Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mobile Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility is configured in a standard layout. Pictured here in Gan, the second mobile facility is configured in a standard layout. To explore science questions beyond those addressed by ARM's fixed sites at

2

Mobile Solar Tracker Facility  

Science Conference Proceedings (OSTI)

Mobile Solar Tracker Facility. ... NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. ...

2011-11-15T23:59:59.000Z

3

TA-55: LANL Plutonium-Processing Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

TA-55: LANL Plutonium-Processing Facilities TA-55: LANL Plutonium-Processing Facilities TA-55: LANL Plutonium-Processing Facilities TA-55 supports a wide range of national security programs that involve stockpile stewardship, plutonium processing, nuclear materials stabilization, materials disposition, nuclear forensics, nuclear counter-terrorism, and nuclear energy. ...the only fully operational, full capability plutonium facility in the nation. National Security At the Los Alamos National Laboratory (LANL), virtually all plutonium operations occur within the Plutonium Facility at Technical Area 55 (TA-55). TA-55 is the nation's most modern plutonium science and manufacturing facility, and it is the only fully operational, full capability plutonium facility in the nation. Thus, TA-55 supports a wide

4

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Change Notice No. 1. and Reaffirmation January 2007 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy AREA TRNG Washington, D.C. 20585...

5

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MEASUREMENT SENSITIVE DOE-HDBK-1145-2013 March 2013 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy TRNG-0061 Washington, D.C. 20585...

6

Design features for decontamination in new plutonium facilities  

SciTech Connect

Specific features for preventing, containing, controlling, and removing contamination in the Plutonium Recovery and Waste Treatment Facility are outlined. (LK)

Freiberg, K.J.; Haynes, C.G.

1975-09-01T23:59:59.000Z

7

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

145-2008 145-2008 April 2008 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2008 Program Management Guide

8

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-HDBK-1145-2013 March 2013 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy TRNG-0061 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. ii Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2013 Program Management Foreword

9

A probabilistic risk assessment of the LLNL Plutonium facility`s evaluation basis fire operational accident  

Science Conference Proceedings (OSTI)

The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous involving plutonium to include device fabrication, development of fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed rational safety and acceptable risk to employees, the public, government property, and the environment. This paper outlines the PRA analysis of the Evaluation Basis Fire (EDF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility.

Brumburgh, G.

1994-08-31T23:59:59.000Z

10

ARM Mobile Facility (AMF2)  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM Mobile Facility (AMF2) ARM Mobile Facility (AMF2) The ARM Mobile Facility (AMF2) is a durable, oceangoing mobile climate observatory. In 2008, the second ARM Mobile Facility (AMF2) was developed to extend the capabilities of the original AMF (AMF1) deployed in 2005. The AMF2 is portable, modular, and suited for operations on oceangoing ships and in harsh environments. The AMF2 has improved data flow and communications (primarily wireless) and optimized operating procedures. AMF2 instrument capabilities include standard meteorological instrumentation, a broadband and spectral radiometer suite, and remote sensing instruments. This instrumentation provides researchers with data from climate regimes not previously explored. The AMF2 also has available space, power, and data processing capabilities for additional instruments

11

Hanford, WA Selected as Plutonium Production Facility | National Nuclear  

National Nuclear Security Administration (NNSA)

Hanford, WA Selected as Plutonium Production Facility | National Nuclear Hanford, WA Selected as Plutonium Production Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Hanford, WA Selected as Plutonium Production Facility Hanford, WA Selected as Plutonium Production Facility January 16, 1943 Hanford, WA

12

MICROBIAL TRANSFORMATIONS OF PLUTONIUM AND IMPLICATIONS FOR ITS MOBILITY.  

DOE Green Energy (OSTI)

The current state of knowledge of the effect of plutonium on microorganisms and microbial activity is reviewed, and also the microbial processes affecting its mobilization and immobilization. The dissolution of plutonium is predominantly due to their production of extracellular metabolic products, organic acids, such as citric acid, and sequestering agents, such as siderophores. Plutonium may be immobilized by the indirect actions of microorganisms resulting in changes in Eh and its reduction from a higher to lower oxidation state, with the precipitation of Pu, its bioaccumulation by biomass, and bioprecipitation reactions. In addition, the abundance of microorganisms in Pu-contaminated soils, wastes, natural analog sites, and backfill materials that will be used for isolating the waste and role of microbes as biocolloids in the transport of Pu is discussed.

FRANCIS, A.J.

2000-09-30T23:59:59.000Z

13

ARM - ARM Mobile Facility 1 Article  

NLE Websites -- All DOE Office Websites (Extended Search)

CenterARM Mobile Facility 1ARM Mobile Facility 1 Article CenterARM Mobile Facility 1ARM Mobile Facility 1 Article Media Contact Lynne Roeder lynne-dot-roeder-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes89 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 BAECC 1 BBOP 4 MAGIC 12 MC3E 17 SGP 2 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field Notes Blog feed Events feed Employment Research Highlights Data Announcements Education News Archive What's this? Social Media Guidance January 13, 2011 [ARM Mobile Facility 1, Blog, Field Notes] AMF1 Azores Pack-up: Rust, Corrosion, and Wet Instruments Bookmark and Share PSP shows the harsh beating it took from the Atlantic mists.

14

THE MOBILE WINDOW THERMAL TEST FACILITY (MoWiTT)  

E-Print Network (OSTI)

December 3-5, 1979 THE MOBILE WINDOW THERMAL TEST FACILITY (Orlando, Florida. The Mobile Window Thermal Test Facility (Press, 197 . THE NOBILE WINDOW THERMAL TEST FACILITY (

Klems, J. H.

2011-01-01T23:59:59.000Z

15

Good Practices for Ocupational Radiological Protection in Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Not Measurement Not Measurement Sensitive DOE- STD-1128-2013 April 2013 DOE STANDARD GOOD PRACTICES FOR OCCUPATIONAL RADIOLOGICAL PROTECTION IN PLUTONIUM FACILITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1128-2013 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii DOE-STD-1128-2013 Foreword This Technical Standard does not contain any new requirements. Its purpose is to provide information on good practices, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. U.S. Department of Energy (DOE) health

16

Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site  

Science Conference Proceedings (OSTI)

The purpose of this study is to identify, assess, and rank potential sites for the proposed Surplus Plutonium Disposition Facilities complex at the Savannah River Site.

Wike, L.D.

2000-12-13T23:59:59.000Z

17

CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE D&D OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT (PFP)  

SciTech Connect

This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place.

HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

2007-01-25T23:59:59.000Z

18

Continuous Material Balance Reconciliation for a Modern Plutonium Processing Facility  

SciTech Connect

This paper describes a safeguards approach that can be deployed at any modern plutonium processing facility to increase the level of safeguards assurance and significantly reduce the impact of safeguards on process operations. One of the most perplexing problems facing the designers of plutonium processing facilities is the constraint placed upon the limit of error of the inventory difference (LEID). The current DOE manual constrains the LEID for Category I and II material balance areas to 2 per cent of active inventory up to a Category II quantity of the material being processed. For 239Pu a Category II quantity is two kilograms. Due to the large material throughput anticipated for some of the modern plutonium facilities, the required LEID cannot be achieved reliably during a nominal two month inventory period, even by using state-of-the-science non-destructive assay (NDA) methods. The most cost-effective and least disruptive solution appears to be increasing the frequency of material balance closure and thus reducing the throughput being measured during each inventory period. Current inventory accounting practices and systems can already provide the book inventory values at any point in time. However, closing the material balance with measured values has typically required the process to be cleaned out, and in-process materials packaged and measured. This process requires one to two weeks of facility down time every two months for each inventory, thus significantly reducing productivity. To provide a solution to this problem, a non-traditional approach is proposed that will include using in-line instruments to provide measurement of the process materials on a near real-time basis. A new software component will be developed that will operate with the standard LANMAS application to provide the running material balance reconciliation, including the calculation of the inventory difference and variance propagation. The combined measurement system and software implementation will make it possible for a facility to close material balances on a measured basis in a time period as short as one day.

CLARK, THOMAS G.

2004-07-02T23:59:59.000Z

19

Plutonium Reclamation Facility incident response project progress report  

Science Conference Proceedings (OSTI)

This report provides status of Hanford activities in response to process deficiencies highlighted during and in response to the May 14, 1997, explosion at the Plutonium Reclamation Facility. This report provides specific response to the August 4, 1997, memorandum from the Secretary which requested a progress report, in 120 days, on activities associated with reassessing the known and evaluating new vulnerabilities (chemical and radiological) at facilities that have been shut down, are in standby, are being deactivated or have otherwise changed their conventional mode of operation in the last several years. In addition, this report is intended to provide status on emergency response corrective activities as requested in the memorandum from the Secretary on August 28, 1997. Status is also included for actions requested in the second August 28, 1997, memorandum from the Secretary, regarding timely notification of emergencies.

Austin, B.A.

1997-11-25T23:59:59.000Z

20

Transuranic (Tru) waste volume reduction operations at a plutonium facility  

SciTech Connect

Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the technical issues, associated with implementing this process improvement are addressed, the results discussed, effectiveness of Lessons Learned evaluated, and waste savings presented.

Cournoyer, Michael E [Los Alamos National Laboratory; Nixon, Archie E [Los Alamos National Laboratory; Dodge, Robert L [Los Alamos National Laboratory; Fife, Keith W [Los Alamos National Laboratory; Sandoval, Arnold M [Los Alamos National Laboratory; Garcia, Vincent E [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Transuranic (Tru) waste volume reduction operations at a plutonium facility  

SciTech Connect

Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the technical issues, associated with implementing this process improvement are addressed, the results discussed, effectiveness of Lessons Learned evaluated, and waste savings presented.

Cournoyer, Michael E [Los Alamos National Laboratory; Nixon, Archie E [Los Alamos National Laboratory; Dodge, Robert L [Los Alamos National Laboratory; Fife, Keith W [Los Alamos National Laboratory; Sandoval, Arnold M [Los Alamos National Laboratory; Garcia, Vincent E [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

22

Plutonium production story at the Hanford site: processes and facilities history  

SciTech Connect

This document tells the history of the actual plutonium production process at the Hanford Site. It contains five major sections: Fuel Fabrication Processes, Irradiation of Nuclear Fuel, Spent Fuel Handling, Radiochemical Reprocessing of Irradiated Fuel, and Plutonium Finishing Operations. Within each section the story of the earliest operations is told, along with changes over time until the end of operations. Chemical and physical processes are described, along with the facilities where these processes were carried out. This document is a processes and facilities history. It does not deal with the waste products of plutonium production.

Gerber, M.S., Westinghouse Hanford

1996-06-20T23:59:59.000Z

23

THE PLUTONIUM AEROSOL MONITORING PROGRAM AT ANL-IDAHO FACILITIES  

SciTech Connect

The physical and radiation characteristics of plutonium aerosols are reviewed briefly. A number of detecting and sampling devices and techniques are discussed for application to plutonium aerosols under conditions of reactor operations. The monitoring program and the Pu-fueled reactors at ANL-Idaho are described. (D.L.C.)

Stoddart, P.G.

1963-07-01T23:59:59.000Z

24

Technical report for the generic site add-on facility for plutonium polishing  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide environmental data and reference process information associated with incorporating plutonium polishing steps (dissolution, impurity removal, and conversion to oxide powder) into the genetic-site Mixed-Oxide Fuel Fabrication Facility (MOXFF). The incorporation of the plutonium polishing steps will enable the removal of undesirable impurities, such as gallium and americium, known to be associated with the plutonium. Moreover, unanticipated impurities can be removed, including those that may be contained in (1) poorly characterized feed materials, (2) corrosion products added from processing equipment, and (3) miscellaneous materials contained in scrap recycle streams. These impurities will be removed to the extent necessary to meet plutonium product purity specifications for MOX fuels. Incorporation of the plutonium polishing steps will mean that the Pit Disassembly and Conversion Facility (PDCF) will need to produce a plutonium product that can b e dissolved at the MOXFF in nitric acid at a suitable rate (sufficient to meet overall production requirements) with the minimal usage of hydrofluoric acid, and its complexing agent, aluminum nitrate. This function will require that if the PDCF product is plutonium oxide powder, that powder must be produced, stored, and shipped without exceeding a temperature of 600 C.

NONE

1998-06-01T23:59:59.000Z

25

Review of operating experience at the Los Alamos Plutonium Electrorefining Facility, 1963-1977  

Science Conference Proceedings (OSTI)

This report reviews the operation of the Los Alamos Plutonium Electrorefining Plant at Technical Area 21 for the period 1964 through 1977. During that period, approximately 1568 kg of plutonium metal, > 99.95% pure, was produced in 653 runs from 1930 kg of metal fabrication scrap, 99% pure. General considerations of the electrorefining process and facility operation and recommendations for further improvement of the process are discussed.

Mullins, L.J.; Morgan, A.N.

1981-12-01T23:59:59.000Z

26

Observation challenges in a glovebox environment : behavior based safety at a plutonium facility.  

SciTech Connect

Los Alamos National Laboratory (LANL) is one of the Nation's leading scientific and defense laboratories, owned by the Department of Energy and managed by the University of California. LANL is one of the original weapons complex labs dating back to the days of the Manhattan Project during World War II. Since then, radioactive materials research has continued at LANLs Plutonium Facility, and remains a primary responsibility of the Laboratory. The Nuclear Materials Technology Division (NMT) is a multidisciplinary organization responsible for daily operations of the Plutonium Facility and the Chemistry Research Metallurgy Facility. NMT Division is responsible for the saence, engineering and technology of plutonium and other actinides in support of the Nation's nuclear weapons stockpile, nuclear materials disposition, and nuclear energy programs. A wide amy of activities are performed within NMT Division, such as analytical chemistry, metallurgical operations, actinide processes, waste operations, radioactive materials research and related administrative tasks.

Montalvo, M. L. (Maryrose L.)

2002-01-01T23:59:59.000Z

27

Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site  

Science Conference Proceedings (OSTI)

A site selection study was conducted to evaluate locations for the proposed Surplus Plutonium Disposition Facilities. Facilities to be located include the Mixed Oxide (MOX) Fuel Fabrication Facility, the Pit Disassembly and Conversion Facility (PDCF), and the Plutonium Immobilization Project (PIP) facility. Objectives of the study include: (1) Confirm that the Department of Energy (DOE) selected locations for the MOX and PDCF were suitable based on selected siting criteria, (2) Recommend a site in the vicinity of F Area that is suitable for the PIP, and (3) Identify alternative suitable sites for one or more of these facilities in the event that further geotechnical characterization or other considerations result in disqualification of a currently proposed site.

Wike, L.D.

2000-08-17T23:59:59.000Z

28

Waste minimization and the goal of an environmentally benign plutonium processing facility: A strategic plan  

SciTech Connect

To maintain capabilities in nuclear weapons technologies, the Department of Energy (DOE) has to maintain a plutonium processing facility that meets all the current and emerging standards of environmental regulations. A strategic goal to transform the Plutonium Processing Facility at Los Alamos into an environmentally benign operation is identified. A variety of technologies and systems necessary to meet this goal are identified. Two initiatives now in early stages of implementation are described in some detail. A highly motivated and trained work force and a systems approach to waste minimization and pollution prevention are necessary to maintain technical capabilities, to comply with regulations, and to meet the strategic goal.

Pillay, K.K.S.

1994-02-01T23:59:59.000Z

29

ARM mobile facility surface meteorology (MET) handbook.  

SciTech Connect

The Atmospheric Radiation Measurement (ARM) Mobile Facility Surface Meteorology station (MET) uses mainly conventional in situ sensors to obtain 1-min statistics of surface wind speed, wind direction, air temperature, relative humidity (RH), barometric pressure, and rainrate. Additional sensors may be added to or removed from the base set of sensors depending upon the deployment location, climate regime, or programmatic needs. In addition, sensor types may change depending upon the climate regime of the deployment. These changes/additions are noted in Section 3.

Ritsche, M. T.; Environmental Science Division

2006-04-01T23:59:59.000Z

30

Guide of good practices for occupational radiological protection in plutonium facilities  

SciTech Connect

This Technical Standard (TS) does not contain any new requirements. Its purpose is to provide guides to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. the technical rationale is given to allow US Department of Energy (DOE) health physicists to adapt the recommendations to similar situations throughout the DOE complex. Generally, DOE contractor health physicists will be responsible to implement radiation protection activities at DOE facilities and DOE health physicists will be responsible for oversight of those activities. This guidance is meant to be useful for both efforts. This TS replaces PNL-6534, Health Physics Manual of Good Practices for Plutonium Facilities, by providing more complete and current information and by emphasizing the situations that are typical of DOE`s current plutonium operations; safe storage, decontamination, and decommissioning (environmental restoration); and weapons disassembly.

NONE

1998-06-01T23:59:59.000Z

31

Options for converting excess plutonium to feed for the MOX fuel fabrication facility  

SciTech Connect

The storage and safekeeping of excess plutonium in the United States represents a multibillion-dollar lifecycle cost to the taxpayers and poses challenges to National Security and Nuclear Non-Proliferation. Los Alamos National Laboratory is considering options for converting some portion of the 13 metric tons of excess plutonium that was previously destined for long-term waste disposition into feed for the MOX Fuel Fabrication Facility (MFFF). This approach could reduce storage costs and security ri sks, and produce fuel for nuclear energy at the same time. Over the course of 30 years of weapons related plutonium production, Los Alamos has developed a number of flow sheets aimed at separation and purification of plutonium. Flow sheets for converting metal to oxide and for removing chloride and fluoride from plutonium residues have been developed and withstood the test oftime. This presentation will address some potential options for utilizing processes and infrastructure developed by Defense Programs to transform a large variety of highly impure plutonium into feedstock for the MFFF.

