes from genetically distinct mouse strains are feasible, we aimed to determine whether viable cells may be isolated from different mouse inbred strains, evaluate the reproducibility of cell yield, viability and functionality over subsequent isolations, and assess the utility of the model for toxicity screening. Hepatocytes were isolated from 15 strains of mice (A/J, B6C3F1, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, BALB/cByJ, AKR/J, MRL/MpJ, NOD/LtJ, NZW/LacJ, PWD/PhJ and WSB/EiJ males) and cultured for up to 7 days in traditional 2-dimensional culture. Cells from B6C3F1, C57BL/6J, and NOD/LtJ strains were treated with acetaminophen, WY-14,643 or rifampin and concentration-response effects on viability and function were established. Our data suggest that high yield and viability can be achieved across a panel of strains. Cell function and expression of key liver-specific genes of hepatocytes isolated from different strains and cultured under standardized conditions are comparable. Strain-specific responses to toxicant exposure have been observed in cultured hepatocytes and these experiments open new opportunities for further developments of in vitro models of hepatotoxicity in a genetically diverse population.

Martinez, Stephanie M.; Bradford, Blair U. [Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599 (United States); Soldatow, Valerie Y. [Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599 (United States); CellzDirect/Invitrogen (a part of Life Technologies), Durham, NC 27703 (United States); Kosyk, Oksana; Sandot, Amelia [Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599 (United States); Witek, Rafal; Kaiser, Robert; Stewart, Todd; Amaral, Kirsten; Freeman, Kimberly; Black, Chris; LeCluyse, Edward L.; Ferguson, Stephen S. [CellzDirect/Invitrogen (a part of Life Technologies), Durham, NC 27703 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599 (United States)

2010-12-15T23:59:59.000Z

94

Evaluating Error Propagation in Coupled Land–Atmosphere Models  

Science Conference Proceedings (OSTI)

This study examines how land-use errors from the Land Transformation Model (LTM) propagate through to climate as simulated by the Regional Atmospheric Model System (RAMS). The authors conducted five simulations of regional climate over East Africa:...

Bryan Pijanowski; Nathan Moore; Dasaraden Mauree; Dev Niyogi

2011-10-01T23:59:59.000Z

95

Use of Multiple Verification Methods to Evaluate Forecasts of Convection from Hot- and Cold-Start Convection-Allowing Models  

Science Conference Proceedings (OSTI)

This study uses both traditional and newer verification methods to evaluate two 4-km grid-spacing Weather Research and Forecasting Model (WRF) forecasts: a “cold start” forecast that uses the 12-km North American Mesoscale Model (NAM) analysis and ...

Derek R. Stratman; Michael C. Coniglio; Steven E. Koch; Ming Xue

2013-02-01T23:59:59.000Z

96

A hybrid ANP evaluation model for electronic service quality  

Science Conference Proceedings (OSTI)

Previous research has developed evaluation measurement for electronic service quality (e-SQ) but has ignored the interdependence perspective of the criteria and sub-criteria for e-SQ evaluation. Therefore, this study aims to propose a hybrid analytic ... Keywords: Analytic network process (ANP), Consistent fuzzy preference relations method, Electronic service quality (e-SQ)

Tsuen-Ho Hsu; Li-Chu Hung; Jia-Wei Tang

2012-01-01T23:59:59.000Z

97

Nondestructive Evaluation: Cast Austenitic Stainless Steel Study  

Science Conference Proceedings (OSTI)

This report documents the status of a project that was initiated in part to support the Change Initiative associated with the PWR Stainless Steel Nondestructive Evaluation Capability and Performance Demonstration Initiative and also falls in line with a project currently funded through the Electric Power Research Institute EPRI Program on Technology Innovation. This multiyear, multifaceted project addresses important issues dealing with cast stainless steel and other emerging industry needs. The first ob...

2010-12-23T23:59:59.000Z

98

Comparative Evaluation of Generalized River/Reservoir System Models  

E-Print Network (OSTI)

This report reviews user-oriented generalized reservoir/river system models. The terms reservoir/river system, reservoir system, reservoir operation, or river basin management "model" or "modeling system" are used synonymously to refer to computer modeling systems that simulate the storage, flow, and diversion of water in a system of reservoirs and river reaches. Generalized means that a computer modeling system is designed for application to a range of concerns dealing with river basin systems of various configurations and locations, rather than being site-specific customized to a particular system. User-oriented implies the modeling system is designed for use by professional practitioners (model-users) other than the original model developers and is thoroughly tested and well documented. User-oriented generalized modeling systems should be convenient to obtain, understand, and use and should work correctly, completely, and efficiently. Modeling applications often involve a system of several simulation models, utility software products, and databases used in combination. A reservoir/river system model is itself a modeling system, which often serves as a component of a larger modeling system that may include watershed hydrology and river hydraulics models, water quality models, databases and various software tools for managing time series, spatial, and other types of data. Reservoir/river system models are based on volume-balance accounting procedures for tracking the movement of water through a system of reservoirs and river reaches. The model computes reservoir storage contents, evaporation, water supply withdrawals, hydroelectric energy generation, and river flows for specified system operating rules and input sequences of stream inflows and net evaporation rates. The hydrologic period-of-analysis and computational time step may vary greatly depending on the application. Storage and flow hydrograph ordinates for a flood event occurring over a few days may be determined at intervals of an hour or less. Water supply capabilities may be modeled with a monthly time step and several decade long period-of-analysis capturing the full range of fluctuating wet and dry periods including extended drought. Stream inflows are usually generated outside of the reservoir/river system model and provided as input to the model. However, reservoir/river system models may also include capabilities for modeling watershed precipitation-runoff processes to generate inflows to the river/reservoir system. Some reservoir/river system models simulate water quality constituents along with water quantities. Some models include features for economic evaluation of system performance based on cost and benefit functions expressed as a function of flow and storage.

Wurbs, Ralph A.

2005-04-01T23:59:59.000Z

99

Evaluation of Generic EBS Design Concepts and Process Models...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

temperatures and pressures; 4) thermodynamic modeling and database development; 5) Molecular Dynamics (MD) study of clay hydration at ambient and elevated temperatures; and 6)...

100

Evaluating a graphical notation for modelling software development methodologies  

Science Conference Proceedings (OSTI)

This work aims at evaluating a graphical notation for modelling software (and other kinds of) development methodologies, thus demonstrating how useful the graphical aspects can be for sharing knowledge between the people responsible for documenting information ... Keywords: Cognitive dimensions, Graphical notation, Method engineering, Software development methodologies

Kenia Sousa; Jean Vanderdonckt; Brian Henderson-Sellers; Cesar Gonzalez-Perez

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Characterizing Air Toxics Exposure and Risk and Evaluating EPA Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterizing Air Toxics Exposure and Risk and Evaluating EPA Modeling Characterizing Air Toxics Exposure and Risk and Evaluating EPA Modeling Tools for Policy Making Speaker(s): Jennifer Logue Date: October 27, 2009 - 12:00pm Location: 90-3122 The Environmental Protection Agency (EPA) defines air toxics as pollutants that are known or suspected to cause serious health effects. Title III of the 1990 Clean Air Act established 189 chemicals as air toxics or hazardous air pollutants. Large uncertainties still exist regarding exposure, risks, and sources and there has been a heavy reliance on inventories and modeling to determine sources and risks. In January 2002, Carnegie Mellon University in collaboration with the Allegheny County Health Department (ACHD) embarked on a project to investigate air toxics in Allegheny County. This

102

Berkeley Lab Study Evaluates Potential Combined Heat and Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Stadler evaluated an integrated approach that optimizes the adoption of distributed energy resources (DER). This study focused on commercial-sector CHP, especially those...

103

Evaluating climate models: Should we use weather or climate observations?  

Science Conference Proceedings (OSTI)

Calling the numerical models that we use for simulations of climate change 'climate models' is a bit of a misnomer. These 'general circulation models' (GCMs, AKA global climate models) and their cousins the 'regional climate models' (RCMs) are actually physically-based weather simulators. That is, these models simulate, either globally or locally, daily weather patterns in response to some change in forcing or boundary condition. These simulated weather patterns are then aggregated into climate statistics, very much as we aggregate observations into 'real climate statistics'. Traditionally, the output of GCMs has been evaluated using climate statistics, as opposed to their ability to simulate realistic daily weather observations. At the coarse global scale this may be a reasonable approach, however, as RCM's downscale to increasingly higher resolutions, the conjunction between weather and climate becomes more problematic. We present results from a series of present-day climate simulations using the WRF ARW for domains that cover North America, much of Latin America, and South Asia. The basic domains are at a 12 km resolution, but several inner domains at 4 km have also been simulated. These include regions of complex topography in Mexico, Colombia, Peru, and Sri Lanka, as well as a region of low topography and fairly homogeneous land surface type (the U.S. Great Plains). Model evaluations are performed using standard climate analyses (e.g., reanalyses; NCDC data) but also using time series of daily station observations. Preliminary results suggest little difference in the assessment of long-term mean quantities, but the variability on seasonal and interannual timescales is better described. Furthermore, the value-added by using daily weather observations as an evaluation tool increases with the model resolution.

Oglesby, Robert J [ORNL; Erickson III, David J [ORNL

2009-12-01T23:59:59.000Z

104

Evaluation of Black Carbon Estimations in Global Aerosol Models  

DOE Green Energy (OSTI)

We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) from AERONET and OMI retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the range represented by the full set of AeroCom models. Upper tropospheric concentrations of BC mass from the aircraft measurements are suggested to provide a unique new benchmark to test scavenging and vertical dispersion of BC in global models.

Koch, D.; Schulz, M.; Kinne, Stefan; McNaughton, C. S.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, Tami C.; Boucher, Olivier; Chin, M.; Clarke, A. D.; De Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, Richard C.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevag, A.; Klimont, Z.; Kondo, Yutaka; Krol, M.; Liu, Xiaohong; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J.; Perlwitz, Ja; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, O.; Stier, P.; Takegawa, Nobuyuki; Takemura, T.; Textor, C.; van Aardenne, John; Zhao, Y.

2009-11-27T23:59:59.000Z

105

Evaluation of the Surface Climatology over the Conterminous United States in the North American Regional Climate Change Assessment Program Hindcast Experiment Using a Regional Climate Model Evaluation System  

Science Conference Proceedings (OSTI)

Surface air temperature, precipitation, and insolation over the conterminous United States region from the North American Regional Climate Change Assessment Program (NARCCAP) regional climate model (RCM) hindcast study are evaluated using the Jet ...

Jinwon Kim; Duane E. Waliser; Chris A. Mattmann; Linda O. Mearns; Cameron E. Goodale; Andrew F. Hart; Dan J. Crichton; Seth McGinnis; Huikyo Lee; Paul C. Loikith; Maziyar Boustani

2013-08-01T23:59:59.000Z

106

Using ARM TWP Nauru Observations to Evaluate a Simple Thermodynamic Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Using ARM TWP Nauru Observations to Evaluate a Simple Thermodynamic Model Using ARM TWP Nauru Observations to Evaluate a Simple Thermodynamic Model of the Subcloud Layer Under Fair-Weather Cumulus Conditions Albrecht, Bruce University of Miami Kollias, Pavlos Brookhaven National Laboratory Category: Modeling Marine boundary layer clouds are fundamental in regulating the vertical structure of water vapor and entropy in the lowest 2 km of the Earth's atmosphere. The observations from the ARM TWP-Nauru site provide a unique opportunity to study these clouds and the associated boundary layer structure. In this study an atmospheric mixed layer representation of the subcloud layer for application in fair-weather cumulus regimes is used to develop a diagnostic model of the near surface temperature and moisture associated with a given surface temperature and wind speed. This model

107

User evaluation study of passive solar residences  

SciTech Connect

Speculation exists regarding the readiness of various passive techniques for commercialization and the market potential for residential applications. This paper discusses the preliminary findings of a market assessment study designed to document user experiences with passive solar energy. Owners and builders of passive solar homes were interviewed and asked to comment on personal experiences with their homes.

Towle, S.

1980-03-01T23:59:59.000Z

108

Modeling System Development for the Evaluation of Dynamic Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling System Development for the Evaluation of Dynamic Air Quality Modeling System Development for the Evaluation of Dynamic Air Quality Impacts of DER Speaker(s): Robert Van Buskirk Date: January 30, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare A critical challenge for the atmospheric sciences is to understand the anthropogenic impacts on atmospheric chemistry over spatial scales ranging from the urban to the regional, and ultimately to the global, and over corresponding time scales ranging from minutes to weeks and ultimately annual trends. A similar challenge for energy policymakers is to integrate an understanding of impact dynamics into the economic dynamics of energy supply and demand. The challenges of dynamic analysis of emissions impacts from the energy sector have substantially increased with a new

109

Evaluation of land utilization and circulation system in an urban layout : case study, new town of Gandhinagar, India  

E-Print Network (OSTI)

The study evaluates the issues of an Urban Layout in an existing situation of a new town in India and a model is prepared based on the observations. The comparison is made between the existing case and the proposed model. ...

Dabu, Navroz N

1983-01-01T23:59:59.000Z

110

Pattern-Based Evaluation of Coupled Meteorological and Air Quality Models  

Science Conference Proceedings (OSTI)

A novel pattern-based model evaluation technique is proposed and demonstrated for air quality models (AQMs) driven by meteorological model (MM) output. The evaluation technique is applied directly to the MM output; however, it is ultimately used ...

Scott Beaver; Saffet Tanrikulu; Ahmet Palazoglu; Angadh Singh; Su-Tzai Soong; Yiqin Jia; Cuong Tran; Bruce Ainslie; Douw G. Steyn

2010-10-01T23:59:59.000Z

111

Evaluation of 10 Methods for Initializing a Land Surface Model  

Science Conference Proceedings (OSTI)

Improper initialization of numerical models can cause spurious trends in the output, inviting erroneous interpretations of the earth system processes that one wishes to study. In particular, soil moisture memory is considerable, so that accurate ...

M. Rodell; P. R. Houser; A. A. Berg; J. S. Famiglietti

2005-04-01T23:59:59.000Z

112

Application of DSM evaluation studies to utility forecasting and planning  

SciTech Connect

Utilities and their customers have made substantial investments in utility demand-side management (DSM) programs. These DSM programs also represent a substantial electricity resource. DSM program performance has been studied more systematically in recent years than over any previous period. DSM program evaluations are traditionally targeted to meet the program manager`s need for information on program costs and performance and, more recently, to verify savings to regulators for incentive awards and lost revenue recovery. Yet evaluations may also be used to produce results relevant to utility forecasting and planning. Applying evaluation results is especially important for utilities with substantial current and future commitments to acquiring demand-side resources. This report discusses the application of evaluation results to utility forecasting and planning. The report has three objectives. First, we identify what demand forecasters, DSM forecasters, and resource planners want to learn from evaluations. Second, we identify and describe the major obstacles and problems associated with applying evaluation results and illustrate many of these issues through a specific evaluation application exercise. Finally, we suggest approaches for addressing these major problems. The report summarizes results from interviews with utilities, regulators, and consultants to determine how the industry currently applies evaluation results in forecasting and planning. The report also includes results from case studies of Sacramento Municipal Utility District and Southern California Edison Company, utilities with large DSM programs and active evaluation efforts. Finally, we draw on a specific application exercise in which we used a set of impact evaluations to revise a utility DSM forecast.

Baxter, L.W.

1995-02-01T23:59:59.000Z

113

A model for evaluating the social performance of construction waste management  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Scant attention is paid to social performance of construction waste management (CWM). Black-Right-Pointing-Pointer We develop a model for assessing the social performance of CWM. Black-Right-Pointing-Pointer With the model, the social performance of CWM can be quantitatively simulated. - Abstract: It has been determined by existing literature that a lot of research efforts have been made to the economic performance of construction waste management (CWM), but less attention is paid to investigation of the social performance of CWM. This study therefore attempts to develop a model for quantitatively evaluating the social performance of CWM by using a system dynamics (SD) approach. Firstly, major variables affecting the social performance of CWM are identified and a holistic system for assessing the social performance of CWM is formulated in line with feedback relationships underlying these variables. The developed system is then converted into a SD model through the software iThink. An empirical case study is finally conducted to demonstrate application of the model. Results of model validation indicate that the model is robust and reasonable to reflect the situation of the real system under study. Findings of the case study offer helpful insights into effectively promoting the social performance of CWM of the project investigated. Furthermore, the model exhibits great potential to function as an experimental platform for dynamically evaluating effects of management measures on improving the social performance of CWM of construction projects.

Yuan Hongping, E-mail: hpyuan2005@gmail.com [School of Economics and Management, Southwest Jiaotong University, Chengdu 610031 (China)

2012-06-15T23:59:59.000Z

114

Evaluation of the Weather Research and Forecasting model for two frost events  

Science Conference Proceedings (OSTI)

Meso-local-scale weather information could be used as a guideline for crop protection to effectively manage and mitigate the effects of frost damage. The main goal of this study was to evaluate the meso-local-scale weather forecasts from the state-of-the-art ... Keywords: Frost protection, Georgia Automated Environmental Monitoring Network, Temperature prediction, Weather Research and Forecasting model

Thara Prabha; Gerrit Hoogenboom

2008-12-01T23:59:59.000Z

115

An Urban Parameterization for a Global Climate Model. Part I: Formulation and Evaluation for Two Cities  

Science Conference Proceedings (OSTI)

Urbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not ...

K. W. Oleson; G. B. Bonan; J. Feddema; M. Vertenstein; C. S. B. Grimmond

2008-04-01T23:59:59.000Z

116

Decision model for evaluating reactor disposition of excess plutonium  

Science Conference Proceedings (OSTI)

The US Department of Energy is currently considering a range of technologies for disposition of excess weapon plutonium. Use of plutonium fuel in fission reactors to generate spent fuel is one class of technology options. This report describes the inputs and results of decision analyses conducted to evaluate four evolutionary/advanced and three existing fission reactor designs for plutonium disposition. The evaluation incorporates multiple objectives or decision criteria, and accounts for uncertainty. The purpose of the study is to identify important and discriminating decision criteria, and to identify combinations of value judgments and assumptions that tend to favor one reactor design over another.

Edmunds, T.

1995-02-01T23:59:59.000Z

117

Evaluation of chiller modeling approaches and their usability for fault detection  

Science Conference Proceedings (OSTI)

Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Several factors must be considered in model evaluation, including accuracy, training data requirements, calibration effort, generality, and computational requirements. All modeling approaches fall somewhere between pure first-principles models, and empirical models. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression air conditioning units, which are commonly known as chillers. Three different models were studied: two are based on first-principles and the third is empirical in nature. The first-principles models are the Gordon and Ng Universal Chiller model (2nd generation), and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles. The DOE-2 chiller model as implemented in CoolTools{trademark} was selected for the empirical category. The models were compared in terms of their ability to reproduce the observed performance of an older chiller operating in a commercial building, and a newer chiller in a laboratory. The DOE-2 and Gordon-Ng models were calibrated by linear regression, while a direct-search method was used to calibrate the Toolkit model. The ''CoolTools'' package contains a library of calibrated DOE-2 curves for a variety of different chillers, and was used to calibrate the building chiller to the DOE-2 model. All three models displayed similar levels of accuracy. Of the first principles models, the Gordon-Ng model has the advantage of being linear in the parameters, which allows more robust parameter estimation methods to be used and facilitates estimation of the uncertainty in the parameter values. The ASHRAE Toolkit Model may have advantages when refrigerant temperature measurements are also available. The DOE-2 model can be expected to have advantages when very limited data are available to calibrate the model, as long as one of the previously identified models in the CoolTools library matches the performance of the chiller in question.

Sreedharan, Priya

2001-05-01T23:59:59.000Z

118

Seeding simulated queries with user-study data forpersonal search evaluation  

Science Conference Proceedings (OSTI)

In this paper we perform a lab-based user study (n=21) of email re-finding behaviour, examining how the characteristics of submitted queries change in different situations. A number of logistic regression models are developed on the query data to explore ... Keywords: email re-finding, evaluation, personal search, user study

David Elsweiler; David E. Losada; José C. Toucedo; Ronald T. Fernandez

2011-07-01T23:59:59.000Z

119

DEVELOPMENT AND EVALUATION OF FLEXIBLE, MULTIZONE MULTIFAMILY BUILDING SIMULATION MODEL  

SciTech Connect

Since 2011, Oak Ridge National Laboratory (ORNL) has been developing a multifamily building energy audit tool sponsored by U.S. Department of Energy (DOE) Weatherization program. Although weatherization of multifamily buildings is gaining increased attention in the U.S, available energy audit tools for multifamily buildings were found to need desirable improvements. On the wish list of field experts was the basic ability to model multizone buildings (i.e., one thermal zone per dwelling unit) with simplified user inputs, which allows a better analysis of decentralized and centralized HVAC and domestic hot water systems of multifamily buildings without having to create detailed building models. This paper describes detailed procedure of evaluation of the tool to perform an energy analysis in an existing multifamily building.

Im, Piljae [ORNL; Malhotra, Mini [ORNL

2013-01-01T23:59:59.000Z

120

DETERMINATION OF IMPORTANCE EVALUATION FOR THE SUBSURFACE EXPORATORY STUDIES FACILITY  

Science Conference Proceedings (OSTI)

This Determination of Importance Evaluation (DIE) applies to the Subsurface Exploratory Studies Facility (ESF), encompassing the Topopah Spring (TS) Loop from Station 0+00 meters (m) at the North Portal to breakthrough at the South Portal (approximately 78+77 m), the Enhanced Characterization of the Repository Block (ECRB) East-West Cross Drift Starter Tunnel (to approximate ECRB Station 0+26 m), and ancillary test and operation support areas in the TS Loop. This evaluation applies to the construction, operation, and maintenance of these excavations. A more detailed description of these items is provided in Section 6.0. Testing activities are not evaluated in this DIE. Certain construction activities with respect to testing activities are evaluated; but the testing activities themselves are not evaluated. The DIE for ESF Subsurface Testing Activities (BAJ3000000-01717-2200-00011 Rev 01) (CRWMS M&O 1998a) evaluates Subsurface ESF Testing activities. The construction, operation, and maintenance of the TS Loop niches and alcove slot cuts is evaluated herein and is also discussed in CRWMS M&O 1998a. The construction, operation, and maintenance of the Busted Butte subsurface test area in support of the Unsaturated Zone (UZ) Transport Test is evaluated in CRWMS M&O 1998a. Potential test-to-test interference and the waste isolation impacts of testing activities are evaluated in the ESF Subsurface Testing Activities DIE and other applicable evaluation(s) for the Job Package (JP), Test Planning Package (TPP), and/or Field Work Package (FWP). The objectives of this DIE are to determine whether the Subsurface ESF TS Loop and associated excavations, including activities associated with their construction and operation, potentially impact site characterization testing or the waste isolation capabilities of the site. Controls needed to limit any potential impacts are identified. The validity and veracity of the individual tests, including data collection, are the responsibility of the assigned Principal Investigator(s) (PIs) and are not evaluated in this DIE.

W.J. Clark

1999-06-28T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Aircraft Measurements of Power Plant Plumes During CCOS and Their Use for the Evaluation of the SCICHEM Model  

Science Conference Proceedings (OSTI)

This report describes aircraft measurements of power plant plumes during the Central California Ozone Study (CCOS) in July and August 2002 and use of those measurements to evaluate the Second-order Closure Integrated puff model (SCIPUFF) with CHEMistry (SCICHEM).

2003-03-05T23:59:59.000Z

122

Evaluation of a Conjunctive Surface–Subsurface Process Model (CSSP) over the Contiguous United States at Regional–Local Scales  

Science Conference Proceedings (OSTI)

This study presents a comprehensive evaluation on a Conjunctive Surface–Subsurface Process Model (CSSP) in predicting soil temperature–moisture distributions, terrestrial hydrology variations, and land–atmosphere exchanges against various in situ ...

Xing Yuan; Xin-Zhong Liang

2011-08-01T23:59:59.000Z

123

A diagnostic evaluation of precipitation in CORDEX models over southern Africa  

Science Conference Proceedings (OSTI)

We evaluate the ability of ten regional climate models (RCMs) to simulate precipitation over southern Africa within the CORDEX framework. An ensemble of ten regional climate simulations and the ensemble average is analysed to evaluate the model's ...

Evangelia-Anna Kalognomou; Christopher Lennard; Mxolisi Shongwe; Izidine Pinto; Alice Favre; Michael Kent; Bruce Hewitson; Alessandro Dosio; Grigory Nikulin; Hans-Jürgen Panitz; Matthias Büchner

124

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the ninth reporting period (September 27--December 31, 1999), EER prepared a paper Kinetic Model of Biomass Reburning and submitted it for publication and presentation at the 28th Symposium (International) on Combustion, University of Edinburgh, Scotland, July 30--August 4, 2000. Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. A preliminary report is included in this quarterly report.

Vladimir Zamansky; Chris Lindsey; Vitali Lissianski

2000-01-28T23:59:59.000Z

125

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

SciTech Connect

This project is designed to develop engineering and modeling tools for a family of NO{sub x}control technologies utilizing biomass as a reburning fuel. During the eighth reporting period (July 1--September 26, 1999), Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. This report includes summary of the findings; complete information will be submitted in the next Quarterly Report.

Vladimir Zamansky; Chris Lindsey

1999-10-29T23:59:59.000Z

126

EMPIRE: Nuclear Reaction Model Code System for Data Evaluation  

SciTech Connect

EMPIRE is a modular system of nuclear reaction codes, comprising various nuclear models, and designed for calculations over a broad range of energies and incident particles. A projectile can be a neutron, proton, any ion (including heavy-ions) or a photon. The energy range extends from the beginning of the unresolved resonance region for neutron-induced reactions ({approx} keV) and goes up to several hundred MeV for heavy-ion induced reactions. The code accounts for the major nuclear reaction mechanisms, including direct, pre-equilibrium and compound nucleus ones. Direct reactions are described by a generalized optical model (ECIS03) or by the simplified coupled-channels approach (CCFUS). The pre-equilibrium mechanism can be treated by a deformation dependent multi-step direct (ORION + TRISTAN) model, by a NVWY multi-step compound one or by either a pre-equilibrium exciton model with cluster emission (PCROSS) or by another with full angular momentum coupling (DEGAS). Finally, the compound nucleus decay is described by the full featured Hauser-Feshbach model with {gamma}-cascade and width-fluctuations. Advanced treatment of the fission channel takes into account transmission through a multiple-humped fission barrier with absorption in the wells. The fission probability is derived in the WKB approximation within the optical model of fission. Several options for nuclear level densities include the EMPIRE-specific approach, which accounts for the effects of the dynamic deformation of a fast rotating nucleus, the classical Gilbert-Cameron approach and pre-calculated tables obtained with a microscopic model based on HFB single-particle level schemes with collective enhancement. A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers, moments of inertia and {gamma}-ray strength functions. The results can be converted into ENDF-6 formatted files using the accompanying code EMPEND and completed with neutron resonances extracted from the existing evaluations. The package contains the full EXFOR (CSISRS) library of experimental reaction data that are automatically retrieved during the calculations. Publication quality graphs can be obtained using the powerful and flexible plotting package ZVView. The graphic user interface, written in Tcl/Tk, provides for easy operation of the system. This paper describes the capabilities of the code, outlines physical models and indicates parameter libraries used by EMPIRE to predict reaction cross sections and spectra, mainly for nucleon-induced reactions. Selected applications of EMPIRE are discussed, the most important being an extensive use of the code in evaluations of neutron reactions for the new US library ENDF/B-VII.0. Future extensions of the system are outlined, including neutron resonance module as well as capabilities of generating covariances, using both KALMAN and Monte-Carlo methods, that are still being advanced and refined.

Herman, M. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)], E-mail: mwherman@bnl.gov; Capote, R. [Nuclear Data Section, International Atomic Energy Agency, Wagramer Strasse, A-1400 Vienna (Austria); Carlson, B.V. [Departamento de Fisica, Instituto Tecnologico de Aeronautica, 12228-900, SP, Sao Jose dos Campos (Brazil); Oblozinsky, P. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Sin, M. [Nuclear Physics Department, Bucharest University, P.O. Box MG-11, Bucharest-Magurele (Romania); Trkov, A. [Jozef Stefan Institute, Reactor Physics Division R-1, Jamova 39, 1000 Ljubljana (Slovenia); Wienke, H. [Belgonucleaire, Dessel, B2480 (Belgium); Zerkin, V. [Nuclear Data Section, International Atomic Energy Agency, Wagramer Strasse, A-1400 Vienna (Austria)

2007-12-15T23:59:59.000Z

127

A Modeling Study of the Dryline  

Science Conference Proceedings (OSTI)

Results of a modeling study of the 24 May 1989 dryline are presented. A nonhydrostatic, two-dimensional version of the Colorado State University Regional Atmospheric Modeling System (CSU-RAMS) is used to deduce the impact of east-west variability ...

Conrad L. Ziegler; William J. Martin; Roger A. Pielke; Robert L. Walko

1995-01-01T23:59:59.000Z

128

Modeling flow and transport in unsaturated fractured rock: An evaluation of the continuum approach  

Science Conference Proceedings (OSTI)

Because the continuum approach is relatively simple and straightforward to implement, it has been commonly used in modeling flow and transport in unsaturated fractured rock. However, the usefulness of this approach can be questioned in terms of its adequacy for representing fingering flow and transport in unsaturated fractured rock. The continuum approach thus needs to be evaluated carefully by comparing simulation results with field observations directly related to unsaturated flow and transport processes. This paper reports on such an evaluation, based on a combination of model calibration and prediction, using data from an infiltration test carried out in a densely fractured rock within the unsaturated zone of Yucca Mountain, Nevada. Comparisons between experimental and modeling results show that the continuum approach may be able to capture important features of flow and transport processes observed from the test. The modeling results also show that matrix diffusion may have a significant effect on the overall transport behavior in unsaturated fractured rocks, which can be used to estimate effective fracture-matrix interface areas based on tracer transport data. While more theoretical, numerical, and experimental studies are needed to provide a conclusive evaluation, this study suggests that the continuum approach is useful for modeling flow and transport in unsaturated, densely fractured rock.

Liu, Hui-Hai; Haukwa, Charles B.; Ahlers, C. Fredrik; Bodvarsson, Gudmundur S.; Flint, Alan L.; Guertal, William B.

2002-09-01T23:59:59.000Z

129

Fuzzy Comprehensive Evaluation Model and Influence Factors Analysis on Comprehensive Performance of Green Buildings  

E-Print Network (OSTI)

A green building involves complex system engineering including energy efficiency and energy utilization, water-saving and water utilization, material-saving and material utilization, and land-saving and indoor environment quality and operation management. In order to solve problems of subjectivity, uncertainty and impossibility of quantitative analysis when evaluating green building, this study establishes a multi-level fuzzy evaluation model by means of fuzzy mathematics method to analyze the comprehensive performance of green building according to the index system of “Evaluation Standard for Green Building”. Combined with the technique scheme of the first China green building demonstration project, the result proves to be in accordance with the pre-evaluation of experts. It shows that the fuzzy comprehensive evaluation method is reasonable and feasible to evaluate the comprehensive performance of green building. The evaluation result is the same as the pre-evaluation result. Factors with high weights have larger effects on the results. This proves that the guideline should be the first reference mode in the future engineering practice so as to realize optimization of green building performance.

Sun, J.; Wu, Y.; Dai, Z.; Hao, Y.

2006-01-01T23:59:59.000Z

130

Integrated Numerical Modeling Process for Evaluating Automobile Climate Control Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

FCC-70 FCC-70 Integrated Numerical Modeling Process for Evaluating Automobile Climate Control Systems John Rugh National Renewable Energy Laboratory Copyright © 2002 Society of Automotive Engineers, Inc. ABSTRACT The air-conditioning (A/C) system compressor load can significantly impact the fuel economy and tailpipe emissions of conventional and hybrid electric automobiles. With the increasing emphasis on fuel economy, it is clear that the A/C compressor load needs to be reduced. In order to accomplish this goal, more efficient climate control delivery systems and reduced peak soak temperatures will be necessary to reduce the impact of vehicle A/C systems on fuel economy and tailpipe emissions. Good analytical techniques are important in identifying promising concepts. The goal at

131

Modelling Chinese Smart Grid: A Stochastic Model Checking Case Study  

E-Print Network (OSTI)

Cyber-physical systems integrate information and communication technology functions to the physical elements of a system for monitoring and controlling purposes. The conversion of traditional power grid into a smart grid, a fundamental example of a cyber-physical system, raises a number of issues that require novel methods and applications. In this context, an important issue is the verification of certain quantitative properties of the system. In this technical report, we consider a specific Chinese Smart Grid implementation and try to address the verification problem for certain quantitative properties including performance and battery consumption. We employ stochastic model checking approach and present our modelling and analysis study using PRISM model checker.

Yüksel, Ender; Nielson, Flemming; Zhu, Huibiao; Huang, Heqing

2012-01-01T23:59:59.000Z

132

Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation  

SciTech Connect

This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

Robertson, J.; Polly, B.; Collis, J.

2013-09-01T23:59:59.000Z

133

Using a scalable modeling and simulation framework to evaluate the benefits of intelligent transportation systems.  

SciTech Connect

A scalable, distributed modeling and simulation framework has been developed at Argonne National Laboratory to study Intelligent Transportation Systems. The framework can run on a single-processor workstation, or run distributed on a multiprocessor computer or network of workstations. The framework is modular and supports plug-in models, hardware, and live data sources. The initial set of models currently includes road network and traffic flow, probe and smart vehicles, traffic management centers, communications between vehicles and centers, in-vehicle navigation systems, roadway traffic advisories. The modeling and simulation capability has been used to examine proposed ITS concepts. Results are presented from modeling scenarios from the Advanced Driver and Vehicle Advisory Navigation Concept (ADVANCE) experimental program to demonstrate how the framework can be used to evaluate the benefits of ITS and to plan future ITS operational tests and deployment initiatives.

Ewing, T.; Tentner, A.