Watts, Joe A [Los Alamos National Laboratory; Smith, Paul H [Los Alamos National Laboratory; Psaras, John D [Los Alamos National Laboratory; Jarvinen, Gordon D [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory; Joyce, Jr., Edward L [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

32

Transmutation facility for weapons grade plutonium based on a tokamak fusion neutron source  

Science Conference Proceedings (OSTI)

It is suggested that weapons grade plutonium could be processed through a transmutation facility to build up sufficient actinide and fission product inventories to serve as a deterrent to diversion or theft, pending eventual use as nuclear reactor fuel. A transmutation facility consisting of a fusion neutron source surrounded by fuel assemblies containing the weapons grade plutonium in the form of PuO2 pebbles in a lithium slurry was investigated and found to be technically feasible. A design concept/operation scenario was developed for a facility which would be able to transmute the world's estimated inventory of weapons grade plutonium to 11% Pu-240 concentration in about 25 years. The fusion neutron source would be based on tokamak plasma operating conditions and magnet technology being qualified in ongoing R D programs, and the plutonium fuel would be based on existing technology. A new R D program would be required to qualify a refractory metal alloy structural material needed to handle the high heat fluxes. Extensions of existing technologies and acceleration of existing R D programs would seem to be adequate to qualify other technologies required for the facility.

Not Available

1994-09-01T23:59:59.000Z

33

Transmutation facility for weapons-grade plutonium disposition based on a tokamak fusion neutron source  

Science Conference Proceedings (OSTI)

It is suggested that weapons-grade plutonium could be processed through a transmutation facility to build up sufficient actinide and fission product inventories to serve as a deterrent to diversion or theft during subsequent storage, pending eventual use as fuel in commercial nuclear reactors. A transmutation facility consisting of a tokamak fusion neutron source surrounded by fuel assemblies containing the weapons-grade plutonium in the form of PuO{sub 2} pebbles in a lithium slurry is investigated. A design concept/operation scenario is developed for a facility that would be able to transmute the world`s estimated surplus inventory of weapons-grade plutonium to 11% {sup 240}Pu concentration in nearly 25 yr. The fusion neutron source would be based on plasma physics and plasma support technology being qualified in ongoing research and development (R&D) programs, and the plutonium fuel would be based on existing technology. A new R&D program would be required to qualify a refractory metal alloy structural material that would be needed to handle the high heat fluxes; otherwise, extensions of existing technologies and acceleration of existing R&D programs would seem to be adequate to qualify all required technologies. Such a facility might feasibly be deployed in 20 to 30 yr, or sooner with a crash program. 49 refs., 5 figs., 13 tabs.

Stacey, W.M.; Pilger, B.L.; Mowrey, J.A. [Georgia Inst. of Technology, Atlanta, GA (United States)] [and others

1995-05-01T23:59:59.000Z

34

Preliminary report of the comparison of multiple non-destructive assay techniques on LANL Plutonium Facility waste drums  

SciTech Connect

Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content. The DOE Complex faces the daunting task of measuring nuclear material with both a wide range of masses and matrices. Similarly daunting can be the selection of a non-destructive assay (NDA) technique(s) to efficiently perform the quantitative assay over the entire waste population. In fulfilling its role of a DOE Defense Programs nuclear User Facility/Technology Development Center, the Los Alamos National Laboratory Plutonium Facility recently tested three commercially built and owned, mobile nondestructive assay (NDA) systems with special nuclear materials (SNM). Two independent commercial companies financed the testing of their three mobile NDA systems at the site. Contained within a single trailer is Canberra Industries segmented gamma scanner/waste assay system (SGS/WAS) and neutron waste drum assay system (WDAS). The third system is a BNFL Instruments Inc. (formerly known as Pajarito Scientific Corporation) differential die-away imaging passive/active neutron (IPAN) counter. In an effort to increase the value of this comparison, additional NDA techniques at LANL were also used to measure these same drums. These are comprised of three tomographic gamma scanners (one mobile unit and two stationary) and one developmental differential die-away system. Although not certified standards, the authors hope that such a comparison will provide valuable data for those considering these different NDA techniques to measure their waste as well as the developers of the techniques.

Bonner, C.; Schanfein, M.; Estep, R. [and others

1999-03-01T23:59:59.000Z

35

MoWiTT: The Mobile Window Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Airflow schematic MoWiTT: The Mobile Window Thermal Test Facility In the MoWiTT facility, efficient window-and-frame systems are measured to understand the flow of energy through...

36

THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE  

SciTech Connect

The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent-order milestones, milestones completed to date, and the vision of bringing PFP to slab-on-grade. Innovative approaches in planning and regulatory strategies, as well new technologies from within the United States and from other countries and field decontamination techniques developed by workforce personnel, such as the ''turkey roaster'' and the ''lazy Susan'' are covered in detail in the paper. Critical information on issues and opportunities during the performance of the work such as concerns regarding the handling and storage of special nuclear material, concerns regarding criticality safety and the impact of SNM de-inventory at PFP are also provided. The continued success of the PFP D&D effort is due to the detailed, yet flexible, approach to planning that applied innovative techniques and tools, involved a team of experienced independent reviewers, and incorporated previous lessons learned at the Hanford site, Rocky Flats, and commercial nuclear D&D projects. Multi-disciplined worker involvement in the planning and the execution of the work has produced a committed workforce that has developed innovative techniques, resulting in safer and more efficient work evolutions.

CHARBONEAU, S.L.

2006-02-01T23:59:59.000Z

37

THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE  

SciTech Connect

The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent-order milestones, milestones completed to date, and the vision of bringing PFP to slab-on-grade. Innovative approaches in planning and regulatory strategies, as well new technologies from within the United States and from other countries and field decontamination techniques developed by workforce personnel, such as the ''turkey roaster'' and the ''lazy Susan'' are covered in detail in the paper. Critical information on issues and opportunities during the performance of the work such as concerns regarding the handling and storage of special nuclear material, concerns regarding criticality safety and the impact of SNM de-inventory at PFP are also provided. The continued success of the PFP D&D effort is due to the detailed, yet flexible, approach to planning that applied innovative techniques and tools, involved a team of experienced independent reviewers, and incorporated previous lessons learned at the Hanford site, Rocky Flats, and commercial nuclear D&D projects. Multi-disciplined worker involvement in the planning and the execution of the work has produced a committed workforce that has developed innovative techniques, resulting in safer and more efficient work evolutions.

CHARBONEAU, S.L.

2006-02-01T23:59:59.000Z

38

Plutonium Mobility Studies: 216-Z-9 Trench Sample Analysis Results  

SciTech Connect

A variety of analyses were conducted on selected sediment samples collected from two wells (299 W15-46 and 299-W15-48) drilled near the 216-Z-9 Trench to elucidate the form and potential for Pu and Am to be mobilized under present conditions and those that could be expected in future remediation scenarios. Analyses included moisture content, determination of the less than sand size fraction (silt plus clay), carbon analysis, SEM/EDS analysis, microwave-assisted acid digestions for total element analysis, and extraction tests using Hanford groundwater as the leachate. Results of the extraction tests were used as input to conduct equilibrium geochemical modeling of the solutions with Geochemists Workbench. Geochemical modeling results for Pu were evaluated in terms of recent conclusions regarding the solubility and redox reactions of Pu by Neck et al. (2007a, 2007b). It was found that the highest concentrations of Pu and Am were associated with sediments of low silt/clay content and occur above silt/clay rich layers within the sediment profile. It was also found that the Pu and Am were relatively enriched in the silt/clay portion of these samples. The fact that the highest concentrations of Pu and Am occurred in sediments with low silt/clay contents suggests that waste solutions had perched on top of the low permeability silt/clay rich layers and interactions with the high silt/clay layers was minimal. SEM/EDS analysis indicated that the Pu and Am in these sediments does not occur as discrete micron size particles, and therefore must occur as mononuclear or polynuclear/ nanoclusters size particles adsorbed throughout the sediment samples. Leaching of these samples with Hanford groundwater indicates that release of Pu and Am from the sediments is correlated most significantly with the acidity of the water and not the initial concentrations of Pu and Am in the sediments. Only extracts that were acidic after contact with the sediments (pH 4.3 to 5.4) contained detectable concentrations of extractable Pu and Am. Water extracts from samples containing high concentrations of TBP suggest that if the TBP degradation products DBP and MBP are available in these sediments, they do not significantly increase the extractability of Pu or Am. Geochemical modeling results suggest that the concentrations of Am in water in contact with these sediments is not controlled by the solubility of Am(OH)3(c), but rather by desorption of Am that has been previously adsorbed to the sediments during the period of active wastewater disposal. Sediment extracts that had measureable concentrations of Am only occurred in samples that were fairly acidic (pH 4.3 to 4.6), indicating that Am will remain effectively sequestered to sediments when pH conditions approach those of normal Hanford groundwater (mildly alkaline, ~ pH 8). The geochemical modeling results indicate that Pu in acidic extracts is significantly undersaturated with respect to PuO2(am). However, recent reviews of Pu solubility and redox reactions suggest that the data used for these calculations is incomplete (Neck et al. 2007a, 2007b). The results of Neck et al. (2007a, 2007b) suggest that Pu concentrations in solutions in contact with the 216-Z-9 Trench sediment samples might be controlled by a mixed valent solid phase [(PuV)2x(PuIV)1-2xO2+x(am)] with various dissolved Pu(V) complexes and Pu(IV)O2(am) colloids or nanoclusters being the dominant species in solution for typical Hanford groundwater conditions. Adsorption is likely to have a major impact on the mobility of these species (Neck et al. 2007a, 2007b; Clark et al. 2006; Kaplan et al. 2006; Powell et al. 2005). Further research is planned to verify these hypotheses.

Cantrell, Kirk J.; Geiszler, Keith N.; Arey, Bruce W.

2008-09-05T23:59:59.000Z

39

Guide of Good Practices for Occupational Radiological Protection in Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 December 2006 DOE STANDARD GUIDE OF GOOD PRACTICES FOR OCCUPATIONAL RADIOLOGICAL PROTECTION IN PLUTONIUM FACILITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1128-98 iii Change Notice 1: DOE-STD-1128-98, Guide of Good Practices for Occupational Radiological Protection in Plutonium Facilities

40

DOE-HDBK-1145-2001; Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SENSITIVE SENSITIVE DOE-HDBK-1145-2001 August 2001 DOE STANDARD Radiological Safety Training for Plutonium Facilities U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2001 Program Management Guide Foreword This Handbook describes an implementation process for training as recommended in

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - Rev. 0 Report Number: HIAR LLNL-2013-02-27 Site: Lawrence Livermore National Laboratory (LLNL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility Date of Activity: 02/27/2013 Report Preparer: Thomas Rogers Activity Description/Purpose: The Livermore Site Office (LSO) and Lawrence Livermore National Security, LLC (LLNS) requested personnel from the U.S. Department of Energy (DOE) Office of Safety and Emergency Management Evaluations (HS-45) to observe an operational drill at the Plutonium Facility in Building 332 (B332). LSO and LLNS desired HS-45's participation to help

42

Plutonium reclamation facility (PRF), building 236-Z layup plan  

Science Conference Proceedings (OSTI)

This document reviews each system inside PRF to determine the operation and maintenance requirements necessary to maintain safe and predictable system performance for facility systems needed to remain operational while minimizing the maintenance and surveillance being performed. Also covered are the actions required to place PRF in a safe layup configuration while minimizing hazards and taking into account the need for reactivation of certain equipment when cleanup work commences in the future.

ANDERSON, R.N.

1999-04-06T23:59:59.000Z

43

Measurements at Los Alamos National Laboratory Plutonium Facility in Support of Global Security Mission Space  

SciTech Connect

The Los Alamos National Laboratory Plutonium Facility at Technical Area (TA) 55 is one of a few nuclear facilities in the United States where Research & Development measurements can be performed on Safeguards Category-I (CAT-I) quantities of nuclear material. This capability allows us to incorporate measurements of CAT-IV through CAT-I materials as a component of detector characterization campaigns and training courses conducted at Los Alamos. A wider range of measurements can be supported. We will present an overview of recent measurements conducted in support of nuclear emergency response, nuclear counterterrorism, and international and domestic safeguards. This work was supported by the NNSA Office of Counterterrorism.

Stange, Sy [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Herrera, Gary D. [Los Alamos National Laboratory; McLaughlin, Anastasia D. [Los Alamos National Laboratory; Montoya, Charles M. [Los Alamos National Laboratory; Quihuis, Becky A. [Los Alamos National Laboratory; Trujillo, Julio B. [Los Alamos National Laboratory; Van Pelt, Craig E. [Los Alamos National Laboratory; Wenz, Tracy R. [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

44

Inventory difference analysis at Los Alamos Plutonium Facility  

SciTech Connect

The authors have developed a prototype computer program that reads directly the inventory entries from a Microsoft Access data base. Based on historical data, the program then displays temporal trends and constructs a library of rules that encapsulates the system behavior. The following analysis of inventory data is illustrated by using a combination of realistic and simulated facility examples. Potential payoffs of this methodology include a reduction in time and resources needed to perform statistical tests and broad applicability to Department of Energy needs--for example, treaty verification.

Zardecki, A.; Armstrong, J.M.; Longmire, V.; Strittmatter, R.B.

1997-09-01T23:59:59.000Z

45

Guide of Good Practices for Occupational Radiological Protection in Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28-2008 28-2008 December 2008 DOE STANDARD GUIDE OF GOOD PRACTICES FOR OCCUPATIONAL RADIOLOGICAL PROTECTION IN PLUTONIUM FACILITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-STD-1128-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1128-2008 iii Foreword This Technical Standard does not contain any new requirements. Its purpose is to provide a guide to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. U.S. Department of Energy (DOE) health physicists may adapt

46

Guide of Good Practices for Occupational Radiological Protection in Plutonium Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

STD-1128-2008 STD-1128-2008 December 2008 DOE STANDARD GUIDE OF GOOD PRACTICES FOR OCCUPATIONAL RADIOLOGICAL PROTECTION IN PLUTONIUM FACILITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-STD-1128-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1128-2008 iii Foreword This Technical Standard does not contain any new requirements. Its purpose is to provide a guide to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. U.S. Department of Energy (DOE) health physicists may adapt

47

Rough order of magnitude cost estimate for immobilization of 50 MT of plutonium sharing existing facilities at Hanford with pit disassembly {ampersand} conversion facility: alternative 11  

SciTech Connect

The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 50 metric tons (nominal) of plutonium as a ceramic in an existing facility at Hanford, the Fuels and Materials Examination Facility (FMEF). The Pit Disassembly and Conversion Facility (PDCF), which is being costed in a separate report by LANL, will also be located in the FMEF in this co-location option.

DiSabatino, A., LLNL

1998-06-01T23:59:59.000Z

48

Engineering evaluation/cost analysis for the 233-S Plutonium Concentration Facility  

SciTech Connect

The deactivated 233-S Plutonium Concentration Facility (233-S Facility) is located in the 200 Area. The facility has undergone severe degradation due to exposure to extreme weather conditions. A rapid freeze and thaw cycle occurred at the Hanford Site during February 1996, which caused cracking to occur on portions of the building`s roof. This has resulted in significantly infiltration of water into the facility, which provides a pathway for potential release of radioactive material into the environment (air and/or ground). The weather caused several existing cracks in the concrete portions of the structure to lengthen, increasing the potential for failed confinement of the radioactive material in the building. Differential settlement has also occurred, causing portions of the facility to separate from the main building structure thus creating a potential for release of radioactive material t the environment. An expedited removal action is proposed to ensure that a release from the 233-S Facility does not occur. The US Department of Energy (DOE), Richland Operations Office (RL), in cooperation with the EPA, has prepared this Engineering Evaluation/Cost Analysis (EE/CA) pursuant to CERCLA. Based on the evaluation, RL has determined that hazardous substances in the 233-S Facility may present a potential threat to human health and/or the environment, and that an expedited removal action is warranted. The purpose of the EE/CA is to provide the framework for the evaluation and selection of a technology from a viable set of alternatives for a removal action.

1997-01-01T23:59:59.000Z

49

Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility  

SciTech Connect

Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at PFP. Samples varied in appearance depending on the original source of material. Rocky Flats items were mostly dark olive green with clumps that crushed easily with a mortar and pestle. PRF/RMC items showed more variability. These items were mostly rust colored. One sample contained white particles that were difficult to crush, and another sample was a dark grey with a mixture of fines and large, hard fragments. The appearance and feel of the fragments indicated they might be an alloy. The color of the solution samples was indicative of the impurities in the sample. The double-pass filtrate solution was a brown color indicative of the iron impurities in the sample. The other solution sample was light gray in color. Radiochemical analyses, including thermal ionization mass spectrometry (TIMS), alpha and gamma energy analysis (AEA and GEA), and kinetic phosphorescence analysis (KPA), indicate that these materials are all weapons-grade plutonium with consistent plutonium isotopics. A small amount of uranium (<0.14 wt%) is also present in these samples. The isotopic composition of the uranium varied widely but was consistent among each category of material. The primary water-soluble anions in these samples were Cl-, NO3-, SO42-, and PO43-. The only major anion observed in the Rocky Flats materials was Cl-, but the PRF/RMC samples had significant quantities of all of the primary anions observed. Prompt gamma measurements provide a representative analysis of the Cl- concentration in the bulk material. The primary anions observed in the solution samples were NO3-, and PO43-. The concentration of these anions did not exceed the mixed oxide (MOX) specification limits. Cations that exceeded the MOX specification limits included Cr, Fe, Ni, Al, Cu, and Si. All of the samples exceeded at least the 75% specification limit in one element.

Tingey, Joel M.; Jones, Susan A.

2005-07-01T23:59:59.000Z

50

Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility  

Science Conference Proceedings (OSTI)

Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at PFP. Samples varied in appearance depending on the original source of material. Rocky Flats items were mostly dark olive green with clumps that crushed easily with a mortar and pestle. PRF/RMC items showed more variability. These items were mostly rust colored. One sample contained white particles that were difficult to crush, and another sample was a dark grey with a mixture of fines and large, hard fragments. The appearance and feel of the fragments indicated they might be an alloy. The color of the solution samples was indicative of the impurities in the sample. The double-pass filtrate solution was a brown color indicative of the iron impurities in the sample. The other solution sample was light gray in color. Radiochemical analyses, including thermal ionization mass spectrometry (TIMS), alpha and gamma energy analysis (AEA and GEA), and kinetic phosphorescence analysis (KPA), indicate that these materials are all weapons-grade plutonium with consistent plutonium isotopics. A small amount of uranium (Rocky Flats materials was Cl-, but the PRF/RMC samples had significant quantities of all of the primary anions observed. Prompt gamma measurements provide a representative analysis of the Cl- concentration in the bulk material. The primary anions observed in the solution samples were NO3-, and PO43-. The concentration of these anions did not exceed the mixed oxide (MOX) specification limits. Cations that exceeded the MOX specification limits included Cr, Fe, Ni, Al, Cu, and Si. All of the samples exceeded at least the 75% specification limit in one element.

Tingey, Joel M.; Jones, Susan A.

2005-07-01T23:59:59.000Z

51

Mobile Climate Monitoring Facility to Sample Skies in Africa | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mobile Climate Monitoring Facility to Sample Skies in Africa Mobile Climate Monitoring Facility to Sample Skies in Africa Mobile Climate Monitoring Facility to Sample Skies in Africa January 18, 2006 - 10:47am Addthis WASHINGTON, D.C. -- The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program is placing a new, portable atmospheric laboratory with sophisticated instruments and data systems in Niger, Africa, to gain a better understanding of the potential impacts of Saharan dust on global climate. Dust from Africa's Sahara desert-the largest source of dust on the planet-reaches halfway around the globe. Carried by winds and clouds, the dust travels through West African, Mediterranean, and European skies, and across the Atlantic into North America. Unfortunately, Africa is one of the most under-sampled climate regimes in the world, leaving scientists to

52

ARM Mobile Facility - Design and Schedule for Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Facility - Design and Schedule for Integration Mobile Facility - Design and Schedule for Integration K. B. Widener Pacific Northwest National Laboratory Richland, Washington Abstract The Atmospheric Radiation Measurement (ARM) Program has a need for an ARM Mobile Facility (AMF) that can be deployed anywhere in the world for up to 12 months at a time. This system shall be modular so that it can meet the needs of ARM science objectives of each individual deployment. The design phase for developing the AMF has begun. A design review was held for the AMF in December 2002. The design of the shelters, instrumentation, and data system along with the schedule for integration will be presented. Introduction Early in the development of the ARM Program, the need to be able to make atmospheric measurements

53

Plutonium immobilization plant using glass in existing facilities at the Savannah River Site  

Science Conference Proceedings (OSTI)

The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a glass immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors.

DiSabatino, A., LLNL

1998-06-01T23:59:59.000Z

54

Rough order of magnitude cost estimate for immobilization of 18.2 MT of plutonium sharing existing facilities at Hanford with pit disassembly {ampersand} conversion facility: alternative 2  

SciTech Connect

The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 18.2 metric tons (nominal) of plutonium as a ceramic in an existing facility at Hanford, the Fuels and Materials Examination Facility (FMEF). The Pit Disassembly and Conversion Facility (PDCF), which is being costed in a separate report will also be located in the FMEF in this co- location option. The technical engineering data used as the basis for this study is presented in the EIS Data Call Input Report, `Plutonium Immobilization Plant Using Ceramic in Existing Facilities at Hanford.` The FMEF will require minimal facility modifications to accommodate the Plutonium Immobilization Plant (PIP). Adequate space is available within the FMEF for installation of the immobilization process equipment. Facility HVAC, utility, and support systems exist to support the immobilization operations. Building modifications are primarily the removal of the SAF line (gloveboxes and support equipment) on the 70` level and building interior changes. The plutonium immobilization equipment will primarily occupy the 42` and 70` levels of the FMEF, with the same equipment layout as in the sole occupancy case. The Pit Disassembly and Conversion Facility would occupy the 21` and O` (Entry) levels. Elements of the FMEF and adjacent Fuel Assembly Area (FAA) that will be shared by PIP and PDCF include shipping and receiving, laboratory, waste handling, security, offices, maintenance shops, SNM storage vault, and utilities. It was assumed that the existing utilities and support systems are adequate or only need minor upgrades to support both the PIP and PDCF. The PIP cost estimate was reconciled with the PDCF cost estimate to confirm the use and costs of shared systems and personnel. The facility design for a 50 metric ton plutonium throughput plant will be used for the 18.2 metric ton facility. Plutonium conversion operations will operate at the same design rate as the 50 metric ton facility over the 10 year operating period. Some of the process equipment will operate for a shorter period of time and fewer operators will be required. The assumptions, missions, design bases, facility and process descriptions, and accident analyses are the same. Therefore it is assumed that the capital cost for the 18.2 metric ton facility is identical to that of the 50 metric ton facility. However, the following operating costs will be less: consumable materials, equipment replacement and maintenance labor, employment requirements, and waste generation.

DiSabatino, A., LLNL

1998-06-01T23:59:59.000Z

55

Process Testing to Support the Conceptual Design of a Plutonium Vitrification Facility  

SciTech Connect

In the aftermath of the Cold War, the United States Department of Energy (DOE) has identified up to 50 metric tonnes of excess plutonium that needs to be dispositioned. The bulk of the material is slated to be blended with uranium and fabricated into a Mixed Oxide (MOX) fuel for subsequent burning in commercial nuclear reactors. Excess plutonium-containing materials that are not suitable for fabrication into MOX fuel will need to be dispositioned via other means. A lanthanide borosilicate (LaBS) glass was identified as a preferred form for the disposition of the impure plutonium-containing feeds. The LaBS glass formulation uses a lanthanide borosilicate frit rather than the alkali borosilicate frit used to vitrify high level waste. The LaBS glass has been shown to be able to accommodate high quantities of fissile material (greater than 10 wt % elemental plutonium) and tolerate the impurities expected in the plutonium feed streams. A conceptual design effort is now underway at the Savannah River Site (SRS) to design a vitrification facility to immobilize the excess Pu feeds that are not slated for disposition via MOX fuel. The conceptual design phase is planned to complete in FY07. A test program was initiated at the Savannah River National Laboratory (SRNL) to provide input data to the conceptual design effort. A major component of this test effort involves vitrification process testing. A cylindrical induction melter (CIM) was developed for the vitrification of actinide feed streams. Due to the high temperatures required to incorporate high plutonium oxide contents into the glass by dissolution and melting, the melter vessel is constructed out of Pt/Rh alloy and can be operated at temperatures up to 1600 deg. C. Additionally, the melter design is compact to facilitate installation in a glovebox (the size of the conceptual facility melter is approximately 6'' in diameter by 18'' tall). The CIM has proven to be a viable means to process the LaBS glass at processing temperatures of 1400-1500 deg. C. In this paper, the offgas sampling tests conducted in the CIM to capture and analyze the particulate and vapors emitted from lanthanide borosilicate (LaBS) Frit X with HfO{sub 2} as a surrogate for PuO{sub 2} and added impurities are discussed. The tests with impurities added showed that alkali salts such as NaCl and KCl were substantially emitted into the offgas system as the salt particulate, HCl, or Cl{sub 2}. Retention of Na and K in the glass were about 80 and 55%, respectively. Chloride retention was about 35%; chloride remaining in the glass was 0.29-0.37 wt%. Overall, about 58-72% of the impurities added were volatilized. Virtually all of the particulate species were collected on the nominal 0.3 {mu}m filter. The particulate was found to be as small as 0.2 {mu}m and have an approximate median size of 0.5 {mu}m. The particulate salt was also found to stick together by forming bridges between particles. (authors)

Zamecnik, J.R.; Jones, T.M.; Miller, D.H.; Herman, D.T.; Marra, J.C. [Savannah River National Laboratory, Aiken, SC (United States)

2007-07-01T23:59:59.000Z

56

Safeguards design strategies: designing and constructing new uranium and plutonium processing facilities in the United States  

SciTech Connect

In the United States, the Department of Energy (DOE) is transforming its outdated and oversized complex of aging nuclear material facilities into a smaller, safer, and more secure National Security Enterprise (NSE). Environmental concerns, worker health and safety risks, material security, reducing the role of nuclear weapons in our national security strategy while maintaining the capability for an effective nuclear deterrence by the United States, are influencing this transformation. As part of the nation's Uranium Center of Excellence (UCE), the Uranium Processing Facility (UPF) at the Y-12 National Security Complex in Oak Ridge, Tennessee, will advance the U.S.'s capability to meet all concerns when processing uranium and is located adjacent to the Highly Enriched Uranium Materials Facility (HEUMF), designed for consolidated storage of enriched uranium. The HEUMF became operational in March 2010, and the UPF is currently entering its final design phase. The designs of both facilities are for meeting anticipated security challenges for the 21st century. For plutonium research, development, and manufacturing, the Chemistry and Metallurgy Research Replacement (CMRR) building at the Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico is now under construction. The first phase of the CMRR Project is the design and construction of a Radiological Laboratory/Utility/Office Building. The second phase consists of the design and construction of the Nuclear Facility (NF). The National Nuclear Security Administration (NNSA) selected these two sites as part of the national plan to consolidate nuclear materials, provide for nuclear deterrence, and nonproliferation mission requirements. This work examines these two projects independent approaches to design requirements, and objectives for safeguards, security, and safety (3S) systems as well as the subsequent construction of these modern processing facilities. Emphasis is on the use of Safeguards-by-Design (SBD), incorporating Systems Engineering (SE) principles for these two projects.

Scherer, Carolynn P [Los Alamos National Laboratory; Long, Jon D [Los Alamos National Laboratory

2010-09-28T23:59:59.000Z

57

PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION  

Science Conference Proceedings (OSTI)

Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile material waste being generated to be managed in a bulk fashion, instead of individual waste packages. This approach negated the need for real-time assay of individ

JOHNSTON GA

2008-01-15T23:59:59.000Z

58

Plutonium immobilization plant using glass in new facilities at the Savannah River Site  

SciTech Connect

The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a glass immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors.

DiSabatino, A.

1998-06-01T23:59:59.000Z

59

Influence of Sources on Plutonium Mobility and Oxidation State Transformations in Vadose Zone Sediments  

Science Conference Proceedings (OSTI)

Well-defined solid sources of Pu(III) (PuCl3), Pu(IV) (Pu (NO3)4 and Pu (C2O4)2), and Pu(VI) (PuO2(NO3)2) were placed in lysimeters containing vadose zone sediments and exposed to natural weather conditions for 2 or 11 years. The objective of this study was to measure the release rate of Pu and the changes in the Pu oxidation states from these Pu sources with the intent to develop a reactive transport model source-term. Pu(III) and Pu(IV) sources had identical Pu concentration depth profiles and similar Pu release rates. Source release data indicate that PuIV(C2O4)2 was the least mobile, whereas PuVIO2(NO3)2 was the most mobile. Synchrotron X-ray fluorescence (SXRF) revealed that Pu was very unevenly distributed on the sediment and Mn concentrations were too low (630 mg kg-1) and perhaps of the wrong mineralogy to influence Pu distribution. The high stability of sorbed Pu(IV) is proposed to be due to the formation of a stable hydrolyzed Pu(IV) surface species. Plutonium X-ray absorption near-edge spectroscopy (XANES) analysis conducted on sediment recovered at the end of the study from the PuIV(NO3)4- and PuIIICl3-amended lysimeters contained essentially identical Pu distributions: approximately 37% Pu(III), 67% Pu(IV), 0% Pu(V), and 0% Pu(VI). These results were similar to those using a wet chemistry Pu oxidation state assay, except the latter method did not detect any Pu(III) present on the sediment but instead indicated that 93-98% of the Pu existed as Pu(IV). This discrepancy was likely attributable to incomplete extraction of sediment Pu(III) by the wet chemistry method. Although Pu has been known to exist in the +3 oxidation state under microbially induced reducing conditions for decades, to our knowledge, this is the first observation of steady-state Pu(III) in association with natural sediments. On the basis of thermodynamic considerations, Pu(III) has a wide potential distribution, especially in acidic environments, and as such may warrant further investigation.

Kaplan,D.; Powell, B.; Duff, M.; Demirkanli, D.; Denham, M.; Fjeld, R.; Molz, F.

2007-01-01T23:59:59.000Z

60

MoWiTT:Mobile Window Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 MoWiTT: Mobile Window Thermal Test Facility The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems requires accurate measurement of the flow of energy through windows in realistic conditions, a capability provided by the Mobile Window Thermal Test facility. Consisting of a pair of outdoor, room-sized calorimeters, MoWiTT measures the net energy flow through two window samples in side-by-side tests using ambient weather conditions. MoWiTT characterizes the net energy flow as a function of time and measures the temperatures, solar fluxes, and

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Plutonium immobilization plant using ceramic in existing facilities at the Savannah River site  

Science Conference Proceedings (OSTI)

The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources, and through a ceramic immobilization process converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors. The ceramic immobilization alternative presented in this report consists of first converting the surplus material to an oxide, followed by incorporating the plutonium oxide into a titanate-based ceramic material that is placed in metal cans.

DiSabatino, A., LLNL

1998-06-01T23:59:59.000Z

62

Hanford Facility Dangerous Waste Closure Plan - Plutonium Finishing Plant Treatment Unit Glovebox HA-20MB  

Science Conference Proceedings (OSTI)

This closure plan describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) glovebox HA-20MB that housed an interim status ''Resource Conservation and Recovery Act'' (RCRA) of 1976 treatment unit. This closure plan is certified and submitted to Ecology for incorporation into the Hanford Facility RCRA Permit (HF RCRA Permit) in accordance with Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement; TPA) Milestone M-83-30 requiring submittal of a certified closure plan for ''glovebox HA-20MB'' by July 31, 2003. Glovebox HA-20MB is located within the 231-5Z Building in the 200 West Area of the Hanford Facility. Currently glovebox HA-20MB is being used for non-RCRA analytical purposes. The schedule of closure activities under this plan supports completion of TPA Milestone M-83-44 to deactivate and prepare for dismantlement the above grade portions of the 234-5Z and ZA, 243-Z, and 291-Z and 291-Z-1 stack buildings by September 30, 2015. Under this closure plan, glovebox HA-20MB will undergo clean closure to the performance standards of Washington Administrative Code (WAC) 173-303-610 with respect to all dangerous waste contamination from glovebox HA-20MB RCRA operations. Because the intention is to clean close the PFP treatment unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. Any information on radionuclides is provided only for general knowledge. Clearance form only sent to RHA.

PRIGNANO, A.L.

2003-06-25T23:59:59.000Z

63

Hazards and accident analyses, an integrated approach, for the Plutonium Facility at Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

This paper describes an integrated approach to perform hazards and accident analyses for the Plutonium Facility at Los Alamos National Laboratory. A comprehensive hazards analysis methodology was developed that extends the scope of the preliminary/process hazard analysis methods described in the AIChE Guidelines for Hazard Evaluations. Results fro the semi-quantitative approach constitute a full spectrum of hazards. For each accident scenario identified, there is a binning assigned for the event likelihood and consequence severity. In addition, each accident scenario is analyzed for four possible sectors (workers, on-site personnel, public, and environment). A screening process was developed to link the hazard analysis to the accident analysis. Specifically the 840 accident scenarios were screened down to about 15 accident scenarios for a more through deterministic analysis to define the operational safety envelope. The mechanics of the screening process in the selection of final scenarios for each representative accident category, i.e., fire, explosion, criticality, and spill, is described.

Pan, P.Y.; Goen, L.K.; Letellier, B.C.; Sasser, M.K.

1995-07-01T23:59:59.000Z

64

ARM Mobile Facility Surface Meteorology Handbook - October 2008  

SciTech Connect

The ARM Mobile Facility Surface Meteorology station (AMF MET) uses mainly conventional in situ sensors to obtain 1-minute statistics of surface wind speed, wind direction, air temperature, relative humidity, barometric pressure, and rain-rate. Additional sensors may be added to or removed from the base set of sensors depending upon the deployment location, climate regime or programmatic needs. Additionally, sensor types may change depending upon the climate regime of the deployment. These changes/additions are noted in the Deployment Locations and History section.