2000-03-21T23:59:59.000Z

134

Field Artillery Ammunition Processing System (FAAPS) concept evaluation study  

SciTech Connect

The Field Artillery Ammunition Processing System (FAAPS) is an initiative to introduce a palletized load system (PLS) that is transportable with an automated ammunition processing and storage system for use on the battlefield. System proponents have targeted a 20% increase in the ammunition processing rate over the current operation while simultaneously reducing the total number of assigned field artillery battalion personnel by 30. The overall objective of the FAAPS Project is the development and demonstration of an improved process to accomplish these goals. The initial phase of the FAAPS Project and the subject of this study is the FAAPS concept evaluation. The concept evaluation consists of (1) identifying assumptions and requirements, (2) documenting the process flow, (3) identifying and evaluating technologies available to accomplish the necessary ammunition processing and storage operations, and (4) presenting alternative concepts with associated costs, processing rates, and manpower requirements for accomplishing the operation. This study provides insight into the achievability of the desired objectives.

Kring, C.T.; Babcock, S.M.; Watkin, D.C.; Oliver, R.P.

1992-06-01T23:59:59.000Z

135

The Aerosol Modeling Testbed: A community tool to objectively evaluate aerosol process modules  

SciTech Connect

This study describes a new modeling paradigm that significantly advances how the third activity is conducted while also fully exploiting data and findings from the first two activities. The Aerosol Modeling Testbed (AMT) is a computational framework for the atmospheric sciences community that streamlines the process of testing and evaluating aerosol process modules over a wide range of spatial and temporal scales. The AMT consists of a fully-coupled meteorology-chemistry-aerosol model, and a suite of tools to evaluate the performance of aerosol process modules via comparison with a wide range of field measurements. The philosophy of the AMT is to systematically and objectively evaluate aerosol process modules over local to regional spatial scales that are compatible with most field campaigns measurement strategies. The performance of new treatments can then be quantified and compared to existing treatments before they are incorporated into regional and global climate models. Since the AMT is a community tool, it also provides a means of enhancing collaboration and coordination among aerosol modelers.

Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Easter, Richard C.; Rishel, Jeremy P.; Zaveri, Rahul A.; Grell, Georg; Barth, Mary

2011-03-02T23:59:59.000Z

136

Evaluating a Hybrid Prognostic–Diagnostic Model That Improves Wind Forecast Resolution in Complex Coastal Topography  

Science Conference Proceedings (OSTI)

The results from a hybrid approach that combines the forecasts of a mesoscale model with a diagnostic wind model to produce high-resolution wind forecasts in complex coastal orography are evaluated. The simple diagnostic wind model [Winds on ...

Francis L. Ludwig; Douglas K. Miller; Shawn G. Gallaher

2006-01-01T23:59:59.000Z

137

Peaceful Uses Bona Fides: Criteria for Evaluation and Case Studies  

Science Conference Proceedings (OSTI)

This study applies a set of indicators to assess the peaceful nature of a state’s nuclear program. Evaluation of a country’s nuclear program relative to these indicators can help the international community to take appropriate actions to ensure that the growth of the global nuclear energy industry proceeds peacefully and to minimize nuclear proliferation risks.

Ajemian, Chris K.; Hazel, Mike; Kessler, Carol E.; Mathews, Carrie E.; Morris, Fred A.; Seward, Amy M.; Peterson, Danielle J.; Smith, Brian W.

2007-06-06T23:59:59.000Z

138

MODELING AND STUDY OF THE CERENKOV EFFECT  

E-Print Network (OSTI)

The studies realized in INRNE (Institute for Nuclear Research and Nuclear Energy) particulary in cosmic rays detection and construction of Muonic Cerenkov Telescope in University of Blagoevgrad [1] shows the need to develop a theoretical model based on observed phenomenon and to refine it for the detection system optimisation. The effect was introduced in EGS4 [2] code system. The first simulations were consecrated to different geometry’s of water tank in total reflection. The model was compared with experimental data realised with gamma source 60 Co using the telescope. A simple atmospheric model is introduced in EGS4. The comparison between CORSIKA [3] and EGS4 codes was realised.

I. Angelov C; E. Duverger A; L. Makovicka A; A. Mishev B; J. Stamenov B

2003-01-01T23:59:59.000Z

139

EERE Guide for Managing General Program Evaluation Studies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EERE Guide for Managing EERE Guide for Managing General Program Evaluation Studies Getting the Information You Need Prepared for the Office of Energy Efficiency and Renewable Energy (EERE) Office of Planning, Budget and Analysis Principal Author, Harley Barnes, Lockheed Martin Aspen Lead Contractor, Gretchen Jordan, Sandia National Laboratories February 2006 Acknowledgments This Guide for Managing General Program Evaluations (Guide) was completed for the U.S. Department of Energy (DOE) by Sandia National Laboratories, Albuquerque, New Mexico, USA under Contract DE-AC04-94AL8500. Sandia is operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. Gretchen Jordan, Sandia National Laboratories, was the lead contractor for the development of

140

Fast prediction and evaluation of gravitational waveforms using surrogate models  

E-Print Network (OSTI)

[Abridged] We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and in more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced-order model that can be used as a surrogate for the true/fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant. Third, a fit in the parameter dimension is performed for the waveform's value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order m L + m c_f online operations where c_f denotes the fitting function operation count and, typically, m cost of generating EOB waveforms in standard ways. Surrogate model building for other waveform models follow the same steps and have the same low online scaling cost. For expensive numerical simulations of binary black hole coalescences we thus anticipate extremely large speedups in generating new waveforms with a surrogate. As waveform generation is one of the dominant costs in parameter estimation algorithms and parameter space exploration, surrogate models offer a new and practical way to dramatically accelerate such studies without impacting accuracy.

Scott E. Field; Chad R. Galley; Jan S. Hesthaven; Jason Kaye; Manuel Tiglio

2013-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Intercomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model intercomparison experiment  

E-Print Network (OSTI)

of the climatology of the West African Monsoon in theWest African Monsoon Modeling and Evaluation project (the West African Monsoon (WAM) Modeling and Evaluation

2010-01-01T23:59:59.000Z

142

Model of usability evaluation of web portals based on the fuzzy logic  

Science Conference Proceedings (OSTI)

This paper presents a model of usability evaluation based on fuzzy logic which results from a need to establish a common approach to deal with the usability evaluation of various kinds of systems. The model definition arises from the methodology of fuzzy ... Keywords: fuzzy logic, software engineering, usability, usability engineering, usability evaluation

Miloslav Hub; Michal Zatloukal

2010-04-01T23:59:59.000Z

143

An Evaluation of the MM5, RAMS, and Meso-Eta Models at Subkilometer Resolution Using VTMX Field Campaign Data in the Salt Lake Valley  

Science Conference Proceedings (OSTI)

This study presents what is, to the authors' knowledge, the first intercomparison and evaluation of three state-of-the-art mesoscale numerical models, the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MMS), the Regional ...

Shiyuan Zhong; Jerome Fast

2003-07-01T23:59:59.000Z

144

Case Study Impact Evaluations of the Industrial Energy Savings Plan  

E-Print Network (OSTI)

This paper presents the results of a series of five case study impact evaluations of Energy Savings Plan (ESP) industrial energy efficiency projects funded by the Bonneville Power Administration (BPA) and Seattle City Light (City Light). These industrial sector evaluations are among the first in the Pacific Northwest to evaluate both energy and non-energy effects. The projects chosen for evaluation cover a wide range of industrial processes and end-uses. Each industrial setting, the efficiency measures installed and the processes affected are described in this paper. The report presents energy (kWh) and peak demand (kW) savings indexed to changes in production volume, an assessment of non-energy benefits to the participating customer, and cost-effectiveness analyses from four stakeholder perspectives. Levelized cost (expressed in cents per kWh) and benefit-cost ratios were calculated for each project, both including and excluding quantifiable energy non-energy benefits. A summary of conclusions and lessons learned is also provided. The evaluation team included Patrick Lilly of Regional Economic Research Inc., Paresh Parekh of Unicade Inc., D'Arcy Swanson of Pacific Sciences Inc., and Dennis Pearson at Seattle City Light.

Lilly, P.; Pearson, D.

1999-05-01T23:59:59.000Z

145

A Method of Evaluating Atmospheric Models Using Tracer Measurements  

Science Conference Proceedings (OSTI)

The authors have developed a method that uses tracer measurements as the basis for comparing and evaluating wind fields. An important advantage of the method is that the wind fields are evaluated from the tracer measurements without introducing ...

Darko Kora?in; James Frye; Vlad Isakov

2000-02-01T23:59:59.000Z

146

SM CMM Model to Evaluate and Improve the Quality of Software Maintenance Process: Overview of the model  

E-Print Network (OSTI)

technology transfer to the industry at large. The inadequate share of management attention that The software maintenance function suffers from a scarcity of management models that would facilitate its evaluation, management and continuous improvement. This paper presents a revised version of a maintenance-specific evaluation model: Software Maintenance Capability Maturity Model (SM CMM). This model adopts a similar structure and should be used as a complement to the CMMi © 1 (Capability

Alain April; Alain Abran; Reiner R. Dumke; Carnegie Mellon

2004-01-01T23:59:59.000Z

147

Process modeling study of the CIF incinerator  

SciTech Connect

The Savannah River Site (SRS) plans to begin operating the Consolidated Incineration Facility (CIF) in 1996. The CIF will treat liquid and solid low-level radioactive, mixed and RCRA hazardous wastes generated at SRS. In addition to experimental test programs, process modeling was applied to provide guidance in areas of safety, environmental regulation compliances, process improvement and optimization. A steady-state flowsheet model was used to calculate material/energy balances and to track key chemical constituents throughout the process units. Dynamic models were developed to predict the CIF transient characteristics in normal and abnormal operation scenarios. Predictions include the rotary kiln heat transfer, dynamic responses of the CIF to fluctuations in the solid waste feed or upsets in the system equipments, performance of the control system, air inleakage in the kiln, etc. This paper reviews the modeling study performed to assist in the deflagration risk assessment.

Hang, T.

1995-02-01T23:59:59.000Z

148

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The sixth reporting period (January 1--March 31, 1999) included CFD modeling and assessment of available experimental and modeling data on biomass reburning. Experimental and modeling data obtained within scope of this and Phase II SBIR USDA projects were reviewed and analyzed. This work was necessary to summarize available data and to make decision about additional efforts that are necessary for successful completion of the DOE FETC project. These efforts resulted in preparation of the paper entitled ''Kinetic Study of Biomass Reburning'' which was presented at the 1999 Joint Meeting of the United States Sections of the Combustion Institute. The paper is included in Attachment A.

Vitali V. Lissianski; Vladimir M. Zamansky

1999-04-29T23:59:59.000Z

149

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

SciTech Connect

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The sixth reporting period (January 1--March 31, 1999) included CFD modeling and assessment of available experimental and modeling data on biomass reburning. Experimental and modeling data obtained within scope of this and Phase II SBIR USDA projects were reviewed and analyzed. This work was necessary to summarize available data and to make decision about additional efforts that are necessary for successful completion of the DOE FETC project. These efforts resulted in preparation of the paper entitled ''Kinetic Study of Biomass Reburning'' which was presented at the 1999 Joint Meeting of the United States Sections of the Combustion Institute. The paper is included in Attachment A.

Vitali V. Lissianski; Vladimir M. Zamansky

1999-04-29T23:59:59.000Z

150

Participant evaluation results for two indoor air quality studies  

SciTech Connect

After two surveys for indoor air pollutants (radon and other chemicals) the homeowners were surveyed for their reactions. The results of these participant evaluation surveys, assuming that the participants that responded to the survey were representative, indicate that homeowners will accept a significant level of monitoring activity as part of an indoor air quality field study. Those participants completing surveys overwhelmingly enjoyed being in the studies and would do it again. We believe that the emphasis placed on positive homeowner interactions and efforts made to inform participants throughout our studies were positive factors in this result. There was no substantial differences noted in the responses between the 70-house study, which included a homeowner compensation payment of $100, and the 300-house study, which did not include a compensation payment. These results provide encouragement to conduct future complex, multipollutant indoor air quality studies when they are scientifically sound and cost effective.

Hawthorne, A.R.; Dudney, C.S.; Cohen, M.A.; Spengler, J.D.

1987-01-01T23:59:59.000Z

151

Evaluations of Diagnostic Marine Boundary-Layer Models Applied to Hurricanes  

Science Conference Proceedings (OSTI)

Four diagnostic marine boundary-layer models are evaluated for applicability to the hurricane regime. The goat was to develop an operational method of estimating surface variables with research aircraft flight-level (500 m) data. Evaluation ...

Mark D. Powell

1980-06-01T23:59:59.000Z

152

Evaluation of Urban Air Quality Models for Regulatory Use: Refinement of an Approach  

Science Conference Proceedings (OSTI)

Statistical measures for evaluating the performance of urban air quality models have recently been strongly recommended by several investigators. Problems that were encountered in the use of recommended performance measures in an evaluation of ...

Mary W. Downton; Robin L. Dennis

1985-02-01T23:59:59.000Z

153

Evaluation of deltamethrin kinetics and dosimetry in the maturing rat using a PBPK model  

Science Conference Proceedings (OSTI)

Immature rats are more susceptible than adults to the acute neurotoxicity of pyrethroid insecticides like deltamethrin (DLM). A companion kinetics study (Kim et al., in press) revealed that blood and brain levels of the neuroactive parent compound were inversely related to age in rats 10, 21, 40 and 90 days old. The objective of the current study was to modify a physiologically based pharmacokinetic (PBPK) model of DLM disposition in the adult male Sprague-Dawley rat (Mirfazaelian et al., 2006), so blood and target organ dosimetry could be accurately predicted during maturation. Age-specific organ weights and age-dependent changes in the oxidative and hydrolytic clearance of DLM were modeled with a generalized Michaelis-Menten model for growth and the summary equations incorporated into the PBPK model. The model's simulations compared favorably with empirical DLM time-courses in plasma, blood, brain and fat for the four age-groups evaluated (10, 21, 40 and 90 days old). PND 10 pups' area under the 24-h brain concentration time curve (AUC{sub 0-24h}) was 3.8-fold higher than that of the PND 90 adults. Our maturing rat PBPK model allows for updating with age- and chemical-dependent parameters, so pyrethroid dosimetry can be forecast in young and aged individuals. Hence, this model provides a methodology for risk assessors to consider age-specific adjustments to oral Reference Doses on the basis of PK differences.

Tornero-Velez, Rogelio, E-mail: tornero-velez.rogelio@epa.go [National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Mirfazaelian, Ahmad, E-mail: amirfazaelian@gmail.co [Department of Chemical Injuries, Baghiatallah University of Medical Sciences, Tehran (Iran, Islamic Republic of); Kim, Kyu-Bong, E-mail: kimkb@rx.uga.ed [Department of Pharmaceutical Engineering, College of Engineering, Inje University, Obang-dong, Gimhae, Gyungnam 621-749 (Korea, Republic of); Anand, Sathanandam S., E-mail: satheesh.s.anand@usa.dupont.co [Dupont Haskell Global Centers for Health and Environmental Sciences, 1090 Elkton Road, Newark, DE 19714 (United States); Kim, Hyo J., E-mail: hyokimm@yahoo.co.k [Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352 (United States); Haines, Wendy T., E-mail: toxicology@unc.ed [Curriculum in Toxicology, University of North Carolina, Chapel Hill, CB 7270, NC 27599-7270 (United States); Bruckner, James V., E-mail: bruckner@rx.uga.ed [Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352 (United States); Fisher, Jeffrey W., E-mail: jwfisher@uga.ed [Department of Environmental Health, College of Public Health, University of Georgia, Athens, GA 30602 (United States)

2010-04-15T23:59:59.000Z

154

Using Micro-Simulation Modeling to Evaluate Transit Signal Priority in Small-to-Medium Sized Urban Areas; Comparative Review of VISSIM and S-Paramics Burlington, Vermont Case Study.  

E-Print Network (OSTI)

??With many advances in transportation technology, micro-simulation models have proven to be a useful tool in transportation engineering alternative analyses. Micro-simulation software packages can be… (more)

Tyros, Joseph C

2012-01-01T23:59:59.000Z

155

Evaluation of the existing performance models used for pavement management by the Texas Department of Transportation  

E-Print Network (OSTI)

The pavement management information system (PMIS) and hics. the flexible pavement design software, FPS-19, used by the Texas Department of Transportation (TxDOT) for pavement management at network and project level respectively, generally do not give the same answer when the same set of data are used. This thesis is a part of the study to develop an approach for integrating pavement management systems at the two levels. The objective of the study is to identify which performance models were working satisfactorily and which needed to be modified. The performance models for ride quality (serviceability index for FPS-19), shallow rutting, deep rutting, and alligator cracking, which are the fundamental performance measures of the flexible pavements, were selected for evaluation. From the family of flexible pavements, the newly constructed pavements with untreated base were considered in the evaluation. A sensitivity analysis was performed to determine the relative importance of the input variables to FPS-I9 program. To reduce the number of problems to a manageable size, a one factor at a time approach was used. The F-statistics corresponding to the relevant input variables were used to determine the ranks. It was found that reliability level is the most important factor in FPS-19, followed by twenty-year projected axle repetition (ESAL). A research database was created by extracting data from the Long Term Pavement Performance (LTPP) database for pavement sections in Texas. A11 data items except rutting data were extracted using the software, Database 97. Rutting data was obtained from the LTPP regional office. Data from sixteen pavement sections were available for the evaluation. Elastic moduli of pavement layers and subgrades were back-calculated using MODULUS software. The selected performance models were evaluated using trend analyses, statistical hypotheses tests, percent difference, and estimated reliability. Due to the lack of data, all members of the performance model families could not be checked. It was observed that none of the selected performance models of PMIS and FPS-I9 is predicting the values observed at the LTPP sites though some of them are predicting better than others. Therefore, improvements are recommended for all the evaluated performance models.

Mukherjee, Biswajit

1998-01-01T23:59:59.000Z

156

The ICF, Inc. coal and electric utilities model : an analysis and evaluation  

E-Print Network (OSTI)

v.1. The Electric Power Research Institute (EPRI) is sponsoring a series of evaluations of important energy policy and electric utility industry models by the MIT Energy Model Analysis Program (EMAP). The subject of this ...

Wood, David O.

1981-01-01T23:59:59.000Z

157

Evaluation of Northern Hemisphere Blocking Climatology in the Global Environment Multiscale Model  

Science Conference Proceedings (OSTI)

The performance of the Global Environmental Multiscale (GEM) model, the Canadian operational numerical model, in reproducing atmospheric low-frequency variability is evaluated in the context of Northern Hemisphere blocking climatology. The ...

Etienne Dunn-Sigouin; Seok-Woo Son; Hai Lin

2013-02-01T23:59:59.000Z

158

Evaluation of Modeled Stratocumulus-Capped Boundary Layer Turbulence with Ship-Borne Data  

Science Conference Proceedings (OSTI)

Numerically modeled turbulence simulated by the Advanced Research WRF model is evaluated with turbulence measurements from NOAA’s high resolution Doppler lidar on the NOAA Research Vessel Ronald H. Brown during the VOCALS-REx field program. A non-...

Takanobu Yamaguchi; W. Alan Brewer; Graham Feingold

159

Estimating Demand Response Load Impacts: Evaluation of Baseline Load Models for Non-  

E-Print Network (OSTI)

, and the Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the ULBNL-63728 Estimating Demand Response Load Impacts: Evaluation of Baseline Load Models for Non .............................................................................................................. 9 4. Baseline Profile (BLP) Models

160

Evaluation of MJO Forecast Skill from Several Statistical and Dynamical Forecast Models  

Science Conference Proceedings (OSTI)

This work examines the performance of Madden–Julian oscillation (MJO) forecasts from NCEP’s coupled and uncoupled general circulation models (GCMs) and statistical models. The forecast skill from these methods is evaluated in near–real time. ...

Kyong-Hwan Seo; Wanqiu Wang; Jon Gottschalck; Qin Zhang; Jae-Kyung E. Schemm; Wayne R. Higgins; Arun Kumar

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Evaluations of Mesoscale Models' Simulations of Near-Surface Winds, Temperature Gradients, and Mixing Depths  

Science Conference Proceedings (OSTI)

Mesoscale meteorological models are being used to provide inputs of winds, vertical temperature and stability structure, mixing depths, and other parameters to atmospheric transport and dispersion models. An evaluation methodology is suggested ...

Steven R. Hanna; Ruixin Yang

2001-06-01T23:59:59.000Z

162

Evaluation of the NCEP Mesoscale Eta Model Convective Boundary Layer for Air Quality Applications  

Science Conference Proceedings (OSTI)

Atmospheric models are a basic tool for understanding the processes that produce poor air quality, for predicting air quality problems, and for evaluating proposed solutions. At the base of many air quality models is a mesoscale meteorological ...

Wayne M. Angevine; Kenneth Mitchell

2001-11-01T23:59:59.000Z

163

Evaluation of a Fast-Running Urban Dispersion Modeling System Using Joint Urban 2003 Field Data  

Science Conference Proceedings (OSTI)

An urban dispersion modeling system was evaluated using the Joint Urban 2003 field data. The system consists of a fast-running urban airflow model (RUSTIC, for Realistic Urban Spread and Transport of Intrusive Contaminants) that is coupled with a ...

Eric A. Hendricks; Steve R. Diehl; Donald A. Burrows; Robert Keith

2007-12-01T23:59:59.000Z

164

Further Evaluation of the National Meterological Center's Medium-Range Forecast Model Precpitation Forecasts  

Science Conference Proceedings (OSTI)

Precipitation forecasts made by the National Meteorological Center's medium-range forecast (MRF) model are evaluated for the period, 1 March 1987 to 31 March 1989. As shown by Roads and Maisel, the MRF model wet bias was substantially alleviated ...

John O. Roads; T. Norman Maisal; Jordan Alpert

1991-12-01T23:59:59.000Z

165

Formulation and Evaluation of a Nonhydrostatic Mesoscale Vorticity Model (TVM)  

Science Conference Proceedings (OSTI)

This paper describes the formulation and the application of the nonhydrostatic anelastic vorticity model (TVM). This model is constructed using a method involving two horizontal streamfunctions and two horizontal vorticity components. The ...

P. Thunis; A. Clappier

2000-09-01T23:59:59.000Z

166

Air Temperature Model Evaluation in the North Mediterranean Belt Area  

Science Conference Proceedings (OSTI)

A comparative assessment of air temperature models, using hourly and daily air temperature measurements in 34 different stations in the north Mediterranean belt, is presented. Four air temperature models were used to estimate hourly and daily ...

Julia Bilbao; Argimiro H. de Miguel; Harry D. Kambezidis

2002-08-01T23:59:59.000Z

167

Raindrop Oscillations: Evaluation of a Potential Flow Model with Gravity  

Science Conference Proceedings (OSTI)

Potential flow oscillations about an equilibrium raindrop distortion were modeled for ellipsoidal variations driven by changes in surface and gravitational potential energy with linear dissipation of kinetic energy. The model was found to be ...

Kenneth V. Beard

1984-05-01T23:59:59.000Z

168

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the tenth reporting period (January 1-March 31, 2000), EER and NETL R and D group continued to work on Tasks 2, 3, 4, and 5. Information regarding these tasks will be included in the next Quarterly Report. This report includes (Appendix 1) a conceptual design study for the introduction of biomass reburning in a working coal-fired utility boiler. This study was conducted under the coordinated SBIR program funded by the U. S. Department of Agriculture.

Vladimir Zamansky; David Moyeda; Mark Sheldon

2000-04-28T23:59:59.000Z

169

Automated geometric features evaluation method for normal foot skeleton model  

Science Conference Proceedings (OSTI)

"Normal foot model" is a geometric model of a healthy human foot. As the comparison of the processed feet requires a reference ideal healthy foot parameterization it was necessary to create such a model by defining skeleton geometric features and generating ...

Bartosz Borucki; Krzysztof Nowi?Ski; Micha? Chlebiej; Andrzej Rutkowski; Pawe? Adamczyk; Jacek Laskowski

2011-01-01T23:59:59.000Z

170

Model study of historical injection in the Southeast Geysers  

DOE Green Energy (OSTI)

A three component model study of the historical injection of two wells in the Unit 13 area demonstrates that the recovery of injection derived steam is influenced by the geologic structure of the bottom of the reservoir and the relative location of injection wells. the migration of injectate from the first injection well, located up structure from the second, quenched the area around the second injector before it started operation. while both wells had similar cumulative mass injected, nearly five times more injection derived steam is recovered from the first injector than the second. Sensitivity runs were made to three cases of increasing matrix capillary pressure. The recovery of injection derived steam increases with higher values of capillarity. The interaction of structure at the bottom of the reservoir, injection well locations, and matrix capillarity all influence the recovery efficiency of injectate as steam. The model developed in this study will be used to evaluate injection strategies at The Geysers.

Faulder, D.D.

1992-01-01T23:59:59.000Z

171

Model study of historical injection in the southeast Geysers  

DOE Green Energy (OSTI)

A three component model study of the historical injection of two wells in the Unit 13 area demonstrates that the recovery of injection derived steam is influenced by the geologic structure of the bottom of the reservoir and the relative location of injection wells. The migration of injectate from the first injection well, located up structure from the second, quenched the area around the second injector before it started operation. While both wells had similar cumulative mass injected, nearly five times more injection derived steam is recovered from the first injector than the-second. Sensitivity runs were made to three cases of increasing matrix capillary pressure. The recovery of injection derived steam increases with higher values of capillarity. The interaction of structure at the bottom of the reservoir, injection well locations, and matrix capillarity all influence the recovery efficiency of injected as steam. The model developed in this study will be used to evaluate injection strategies at The Geysers.

Faulder, D.D.

1992-08-01T23:59:59.000Z

172

Model study of historical injection in the southeast Geysers  

DOE Green Energy (OSTI)

A three component model study of the historical injection of two wells in the Unit 13 area demonstrates that the recovery of injection derived steam is influenced by the geologic structure of the bottom of the reservoir and the relative location of injection wells. The migration of injectate from the first injection well, located up structure from the second, quenched the area around the second injector before it started operation. While both wells had similar cumulative mass injected, nearly five times more injection derived steam is recovered from the first injector than the-second. Sensitivity runs were made to three cases of increasing matrix capillary pressure. The recovery of injection derived steam increases with higher values of capillarity. The interaction of structure at the bottom of the reservoir, injection well locations, and matrix capillarity all influence the recovery efficiency of injected as steam. The model developed in this study will be used to evaluate injection strategies at The Geysers.

Faulder, D.D.

1992-01-01T23:59:59.000Z

173

Comparative Forecast Evaluation: Graphical Gaussian Models and Sufficiency Relations  

Science Conference Proceedings (OSTI)

This paper deals with the comparative evaluation of categorical forecasts supposing that forecasts and observations are continuous variables and have a jointly normal distribution. An information content approach based on the well-established ...

Ulrich Callies

2000-06-01T23:59:59.000Z

174

The Ocean–Land–Atmosphere Model: Optimization and Evaluation of Simulated Radiative Fluxes and Precipitation  

Science Conference Proceedings (OSTI)

This work continues the presentation and evaluation of the Ocean–Land–Atmosphere Model (OLAM), focusing on the model’s ability to represent radiation and precipitation. OLAM is a new, state-of-the-art earth system model, capable of user-specified ...

David Medvigy; Robert L. Walko; Martin J. Otte; Roni Avissar

2010-05-01T23:59:59.000Z

175

Student Task Modeling in Design and Evaluation of Open Problem-Solving Environments  

Science Conference Proceedings (OSTI)

Design and evaluation of computer-based open problem solving environments is a non-trivial task. Definition of a design framework, which involves a strong field-evaluation phase, has been the subject of the research described in this paper. This framework ... Keywords: open problem solving educational environments, student task model, task analysis, usability evaluation, user interface design

Nikolaos K. Tselios; Nikolaos M. Avouris; Maria Kordaki

2002-03-01T23:59:59.000Z

176

ODELO: an ontology-driven model for the evaluation of learning ontologies  

Science Conference Proceedings (OSTI)

Trying out or updating an existing learning ontology and providing evaluation tools to assess its quality are essential steps before putting an e-learning system online. Ontology evaluation is a crucial task and it is usually the output of an automatic ... Keywords: LAOS model, educational adaptive hypermedia, intelligent adaptive hypermedia, learning ontologies, learning technology, ontology evaluation, quality metrics

Dimitris N. Kanellopoulos

2009-04-01T23:59:59.000Z

177

Multi-credit Evaluation of Construction-agency Based on Gray Model  

Science Conference Proceedings (OSTI)

Based on the summary achievements in the research related to credit evaluation, in this paper, an evaluation on construction-agency on behalf of government is being put into practice, by taking into account the extensive application of construction-agent ... Keywords: agency system, credit evaluation, gray model, AHP

Wu Yun-na; Lin Ping; Wang Yu-min

2010-05-01T23:59:59.000Z

178

Improvement of the NCEP Global Model over the Tropics: An Evaluation of Model Performance during the 1995 Hurricane Season  

Science Conference Proceedings (OSTI)

An evaluation of the performance of the National Centers for Environmental Prediction Medium-Range Forecast Model was made for the large-scale tropical forecasts and hurricane track forecasts during the 1995 hurricane season. The assessment of ...

Naomi Surgi; Hua-Lu Pan; Stephen J. Lord

1998-05-01T23:59:59.000Z

179

Multiyear Evaluations of a Cloud Model Using ARM Data  

Science Conference Proceedings (OSTI)

This work uses long-term lidar and radar retrievals of the vertical structure of cloud at the Atmospheric Radiation Measurement (ARM) program’s Southern Great Plains site to evaluate cloud occurrence in multiyear runs of a cloud system–resolving ...

Peter W. Henderson; Robert Pincus

2009-09-01T23:59:59.000Z

180

Distributed decision evaluation model in public transportation systems  

Science Conference Proceedings (OSTI)

Due to several external and internal disturbances affecting public transportation systems, some regulation measures have to be undertaken. In the regulation process, the regulator has to evaluate a number of possible decisions in order to determine best ... Keywords: Multi-agent systems, Multicriteria optimization, Pareto optimality, Plurality voting, Public transportation systems, Traffic regulation, a-efficiency

Imen Boudali; Inès Ben Jaafar; Khaled Ghedira

2008-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. III. MODEL CALIBRATION, COMPARISON, AND EVALUATION  

Science Conference Proceedings (OSTI)

Stellar population synthesis (SPS) provides the link between the stellar and dust content of galaxies and their observed spectral energy distributions. In the present work, we perform a comprehensive calibration of our own flexible SPS (FSPS) model against a suite of data. These data include ultraviolet, optical, and near-IR photometry, surface brightness fluctuations, and integrated spectra of star clusters in the Magellanic Clouds (MCs), M87, M31, and the Milky Way (MW), and photometry and spectral indices of both quiescent and post-starburst galaxies at z {approx} 0. Several public SPS models are intercompared, including the models of Bruzual and Charlot (BC03), Maraston (M05), and FSPS. The relative strengths and weaknesses of these models are evaluated, with the following conclusions: (1) the FSPS and BC03 models compare favorably with MC data at all ages, whereas M05 colors are too red and the age dependence is incorrect; (2) all models yield similar optical and near-IR colors for old metal-poor systems, and yet they all provide poor fits to the integrated J - K and V - K colors of both MW and M31 star clusters; (3) FSPS is able to fit all of the ultraviolet data because both the post-asymptotic giant branch (post-AGB) and horizontal branch evolutionary phases are handled flexibly, while the BC03 and M05 models fail in the far-UV, and both far- and near-UV, respectively; (4) all models predict ugr colors too red, D{sub n}4000 strengths too strong, and Hdelta{sub A} strengths too weak compared to massive red sequence galaxies, under the assumption that such galaxies are composed solely of old metal-rich stars; and (5) FSPS and, to a lesser extent, BC03 can reproduce the optical and near-IR colors of post-starburst galaxies, while M05 cannot. Reasons for these discrepancies are explored. The failure at predicting the ugr colors, D{sub n}4000, and Hdelta{sub A} strengths can be explained by some combination of a minority population of metal-poor stars, young stars, blue straggler and/or blue horizontal branch (HB) stars, but not by appealing to inadequacies in either theoretical stellar atmospheres or canonical evolutionary phases (e.g., the main-sequence turnoff). The different model predictions in the near-IR for intermediate age systems are due to different treatments of the thermally pulsating asymptotic giant branch stellar evolutionary phase. We emphasize that due to a lack of calibrating star cluster data in regions of the metallicity-age plane relevant for galaxies, all of these models continue to suffer from serious uncertainties that are difficult to quantify.

Conroy, Charlie; Gunn, James E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

2010-04-01T23:59:59.000Z

182

Modelling and evaluation of the 3G mobile networks with hot-spot WLANs  

Science Conference Proceedings (OSTI)

An analytical modelling and evaluation approach is developed for the integrated 3G/WLAN networks. The cell residence times of different types of users are modelled as a general distribution to adapt various mobility environments. The explicit expressions ... Keywords: 3G cellular networks, CAC, call admission control, channel occupancy time, horizontal handoff, hot spot WLANs, integration, local area networks, mobile networks, modelling, performance evaluation, traffic analysis, vertical handoff, wireless LANs, wireless networks

Shensheng Tang; Wei Li

2007-01-01T23:59:59.000Z

183

Nondestructive Evaluation Modeling as an Integrated Component of ...  

Science Conference Proceedings (OSTI)

... porosity, microstructure size distributions, and foam infiltration fill-factor. ... FiPy: Modeling Phase Transformations in Python ... Phase-Field Simulation of Columnar and Equiaxed Growth of Dendrites during Multiphase Solidification of Alloys.

184

Hybrid Plume Dispersion Model (HPDM) Development and Evaluation  

Science Conference Proceedings (OSTI)

The Hybrid Plume Dispersion Model (HPDM) was developed for application to tall stack plumes dispersing over nearly flat terrain. Emphasis is on convective and high-wind conditions. The meteorological component is based on observational and ...

Steven R. Hanna; Robert J. Paine

1989-03-01T23:59:59.000Z

185

Review and evaluation of national airspace system models  

E-Print Network (OSTI)

Abstract from Technical Report Documentation Page: This report is intended to serve as a guide to the availability and capability of state-of-the-art analytical and simulation models of the National Airspace System (NAS). ...