MT Ritsche

2008-10-30T23:59:59.000Z

65

PLUTONIUM-URANIUM EXTRACTION (PUREX) FACILITY ALARACT DEMONSTRATION FOR FILTER HOUSING  

Science Conference Proceedings (OSTI)

This document presents an As Low As Reasonably Achievable Control Technology (ALARACT) demonstration for evaluating corrosion on the I-beam supporting filter housing No.9 for the 291-A-l emission unit of the Plutonium-Uranium Extraction (PUREX) Facility, located in the 200 East Area of the Hanford Site. The PUREX facility is currently in surveillance and maintenance mode. During a State of Washington, Department of Health (WDOH) 291-A-l emission unit inspection, a small amount of corrosion was observed at the base of a high-efficiency particulate air (HEPA) filter housing. A series of internal and external inspections identified the source of the corrosion material as oxidation of a small section of one of the carbon steel I-beams that provides support to the stainless steel filter housing. The inspections confirmed the corrosion is isolated to one I-beam support location and does not represent any compromise of the structural support or filter housing integrity. Further testing and inspections of the support beam corrosion and its cause were conducted but did not determine the cause. No definitive evidence was found to support any degradation of the housing. Although no degradation of the housing was found, a conservative approach will be implemented. The following actions will be taken: (1) The current operating filter housing No.9 will be removed from service. (2) The only remaining available filter housings (No.1, No.2, and No.3) will be placed in service. These filter housings have new HEPA filters fitted with stainless steel frames and faceguards which were installed in the spring of 2007. (3) Filter housings No.5 and No.10 will be put on standby as backups. To document the assessment of the unit, a draft ALARACT filter housing demonstration for the PUREX filter housing was prepared, and informally provided to WDOH on August 7, 2008. A follow up WDOH response to the draft ALARACT filter housing demonstration for the PUREX filter housing questioned whether deteriorated galvanized filter faceguards discovered during an internal filter housing inspection met American Society of Mechanical Engineers (ASME) AG-l or Military Specification (MIL) 51068 standards. The filter system was designed and installed prior to the issuance of AG-l, February 1986; however, MIL 51068 did require galvanized faceguards. The faceguards are not necessary for filtration or structural purposes; it is concluded that the system is in compliance with the intent of the applicable standard. Appendix B provides supporting information to address this issue.

LEBARON GJ

2008-11-25T23:59:59.000Z

66

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production  

E-Print Network (OSTI)

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio Committee Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio to more energy dense substances (bio-oil, bio-slurry or torrefied wood) that can be transported

Victoria, University of

67

Plutonium Consumption Program, CANDU Reactor Project: Feasibility of BNFP Site as MOX Fuel Supply Facility. Final report  

SciTech Connect

An evaluation was made of the technical feasibility, cost, and schedule for converting the existing unused Barnwell Nuclear Fuel Facility (BNFP) into a Mixed Oxide (MOX) CANDU fuel fabrication plant for disposition of excess weapons plutonium. This MOX fuel would be transported to Ontario where it would generate electricity in the Bruce CANDU reactors. Because CANDU MOX fuel operates at lower thermal load than natural uranium fuel, the MOX program can be licensed by AECB within 4.5 years, and actual Pu disposition in the Bruce reactors can begin in 2001. Ontario Hydro will have to be involved in the entire program. Cost is compared between BNFP and FMEF at Hanford for converting to a CANDU MOX facility.

1995-06-30T23:59:59.000Z

68

The impact of two Department of Energy orders on the design and cost of select plutonium facilities at Los Alamos National Laboratory  

SciTech Connect

The Los Alamos National Laboratory (LANL) is a research and development facility in northern New Mexico, owned by the federal government and operated for the US Department of Energy (DOE) by the University of California (UC). LANL conducts research and experiments in many arenas including plutonium. Its plutonium facilities are required to meet the facility design and safety criteria of applicable DOE orders as specified in the UC contract. Although DOE 420.1, Facility Safety, superseded DOE 6430.1A, General Design Criteria, the UC contract requires LANL to adhere to DOE 6430.1A, Division 13 in its special nuclear facilities. A comparison of costs and savings relative to installation of double-wall piping at two LANL plutonium facilities is demonstrated. DOE 6430.1A is prescriptive in its design criteria whereas DOE 420.1 is a performance-based directive. The differences in these orders impact time and design costs in nuclear construction projects. LANL`s approach to integrated quality and conduct of operations for design, needs to be re-evaluated. In conclusion, there is a need for highly-technical, knowledgeable people and an integrated, quality/conduct of operations-based approach to assure that nuclear facilities are designed and constructed in a safe and cost-effective manner.

Rey, V.C.

1999-02-01T23:59:59.000Z

69

Report of an investigation into deterioration of the Plutonium Fuel Form Fabrication Facility (PuFF) at the DOE Savannah River Site  

SciTech Connect

This investigations of the Savannah River Site's Plutonium Fuel Form fabrication facility located in Building 235-F was initiated in April 1991. The purpose of the investigation was to determine whether, as has been alleged, operation of the facility's argon inert gas system was terminated with the knowledge that continued inoperability of the argon system would cause accelerated corrosion damage to the equipment in the plutonium 238 processing cells. The investigation quickly established that the decision to discontinue operation of the argon system, by not repairing it, was merely one of the measures, and not the most important one, which led to the current deteriorated state of the facility. As a result, the scope of the investigation was broadened to more identify and assess those factors which contributed to the facility's current condition. This document discusses the backgrounds, results, and recommendations of this investigation.

Not Available

1991-10-01T23:59:59.000Z

70

Report of an investigation into deterioration of the Plutonium Fuel Form Fabrication Facility (PuFF) at the DOE Savannah River Site  

SciTech Connect

This investigations of the Savannah River Site's Plutonium Fuel Form fabrication facility located in Building 235-F was initiated in April 1991. The purpose of the investigation was to determine whether, as has been alleged, operation of the facility's argon inert gas system was terminated with the knowledge that continued inoperability of the argon system would cause accelerated corrosion damage to the equipment in the plutonium 238 processing cells. The investigation quickly established that the decision to discontinue operation of the argon system, by not repairing it, was merely one of the measures, and not the most important one, which led to the current deteriorated state of the facility. As a result, the scope of the investigation was broadened to more identify and assess those factors which contributed to the facility's current condition. This document discusses the backgrounds, results, and recommendations of this investigation.

1991-10-01T23:59:59.000Z

71

The Challenges of Preserving Historic Resources During the Deactivation and Decommissioning of Highly Contaminated Historically Significant Plutonium Process Facilities  

Science Conference Proceedings (OSTI)

The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that are included or eligible for inclusion in the National Register. In an agreement between the DOE's Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Site-wide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They must also ensure the safety of workers and the full decontamination of buildings or artifacts if they are to be preserved. This paper discusses the real time challenges of working safely, decontaminating process equipment, preserving historical structures and artifacts and documenting their history at PFP. (authors)

Hopkins, A.; Minette, M.; Sorenson, D.; Heineman, R.; Gerber, M. [Fluor Hanford, Inc., PO Box 1000 Richland WA 99352 (United States); Charboneau, S. [US Department of Energy PO Box 550, Richland WA 99352 (United States); Bond, F. [Washington State Department of Ecology, WDOE 3100 Port of Benton Blvd., Richland WA, 99354 (United States)

2006-07-01T23:59:59.000Z

72

CHALLENGES OF PRESERVING HISTORIC RESOURCES DURING THE D & D OF HIGHLY CONTAMINATED HISTORICALLY SIGNIFICANT PLUTONIUM PROCESS FACILITIES  

SciTech Connect

The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that ere included or eligible for inclusion in the National Register. In an agreement between the DOE'S Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Sitewide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They must also ensure the safety of workers and the full decontamination of buildings or artifacts if they are to be preserved. This paper discusses the real time challenges of working safely, decontaminating process equipment, preserving historical structures and artifacts and documenting their history at PFP.

HOPKINS, A.M.

2006-03-17T23:59:59.000Z

73

CHALLENGES OF PRESERVING HISTORIC RESOURCES DURING THE D & D OF HIGHLY CONTAMINATED HISTORICALLY SIGNIFICANT PLUTONIUM PROCESS FACILITIES  

SciTech Connect

The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that ere included or eligible for inclusion in the National Register. In an agreement between the DOE'S Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Sitewide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They must also ensure the safety of workers and the full decontamination of buildings or artifacts if they are to be preserved. This paper discusses the real time challenges of working safely, decontaminating process equipment, preserving historical structures and artifacts and documenting their history at PFP.

HOPKINS, A.M.

2006-03-17T23:59:59.000Z

74

MOBILITY OF PLUTONIUM IN ZEA MAYS (CORN): DETERMINATION OF TRANSPORT VELOCITIES, SPATIAL DISTRIBUTION AND CORRELATIONS WITH IRON.  

E-Print Network (OSTI)

??Understanding the environmental behavior of plutonium (Pu) is essential for proper radioactive waste disposal or for remedial activities following an accidental release of Pu. The (more)

Thompson, Shannon

75

The Arm Mobile Facility and Its First International Deployment: Measuring Radiative Flux Divergence in West Africa  

Science Conference Proceedings (OSTI)

The Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was recently developed to enable collection of detailed climate data in locations not currently sampled by ARM's five fixed sites. The AMF includes a comprehensive suite of active ...

Mark A. Miller; Anthony Slingo

2007-08-01T23:59:59.000Z

76

Particle size distribution of airborne plutonium near a chemical separations facility  

Science Conference Proceedings (OSTI)

Particulate matter containing Pu-238 and Pu-239,240 emitted from a stack at the Savannah River Plant was collected and fractionated by size with cascade impactors. Two impactor measurements were made at a distance of 200 meters from the H-Area stack and a third was at a distance of 420 meters. Annual collections were made for three years. The Pu-238 and Pu 239,240 concentrations were determined for each of the size fractions. The fractions collected at 200 m from the 62 m stack showed a biphasic curve for both Pu-238 and Pu-239,240. The highest concentration for both Pu-238 and Pu-239,240 were found in the <0.49 ..mu..m fraction, with the secondary peak occurring in the fractions greater than 3.0 ..mu..m. At 420 meters from the stack, the size distribution curves for Pu-238 and Pu-239,240 were not biphasic; only one peak appeared and that was for the fraction less than 0.49 ..mu..m. The doses to different organs from plutonium inhalation were calculated for the particle size distributions obtained in this study. The maximum potential 50-year dose commitment to the bone, the critical organ, for one year continuous exposure was 13 mrem for Pu-238 and 0.44 mrem for Pu-239,240 at 200 meters from the H-Area stack.

Gay, D.D.; Watts, J.R.

1981-12-01T23:59:59.000Z

77

EIS Data Call Report: Plutonium immobilization plant using ceramic in new facilities at the Savannah River Site  

SciTech Connect

The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors. The ceramic immobilization alternative presented in this report consists of first converting the surplus material to an oxide, followed by incorporating the plutonium oxide into a titanate-based ceramic material that is placed in metal cans.

DiSabatino, A.

1998-06-01T23:59:59.000Z

78

EIS-0219: F-Canyon Plutonium Solutions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Plutonium Solutions Stored in the F-Canyon Facility, Savannah River Site, Aiken, SC December 1, 1994 EIS-0219: Final Environmental Impact Statement F-Canyon Plutonium...

79

Ion exchange separation of plutonium and gallium (1) resource and inventory requirements, (2) waste, emissions, and effluent, and (3) facility size  

SciTech Connect

The following report summarizes an effort intended to estimate within an order-of-magnitude the (1) resource and inventory requirements, (2) waste, emissions, and effluent amounts, and (3) facility size, for ion exchange (IX) separation of plutonium and gallium. This analysis is based upon processing 3.5 MT-Pu/yr. The technical basis for this summary is detailed in a separate document, {open_quotes}Preconceptual Design for Separation of Plutonium and Gallium by Ion Exchange{close_quotes}. The material balances of this separate document are based strictly on stoichiometric amounts rather than details of actual operating experience, in order to avoid classification as Unclassified Controlled Nuclear Information. This approximation neglets the thermodynamics and kinetics which can significantly impact the amount of reagents required. Consequently, the material resource requirements and waste amounts presented here would normally be considered minimums for processing 3.5 MT-Pu/yr; however, the author has compared the inventory estimates presented with that of an actual operating facility and found them similar. Additionally, the facility floor space presented here is based upon actual plutonium processing systems and can be considered a nominal estimate.

DeMuth, S.

1997-09-30T23:59:59.000Z

80

ARM - Field Campaign - Application of the ARM Mobile Facility (AMF) to  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsApplication of the ARM Mobile Facility (AMF) to Study the govCampaignsApplication of the ARM Mobile Facility (AMF) to Study the Aerosol Indirect Effects in China Campaign Links China Website Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Application of the ARM Mobile Facility (AMF) to Study the Aerosol Indirect Effects in China 2008.05.15 - 2008.12.29 Website : http://www.arm.gov/sites/amf/hfe/ Lead Scientist : Zhanqing Li For data sets, see below. Description Aerosols in China have exceptionally high loading and diverse properties whose influence has been detected across the Pacific Rim. The rapid pace of changes in the atmospheric environment over China provides a natural testbed for identifying and quantifying the climatic effects of aerosols. Preliminary analyses of multiple satellite datasets (MODIS, TMI, TRMM)

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Mobile Facility Records Annual Climate Cycle in Niger, Africa  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Records Annual Facility Records Annual Climate Cycle in Niger, Africa Because dust can block incoming solar energy, and because solar energy drives weather and climate, scientists around the world are looking for ways to better understand these natural phenomena. In 2006, scientists sponsored by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility conducted a year-long field campaign in Niamey, Niger, to provide key information for the African Monsoon Multidisciplinary Analyses, or AMMA, project. During the 12-month experiment at the airport in Niamey, researchers used a portable atmospheric laboratory, airplanes, and satellites to collect information about clouds, aerosols, and solar and terrestrial energy in the skies above the site. Measurements obtained

82

Implementing waste minimization at an active plutonium processing facility: Successes and progress at technical area (TA) -55 of the Los Alamos National Laboratory  

SciTech Connect

The Los Alamos National Laboratory has ongoing national security missions that necessitate increased plutonium processing. The bulk of this activity occurs at Technical Area -55 (TA-55), the nations only operable plutonium facility. TA-55 has developed and demonstrated a number of technologies that significantly minimize waste generation in plutonium processing (supercritical CO{sub 2}, Mg(OH){sub 2} precipitation, supercritical H{sub 2}O oxidation, WAND), disposition of excess fissile materials (hydride-dehydride, electrolytic decontamination), disposition of historical waste inventories (salt distillation), and Decontamination & Decommissioning (D&D) of closed nuclear facilities (electrolytic decontamination). Furthermore, TA-55 is in the process of developing additional waste minimization technologies (molten salt oxidation, nitric acid recycle, americium extraction) that will significantly reduce ongoing waste generation rates and allow volume reduction of existing waste streams. Cost savings from reduction in waste volumes to be managed and disposed far exceed development and deployment costs in every case. Waste minimization is also important because it reduces occupational exposure to ionizing radiation, risks of transportation accidents, and transfer of burdens from current nuclear operations to future generations.

Balkey, J.J.; Robinson, M.A.; Boak, J.

1997-12-01T23:59:59.000Z

83

DOE-STD-1128-98; Changes to DOE-STD-1128-98, "Guide for Occupational Radiological Protection in Plutonium Facilities"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Changes to DOE-STD-1128-98, "Guide for Occupational Radiological Protection in Plutonium Changes to DOE-STD-1128-98, "Guide for Occupational Radiological Protection in Plutonium Facilities Section/Page Change Cover Change "Metric" to "Not Measurement Sensitive". Throughout the document Change "the DOE Radiological Control Manual (RCM)" to "the DOE standard DOE- STD-1098-99, Radiological Control (RCS)". Change "RCM" to "RCS". Replace (DOE, 1993c) with (DOE, 1998a). Replace (DOE, 19941) with (DOE, 1999b). Delete reference to DOE Order 5700C, Quality Assurance. Replace ANSI N13.6-1989 (ANSI, 1996) with ANSI/HPS N13.6 (ANSI, 1999a). Change "ANSI N323-1993 (ANSI, 1993)" to "ANSI N323a (ANSI, 1997b)". Change "DOE Order 420.1 (DOE, 1995c)" to "Order 420.1A (DOE, 2002a)".

84

Plutonium Vulnerability Management Plan  

Science Conference Proceedings (OSTI)

This Plutonium Vulnerability Management Plan describes the Department of Energy`s response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department`s Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B.

NONE

1995-03-01T23:59:59.000Z

85

Plutonium Disposition Now!  

SciTech Connect

A means for use of existing processing facilities and reactors for plutonium disposition is described which requires a minimum capital investment and allows rapid implementation. The scenario includes interim storage and processing under IAEA control, and fabrication into MOX fuel in existing or planned facilities in Europe for use in operating reactors in the two home countries. Conceptual studies indicate that existing Westinghouse four-loop designs can safety dispose of 0.94 MT of plutonium per calendar year. Thus, it would be possible to consume the expected US excess stockpile of about 50 MT in two to three units of this type, and it is highly likely that a comparable amount of the FSU excess plutonium could be deposed of in a few VVER-1000`s. The only major capital project for this mode of plutonium disposition would be the weapons-grade plutonium processing which could be done in a dedicated international facility or using existing facilities in the US and FSU under IAEA control. This option offers the potential for quick implementation at a very low cost to the governments of the two countries.

Buckner, M.R.

1995-05-24T23:59:59.000Z

86

Addressing mixed waste in plutonium processing  

SciTech Connect

The overall goal is the minimization of all waste generated in actinide processing facilities. Current emphasis is directed toward reducing and managing mixed waste in plutonium processing facilities. More specifically, the focus is on prioritizing plutonium processing technologies for development that will address major problems in mixed waste management. A five step methodological approach to identify, analyze, solve, and initiate corrective action for mixed waste problems in plutonium processing facilities has been developed.

Christensen, D.C.; Sohn, C.L. (Los Alamos National Lab., NM (United States)); Reid, R.A. (New Mexico Univ., Albuquerque, NM (United States). Anderson Schools of Management)

1991-01-01T23:59:59.000Z

87

Plutonium Disposition Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plutonium Disposition Program Plutonium Disposition Program Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition > Plutonium Disposition Program Plutonium Disposition Program The U.S.-Russia Plutonium Management and Disposition Agreement (PMDA), which entered into force on July 13, 2011, commits each country to dispose of at least 34 metric tons (MT) of weapon-grade plutonium withdrawn from their respective nuclear weapon programs. The U.S. remains firmly committed to its PMDA obligation to dispose of excess weapons plutonium. U.S. Plutonium Disposition The current U.S. plan to dispose of 34 MT of weapon-grade plutonium is to fabricate it into Mixed Oxide (MOX) fuel and irradiate it in existing light water reactors. This approach requires construction of new facilities

88

Accident Investigation Report Plutonium Contamination in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accident Investigation Report Plutonium Contamination in the Zero Power Physics Reactor Facility at the Idaho National Laboratory, November 8, 2011 January 2012 Disclaimer...

89

Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011  

Science Conference Proceedings (OSTI)

The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

2012-04-18T23:59:59.000Z

90

TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM OXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE  

DOE Green Energy (OSTI)

The HB-Line (HBL) facility at the Savannah River Site (SRS) is designed to produce high-purity plutonium dioxide (PuO{sub 2}) which is suitable for future use in production of Mixed Oxide (MOX) fuel. The MOX Fuel Fabrication Facility (MFFF) requires PuO{sub 2} feed to be packaged per the U.S. Department of Energy (DOE) Standard 3013 (DOE-STD-3013) to comply with the facility's safety basis. The stabilization conditions imposed by DOE-STD-3013 for PuO{sub 2} (i.e., 950 C for 2 hours) preclude use of the HBL PuO{sub 2} in direct fuel fabrication and reduce the value of the HBL product as MFFF feedstock. Consequently, HBL initiated a technical evaluation to define acceptable operating conditions for production of high-purity PuO{sub 2} that fulfills the DOE-STD-3013 criteria for safe storage. The purpose of this document is to demonstrate that within the defined operating conditions, the HBL process will be equivalent for meeting the requirements of the DOE-STD-3013 stabilization process for plutonium-bearing materials from the DOE complex. The proposed 3013 equivalency reduces the prescribed stabilization temperature for high-purity PuO{sub 2} from oxalate precipitation processes from 950 C to 640 C and places a limit of 60% on the relative humidity (RH) at the lowest material temperature. The equivalency is limited to material produced using the HBL established flow sheet, for example, nitric acid anion exchange and Pu(IV) direct strike oxalate precipitation with stabilization at a minimum temperature of 640 C for four hours (h). The product purity must meet the MFFF acceptance criteria of 23,600 {micro}g/g Pu (i.e., 2.1 wt %) total impurities and chloride content less than 250 {micro}g/g of Pu. All other stabilization and packaging criteria identified by DOE-STD-3013-2012 or earlier revisions of the standard apply. Based on the evaluation of test data discussed in this document, the expert judgment of the authors supports packaging the HBL product under a 3013 equivalency. Under the defined process conditions and associated material specifications, the high-purity PuO{sub 2} produced in HBL presents no unique safety concerns for packaging or storage in the 3013 required configuration. The PuO{sub 2} produced using the HBL flow sheet conditions will have a higher specific surface area (SSA) than PuO{sub 2} stabilized at 950 C and, consequently, under identical conditions will adsorb more water from the atmosphere. The greatest challenge to HBL operators will be controlling moisture content below 0.5 wt %. However, even at the 0.5 wt % moisture limit, the maximum acceptable pressure of a stoichiometric mixture of hydrogen and oxygen in the 3013 container is greater than the maximum possible pressure for the HBL PuO{sub 2} product.

Duffey, J.; Livingston, R.; Berg, J.; Veirs, D.

2012-07-02T23:59:59.000Z

91

CONVERSION OF PLUTONIUM TRIFLUORIDE TO PLUTONIUM TETRAFLUORIDE  

DOE Patents (OSTI)

A large proportion of the trifluoride of plutonium can be converted, in the absence of hydrogen fluoride, to the tetrafiuoride of plutonium. This is done by heating plutonium trifluoride with oxygen at temperatures between 250 and 900 deg C. The trifiuoride of plutonium reacts with oxygen to form plutonium tetrafluoride and plutonium oxide, in a ratio of about 3 to 1. In the presence of moisture, plutonium tetrafluoride tends to hydrolyze at elevated temperatures and therefore it is desirable to have the process take place under anhydrous conditions.

Fried, S.; Davidson, N.R.

1957-09-10T23:59:59.000Z

92

Cost Estimating for Decommissioning of a Plutonium Facility--Lessons Learned From The Rocky Flats Building 771 Project  

Science Conference Proceedings (OSTI)

The Rocky Flats Closure Site is implementing an aggressive approach in an attempt to complete Site closure by 2006. The replanning effort to meet this goal required that the life-cycle decommissioning effort for the Site and for the major individual facilities be reexamined in detail. As part of the overall effort, the cost estimate for the Building 771 decommissioning project was revised to incorporate both actual cost data from a recently-completed similar project and detailed planning for all activities. This paper provides a brief overview of the replanning process and the original estimate, and then discusses the modifications to that estimate to reflect new data, methods, and planning rigor. It provides the new work breakdown structure and discusses the reasons for the final arrangement chosen. It follows with the process used to assign scope, cost, and schedule elements within the new structure, and development of the new code of accounts. Finally, it describes the project control methodology used to track the project, and provides lessons learned on cost tracking in the decommissioning environment.

Stevens, J. L.; Titus, R.; Sanford, P. C.

2002-02-26T23:59:59.000Z

93

Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger  

SciTech Connect

This study presents ground-based remote sensing measurements of aerosol optical properties and corresponding shortwave surface radiative effect calculations for the deployment of the Atmospheric Radiation Measurement (ARM) Programs Mobile Facility (AMF) to Niamey, Niger during 2006. Aerosol optical properties including aerosol optical depth (AOD), single scattering albedo (SSA), and asymmetry parameter (AP) were derived from multi-filter rotating shadowband radiometer (MFRSR) measurements during the two dry seasons (Jan-Apr and Oct-Dec) at Niamey. The vertical distribution of aerosol extinction was derived from the collocated micropulse lidar (MPL). The aerosol optical properties and vertical distribution of extinction varied significantly throughout the year, with higher AOD, lower SSA, and deeper aerosol layers during the Jan-Apr time period, when biomass burning aerosol layers were more frequent. Using the retrieved aerosol properties and vertical extinction profiles, broadband shortwave surface fluxes and atmospheric heating rate profiles were calculated. Corresponding calculations with no aerosol were used to estimate the aerosol direct radiative effect at the surface. Comparison of the calculated surface fluxes to observed fluxes for non-cloudy periods indicated that the remote sensing retrievals provided a reasonable estimation of the optical properties, with mean differences between calculated and observed fluxes of less than 5 W/m2 and RMS differences less than 25 W/m2. Sensitivity tests for a particular case study showed that the observed fluxes could be matched with variations of < 10% in the inputs to the radiative transfer model. We estimated the daily-averaged aerosol radiative effect at the surface by subtracting the clear calculations from the aerosol calculations. The average daily SW aerosol radiative effect over the study period was -27 W/m2, which is comparable to values estimated from satellite data and from climate models with sophisticated dust parameterizations.

McFarlane, Sally A.; Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Ackerman, Thomas P.

2009-03-18T23:59:59.000Z

94

THE PLUTONIUM STORY  

E-Print Network (OSTI)

Soc. , The occurrence of plutonium in nature. Mastick, D. F.positive oxidation state of plutonium. G. T. Seaborg, J. J.The first isolation of plutonium J. Am. Chem. Soc. , Fermi,

Seaborg, G.T.

2010-01-01T23:59:59.000Z

95

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video About Operational Excellence Facilities Facilities...

96

A Data Sharing Facility for Mobile Ad-Hoc Emergency and Rescue Applications  

Science Conference Proceedings (OSTI)

Efficient information sharing is very important for emergency and rescue operations. Mobile Ad-Hoc Networks (MANETs) are often the only network environment for such operations. We have developed the MIDAS Data Space (MDS) to transparently share information ... Keywords: Emergency and rescue operations, mobile ad-hoc networks, tailor-made middleware, shared data space.

Thomas Plagemann; Ellen Munthe-Kaas; Katrine S. Skjelsvik; Matija Puzar; Vera Goebel; Ulrik Johansen; Joe Gorman; Santiago Perez Marin

2007-06-01T23:59:59.000Z

97

PLUTONIUM ALLOYS  

DOE Patents (OSTI)

The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

Chynoweth, W.

1959-06-16T23:59:59.000Z

98

PRODUCTION OF PLUTONIUM METAL  

DOE Patents (OSTI)

A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

Lyon, W.L.; Moore, R.H.

1961-01-17T23:59:59.000Z

99

SEPARATION OF PLUTONIUM  

DOE Patents (OSTI)

A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

Maddock, A.G.; Smith, F.

1959-08-25T23:59:59.000Z

100

STRIPPING PROCESS FOR PLUTONIUM  

DOE Patents (OSTI)

A method for removing silver, nickel, cadmium, zinc, and indium coatings from plutonium objects while simultaneously rendering the plutonium object passive is described. The coated plutonium object is immersed as the anode in an electrolyte in which the plutonium is passive and the coating metal is not passive, using as a cathode a metal which does not dissolve rapidly in the electrolyte. and passing an electrical current through the electrolyte until the coating metal is removed from the plutonium body.

Kolodney, M.

1959-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Plutonium Finishing Plant safety evaluation report  

SciTech Connect

The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE`s independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91.

Not Available

1995-01-01T23:59:59.000Z

102

Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Materials & Waste » Nuclear Materials & Waste » Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a welded 3013 containers that are nested in 9975 shipping containers. 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a welded 3013 containers that are nested in 9975 shipping

103

Strong Lines of Plutonium ( Pu )  

Science Conference Proceedings (OSTI)

... Plutonium (Pu) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Strong Lines of Plutonium ( Pu ). ...

104

Atomic Data for Plutonium (Pu)  

Science Conference Proceedings (OSTI)

... Plutonium (Pu) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Plutonium (Pu). ...

105

PREPARATION OF PLUTONIUM TRIFLUORIDE  

DOE Patents (OSTI)

A process of producing plutonium trifluoride by reacting dry plutonium(IV) oxalate with chlorofluorinated methane or ethane at 400 to 450 deg C and cooling the product in the absence of oxygen is described.

Burger, L.L.; Roake, W.E.

1961-07-11T23:59:59.000Z

106

METHOD OF SEPARATING PLUTONIUM  

DOE Patents (OSTI)

Plutonium hexafluoride is a satisfactory fluorinating agent and may be reacted with various materials capable of forming fluorides, such as copper, iron, zinc, etc., with consequent formation of the metal fluoride and reduction of the plutonium to the form of a lower fluoride. In accordance with the present invention, it has been found that the reactivity of plutonium hexafluoride with other fluoridizable materials is so great that the process may be used as a method of separating plutonium from mixures containing plutonium hexafluoride and other vaporized fluorides even though the plutonium is present in but minute quantities. This process may be carried out by treating a mixture of fluoride vapors comprising plutonium hexafluoride and fluoride of uranium to selectively reduce the plutonium hexafluoride and convert it to a less volatile fluoride, and then recovering said less volatile fluoride from the vapor by condensation.

Brown, H.S.; Hill, O.F.

1958-02-01T23:59:59.000Z

107

PROCESS FOR PURIFYING PLUTONIUM  

DOE Patents (OSTI)

A method is described of separating plutonium from small amounts of uranium and other contaminants. An acidic aqueous solution of higher valent plutonium and hexavalent uranium is treated with a soluble iodide to obtain the plutonium in the plus three oxidation state while leaving the uranium in the hexavalent state, adding a soluble oxalate such as oxalic acid, and then separating the insoluble plus the plutonium trioxalate from the solution.

Mastick, D.F.; Wigner, E.P.

1958-05-01T23:59:59.000Z

108

Plutonium Processing Plant Deactivated | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Processing Plant Deactivated | National Nuclear Security Processing Plant Deactivated | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Plutonium Processing Plant Deactivated Plutonium Processing Plant Deactivated June 20, 1997 Hanford, WA Plutonium Processing Plant Deactivated The Plutonium Uranium Extraction Facility (PUREX), the largest of the

109

Plutonium Processing Plant Deactivated | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Processing Plant Deactivated | National Nuclear Security Processing Plant Deactivated | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Plutonium Processing Plant Deactivated Plutonium Processing Plant Deactivated June 20, 1997 Hanford, WA Plutonium Processing Plant Deactivated The Plutonium Uranium Extraction Facility (PUREX), the largest of the

110

Plutonium Disposition Program | National Nuclear Security Administrati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plutonium Disposition Program Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition > Plutonium Disposition Program Plutonium Disposition Program The...

111

PLUTONIUM-THORIUM ALLOYS  

DOE Patents (OSTI)

New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

Schonfeld, F.W.

1959-09-15T23:59:59.000Z

112

PLUTONIUM CLEANING PROCESS  

DOE Patents (OSTI)

A method is described for rapidly removing iron, nickel, and zinc coatings from plutonium objects while simultaneously rendering the plutonium object passive. The method consists of immersing the coated plutonium object in an aqueous acid solution containing a substantial concentration of nitrate ions, such as fuming nitric acid.

Kolodney, M.

1959-12-01T23:59:59.000Z

113

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

114

Summary - Plutonium Preparation Project at the Savannah River...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Fast Flux Test Facility (FFTF) unirradiated fuel; and for repackaging of Pu stored in 3013 containers. Of 12.8 MT of plutonium, 4.1 MT will be directly...

115

Determination of Plutonium Content in Spent Fuel with Nondestructive Assay  

E-Print Network (OSTI)

of Plutonium in Spent Nuclear Fuel by Self-Induced X-ray,Requirements for Spent Nuclear Fuel Recycling Facility Content in PWR Spent Nuclear Fuel, European Safeguards R&D

Tobin, S. J.

2010-01-01T23:59:59.000Z

116

ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION  

Science Conference Proceedings (OSTI)

The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

Allender, J.; Moore, E.

2013-07-17T23:59:59.000Z

117

Final Environmental Impact Statement - Plutonium Finishing Plant Stabilization, May 1996  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Plutonium Finishing Plant Stabilization, May 1996 - Plutonium Finishing Plant Stabilization, May 1996 file:///I|/Data%20Migration%20Task/EIS-0244-FEIS-1996/eis0244f_1.html[6/27/2011 2:33:34 PM] 1.0 INTRODUCTION This Introduction contains the following information: Background of the Plutonium Finishing Plant Facility Scope of this Environmental Impact Statement Contents of this Environmental Impact Statement The presence of significant quantities of plutonium-bearing materials in the Plutonium Finishing Plant (PFP) Facility, Hanford Site, Washington, poses unacceptable risks to workers, the public, and the environment. On October 24, 1994, the United States Department of Energy (DOE) announced, in an initial mailing to 1,500 interested parties, its intent to prepare an Environmental Impact Statement (EIS) pursuant to the National

118

Geomorphology of plutonium in the Northern Rio Grande  

Science Conference Proceedings (OSTI)

Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

Graf, W.L. [Arizona Univ., Tempe, AZ (United States). Dept., of Geography] Arizona Univ., Tempe, AZ (United States). Dept., of Geography

1993-03-01T23:59:59.000Z

119

CHARACTERIZATION OF SURPLUS PLUTONIUM FOR DISPOSITION OPTIONS  

SciTech Connect

The United States (U.S.) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Except for materials that remain in use for programs outside of national defense, including programs for nuclear-energy development, the surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. Some items will be disposed as transuranic waste, low-level waste, or spent fuel. The remaining surplus plutonium will be managed through: (1) the Mixed Oxide (MOX) Fuel Fabrication Facility (FFF), to be constructed at the Savannah River Site (SRS), where the plutonium will be converted to fuel that will be irradiated in civilian power reactors and later disposed to a high-level waste (HLW) repository as spent fuel; (2) the SRS H-Area facilities, by dissolving and transfer to HLW systems, also for disposal to the repository; or (3) alternative immobilization techniques that would provide durable and secure disposal. From the beginning of the U.S. program for surplus plutonium disposition, DOE has sponsored research to characterize the surplus materials and to judge their suitability for planned disposition options. Because many of the items are stored without extensive analyses of their current chemical content, the characterization involves three interacting components: laboratory sample analysis, if available; non-destructive assay data; and rigorous evaluation of records for the processing history for items and inventory groups. This information is collected from subject-matter experts at inventory sites and from materials stabilization and surveillance programs, in cooperation with the design agencies for the disposition facilities. This report describes the operation and status of the characterization program.