Odoni, Amedeo R.

1979-01-01T23:59:59.000Z

186

FINREG : a financialregulatory model for utility capacity expansion plan evaluation  

E-Print Network (OSTI)

A corporate financial/regulatory model, called FINREG, is presented to simulate a utility's accounting practices, financial policy and constraints, and ratemaking environment. For each year of simulation FINREG will yield ...

Klosowicz, Peter C.

1981-01-01T23:59:59.000Z

187

Idaho Steelhead Monitoring and Evaluation Studies : Annual Progress Report 2007.  

DOE Green Energy (OSTI)

The goal of Idaho Steelhead Monitoring and Evaluation Studies is to collect monitoring data to evaluate wild and natural steelhead populations in the Clearwater and Salmon river drainages. During 2007, intensive population data were collected in Fish Creek (Lochsa River tributary) and Rapid River (Little Salmon River tributary); extensive data were collected in other selected spawning tributaries. Weirs were operated in Fish Creek and Rapid River to estimate adult escapement and to collect samples for age determination and genetic analysis. Snorkel surveys were conducted in Fish Creek, Rapid River, and Boulder Creek (Little Salmon River tributary) to estimate parr density. Screw traps were operated in Fish Creek, Rapid River, Secesh River, and Big Creek to estimate juvenile emigrant abundance, to tag fish for survival estimation, and to collect samples for age determination and genetic analysis. The estimated wild adult steelhead escapement in Fish Creek was 81 fish and in Rapid River was 32 fish. We estimate that juvenile emigration was 24,127 fish from Fish Creek; 5,632 fish from Rapid River; and 43,674 fish from Big Creek. The Secesh trap was pulled for an extended period due to wildfires, so we did not estimate emigrant abundance for that location. In cooperation with Idaho Supplementation Studies, trap tenders PIT tagged 25,618 steelhead juveniles at 18 screw trap sites in the Clearwater and Salmon river drainages. To estimate age composition, 143 adult steelhead and 5,082 juvenile steelhead scale samples were collected. At the time of this report, 114 adult and 1,642 juvenile samples have been aged. Project personnel collected genetic samples from 122 adults and 839 juveniles. We sent 678 genetic samples to the IDFG Eagle Fish Genetics Laboratory for analysis. Water temperature was recorded at 37 locations in the Clearwater and Salmon river drainages.

Copeland, Timothy; Putnam, Scott

2008-12-01T23:59:59.000Z

188

Evaluating Density Forecasts: Forecast Combinations, Model Mixtures, Calibration and Sharpness  

E-Print Network (OSTI)

In a recent article Gneiting, Balabdaoui and Raftery (JRSSB, 2007) propose the criterion of sharpness for the evaluation of predictive distributions or density forecasts. They motivate their proposal by an example in which standard evaluation procedures based on probability integral transforms cannot distinguish between the ideal forecast and several competing forecasts. In this paper we show that their example has some unrealistic features from the perspective of the time-series forecasting literature, hence it is an insecure foundation for their argument that existing calibration procedures are inadequate in practice. We present an alternative, more realistic example in which relevant statistical methods, including information-based methods, provide the required discrimination between competing forecasts. We conclude that there is no need for a subsidiary criterion of sharpness.

James Mitchell; Kenneth F. Wallis

2008-01-01T23:59:59.000Z

189

An application of regression model for evaluation of blast vibration in an opencast coal mine: a case analysis  

Science Conference Proceedings (OSTI)

Different models of vibration studies are examined. A case analysis to determine the parameters governing the prediction of blast vibration in an opencast coal mine is described. A regression model was developed to evaluate peak particle velocity (PPV) of the blast. The results are applicable to forecasting ground vibration before blasting and to the design of various parameters in controlled blasting. 16 refs., 1 fig., 1 tab.

Brahma, K.C.; Pal, B.K.; Das, C. [CMPDI, Bhubaneswar (India)

2005-07-01T23:59:59.000Z

190

Evaluation of the Langmuir model in the Soil and Water Assessment Tool for a high soil phosphorus condition  

Science Conference Proceedings (OSTI)

Phosphorus adsorption by a water treatment residual was tested through Langmuir and linear sorption isotherms and applied in the Soil and Water Assessment Tool (SWAT). This study uses laboratory and greenhouse experimental Phosphorus data to evaluate ... Keywords: Langmuir model, Phosphorus, SWAT, Water treatment residual

C. G. Rossi; D. M. Heil; N. B. Bonumí; J. R. Williams

2012-12-01T23:59:59.000Z

191

Comparison between artificial neural network and multilinear regression models in an evaluation of cognitive workload in a flight simulator  

Science Conference Proceedings (OSTI)

In this study, the performances of artificial neural network (ANN) analysis and multilinear regression (MLR) model-based estimation of heart rate were compared in an evaluation of individual cognitive workload. The data comprised electrocardiography ... Keywords: Cognitive load, Heart rate analysis, Intelligent systems, Nonlinear data analysis, Psychophysiological stress factors

Manne Hannula; Kerttu Huttunen; Jukka Koskelo; Tomi Laitinen; Tuomo Leino

2008-11-01T23:59:59.000Z

192

Evaluation of the integrated application of intelligent transportation system technologies using stochastic incident generation and resolution modeling  

Science Conference Proceedings (OSTI)

This paper presents the use of the microscopic vehicle traffic simulation software PARAMICS to evaluate different incident management implementation alternatives in South Carolina. This study customized the simulation model for random spatial and temporal ... Keywords: freeway service patrol, intelligent transportation systems, traffic incident management, traffic simulation

Yongchang Ma; Ryan Fries; Mashrur Chowdhury; Imran Inamdar

2012-01-01T23:59:59.000Z

193

Advanced Reactor Innovation Evaluation Study (ARIES) Properties Archive  

DOE Data Explorer (OSTI)

ARIES stands for Advanced Reactor Innovation Evaluation Study. It is a program and a team that explores the commercial potential of fusion as an energy resource. Though it is a multi-institutional program, ARIES is led by the University of California at San Diego. ARIES studies both magnetic fusion energy (MFE) and inertial fusion energy (IFE), using an approach that integrates theory, experiments, and technology. The ARIES team proposes fusion reactor designs and works to understand how technology, materials and plasma physics processes interact and influence each other. A 2005 report to the Fusion Energy Sciences Advisory Committee ("Scientific Challenges, Opportunities, and Priorities for the U.S. Fusion Energy Sciences Program") noted on page 98 an example of the importance of this materials properties aspect: "For instance, effects on plasma edge by various plasma facing materials and effects on various plasma stabilization and control techniques by highly conducting liquid metal blankets are being considered by physicists." This web page is an archive of material properties collected here for the use of the ARIES Fusion Power Plant Studies Team.

Advanced Reactor Innovation Evaluation Study (ARIES) Team

194

Usability evaluation methods for the web: A systematic mapping study  

Science Conference Proceedings (OSTI)

Context: In recent years, many usability evaluation methods (UEMs) have been employed to evaluate Web applications. However, many of these applications still do not meet most customers' usability expectations and many companies have folded as a result ... Keywords: Systematic mapping, Usability evaluation methods, Web development

Adrian Fernandez; Emilio Insfran; Silvia Abrahão

2011-08-01T23:59:59.000Z

195

Design evaluation and optimisation in multiple response nonlinear mixed effect models: PFIM 3.0  

Science Conference Proceedings (OSTI)

Nonlinear mixed effect models (NLMEM) with multiple responses are increasingly used in pharmacometrics, one of the main examples being the joint analysis of the pharmacokinetics (PK) and pharmacodynamics (PD) of a drug. Efficient tools for design evaluation ... Keywords: D-optimality, Fisher information matrix, Multiple response models, Nonlinear mixed effect models, Optimal designs, PFIM

Caroline Bazzoli; Sylvie Retout; France Mentré

2010-04-01T23:59:59.000Z

196

A PLA-based privacy-enhancing user modeling framework and its evaluation  

Science Conference Proceedings (OSTI)

Reconciling personalization with privacy has been a continuing interest in user modeling research. This aim has computational, legal and behavioral/attitudinal ramifications. We present a dynamic privacy-enhancing user modeling framework that supports ... Keywords: Compliance, Disclosure behavior, Performance evaluation, Privacy laws, Privacy preferences, Product line architecture, User experiment, User modeling

Yang Wang; Alfred Kobsa

2013-03-01T23:59:59.000Z

197

Evaluation of a coastal flood inundation model using hard and soft data  

Science Conference Proceedings (OSTI)

Observed data of coastal inundation are very rare, yet are essential for testing the performance of simulation models for this significant natural hazard. In this paper we therefore examine the extent to which observed data can constrain predictions ... Keywords: Coastal flooding, Flood risk, Hydraulic modelling, Model evaluation, Uncertainty

Rosemary A. E. Smith; Paul D. Bates; Christopher Hayes

2012-04-01T23:59:59.000Z

198

Performance evaluation of competing forecasting models: A multidimensional framework based on MCDA  

Science Conference Proceedings (OSTI)

So far, competing forecasting models are compared to each other using a single criterion at a time, which often leads to different rankings for different criteria - a situation where one cannot make an informed decision as to which model performs best ... Keywords: Crude oil prices, Forecasting models, Multi-Criteria Decision Analysis, Performance evaluation

Bing Xu; Jamal Ouenniche

2012-07-01T23:59:59.000Z

199

Evaluation of a simulation model in predicting the drying parameters for deep-bed paddy drying  

Science Conference Proceedings (OSTI)

A simulation model for deep-bed batch drying of paddy was developed to predict the profiles of grain moisture content, grain temperature, air temperature and air humidity during the drying process. In order to evaluate the validity of this model, a laboratory-scale ... Keywords: Deep-bed, Energy optimization, Paddy, Simulation model

Dariush Zare; Guangnan Chen

2009-08-01T23:59:59.000Z

200

An Evaluation of Boundary Conditions for Modeling Urban Boundary Layers  

DOE Green Energy (OSTI)

Numerical modeling of the urban boundary layer is complicated by the need to describe airflow patterns outside of the computational domain. These patterns have an impact on how successfully the simulation is able to model the turbulence associated with the urban boundary layer. This talk presents experiments with the model boundary conditions for simulations that were done to support two Department of Energy observational programs involving the Salt Lake City basin. The Chemical/Biological Non-proliferation Program (CBNP) is concerned with the effects of buildings on influencing dispersion patterns in urban environments. The Vertical Transport and Mixing Program (VTMX) investigating mixing mechanisms in the stable boundary layer and how they are influenced by the channeling caused by drainage flows or by obstacles such as building complexes. Both of these programs are investigating the turbulent mixing caused by building complexes and other urban obstacles.

Calhoun, R.J.; Chan, S.T.; Lee, R.L.

2000-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

SDU 6 MODELING STUDY TO SUPPORT DESIGN DEVELOPMENT  

SciTech Connect

In response to Technical Task Request (TTR) HLW-SSF-TTR-2012-0017 (1), SRNL performed modeling studies to evaluate alternative design features for the 32 million gallon Saltstone Disposal Unit (SDU) referred to as SDU 6. This initial modeling study was intended to assess the performance of major components of the structure that are most significant to the PA. Information provided by the modeling will support the development of a SDU 6 Preliminary Design Model and Recommendation Report to be written by SRR Closure and Waste Disposal Authority. Key inputs and assumptions for the modeling were provided to SRNL in SRR-SPT-2011-00113 (2). A table reiterates the base case and four sensitivity case studies requested in this reference. In general, as shown in Table 4, when compared to Vault 2 Case A, the Base Case SDU 6 design produced higher peak fluxes to the water table during the 10,000 year period of analysis but lower peak fluxes within a 15,000 to 20,000 time frame. SDU 6 will contain approximately ten times the inventory of a single Vault 2 and the SDU 6 footprint is comparable to that of a group of four Vault 2 disposal units. Therefore, the radionuclide flux from SDU 6 and that from a single Vault 2 are not directly comparable. A more direct comparison would be to compare the maximum dose obtained at the 100 m boundary from the seven SDU's that will replace the 64 FDC's analyzed in the 2009 PA. This analysis will be performed in the next set of calculations planned for SDU design evaluation. Aquifer transport and dose calculations were not intended to be part of this initial scoping study. However, results from this study do indicate that replacement of the FDC design with SDU would not yield significantly higher peak doses. If the thickness of the SDU 6 floor is increased, peak doses would not occur during the 10,000 year period of analysis.

Smith, F.

2012-05-02T23:59:59.000Z

202

Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models  

Science Conference Proceedings (OSTI)

Methane (CH{sub 4}) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH{sub 4} is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH{sub 4} emissions from landfill sites and the quantification of CH{sub 4} emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH{sub 4} diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH{sub 4} diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH{sub 4} contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH{sub 4} mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.

Di Bella, Gaetano, E-mail: dibella@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Di Trapani, Daniele, E-mail: ditrapani@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Viviani, Gaspare, E-mail: gviv@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

2011-08-15T23:59:59.000Z

203

Evaluating quantitative and qualitative models: An application for nationwide water erosion assessment in Ethiopia  

Science Conference Proceedings (OSTI)

This paper tests the candidacy of one qualitative response model and two quantitative models for a nationwide water erosion hazard assessment in Ethiopia. After a descriptive comparison of model characteristics the study conducts a statistical comparison ... Keywords: Model comparison, Qualitative response models, Quantitative models

B. G. J. S. Sonneveld; M. A. Keyzer; L. Stroosnijder

2011-10-01T23:59:59.000Z

204

COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS  

SciTech Connect

The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

JACKSON VL

2011-08-31T23:59:59.000Z

205

Fuzzy regression model of R&D project evaluation  

Science Conference Proceedings (OSTI)

Engineering and technology play an important role in strengthening the competitive power of a company and in surviving a severe competition in the world. About 70% of the total R&D investment in Japan comes from the private sector. It is the most important ... Keywords: AHP, Fuzzy regression model, Management of technology and engineering, Project management, R&D

Shinji Imoto; Yoshiyuki Yabuuchi; Junzo Watada

2008-06-01T23:59:59.000Z

206

DEPIVOT: A model for center-pivot design and evaluation  

Science Conference Proceedings (OSTI)

Center-pivot sprinkler irrigation became very popular. Hence, aimed at farmers advising, the simulation model DEPIVOT has been developed with the objective of design new systems or changes in systems in operation. The software consists of a simulation ... Keywords: Distribution uniformity, Hydraulics design, Runoff, Sprinkler package

M. I. ValíN; M. R. Cameira; P. R. Teodoro; L. S. Pereira

2012-09-01T23:59:59.000Z

207

Modeling and Analysis Papers - Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Evaluation > Table 1 Evaluation > Table 1 Table 1. Comparison of Absolute Percent Errors for AEO Forecast Evaluation, 1996 to 2002 Average Absolute Percent Error Variable AEO82 to AEO97 AEO82 to AEO98 AEO82 to AEO99 AEO82 to AEO2000 AEO82 to AEO2001 AEO82 to AEO2002 Consumption Total Energy Consumption 1.6 1.7 1.7 1.8 1.9 1.9 Total Petroleum Consumption 2.8 2.9 2.8 2.9 3.0 2.9 Total Natural Gas Consumption 5.8 5.7 5.6 5.6 5.5 5.5 Total Coal Consumption 2.7 3.0 3.2 3.3 3.5 3.6 Total Electricity Sales 1.6 1.7 1.8 1.9 2.4 2.5 Production Crude Oil Production 4.2 4.3 4.5 4.5 4.5 4.5 Natural Gas Production 5.0 4.8 4.7 4.6 4.6 4.4 Coal Production 3.7 3.6 3.6 3.5 3.7 3.6 Imports and Exports Net Petroleum Imports 10.1 9.5 8.8 8.4 7.9 7.4 Net Natural Gas Imports 17.4 16.7 16.0 15.9 15.8 15.8 Net Coal Exports

208

Conceptual Model of Offshore Wind Environmental Risk Evaluation System  

SciTech Connect

In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of offshore wind energy generation projects. The development of ERES for offshore wind is closely allied to a concurrent process undertaken to examine environmental effects of marine and hydrokinetic (MHK) energy generation, although specific risk-relevant attributes will differ between the MHK and offshore wind domains. During FY10, a conceptual design of ERES for offshore wind will be developed. The offshore wind ERES mockup described in this report will provide a preview of the functionality of a fully developed risk evaluation system that will use risk assessment techniques to determine priority stressors on aquatic organisms and environments from specific technology aspects, identify key uncertainties underlying high-risk issues, compile a wide-range of data types in an innovative and flexible data organizing scheme, and inform planning and decision processes with a transparent and technically robust decision-support tool. A fully functional version of ERES for offshore wind will be developed in a subsequent phase of the project.

Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.; Unwin, Stephen D.; Hamilton, Erin L.

2010-06-01T23:59:59.000Z

209

Development and evaluation of GIS-based ArcPRZM-3 system for spatial modeling of groundwater vulnerability to pesticide contamination  

Science Conference Proceedings (OSTI)

The objectives of this study were to develop and evaluate a GIS-based modeling system called ArcPRZM-3 for spatial modeling of pesticide leaching potential from soil surface towards groundwater. The ArcPRZM-3 was developed by coupling a commonly used ... Keywords: ArcPRZM-3, GIS, Groundwater, Groundwater spatial modeling, PRZM-3, Pesticide, Vulnerability assessment

Tahir Ali Akbar; Henry Lin; John DeGroote

2011-07-01T23:59:59.000Z

210

Mirant Potomac River, LLC, Monthly Model Evaluation Study Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

202-07-02: As you are aware, Mirant Potomac River, L.L.C, (Mirant) is operating per the terms and conditions of the Administrative Compliance Order (ACO) dated June 1, 2006. Under...

211

Evaluation of Precipitation from Numerical Weather Prediction Models and Satellites Using Values Retrieved from Radars  

Science Conference Proceedings (OSTI)

Precipitation is evaluated from two weather prediction models and satellites, taking radar-retrieved values as a reference. The domain is over the central and eastern United States, with hourly accumulated precipitation over 21 days for the ...

Slavko Vasi?; Charles A. Lin; Isztar Zawadzki; Olivier Bousquet; Diane Chaumont

2007-11-01T23:59:59.000Z

212

Evaluation and Transferability of the Noah Land Surface Model in Semiarid Environments  

Science Conference Proceedings (OSTI)

This paper investigates the performance of the National Centers for Environmental Prediction (NCEP) Noah land surface model at two semiarid sites in southern Arizona. The goal is to evaluate the transferability of calibrated parameters (i.e., ...

Terri S. Hogue; Luis Bastidas; Hoshin Gupta; Soroosh Sorooshian; Ken Mitchell; William Emmerich

2005-02-01T23:59:59.000Z

213

ARM - PI Product - A Model Evaluation Data Set for the Tropical...  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsA Model Evaluation Data Set for the Tropical ARM Sites Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : A...

214

Evaluation and Sensitivity Analysis of an Ocean Model Response to Hurricane Ivan  

Science Conference Proceedings (OSTI)

An ocean model response to Hurricane Ivan (2004) over the northwest Caribbean Sea and Gulf of Mexico is evaluated to guide strategies for improving performance during strong forcing events in a region with energetic ocean features with the ...

G. R. Halliwell Jr.; L. K. Shay; J. K. Brewster; W. J. Teague

2011-03-01T23:59:59.000Z

215

Parameterization of Convective Transport in a Lagrangian Particle Dispersion Model and Its Evaluation  

Science Conference Proceedings (OSTI)

This paper presents the revision and evaluation of the interface between the convective parameterization by Emanuel and Živkovi?-Rothman and the Lagrangian particle dispersion model “FLEXPART” based on meteorological data from the European Centre ...

Caroline Forster; Andreas Stohl; Petra Seibert

2007-04-01T23:59:59.000Z

216

A Diagnostic Evaluation of Precipitation in CORDEX Models over Southern Africa  

Science Conference Proceedings (OSTI)

The authors evaluate the ability of 10 regional climate models (RCMs) to simulate precipitation over Southern Africa within the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework. An ensemble of 10 regional climate simulations ...

Evangelia-Anna Kalognomou; Christopher Lennard; Mxolisi Shongwe; Izidine Pinto; Alice Favre; Michael Kent; Bruce Hewitson; Alessandro Dosio; Grigory Nikulin; Hans-Jürgen Panitz; Matthias Büchner

2013-12-01T23:59:59.000Z

217

Evaluation of Lagrangian Particle Dispersion Models with Measurements from Controlled Tracer Releases  

Science Conference Proceedings (OSTI)

Three widely used Lagrangian Particle Dispersion Models (LPDMs), HYSPLIT, STILT and FLEXPART are evaluated with measurements from the controlled tracer release experiments CAPTEX and ANATEX. The LPDMs are run forward in time driven by identical ...

Jennifer Hegarty; Roland R. Draxler; Ariel F. Stein; Jerome Brioude; Marikate Mountain; Janusz Eluszkiewicz; Thomas Nehrkorn; Fong Ngan; Arlyn Andrews

218

The Pugh Controlled Convergence Method: Model-Based Evaluation and Implications for Design Theory  

E-Print Network (OSTI)

This paper evaluates the Pugh Controlled Convergence method and its relationship to recent developments in design theory. Computer executable models are proposed simulating a team of people involved in iterated cycles of ...

Wijnia, Ype

219

Evaluation of a Hydrostatic, Height-Coordinate Formulation of the Primitive Equations for Atmospheric Modeling  

Science Conference Proceedings (OSTI)

The hydrostatic form of the primitive equations described by Ooyama is evaluated by comparing nonhydrostatic and hydrostatic integrations of a dry axisymmetric model with a specified entropy (heat) source. In this formulation, pressure is a ...

Mark DeMaria

1995-12-01T23:59:59.000Z

220

Evaluating the Consistency between Statistically Downscaled and Global Dynamical Model Climate Change Projections  

Science Conference Proceedings (OSTI)

The consistency between rainfall projections obtained from direct climate model output and statistical downscaling is evaluated. Results are averaged across an area large enough to overcome the difference in spatial scale between these two types ...

B. Timbal; P. Hope; S. Charles

2008-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Evaluation of Radar Multiple-Scattering Effects from a GPM Perspective. Part II: Model Results  

Science Conference Proceedings (OSTI)

Multiple-scattering effects as sensed by radars in configurations useful in the context of the Global Precipitation Mission (GPM) are evaluated for a range of meteorological profiles extracted from four different cloud-resolving model ...

A. Battaglia; M. O. Ajewole; C. Simmer

2006-12-01T23:59:59.000Z

222

Evaluation of an Urban Canopy Parameterization in a Mesoscale Model Using VTMX and URBAN 2000 Data  

Science Conference Proceedings (OSTI)

A modified urban canopy parameterization (UCP) is developed and evaluated in a three-dimensional mesoscale model to assess the urban impact on surface and lower-atmospheric properties. This parameterization accounts for the effects of building ...

Hung-Neng S. Chin; Martin J. Leach; Gayle A. Sugiyama; John M. Leone Jr.; Hoyt Walker; J. S. Nasstrom; Michael J. Brown

2005-07-01T23:59:59.000Z

223

Evaluation of an Ecohydrologic-Process Model Approach to Estimating Annual Mountain-Block Recharge.  

E-Print Network (OSTI)

??Magruder, Ian, M.S., December 2006 Geology Evaluation of an Ecohydrologic-Process Model Approach to Estimating Annual Mountain-Block Recharge Chairperson: Dr. William Woessner Regional subsurface mountain-block recharge… (more)

Magruder, Ian Auguste

2007-01-01T23:59:59.000Z

224

Direct Numerical Simulation of the Turbulent Ekman Layer: Evaluation of Closure Models  

Science Conference Proceedings (OSTI)

A direct numerical simulation (DNS) at a Reynolds number of 1000 was performed for the neutral atmospheric boundary layer (ABL) using the Ekman layer approximation. The DNS results were used to evaluate several closure approximations that model ...

Stuart Marlatt; Scott Waggy; Sedat Biringen

2012-03-01T23:59:59.000Z

225

Residential energy demand modeling and the NIECS data base : an evaluation  

E-Print Network (OSTI)

The purpose of this report is to evaluate the 1978-79 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance ...

Cowing, Thomas G.

1982-01-01T23:59:59.000Z

226

A Hybrid Coupled General Circulation Model for El Niño Studies  

Science Conference Proceedings (OSTI)

A model is developed for tropical air–sea interaction studies, which is intermediate in complexity between the large coupled general circulation models (coupled GCMs) coming into use and the simple two-level models with which pioneering El Niño–...

J. David Neelin

1990-03-01T23:59:59.000Z

227

An evaluation of tropical cyclone genesis forecasts from global numerical models  

Science Conference Proceedings (OSTI)

Tropical cyclone (TC) forecasts rely heavily on output from global numerical models. While some research has investigated the skill of various models with respect to track and intensity, few studies have considered how well global models forecast ...

Daniel J. Halperin; Henry E. Fuelberg; Robert E. Hart; Joshua H. Cossuth; Philip Sura; Richard J. Pasch

228

An Evaluation of Tropical Cyclone Genesis Forecasts from Global Numerical Models  

Science Conference Proceedings (OSTI)

Tropical cyclone (TC) forecasts rely heavily on output from global numerical models. While considerable research has investigated the skill of various models with respect to track and intensity, few studies have considered how well global models ...

Daniel J. Halperin; Henry E. Fuelberg; Robert E. Hart; Joshua H. Cossuth; Philip Sura; Richard J. Pasch

2013-12-01T23:59:59.000Z

229

An Evaluation of the Software System Dependency of a Global Atmospheric Model  

Science Conference Proceedings (OSTI)

This study presents the dependency of the simulation results from a global atmospheric numerical model on machines with different hardware and software systems. The global model program (GMP) of the Global/Regional Integrated Model system (GRIMs) ...

Song-You Hong; Myung-Seo Koo; Jihyeon Jang; Jung-Eun Esther Kim; Hoon Park; Min-Su Joh; Ji-Hoon Kang; Tae-Jin Oh

2013-11-01T23:59:59.000Z

230

The Application of Unascertained Measure Model in Bofang Coal Mine Evaluation Based on Information Entropy  

Science Conference Proceedings (OSTI)

In recent years, coal mine safety is an urgent problem needs to be solved in China. The article takes into account the impact of the safety evaluation factors of traditional coal mines (taking the Bofang mine as an example), using information entropy ... Keywords: information entropy, safety evaluation index, unascertained measure model, Bofang mine

Zhanglin Guo; Zhaopeng Liu

2010-03-01T23:59:59.000Z

231

Evolution of a Visual Impact Model to Evaluate Nuclear Plant Siting and Design Option1  

E-Print Network (OSTI)

for Analysis and Management of the Visual Resource, Incline Village, Nevada, April 23-25, 1979. 2 / AssociatesEvolution of a Visual Impact Model to Evaluate Nuclear Plant Siting and Design Option1 2/ Brian A/ The method can be used to train evaluators to use explicit criteria (vividness, intactness and unity

Standiford, Richard B.

232

A fuzzy clustering iterative model using chaotic differential evolution algorithm for evaluating flood disaster  

Science Conference Proceedings (OSTI)

Flood disaster is a kind of frequent natural hazards. The objective of flood disaster evaluation is to establish hazard assessment model for managing flood and preventing disaster. Base on the chaotic optimization theory, this paper proposes a chaotic ... Keywords: Chaotic map, Differential evolution algorithm, Evolutionary computation, Flood disaster evaluation, Fuzzy clustering

Yaoyao He; Jianzhong Zhou; Pangao Kou; Ning Lu; Qiang Zou

2011-08-01T23:59:59.000Z

233

A Study of Experimental Evaluations of Neural Network Learning Algorithms  

E-Print Network (OSTI)

articles of volume 6 (1993) and all 1 In this report, I will use the term evaluation to mean experimental evaluation. articles from numbers 1 to 5 of volume 7 (1994) were used. From Neural Computation, all articles of volume 5 (1993) and all articles from numbers 1 to 4 of volume 6 (1994) were used. The subsequent

Prechelt, Lutz

234

A Study of Experimental Evaluations of Neural Network Learning Algorithms  

E-Print Network (OSTI)

, published by MIT Press. From Neural Networks, all articles of volume 6 1993 and all 1 In this report, I will use the term evaluation to mean experimental evaluation. articles from numbers 1 to 5 of volume 7 1994 were used. From Neural Computation, all articles of volume 5 1993 and all articles from numbers 1 to 4

Prechelt, Lutz

235

Evaluation of scalar mixing and time scale models in PDF simulations of a turbulent premixed flame  

SciTech Connect

Numerical simulation results obtained with a transported scalar probability density function (PDF) method are presented for a piloted turbulent premixed flame. The accuracy of the PDF method depends on the scalar mixing model and the scalar time scale model. Three widely used scalar mixing models are evaluated: the interaction by exchange with the mean (IEM) model, the modified Curl's coalescence/dispersion (CD) model and the Euclidean minimum spanning tree (EMST) model. The three scalar mixing models are combined with a simple model for the scalar time scale which assumes a constant C{sub {phi}}=12 value. A comparison of the simulation results with available measurements shows that only the EMST model calculates accurately the mean and variance of the reaction progress variable. An evaluation of the structure of the PDF's of the reaction progress variable predicted by the three scalar mixing models confirms this conclusion: the IEM and CD models predict an unrealistic shape of the PDF. Simulations using various C{sub {phi}} values ranging from 2 to 50 combined with the three scalar mixing models have been performed. The observed deficiencies of the IEM and CD models persisted for all C{sub {phi}} values considered. The value C{sub {phi}}=12 combined with the EMST model was found to be an optimal choice. To avoid the ad hoc choice for C{sub {phi}}, more sophisticated models for the scalar time scale have been used in simulations using the EMST model. A new model for the scalar time scale which is based on a linear blending between a model for flamelet combustion and a model for distributed combustion is developed. The new model has proven to be very promising as a scalar time scale model which can be applied from flamelet to distributed combustion. (author)

Stoellinger, Michael; Heinz, Stefan [Department of Mathematics, University of Wyoming, Laramie, WY (United States)

2010-09-15T23:59:59.000Z

236

www.cepe.ethz.ch A Real Options Evaluation Model for the Diffusion Prospects of New Renewable Power Generation Technologies  

E-Print Network (OSTI)

www.cepe.ethz.ch A real options evaluation model for the diffusion prospects of new renewable power generation technologies

Gürkan Kumbaroglu; Reinhard Madlener; Mustafa Demirel; Gürkan Kumbaroglu; Reinhard Madlener; Mustafa Demirel

2004-01-01T23:59:59.000Z

237

Biomass Reburning - Modeling/Engineering Studies  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The second reporting period (January 1- March 31) included kinetic modeling of the reburning process while firing natural gas and biomass. Modeling was done with a kinetic mechanism that combined reactions relevant to reburning from GRI-Mech 2.11 with SNCR reactions. Experimental data obtained in a 1 MMBtu/h Boiler Simulator Facility (BSF) for reburning with natural gas and biomass were modeled using the ODF kinetic code. System was treated as a series of four one-dimensional reactors. Modeling of natural gas reburning qualitatively agrees with experimental data for a wide range of initial conditions. Modeling of furniture waste reburning does not qualitatively match experimental data due to a number of model simplifications. Future work will concentrate on improving the basic reburning model to give quantitative agreement with experiments and on search for better representation of biomass composition in kinetic modeling. Experimental data on biomass reburning are included in Appendix 3. These data were obtained during the reporting period in the scope of a coordinated program funded by the U.S. Department of Agriculture.

Peter M. Maly; Vitali V. Lissianski; Vladimir M. Zamansky

1998-04-30T23:59:59.000Z

238

New Model Systems for Studying Highly Frustrated Magnetism  

Science Conference Proceedings (OSTI)

... New Model Systems for Studying Highly Frustrated Magnetism. Ovidiu Garlea, Ames Laboratory. In the field of frustrated ...

239

Modeling, Optimization and Economic Evaluation of Residual Biomass Gasification  

E-Print Network (OSTI)

Gasification is a thermo-chemical process which transforms biomass into valuable synthesis gas. Integrated with a biorefinery it can address the facility’s residue handling challenges and input demands. A number of feedstock, technology, oxidizer and product options are available for gasification along with combinations thereof. The objective of this work is to create a systematic method for optimizing the design of a residual biomass gasification unit. In detail, this work involves development of an optimization superstructure, creation of a biorefining scenario, process simulation, equipment sizing & costing, economic evaluation and optimization. The superstructure accommodates different feedstocks, reactor technologies, syngas cleaning options and final processing options. The criterion for optimization is annual worth. A biorefining scenario for the production of renewable diesel fuel from seed oil is developed; gasification receives the residues from this biorefinery. Availability of Soybeans, Jatropha, Chinese Tallow and woody biomass material is set by land use within a 50-mile radius. Four reactor technologies are considered, based on oxidizer type and operating pressure, along with three syngas cleaning methods and five processing options. Results show that residual gasification is profitable for large-scale biorefineries with the proper configuration. Low-pressure air gasification with filters, water-gas shift and hydrogen separation is the most advantageous combination of technology and product with an annual worth of $9.1 MM and a return on investment of 10.7 percent. Low-pressure air gasification with filters and methanol synthesis is the second most advantageous combination with an annual worth of $9.0 MM. Gasification is more economic for residue processing than combustion or disposal, and it competes well with natural gas-based methanol synthesis. However, it is less economic than steam-methane reforming of natural gas to hydrogen. Carbon dioxide credits contribute to profitability, affecting some configurations more than others. A carbon dioxide credit of $33/t makes the process competitive with conventional oil and gas development. Sensitivity analysis demonstrates a 10 percent change in hydrogen or electricity price results in a change to the optimal configuration of the unit. Accurate assessment of future commodity prices is critical to maximizing profitability.