Allender, J; Edwin Moore, E; Scott Davies, S

2008-07-15T23:59:59.000Z

120

Demolition Begins on Hanford's Historic Plutonium Vaults - Plutonium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

workers used chemical processing and furnaces to fabricate plutonium metal, primarily hockey puck-shaped pieces called buttons. The plutonium buttons were stored in high-security...

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Surplus Plutonium Disposition (SPD) Environmental Data Summary  

Science Conference Proceedings (OSTI)

This document provides an overview of existing environmental and ecological information at areas identified as potential locations of the Savannah River Site's (SRS) Surplus Plutonium Disposition (SPD) facilities. This information is required to document existing environmental and baseline conditions from which SPD construction and operation impacts can be defined. It will be used in developing the required preoperational monitoring plan to be used at specific SPD facilities construction sites.

Fledderman, P.D.

2000-08-24T23:59:59.000Z

122

PREPARATION OF PLUTONIUM HALIDES  

DOE Patents (OSTI)

A process ls presented for the preparation of plutonium trihalides. Plutonium oxide or a compound which may be readily converted to plutonlum oxide, for example, a plutonium hydroxide or plutonlum oxalate is contacted with a suitable halogenating agent. Speciflc agents mentioned are carbon tetrachloride, carbon tetrabromide, sulfur dioxide, and phosphorus pentachloride. The reaction is carried out under superatmospberic pressure at about 300 icient laborato C.

Davidson, N.R.; Katz, J.J.

1958-11-01T23:59:59.000Z

123

PLUTONIUM-ZIRCONIUM ALLOYS  

DOE Patents (OSTI)

A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

Schonfeld, F.W.; Waber, J.T.

1960-08-30T23:59:59.000Z

124

Continuous plutonium dissolution apparatus  

DOE Patents (OSTI)

This invention is concerned with continuous dissolution of metals such as plutonium. A high normality acid mixture is fed into a boiler vessel, vaporized, and subsequently condensed as a low normality acid mixture. The mixture is then conveyed to a dissolution vessel and contacted with the plutonium metal to dissolve the plutonium in the dissolution vessel, reacting therewith forming plutonium nitrate. The reaction products are then conveyed to the mixing vessel and maintained soluble by the high normality acid, with separation and removal of the desired constituent. (Official Gazette)

Meyer, F.G.; Tesitor, C.N.

1974-02-26T23:59:59.000Z

125

PREPARATION OF PLUTONIUM  

DOE Patents (OSTI)

Methods are presented for the electro-deposition of plutonium from fused mixtures of plutonium halides and halides of the alkali metals and alkaline earth metals. Th salts, preferably chlorides and with the plutonium prefer ably in the trivalent state, are placed in a refractory crucible such as tantalum or molybdenam and heated in a non-oxidizing atmosphere to 600 to 850 deg C, the higher temperatatures being used to obtain massive plutonium and the lower for the powder form. Electrodes of graphite or non reactive refractory metals are used, the crucible serving the cathode in one apparatus described in the patent.

Kolodney, M.

1959-07-01T23:59:59.000Z

126

THE PLUTONIUM STORY  

E-Print Network (OSTI)

vast processing plants at Hanford, Washington, in Decemberconsideration for use at Hanford. The various parts of thewere tested c u the Hanford concentration:, of plutonium in

Seaborg, G.T.

2010-01-01T23:59:59.000Z

127

It's Elemental - The Element Plutonium  

NLE Websites -- All DOE Office Websites (Extended Search)

Next Element (Americium) Americium The Element Plutonium Click for Isotope Data 94 Pu Plutonium 244 Atomic Number: 94 Atomic Weight: 244 Melting Point: 913 K (640C or...

128

Method for dissolving plutonium dioxide  

DOE Patents (OSTI)

A method for dissolving plutonium dioxide comprises adding silver ions to a nitric acid-hydrofluoric acid solution to significantly speed up dissolution of difficultly soluble plutonium dioxide.

Tallent, Othar K. (Oak Ridge, TN)

1976-01-01T23:59:59.000Z

129

DELTA PHASE PLUTONIUM ALLOYS  

DOE Patents (OSTI)

Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

Cramer, E.M.; Ellinger, F.H.; Land. C.C.

1960-03-22T23:59:59.000Z

130

PLUTONIUM-CERIUM ALLOY  

DOE Patents (OSTI)

An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

Coffinberry, A.S.

1959-01-01T23:59:59.000Z

131

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility News Data Collection from Mobile Facility on Gan Island Suspended Local weather balloon launch volunteers pose with the AMF team on Gan Island after completing their...

132

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2008 Facility News ARM Mobile Facility Completes Field Campaign in Germany Researchers will study severe precipitation events that occurred in August and October...

133

PLUTONIUM-CERIUM-COBALT AND PLUTONIUM-CERIUM-NICKEL ALLOYS  

DOE Patents (OSTI)

>New plutonium-base teroary alloys useful as liquid reactor fuels are described. The alloys consist of 10 to 20 atomic percent cobalt with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 88 atomic percent; or, of from 10 to 25 atomic percent nickel (or mixture of nickel and cobalt) with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 86 atomic percent. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are a lower melting point and a wide range of permissible plutonium dilution.

Coffinberry, A.S.

1959-08-25T23:59:59.000Z

134

TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM DIOXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE  

SciTech Connect

This report documents the technical basis for determining that stabilizing highpurity PuO{sub 2} derived from oxalate precipitation at the SRS HB-Line facility at a minimum of 625 {degree}C for at least four hours in an oxidizing atmosphere is equivalent to stabilizing at a minimum of 950 {degree}C for at least two hours as regards meeting the objectives of stabilization defined by DOE-STD-3013 if the material is handled in a way to prevent excessive absorption of water.

Duffey, J. M.; Livingston, R. R.; Berg, J. M.; Veirs, D. K.

2013-02-06T23:59:59.000Z

135

Method for dissolving plutonium dioxide  

DOE Patents (OSTI)

The fluoride-catalyzed, non-oxidative dissolution of plutonium dioxide in HNO.sub.3 is significantly enhanced in rate by oxidizing dissolved plutonium ions. It is believed that the oxidation of dissolved plutonium releases fluoride ions from a soluble plutonium-fluoride complex for further catalytic action.

Tallent, Othar K. (Oak Ridge, TN)

1978-01-01T23:59:59.000Z

136

AMF ARM Mobile FAcility  

NLE Websites -- All DOE Office Websites (Extended Search)

the generation of monsoons. Because the dust can block incoming solar energy, and because solar energy drives weather and climate, scientists around the world are looking for ways...

137

Process modeling of plutonium conversion and MOX fabrication for plutonium disposition  

SciTech Connect

Two processes are currently under consideration for the disposition of 35 MT of surplus plutonium through its conversion into fuel for power production. These processes are the ARIES process, by which plutonium metal is converted into a powdered oxide form, and MOX fuel fabrication, where the oxide powder is combined with uranium oxide powder to form ceramic fuel. This study was undertaken to determine the optimal size for both facilities, whereby the 35 MT of plutonium metal will be converted into fuel and burned for power. The bounding conditions used were a plutonium concentration of 3--7%, a burnup of 20,000--40,000 MWd/MTHM, a core fraction of 0.1 to 0.4, and the number of reactors ranging from 2--6. Using these boundary conditions, the optimal cost was found with a plutonium concentration of 7%. This resulted in an optimal throughput ranging from 2,000 to 5,000 kg Pu/year. The data showed minimal costs, resulting from throughputs in this range, at 3,840, 2,779, and 3,497 kg Pu/year, which results in a facility lifetime of 9.1, 12.6, and 10.0 years, respectively.

Schwartz, K.L. [Univ. of Texas, Austin, TX (United States). Dept. of Nuclear Engineering

1998-10-01T23:59:59.000Z

138

Summary - Plutonium Preparation Project at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Site EM Project: PuPP ETR Report Date: October 2008 ETR-17 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Plutonium Preparation Project at the Savannah River Site Why DOE-EM Did This Review The purpose of the Plutonium Preparation Project (PuPP) is to prepare for disposition of plutonium materials; for examination, re-stabilization, and disassembly of the Fast Flux Test Facility (FFTF) unirradiated fuel; and for repackaging of Pu stored in 3013 containers. Of ~12.8 MT of plutonium, ~4.1 MT will be directly transferred to the MOX Fuel Fabrication Facility (MFFF); ~3.7 MT will require processing prior to transfer to the MFFF; and ~5 MT was proposed to be processed in H-Canyon with the

139

Workers Complete Demolition of Hanford's Historic Plutonium Vaults |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workers Complete Demolition of Hanford's Historic Plutonium Workers Complete Demolition of Hanford's Historic Plutonium Vaults Workers Complete Demolition of Hanford's Historic Plutonium Vaults April 1, 2012 - 12:00pm Addthis RICHLAND, Wash. - The Richland Operations Office and contractor CH2M HILL Plateau Remediation Company this month completed demolition of a large plutonium vault complex, formerly one of the highest security facilities at the Hanford site. "This project was a joint safety success between our workers who spent months cleaning out the facilities, the demolition crews who tore the buildings down and the crews who helped remove the waste for disposal. It took teamwork and cooperation to remove the complex safely and efficiently," said Ty Blackford, CH2M HILL Vice President of Decommissioning, Waste, Fuels and Remediation Services.

140

TECHNIQUES FOR MONITORING PLUTONIUM IN THE ENVIRONMENT  

E-Print Network (OSTI)

of Environmental Plutonium and its Related Nuclides," IEEEJ. Koch, and C. T. Schmidt, "Plutonium Survey with an X-RayDetermination of Plutonium," Talanta!! , 215 (1967). C. E.

Nero Jr., A.V.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Plutonium radiation surrogate  

DOE Patents (OSTI)

A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

Frank, Michael I. (Dublin, CA)

2010-02-02T23:59:59.000Z

142

PLUTONIUM ELECTROREFINING CELLS  

DOE Patents (OSTI)

Electrorefining cells for obtaining 99.98% plutonium are described. The cells consist of an impure liquid plutonium anode, a molten PuCl/sub 3/-- alkali or alkaline earth metal chloanode, a molten PuCl/sub 3/-alkali or alkaline earth metal chloride electrolyte, and a nonreactive cathode, all being contained in nonreactive ceramic containers which separate anode from cathode by a short distance and define a gap for the collection of the purified liquid plutonium deposited on the cathode. Important features of these cells are the addition of stirrer blades on the anode lead and a large cathode surface to insure a low current density. (AEC)

Mullins, L.J. Jr.; Leary, J.A.; Bjorklund, C.W.; Maraman, W.J.

1963-07-16T23:59:59.000Z

143

Bulging of cans containing plutonium residues. Summary report  

Science Conference Proceedings (OSTI)

In 1994, two cans in the Lawrence Livermore National Laboratory Plutonium Facility were found to be bulging as a result of the generation of gases form the plutonium ash residues contained in the cans. This report describes the chronology of this discovery, the response actions that revealed other pressurized cans, the analysis of the causes, the short-term remedial action, a followup inspection of the short-term storage packages, and a review of proposed long-term remedial options.

Van Konynenburg, R.A.; Wood, D.H.; Condit, R.H.; Shikany, S.D.

1996-03-01T23:59:59.000Z

144

Plutonium dissolution process  

DOE Green Energy (OSTI)

A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

Vest, Michael A. (Oak Park, IL); Fink, Samuel D. (Aiken, SC); Karraker, David G. (Aiken, SC); Moore, Edwin N. (Aiken, SC); Holcomb, H. Perry (North Augusta, SC)

1996-01-01T23:59:59.000Z

145

THE PLUTONIUM STORY  

E-Print Network (OSTI)

chemical symbols would be Np and Pu. The names "eka-rhenium"DEMONSTRATION OF FISSIONABILITY OF Pu The plutonium isotopeneutron fission cross section of Pu compared to that of ' U.

Seaborg, G.T.

2010-01-01T23:59:59.000Z

146

Calorimetric Assay Of Plutonium  

SciTech Connect

This report describes procedures for applying calorimetry for the control and accounting of plutonium. These procedures will be useful in establishing a measurement program to fulfill the regulatory requirements.

Rodenburg, W. W.

1977-05-01T23:59:59.000Z

147

Plutonium Oxication State Transformations and Their Consequence on Plutonium Transport through Sediment During an 11-year Field Study  

Science Conference Proceedings (OSTI)

The Savannah River Site (SRS) contains a large inventory of plutonium (Pu), some of it in the form of Low-Level Waste (LLW). Much of this LLW has been or will be disposed at the E Area LLW Facility. As part of the permitting of LLW on-site disposal, SRS is required to periodically update the Performance Assessment calculations used in part to establish the facility specific amount of waste that can be safely disposed (or establish the Waste Acceptance Criteria). The objective of this project was to determine if a recent discovered change in plutonium chemistry (i.e., oxidation of PuO2, a common form of Pu waste, may form plutonium in the more mobile hexavalent form) was within the assumptions, parameters, and bases of the approved Performance Assessment WSRC (2000) and Composite Assessment, WSRC (1997). This project was initiated in 2001, and this is the final report describing laboratory and lysimeter (field) studies. Results from this year's work provided additional technical support f or the conceptual Pu geochemical model proposed for future risk-based calculations. When lysimeters containing Pu(III) or Pu(IV) were left exposed to the natural environment for 11 years, essentially all of the sediment-bound Pu existed as Pu(IV) and possibly Pu(III), the least mobile forms of Pu. This result was confirmed by two independent measurements, a very sensitive, indirect wet-chemistry method and a less-sensitive, direct spectroscopic technique, micro-X-ray adsorption near-edge structure (micro-XANES) spectroscopy. In these lysimeters, Pu sediment concentrations decreased on average an order-of-magnitude per centimeter for the first 5 cm below the source, an astounding rate of contaminant retardation. When Pu(VI), the more mobile form, may form from PuO2, was added to the lysimeters, the Pu moved faster than it had in the other lysimeters: Pu moving on average 12.5 cm/yr in the Pu(VI) lysimeter, compared to 0.9 cm/yr in the Pu(III) and Pu(IV) lysimeters. Importantly, transport modeling of the data clearly suggested that reduction of the original Pu(VI) occurred,thus most of the transport of the Pu in the lysimeter must have progressed during the early portion of the study, prior to the sediment-induced reduction of Pu(VI). When Pu(V) was added to the lysimeter sediment in a laboratory study, the Pu(V) quickly reduced to Pu(IV) within a couple days. These data together with those from previous reports for this project conclusively show that Pu, irrespective of the form it is introduced into SRS sediments, tends to convert rapidly to the plus 4, and possible plus 3, oxidation state, the least mobile form of Pu.

KAPLAN, DANIEL

2004-09-30T23:59:59.000Z

148

Thermal performance measurements of sealed insulating glass units with low-E coatings using the MoWiTT (Mobile Window Thermal Test) field-test facility  

SciTech Connect

Using data obtained in a mobile field-test facility, measured performance of clear and low-emissivity double-glazing units is presented for south-facing and north-facing orientations. The changes in U-value and shading coefficient resulting from addition of the low-E coating are found to agree with theoretical expectations for the cold spring test conditions. Accurate nighttime U-values were derived from the data and found to agree with calculations. Expected correlation between U-value and wind speed was not observed in the data; a plausible experimental reason for this is advanced.

Klems, J.; Keller, H.

1986-12-01T23:59:59.000Z

149

Plutonium process control using an advanced on-line gamma monitor for uranium, plutonium, and americium  

SciTech Connect

An on-line gamma monitor has been developed to profile uranium, plutonium, and americium in waste and product streams of the anion exchange process used to recover and purify plutonium at the Los Alamos Plutonium Facility. The gamma monitor employs passive gamma spectrometry to measure /sup 241/Am and /sup 239/Pu, based on their 59.5-keV and 129-keV gamma rays, respectively. Because natural and depleted uranium present in typical process streams have no gamma rays suitable for measurement by such passive methods, uranium measurement requires a novel and less direct technique. Plutonium-241, which is always present in plutonium processed at Los Alamos, decays primarily by beta emission to form /sup 241/Am. However, a small fraction of /sup 241/Pu decays by alpha emission to 6.8-day /sup 237/U. The short half-life and 208-keV gamma energy of /sup 237/U make it an ideal radiotracer to mark the position of macro amounts of uranium impurity in the separation process. The real-time data obtained from an operating process allow operators to optimize many process parameters. The gamma monitor also provides a permanent record of the daily performance of each ion exchange system. 2 refs., 12 figs.

Marsh, S.F.; Miller, M.C.

1987-05-01T23:59:59.000Z

150

Studies on persons exposed to plutonium  

SciTech Connect

The results of four studies of persons exposed, or potentially exposed, to plutonium are summarized. The studies are: a five-year update on clinical examinations and health experience of 26 Manhattan District workers heavily exposed at Los Alamos in 1944 to 1945; a 30-year mortality follow-up of 224 white male workers with plutonium body burdens of 10 nCi or more; a review of cancer mortality rates between 1950 and 1969 among Los Alamos County, New Mexico, male residents, all of whom have worked in or have lived within a few kilometers of a major plutonium plant and other nuclear facilities; and a review of cancer incidence rates between 1969 and 1974 in male residents of Los Alamos County. No excess of mortality due to any cause was observed in the 224 male subjects with the highest plutonium exposures at Los Alamos. Clinical examinations of the Manhattan District workers, whose average age in 1976 was 56 years, show them to be active persons with diseases that are not unusual for their ages. The two deaths in this group over the past 30 years have not been due to cancer. Mortality and incidence data indicate no excess of lung cancer in Los Alamos County males.