Georgeson, Adam

2010-12-01T23:59:59.000Z

240

Application of price uncertainty quantification models and their impacts on project evaluations  

E-Print Network (OSTI)

This study presents an analysis of several recently published methods for quantifying the uncertainty in economic evaluations due to uncertainty in future oil prices. Conventional price forecasting methods used in the industry typically underestimate the range of uncertainty in oil and gas price forecasts. These forecasts traditionally consider pessimistic, most-likely, and optimistic cases in an attempt to quantify economic uncertainty. The recently developed alternative methods have their unique strengths as well as weaknesses that may affect their applicability in particular situations. While stochastic methods can improve the assessment of price uncertainty they can also be tedious to implement. The inverted hockey stick method is found to be an easily applied alternative to the stochastic methods. However, the primary basis for validating this method has been found to be unreliable. In this study, a consistent and reliable validation of uncertainty estimates predicted by the inverted hockey stick method is presented. Verifying the reliability of this model will ensure reliable quantification of economic uncertainty. Although we cannot eliminate uncertainty from investment evaluations, we can better quantify the uncertainty by accurately predicting the volatility in future oil and gas prices. Reliably quantifying economic uncertainty will enable operators to make better decisions and allocate their capital with increased efficiency.

Fariyibi, Festus Lekan

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Evaluating maintenance policies by quantitative modeling and analysis Enrico Zio1,2,*  

E-Print Network (OSTI)

. It is shown that modeling and analysis provide information useful for setting a maintenance policy. 1 of the energy market, which has forced the producers to be more competitive by reacting promptly and reliablyEvaluating maintenance policies by quantitative modeling and analysis Enrico Zio1,2,* , Michele

Paris-Sud XI, Université de

242

Harvest evaluation model and system of fast-growing and high-yield poplar plantation  

Science Conference Proceedings (OSTI)

The paper is based on the research of forestry experts' systems funded by ''National Tenth-Five-Year 863 Plan''. In the context of the collective forest rights system reforms, in order to enhance the technological support to the farmers in the fast-growing ... Keywords: Decision support system, Fast-growing poplar plantation, Forest management, Growth model, Harvest evaluation and prediction, Harvest model

Baoguo Wu; Yan Qi; Chi Ma; Hongquan Zhang

2010-06-01T23:59:59.000Z

243

Probabilistic Modeling and Evaluation of the Performance, Emissions, and Cost of Texaco Gasifier-  

E-Print Network (OSTI)

Probabilistic Modeling and Evaluation of the Performance, Emissions, and Cost of Texaco Gasifier.0 DOCUMENTATION OF THE PLANT PERFORMANCE SIMULATION MODEL IN ASPEN OF THE COAL-FUELED TEXACO-GASIFIER BASED IGCC to the Gasifier............................... 40 3.2.2 Gasification

Frey, H. Christopher

244

Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau  

Science Conference Proceedings (OSTI)

The performance of 24 GCMs available in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) is evaluated over the eastern Tibetan Plateau (TP) by comparing the model outputs with ground observations for the period 1961–2005. The ...

Fengge Su; Xiaolan Duan; Deliang Chen; Zhenchun Hao; Lan Cuo

2013-05-01T23:59:59.000Z

245

On the Suitability of GCM Runoff Fields for River Discharge Modeling: A Case Study Using Model Output from HadGEM2 and ECHAM5  

Science Conference Proceedings (OSTI)

The representation of hydrological processes in land surface schemes (LSSs) has recently been improved. In this study, the usability of GCM runoff for river discharge modeling is evaluated by validating the mean, timing, and amplitude of the ...

F. C. Sperna Weiland; L. P. H. van Beek; J. C. J. Kwadijk; M. F. P. Bierkens

2012-02-01T23:59:59.000Z

246

Physical model studies of dispersion in fracture systems  

DOE Green Energy (OSTI)

The purposes of the laboratory-scale fracture network experiments are to study mechanisms controlling solute transport under conditions of known fracture parameters, to evaluate injection-backflow test procedures under conditions of known reservoir parameters, and to acquire data for validation of numerical models. Validation of computer codes against laboratory data collected under controlled conditions provides reassurance that the codes deal with important processes in a realistic manner. Preliminary simulations of the dual-permeability physical model have been made using the FRACSL reservoir code. These simulations permit locating electrodes and piezometers in the most advantageous positions to record tracer migration and pressure response. Much of the physical modeling effort this year was oriented towards validating the particle tracking algorithm used in FRACSL, and developing a better theoretical understanding of transport processes in fractures. Experiments were conducted in single fractures and single fracture junctions, and data on tracer migration collected. The Prickett, Naymik, and Lonnquist Random Walk aquifer simulation program has been modfied to simulate flow in single fractures. The particle tracking algorithm was also used to simulate infinite parallel plates under conditions where analytical solutions to the transport equation could be derived. The first case is for zero diffusion in the fracture, and transport based on a parabolic velocity profile. The second case is for diffusion homogenizing the tracer solution across the fracture. The particle tracking algorithm matched both analytical solutions quite well, with the same grid for both simulations. 48 refs., 41 figs., 2 tabs.

Hull, L.C.

1985-04-01T23:59:59.000Z

247

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NOx control technologies utilizing biomass as a reburning fuel. The fifth reporting period (October 1 ? December 31) included modeling of the Advanced Reburning (AR) process while firing biomass. Modeling of Advanced Biomass Reburning included AR-Lean, AR-Rich, and reburning + SNCR. Fuels under investigation were furniture pellets and willow wood. Modeling shows that reburning efficiency increases when N-agent is injected into reburning or OFA zones, or co-injected with OFA. The kinetic model trends qualitatively agree with experimental data for a wide range of initial conditions and thus can be used for process optimization. No patentable subject matter is disclosed in the report.

NONE

1999-01-28T23:59:59.000Z

248

BIOMASS REBURNING - MODELING/ENGINEERING STUDIES  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. The forth reporting period (July 1 - September 30) included ongoing kinetic modeling of the reburning process while firing biomass. Modeling of biomass reburning concentrated on description of biomass performance at different reburning heat inputs. Reburning fuel was assumed to undergo rapid breakdown to produce various gaseous products. Modeling shows that the efficiency of biomass is affected by its composition. The kinetic model agrees with experimental data for a wide range of initial conditions and thus can be used for process optimization. Experimental data on biomass reburning are included in Appendix 2.

NONE

1998-10-20T23:59:59.000Z

249

Evaluation of Collector Well Configurations to Model Hydrodynamics in Riverbank Filtration and Groundwater Remediation  

E-Print Network (OSTI)

Collector well designs are necessary to maximize groundwater uptake and riverbank filtration without negatively impacting an aquifer. Unfortunately, there is a lack of information and research regarding the implementation of collector well design parameters. In the past, collector well installation was too costly, but recent advances in well technology have made collector wells more cost effective. This research will contribute a set of guidelines to optimize riverbank filtration and groundwater remediation. This study models the hydrodynamics surrounding collector well configurations in riverbank filtration and groundwater remediation. Visual Modflow® was utilized to run a variety of numerical models to test four areas: flux along the laterals of a collector well, collector well interactions with a river, collector well yield, and collector well remediation capability. The two design parameters investigated were lateral length (25 m, 50 m, and 100 m) and number of laterals (3 and 4). The lateral flux tests confirm flux increases towards the terminal end of each lateral and pumping rate is the controlling factor in flux amount obtained along the laterals. The analysis of the flux-river interaction shows the main factor in determining flux amount is the initial river geometry, followed by the pumping rate, regional background flow, and collector well design, respectively. The models suggest that the 4-lateral collector well design is more effective than the 3-lateral design and in addition, 100 meter length laterals provide the highest amount of yield with the least amount of drawdown. The remediation tests investigate the application of vertical well equations to evaluate collector well designs in two areas: minimum pumping rate to capture line source of particles and first arrival time of particles. The remediation models show 100 meter length laterals provide both the lowest pumping rate and the highest residence time with the surrounding aquifer for maximum remediation. Ultimately, these models provide basic design guidelines and explain which designs are most effective, depending on the collector well purpose.

De Leon, Tiffany Lucinda

2010-08-01T23:59:59.000Z

250

An Integrative Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production Systems  

Science Conference Proceedings (OSTI)

The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially-explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: 1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, 2) the biophysical and biogeochemical model EPIC (Environmental Policy Integrated Climate) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and 3) an evolutionary multi-objective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a 9-county Regional Intensive Modeling Area (RIMA) in SW Michigan to 1) simulate biofuel crop production, 2) compare impacts of management practices and local ecosystem settings, and 3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; West, T. O.; Post, W. M.; Thomson, Allison M.; Bandaru, V. P.; Nichols, J.; Williams, J.R.

2010-09-08T23:59:59.000Z

251

An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems  

Science Conference Proceedings (OSTI)

The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine-county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

Zhang, X [University of Maryland; Izaurralde, R. C. [University of Maryland; Manowitz, D. [University of Maryland; West, T. O. [University of Maryland; Thomson, A. M. [University of Maryland; Post, Wilfred M [ORNL; Bandaru, Vara Prasad [ORNL; Nichols, Jeff [ORNL; Williams, J. [AgriLIFE, Temple, TX

2010-10-01T23:59:59.000Z

252

Alpha Case Thickness: A Comparative Study of Evaluation ...  

Science Conference Proceedings (OSTI)

3D Meso-scale Modelling of Aluminum-alloy Welding Processes for Prediction of ... Frequency Modulation Effect on the Solidification of Alloy 718 Fusion Zone.

253

Hawaii Solar Integration Study: Solar Modeling Developments and Study Results; Preprint  

Science Conference Proceedings (OSTI)

The Hawaii Solar Integration Study (HSIS) is a follow-up to the Oahu Wind Integration and Transmission Study completed in 2010. HSIS focuses on the impacts of higher penetrations of solar energy on the electrical grid and on other generation. HSIS goes beyond the island of Oahu and investigates Maui as well. The study examines reserve strategies, impacts on thermal unit commitment and dispatch, utilization of energy storage, renewable energy curtailment, and other aspects of grid reliability and operation. For the study, high-frequency (2-second) solar power profiles were generated using a new combined Numerical Weather Prediction model/ stochastic-kinematic cloud model approach, which represents the 'sharp-edge' effects of clouds passing over solar facilities. As part of the validation process, the solar data was evaluated using a variety of analysis techniques including wavelets, power spectral densities, ramp distributions, extreme values, and cross correlations. This paper provides an overview of the study objectives, results of the solar profile validation, and study results.

Orwig, K.; Corbus, D.; Piwko, R.; Schuerger, M.; Matsuura, M.; Roose, L.

2012-12-01T23:59:59.000Z

254

Evaluation of an Analytical Model for the Maximum Intensity of Tropical Cyclones  

Science Conference Proceedings (OSTI)

Several studies have shown that the intensity of numerically simulated tropical cyclones can exceed (by 50%) a theoretical upper limit. To investigate the cause, this study evaluates the underlying components of Emanuel’s commonly cited analytic ...

George H. Bryan; Richard Rotunno

2009-10-01T23:59:59.000Z

255

Biomass reburning - Modeling/engineering studies  

DOE Green Energy (OSTI)

This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the eleventh reporting period (April 1--June 30, 2000), EER and NETL R&D group continued to work on Tasks 2, 3, 4, and 5. This report includes results from Task 3 physical modeling of the introduction of biomass reburning in a working coal-fired utility boiler.

Sheldon, M.; Marquez, A.; Zamansky, V.

2000-07-27T23:59:59.000Z

256

Characterization and interwell connectivity evaluation of Green Rver reservoirs, Wells Draw study area, Uinta Basin, Utah  

E-Print Network (OSTI)

Recent efforts to optimize oil recovery from Green River reservoirs, Uinta Basin, have stimulated the need for better understanding of the reservoir connectivity at the scale of the operational unit. This study focuses on Green River reservoirs in the Wells Draw study area where oil production response to implemented waterflood is poor and a better understanding of the reservoir connectivity is required to enhance future secondary oil recovery. Correlating the sand bodies between well locations in the area remains difficult at 40-acre well spacing. Thus, interwell connectivity of the reservoirs is uncertain. Understanding the reservoir connectivity in the Wells Draw study area requires integration of all static and dynamic data for generation of probabilistic models of the reservoir at the interwell locations. The objective of this study is two-fold. The first objective was to determine reservoir connectivity at the interwell scale in the Wells Draw study area. To achieve this goal, I used well log and perforation data in the Wells Draw study area to produce probabilistic models of net-porosity for four producing intervals: (1) Castle Peak, (2) Lower Douglas Creek, (3) Upper Douglas Creek, and (4) Garden Gulch. The second objective was to find readily applicable methods for determining interwell connectivity. To achieve this goal, I used sandstone net thickness and perforation data to evaluate interwell connectivity in the Wells Draw study area. This evaluation was done to: (1) assess and visualize connectivity, (2) provide an assessment of connectivity for validating / calibrating percolation and capacitance based methods, and (3) determine flow barriers for simulation. The probabilistic models encompass the four producing intervals with a gross thickness of 1,900 ft and enable simulation assessments of different development strategies for optimization of oil recovery in the Wells Draw study area. The method developed for determining interwell connectivity in Wells Draw study area is reliable and suited to the four producing intervals. Also, this study shows that the percolation based method is reliable for determining interwell connectivity in the four producing intervals.

Abiazie, Joseph Uchechukwu

2008-05-01T23:59:59.000Z

257

Geothermal Electricity Technologies Evaluation Model DOE Tool for Assessing Impact of Research on Cost of Power  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) has developed a spreadsheet model to provide insight as to how its research activities can impact of cost of producing power from geothermal energy. This model is referred to as GETEM, which stands for “Geothermal Electricity Technologies Evaluation Model”. Based on user input, the model develops estimates of costs associated with exploration, well field development, and power plant construction that are used along with estimated operating costs to provide a predicted power generation cost. The model allows the user to evaluate how reductions in cost, or increases in performance or productivity will impact the predicted power generation cost. This feature provides a means of determining how specific technology improvements can impact generation costs, and as such assists DOE in both prioritizing research areas and identifying where research is needed.

Greg Mines

2008-01-01T23:59:59.000Z

258

Efficiency modeling and evaluation of a resonant snubber based soft- switching inverter for motor drive applications  

SciTech Connect

This paper establishes an analytical model for a resonant snubber based soft-switching inverter. The model adopts loss separation method to evaluate losses in individual components. Because of symmetry of the inverter circuit, the developed model is suitable for both single-phase and three-phase inverters. A single-phase inverter was built and tested with a single-phase induction motor driving a fan load to verify the developed model. The equivalent single-phase induction motor model was curve-fitted from experiment. Analytical results showed reasonable agreement with experiment. The same efficiency evaluation method was then applied to the conventional hard-switching inverter, and the results were compared with that of the soft-switching inverter. The resonant snubber base soft-switching inverter shows substantial efficiency improvement over the hard switching PWM (pulse-width-modulation) inverter, especially in low speed operation.

Lai, J.S.; Young, R.W.; Ott, G.W.

1995-12-31T23:59:59.000Z

259

Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data  

Science Conference Proceedings (OSTI)

Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated in the present study using three satellite datasets. The satellite datasets are taken as reference bearing in mind that cloud and aerosol retrievals include uncertainties. We compute statistical relationships between aerosol optical depth (?a) and various cloud and radiation quantities consistently in models and satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over oceans. The relationship between ?a and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to rep¬resentation of the second aerosol indirect effect in terms of autoconversion. A positive re¬lationship between total cloud fraction (fcld) and ?a as found in the satellite data is simulated by the majority of the models, albeit less strongly in most of them. In a discussion of the hypo¬theses proposed in the literature to explain the satellite-derived strong fcld – ?a relation¬ship, we find that none is unequivocally confirmed by our results. Relationships similar to the ones found in satellite data between ?a and cloud top tem¬perature and outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - ?a relationship show a strong positive cor¬relation between ?a and cloud fraction. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of ?a, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the short-wave total aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5±0.5 Wm-2. An alternative estim¬ate obtained by scaling the simulated clear- and cloudy-sky forcings with estimates of anthropogenic ?a and satellite-retrieved Nd – ?a regression slopes, respectively, yields a global annual mean clear-sky (aerosol direct effect) es¬timate of -0.4±0.2 Wm-2 and a cloudy-sky (aerosol indirect effect) estimate of -0.7±0.5 Wm-2, with a total estimate of -1.2±0.4 Wm-2.

Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, T.; Wang, Minghuai; Penner, Joyce E.; Gettelman, A.; Lohmann, U.; Bellouin, N.; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, A.; Feingold, G.; Hoose, Corinna; Kristjansson, J. E.; Liu, Xiaohong; Balkanski, Y.; Donner, Leo J.; Ginoux, P.; Stier, P.; Grandey, B.; Feichter, J.; Sednev, Igor; Bauer, Susanne E.; Koch, D.; Grainger, Roy G.; Kirkevag, A.; Iversen, T.; Seland, O.; Easter, Richard C.; Ghan, Steven J.; Rasch, Philip J.; Morrison, H.; Lamarque, J. F.; Iacono, Michael J.; Kinne, Stefan; Schulz, M.

2009-11-16T23:59:59.000Z

260

The Evaluation of Steam Generator Level Measurement Model for OPR1000 Using RETRAN-3D  

Science Conference Proceedings (OSTI)

Steam generator level measurement is important factor for plant transient analyses using best estimate thermal hydraulic computer codes since the value of steam generator level is used for steam generator level control system and plant protection system. Because steam generator is in the saturation condition which includes steam and liquid together and is the place that heat exchange occurs from primary side to secondary side, computer codes are hard to calculate steam generator level realistically without appropriate level measurement model. In this paper, we prepare the steam generator models using RETRAN-3D that include geometry models, full range feedwater control system and five types of steam generator level measurement model. Five types of steam generator level measurement model consist of level measurement model using elevation difference in downcomer, 1D level measurement model using fluid mass, 1D level measurement model using fluid volume, 2D level measurement model using power and fluid mass, and 2D level measurement model using power and fluid volume. And we perform the evaluation of the capability of each steam generator level measurement model by simulating the real plant transient condition, the title is 'Reactor Trip by The Failure of The Deaerator Level Control Card of Ulchin Unit 3'. The comparison results between real plant data and RETRAN-3D analyses for each steam generator level measurement model show that 2D level measurement model using power and fluid mass or fluid volume has more realistic prediction capability compared with other level measurement models. (authors)

Doo Yong Lee; Soon Joon Hong; Byung Chul Lee [FNC Technology Co., SNU Research Park Innovation Center 516, San4-2, Bongchun-7 dong, Kwanak-Gu, Seoul (Korea, Republic of); Heok Soon Lim [KHNP Nuclear Environment Technology Institute, Munji-dong 103-16, Yusung-Gu, Daejeon (Korea, Republic of)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Synoptic: studying logged behavior with inferred models  

Science Conference Proceedings (OSTI)

Logging is a powerful method for capturing program activity and state during an execution. However, log inspection remains a tedious activity, with developers often piecing together what went on from multiple log lines and across many files. This paper ... Keywords: log analysis, model inference, synoptic, temporal invariant mining

Ivan Beschastnikh; Jenny Abrahamson; Yuriy Brun; Michael D. Ernst

2011-09-01T23:59:59.000Z

262

Memory Fault Modeling Trends: A Case Study  

Science Conference Proceedings (OSTI)

In recent years, embedded memories are the fastest growing segment of system on chip. They therefore have a major impact on the overall Defect per Million (DPM). Further, the shrinking technologies and processes introduce new defects that cause previously ... Keywords: data backgrounds, dynamic faults, fault coverage, fault models, memory tests, static faults

Said Hamdioui; Rob Wadsworth; John Delos Reyes; Ad J. Van De Goor

2004-06-01T23:59:59.000Z

263

Evaluation of tools for renewable energy policy analysis: The renewable energy penetration model  

Science Conference Proceedings (OSTI)

The Energy Policy Act of 1992 establishes a program to support development of renewable energy technologies including a production incentive to public power utilities. Because there is a wide range of possible policy actions that could be taken to increase electric market share for renewables, modeling tools are needed to help make informed decisions regarding future policy. Previous energy modeling tools did not contain the regional or infrastructure focus necessary to examine renewable technologies. As a result, the Department of Energy Office of Utility Technologies (OUT) supported the development of tools for renewable energy policy analysis. Three models were developed: The Renewable Energy Penetration (REP) model, which is a spreadsheet model for determining first-order estimates of policy effects for each of the ten federal regions; the Ten Federal Region Model (TFRM), which employs utility capacity expansion and dispatching decisions; and the Regional Electric Policy Analysis Model (REPAM) which was constructed to allow detailed insight into interactions between policy and technology within an individual region. In 1993, the OUT supported the Oak Ridge Institute of Science and Education (ORISE) to form an expert panel to provide an independent review of the REP model and TFRM. This report contains the panel`s evaluation of the REP model; the TFRM is evaluated in a companion report. The panel did not review the REPAM. The panel met for a second time in January 1994 to discuss model simulations and deliberate regarding evaluation outcomes. This report is largely a result of this second meeting. The remainder of this chapter provides a description of the REP model and summarizes the panel`s findings. Individual chapters examine various aspects of the model: demand and load, capacity expansion, dispatching and production costing, reliability, renewables, storage, transmission, financial and regulatory concerns, and environmental effects.

Engle, J.

1994-04-01T23:59:59.000Z

264

Economic evaluation of closure cap barrier materials study  

SciTech Connect

Volume II of the Economic Evaluation of the Closure Cap Barrier Materials, Revision I contains detailed cost estimates for closure cap barrier materials. The cost estimates incorporate the life cycle costs for a generic hazardous waste seepage basin closure cap under the RCRA Post Closure Period of thirty years. The economic evaluation assessed six barrier material categories. Each of these categories consists of several composite cover system configurations, which were used to develop individual cost estimates. The information contained in this report is not intended to be used as a cost estimating manual. This information provides the decision makers with the ability to screen barrier materials, cover system configurations, and identify cost-effective materials for further consideration.

Serrato, M.G.; Bhutani, J.S.; Mead, S.M.

1993-09-01T23:59:59.000Z

265

Radiation evaluation study of LSI RAM technologies. Final report  

SciTech Connect

Five commercial LSI static RAM technologies having a 1 kilobit capacity were radiation characterized. Arrays from the TTL, Schottky TTL, NMOS, CMOS, and CMOS/SOS families were evaluated. Radiation failure thresholds for gamma dose-rate logic upset, total gamma dose survivability, and neutron fluence survivability were determined. Included is a brief analysis of the radiation failure mechanism for each of the logic families tested.

Dinger, G.L.; Knoll, M.G.

1980-01-01T23:59:59.000Z

266

Numerical Model Studies of Long-Period Edge Waves  

Science Conference Proceedings (OSTI)

A numerical modeling study of aspects of the generation and propagation of long-period edge waves along a continental shelf is described. The numerical model is based on the traditional shallow-water dynamics. A scale analysis indicates that ...

F. A. Shillington; D. Van Foreest

1986-08-01T23:59:59.000Z

267

EVA - Evaluation of Energy Concepts: Case Study of Siedlungswerk, Stuttgart  

E-Print Network (OSTI)

This paper presents the evaluation and optimization results of the office building Siedlungswerk as part of the EVA project. Within EVA, 19 German office buildings are being “eva”-luated in terms of energy efficiency and user comfort. Built in the early 1990s in the city center of Stuttgart the building Siedlungswerk provides office spaces for 135 employees on a net heated floor area without a parking garage (NGFr) of 5.589 m². The evaluation showed an annual consumption of primary energy of 614 kWh/(m²NGFra). This was the highest within the EVA sample and significantly above reference values. Users complained about high temperatures in summer and low temperatures in winter especially during the morning hours. A short term monitoring of the indoor climate confirmed these problems. A comprehensive concept of improvement was implemented at the end of 2004 at a total cost of 250 T? including 100 T? for improvements in energy efficiency. The following year showed a reduction of 36 % in consumption of electrical energy and 49% in gas consumption. The energy savings generate annual cost savings of 50 T?, which equals a return on invest in energy efficiency after two years. The optimized building operation also significantly improved the user comfort.

Stefan, P.; Mahler, B.; Fisch, M. N.

2006-01-01T23:59:59.000Z

268

Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems  

SciTech Connect

A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

Liekhus, K.; Grandy, J.; Chambers, A. [and others] [and others

1997-03-01T23:59:59.000Z

269

A More Extensive Investigation of the Use of Ensemble Forecasts for Dispersion Model Evaluation  

Science Conference Proceedings (OSTI)

An ensemble forecast is used as input to a Lagrangian particle dispersion model to study the effect that analysis errors in the numerical weather prediction assimilation cycle have on dispersion modeling. The wind and temperature fields from a ...

Anne Grete Straume

2001-03-01T23:59:59.000Z

270

An evaluation of an empirical model for stall delay due to rotation for HAWTS  

DOE Green Energy (OSTI)

The objective of this study was to evaluate the Corrigan and Schillings stall delay model for predicting rotor performance for horizontal axis wind turbines. Two-dimensional (2D) wind tunnel characteristics with and without stall delay were used in the computer program PROP93 to predict performance for the NREL Combined Experiment Rotor (CER) and a lower solidity commercial machine. For the CER, predictions were made with a constant-chord/twisted blade and a hypothetical tapered/twisted blade. Results for the constant-chord/twisted blade were compared with CER data. Predicted performance using this empirical stall-delay method provided significant increases in peak power over 2D post-stall airfoil characteristics. The predicted peak power increase due to stall delay for the CER was found to be quite large (20% to 30%) as a result of its high blade solidity. For a more typical, lower-solidity commercial blade the predicted peak power increase was 15% to 20%. As described in the paper, correlation with test data was problematic due to factors not related to the stall-delay model.

Tangler, J.L. [National Renewable Energy Lab., Golden, CO (United States); Selig, M.S. [Univ. of Illinois, Urbana, IL (United States). Dept. of Aeronautical and Astronautical Engineering

1997-07-01T23:59:59.000Z

271

Grid Modeling for the SunShot Vision Study  

DOE Green Energy (OSTI)

This document describes the use of production cost modeling in the SunShot Vision study, including methods used to create the SunShot Vision scenarios, their implementation in the Gridview model, and assumptions regarding transmission system and operation of each generator type. It also describes challenges and limitations of modeling solar generation technologies in production cost models, and suggests methods for improving their representation in current models.

Brinkman, G.; Denholm, P.; Drury, E.; Ela, E.; Mai, T.; Margolis, R.; Mowers, M.

2012-02-01T23:59:59.000Z

272

Evaluation of an emergency response model for the Rocky Flats Plant: Charter  

Science Conference Proceedings (OSTI)

This Charter provides a basis for a cooperative, interagency effort to evaluate the Terrain-Responsive Atmospheric Code for emergency response and emergency planning for the Rocky Flats Plant. This document establishes the foundation for the project entitled, Evaluation of an Emergency Response Model for the Rocky Flats Plant'' (to be referred to as the Project). This document meets the following objectives: Identify the Project; establish the project management structure, organizational responsibilities, and organizational commitments for reaching the goals of the Project, and identify a process for model revision and revelation for acceptance. 2 figs.

Not Available

1991-01-01T23:59:59.000Z

273

Comprehensive Evaluation Model of Building Energy Efficiency Based on Rough Sets Theory  

E-Print Network (OSTI)

In order to improve the objectivity of building energy efficiency evaluation, this paper uses a new method to evaluate building energy efficiency on the basis of rough sets theory. The contribution of different subentry evaluation indicators to comprehensive evaluation is calculated with the conception of attribute-significance, and then their weights are decided by using weighted normalization. According to characteristics of subentry evaluation indicators, their scores are conformed, in the end their comprehensive evaluation is calculated depending on sums of weight normalization. The model is validated by the swatches that are given on base of the software "DeST". It is concluded that the comprehensive evaluation on base of the model coincides with the result of the software " DeST ". The contribution of shape coefficient is most important among the different factors, and building orientation is next. The method by which weight can be decided with the conception "attribute- significance from RS cuts down man-made factors” interfere., and objective results can be obtained.

Ding, L.; Ruan, X.; Huang, J.; Li, Y.

2006-01-01T23:59:59.000Z

274

The Impact of the Land Surface Physics in the Operational NCEP Eta Model on Simulating the Diurnal Cycle: Evaluation and Testing Using Oklahoma Mesonet Data  

Science Conference Proceedings (OSTI)

On 31 January 1996, the National Centers for Environmental Prediction/Environmental Modeling Center (NCEP/EMC) implemented a state-of-the-art land surface parameterization in the operational Eta Model. The purpose of this study is to evaluate and ...

Curtis H. Marshall; Kenneth C. Crawford; Kenneth E. Mitchell; David J. Stensrud

2003-10-01T23:59:59.000Z

275

Performance Evaluation of Adaptive Ramp-Metering Algorithms Using Microscopic Traffic Simulation Model  

E-Print Network (OSTI)

Performance Evaluation of Adaptive Ramp-Metering Algorithms Using Microscopic Traffic Simulation metering has undergone significant theoretical developments in recent years. However, the applicability been used in an evaluation study of three well-known adaptive ramp-metering algorithms: ALINEA, BOTTLE

Levinson, David M.

276

Steam Trap Testing and Evaluation: An Actual Plant Case Study  

E-Print Network (OSTI)

With rising steam costs and a high failure rate on the Joliet Plants standard steam trap, a testing and evaluation program was begun to find a steam trap that would work at Olin-Joliet. The basis was to conduct the test on the actual process equipment and that a minimum life be achieved. This paper deals with the history of the steam system/condensate systems, the setting up of the testing procedure, which traps were and were not tested and the results of the testing program to date.

Feldman, A. L.

1981-01-01T23:59:59.000Z

277

Multidataset Study of Optimal Parameter and Uncertainty Estimation of a Land Surface Model with Bayesian Stochastic Inversion and Multicriteria Method  

Science Conference Proceedings (OSTI)

This study evaluates the ability of Bayesian stochastic inversion (BSI) and multicriteria (MC) methods to search for the optimal parameter sets of the Chameleon Surface Model (CHASM) using prescribed forcing to simulate observed sensible and ...

Youlong Xia; Mrinal K. Sen; Charles S. Jackson; Paul L. Stoffa

2004-10-01T23:59:59.000Z

278

Development and Evaluation of RRTMG_SW, a Shortwave Radiative Transfer Model for GCM Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Development and Evaluation of RRTMG_SW, Development and Evaluation of RRTMG_SW, a Shortwave Radiative Transfer Model for General Circulation Model Applications M. J. Iacono, J. S. Delamere, E. J. Mlawer, and S. A. Clough Atmospheric and Environmental Research, Inc. Lexington, Massachusetts J.-J. Morcrette European Center for Medium-Range Weather Forecasts Reading, United Kingdom Y.-T. Hou National Centers for Environmental Prediction Camp Springs, Maryland Introduction The k-distribution shortwave radiation model developed for the Atmospheric Radiation Measurement (ARM) Program, RRTM_SW_V2.4 (Clough et al. 2004), utilizes the discrete ordinates radiative transfer model, DISORT, for scattering calculations and 16 g-points in each of its 16 spectral bands. DISORT provides agreement with line-by-line flux calculations to within 1 Wm

279

Artificial neural networks for rapid WWTP performance evaluation: Methodology and case study  

Science Conference Proceedings (OSTI)

Reliable performance evaluation of wastewater treatment plants (WWTPs) can be done by simulating the plant behavior over a wide range of influent disturbances, including series of rain events with different intensity and duration, seasonal temperature ... Keywords: Artificial neural networks, Modeling, Performance evaluation, Plant design, Simulation speed, Time series, Wastewater treatment plant

B. Ráduly; K. V. Gernaey; A. G. Capodaglio; P. S. Mikkelsen; M. Henze

2007-08-01T23:59:59.000Z

280

DETERMINATION OF IMPORTANCE EVALUATION FOR THE SURFACE EXPLORATORY STUDIES FACILITY  

Science Conference Proceedings (OSTI)

This DIE applies to the surface facilities component of the Yucca Mountain Site Characterization Project (W) ESF. The ESF complex-including surface and subsurface accommodations--encompasses an area that is approximately six miles wide and nine miles long (approximately 30,000 acres total) (United States Department of Energy [DOE] 1997, p. 9.04). It is located on federally withdrawn lands, near the southwest border of the Nevada Test Site (NTS) in southern Nevada (DOE 1997, p. 9.04). Site characterization activities are conducted within the subsurface ESF to obtain the information necessary to determine whether the Yucca Mountain Site is suitable as a geologic repository for spent nuclear fuel and high-level radioactive waste. Most ESF surface facilities are located within the Conceptual Controlled Area Boundary (CCAB) (DOE 1997, p. 9.04), with the exception of the southeastern most portions of the H-Road and the Water Supply System. Various SBT activities are also conducted throughout the Yucca Mountain region as a part of the overall site-characterization effort. In general, the DIE for SBT Activities (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 1998a) evaluates activities associated with SBT. Potential test-to-test interference and waste isolation impacts associated with SBT activities are also evaluated in CRWMS M&O (1998a).

C.J. Byrne

2000-07-25T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation  

E-Print Network (OSTI)

The MIT Integrated Global System Model (IGSM) is designed for analyzing the global environmental changes that may result from anthropogenic causes, quantifying the uncertainties associated with the projected changes, and ...

Sokolov, Andrei P.

282

A bibliometric study of Video Retrieval Evaluation Benchmarking (TRECVid): A methodological analysis  

Science Conference Proceedings (OSTI)

This paper provides a discussion and analysis of methodological issues encountered during a scholarly impact and bibliometric study within the field of Computer Science (TRECVid Text Retrieval and Evaluation Conference, Video Retrieval Evaluation). The ... Keywords: TRECVid, bibliometrics, methodology, research evaluation, video retrieval, visualization

Clare V. Thornley; Shane J. Mcloughlin; Andrea C. Johnson; Alan F. Smeaton

2011-12-01T23:59:59.000Z

283

A QUANTITATIVE STUDY OF EXPERIMENTAL NEURAL NETWORK LEARNING ALGORITHM EVALUATION PRACTICES  

E-Print Network (OSTI)

study by Tichy et al. 1 about experimental eval- uation in computer science publications, the journal at assessing the quality of an evaluation. I review the set of all articles presenting learning algorithms 1In this report, I will use the term evaluation to mean experimental evaluation. for practical problems

Prechelt, Lutz

284

What do usability evaluators do in practice?: an explorative study of think-aloud testing  

Science Conference Proceedings (OSTI)

Think-aloud testing is a widely employed usability evaluation method, yet its use in practice is rarely studied. We report an explorative study of 14 think-aloud sessions, the audio recordings of which were examined in detail. The study shows that immediate ... Keywords: industrial software development, think aloud testing, usability evaluation, user-centered design

Mie Nørgaard; Kasper Hornbæk

2006-06-01T23:59:59.000Z

285

Scale model studies of displacement ventilation  

E-Print Network (OSTI)

Displacement ventilation is an air conditioning method that provides conditioned air to indoor environments with the goal to improve air quality while reducing energy consumption. This study investigates the performance ...

Okutan, Galip Mehmet

1995-01-01T23:59:59.000Z

286

Landmark High-Rise Fire Study Evaluates Effectiveness of ...  

Science Conference Proceedings (OSTI)

... The study, funded by the Federal Emergency Management Agency (FEMA) Assistance to ... and arrival times in the context of fighting residential fires ...

2013-04-10T23:59:59.000Z

287

Intercomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon Modeling and Evaluation  

E-Print Network (OSTI)

Intercomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model intercomparison experiment Yongkang Xue This paper briefly presents the West African Monsoon (WAM) Modeling and Evaluation Project (WAMME

Xue, Yongkang

288

A comparison study between fuzzy time series model and ARIMA model for forecasting Taiwan export  

Science Conference Proceedings (OSTI)

This study compares the application of two forecasting methods on the amount of Taiwan export, the ARIMA time series method and the fuzzy time series method. Models discussed for the fuzzy time series method include the Factor models, the Heuristic models, ... Keywords: ARIMA model, Fuzzy time series, Taiwan export

Chi-Chen Wang

2011-08-01T23:59:59.000Z

289

Nondestructive Evaluation: Probabilistic Reliability Model for Thermally Aged Cast Austenitic Stainless Steel Piping  

Science Conference Proceedings (OSTI)

A probabilistic fracture mechanics (PFM) method has been developed to support the evaluation of the effects of thermal aging embrittlement on the reliability of reactor coolant cast austenitic stainless steel (CASS) piping components. The probabilistic method relies on modeling of the contributing elements of a deterministic analysis (for example, geometry, loading conditions, materials, and known degradation ...

2012-12-12T23:59:59.000Z

290

Land Surface Heating and the North American Monsoon Anticyclone: Model Evaluation from Diurnal to Seasonal  

E-Print Network (OSTI)

Land Surface Heating and the North American Monsoon Anticyclone: Model Evaluation from Diurnal the North American Monsoon Experiment (NAME), from observational sites as well as satellite retrievals simulations. 1. Introduction The North American monsoon (NAM) is a circulation pattern that brings summer

Miami, University of

291

Evaluation of Hydration Free Energy by Level-Set Variational Implicit-Solvent Model  

E-Print Network (OSTI)

Evaluation of Hydration Free Energy by Level-Set Variational Implicit-Solvent Model with Coulomb free energy but also the polar and nonpolar contributions individually. The correlation between VISM-CFA and experiments is R2 = 0.763 for total hydration free energy, with a root mean square deviation (RMSD) of 1

Li, Bo

292

A Comprehensive Model for Evaluation of Carbon Footprint and Greenhouse Gages Emission in Household Biogas Plants  

Science Conference Proceedings (OSTI)

Based on Life Cycle Assessment and other related methods, this paper introduced a comprehensive model for the evaluation of the carbon footprint and greenhouse gases emission in household biogas plants including nearly all the processes of the household ... Keywords: Biogas Plant, Carbon Footprint, Life Cycle, Greenhouse Gas

Jie Zhou; Shubiao Wu; Wanqin Zhang; Changle Pang; Baozhi Wang; Renjie Dong; Li Chen

2012-07-01T23:59:59.000Z

293

Evaluating functional displays for hydropower system: model-based guidance of scenario design  

Science Conference Proceedings (OSTI)

We discuss the human role in hydropower system control, noting how it is different from other supervisory control environments and noting the typical shortcomings in current displays provided to hydropower system controllers. We describe steps towards ... Keywords: Evaluation, Functional displays, Human control model, Human supervisory control, Hydropower system control, Scenario design, Situation awareness, Trust

Xilin Li; Penelope Sanderson; Rizah Memisevic; William Wong; Sanjib Choudhury

2006-10-01T23:59:59.000Z

294

Using reactive transport modeling to evaluate the source term at Yucca mountain  

Science Conference Proceedings (OSTI)

The conventional approach of source-term evaluation for performance assessment of nuclear waste repositories uses the dissolution rate of waste form and the solubility of pure phases of radioactive elements to constrain radionuclide concentrations. This ... Keywords: neptunium, nuclear waste, radionuclide solubility, reactive-transport modeling, secondary phases, spent nuclear fuel, uranium

Yueting Chen

2003-04-01T23:59:59.000Z

295

Clear-Sky Longwave Irradiance at the Earth’s Surface—Evaluation of Climate Models  

Science Conference Proceedings (OSTI)

An evaluation of the clear-sky longwave irradiance at the earth’s surface (LI) simulated in climate models and in satellite-based global datasets is presented. Algorithm-based estimates of LI, derived from global observations of column water ...

J. R. Garratt

2001-04-01T23:59:59.000Z

296

An Intelligent Evaluation Model Based on the LEACH Protocol in Wireless Sensor Networks  

Science Conference Proceedings (OSTI)

This paper aims to introduce some key parameters for the tracking application in wireless sensor networks. In this work the LEACH protocol with J-sim simulation tool has been implemented, and consequently some useful trade-off analysis results among ... Keywords: J-sim, LEACH, EDCR, Evaluation Model

Ning Cao; Russell Higgs; Gregory M. P. O'Hare

2012-10-01T23:59:59.000Z

297

Diabatic Effects on Late-Winter Cold Front Evolution: Conceptual and Numerical Model Evaluations  

Science Conference Proceedings (OSTI)

The impact of diabatic heating on late winter frontogenesis is evaluated both through conceptual scaling and the use of high-resolution Eta Model simulations of a strong but relatively dry cold surface front that occurred during the Storm-scale ...

William A. Gallus Jr.; Moti Segal

1999-07-01T23:59:59.000Z

298

Effect of inelastic scattering on underwater daylight in the ocean: model evaluation,  

E-Print Network (OSTI)

optical processes affecting underwater daylight are mathematically described by the radiativeEffect of inelastic scattering on underwater daylight in the ocean: model evaluation, validation capable of simulating underwater daylight in the ocean is presented. The main focus is on gelbstoff

Oldenburg, Carl von Ossietzky Universität

299

Modeling Heavy-tails in Traffic Sources for Network Performance Evaluation  

E-Print Network (OSTI)

1 Modeling Heavy-tails in Traffic Sources for Network Performance Evaluation Vaidyanathan Ramaswami, Kaustubh Jain, Rittwik Jana, Vaneet Aggarwal Abstract--Heavy tails in work loads (file sizes, flow lengths heavy tailed random variables. The fits obtained are validated using separate training and test data

Greenberg, Albert

300

Comparative Evaluation of Eddy Exchange Coefficients for Strong and Weak Wind Stable Boundary Layer Modeling  

Science Conference Proceedings (OSTI)

Five local K-closure formulations and a TKE closure were incorporated in a one-dimensional version of the Pielke’s model, and a comparative evaluation of the closure schemes was made for strong and weak wind stable boundary layer (SBL). The ...

Maithili Sharan; S. G. Gopalakrishnan

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Evaluation of Long-Range Transport Models for Acidic Deposition in East Asia  

Science Conference Proceedings (OSTI)

A comparison between transport models is done to study the sulfur deposition in East Asia. A single-layer Lagrangian model with simple chemistry is compared to a multilayered 3D Eulerian model. The comparison is done for two-month-long episodes ...

Mahesh J. Phadnis; Gregory R. Carmichael; Yoichi Ichikawa; Hiroshi Hayami

1998-10-01T23:59:59.000Z

302

Reliability of Current Biokinetic and Dosimetric Models for Radionuclides: A Pilot Study  

Science Conference Proceedings (OSTI)

This report describes the results of a pilot study of the reliability of the biokinetic and dosimetric models currently used by the U.S. Nuclear Regulatory Commission (NRC) as predictors of dose per unit internal or external exposure to radionuclides. The study examines the feasibility of critically evaluating the accuracy of these models for a comprehensive set of radionuclides of concern to the NRC. Each critical evaluation would include: identification of discrepancies between the models and current databases; characterization of uncertainties in model predictions of dose per unit intake or unit external exposure; characterization of variability in dose per unit intake or unit external exposure; and evaluation of prospects for development of more accurate models. Uncertainty refers here to the level of knowledge of a central value for a population, and variability refers to quantitative differences between different members of a population. This pilot study provides a critical assessment of models for selected radionuclides representing different levels of knowledge of dose per unit exposure. The main conclusions of this study are as follows: (1) To optimize the use of available NRC resources, the full study should focus on radionuclides most frequently encountered in the workplace or environment. A list of 50 radionuclides is proposed. (2) The reliability of a dose coefficient for inhalation or ingestion of a radionuclide (i.e., an estimate of dose per unit intake) may depend strongly on the specific application. Multiple characterizations of the uncertainty in a dose coefficient for inhalation or ingestion of a radionuclide may be needed for different forms of the radionuclide and different levels of information of that form available to the dose analyst. (3) A meaningful characterization of variability in dose per unit intake of a radionuclide requires detailed information on the biokinetics of the radionuclide and hence is not feasible for many infrequently studied radionuclides. (4) The biokinetics of a radionuclide in the human body typically represents the greatest source of uncertainty or variability in dose per unit intake. (5) Characterization of uncertainty in dose per unit exposure is generally a more straightforward problem for external exposure than for intake of a radionuclide. (6) For many radionuclides the most important outcome of a large-scale critical evaluation of databases and biokinetic models for radionuclides is expected to be the improvement of current models. Many of the current models do not fully or accurately reflect available radiobiological or physiological information, either because the models are outdated or because they were based on selective or uncritical use of data or inadequate model structures. In such cases the models should be replaced with physiologically realistic models that incorporate a wider spectrum of information.

Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; Meck, Robert A. [U.S. Nuclear Regulatory Commission

2008-10-01T23:59:59.000Z

303

Heat pipe radiation cooling evaluation: Task 2 concept studies report  

SciTech Connect

This report presents the result of Task 2, Concept Studies for Heat Pipe Radiation Cooling (HPRC), which was performed for Los Alamos National Laboratory under Contract 9-XT1-U9567. Studies under a prior contract defined a reference HPRC conceptual design for hypersonic aircraft engines operating at Mach 5 and an altitude of 80,000 ft. Task 2 involves the further investigation of heat pipe radiation cooling (HPRC) systems for additional design and operating conditions.

Silverstein, C.C.

1991-10-01T23:59:59.000Z

304

An Evaluation of Sea Level Cyclone Forecasts Produced by NMC's Nested-Grid Model and Global Spectral Model  

Science Conference Proceedings (OSTI)

Sea level cyclone errors are computed for the National Meteorological Center's Nested-Grid Model (NGM) and the Aviation Run of the Global Spectral Model (AVN). The study is performed for the 1987/88 and 1989/90 cool seasons. All available 24- and ...

Bruce B. Smith; Steven L. Mullen

1993-03-01T23:59:59.000Z

305

A Regional Model Study of Synoptic Features over West Africa  

Science Conference Proceedings (OSTI)

Synoptic weather features over West Africa were studied in simulations by the regional simulation model (RM) at the NASA Goddard Institute for Space Studies. These pioneering simulations represent the beginning of an effort to adapt regional ...

Leonard M. Druyan; Matthew Fulakeza; Patrick Lonergan; Mahaman Saloum

2001-06-01T23:59:59.000Z

306

Gravity model studies of Newberry Volcano, Oregon  

SciTech Connect

Newberry, Volcano, a large Quaternary volcano located about 60 km east of the axis of the High Cascades volcanoes in central Oregon, has a coincident positive residual gravity anomaly of about 12 mGals. Model calculations of the gravity anomaly field suggest that the volcano is underlain by an intrusive complex of mafic composition of about 20-km diameter and 2-km thickness, at depths above 4 km below sea level. However, uplifted basement in a northwest trending ridge may form part of the underlying excess mass, thus reducing the volume of the subvolcanic intrusive. A ring dike of mafic composition is inferred to intrude to near-surface levels along the caldera ring fractures, and low-density fill of the caldera floor probably has a thickness of 0.7--0.9 km. The gravity anomaly attributable to the volcano is reduced to the east across a north-northwest trending gravity anomaly gradient through Newberry caldera and suggests that normal, perhaps extensional, faulting has occurred subsequent to caldera formation and may have controlled the location of some late-stage basaltic and rhyolitic eruptions. Significant amounts of felsic intrusive material may exist above the mafic intrusive zone but cannot be resolved by the gravity data.

Gettings, M.E.; Griscom, A.

1988-09-10T23:59:59.000Z

307

Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings  

SciTech Connect

This study examines the effective moisture penetration depth (EMPD) model, and its suitability for building simulations. The EMPD model is a compromise between the simple, inaccurate effective capacitance approach and the complex, yet accurate, finite-difference approach. Two formulations of the EMPD model were examined, including the model used in the EnergyPlus building simulation software. An error in the EMPD model we uncovered was fixed with the release of EnergyPlus version 7.2, and the EMPD model in earlier versions of EnergyPlus should not be used.

Woods, J.; Winkler, J.; Christensen, D.

2013-01-01T23:59:59.000Z

308

Thermohaline Circulation Stability: A Box Model Study. Part II: Coupled Atmosphere–Ocean Model  

Science Conference Proceedings (OSTI)

A thorough analysis of the stability of a coupled version of an interhemispheric three-box model of thermohaline circulation (THC) is presented. This study follows a similarly structured analysis of an uncoupled version of the same model ...

Valerio Lucarini; Peter H. Stone

2005-02-01T23:59:59.000Z

309

A joint computational and experimental study to evaluate Inconel-sheathed thermocouple performance in flames.  

Science Conference Proceedings (OSTI)

A joint experimental and computational study was performed to evaluate the capability of the Sandia Fire Code VULCAN to predict thermocouple response temperature. Thermocouple temperatures recorded by an Inconel-sheathed thermocouple inserted into a near-adiabatic flat flame were predicted by companion VULCAN simulations. The predicted thermocouple temperatures were within 6% of the measured values, with the error primarily attributable to uncertainty in Inconel 600 emissivity and axial conduction losses along the length of the thermocouple assembly. Hence, it is recommended that future thermocouple models (for Inconel-sheathed designs) include a correction for axial conduction. Given the remarkable agreement between experiment and simulation, it is recommended that the analysis be repeated for thermocouples in flames with pollutants such as soot.

Brundage, Aaron L.; Nicolette, Vernon F.; Donaldson, A. Burl; Kearney, Sean Patrick; Gill, Walter

2005-09-01T23:59:59.000Z

310

Decision support model for evaluating biofuel development along the U.S.-Mexico border.  

SciTech Connect

Recently, Sandia National Laboratories and General Motors cooperated on the development of the Biofuels Deployment Model (BDM) to assess the feasibility, implications, limitations, and enablers of producing 90 billion gallons of ethanol per year by 2030. Leveraging the past investment, a decision support model based on the BDM is being developed to assist investors, entrepreneurs, and decision makers in evaluating the costs and benefits associated with biofuels development in the U.S.-Mexico border region. Specifically, the model is designed to assist investors and entrepreneurs in assessing the risks and opportunities associated with alternative biofuels development strategies along the U.S.-Mexico border, as well as, assist local and regional decision makers in understanding the tradeoffs such development poses to their communities. The decision support model is developed in a system dynamics framework utilizing a modular architecture that integrates the key systems of feedstock production, transportation, and conversion. The model adopts a 30-year planning horizon, operating on an annual time step. Spatially the model is disaggregated at the county level on the U.S. side of the border and at the municipos level on the Mexican side. The model extent includes Luna, Hildalgo, Dona Anna, and Otero counties in New Mexico, El Paso and Hudspeth counties in Texas, and the four munipos along the U.S. border in Chihuahua. The model considers a variety of feedstocks; specifically, algae, gitropha, castor oil, and agricultural waste products from chili and pecans - identifying suitable lands for these feedstocks, possible yields, and required water use. The model also evaluates the carbon balance for each crop and provides insight into production costs including labor demands. Finally, the model is fitted with an interactive user interface comprised of a variety of controls (e.g., slider bars, radio buttons), descriptive text, and output graphics allowing stakeholders to directly explore the tradeoffs between alternative biofuels development scenarios.

Tidwell, Vincent Carroll; Correa, Alberto (Bi-National Sustainability Laboratory Santa Teresa, NM); Maxwell, Paul (Bi-National Sustainability Laboratory Santa Teresa, NM); Malczynski, Leonard A.

2010-04-01T23:59:59.000Z

311

Augmented reality painting and collage: evaluating tangible interaction in a field study  

Science Conference Proceedings (OSTI)

Tangible computing applications are rarely evaluated with field studies in real settings, which can contribute as formative studies to understand the challenges and benefits of tangible interfaces in real world practices. We present an AR environment ...

Giulio Jacucci; Antti Oulasvirta; Antti Salovaara; Thomas Psik; Ina Wagner

2005-09-01T23:59:59.000Z

312

Criteria and Methods for Performing and Evaluating Solar-Weather Studies  

Science Conference Proceedings (OSTI)

Research criteria and methods are presented for performing and evaluating the growing discipline of solar-weather studies. A clear distinction among preliminary, exploratory, and confirmatory studies is presented, and it is shown that this ...

John A. Flueck; Timothy J. Brown

1993-02-01T23:59:59.000Z

313

Evaluating runoff simulations from the Community Land Model 4.0 using observations from flux towers and a mountainous watershed  

SciTech Connect

Previous studies using the Community Land Model (CLM) focused on simulating landatmosphere interactions and water balance at continental to global scales, with limited attention paid to its capability for hydrologic simulations at watershed or regional scales. This study evaluates the performance of CLM 4.0 (CLM4) for hydrologic simulations, and explores possible directions of improvement. Specifically, it is found that CLM4 tends to produce unrealistically large temporal variation of runoff for applications at a mountainous catchment in the Northwest United States where subsurface runoff is dominant, as well as at a few flux tower sites. We show that runoff simulations from CLM4 can be improved by: (1) increasing spatial resolution of the land surface representations; (2) calibrating parameter values; (3) replacing the subsurface formulation with a more general nonlinear function; (4) implementing the runoff generation schemes from the Variability Infiltration Capacity (VIC) model. This study also highlights the importance of evaluating both the energy and water fluxes application of land surface models across multiple scales.

Li, Hongyi; Huang, Maoyi; Wigmosta, Mark S.; Ke, Yinghai; Coleman, Andre M.; Leung, Lai-Yung R.; Wang, Aihui; Ricciuto, Daniel M.

2011-12-24T23:59:59.000Z

314

Case Study Evaluation of Urea Delivery and Storage Options  

Science Conference Proceedings (OSTI)

Terra Environmental Technologies conducted a commercial and technical study for the SNCR Interest Group to determine the most cost-effective urea supply scenario for planned selective non-catalytic reduction (SNCR) installations at four power-generating plants located in North Carolina. Design considerations required the availability of a 50% concentration of urea liquor at each generating facility on a year round basis by 2007. Initial water quality used to dilute the delivered urea liquor was to be dem...

2005-06-21T23:59:59.000Z

315

Evaluation of the South Pacific Convergence Zone in IPCC AR4 Climate Model Simulations of the Twentieth Century  

Science Conference Proceedings (OSTI)

Understanding how the South Pacific convergence zone (SPCZ) may change in the future requires the use of global coupled atmosphere–ocean models. It is therefore important to evaluate the ability of such models to realistically simulate the SPCZ. ...

Josephine R. Brown; Scott B. Power; Francois P. Delage; Robert A. Colman; Aurel F. Moise; Bradley F. Murphy

2011-03-01T23:59:59.000Z

316

Evaluation of IPCC Models’ Performance in Simulating Late-Twentieth-Century Climatologies and Weather Patterns over North America  

Science Conference Proceedings (OSTI)

The authors analyze the performance of 22 Intergovernmental Panel on Climate Change (IPCC) global climate models (GCMs) over all of North America and its western subregion using several different evaluation metrics. They assess the model skill in ...

Valentina Radi?; Garry K. C. Clarke

2011-10-01T23:59:59.000Z

317

Modeling prismatic HTGRs with U.S. N.R.C advanced gas reactor evaluator (AGREE)  

SciTech Connect

A core fluids and heat transfer model has been developed for the prismatic high temperature gas reactor in support of the US NRC Next Generation Nuclear Plant (NGNP) evaluation model. The core fluids modeling relies on a subchannel approach in which the primary coolant flow path through the core region and vertical in-core and ex-core gaps can be modeled as individual subchannels. These subchannels are connected together to represent a three dimensional reactor. An initial validation calculation for the core fluids model has been performed using data available in literature for bypass flow. The predicted bypass flow was within 2.6% of the value reported in the literature. The core level heat transfer model is based on a triangular finite volume method, where the base triangle is one sixth of the prismatic block. In order to improve the spatial accuracy at this level, a triangular refinement method was also implemented. The fuel compact temperature is calculated by a cylindrical conduction model which is implicitly coupled to the triangular core level model. The preliminary verification of the model was performed by comparing AGREE to a finite element code COMSOL by analyzing the MHTGR core heat transfer. Further verification and validation is currently an ongoing effort. (authors)

Seker, V.; Drzewiecki, T.; Downar, T. [Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 (United States); Kelly, J. M. [US Nuclear Regulatory Commission, Washington, DC (United States)

2012-07-01T23:59:59.000Z

318

Agent-Based vs. Equation-based Epidemiological Models:A Model Selection Case Study  

SciTech Connect

This paper is motivated by the need to design model validation strategies for epidemiological disease-spread models. We consider both agent-based and equation-based models of pandemic disease spread and study the nuances and complexities one has to consider from the perspective of model validation. For this purpose, we instantiate an equation based model and an agent based model of the 1918 Spanish flu and we leverage data published in the literature for our case- study. We present our observations from the perspective of each implementation and discuss the application of model-selection criteria to compare the risk in choosing one modeling paradigm to another. We conclude with a discussion of our experience and document future ideas for a model validation framework.

Sukumar, Sreenivas R [ORNL; Nutaro, James J [ORNL

2012-01-01T23:59:59.000Z

319

Evaluating the Risks of Alternative Energy Policies: A Case Study of Industrial Energy Efficiency  

E-Print Network (OSTI)

Numerous studies have shown the potential for U.S. manufacturing to cut its energy costs by installing more efficient equipment that offers competitive payback periods, but the realization of this potential is hindered by numerous obstacles. This paper evaluates seven federal policy options aimed at revitalizing U.S. manufacturing by improving its energy economics while also achieving environmental and energy reliability goals. Traditionally, policy analysts have examined the cost-effectiveness of energy policies using deterministic assumptions. When risk factors are introduced, they are typically examined using sensitivity analysis to focus on alternative assumptions about budgets, policy design, energy prices, and other such variables. In this paper we also explicitly model the stochastic nature of several key risk factors including future energy prices, damages from climate change, and the cost of criteria pollutants. Using these two approaches, each policy is “stress tested ” to evaluate the likely range of private and social returns on investment. Overall we conclude that the societal cost-effectiveness of policies is generally more sensitive to alternative assumptions about damages from criteria pollutants and climate change compared with energy prices; however, risks also vary across policies

Marilyn A. Brown; Paul Baer; Matt Cox; Yeong Jae Kim; Dr. Marilyn; A. Brown; D. M. Smith Building; Marilyn A. Brown; Paul Baer; Matt Cox; Yeong Jae Kim

2012-01-01T23:59:59.000Z

320

Evaluation of tools for renewable energy policy analysis: The ten federal region model  

Science Conference Proceedings (OSTI)

The Energy Policy Act of 1992 establishes a program to support development of renewable energy technologies including a production incentive to public power utilities. Because there is a wide range of possible policy actions that could be taken to increase electric market share for renewables, modeling tools are needed to help make informed decisions regarding future policy. Previous energy modeling tools did not contain the region or infrastructure focus necessary to examine renewable technologies. As a result, the Department of Energy Office of Utility Technologies (OUT) supported the development of tools for renewable energy policy analysis. Three models were developed: The Renewable Energy Penetration (REP) model, which is a spreadsheet model for determining first-order estimates of policy effects for each of the ten federal regions; the Ten Federal Region Model (TFRM), which employs utility capacity expansion and dispatching decision; and the Region Electric Policy Analysis Model (REPAM), which was constructed to allow detailed insight into interactions between policy and technology within an individual region. These Models were developed to provide a suite of fast, personal-computer based policy analysis tools; as one moves from the REP model to the TFRM to the REPAM the level of detail (and complexity) increases. In 1993 a panel was formed to identify model strengths, weaknesses (including any potential biases) and to suggest potential improvements. The panel met in January 1994 to discuss model simulations and to deliberate regarding evaluation outcomes. This report is largely a result of this meeting. This report is organized as follows. It provides a description of the TFRM and summarizes the panel`s findings. Individual chapters examine various aspects of the model: demand and load, capacity expansion, dispatching and production costing, reliability, renewables, storage, financial and regulatory concerns, and environmental effects.

Engle, J.

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

FIERAsystem: A Fire Risk Assessment Model for Light Industrial Building Fire Safety Evaluation  

E-Print Network (OSTI)

this report. The current report describes the framework for the new model, individual submodels used for calculations, and the information that the model provides to the design engineer or building official. The framework that FIERAsystem uses to conduct a hazard analysis and the process used to perform a risk analysis are also discussed in the report. 2. FRAMEWORK OF FIERAsystemMODEL The FIERAsystem model allows the user to perform a number of fire protection engineering calculations in order to evaluate fire protection systems in industrial buildings. At start-up, FIERAsystem provides several calculation options, which allow the user to: use standard engineering correlations, run individual submodels, conduct a hazard analysis, or conduct a risk analysis

N. Kashef; A. Torvi; G. Reid; Noureddine Benichou; Ahmed Kashef; David Torvi; George Hadjisophocleous; Irene Reid

2002-01-01T23:59:59.000Z

322

Experimental evaluation of a simulation model for wrap-around heat exchanger, solar storage tanks  

DOE Green Energy (OSTI)

The thermal performance of a commercially available 80 gallon, solar storage tank with an integral wrap-around heat exchanger is characterized experimentally an indoor test stand. The experimental results are used to evaluated the accuracy of a previously developed simulation model. Heat input on the collector side of the heat exchanger is held constant causing the heat transfer to reach a quasi-steady state. Temperatures in the heat exchanger and tank increase with time, however, the temperature differences across the heat exchanger remain nearly constant. Several combinations of heat input and collector loop flow are investigated. The development of the tank temperature profiles over time and the overall heat transfer performance predicted by the model are compared with experimental results. The influence of an electric auxiliary heater located in the top of the solar storage tank on the heat exchanger performance is investigated. Experimental normalization of the model is considered and modifications to the model and experiments are recommended.

Miller, J.A.; Hittle, D.C.

1995-05-01T23:59:59.000Z

323

COGENMASTER: A model for evaluating cogeneration options: Final report, Volume 2, User's guide  

Science Conference Proceedings (OSTI)

The COGENMASTER model was developed in this project. COGENMASTER is a micro-computer based menu-driven model which enables the user to examine the technical aspects of various types of cogeneration projects, evaluate their economic feasibility, and prepare detailed cash flow statements that spell out the costs and benefits to project participants. The model is designed to objectively evaluate and screen cogeneration options by comparing them to a base case scenario in which electricity is purchased from the utility and thermal energy is produced on-site. The model consists of many modules that may be individually edited. The different modules that constitute COGENMASTER are the technology, load shape, rates, sizing, operating, cash-flow, financing, pricing and simulation modules. A load shape library of electric and thermal loads in nine commercial buildings and seven weather zones was also developed as part of this project. In addition, a technology database of six generic cogeneration systems is also included in the package. The model has been written for IBM-PC compatible computers with 512K memory, a floppy drive and a hard disk.

Balakrishnan, S.; Limaye, D.R.; Ross, C.; Gavelis, B.; Scott, S.

1988-12-01T23:59:59.000Z

324

Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the Effective Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings J. Woods, J. Winkler, and D. Christensen National Renewable Energy Laboratory Technical Report NREL/TP-5500-57441 January 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings J. Woods, J. Winkler, and D. Christensen National Renewable Energy Laboratory Prepared under Task No. BE12.0201

325

Hospital waste management and toxicity evaluation: A case study  

SciTech Connect

Hospital waste management is an imperative environmental and public safety issue, due to the waste's infectious and hazardous character. This paper examines the existing waste strategy of a typical hospital in Greece with a bed capacity of 400-600. The segregation, collection, packaging, storage, transportation and disposal of waste were monitored and the observed problematic areas documented. The concentrations of BOD, COD and heavy metals were measured in the wastewater the hospital generated. The wastewater's toxicity was also investigated. During the study, omissions and negligence were observed at every stage of the waste management system, particularly with regard to the treatment of infectious waste. Inappropriate collection and transportation procedures for infectious waste, which jeopardized the safety of staff and patients, were recorded. However, inappropriate segregation practices were the dominant problem, which led to increased quantities of generated infectious waste and hence higher costs for their disposal. Infectious waste production was estimated using two different methods: one by weighing the incinerated waste (880 kg day{sup -1}) and the other by estimating the number of waste bags produced each day (650 kg day{sup -1}). Furthermore, measurements of the EC{sub 50} parameter in wastewater samples revealed an increased toxicity in all samples. In addition, hazardous organic compounds were detected in wastewater samples using a gas chromatograph/mass spectrograph. Proposals recommending the application of a comprehensive hospital waste management system are presented that will ensure that any potential risks hospital wastes pose to public health and to the environment are minimized.

Tsakona, M.; Anagnostopoulou, E. [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineers, Technical University of Crete, GR-73100 Polytechnioupolis, Chania, Crete (Greece); Gidarakos, E. [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineers, Technical University of Crete, GR-73100 Polytechnioupolis, Chania, Crete (Greece)], E-mail: gidarako@mred.tuc.gr

2007-07-01T23:59:59.000Z

326

Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation  

Science Conference Proceedings (OSTI)

Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplanktonproduced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS{sup -}) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr{sup -1}, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS{sup -} (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr{sup -1}, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ngm{sup -3}, with values up to 400 ngm{sup -3} over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20 %) in CCN (at a supersaturation (S) of 0.2 %) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides diverse results with increases and decreases in the concentration of CCN over different parts of the ocean. The sign of the CCN change due to the addition of marine organics to seasalt aerosol is determined by the relative significance of the increase in mean modal diameter due to addition of mass, and the decrease in particle hygroscopicity due to compositional changes in marine aerosol. Based on emerging evidence for increased CCN concentration over biologically active surface ocean areas/periods, our study suggests that treatment of sea spray in global climate models (GCMs) as an internal mixture of marine organic aerosols and sea-salt will likely lead to an underestimation in CCN number concentration.

Meskhidze, N.; Xu, J.; Gantt, Brett; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

2011-11-23T23:59:59.000Z

327

Evaluation of a server-client architecture for accelerator modeling and simulation  

Science Conference Proceedings (OSTI)

Traditional approaches to computational modeling and simulation often utilize a batch method for code execution using file-formatted input/output. This method of code implementation was generally chosen for several factors, including CPU throughput and availability, complexity of the required modeling problem, and presentation of computation results. With the advent of faster computer hardware and the advances in networking and software techniques, other program architectures for accelerator modeling have recently been employed. Jefferson Laboratory has implemented a client/server solution for accelerator beam transport modeling utilizing a query-based I/O. The goal of this code is to provide modeling information for control system applications and to serve as a computation engine for general modeling tasks, such as machine studies. This paper performs a comparison between the batch execution and server/client architectures, focusing on design and implementation issues, performance, and general utility towards accelerator modeling demands.

Bowling, B.A.; Akers, W.; Shoaee, H.; Watson, W.; Zeijts, J. van; Witherspoon, S.

1997-11-01T23:59:59.000Z

328

Theoretical and computational studies of some bioreactor models  

Science Conference Proceedings (OSTI)

We study certain classical basic models for bioreactor simulation in case of batch mode with decay. It is shown that in many cases the two-dimensional differential system describing the dynamics of the substrate and biomass concentrations can be reduced ... Keywords: Batch mode, Bioreactor, Chemostat, Haldane/Andrews function, Microbial growth, Monod model

Rene Alt; Svetoslav Markov

2012-08-01T23:59:59.000Z

329

Executable JVM model for analytical reasoning: a study  

Science Conference Proceedings (OSTI)

To study the properties of the Java Virtual Machine(JVM) and Java programs, our research group has produced a series of JVM models written in a functional subset of Common Lisp. In this paper, we present our most complete JVM model from this series, ...

Hanbing Liu; J Strother Moore

2003-06-01T23:59:59.000Z

330

Mathematical Modeling for Evaluation of Quality of Service Parameters in Next Generation Cellular Wireless Networks  

Science Conference Proceedings (OSTI)

In this paper, a mathematical model has been developed for cellular wireless network with Gamma inter-arrivals and general call holding times. Measurement based studies have shown that Poisson assumption averages out the traffic characteristics to a ... Keywords: Cellular wireless networks, QoS, mathematical model

Raj Kumar Samanta; Partha Bhattacharjee; Gautam Sanyal

2009-12-01T23:59:59.000Z

331

LANL researchers use computer modeling to study HIV | National Nuclear  

National Nuclear Security Administration (NNSA)

researchers use computer modeling to study HIV | National Nuclear researchers use computer modeling to study HIV | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LANL researchers use computer modeling to study HIV LANL researchers use computer modeling to study HIV Posted By Office of Public Affairs Los Alamos National Laboratory researchers are investigating the complex

332

Numerical Modeling Studies of a Process of Lee Cyclogenesis  

Science Conference Proceedings (OSTI)

A process of lee cyclogenesis associated with backsheared baroclinic flow is studied using a fully nonlinear, primitive equation numerical model. A region of low pressure and a narrow baroclinic zone develop to the southwest of the mountain in ...