Voelz, G.L.; Stebbings, J.H.; Hempelmann, L.H.; Haxton, L.K.; York, D.A.

1978-01-01T23:59:59.000Z

151

LLNL Site plan for a MOX fuel lead assembly mission in support of surplus plutonium disposition  

SciTech Connect

The principal facilities that LLNL would use to support a MOX Fuel Lead Assembly Mission are Building 332 and Building 334. Both of these buildings are within the security boundary known as the LLNL Superblock. Building 332 is the LLNL Plutonium Facility. As an operational plutonium facility, it has all the infrastructure and support services required for plutonium operations. The LLNL Plutonium Facility routinely handles kilogram quantities of plutonium and uranium. Currently, the building is limited to a plutonium inventory of 700 kilograms and a uranium inventory of 300 kilograms. Process rooms (excluding the vaults) are limited to an inventory of 20 kilograms per room. Ongoing operations include: receiving SSTS, material receipt, storage, metal machining and casting, welding, metal-to-oxide conversion, purification, molten salt operations, chlorination, oxide calcination, cold pressing and sintering, vitrification, encapsulation, chemical analysis, metallography and microprobe analysis, waste material processing, material accountability measurements, packaging, and material shipping. Building 334 is the Hardened Engineering Test Building. This building supports environmental and radiation measurements on encapsulated plutonium and uranium components. Other existing facilities that would be used to support a MOX Fuel Lead Assembly Mission include Building 335 for hardware receiving and storage and TRU and LLW waste storage and shipping facilities, and Building 331 or Building 241 for storage of depleted uranium.

Bronson, M.C.

1997-10-01T23:59:59.000Z

152

U.S. Department of Energy Categorical Exclusion ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Modification for the Mobile Plutonium Facility (MPF) at the 645-N Complex Savannah River Site AikenAikenSouth Carolina Relocate Mobile Plutonium Facility (MPF) to...

153

U.S. Department of Energy Categorical Exclusion ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing, Calibration, and Training of Mobile Plutonium Facility (MPF) Equipment Savannah River Site AikenAikenSouth Carolina The Mobile Plutonium Facility (MPF) will use several...

154

Alternative Evaluation for the REDOX (202-S) Plutonium Loadout Hood  

Science Conference Proceedings (OSTI)

Located in the 200 Areas is the inactive 202-S Reduction Oxidation (REDOX) Facility, which is managed by the Bechtel Hanford, Inc. Surveillance/Maintenance and Transition project. This facility is contaminated from nuclear material processes related to nuclear material separation from Hanford Site facility operations. This alternative evaluation report describes the alternatives and selection criteria based on the necessary protective requirements to maintain the REDOX Plutonium Loadout Hood in a safe and stable condition awaiting a final waste response action.

N. R. Kerr

1999-09-20T23:59:59.000Z

155

METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE  

DOE Patents (OSTI)

A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

Tolley, W.B.; Smith, R.C.

1959-12-15T23:59:59.000Z

156

METHOD OF MAKING PLUTONIUM DIOXIDE  

DOE Patents (OSTI)

A process is presented For converting both trivalent and tetravalent plutonium oxalate to substantially pure plutonium dioxide. The plutonium oxalate is carefully dried in the temperature range of 130 to300DEC by raising the temperature gnadually throughout this range. The temperature is then raised to 600 C in the period of about 0.3 of an hour and held at this level for about the same length of time to obtain the plutonium dioxide.

Garner, C.S.

1959-01-13T23:59:59.000Z

157

A Preponderance of Elastic Properties of Alpha Plutonium Measured Via Resonant Ultrasound Spectroscopy  

Science Conference Proceedings (OSTI)

Samples of {alpha} plutonium were fabricated at the Los Alamos National Laboratory's Plutonium Facility. Cylindrical samples were machined from cast pucks. Precision immersion density and resonant ultrasound spectroscopy (RUS) measurements were completed on 27 new samples, yielding elastic moduli measurements. Mechanical tests were performed in compression yielding stress-strain curves as a function of rate, temperature and phase.

Saleh, Tarik A. [Los Alamos National Laboratory; Farrow, Adam M. [Los Alamos National Laboratory; Freibert, Franz J. [Los Alamos National Laboratory

2012-06-06T23:59:59.000Z

158

Clean Critical Experiment Benchmarks for Plutonium Recycle in LWRs (Foil Activation Studies)  

Science Conference Proceedings (OSTI)

In order to provide benchmark information for testing fuel-cycle analysis methods and nuclear data libraries, EPRI supported a series of critical lattice experiments at Battelle, Pacific Northwest Laboratories' plutonium recycle critical facility. These experiments involved water-moderated uniform uranium oxide and mixed (uranium-plutonium) oxide critical lattices. This volume presents the foil activation data obtained from this experimental program.

1978-09-01T23:59:59.000Z

159

Supplement Analysis Plutonium Consolidation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9-SA-4 9-SA-4 SUPPLEMENT ANALYSIS STORAGE OF SURPLUS PLUTONIUM MATERIALS AT THE SAVANNAH RIVER SITE INTRODUCTION AND PURPOSE In April 2002, DOE decided to immediately consolidate long-term storage at the Savannah River Site (SRS) of surplus, non-pit weapons-usable plutonium then stored at the Rocky Flats Environmental Technology Site (RFETS) (DOE, 2002a). That 2002 decision did not affect an earlier DOE decision made in the January 21, 1997, Record of Decision (ROD, DOE, 1997) for the Storage and Disposition of Weapons-Usable Fissile Materials Programmatic Environmental Impact Statement (Storage and Disposition PEIS, DOE, 1996) to continue storage of non-pit surplus plutonium at Hanford, the Idaho National Laboratory (INL), and the Los Alamos

160

Lithium metal reduction of plutonium oxide to produce plutonium metal  

DOE Patents (OSTI)

A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

Coops, Melvin S. (Livermore, CA)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Plutonium 239 Equivalency Calculations  

SciTech Connect

This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

Wen, J

2011-05-31T23:59:59.000Z

162

Plutonium microstructures. Part 1  

Science Conference Proceedings (OSTI)

This report is the first of three parts in which Los Alamos and Lawrence Livermore National Laboratory metallographers exhibit a consolidated set of illustrations of inclusions that are seen in plutonium metal as a consequence of inherent and tramp impurities, alloy additions, and thermal or mechanical treatments. This part includes illustrations of nonmetallic and intermetallic inclusions characteristic of major impurity elements as an aid to identifying unknowns. It also describes historical aspects of the increased purity of laboratory plutonium samples, and it gives the composition of the etchant solutions and describes the etching procedure used in the preparation of each illustrated sample. 25 figures.

Cramer, E.M.; Bergin, J.B.

1981-09-01T23:59:59.000Z

163

Demolition Begins on Hanford's Historic Plutonium Vaults - Plutonium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demolition Begins on Hanford's Historic Plutonium Vaults - Demolition Begins on Hanford's Historic Plutonium Vaults - Plutonium Finishing Plant on track to meet regulatory milestone Demolition Begins on Hanford's Historic Plutonium Vaults - Plutonium Finishing Plant on track to meet regulatory milestone November 18, 2011 - 12:00pm Addthis Media Contacts Geoff Tyree Department of Energy Geoffrey.Tyree@rl.doe.gov 509-376-4171 Dee Millikin CH2M HILL Plateau Remediation Company Dee_Millikin@rl.gov 509-376-1297 RICHLAND, WASH. - The U.S. Department of Energy (DOE) and contractor CH2M HILL Plateau Remediation Company (CH2M HILL) began demolishing a vault complex that once held stores of plutonium for the U.S. nuclear weapons program at the Hanford Site in southeast Washington State. The vault complex is part of Hanford's Plutonium Finishing Plant, which

164

XANES Identification of Plutonium Speciation in RFETS Samples  

Science Conference Proceedings (OSTI)

Using primarily X-ray absorption near edge spectroscopy (XANES) with standards run in tandem with samples, probable plutonium speciation was determined for 13 samples from contaminated soil, acid-splash or fire-deposition building interior surfaces, or asphalt pads from the Rocky Flats Environmental Technology Site (RFETS). Save for extreme oxidizing situations, all other samples were found to be of Pu(IV) speciation, supporting the supposition that such contamination is less likely to show mobility off site. EXAFS analysis conducted on two of the 13 samples supported the validity of the XANES features employed as determinants of the plutonium valence.

LoPresti, V.; Conradson, S.D.; Clark, D.L.

2009-06-03T23:59:59.000Z

165

Plutonium: An introduction  

SciTech Connect

This report is a summary of the history and properties of plutonium. It presents information on the atoms, comparing chemical and nuclear properties. It looks at the history of the atom, including its discovery and production methods. It summarizes the metallurgy and chemistry of the element. It also describes means of detecting and measuring the presence and quantity of the element.

Condit, R.H.

1993-10-01T23:59:59.000Z

166

SELECTION OF SURPLUS PLUTONIUM MATERIALS FOR DISPOSITION TO WIPP  

SciTech Connect

The U.S. Department of Energy (DOE) is preparing a Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (SEIS). Included in the evaluation are up to 6 metric tons (MT) of plutonium in the form of impure oxides and metals for which a disposition plan has not been decided, among options that include preparation as feed for the Mixed Oxide Fuel Fabrication Facility; disposing to high-level waste through the Savannah River Site (SRS) HB Line and H Canyon; can-in-canister disposal using the SRS Defense Waste Processing Facility; and preparation for disposal at the Waste Isolation Pilot Plant (WIPP). DOE and SRS have identified at least 0.5 MT of plutonium that, because of high levels of chemical and isotopic impurities, is impractical for disposition by methods other than the WIPP pathway. Characteristics of these items and the disposition strategy are discussed.

Allender, J.; Mcclard, J.; Christopher, J.

2012-06-08T23:59:59.000Z

167

Probing phonons in plutonium  

Science Conference Proceedings (OSTI)

Plutonium (Pu) is well known to have complex and unique physico-chemical properties [1]. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}' {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts. Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimental data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter-atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single-grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc {delta}-Pu-Ga alloy using the high resolution inelastic x-ray scattering (HRIXS) capability on ID28 [2].

Farber, D; Chiang, T; Krisch, M; Occelli, F; Schwartz, A; Wall, M; Xu, R; Boro, C

2003-12-17T23:59:59.000Z

168

Mobile visual examination and repackaging (MOVER) system  

SciTech Connect

Process engineering and waste technology teams at LOS Alamos National Laboratory delivered a prototype Mobile Visual Examination and Repackaging (MOVER) system to the Waste Isolation Pilot Plant (WIPP) outside of Carlsbad, NM in October, 2000. This system was developed in response to compliance issues with legacy waste that was packaged in 55 gallons drums prior to release of WIPP's waste acceptance criteria (WAC). A statistical percentage of these 55 gallon drums will be opened and visually examined (VE) as part of re-characterization using Non-destructive examination (NDE) procedures. VE is an intrusive technique since the drum is opened, and as a result, there are more risks in spreading contamination. Hence, VE is performed in a glovebox to protect the workers and the environment. During VE, waste is pulled out of one drum, visually examined, the amount of plutonium measured if necessary, and the waste repackaged into one or more drums. MOVER can perform all these operations, along with having the capability to house the glovebox operations and all support equipment in a 40-foot-long container that can be transported to a site on a semi-trailer. This container is divided into three rooms, providing the level of safety and containment of a fixed facility. A key asset of mobile systems is the inherent need for modular design that reduces infrastructure costs and overhead. A mobile system like MOVER represents a technology base aimed at meeting DOE schedules to accelerate decommissioning of many sites.

Los Alamos National Laboratory

2001-01-01T23:59:59.000Z

169

Plutonium Finishing Plant. Interim plutonium stabilization engineering study  

SciTech Connect

This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J. [Pacific Northwest Lab., Richland, WA (United States); Nass, R. [Nuclear Fuel Services, Inc. (United States)

1995-08-01T23:59:59.000Z

170

Conversion of mixed plutonium-uranium oxides. [COPRECAL  

SciTech Connect

Coprocessing is among the several reprocessing schemes being considered to improve the proliferation resistance of the back end of the nuclear fuel cycle. Coconversion of mixed oxides has been developed but not demonstrated on a production scale. AGNS developed a preliminary conceptual design for a production scale facility to convert mixed plutonium-uranium nitrate to the mixed oxide.

Thomas, L.L.

1980-04-01T23:59:59.000Z

171

Plutonium scrap processing at the Los Alamos Scientific Laboratory  

Science Conference Proceedings (OSTI)

The Los Alamos Scientific Laboratory currently has the newest plutonium handling facility in the nation. Los Alamos has been active in the processing of plutonium almost since the discovery of this man-made element in 1941. One of the functions of the new facility is the processing of plutonium scrap generated at LASL and other sites. The feed for the scrap processing program is extremely varied, and a wide variety of contaminants are often encountered. Depending upon the scrap matrix and contaminants present, the majority of material receives a nitric acid/hydrofluoric acid or nitric acid/calcium fluoride leach. The plutonium nitrate solutions are then loaded onto an anion exchange column charged with DOWEX 1 x 4, 50 to 100 mesh, nitrate form resin. The column is eluted with 0.48 M hydroxyl amine nitrate. The Pu(NO/sub 3/)/sub 3/ is then precipitated as plutonium III oxalate which is calcined at 450 to 500/sup 0/C to yield a purified PuO/sub 2/ product.

Nixon, A.E.; McKerley, B.J.; Christensen, E.L.

1980-01-01T23:59:59.000Z

172

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

February 16, 2005 [Facility News] February 16, 2005 [Facility News] Mobile Facility Arrives Safe and Sound in Point Reyes Bookmark and Share Image - The ARM Mobile Facility in Point Reyes, California Image - The ARM Mobile Facility in Point Reyes, California Safe and sound at Point Reyes, the ARM Mobile Facility instrumentation is set up on the roof of a shelter until a fence is installed to keep out the curious local cattle. On February 9, the ARM Mobile Facility (AMF) withstood an accident on the way to its deployment location at Point Reyes, California. About an hour from its destination, the truck carrying the two AMF shelters packed with instrumentation and associated equipment swerved to avoid another vehicle and slid off the road and down a steep embankment. Emergency personnel soon

173

Plutonium Consolidation Amended ROD  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6450-01-P] 6450-01-P] DEPARTMENT OF ENERGY Amended Record of Decision: Storage of Surplus Plutonium Materials at the Savannah River Site AGENCY: Department of Energy ACTION: Amended Record of Decision SUMMARY: The U.S. Department of Energy (DOE) is amending the Record of Decision (ROD) for the Storage and Disposition of Weapons-Usable Fissile Materials Programmatic Environmental Impact Statement (DOE/EIS-0229, 1996; Storage and Disposition PEIS). Specifically, DOE has decided to take the actions necessary to transfer approximately 2,511 additional 3013-compliant packages 1 containing surplus non-pit weapons-usable plutonium metals and oxides to the Savannah River Site (SRS), near Aiken, South Carolina. Approximately 2,300 containers will be transferred from the Hanford Site (Hanford) near

174

PLUTONIUM-URANIUM ALLOY  

DOE Patents (OSTI)

Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.

Coffinberry, A.S.; Schonfeld, F.W.

1959-09-01T23:59:59.000Z

175

MOLDS FOR CASTING PLUTONIUM  

DOE Patents (OSTI)

A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)

Anderson, J.W.; Miley, F.; Pritchard, W.C.

1962-02-27T23:59:59.000Z

176

Manufacturing of Plutonium Tensile Specimens  

SciTech Connect

Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

Knapp, Cameron M [Los Alamos National Laboratory

2012-08-01T23:59:59.000Z

177

PROCESS OF PRODUCING SHAPED PLUTONIUM  

DOE Patents (OSTI)

A process is presented for producing and casting high purity plutonium metal in one step from plutonium tetrafluoride. The process comprises heating a mixture of the plutonium tetrafluoride with calcium while the mixture is in contact with and defined as to shape by a material obtained by firing a mixture consisting of calcium oxide and from 2 to 10% by its weight of calcium fluoride at from 1260 to 1370 deg C.

Anicetti, R.J.

1959-08-11T23:59:59.000Z

178

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping It Up With Google Bookmark and Share "Thumbtacks" help ARM website users identify where the ARM sites are, including the ARM Mobile Facility deployments. "Thumbtacks" help...

179

Safety issues in fabricating mixed oxide fuel using surplus weapons plutonium  

SciTech Connect

This paper presents an assessment of the safety issues and implications of fabricating mixed oxide (MOX) fuel using surplus weapons plutonium. The basis for this assessment is the research done at Los Alamos National Laboratory (LANL) in identifying and resolving the technical issues surrounding the production of PuO{sub 2} feed, removal of gallium from the PuO{sub 2} feed, the fabrication of test fuel, and the work done at the LANL plutonium processing facility. The use of plutonium in MOX fuel has been successfully demonstrated in Europe, where the experience has been almost exclusively with plutonium separated from commercial spent nuclear fuel. This experience in safely operating MOX fuel fabrication facilities directly applies to the fabrication and irradiation of MOX fuel made from surplus weapons plutonium. Consequently, this paper focuses on the technical difference between plutonium from surplus weapons, and light-water reactor recycled plutonium. Preliminary assessments and research lead to the conclusion that no new process or product safety concerns will arise from using surplus weapons plutonium in MOX fuel.