Yuh-Lang Lin; Donald J. Perkey

1989-12-01T23:59:59.000Z

333

A Study of Barotropic Model Flows: Intermittency, Waves and Predictability  

Science Conference Proceedings (OSTI)

The régime flows corresponding to the barotropic nondivergent equation with forcing, drag and subgrid-scale dissipation are studied using spectral model on the plane and on the sphere. The flow régimes obtained exhibit clear evidence of the ...

C. Basdevant; B. Legras; R. Sadourny; M. Béland

1981-11-01T23:59:59.000Z

334

Confronting Models with Data: The GEWEX Cloud Systems Study  

Science Conference Proceedings (OSTI)

The Global Energy and Water Cycle Experiment (GEWEX) Cloud System Study (GCSS) was organized to promote the development of improved parameterizations of cloud systems for use in climate and numerical weather prediction models, with an emphasis on ...

David Randall; Steven Krueger; Christopher Bretherton; Judith Curry; Peter Duynkerke; Mitchell Moncrieff; Brian Ryan; David Starr; Martin Miller; William Rossow; George Tselioudis; Bruce Wielicki

2003-04-01T23:59:59.000Z

335

A Mesoscale Modeling Study of the 1996 Saguenay Flood  

Science Conference Proceedings (OSTI)

A mesoscale simulation of the 19–21 July 1996 Saguenay flood cyclone was performed using the Canadian Mesoscale Compressible Community (MC2) model to study the processes leading to the explosive development and the large amount of precipitation. ...

J. A. Milbrandt; M. K. Yau

2001-06-01T23:59:59.000Z

336

An Observational Analysis and Evaluation of Land Surface Model Accuracy in the Nebraska Sand Hills  

Science Conference Proceedings (OSTI)

In this study, the influence of subsurface water on the energy budget components of three locations with heterogeneous land surfaces in the Nebraska Sand Hills are examined through observations and use of the Noah land surface model (LSM). ...

David B. Radell; Clinton M. Rowe

2008-08-01T23:59:59.000Z

337

Evaluating hydro-climatic change signals from statistically and dynamically downscaled GCMs and hydrologic models  

Science Conference Proceedings (OSTI)

This study analyzed potential hydro-climatic change in the Peace River basin in the Province of British Columbia, Canada, based on two structurally different approaches: i) statistically-downscaled Global Climate Models (GCMs) using the Bias ...

Rajesh R. Shrestha; Markus A. Schnorbus; Arelia T. Werner; Francis W. Zwiers

338

Evaluation of WRF Model Simulations of Tornadic and Nontornadic Outbreaks Occurring in the Spring and Fall  

Science Conference Proceedings (OSTI)

Recent studies, investigating the ability to use the Weather Research and Forecasting (WRF) model to distinguish tornado outbreaks from primarily nontornadic outbreaks when initialized with synoptic-scale data, have suggested that accurate ...

Chad M. Shafer; Andrew E. Mercer; Lance M. Leslie; Michael B. Richman; Charles A. Doswell III

2010-11-01T23:59:59.000Z

339

Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

2009-01-01T23:59:59.000Z

340

Evaluation of TANK Water Heater Simulation Model as Embedded in HWSim  

NLE Websites -- All DOE Office Websites (Extended Search)

TANK Water Heater Simulation Model as Embedded in HWSim TANK Water Heater Simulation Model as Embedded in HWSim Title Evaluation of TANK Water Heater Simulation Model as Embedded in HWSim Publication Type Report LBNL Report Number LBNL-5092E Year of Publication 2010 Authors Lutz, James D. Document Number LBNL-5092E Pagination 11 Date Published December 22 Publisher Lawrence Berkeley National Laboratory City Berkeley ISBN Number LBNL-5092E Abstract This report evaluates the hot water temperatures and flow rates as calculated by the combined HWSim and TANK simulation models. Notes This work was sponsored by the Gas Technology Institute (GTI) which is funded by the California Energy Commission, Public Interest Energy Research (PIER) Program, under Residential Water Heating Program Contract No. 500-08-060. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Description and evaluation of a mechanistically based conceptual model for spall  

Science Conference Proceedings (OSTI)

A mechanistically based model for a possible spall event at the WIPP site is developed and evaluated in this report. Release of waste material to the surface during an inadvertent borehole intrusion is possible if future states of the repository include high gas pressure and waste material consisting of fine particulates having low mechanical strength. The conceptual model incorporates the physics of wellbore hydraulics coupled to transient gas flow to the intrusion borehole, and mechanical response of the waste. Degraded waste properties using of the model. The evaluations include both numerical and analytical implementations of the conceptual model. A tensile failure criterion is assumed appropriate for calculation of volumes of waste experiencing fragmentation. Calculations show that for repository gas pressures less than 12 MPa, no tensile failure occurs. Minimal volumes of material experience failure below gas pressure of 14 MPa. Repository conditions dictate that the probability of gas pressures exceeding 14 MPa is approximately 1%. For these conditions, a maximum failed volume of 0.25 m{sup 3} is calculated.

Hansen, F.D.; Knowles, M.K.; Thompson, T.W. [and others

1997-08-01T23:59:59.000Z

342

Evaluation of Land Surface Models in Reproducing Satellite Derived Leaf Area Index over the High-Latitude Northern Hemisphere. Part II: Earth System Models  

E-Print Network (OSTI)

Abstract: Leaf Area Index (LAI) is a key parameter in the Earth System Models (ESMs) since it strongly affects land-surface boundary conditions and the exchange of matter and energy with the atmosphere. Observations and data products derived from satellite remote sensing are important for the validation and evaluation of ESMs from regional to global scales. Several decades ’ worth of satellite data products are now available at global scale which represents a unique opportunity to contrast observations against model results. The objective of this study is to assess whether ESMs correctly reproduce the spatial variability of LAI when compared with satellite data and to compare the length of the growing season in the different models with the satellite data. To achieve this goal we analyse outputs from 11 coupled carbon-climate models that are based on the set of new global model simulations planned in support of the IPCC Fifth Assessment Report. We focus on the average LAI and the length of the growing season on Northern Hemisphere over the period 1986–2005. Additionally we compare the results with previous analyses (Part I) of

Ro Anav; Guillermo Murray-tortarolo; Pierre Friedlingstein; Stephen Sitch; Shilong Piao; Zaichun Zhu

2013-01-01T23:59:59.000Z

343

Synthesis and Evaluation of CO2 Thickeners Designed with Molecular Modeling  

DOE Green Energy (OSTI)

The objective of this research was to use molecular modeling techniques, coupled with our prior experimental results, to design, synthesize and evaluate inexpensive, non-fluorous carbon dioxide thickening agents. The first type of thickener that was considered was associating polymers. Typically, these thickeners are copolymers that contain a highly CO{sub 2}-philic monomer, and a small concentration of a CO{sub 2}-phobic associating monomer. Yale University was solely responsible for the synthesis of a second type of thickener; small, hydrogen bonding compounds. These molecules have a core that contains one or more hydrogen-bonding groups, such as urea or amide groups. Non-fluorous, CO{sub 2}-philic functional groups were attached to the hydrogen bonding core of the compound to impart CO{sub 2} stability and macromolecular stability to the linear 'stack' of these compounds. The third type of compound initially considered for this investigation was CO{sub 2}-soluble surfactants. These surfactants contain conventional ionic head groups and composed of CO{sub 2}-philic oligomers (short polymers) or small compounds (sugar acetates) previously identified by our research team. Mobility reduction could occur as these surfactant solutions contacted reservoir brine and formed mobility control foams in-situ. The vast majority of the work conducted in this study was devoted to the copolymeric thickeners and the small hydrogen-bonding thickeners; these thickeners were intended to dissolve completely in CO{sub 2} and increase the fluid viscosity. A small but important amount of work was done establishing the groundwork for CO{sub 2}-soluble surfactants that reduced mobility by generating foams in-situ as the CO{sub 2}+surfactant solution mixed with in-situ brine.

Robert Enick; Erick Beckman; J. Karl Johnson

2009-08-31T23:59:59.000Z

344

Evaluation of Turbulent Transport and Dissipation Closures in Second-Order Modeling  

Science Conference Proceedings (OSTI)

We show that the turbulence statistics from our (96)3 large-eddy-simulation (LES) studies of a convective boundary layer are in excellent agreement with those from the Deardorff–Willis laboratory convection tank. Using these LES data, we evaluate ...

Chin-Hoh Moeng; John C. Wyngaard

1989-07-01T23:59:59.000Z

345

Evaluation of Blade-Strike Models for Estimating the Biological Performance of Large Kaplan Hydro Turbines  

DOE Green Energy (OSTI)

BioIndex testing of hydro-turbines is sought as an analog to the hydraulic index testing conducted on hydro-turbines to optimize their power production efficiency. In BioIndex testing the goal is to identify those operations within the range identified by Index testing where the survival of fish passing through the turbine is maximized. BioIndex testing includes the immediate tailrace region as well as the turbine environment between a turbine's intake trashracks and the exit of its draft tube. The US Army Corps of Engineers and the Department of Energy have been evaluating a variety of means, such as numerical and physical turbine models, to investigate the quality of flow through a hydro-turbine and other aspects of the turbine environment that determine its safety for fish. The goal is to use these tools to develop hypotheses identifying turbine operations and predictions of their biological performance that can be tested at prototype scales. Acceptance of hypotheses would be the means for validation of new operating rules for the turbine tested that would be in place when fish were passing through the turbines. The overall goal of this project is to evaluate the performance of numerical blade strike models as a tool to aid development of testable hypotheses for bioIndexing. Evaluation of the performance of numerical blade strike models is accomplished by comparing predictions of fish mortality resulting from strike by turbine runner blades with observations made using live test fish at mainstem Columbia River Dams and with other predictions of blade strike made using observations of beads passing through a 1:25 scale physical turbine model.

Deng, Zhiqun; Carlson, Thomas J.; Ploskey, Gene R.; Richmond, Marshall C.

2005-11-30T23:59:59.000Z

346

Regional air quality in the four corners studys region: modeling approach  

Science Conference Proceedings (OSTI)

A two-dimensional Eulerian air pollutant transport model was used in an air quality study of the Four Corners region conducted for the National Commission on Air Quality. The regional modeling methodology and some sample results from the regional air quality analysis are presented. One major advantage of the regional transport model that was employed is that its solution involves the calculation of transfer coefficients that relate emissions to ambient concentrations and deposition and which can be used repeatedly to evaluate alternative scenarios and regulatory policies which represent different emission source configurations. The regional transport model was used in the calculation of the concentration and deposition of SO/sub 2/, SO/sub 4/, and primary fine particulates; and these estimates were used as inputs to regional atmospheric visibility and mass budget calculations. Previous studies have shown that the methods used in the regional air quality analysis give good agreement when comparing observed and estimated values.

Nochumson, D.

1982-01-01T23:59:59.000Z

347

Final Report on Evaluating the Representation and Impact of Convective Processes in the NCAR Community Climate System Model  

SciTech Connect

Convection and clouds affect atmospheric temperature, moisture and wind fields through the heat of condensation and evaporation and through redistributions of heat, moisture and momentum. Individual clouds have a spatial scale of less than 10 km, much smaller than the grid size of several hundred kilometers used in climate models. Therefore the effects of clouds must be approximated in terms of variables that the model can resolve. Deriving such formulations for convection and clouds has been a major challenge for the climate modeling community due to the lack of observations of cloud and microphysical properties. The objective of our DOE CCPP project is to evaluate and improve the representation of convection schemes developed by PIs in the NCAR (National Center for Atmospheric Research) Community Climate System Model (CCSM) and study its impact on global climate simulations. • The project resulted in nine peer-reviewed publications and numerous scientific presentations that directly address the CCPP’s scientific objective of improving climate models. • We developed a package of improved convection parameterization that includes improved closure, trigger condition for convection, and comprehensive treatment of convective momentum transport. • We implemented the new convection parameterization package into several versions of the NCAR models (both coupled and uncoupled). This has led to 1) Improved simulation of seasonal migration of ITCZ; 2) Improved shortwave cloud radiative forcing response to El Niño in CAM3; 3) Improved MJO simulation in both uncoupled and coupled model; and 4) Improved simulation of ENSO in coupled model. • Using the dynamic core of CCM3, we isolated the dynamic effects of convective momentum transport. • We implemented mosaic treatment of subgrid-scale cloud-radiation interaction in CCM3.

X. Wu, G. J. Zhang

2008-04-23T23:59:59.000Z

348

Evaluation of metal artifacts in MVCT systems using a model based correction method  

Science Conference Proceedings (OSTI)

Purpose: To evaluate the performance of a model based image reconstruction method in reducing metal artifacts in the megavoltage computed tomography (MVCT) images of a phantom representing bilateral hip prostheses and to compare with the filtered-backprojection (FBP) technique. Methods: An iterative maximum likelihood polychromatic algorithm for CT (IMPACT) is used with an additional model for the pair/triplet production process and the energy dependent response of the detectors. The beam spectra for an in-house bench-top and TomoTherapy Trade-Mark-Sign MVCTs are modeled for use in IMPACT. The empirical energy dependent response of detectors is calculated using a constrained optimization technique that predicts the measured attenuation of the beam by various thicknesses (0-24 cm) of solid water slabs. A cylindrical (19.1 cm diameter) plexiglass phantom containing various cylindrical inserts of relative electron densities 0.295-1.695 positioned between two steel rods (2.7 cm diameter) is scanned in the bench-top MVCT that utilizes the bremsstrahlung radiation from a 6 MeV electron beam passed through 4 cm solid water on the Varian Clinac 2300C and in the imaging beam of the TomoTherapy Trade-Mark-Sign MVCT. The FBP technique in bench-top MVCT reconstructs images from raw signal normalized to air scan and corrected for beam hardening using a uniform plexiglass cylinder (20 cm diameter). The IMPACT starts with a FBP reconstructed seed image and reconstructs the final image in 150 iterations. Results: In both MVCTs, FBP produces visible dark shading in the image connecting the steel rods. In the IMPACT reconstructed images this shading is nearly removed and the uniform background is restored. The average attenuation coefficients of the inserts and the background are very close to the corresponding values in the absence of the steel inserts. In the FBP images of the bench-top MVCT, the shading causes 4%-9.5% underestimation of electron density at the central inserts with an average of (6.3 {+-} 1.8)% for the range of electron densities studied. In the uniform plexiglass background, the shadow creates 0.8%-4.7% underestimation of electron density with an average of (2.9 {+-} 1.2)%. In the corresponding IMPACT images, the underestimation in the shaded plexiglass background is 0.3%-1.8% with an average of (0.9 {+-} 0.5)% and 1.4%-6.8% with an average of (2.8 {+-} 2.7)% in the central insert region. In the FBP images of the TomoTherapy Trade-Mark-Sign MVCT, this shading creates 2.6%-6.7% underestimation of electron density with an average of (3.7 {+-} 1.4)% at the central inserts and 5.9%-7.2% underestimation in the background with an average of (6.4 {+-} 0.5)%. In the IMPACT images, the uniform background between the steel rods is restored with 0.3%-1.0% underestimation of electron density with an average of (0.7 {+-} 0.3)%. The corresponding underestimation at the central inserts of the IMPACT images is -0.4%-0.1% with an average of (-0.1 {+-} 0.2)%. Conclusions: The shading metal artifact has been nearly removed in MVCT images using the IMPACT algorithm with the accurate geometry of the system, proper modeling of energy dependent response of detectors, and all relevant photon interaction processes. This results less than 1% difference in electron density in the background plexiglass and less than 3% averaged over the range of electron densities investigated.

Paudel, M. R.; Mackenzie, M.; Fallone, B. G.; Rathee, S. [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

2012-10-15T23:59:59.000Z

349

Forced Planetary Waves in a Two-Level Model and Evaluation of the Upper Boundary Condition  

Science Conference Proceedings (OSTI)

Stationary planetary waves forced by orography and diabatic beating are studied using a quasi-geostrophic two-level model on a beta-plane. This study extends a previous one by Trenberth to include the effects of a baroclinic atmosphere with zonal ...

Shyh-Chin Chen; Kevin E. Trenberth

1985-11-01T23:59:59.000Z

350

Evaluation of crop yield and soil water estimates using the EPIC model for the Loess Plateau of China  

Science Conference Proceedings (OSTI)

Since 2000, a database of crop and soil parameters, and meteorological data and so on, has been set up for the EPIC model, based on long-term experimental data and on-the-spot investigated data. The model parameters have been repeatedly revised and verified ... Keywords: Crop yield, EPIC model, Evaluation, Loess Plateau, Soil water

Xue Chun Wang; Jun Li

2010-06-01T23:59:59.000Z

351

Rebuilding Greensburg, Kansas, as a Model Green Community: A Case Study |  

Open Energy Info (EERE)

Kansas, as a Model Green Community: A Case Study Kansas, as a Model Green Community: A Case Study Jump to: navigation, search Name Rebuilding Greensburg, Kansas, as a Model Green Community: A Case Study Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Agriculture, Buildings, Commercial, Residential, Other, Energy Efficiency - Central Plant, Energy Efficiency - Utility, Economic Development, Energy Efficiency, Other, Non-renewable Energy, People and Policy, Transportation, Water Conservation, Renewable Energy, Biomass, Geothermal, Ground Source Heat Pumps, Hydrogen and Fuel Cells, Solar, - Solar Hot Water, - Solar Pv, Wind Phase Bring the Right People Together, Determine Baseline, Evaluate Options, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes

352

Evaluation and Modeling of Edge-Seal Materials for Photovoltaic Applications  

DOE Green Energy (OSTI)

Because of the sensitivity of some photovoltaic devices to moisture-induced corrosion, they are packaged using impermeable front- and back-sheets along with an edge seal to prevent moisture ingress. Evaluation of edge seal materials can be difficult because of the low permeation rates involved and/or non-Fickian behavior. Here, using a Ca film deposited on a glass substrate, we demonstrate the evaluation of edge seal materials in a manner that effectively duplicates their use in a photovoltaic application and compare the results with standard methods for measuring water vapor transport. We demonstrate how moisture permeation data from polymer films can be used to estimate moisture ingress rates and compare the results of these two methods. Encapsulant materials were also evaluated for comparison and to highlight the need for edge seals. Of the materials studied, desiccant filled polyisobutylene materials demonstrate by far the best potential to keep moisture out for a 20 to 30 year lifetime.

Kempe, M. D.; Dameron, A. A.; Moricone, T. J.; Reese, M. O.

2011-02-01T23:59:59.000Z

353

Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation  

Science Conference Proceedings (OSTI)

Efforts to reduce anthropogenic mercury emissions worldwide have recently focused on a variety of sources, including mercury emitted during coal combustion. Toward that end, much research has been ongoing seeking to develop new processes for reducing coal combustion mercury emissions. Among air pollution control processes that can be applied to coal-fired boilers, electrostatic precipitators (ESPs) are by far the most common, both on a global scale and among the principal countries of India, China, and the U.S. that burn coal for electric power generation. A previously reported theoretical model of in-flight mercury capture within ESPs is herein evaluated against data from a number of full-scale tests of activated carbon injection for mercury emissions control. By using the established particle size distribution of the activated carbon and actual or estimated values of its equilibrium mercury adsorption capacity, the incremental reduction in mercury concentration across each ESP can be predicted and compared to experimental results. Because the model does not incorporate kinetics associated with gas-phase mercury transformation or surface adsorption, the model predictions represent the mass-transfer-limited performance. Comparing field data to model results reveals many facilities performing at or near the predicted mass-transfer-limited maximum, particularly at low rates of sorbent injection. Where agreement is poor between field data and model predictions, additional chemical or physical phenomena may be responsible for reducing mercury removal efficiencies. 26 refs., 5 figs., 1 tab.

Clack, H.L. [Illinois Institute of Technology, Chicago, IL (United States). Department of Mechanical, Materials and Aerospace Engineering

2009-03-01T23:59:59.000Z

354

Proposing the Simplification of the Multilayer Urban Canopy Model: Intercomparison Study of Four Models  

Science Conference Proceedings (OSTI)

The study proposes the simplification of the multilayer urban canopy model. Four types of multilayer urban canopy models—level 4, level 3, level 2, and level 1—are developed to reduce the computational load of the heat budget calculations at the ...

Ryosaku Ikeda; Hiroyuki Kusaka

2010-05-01T23:59:59.000Z

355

Transformer modelling for distribution system studies. Part 1; Linear modelling basics  

SciTech Connect

In this paper a distribution transformer modelling procedure is discussed which represents the distribution transformer with a minimum of input data for network, load, and fault studies thereby allowing the transformer to be routinely included as part of the distribution network. The method presented in this paper illustrates how transformer models are developed and how their parameters are estimated.

Gorman, M.J.; Grainger, J.J. (Electric Power Research Center, North Carolina State Univ., Raleigh, NC (US))

1992-04-01T23:59:59.000Z

356

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

Science Conference Proceedings (OSTI)

Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

Richard A. Ferrare; David D. Turner

2011-09-01T23:59:59.000Z

357

1396 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY VOLUME 46 A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part II: Application and Evaluation in a Mesoscale Meteorological Model  

E-Print Network (OSTI)

A new combined local and nonlocal closure atmospheric boundary layer model called the Asymmetric Convective Model, version 2, (ACM2) was described and tested in one-dimensional form and was compared with large-eddy simulations and field data in Part I. Herein, the incorporation of the ACM2 into the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) is described. Model simulations using the MM5 with the ACM2 are made for the summer of 2004 and evaluated through comparison with surface meteorological measurements, rawinsonde profile measurements, and observed planetary boundary layer (PBL) heights derived from radar wind profilers. Overall model performance is as good as or better than similar MM5 evaluation studies. The MM5 simulations with the ACM2 compare particularly well to PBL heights derived from radar wind profilers during the afternoon hours. The ACM2 is designed to simulate the vertical mixing of any modeled quantity realistically for both meteorological models and air quality models. The next step, to be described in a subsequent article, is to incorporate the ACM2 into the Community Multiscale Air Quality (CMAQ) model for testing and evaluation. 1.

Jonathan E. Pleim

2006-01-01T23:59:59.000Z

358

LBL research on The Geysers: Conceptual models, simulation and monitoring studies  

DOE Green Energy (OSTI)

As part of The Geysers research activities of DOE's Geothermal Reservoir Technology Program, LBL, in close co-operation with industry, is performing fundamental and applied studies of vapor- dominated geothermal systems. These studies include the development of new methods for evaluating cold water injection, monitoring of the seismic activity in The Geysers associated with injection and production, interpretation of pressure and geochemical changes measured during well tests and long-term production and injection operations, and improvement of existing models of the geothermal system. A review is given of the latest results of DOE-sponsored LBL reservoir engineering and seismic studies relevant to The Geysers.

Bodvarsson, G.S.; Lippmann, M.J.; Majer, E.L.; Pruess, K.

1992-03-01T23:59:59.000Z

359

LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies  

DOE Green Energy (OSTI)

As part of The Geysers research activities of DOE's Geothermal Reservoir Technology Program, LBL, in close cooperation with industry, is performing fundamental and applied studies of vapor-dominated geothermal systems. These studies include the development of new methods for evaluating cold water injection, monitoring of the seismic activity in The Geysers associated with injection and production, interpretation of pressure and geochemical changes measured during well tests and long-term production and injection operations, and improvement of existing models of the geothermal system. A review is given of the latest results of DOE-sponsored LBL reservoir engineering and seismic studies relevant to The Geysers.

Bodvarsson, G.S.; Lippmann, M.J.; Majer, E.L.; Pruess, K.

1992-03-24T23:59:59.000Z

360

LBL research on The Geysers: Conceptual models, simulation and monitoring studies  

DOE Green Energy (OSTI)

As part of The Geysers research activities of DOE`s Geothermal Reservoir Technology Program, LBL, in close co-operation with industry, is performing fundamental and applied studies of vapor- dominated geothermal systems. These studies include the development of new methods for evaluating cold water injection, monitoring of the seismic activity in The Geysers associated with injection and production, interpretation of pressure and geochemical changes measured during well tests and long-term production and injection operations, and improvement of existing models of the geothermal system. A review is given of the latest results of DOE-sponsored LBL reservoir engineering and seismic studies relevant to The Geysers.

Bodvarsson, G.S.; Lippmann, M.J.; Majer, E.L.; Pruess, K.

1982-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Modeling studies of geothermal systems with a free water surface  

DOE Green Energy (OSTI)

A numerical simulator was developed for the modeling of air-steam-water systems. The simulator was applied to various problems involving injection into or production from a geothermal reservoir in hydraulic communication with a shallow free-surface aquifer. First, a one-dimensional column problem is considered and the water level movement during exploitation is studied using different capillary pressure functions. Second, a two-dimensional radial model is used to study and compare reservoir depletion for cases with and without a free-surface aquifer. Finally, the contamination of a shallow free-surface aquifer due to cold water injection is investigated. The primary aim of these studies is to obtain an understanding of the response of a reservoir in hydraulic communication with a unconfined aquifer during exploitation or injection and to determine under which circumstances conventional modeling techniques (fully saturated systems) can be applied to such systems.

Bodvarsson, G.S.; Pruess, K.

1983-12-01T23:59:59.000Z

362

Evaluation of a Modified Scheme for Shallow Convection: Implementation of CuP and Case Studies  

Science Conference Proceedings (OSTI)

A new treatment for shallow clouds has been introduced into the Weather Research and Forecasting (WRF) model. The new scheme, called the cumulus potential (CuP) scheme, replaces the ad-hoc trigger function used in the Kain-Fritsch cumulus parameterization with a trigger function related to the distribution of temperature and humidity in the convective boundary layer via probability density functions (PDFs). An additional modification to the default version of WRF is the computation of a cumulus cloud fraction based on the time scales relevant for shallow cumuli. Results from three case studies over the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in north central Oklahoma are presented. These days were selected because of the presence of shallow cumuli over the ARM site. The modified version of WRF does a much better job predicting the cloud fraction and the downwelling shortwave irradiance thancontrol simulations utilizing the default Kain-Fritsch scheme. The modified scheme includes a number of additional free parameters, including the number and size of bins used to define the PDF, the minimum frequency of a bin within the PDF before that bin is considered for shallow clouds to form, and the critical cumulative frequency of bins required to trigger deep convection. A series of tests were undertaken to evaluate the sensitivity of the simulations to these parameters. Overall, the scheme was found to be relatively insensitive to each of the parameters.

Berg, Larry K.; Gustafson, William I.; Kassianov, Evgueni I.; Deng, Liping

2013-01-01T23:59:59.000Z

363

A Numerical Model for Evaluating the Impact of Noble Metal Chemical Addition in Boiling Water Reactors  

SciTech Connect

The technique of noble metal chemical addition (NMCA), accompanied by a low-level hydrogen water chemistry (HWC), is being employed by several U.S. nuclear power plants for mitigating intergranular stress corrosion cracking in the vessel internals of their boiling water reactors (BWRs). An improved computer model by the name of DEMACE was employed to evaluate the performance of NMCA throughout the primary coolant circuit (PCC) of a commercial BWR. The molar ratios of hydrogen to oxidizing species in the PCC under normal water chemistry and HWC are analyzed. The effectiveness of NMCA is justified by calculated electrochemical corrosion potential (ECP) around the PCC and in a local power range monitoring (LPRM) housing tube, in which practical in-vessel ECP measurements are normally taken.Prior to the modeling work for the BWR, the Mixed Potential Model, which is embedded in DEMACE and responsible for ECP calculation, was calibrated against both laboratory and plant ECP data. After modeling for various HWC conditions, it is found that the effectiveness of NMCA in the PCC of the selected BWR varies from region to region. In particular, the predicted ECP in the LPRM housing tube is notably different from that in the nearby bulk environment under NMCA, indicating that cautions must be given to a possible, undesirable outcome due to a distinct ECP difference between a locally confined area and the actual bulk environment.

Yeh, T.-K. [National Tsing-Hua University, Taiwan (China)

2002-10-15T23:59:59.000Z

364

The Operational Mesogamma-Scale Analysis and Forecast System of the U.S. Army Test and Evaluation Command. Part II: Interrange Comparison of the Accuracy of Model Analyses and Forecasts  

Science Conference Proceedings (OSTI)

This study builds upon previous efforts to document the performance of the U.S. Army Test and Evaluation Command’s Four-Dimensional Weather Modeling System using conventional metrics. Winds, temperature, and specific humidity were verified for ...

Yubao Liu; Thomas T. Warner; Elford G. Astling; James F. Bowers; Christopher A. Davis; Scott F. Halvorson; Daran L. Rife; Rong-Shyang Sheu; Scott P. Swerdlin; Mei Xu

2008-04-01T23:59:59.000Z

365

Evaluating Surface Water Cycle Simulated by the Australian Community Land Surface Model (CABLE) across Different Spatial and Temporal Domains  

Science Conference Proceedings (OSTI)

The terrestrial water cycle in the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model has been evaluated across a range of temporal and spatial domains. A series of offline experiments were conducted using the forcing data from ...

Huqiang Zhang; Bernard Pak; Ying Ping Wang; Xinyao Zhou; Yongqiang Zhang; Liang Zhang

2013-08-01T23:59:59.000Z

366

Evaluation of a Mesoscale Model with Different Surface Parameterizations and Vertical Resolutions for the Bay of Valencia  

Science Conference Proceedings (OSTI)

Two different setups of the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) are used and the results of 71 forecasts are evaluated with a focus on the accuracy of meteorological surface data including wind, temperature, ...

Hinnerk Ries; K. Heinke Schlünzen

2009-08-01T23:59:59.000Z

367

Evaluation of Cirrus Parameterizations for Radiative Flux Computations in Climate Models Using TOVS–ScaRaB Satellite Observations  

Science Conference Proceedings (OSTI)

Combined simultaneous satellite observations are used to evaluate the performance of parameterizations of the microphysical and optical properties of cirrus clouds used for radiative flux computations in climate models. Atmospheric and cirrus ...

C. J. Stubenrauch; F. Eddounia; J. M. Edwards; A. Macke

2007-09-01T23:59:59.000Z

368

A design tool architecture for the rapid evaluation of product design tradeoffs in an Inernet-based system modeling environment  

E-Print Network (OSTI)

This thesis presents a computer-aided design tool for the rapid evaluation of design tradeoffs in an integrated product modeling environment. The goal of this work is to provide product development organizations with better ...

Wronski, Jacob (Jacob Andrzej)

2005-01-01T23:59:59.000Z

369

Evaluation of Turbulence Closure Models for Large-Eddy Simulation over Complex Terrain: Flow over Askervein Hill  

Science Conference Proceedings (OSTI)

The evaluation of turbulence closure models for large-eddy simulation (LES) has primarily been performed over flat terrain, where comparisons with theory and observations are simplified. The authors have previously developed improved closure ...

Fotini Katopodes Chow; Robert L. Street

2009-05-01T23:59:59.000Z

370

Evaluating Potential for Large Releases from CO2 StorageReservoirs: Analogs, Scenarios, and Modeling Needs  

SciTech Connect

While the purpose of geologic storage of CO{sub 2} in deep saline formations is to trap greenhouse gases underground, the potential exists for CO{sub 2} to escape from the target reservoir, migrate upward along permeable pathways, and discharge at the land surface. Such discharge is not necessarily a serious concern, as CO{sub 2} is a naturally abundant and relatively benign gas in low concentrations. However, there is a potential risk to health, safety and environment (HSE) in the event that large localized fluxes of CO{sub 2} were to occur at the land surface, especially where CO{sub 2} could accumulate. In this paper, we develop possible scenarios for large CO{sub 2} fluxes based on the analysis of natural analogues, where large releases of gas have been observed. We are particularly interested in scenarios which could generate sudden, possibly self-enhancing, or even eruptive release events. The probability for such events may be low, but the circumstances under which they might occur and potential consequences need to be evaluated in order to design appropriate site selection and risk management strategies. Numerical modeling of hypothetical test cases is needed to determine critical conditions for such events, to evaluate whether such conditions may be possible at designated storage sites, and, if applicable, to evaluate the potential HSE impacts of such events and design appropriate mitigation strategies.

Birkholzer, Jens; Pruess, Karsten; Lewicki, Jennifer; Tsang,Chin-Fu; Karimjee, Anhar

2005-09-19T23:59:59.000Z

371

Using modeling to design and evaluate transient open ocean iron enrichment for carbon sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Using modeling to design and evaluate Using modeling to design and evaluate transient open ocean iron enrichment for carbon sequestration Richard T. Barber (rbarber@duke.edu; 252-504-7578) Duke University Marine Laboratory 135 Duke Marine Lab Road Beaufort, NC 28516-9721 Fei Chai (fchai@maine.edu; 207-581-4317) University of Maine School of Marine Sciences 5741 Libby Hall Orono, ME 04469-5741 Introduction During the 1990s the rate of increase of CO 2 in the atmosphere was about 3.5 Pg C y -1 . Total emissions were 7.4 Pg C y -1 , so about 3.9 Pg C y -1 (52% of total emissions) were sequestered naturally. Of this, about 2.2 Pg C y -1 was absorbed by the oceans and 1.7 Pg C y -1 by the land (US DOE, 1999). The Kyoto Protocol of 1997 calls for a 34% reduction of emissions by 2050 and a reduction of 70% from the projected emissions at 2100. The major approach to

372

Evaluation of ADAM/1 model for advanced coal-extraction concepts  

SciTech Connect

The Advanced Coal Extraction Project is sponsored by the Department of Energy at the Jet Propulsion Laboratory to define and develop advanced underground coal extraction systems which: (1) are suitable for significant remaining resources after the year 2000, and (2) promise a significant improvement in production cost and miner safety, with no degradation in miner health, environmental quality and resource recovery. System requirements in the five performance areas have been defined by Goldsmith and Lavin (1980). Several existing computer programs for estimating life-cycle cost of mining systems have been evaluated. A commercially available program ADAM/1 was found to be satisfactory in relation to the needs of the Advanced Coal Extraction Project. Two test cases were run to confirm the ability of the program to handle non-conventional mining equipment and procedures. The results were satisfactory. The model, therefore, is recommended to the project team for evaluation of their conceptual designs. Since the model is commercially available, data preparation instructions are not reproduced in this document; instead the reader is referred to the original documents for this information.

Deshpande, G. K.; Gangal, M. D.

1982-01-15T23:59:59.000Z

373

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

Science Conference Proceedings (OSTI)

The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

Turner, David, D.; Ferrare, Richard, A.

2011-07-06T23:59:59.000Z

374

An integrated model for evaluating self sustainability of bio-energy settlements: technological, economical and social aspects  

Science Conference Proceedings (OSTI)

The proposed paper present a generalized model based on Monte-Carlo simulation able to support the feasibility study by effectively model the production process, the woods groove and the overall logistics. This model can be applied to quantitatively ...

Alessandro Catania A; Roberto Revetria; Francesca Oliva; Lucia Cassettari

2008-12-01T23:59:59.000Z

375

Methodology and results of the impacts of modeling electric utilities ; a comparative evaluation of MEMM and REM  

E-Print Network (OSTI)

This study compares two models of the U.S. electric utility industry including the EIA's electric utility submodel in the Midterm Energy Market Model (MEMM), and the Baughman-Joskow Regionalized Electricity Model (REM). ...

Baughman, Martin L.

1981-01-01T23:59:59.000Z

376

An Intercomparison Study of Simulation Models for Geologic Sequestration of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Intercomparison Study of Simulation Models Intercomparison Study of Simulation Models for Geologic Sequestration of CO2 Karsten Pruess (K_Pruess@lbl.gov; 510/486-6732) Chin-Fu Tsang (CFTsang@lbl.gov; 510/486-5782) Earth Sciences Division, E.O. Lawrence Berkeley National Laboratory One Cyclotron Rd., MS 90-1116, Berkeley, CA 94720, U.S.A. David H.-S. Law (Law@arc.ab.ca; 780/450-5034) Alberta Research Council 250 Karl Clark Rd., Edmonton, Alberta T6N 1E4, Canada Curtis M. Oldenburg (CMOldenburg@lbl.gov; 510/486-7419) Earth Sciences Division, E.O. Lawrence Berkeley National Laboratory One Cyclotron Rd., MS 90-1116, Berkeley, CA 94720, U.S.A. ABSTRACT Mathematical models and numerical simulation tools will play an important role in evaluating the feasibility of CO2 storage in subsurface reservoirs, such as brine aquifers,

377

Modeling studies of the Ahuachapan geothermal field, El Salvador  

DOE Green Energy (OSTI)

Modeling studies of Ahuachapan include analyses of interference test data, modeling of the fieldwide pressure decline and the development of a three-dimensional natural state model of the field. The main objective of this work is to obtain reasonable estimates for the transmissivity and storativity of the reservoir and to investigate fluid and heat flow patterns in the system. The analyses of the interference test data and the long term pressure decline data indicate that the average reservoir transmissivity is about 30 Dm and the storativity about 3.5 {times} 10{sup {minus}6} m/Pa. The natural state modeling supports an overall average transmissivity of 25--35 Dm and indicates that the system is recharged with 255{degree}C hot water at a rate of about 225 kg/s. The total thermal throughflow for the Ahuachapan system is estimated to be about 250 MW{sub t}. 10 refs., 11 figs., 3 tabs.

Aunzo, Z.; Steingrimsson, B.; Bodvarsson, G.S. (Lawrence Berkeley Lab., CA (USA)); Escobar, C.; Quintanilla, A. (Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) (El Salvador))

1989-01-01T23:59:59.000Z

378

Evaluation of fluid-modeling techniques in the seismic analysis of LMFBR reactors  

Science Conference Proceedings (OSTI)

Fluid modeling is of great importance in the seismic analysis of the LMFBR primary system. If the fluid model used in the analysis is too simplified, the results could be very uncertain. On the other hand, if the model is too detailed, considerable difficulty might be encountered in the analysis. The objectives of this study are to examine the validity of the two commonly used fluid modeling techniques. i.e. simplified added mass method and lumped mass method and to provide some useful information on the treatment of fluid in seismic analysis. The validity of these two methods of analysis is examined by comparing the calculated seismic responses of a fluid-structure system based on these two methods with that calculated from a coupled fluid-structure interaction analysis in which the fluid is treated by continuum fluid elements.

Ma, D.C.; Gvildys, J.; Chang, Y.W.

1983-01-01T23:59:59.000Z

379

Trials BioMed Central Study protocol The Leeds Evaluation of Efficacy of Detoxification Study (LEEDS)  

E-Print Network (OSTI)

prisons project pilot study: protocol for a randomised controlled trial comparing dihydrocodeine and buprenorphine for opiate detoxification

Laura Sheard; Clive E Adams; Hany El-sayeh

2007-01-01T23:59:59.000Z

380

Completion Report for Model Evaluation Well ER-5-5: Corrective Action Unit 98: Frenchman Flat  

Science Conference Proceedings (OSTI)

Model Evaluation Well ER-5-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of Nevada Environmental Management Operations at the Nevada National Security Site (formerly known as the Nevada Test Site). The well was drilled in July and August 2012 as part of a model evaluation well program in the Frenchman Flat area of Nye County, Nevada. The primary purpose of the well was to provide detailed geologic, hydrogeologic, chemical, and radiological data that can be used to test and build confidence in the applicability of the Frenchman Flat Corrective Action Unit flow and transport models for their intended purpose. In particular, this well was designed to obtain data to evaluate the uncertainty in model forecasts of contaminant migration from the upgradient underground nuclear test MILK SHAKE, conducted in Emplacement Hole U-5k in 1968, which were considered to be uncertain due to the unknown extent of a basalt lava-flow aquifer present in this area. Well ER-5-5 is expected to provide information to refine the Phase II Frenchman Flat hydrostratigraphic framework model, if necessary, as well as to support future groundwater flow and transport modeling. The 31.1-centimeter (cm) diameter hole was drilled to a total depth of 331.3 meters (m). The completion string, set at the depth of 317.2 m, consists of 16.8-cm stainless-steel casing hanging from 19.4-cm carbon-steel casing. The 16.8-cm stainless-steel casing has one slotted interval open to the basalt lava-flow aquifer and limited intervals of the overlying and underlying alluvial aquifer. A piezometer string was also installed in the annulus between the completion string and the borehole wall. The piezometer is composed of 7.3-cm stainless-steel tubing suspended from 6.0-cm carbon-steel tubing. The piezometer string was landed at 319.2 m, to monitor the basalt lava-flow aquifer. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, preliminary water quality measurements, and water-level measurements. The well penetrated 331.3 m of Quaternary–Tertiary alluvium, including an intercalated layer of saturated basalt lava rubble. No well development or hydrologic testing was conducted in this well immediately after completion; however, a preliminary water level was measured in the piezometer string at the depth of 283.4 m on September 25, 2012. No tritium above the minimum detection limit of the field instruments was detected in this hole. Future well development, sampling, and hydrologic testing planned for this well will provide more accurate hydrologic information for this site. The stratigraphy, general lithology, and water level were as expected, though the expected basalt lava-flow aquifer is basalt rubble and not the dense, fractured lava as modeled. The lack of tritium transport is likely due to the difference in hydraulic properties of the basalt lava-flow rubble encountered in the well, compared to those of the fractured aquifer used in the flow and transport models.

NSTec Underground Test Area and Boreholes Programs and Operations

2013-01-18T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

An approach to model validation and model-based prediction -- polyurethane foam case study.  

Science Conference Proceedings (OSTI)

Enhanced software methodology and improved computing hardware have advanced the state of simulation technology to a point where large physics-based codes can be a major contributor in many systems analyses. This shift toward the use of computational methods has brought with it new research challenges in a number of areas including characterization of uncertainty, model validation, and the analysis of computer output. It is these challenges that have motivated the work described in this report. Approaches to and methods for model validation and (model-based) prediction have been developed recently in the engineering, mathematics and statistical literatures. In this report we have provided a fairly detailed account of one approach to model validation and prediction applied to an analysis investigating thermal decomposition of polyurethane foam. A model simulates the evolution of the foam in a high temperature environment as it transforms from a solid to a gas phase. The available modeling and experimental results serve as data for a case study focusing our model validation and prediction developmental efforts on this specific thermal application. We discuss several elements of the ''philosophy'' behind the validation and prediction approach: (1) We view the validation process as an activity applying to the use of a specific computational model for a specific application. We do acknowledge, however, that an important part of the overall development of a computational simulation initiative is the feedback provided to model developers and analysts associated with the application. (2) We utilize information obtained for the calibration of model parameters to estimate the parameters and quantify uncertainty in the estimates. We rely, however, on validation data (or data from similar analyses) to measure the variability that contributes to the uncertainty in predictions for specific systems or units (unit-to-unit variability). (3) We perform statistical analyses and hypothesis tests as a part of the validation step to provide feedback to analysts and modelers. Decisions on how to proceed in making model-based predictions are made based on these analyses together with the application requirements. Updating modifying and understanding the boundaries associated with the model are also assisted through this feedback. (4) We include a ''model supplement term'' when model problems are indicated. This term provides a (bias) correction to the model so that it will better match the experimental results and more accurately account for uncertainty. Presumably, as the models continue to develop and are used for future applications, the causes for these apparent biases will be identified and the need for this supplementary modeling will diminish. (5) We use a response-modeling approach for our predictions that allows for general types of prediction and for assessment of prediction uncertainty. This approach is demonstrated through a case study supporting the assessment of a weapons response when subjected to a hydrocarbon fuel fire. The foam decomposition model provides an important element of the response of a weapon system in this abnormal thermal environment. Rigid foam is used to encapsulate critical components in the weapon system providing the needed mechanical support as well as thermal isolation. Because the foam begins to decompose at temperatures above 250 C, modeling the decomposition is critical to assessing a weapons response. In the validation analysis it is indicated that the model tends to ''exaggerate'' the effect of temperature changes when compared to the experimental results. The data, however, are too few and to restricted in terms of experimental design to make confident statements regarding modeling problems. For illustration, we assume these indications are correct and compensate for this apparent bias by constructing a model supplement term for use in the model-based predictions. Several hypothetical prediction problems are created and addressed. Hypothetical problems are used because no guidance was provided concern

Dowding, Kevin J.; Rutherford, Brian Milne

2003-07-01T23:59:59.000Z

382

Component- and systems-evaluation study of solar desiccant cooling. Semiannual progress report  

DOE Green Energy (OSTI)

Simulation studies of three system configurations in four different climates have been conducted. These studies have determined some necessary limits for various system parameters. The potential of these systems for providing air conditioning using solar energy only has been examined. The simulation studies are proceeding on schedule. The test facility for experimentally evaluating rotary dehumidifiers performance is under construction at CSIRO. A rotary wheel is being built for use in the tests.

Not Available

1980-07-18T23:59:59.000Z

383

U.K. HiGEM: The New U.K. High-Resolution Global Environment Model—Model Description and Basic Evaluation  

Science Conference Proceedings (OSTI)

This article describes the development and evaluation of the U.K.’s new High-Resolution Global Environmental Model (HiGEM), which is based on the latest climate configuration of the Met Office Unified Model, known as the Hadley Centre Global ...

L. C. Shaffrey; I. Stevens; W. A. Norton; M. J. Roberts; P. L. Vidale; J. D. Harle; A. Jrrar; D. P. Stevens; M. J. Woodage; M. E. Demory; J. Donners; D. B. Clark; A. Clayton; J. W. Cole; S. S. Wilson; W. M. Connolley; T. M. Davies; A. M. Iwi; T. C. Johns; J. C. King; A. L. New; J. M. Slingo; A. Slingo; L. Steenman-Clark; G. M. Martin

2009-04-01T23:59:59.000Z

384

Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

2009-01-01T23:59:59.000Z

385

A PKN Hydraulic Fracture Model Study and Formation Permeability Determination  

E-Print Network (OSTI)

Hydraulic fracturing is an important method used to enhance the recovery of oil and gas from reservoirs, especially for low permeability formations. The distribution of pressure in fractures and fracture geometry are needed to design conventional and unconventional hydraulic fracturing operations, fracturing during water-flooding of petroleum reservoirs, shale gas, and injection/extraction operation in a geothermal reservoir. Designing a hydraulic fracturing job requires an understanding of fracture growth as a function of treatment parameters. There are various models used to approximately define the development of fracture geometry, which can be broadly classified into 2D and 3D categories. 2D models include, the Perkins-Kern-Nordgren (PKN) fracture model, and the Khristianovic-Geertsma-de. Klerk (KGD) fracture model, and the radial model. 3D models include fully 3D models and pseudo-three-dimensional (P-3D) models. The P-3D model is used in the oil industry due to its simplification of height growth at the wellbore and along the fracture length in multi-layered formations. In this research, the Perkins-Kern-Nordgren (PKN) fracture model is adopted to simulate hydraulic fracture propagation and recession, and the pressure changing history. Two different approaches to fluid leak-off are considered, which are the classical Carter's leak-off theory with a constant leak-off coefficient, and Pressure-dependent leak-off theory. Existence of poroelastic effect in the reservoir is also considered. By examining the impact of leak-off models and poroelastic effects on fracture geometry, the influence of fracturing fluid and rock properties, and the leak-off rate on the fracture geometry and fracturing pressure are described. A short and wide fracture will be created when we use the high viscosity fracturing fluid or the formation has low shear modulus. While, the fracture length, width, fracturing pressure, and the fracture closure time increase as the fluid leak-off coefficient is decreased. In addition, an algorithm is developed for the post-fracture pressure-transient analysis to calculate formation permeability. The impulse fracture pressure transient model is applied to calculate the formation permeability both for the radial flow and linear fracture flow assumption. Results show a good agreement between this study and published work.

Xiang, Jing

2011-12-01T23:59:59.000Z

386

Parametric study of the Incompletely Stirred Reactor modeling  

SciTech Connect

The Incompletely Stirred Reactor (ISR) is a generalization of the widely-used Perfectly Stirred Reactor (PSR) model and allows for incomplete mixing within the reactor. Its formulation is based on the Conditional Moment Closure (CMC) method. This model is applicable to nonpremixed combustion with strong recirculation such as in a gas turbine combustor primary zone. The model uses the simplifying assumptions that the conditionally-averaged reactive-scalar concentrations are independent of position in the reactor: this results in ordinary differential equations in mixture fraction space. The simplicity of the model permits the use of very complex chemical mechanisms. The effects of the detailed chemistry can be found while still including the effects of micromixing. A parametric study is performed here on an ISR for combustion of methane at overall stoichiometric conditions to investigate the sensitivity of the model to different parameters. The focus here is on emissions of nitric oxide and carbon monoxide. It is shown that the most important parameters in the ISR model are reactor residence time, the chemical mechanism and the core-averaged Probability Density Function (PDF). Using several different shapes for the core-averaged PDF, it is shown that use of a bimodal PDF with a low minimum at stoichiometric mixture fraction and a large variance leads to lower nitric oxide formation. The 'rich-plus-lean' mixing or staged combustion strategy for combustion is thus supported. (author)

Mobini, K. [Department of Mechanical Engineering, Shahid Rajaee University, Lavizan, Tehran (Iran); Bilger, R.W. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney (Australia)

2009-09-15T23:59:59.000Z

387

Alternating-phase focusing: A model to study nonlinear dynamics  

Science Conference Proceedings (OSTI)

We discuss a new model to study alternating-phase focusing (APF). Our approach is based on representing the accelerating electric field with a continuous phase modulated traveling wave. The resulting nonlinear equations of motion can be solved analytically to predict the regions of stable APF motion. We also identify the key parameters which adequately describe the physics of APF. The model is believed to be applicable to low-{beta} ion linacs with short independently-controlled superconducting cavities being developed at ANL.

Sagalovsky, L.; Delayen, J.R.

1992-09-01T23:59:59.000Z

388

Alternating-phase focusing: A model to study nonlinear dynamics  

SciTech Connect

We discuss a new model to study alternating-phase focusing (APF). Our approach is based on representing the accelerating electric field with a continuous phase modulated traveling wave. The resulting nonlinear equations of motion can be solved analytically to predict the regions of stable APF motion. We also identify the key parameters which adequately describe the physics of APF. The model is believed to be applicable to low-{beta} ion linacs with short independently-controlled superconducting cavities being developed at ANL.

Sagalovsky, L.; Delayen, J.R.

1992-01-01T23:59:59.000Z

389

Materials Science Evaluation Portal  

Science Conference Proceedings (OSTI)

NIST Home > Materials Science Evaluation Portal. Materials Science Evaluation Portal. Subject Areas. Modeling; Nondestructive; ...

2013-08-08T23:59:59.000Z

390

SolarAnywhere forecast (Perez & Hoff) This chapter describes, and presents an evaluation of, the forecast models imbedded in the  

E-Print Network (OSTI)

SolarAnywhere forecast (Perez & Hoff) ABSTRACT This chapter describes, and presents an evaluation of, the forecast models imbedded in the SolarAnywhere platform. The models include satellite derived cloud motion based forecasts for the short to medium horizon (1 5 hours) and forecasts derived from NOAA

Perez, Richard R.

391

IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 2, JUNE 2013 1087 Reliability Modeling and Evaluation of Power  

E-Print Network (OSTI)

IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 2, JUNE 2013 1087 Reliability Modeling and Evaluation, and Mirrasoul J. Mousavi, Senior Member, IEEE Abstract--Smart grid technologies leveraging advancements of smart grid monitoring and proposes a mathemat- ical model to assess its impact on power grid reliability

Fu, Yong

392

Completion Report for Model Evaluation Well ER-11-2: Corrective Action Unit 98: Frenchman Flat  

Science Conference Proceedings (OSTI)

Model Evaluation Well ER-11-2 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of Nevada Environmental Management Operations at the Nevada National Security Site (formerly known as the Nevada Test Site). The well was drilled in August 2012 as part of a model evaluation program in the Frenchman Flat area of Nye County, Nevada. The primary purpose of the well was to provide detailed geologic, hydrogeologic, chemical, and radionuclide data that can be used to test and build confidence in the applicability of the Frenchman Flat Corrective Action Unit flow and transport models for their intended purpose. In particular, this well was designed to provide data to evaluate the uncertainty in model forecasts of contaminant migration from the upgradient underground nuclear test PIN STRIPE, conducted in borehole U-11b in 1966. Well ER-11-2 will provide information that can be used to refine the Phase II Frenchman Flat hydrostratigraphic framework model if necessary, as well as to support future groundwater flow and transport modeling. The main 31.1-centimeter (cm) hole was drilled to a total depth of 399.6 meters (m). A completion casing string was not set in Well ER-11-2. However, a piezometer string was installed in the 31.1-cm open hole. The piezometer is composed of 7.3-cm stainless-steel tubing hung on 6.0-cm carbon-steel tubing via a crossover sub. The piezometer string was landed at 394.5 m, for monitoring the lower tuff confining unit. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, water quality (including tritium and other test-related radionuclides) measurements, and water level measurements. The well penetrated 42.7 m of Quaternary and Tertiary alluvium and 356.9 m of Tertiary volcanic rock. The water-level measured in the piezometer string on September 25, 2012, was 353.8 m below ground surface. No tritium above levels detectable by field methods were encountered in this hole. No well development or hydrologic testing was conducted in this well immediately after completion, and future well development, sampling, and hydrologic testing planned for this well will be limited due to the diameter of the piezometer string. The stratigraphy, general lithology, and the water level are as expected, but the section of geology encountered is higher than expected due to faulting. No tritium above the minimum detection limit of the field equipment was detected because the target aquifer (the Topopah Spring aquifer) at Well ER-11-2 is structurally higher than expected and thus unsaturated.

NSTec Underground Test Area and Boreholes Programs and Operations

2013-01-22T23:59:59.000Z

393

Field Artillery Ammunition Processing System (FAAPS) concept evaluation study. Ammunition Logistics Program  

SciTech Connect

The Field Artillery Ammunition Processing System (FAAPS) is an initiative to introduce a palletized load system (PLS) that is transportable with an automated ammunition processing and storage system for use on the battlefield. System proponents have targeted a 20% increase in the ammunition processing rate over the current operation while simultaneously reducing the total number of assigned field artillery battalion personnel by 30. The overall objective of the FAAPS Project is the development and demonstration of an improved process to accomplish these goals. The initial phase of the FAAPS Project and the subject of this study is the FAAPS concept evaluation. The concept evaluation consists of (1) identifying assumptions and requirements, (2) documenting the process flow, (3) identifying and evaluating technologies available to accomplish the necessary ammunition processing and storage operations, and (4) presenting alternative concepts with associated costs, processing rates, and manpower requirements for accomplishing the operation. This study provides insight into the achievability of the desired objectives.

Kring, C.T.; Babcock, S.M.; Watkin, D.C.; Oliver, R.P.

1992-06-01T23:59:59.000Z

394

STATISTICAL EVALUATION OF PROCESSING DATA FROM THE RH RU HG MATRIX STUDY  

DOE Green Energy (OSTI)

An evaluation of the statistical significance of Rh, Ru, and Hg on DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle catalytic hydrogen generation and process chemistry was conducted by the Savannah River National Laboratory (SRNL) using a full-factorial experimental design. This test design can identify significant interactions between these three species in addition to individual effects. Statistical modeling of data from the Rh-Ru-Hg matrix study has been completed. Preliminary data and conclusions were given in an earlier report. This final report concludes the work on the Rh-Ru-Hg matrix study. Modeling results are summarized below. Rhodium was found to: Promote increased total hydrogen mass; Promote an increase in the maximum hydrogen generation rate; Promote an increase in the hydrogen generation rate shortly after acid addition; Shorten the elapsed time between acid addition and the maximum hydrogen generation rate; Increase formate loss; Inhibit NO{sub 2} and total NO{sub x} off-gas species formation; and Reduce nitrite-to-nitrate conversion. Ruthenium was found to: Promote increased total hydrogen mass; Promote an increase in the maximum hydrogen generation rate; Promote an increase in the hydrogen generation rate in the second half of the SRAT cycle; Promote an increase in total CO{sub 2} generated; Increase formate loss; Promote NO{sub 2} and total NO{sub x} off-gas species formation; and Reduce nitrite-to-nitrate conversion. Mercury was found to: Inhibit total hydrogen mass produced; Promote an increase in total CO{sub 2} generated; Promote NO{sub 2} off-gas species formation; and Inhibit total NO{sub x} off-gas species formation. Results confirmed qualitative observations that Rh was activating before Ru for hydrogen generation. An interaction between Rh and Ru was present in the model for the total hydrogen generated during the SRAT, perhaps because the total combined contributions from two separate episodes of hydrogen generation. The first episode was dominated by Rh and the second by Ru. Consequently, the linear statistical model was asked to explain more than one phenomenon and included more terms. Mercury did not significantly impact hydrogen generated by either Rh or Ru in models in this study (all tests had Hg {ge} 0.5 wt% in total solids), whereas tests in Sludge Batches 3 and 4 (SB3 and SB4) with and without Hg showed a very significant negative impact from adding Hg. The conclusion is that once a small quantity of Hg is present, the primary inhibiting effect of Hg is in place, and hydrogen generation is relatively insensitive to further increases in total Hg. Any secondary Hg effects were difficult to quantify and model. Mercury was found to be statistically significant, however, as an inhibiting factor for hydrogen generation when modeling was based on the logarithm of the hydrogen generation rate. Only limited statistical evidence was found for non-linearity and quadratic dependence of other SRAT process measures, such as formate loss or total NO{sub x} generation, on the three matrix variables. The interaction term for Ru with Hg, however, appeared in models for total CO{sub 2}, total NO{sub 2}, and total moles of nitrogen-derived off-gas species. A single interaction between Ru and Hg during nitrite destruction could explain all three of these effects in the observed responses. Catalytic decomposition of nitrite ion by formic acid produces CO{sub 2} plus either NO or N{sub 2}O. The vast majority of the NO produced is converted to NO{sub 2}, and NO{sub 2} is the major fraction of the total moles of nitrogen in the off-gas species. Future experimental work related to catalytic hydrogen generation control is expected with regard to minimizing formic acid use through alternative reductants as well as in pursuing mesoporous media for sequestering the catalytically active noble metals to inhibit catalytic hydrogen generation. Two alternative stoichiometric acid equations are also under development. A summary document is in draft form that provides an overview of progress made in understanding ca

Koopman, D

2009-04-17T23:59:59.000Z

395

A study of discrete and continuum joint modeling techniques  

SciTech Connect

This paper presents the results of a numerical and experimental study in which finite element and discrete element techniques were used to analyze a layered polycarbonate plate model subjected to uniaxial compression. Also, the two analysis techniques were used to compute the response of an eight meter diameter drift in jointed-rock. The drift was subjected to in-situ and far-field induced thermal stresses. The finite element analyses used a continuum rock model to represent the jointed-rock. A comparison of the analyses showed that the finite element continuum joint model consistently predicted less joint slippage than did the discrete element analyses, although far-field displacements compared well.

Jung, J.; Brown, S.R.

1992-05-01T23:59:59.000Z

396

Development of a hierarchical fuzzy model for the evaluation of inherent safety  

E-Print Network (OSTI)

Inherent safety has been recognized as a design approach useful to remove or reduce hazards at the source instead of controlling them with add-on protective barriers. However, inherent safety is based on qualitative principles that cannot easily be evaluated and analyzed, and this is one of the major difficulties for the systematic application and quantification of inherent safety in plant design. The present research introduces the use of fuzzy logic for the measurement of inherent safety by proposing a hierarchical fuzzy model. This dissertation establishes a novel conceptual framework for the analysis of inherent safety and proposes a methodology that addresses several of the limitations of the methodologies available for current inherent safety analysis. This research proposes a methodology based on a hierarchical fuzzy model that analyzes the interaction of variables relevant for inherent safety and process safety in general. The use of fuzzy logic is helpful for modeling uncertainty and subjectivities implied in evaluation of certain variables and it is helpful for combining quantitative data with qualitative information. Fuzzy logic offers the advantage of being able to model numerical and heuristic expert knowledge by using fuzzy IF-THEN rules. Safety is traditionally considered a subjective issue because of the high uncertainty associated with its significant descriptors and parameters; however, this research recognizes that rather than subjective, "safety" is a vague problem. Vagueness derives from the fact that it is not possible to define sharp boundaries between safe and unsafe states; therefore the problem is a "matter of degree". The proposed method is computer-based and process simulator-oriented in order to reduce the time and expertise required for the analysis. It is expected that in the future, by linking the present approach to a process simulator, process engineers can develop safety analysis during the early stages of the design in a rapid and systematic way. Another important aspect of inherent safety, rarely addressed, is transportation of chemical substances; this dissertation includes the analysis of transportation hazard by truck using a fuzzy logic-based approach.

Gentile, Michela

2004-08-01T23:59:59.000Z

397

Evaluation of Features, Events, and Processes (FEP) for the Biosphere Model  

Science Conference Proceedings (OSTI)

The purpose of this revision of ''Evaluation of the Applicability of Biosphere-Related Features, Events, and Processes (FEPs)'' (BSC 2001) is to document the screening analysis of biosphere-related primary FEPs, as identified in ''The Development of Information Catalogued in REV00 of the YMP FEP Database'' (Freeze et al. 2001), in accordance with the requirements of the final U.S. Nuclear Regulatory Commission (NRC) regulations at 10 CFR Part 63. This database is referred to as the Yucca Mountain Project (YMP) FEP Database throughout this document. Those biosphere-related primary FEPs that are screened as applicable will be used to develop the conceptual model portion of the biosphere model, which will in turn be used to develop the mathematical model portion of the biosphere model. As part of this revision, any reference to the screening guidance or criteria provided either by Dyer (1999) or by the proposed NRC regulations at 64 FR 8640 has been removed. The title of this revision has been changed to more accurately reflect the purpose of the analyses. In addition, this revision will address Item Numbers 19, 20, 21, 25, and 26 from Attachment 2 of ''U.S. Nuclear Regulatory Commission/U.S. Department of Energy Technical Exchange and Management Meeting on Total System Performance Assessment and Integration (August 6 through 10, 2001)'' (Reamer 2001). This Scientific Analysis Report (SAR) does not support the current revision to the YMP FEP Database (Freeze et al. 2001). Subsequent to the release of the YMP FEP Database (Freeze et al. 2001), a series of reviews was conducted on both the FEP processes used to support Total System Performance Assessment for Site Recommendation and to develop the YMP FEP Database. In response to observations and comments from these reviews, particularly the NRC/DOE TSPA Technical Exchange in August 2001 (Reamer 2001), several Key Technical Issue (KTI) Agreements were developed. ''The Enhanced Plan for Features, Events and Processes (FEPs) at Yucca Mountain'' (BSC 2002a), herein referred to as the Enhanced FEP Plan, was developed to directly address KTI Agreement TSPAI 2.05, and to generally address other KTI Agreements and issues (BSC 2002a, pp. 16 to 18). The Enhanced FEP Plan addresses the regulatory requirements of 10 CFR Part 63, identifies and implements specific enhancements, and supports the License Application (BSC 2002a, p. 2). This SAR is not intended to implement any of the enhancements identified in the Enhanced FEP Plan, although it does consider the intent of the Enhanced FEP Plan to simplify the screening analysis. This SAR is one of nine technical reports containing the documentation for the biosphere model being developed, its input parameters, and the application of the model to develop biosphere dose conversion factors (BDCFs). Figure 1 shows the anticipated interrelationship between these nine technical reports and the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), commonly referred to as the biosphere model. The biosphere model belongs to the series of process models supporting the Total System Performance Assessment for the License Application. Specifically, the biosphere model provides the performance assessment with the capability to perform dose assessment.

J. J. Tappen

2003-02-16T23:59:59.000Z

398

Bayesian model-independent evaluation of expansion rates of the universe  

E-Print Network (OSTI)

Marginal likelihoods for the cosmic expansion rates are evaluated using the `Constitution' data of 397 supernovas, thereby updating the results in some previous works. Even when beginning with a very strong prior probability that favors an accelerated expansion, we obtain a marginal likelihood for the deceleration parameter $q_0$ peaked around zero in the spatially flat case. It is also found that the new data significantly constrains the cosmographic expansion rates, when compared to the previous analyses. These results may strongly depend on the Gaussian prior probability distribution chosen for the Hubble parameter represented by $h$, with $h=0.68\\pm 0.06$. This and similar priors for other expansion rates were deduced from previous data. Here again we perform the Bayesian model-independent analysis in which the scale factor is expanded into a Taylor series in time about the present epoch. Unlike such Taylor expansions in terms of redshift, this approach has no convergence problem.

Moncy V. John

2010-03-31T23:59:59.000Z

399

Experimental and Modeling Studies of the Characteristics of Liquid Biofuels for Enhanced Combustion  

DOE Green Energy (OSTI)

The objectives of this project have been to develop a comprehensive set of fundamental data regarding the combustion behavior of biodiesel fuels and appropriately associated model fuels that may represent biodiesels in automotive engineering simulation. Based on the fundamental study results, an auxiliary objective was to identify differentiating characteristics of molecular fuel components that can be used to explain different fuel behavior and that may ultimately be used in the planning and design of optimal fuel-production processes. The fuels studied in this project were BQ-9000 certified biodiesel fuels that are certified for use in automotive engine applications. Prior to this project, there were no systematic experimental flame data available for such fuels. One of the key goals has been to generate such data, and to use this data in developing and verifying effective kinetic models. The models have then been reduced through automated means to enable multi-dimensional simulation of the combustion characteristics of such fuels in reciprocating engines. Such reliable kinetics models, validated against fundamental data derived from laminar flames using idealized flow models, are key to the development and design of optimal engines, engine operation and fuels. The models provide direct information about the relative contribution of different molecular constituents to the fuel performance and can be used to assess both combustion and emissions characteristics. During this project, we completed a major and thorough validation of a set of biodiesel surrogate components, allowing us to begin to evaluate the fundamental combustion characteristics for B100 fuels.

E. Meeks; A. U. Modak; C.V. Naik; K. V. Puduppakkam; C. Westbrook; F. N. Egolfopoulos; T. Tsotsis; S. H. Roby

2009-07-01T23:59:59.000Z

400

Regional refining models for alternative fuels using shale and coal synthetic crudes: identification and evaluation of optimized alternative fuels. Annual report, March 20, 1979-March 19, 1980  

DOE Green Energy (OSTI)

The initial phase has been completed in the project to evaluate alternative fuels for highway transportation from synthetic crudes. Three refinery models were developed for Rocky Mountain, Mid-Continent and Great Lakes regions to make future product volumes and qualities forecast for 1995. Projected quantities of shale oil and coal oil syncrudes were introduced into the raw materials slate. Product slate was then varied from conventional products to evaluate maximum diesel fuel and broadcut fuel in all regions. Gasoline supplement options were evaluated in one region for 10% each of methanol, ethanol, MTBE or synthetic naphtha in the blends along with syncrude components. Compositions and qualities of the fuels were determined for the variation in constraints and conditions established for the study. Effects on raw materials, energy consumption and investment costs were reported. Results provide the basis to formulate fuels for laboratory and engine evaluation in future phases of the project.

Sefer, N.R.; Russell, J.A.

1980-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ground vibration model studies for APS storage ring  

SciTech Connect

An analytical ground vibration model is developed for study of the vibration effects on the beam motion in the Advanced Photon Source (APS) storage ring. The different physical parameters associated with the wave characteristics and the vibration modes needed for the study are taken from the vibration studies carried out at the APS site. The implementation has been carried out using Mathematica{trademark}. The study is carried out for the frequency range 1--35 Hz, with a number of sources changing from one through ten. The program written in Mathematica{trademark}, calculates orbit distortion, beta wave change, tune change, dispersion change, and chromaticity change. However, the main parameter studied for the APS storage ring has been the orbit distortion. The merit factor associated with different modes excited by the vibrations has been calculated.

Koul, R.K.

1994-07-01T23:59:59.000Z

402

Laboratory testing and modeling to evaluate perfluorocarbon compounds as tracers in geothermal systems  

Science Conference Proceedings (OSTI)

The thermal stability and adsorption characteristics of three perfluorinated hydrocarbon compounds were evaluated under geothermal conditions to determine the potential to use these compounds as conservative or thermally-degrading tracers in Engineered (or Enhanced) Geothermal Systems (EGS). The three compounds tested were perfluorodimethyl-cyclobutane (PDCB), perfluoromethylcyclohexane (PMCH), and perfluorotrimethylcyclohexane (PTCH), which are collectively referred to as perfluorinated tracers, or PFTs. Two sets of duplicate tests were conducted in batch mode in gold-bag reactors, with one pair of reactors charged with a synthetic geothermal brine containing the PFTs and a second pair was charged with the brine-PFT mixture plus a mineral assemblage chosen to be representative of activated fractures in an EGS reservoir. A fifth reactor was charged with deionized water containing the three PFTs. The experiments were conducted at {approx}100 bar, with temperatures ranging from 230 C to 300 C. Semi-analytical and numerical modeling was also conducted to show how the PFTs could be used in conjunction with other tracers to interrogate surface area to volume ratios and temperature profiles in EGS reservoirs. Both single-well and cross-hole tracer tests are simulated to illustrate how different suites of tracers could be used to accomplish these objectives. The single-well tests are especially attractive for EGS applications because they allow the effectiveness of a stimulation to be evaluated without drilling a second well.

Reimus, Paul W [Los Alamos National Laboratory

2011-01-21T23:59:59.000Z

403

A Pilot Study to Evaluate Development Effort for High Performance Computing  

E-Print Network (OSTI)

1 A Pilot Study to Evaluate Development Effort for High Performance Computing Victor Basili1 the development time for programs written for high performance computers (HPC). To attack this relatively novel students in a graduate level High Performance Computing class at the University of Maryland. We collected

Basili, Victor R.

404

Evaluating Water Vapor in the NCAR CAM3 Climate Model with RRTMG/McICA using Modeled and Observed AIRS Spectral Radiances  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Vapor in the NCAR CAM3 Climate Model with Water Vapor in the NCAR CAM3 Climate Model with RRTMG/McICA using Modeled and Observed AIRS Spectral Radiances Michael J. Iacono, Atmospheric and Environmental Research, Inc., 131 Hartwell Avenue, Lexington, MA 02421 USA 1. Overview Objectives: * Evaluate water vapor and temperature simulation in two versions of CAM3 by comparing modeled and observed cloud-cleared AIRS spectral radiances. * Use spectral differences to verify comparisons between modeled water vapor and temperature and observed fields retrieved from AIRS radiances. Models: OSS: Optimal Spectral Sampling model developed at AER was used to simulate clear sky AIRS radiance spectra in CAM3. RRTMG/McICA: ARM-supported LW and SW radiative transfer model developed at AER for application to GCMs. RRTMG has been fully

405

A Toy Model Study of Decay Trapping | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

A Toy Model Study of Decay Trapping, reported by Brett Parker A Toy Model Study of Decay Trapping, reported by Brett Parker Introduction A group from the BNL Superconducting Magnet Division is looking at various options for dipole magnets which would be suitable for use in a muon storage ring that is used as a neutrino factory. Since the useful neutrino beams from a neutrino factory come from straight sections it is desirable to minimize the rings arc circumference, in relation to straight section length, in order to ensure that the fraction of muons which decay in the straight section is as large as possible. Therefore superconducting magnets, with higher B-fields and smaller bend radii, are reasonable to consider for this application. Unfortunately the decay electrons generated along with the neutrinos carry on average about a third of the original

406

Nondestructive Evaluation: Study of the Enhancements to the Total Focusing Method  

Science Conference Proceedings (OSTI)

This report summarizes the results of a study to evaluate and document potential enhancements to the total focusing method (TFM). The goals of the study were to observe the level of performance of the TFM as compared to conventional scanning techniques and to analyze the potential improvements offered by two enhanced versions of the TFM.BackgroundThe now commonplace availability of ultrasonic phased arrays and the ever-decreasing cost of high computing power ...

2012-11-29T23:59:59.000Z

407

HYBRIDGEN: A MODEL FOR THE STUDY OF QCD HYBRID STATES.  

DOE Green Energy (OSTI)

We study the mixing of excited states of a Hydrogen atom in a cavity with de-excited states plus a confined photon as a model for the coupling of quark-antiquark and quark-antiquark-gluon hybrid states in QCD. For an interesting range of parameters, the results are analytic. We find a case for which wavefunctions (and hence decay patterns) may be at odds with mass with respect to identification of a state as hybrid or not.

GOLDMAN, J TERRANCE; BRISUDOVA, M M

2002-08-28T23:59:59.000Z

408

Evaluating Aspects of the Community Land and Atmosphere Models (CLM3 and CAM3) Using a Dynamic Global Vegetation Model  

Science Conference Proceedings (OSTI)

The Community Land Model version 3 (CLM3) Dynamic Global Vegetation Model (CLM–DGVM) is used diagnostically to identify land and atmospheric model biases that lead to biases in the simulated vegetation. The CLM–DGVM driven with observed ...

Gordon B. Bonan; Samuel Levis

2006-06-01T23:59:59.000Z

409

Evaluation of Model-generated Cloudiness: Satellite-observed and Model-generated Diurnal Variability of Brightness Temperature  

Science Conference Proceedings (OSTI)

In an attempt to validate the ECMWF model’s cloudiness, model output has been processed to reproduce satellite measurements as closely as possible. Brightness temperatures in the longwave window channel of Meteosat are simulated from cloudiness, ...

Jean-Jacques Morcrette

1991-05-01T23:59:59.000Z

410

Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes  

Science Conference Proceedings (OSTI)

We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States, but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching >1300 mgN/m2/yr averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30-50% larger than the values in any region currently (2000). Despite known issues, the new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

Lamarque, Jean-Francois; Dentener, Frank; McConnell, J.R.; Ro, C-U; Shaw, Mark; Vet, Robert; Bergmann, D.; Cameron-Smith, Philip; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, Steven J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, David; Shindell, Drew; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Zeng, G.; Curran, M.; Dahl-Jensen, D.; Das, S.; Fritzsche, D.; Nolan, M.

2013-08-20T23:59:59.000Z

411

Evaluation of a New Mixed-Phase Cloud Microphysics Parameterization with CAM3 Single-Column Model and M-PACE Observations  

SciTech Connect

Most global climate models generally prescribe the partitioning of condensed water into liquid droplets and ice crystals in mixed-phase clouds according to a temperature-dependent function, which affects modeled cloud phase, cloud lifetime and radiative properties. This study evaluates a new mixed-phase cloud microphysics parameterization (for ice nucleation and water vapor deposition) against the Atmospheric Radiation Measurement (ARM) Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the NCAR Community Atmospheric Model Version 3 (CAM3) single column model (SCAM). It is shown that SCAM with the new scheme produces a more realistic simulation of the cloud phase structure and the partitioning of condensed waterinto liquid droplets against observations during the M-PACE than the standard CAM. Sensitivity test indicates that ice number concentration could play an important role in the simulated mixed-phase cloud microphysics, and thereby needs to be realistically represented in global climate models.

Liu, Xiaohong; Xie, Shaocheng; Ghan, Steven J.

2007-12-14T23:59:59.000Z

412

Prince William Sound disabled tanker towing study. Part 1. Evaluation of existing equipment, personnel and procedures  

Science Conference Proceedings (OSTI)

The study has been undertaken by the Glosten Associates, Inc., to evaluate the existing capability for emergency towing at Prince William Sound and to examine alternatives that could enhance the escort and assist capabilities for disabled tankers within the waterway from the Alyeska Oil Terminal at the Port of Valdez to the Gulf of Alaska outside Hinchinbrook Entrance. Part 1, reported herein, is an objective evaluation by an experienced salvage towing master of the existing tugs, emergency towing equipment, towing practices, and discussion of alternative tug types.

Not Available

1993-08-01T23:59:59.000Z

413

A comparative evaluation of conceptual models for the Snake River Plain aquifer at the Idaho Chemical Processing Plant, INEL  

SciTech Connect

Geologic and hydrologic data collected by the United States Geological Survey (USGS) are used to evaluate the existing ground water monitoring well network completed in the upper portion of the Snake River Plain aquifer (SRPA) beneath the Idaho Chemical Processing Plant (ICPP). The USGS data analyzed and compared in this study include: (a) lithologic, geophysical, and stratigraphic information, including the conceptual geologic models intrawell, ground water flow measurement (Tracejector tests) and (c) dedicated, submersible, sampling group elevations. Qualitative evaluation of these data indicate that the upper portion of the SRPA is both heterogeneous and anisotropic at the scale of the ICPP monitoring well network. Tracejector test results indicate that the hydraulic interconnection and spatial configuration of water-producing zones is extremely complex within the upper portion of the SRPA. The majority of ICPP monitoring wells currently are equipped to sample ground water only the upper lithostratigraphic intervals of the SRPA, primarily basalt flow groups E, EF, and F. Depth-specific hydrogeochemical sampling and analysis are necessary to determine if ground water quality varies significantly between the various lithostratigraphic units adjacent to individual sampling pumps.

Prahl, C.J.

1992-01-01T23:59:59.000Z

414

Monitoring and Evaluation; Statistical Support for Life-cycle Studies, Annual Report 2006.  

DOE Green Energy (OSTI)

This report summarizes the statistical analysis and consulting activities performed under Contract No. 00025093, Project No. 199105100, funded by Bonneville Power Administration (BPA) during 2006. These efforts are focused on providing real-time predictions of outmigration timing, assessment of life-history performance measures, evaluation of status and trends in recovery, and guidance on the design and analysis of Columbia Basin fish and wildlife studies monitoring and evaluation studies. The overall objective of the project is to provide BPA and the rest of the fisheries community with statistical guidance on design, analysis, and interpretation of monitoring data, which will lead to improved monitoring and evaluation of salmonid mitigation programs in the Columbia/Snake River Basin. This overall goal is being accomplished by making fisheries data readily available for public scrutiny, providing statistical guidance on the design and analyses of studies by hands-on support and written documents, and providing real-time analyses of tagging results during the smolt outmigration for review by decision makers. For over a decade, this project has been providing in-season projections of smolt outmigration timing to assist in spill management. As many as 52 different fish stocks at 10 different hydroprojects are tracked in real-time to predict the 'percent of run to date' and 'date to specific percentile'. The project also conducts added-value analyses of historical tagging data to understand relationships between fish responses, environmental factors, and anthropogenic effects. The statistical analysis of historical tagging data crosses agency lines in order to assimilate information on salmon population dynamics irrespective of origin. The lessons learned from past studies are used to improve the design and analyses of future monitoring and evaluation efforts. Through these efforts, the project attempts to provide the fisheries community with reliable analyses and interpretations of monitoring data to evaluate hydrosystem operations and the recovery of endangered and threatened salmonid stocks.

Skalski, John

2007-02-01T23:59:59.000Z

415

Monitoring and Evaluation; Statistical Support for Life-cycle Studies, 2003 Annual Report.  

DOE Green Energy (OSTI)

This report summarizes the statistical analysis and consulting activities performed under Contract No. 00004134, Project No. 199105100 funded by Bonneville Power Administration during 2003. These efforts are focused on providing real-time predictions of outmigration timing, assessment of life-history performance measures, evaluation of status and trends in recovery, and guidance on the design and analysis of Columbia Basin fish and wildlife studies monitoring and evaluation studies. The overall objective of the project is to provide BPA and the rest of the fisheries community with statistical guidance on design, analysis, and interpretation of monitoring data, which will lead to improved monitoring and evaluation of salmonid mitigation programs in the Columbia/Snake River Basin. This overall goal is being accomplished by making fisheries data readily available for public scrutiny, providing statistical guidance on the design and analyses of studies by hands-on support and written documents, and providing real-time analyses of tagging results during the smolt outmigration for review by decision makers. For a decade, this project has been providing in-season projections of smolt outmigration timing to assist in spill management. As many as 50 different fish stocks at 8 different hydroprojects are tracked and real-time to predict the 'percent of run to date' and 'date to specific percentile'. The project also conducts added-value analyses of historical tagging data to understand relationships between fish responses, environmental factors, and anthropogenic effects. The statistical analysis of historical tagging data crosses agency lines in order to assimilate information on salmon population dynamics irrespective of origin. The lessons learned from past studies are used to improve the design and analyses of future monitoring and evaluation efforts. Through these efforts, the project attempts to provide the fisheries community with reliable analyses and interpretations of monitoring data to evaluate hydrosystem operations and the recovery of endangered and threatened salmonid stocks.

Skalski, John

2003-12-01T23:59:59.000Z

416

The Role Of Modeling Assumptions And Policy Instruments in Evaluating The Global Implications Of U.S. Biofuel Policies  

Science Conference Proceedings (OSTI)

The primary objective of current U.S. biofuel law the Energy Independence and Security Act of 2007 (EISA) is to reduce dependence on imported oil, but the law also requires biofuels to meet carbon emission reduction thresholds relative to petroleum fuels. EISA created a renewable fuel standard with annual targets for U.S. biofuel use that climb gradually from 9 billion gallons per year in 2008 to 36 billion gallons (or about 136 billion liters) of biofuels per year by 2022. The most controversial aspects of the biofuel policy have centered on the global social and environmental implications of its potential land use effects. In particular, there is an ongoing debate about whether indirect land use change (ILUC) make biofuels a net source, rather sink, of carbon emissions. However, estimates of ILUC induced by biofuel production and use can only be inferred through modeling. This paper evaluates how model structure, underlying assumptions, and the representation of policy instruments influence the results of U.S. biofuel policy simulations. The analysis shows that differences in these factors can lead to divergent model estimates of land use and economic effects. Estimates of the net conversion of forests and grasslands induced by U.S. biofuel policy range from 0.09 ha/1000 gallons described in this paper to 0.73 ha/1000 gallons from early studies in the ILUC change debate. We note that several important factors governing LUC change remain to be examined. Challenges that must be addressed to improve global land use change modeling are highlighted.

Oladosu, Gbadebo A [ORNL; Kline, Keith L [ORNL

2010-01-01T23:59:59.000Z

417

Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data  

SciTech Connect

Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of {tau}{sub a}, and parameterization assumptions such as a lower bound on N{sub d}. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5 {+-} 0.5 Wm{sup -2}. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clear- and cloudy-sky forcings with estimates of anthropogenic {tau}{sub a} and satellite-retrieved Nd - {tau}{sub a} regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of -0.4 {+-} 0.2 Wm{sup -2} and a cloudy-sky (aerosol indirect effect) estimate of -0.7 {+-} 0.5 Wm{sup -2}, with a total estimate of -1.2 {+-} 0.4 Wm{sup -2}.

Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Grandey, Benjamin; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

2010-03-12T23:59:59.000Z

418

Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs. Annual report  

Science Conference Proceedings (OSTI)

The second year of this three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study are to: (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies have been conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulation model has been initialized with properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. During year one, simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure charge. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. During the second year the performances of the same vertical and horizontal wells were evaluated with the assumption that fracture permeability was a function of reservoir pressure. This required repetition of most of the natural depletion cases simulated in year one while invoking the pressure-sensitive fracture permeability option. To investigate sensitivity to in situ stress, two stress conditions were simulated for each primary variable. The water injection cases, begun in year one, were extended to include most of the reservoir parameters investigated for natural depletion, including fracture permeability as a function of net stress and the use of horizontal wells. The results thus far confirm that pressure-sensitive fractures degrade well performance and that the degradation is reduced by water injection pressure maintenance. Furthermore, oil recovery can be significantly increased by water injection pressure maintenance.

Not Available

1992-11-01T23:59:59.000Z

419

Evaluation of the Multiscale Modeling Framework Using Data from the Atmospheric Radiation Measurement Program  

Science Conference Proceedings (OSTI)

In a recently developed approach to climate modeling, called the multiscale modeling framework (MMF), a two-dimensional cloud-resolving model (CRM) is embedded into each grid column of the Community Atmospheric Model (CAM), replacing traditional ...

Mikhail Ovtchinnikov; Thomas Ackerman; Roger Marchand; Marat Khairoutdinov

2006-05-01T23:59:59.000Z

420

Final Report for High Latitude Climate Modeling: ARM Takes Us Beyond Case Studies  

SciTech Connect

The main thrust of this project was to devise a method by which the majority of North Slope of Alaska (NSA) meteorological and radiometric data, collected on a daily basis, could be used to evaluate and improve global climate model (GCM) simulations and their parameterizations, particularly for cloud microphysics. Although the standard ARM Program sensors for a less complete suite of instruments for cloud and aerosol studies than the instruments on an intensive field program such as the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC), the advantage they offer lies in the long time base and large volume of data that covers a wide range of meteorological and climatological conditions. The challenge has been devising a method to interpret the NSA data in a practical way, so that a wide variety of meteorological conditions in all seasons can be examined with climate models. If successful, climate modelers would have a robust alternative to the usual “case study” approach (i.e., from intensive field programs only) for testing and evaluating their parameterizations’ performance. Understanding climate change on regional scales requires a broad scientific consideration of anthropogenic influences that goes beyond greenhouse gas emissions to also include aerosol-induced changes in cloud properties. For instance, it is now clear that on small scales, human-induced aerosol plumes can exert microclimatic radiative and hydrologic forcing that rivals that of greenhouse gas–forced warming. This project has made significant scientific progress by investigating what causes successive versions of climate models continue to exhibit errors in cloud amount, cloud microphysical and radiative properties, precipitation, and radiation balance, as compared with observations and, in particular, in Arctic regions. To find out what is going wrong, we have tested the models' cloud representation over the full range of meteorological conditions found in the Arctic using the ARM North Slope of Alaska (NSA) data.

Russell, Lynn M [Scripps/UCSD; Lubin, Dan [Scripps/UCSD

2013-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "model evaluation study" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Simulation Study on the Characteristics of Carbon-Fiber-Reinforced Plastics in Electromagnetic Tomography Nondestructive Evaluation Systems  

Science Conference Proceedings (OSTI)

Simulations of carbon-fiber-reinforced plastics (CFRP) using the finite element method in electromagnetic tomography nondestructive evaluation systems are presented in this paper. Ansoft Maxwell 3D models describing the interaction of the sensors with ... Keywords: Carbon-fiber-reinforced plastics (CFRP), finite element, electromagnetic tomography (EMT), nondestructive evaluation (NDE), sensitivity matrix

Ze Liu; Yu Xu; Xiaofei Zhang; Yali Pei; Yiping Cheng; Wuliang Yin

2010-03-01T23:59:59.000Z

422

An Evaluation of Two NEXRAD Wind Retrieval Methodologies and Their Use in Atmospheric Dispersion Models  

SciTech Connect

Two entirely different methods for retrieving 3-D fields of horizontal winds from NEXRAD radial velocities have been evaluated using radar wind profiler measurements to determine whether routine wind retrievals would be useful for atmospheric dispersion model applications. The first method uses a physical algorithm based on four-dimensional variational data assimilation and the second simpler method uses a statistical technique based on an analytic formulation of the background error covariance. Both methods can be run in near real time, but the simpler method executed about 2.5 times faster than the four-dimensional variational method. The observed multi-day and diurnal variations in wind speed and direction were reproduced by both methods within about 1.5 km of the ground in the vicinity of Oklahoma City during July 2003. However, wind retrievals overestimated the strength of the nighttime low-level jet by as much as 65%. The wind speeds and directions obtained from both methods were usually similar when compared to profiler measurements, and neither method out-performed the other statistically. Within a dispersion model framework, the 3-D wind fields and transport patterns were often better represented when the wind retrievals were included along with operational data. Despite uncertainties in the wind speed and direction obtained from the wind retrievals that is higher than from remote sensing radar wind profilers, the inclusion of the wind retrievals are likely to produce more realistic temporal variations in the winds aloft than would be obtained by interpolation using the available radiosondes, especially during rapidly changing synoptic and mesoscale conditions.

Fast, Jerome D.; Newsom, Rob K.; Allwine, K Jerry; Xu, Qin; Zhang, Pengfei; Copeland, Jeffrey H.; Sun, Jenny

2008-09-01T23:59:59.000Z

423

Model study of generalized parton distributions with helicity flip  

E-Print Network (OSTI)

Generalized parton distributions with helicity flip are studied in the quark sector, within a simple version of the MIT bag model, assuming an SU(6) wave function for the proton target. In the framework under scrutiny it turns out that only the generalized transversity distribution, H_T^q, is non vanishing. For this quantity, the forward limit is properly recovered and numerical results are found to underestimate recent lattice data for its first moment. Positivity bounds recently proposed are fulfilled by the obtained distribution. The relevance of the analysis for the planning of measurements of the quark generalized transversity is addressed.

Sergio Scopetta

2005-09-26T23:59:59.000Z

424

Scoping Study to Evaluate Feasibility of National Databases for EM&V Documents and Measure Savings: Appendices  

Energy.gov (U.S. Department of Energy (DOE))

This document is the appendices to the Scoping Study to Evaluate Feasibility of National Databases for EM&V Documents and Measure Savings document.

425

Model discovery for energy-aware computing systems: An experimental evaluation  

Science Conference Proceedings (OSTI)

We present a model-discovery methodology for energy-aware computing systems that achieves high prediction accuracy. Model discovery, or system identification, is a critical first step in designing advanced controllers that can dynamically manage the ... Keywords: SISO model, energy aware computing system, model discovery methodology, energy performance trade off, multiple inputs multiple outputs model, single input single output model, representative server workload, MIMO model

Zhichao Li; R. Grosu; K. Muppalla; S. A. Smolka; S. D. Stoller; E. Zadok

2011-07-01T23:59:59.000Z

426

Implementation and initial evaluation of the Glimmer Community Ice Sheet Model in the Community Earth System Model  

Science Conference Proceedings (OSTI)

The Glimmer Community Ice Sheet Model (Glimmer-CISM) has been implemented in the Community Earth System Model (CESM). Glimmer-CISM is forced by a surface mass balance (SMB) computed in multiple elevation classes in CESM’s land model and downscaled ...

William H. Lipscomb; Jeremy G. Fyke; Miren Vizcaíno; William J. Sacks; Jon Wolfe; Mariana Vertenstein; Anthony Craig; Erik Kluzek; David M. Lawrence

427

Implementation and Initial Evaluation of the Glimmer Community Ice Sheet Model in the Community Earth System Model  

Science Conference Proceedings (OSTI)

The Glimmer Community Ice Sheet Model (Glimmer-CISM) has been implemented in the Community Earth System Model (CESM). Glimmer-CISM is forced by a surface mass balance (SMB) computed in multiple elevation classes in the CESM land model and ...

William H. Lipscomb; Jeremy G. Fyke; Miren Vizcaíno; William J. Sacks; Jon Wolfe; Mariana Vertenstein; Anthony Craig; Erik Kluzek; David M. Lawrence

2013-10-01T23:59:59.000Z

428

Using a Sweating Manikin, Controlled by a Human Physiological Model, to Evaluate Liquid Cooling Garments  

Science Conference Proceedings (OSTI)

This paper discusses the use of NREL's Advanced Automotive Manikin (ADAM) for evaluating NASA's liquid cooling garments for space suits.

Farrington, R.; Rugh, J.; Bharathan, D.; Paul, H.; Bue, G.; Trevino, L.

2005-12-01T23:59:59.000Z

429

Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and Related Infrastructure (Presentation)  

DOE Green Energy (OSTI)

This presentation uses a vehicle simulator and economics model called the Battery Ownership Model to examine the levelized cost per mile of conventional (CV) and hybrid electric vehicles (HEVs) in comparison with the cost to operate an electric vehicle (EV) under a service provider business model. The service provider is assumed to provide EV infrastructure such as charge points and swap stations to allow an EV with a 100-mile range to operate with driving profiles equivalent to CVs and HEVs. Battery cost, fuel price forecast, battery life, and other variables are examined to determine under what scenarios the levelized cost of an EV with a service provider can approach that of a CV. Scenarios in both the United States as an average and Hawaii are examined. The levelized cost of operating an EV with a service provider under average U.S. conditions is approximately twice the cost of operating a small CV. If battery cost and life can be improved, in this study the cost of an EV drops to under 1.5 times the cost of a CV for U.S. average conditions. In Hawaii, the same EV is only slightly more expensive to operate than a CV.

O'Keefe, M.; Brooker, A.; Johnson, C.; Mendelsohn, M.; Neubauer, J.; Pesaran, A.

2010-11-01T23:59:59.000Z

430

Hierarchical Models for Batteries: Overview with Some Case Studies  

Science Conference Proceedings (OSTI)

Batteries are complex multiscale systems and a hierarchy of models has been employed to study different aspects of batteries at different resolutions. For the electrochemistry and charge transport, the models span from electric circuits, single-particle, pseudo 2D, detailed 3D, and microstructure resolved at the continuum scales and various techniques such as molecular dynamics and density functional theory to resolve the atomistic structure. Similar analogies exist for the thermal, mechanical, and electrical aspects of the batteries. We have been recently working on the development of a unified formulation for the continuum scales across the electrode-electrolyte-electrode system - using a rigorous volume averaging approach typical of multiphase formulation. This formulation accounts for any spatio-temporal variation of the different properties such as electrode/void volume fractions and anisotropic conductivities. In this talk the following will be presented: The background and the hierarchy of models that need to be integrated into a battery modeling framework to carry out predictive simulations, Our recent work on the unified 3D formulation addressing the missing links in the multiscale description of the batteries, Our work on microstructure resolved simulations for diffusion processes, Upscaling of quantities of interest to construct closures for the 3D continuum description, Sample results for a standard Carbon/Spinel cell will be presented and compared to experimental data, Finally, the infrastructure we are building to bring together components with different physics operating at different resolution will be presented. The presentation will also include details about how this generalized approach can be applied to other electrochemical storage systems such as supercapacitors, Li-Air batteries, and Lithium batteries with 3D architectures.

Pannala, Sreekanth [ORNL; Mukherjee, Partha P [ORNL; Allu, Srikanth [ORNL; Nanda, Jagjit [ORNL; Martha, Surendra K [ORNL; Dudney, Nancy J [ORNL; Turner, John A [ORNL

2012-01-01T23:59:59.000Z

431

Electric air filtration: theory, laboratory studies, hardware development, and field evaluations  

SciTech Connect

We summarize the results of a seven-year research project for the US Department of Energy (DOE) to develop electric air filters that extend the service life of high-efficiency particulate air (HEPA) filters used in the nuclear industry. This project was unique to Lawrence Livermore National Laboratory (LLNL), and it entailed comprehensive theory, laboratory studies, and hardware development. We present our work in three major areas: (1) theory of and instrumentation for filter test methods, (2) theoretical and laboratory studies of electric air filters, and (3) development and evaluation of eight experimental electric air filters.

Bergman, W.; Biermann, A.; Kuhl, W.; Lum, B.; Bogdanoff, A.; Hebard, H.; Hall, M.; Banks, D.; Mazumder, M.; Johnson, J.

1983-09-01T23:59:59.000Z

432

Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4)  

SciTech Connect

The RegCM-CHEM4 is a new online climate-chemistry model based on the International Centre for Theoretical Physics (ICTP) regional climate model (RegCM4). Tropospheric gas-phase chemistry is integrated into the climate model using the condensed version of the Carbon Bond Mechanism (CBM-Z; Zaveri and Peters, 1999) with a fast solver based on radical balances. We evaluate the model over Continental Europe for two different time scales: (1) an event-based analysis of the ozone episode associated with the heat wave of August 2003 and (2) a climatological analysis of a sixyear simulation (2000-2005). For the episode analysis, model simulations show good agreement with European Monitoring and Evaluation Program (EMEP) observations of hourly ozone over different regions in Europe and capture ozone concentrations during and after the August 2003 heat wave event. For long-term climate simulations, the model captures the seasonal cycle of ozone concentrations with some over prediction of ozone concentrations in non-heat wave summers. Overall, the ozone and ozone precursor evaluation shows the feasibility of using RegCM-CHEM4 for decadal-length simulations of chemistry-climate interactions.

Shalaby, A. K.; Zakey, A. S.; Tawfik, A. B.; Solmon, F.; Giorgi, Filippo; Stordal, F.; Sillman, S.; Zaveri, Rahul A.; Steiner, A. L.

2012-05-22T23:59:59.000Z

433

Preliminary evaluation of techniques for transforming regional climate model output to the potential repository site in support of Yucca Mountain future climate synthesis  

SciTech Connect

The report describes a preliminary evaluation of models for transforming regional climate model output from a regional to a local scale for the Yucca Mountain area. Evaluation and analysis of both empirical and numerical modeling are discussed which is aimed at providing site-specific, climate-based information for use by interfacing activities. Two semiempirical approaches are recommended for further analysis.

Church, H.W.; Zak, B.D.; Behl, Y.K.

1995-06-01T23:59:59.000Z

434

Alaska North Slope Tundra Travel Model and Validation Study  

SciTech Connect

The Alaska Department of Natural Resources (DNR), Division of Mining, Land, and Water manages cross-country travel, typically associated with hydrocarbon exploration and development, on Alaska's arctic North Slope. This project is intended to provide natural resource managers with objective, quantitative data to assist decision making regarding opening of the tundra to cross-country travel. DNR designed standardized, controlled field trials, with baseline data, to investigate the relationships present between winter exploration vehicle treatments and the independent variables of ground hardness, snow depth, and snow slab thickness, as they relate to the dependent variables of active layer depth, soil moisture, and photosynthetically active radiation (a proxy for plant disturbance). Changes in the dependent variables were used as indicators of tundra disturbance. Two main tundra community types were studied: Coastal Plain (wet graminoid/moist sedge shrub) and Foothills (tussock). DNR constructed four models to address physical soil properties: two models for each main community type, one predicting change in depth of active layer and a second predicting change in soil moisture. DNR also investigated the limited potential management utility in using soil temperature, the amount of photosynthetically active radiation (PAR) absorbed by plants, and changes in microphotography as tools for the identification of disturbance in the field. DNR operated under the assumption that changes in the abiotic factors of active layer depth and soil moisture drive alteration in tundra vegetation structure and composition. Statistically significant differences in depth of active layer, soil moisture at a 15 cm depth, soil temperature at a 15 cm depth, and the absorption of photosynthetically active radiation were found among treatment cells and among treatment types. The models were unable to thoroughly investigate the interacting role between snow depth and disturbance due to a lack of variability in snow depth cover throughout the period of field experimentation. The amount of change in disturbance indicators was greater in the tundra communities of the Foothills than in those of the Coastal Plain. However the overall level of change in both community types was less than expected. In Coastal Plain communities, ground hardness and snow slab thickness were found to play an important role in change in active layer depth and soil moisture as a result of treatment. In the Foothills communities, snow cover had the most influence on active layer depth and soil moisture as a result of treatment. Once certain minimum thresholds for ground hardness, snow slab thickness, and snow depth were attained, it appeared that little or no additive effect was realized regarding increased resistance to disturbance in the tundra communities studied. DNR used the results of this modeling project to set a standard for maximum permissible disturbance of cross-country tundra travel, with the threshold set below the widely accepted standard of Low Disturbance levels (as determined by the U.S. Fish and Wildlife Service). DNR followed the modeling project with a validation study, which seemed to support the field trial conclusions and indicated that the standard set for maximum permissible disturbance exhibits a conservative bias in favor of environmental protection. Finally DNR established a quick and efficient tool for visual estimations of disturbance to determine when investment in field measurements is warranted. This Visual Assessment System (VAS) seemed to support the plot disturbance measurements taking during the modeling and validation phases of this project.

Harry R. Bader; Jacynthe Guimond

2006-03-01T23:59:59.000Z

435

Evaluation of Meteorological Models MM5 and HOTMAC Using PAFEX-I Data  

Science Conference Proceedings (OSTI)

Two meteorological models, the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) and the hydrostatic version of the Higher-Order Turbulence Model for Atmospheric Circulation (HOTMAC), ...

Sang-Mi Lee; Harindra J. S. Fernando

2004-08-01T23:59:59.000Z

436

Biophysical Evaluation of Land-Cover Products for Land–Climate Modeling  

Science Conference Proceedings (OSTI)

The need for accurate characterization of the land surface as boundary conditions in climate models has been recognized widely in the climate modeling community. A large number of land-cover datasets are currently used in climate models either to ...

Jianjun Ge; Nathan Torbick; Jiaguo Qi

2009-06-01T23:59:59.000Z

437

An Evaluation of the Role of Eddy Diffusion in Stratospheric Interactive Two-Dimensional Models  

Science Conference Proceedings (OSTI)

The effect of eddy diffusion in an interactive two-dimensional model of the stratosphere is reexamined. The model consists of a primitive equation dynamics module, a simplified HOx ozone model and a full radiative transfer scheme. The diabatic/...

Hans R. Schneider; Malcolm K. W. Ko; Nien Dak Sze; Guang-Yu Shi; Wei-Chyung Wang

1989-07-01T23:59:59.000Z

438

Evaluation of Forecasted Southeast Pacific Stratocumulus in the NCAR, GFDL, and ECMWF Models  

Science Conference Proceedings (OSTI)

Forecasts of southeast Pacific stratocumulus at 20°S and 85°W during the East Pacific Investigation of Climate (EPIC) cruise of October 2001 are examined with the ECMWF model, the Atmospheric Model (AM) from GFDL, the Community Atmosphere Model (...

Cécile Hannay; David L. Williamson; James J. Hack; Jeffrey T. Kiehl; Jerry G. Olson; Stephen A. Klein; Christopher S. Bretherton; Martin Köhler

2009-06-01T23:59:59.000Z

439

A Comparison of Three Different Modeling Strategies for Evaluating Cloud and Radiation Parameterizations  

Science Conference Proceedings (OSTI)

Parallel simulations of clouds and radiation fields by a single-column model (SCM), a regional circulation model, and a global circulation model (GCM), each using the same treatment of all physical processes and approximately the same spatial ...

Steven J. Ghan; L. Ruby Leung; James McCaa

1999-09-01T23:59:59.000Z

440

Evaluation of the AR4 Climate Models’ Simulated Daily Maximum Temperature, Minimum Temperature, and Precipitation over Australia Using Probability Density Functions  

Science Conference Proceedings (OSTI)

The coupled climate models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change are evaluated. The evaluation is focused on 12 regions of Australia for the daily simulation of precipitation, minimum temperature, ...

S. E. Perkins; A. J. Pitman; N. J. Holbrook; J. McAneney

2007-09-01T23:59:59.000Z