Buksa, J.; Badwan, F.; Barr, M.; Motley, F.

1998-07-01T23:59:59.000Z

180

PLUTONIUM RELEASE INCIDENT OF NOVEMBER 20, 1959  

SciTech Connect

A nonnuclear explosion involving an evaporator occurred in a shielded cell in the Radiochemical Processing Pilot Plant at Oak Ridge National Laboratory on Nov. 20, 1959. Plutonium was released from the processing cell, probably as an aerosol of fine particles of plutonium oxide. It is probable that this evaporator system had accumulated -1100 g of nitric acid-insoluble plutonium in the steam stripper packing; the explosion released an estimated 150 g inside Cell 6, with about 135 g in the evaporator subcell, and about 15 g in the larger main cell. No radioactive material was released from the ventilation stacks; no contamination of grounds and facilities occurred outside of a relatively small area of OaK Ridge National Laboratory immediately adjacent to the explosion. No one was injured by the explosion, and no one received more than 2% of a lifetime body burden of plutonium or an overexposure to sources of ionizing radiation either at the time of the incident or daring subsequent cleanup operations. The explosion is considerdd to be the result of rapid reaction of nitrated organic compounds formed by the inadvertent nitration of about 14 liters of a proprietary decontaminating reagent. In cleanup the contamination was bonded to the nearby street and building surfaces with tar, paint, roofing compound, or masonry sealer, as appropriate to the surface. Decontamination of the interior of the pilot-plant building, except the processing cells, was 95% complete on Sept. 1, 1960. Decontamination of the processing cells was delayed 8 months until building modifications could be made to improve containment. Modifications to the pilot plant have been proposed which will preclude dischanges into the laboratory area and its environment of concentrations or amounts of radioactive materials that would be injurious to health or interfere with other laboratory programs. (auth)

King, L.J.; McCarley, W.T.

1961-02-16T23:59:59.000Z

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fluid Flow and Solidification Simulation of Plutonium  

Science Conference Proceedings (OSTI)

Unalloyed plutonium, which passes through six solid-solid phase transitions as it cools ... Additional complications are the expansion of molten plutonium upon...

182

METHOD FOR OBTAINING PLUTONIUM METAL AND ALLOYS OF PLUTONIUM FROM PLUTONIUM TRICHLORIDE  

DOE Patents (OSTI)

A process is given for both reducing plutonium trichloride to plutonium metal using cerium as the reductant and simultaneously alloying such plutonium metal with an excess of cerium or cerium and cobalt sufficient to yield the desired nuclear reactor fuel composition. The process is conducted at a temperature from about 550 to 775 deg C, at atmospheric pressure, without the use of booster reactants, and a substantial decontamination is effected in the product alloy of any rare earths which may be associated with the source of the plutonium. (AEC)

Reavis, J.G.; Leary, J.A.; Maraman, W.J.

1962-11-13T23:59:59.000Z

183

Stabilizing plutonium materials at Hanford: systems engineering for PFP transition project effort on DNFSB 94-1  

Science Conference Proceedings (OSTI)

This report discusses the basic objectives of the stabilization and packaging activities at the Plutonium Finishing Plant that satisfy the Defense Nuclear Facility Safety Board Recommendation 94-1 by transforming the plutonium materials at hanford into forms or conditions which are suitable for safe storage to appropriate storage criteria; or discard that meets appropriate waste acceptance criteria.

Huber, T.E., Westinghouse Hanford

1996-07-02T23:59:59.000Z

184

Photochemical preparation of plutonium pentafluoride  

SciTech Connect

The novel compound plutonium pentafluoride may be prepared by the photodissociation of gaseous plutonium hexafluoride. It is a white solid of low vapor pressure, which consists predominantly of a face-centered cubic structure with a.sub.o =4.2709.+-.0.0005 .ANG..

Rabideau, Sherman W. (Los Alamos, NM); Campbell, George M. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

185

PREPARATION OF HALIDES OF PLUTONIUM  

DOE Patents (OSTI)

A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

Garner, C.S.; Johns, I.B.

1958-09-01T23:59:59.000Z

186

PLUTONIUM-CERIUM-COPPER ALLOYS  

DOE Patents (OSTI)

A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

Coffinberry, A.S.

1959-05-12T23:59:59.000Z

187

METHOD OF REDUCING PLUTONIUM COMPOUNDS  

DOE Patents (OSTI)

A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.

Johns, I.B.

1958-06-01T23:59:59.000Z

188

LANL | Physics | Dynamic Plutonium Experiments  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamic plutonium experiments Dynamic plutonium experiments Since the end of nuclear testing the nation has had to rely on sophisticated computer models to ensure the safety and reliability of the nuclear weapons stockpile. This program is known as science-based stockpile stewardship. Despite possessing the world's fastest computers and most advanced modeling capability, the behavior of materials under dynamic loads that occur in a nuclear weapon are difficult to accurately model. The Dynamic Plutonium experimental program carries out experiments at the Nevada National Security Site on plutonium driven by high explosives. These experiments are needed to measure and understand the behavior of plutonium under extreme conditions. Physics Division has unique capabilities in high-speed x-ray imaging and velocimetry (measuring the

189

Airborne release fractions/rates and respirable fractions for nonreactor nuclear facilities. Volume 2, Appendices  

SciTech Connect

This document contains compiled data from the DOE Handbook on Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear facilities. Source data and example facilities utilized, such as the Plutonium Recovery Facility, are included.

Not Available

1994-12-01T23:59:59.000Z

190

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

March 22, 2007 [Facility News] March 22, 2007 [Facility News] GEWEX News Features Dust Data from ARM Mobile Facility Deployment Bookmark and Share Data from the recent deployment of the ARM Mobile Facility are featured in the February issue of GEWEX News. Data from the recent deployment of the ARM Mobile Facility are featured in the February issue of GEWEX News. The February 2007 issue (Vol. 17, No. 1) of GEWEX News features early results from special observing periods of the African Monsoon Mutidisciplinary Analysis, including data obtained by the ARM Mobile Facility (AMF). The AMF was stationed in the central Sahel from January through December 2006, with the primary facility at the Niamey airport, and an ancillary site in Banizoumbou. The AMF recorded a major dust storm that passed through the area in March, and combined with simultaneous satellite

191

Complexation of Plutonium (IV) with Fluoride at Variable Tempeartures  

E-Print Network (OSTI)

of Neptunium and Plutonium. Edited by OECD Nuclear EnergyComplexation of Plutonium(IV) with Fluoride at Variablehigher temperatures. Key Words: Plutonium (IV) / Fluoride /

Moore, Dean A.

2011-01-01T23:59:59.000Z

192

Human health issues for plutonium inhalation: Perspectives from laboratory animal studies  

SciTech Connect

Since the first production of plutonium in the 1940s, potential health effects from plutonium have been a concern for humans. The few people exposed to plutonium and the relatively small intakes that have occurred, at least in the Western world, have resulted in very little direct information from human population studies. The Manhattan Project workers have been followed for decades, and few health effects have been observed. The situation is similar for the population of workers at the Rocky Flats facility. Some information is now being released from the former Soviet Union on selected worker populations who show biological effects, primarily pulmonary fibrosis and some increase in lung cancers.

Muggenburg, B.A.; Hahn, F.F.; Guilmette, R.A. [Lovelace Respiratory Research Institute, Albuquerque, NM (United States)] [and others

1997-12-01T23:59:59.000Z

193

Probing phonons in plutonium  

Science Conference Proceedings (OSTI)

Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}{prime} {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts, (Figure 1). Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single -grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc d-Pu-Ga alloy using the high resolution inelastic x-ray scattering (HRIXS) capability on ID28. The complete PDCs for an fcc Pu-0.6 wt% Ga alloy are plotted in Figure 2, and represent the first full set of phonon dispersions ever determined for any Pu-bearing materials. The solid curves (red) are calculated using a standard Born-von Karman (B-vK) force constant model. An adequate fit to the experimental data is obtained if interactions up to the fourth-nearest neighbours are included. The dashed curves (blue) are recent dynamical mean field theory (DMFT) results by Dai et al. The elastic moduli calculated from the slopes of the experimental phonon dispersion curves near the {Lambda} point are: C{sub 11} = 35.3 {+-} 1.4 GPa, C{sub 12} = 25.5 {+-} 1.5 GPa and C{sub 44} = 30.53 {+-} 1.1 GPa. These values are in excellent agreement with those of the only other measurement on a similar alloy (1 wt % Ga) using ultrasonic techniques as well as with those recently calculated from a combined DMFT and linear response theory for pure {delta}-Pu. Several unusual features, including a large elastic anisotropy, a small shear elastic modulus C{prime}, a Kohn-like anomaly in the T{sub 1}[011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. The HRIXS results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for {delta}-plutonium. The experimental-theoretical agreements shown in Figure 2 in terms of a low shear elastic modulus C{prime}, a Kohn-like anomaly in the T{sub 1}[011] branch, and a large softening of the T[111] modes give credence to the DMFT approach for the theoretical treatment of 5f electron systems of which {delta}-Pu is a classic example. However, quantitative differences remain. These are the position of the Kohn anomaly along the T{sub 1}[011] branch, the energy maximum of the T[111] mode s

Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing (UIUC); (LLNL); (ESRF); (LANL)

2010-11-16T23:59:59.000Z

194

PLUTONIUM-HYDROGEN REACTION PRODUCT, METHOD OF PREPARING SAME AND PLUTONIUM POWDER THEREFROM  

DOE Patents (OSTI)

A process is described for forming plutonlum hydride powder by reacting hydrogen with massive plutonium metal at room temperature and the product obtained. The plutonium hydride powder can be converted to plutonium powder by heating to above 200 deg C.

Fried, S.; Baumbach, H.L.

1959-12-01T23:59:59.000Z

195

Pyrochemical separations chemistry of plutonium  

Science Conference Proceedings (OSTI)

The recovery and purification of plutonium involves interesting chemistry. Currently in use are several high temperature processes based on redox reactions. These processes include direct oxide reduction which uses calcium to reduce the oxide to the free metal and electrorefining which is used as a final purification step. The chemical research group at Rocky Flats is currently investigating the use of an aluminum/magnesium alloy to remove the ionic plutonium from the salts used in the above named processes. The results of this study along with an overview of pyrochemical plutonium processing chemistry will be presented.

Bynum, R.V.; Navratil, J.D.

1986-01-01T23:59:59.000Z

196

SOLVENT EXTRACTION PROCESS FOR PLUTONIUM  

DOE Patents (OSTI)

The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

Seaborg, G.T.

1959-04-14T23:59:59.000Z

197

Authorization basis supporting documentation for plutonium finishing plant  

Science Conference Proceedings (OSTI)

The identification and definition of the authorization basis for the Plutonium Finishing Plant (PFP) facility and operations are essential for compliance to DOE Order 5480.21, Unreviewed Safety Questions. The authorization basis, as defined in the Order, consists of those aspects of the facility design basis, i.e., the structures, systems and components (SSCS) and the operational requirements that are considered to be important to the safety of operations and are relied upon by DOE to authorize operation of the facility. These facility design features and their function in various accident scenarios are described in WHC-SD-CP-SAR-021, Plutonium Finishing Plant Final Safety Analysis Report (FSAR), Chapter 9, `Accident Analysis.` Figure 1 depicts the relationship of the Authorization Basis to its components and other information contained in safety documentation supporting the Authorization Basis. The PFP SSCs that are important to safety, collectively referred to as the `Safety Envelope` are discussed in various chapters of the FSAR and in WHC-SD-CP-OSR-010, Plutonium Finishing Plant Operational Safety Requirements. Other documents such as Criticality Safety Evaluation Reports (CSERS) address and support some portions of the Authorization Basis and Safety Envelope.

King, J.P., Fluor Daniel Hanford

1997-03-05T23:59:59.000Z

198

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

July 31, 2009 [Facility News] July 31, 2009 [Facility News] President of the Regional Government Speaks at Opening Ceremony for Mobile Facility in the Azores Bookmark and Share Highlighting the opening ceremony for the ARM Mobile Facility on Graciosa Island, Carlos César, President of the Regional Government of the Azores, signs a weather balloon while local media record the event. Photo by Mike Alsop. Highlighting the opening ceremony for the ARM Mobile Facility on Graciosa Island, Carlos César, President of the Regional Government of the Azores, signs a weather balloon while local media record the event. Photo by Mike Alsop. On June 30, officials from the Regional Government of the Azores recognized the deployment of the ARM Mobile Facility on Graciosa Island during an official opening ceremony held at the site. Notable among the participants

199

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2010 [Facility News] 8, 2010 [Facility News] Europeans Keen to Hear About Effects of Dust Using Data from Africa Bookmark and Share In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. Researcher Xiaohong Liu from Pacific Northwest National Laboratory was

200

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2008 [Facility News] April 30, 2008 [Facility News] Team Scouts Graciosa Island for 2009 Mobile Facility Deployment Site Bookmark and Share A location near the airport on the northern end of Graciosa Island was identified as an excellent location for operating the ARM Mobile Facility. Image source: Luis Miguens A location near the airport on the northern end of Graciosa Island was identified as an excellent location for operating the ARM Mobile Facility. Image source: Luis Miguens Indications from a scouting trip by the ARM Mobile Facility (AMF) science and operations management team are that an excellent site for the 2009 deployment may have been found. From April 8 through April 16, the team traveled to Graciosa Island in the Azores to scout sites for the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) field

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2011 [Facility News, Publications] 8, 2011 [Facility News, Publications] Journal Special Issue Includes Mobile Facility Data from Germany Bookmark and Share The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. In 2007, the ARM Mobile Facility participated in one of the most ambitious field studies ever conducted in Europe-the Convective and Orographically Induced Precipitation Study (COPS). Now, 21 papers published in a special issue of the Quarterly Journal of the Royal Meteorological Society demonstrate that the data collected during COPS are providing new insight into: the key chemical and physical processes leading to convection initiation and to the modification of precipitation by orography;

202

TERNARY ALLOY-CONTAINING PLUTONIUM  

DOE Patents (OSTI)

Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

Waber, J.T.

1960-02-23T23:59:59.000Z

203

Chloride removal from plutonium alloy  

Science Conference Proceedings (OSTI)

SRP is evaluating a program to recover plutonium from a metallic alloy that will contain chloride salt impurities. Removal of chloride to sufficiently low levels to prevent damaging corrosion to canyon equipment is feasible as a head-end step following dissolution. Silver nitrate and mercurous nitrate were each successfully used in laboratory tests to remove chloride from simulated alloy dissolver solution containing plutonium. Levels less than 10 ppM chloride were achieved in the supernates over the precipitated and centrifuged insoluble salts. Also, less than 0.05% loss of plutonium in the +3, +4, or +6 oxidation states was incurred via precipitate carrying. These results provide impetus for further study and development of a plant-scale process to recover plutonium from metal alloy at SRP.

Holcomb, H.P.

1983-01-01T23:59:59.000Z

204

Discovery of New Plutonium Chemistry and Its Potential Effect on LLW Disposal at SRS  

DOE Green Energy (OSTI)

Recently published work on the chemistry of plutonium (IV) dioxide has shown that PuO{sub 2} is not the thermodynamically stable form as was previously thought. In humid environments or the presence of water, some of the plutonium is oxidized to Pu (VI) with the evolution of hydrogen and the formation of PuO2 plus x, where x can range up to 0.27 (i.e. about 27 percent of the Pu has been oxidized to the plus 6 oxidation state). The implication of this discovery is that a more mobile form of plutonium (i.e. Pu (VI)) than that assumed in the performance assessment (i.e. Pu (IV)) could be present in the humid waste disposal environment. If so, then the approved performance assessment might not conservatively bound the effects of plutonium waste disposal.

Wilhite, E.L.

2001-09-11T23:59:59.000Z

205

METHOD OF PREPARING PLUTONIUM TETRAFLUORIDE  

DOE Patents (OSTI)

C rystalline plutonium tetrafluoride is precipitated from aqueous up to 1.6 N mineral acid solutions of a plutorium (IV) salt with fluosilicic acid anions, preferably at room temperature. Hydrogen fluoride naay be added after precipitation to convert any plutonium fluosilicate to the tetrafluoride and any silica to fluosilicic acid. This process results in a purer product, especially as to iron and aluminum, than does the precipitation by the addition of hydrogen fluoride.

Beede, R.L.; Hopkins, H.H. Jr.

1959-11-17T23:59:59.000Z

206

IODATE METHOD FOR PURIFYING PLUTONIUM  

DOE Patents (OSTI)

A method is presented for removing radioactive fission products from aqueous solutions containing such fission products together with plutonium. This is accomplished by incorporating into such solutions a metal iodate precipitate to remove fission products which form insoluble iodates. Suitable metal iodates are those of thorium and cerium. The plutonium must be in the hexavalent state and the pH of the solution must be manintained at less than 2.

Stoughton, R.W.; Duffield, R.B.

1958-10-14T23:59:59.000Z

207

Management of disused plutonium sealed sources  

Science Conference Proceedings (OSTI)

The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted radioactive sealed sources since 1999, including more than 2,400 Plutonium (Pu)-238 sealed sources and 653 Pu-239-bearing sources that represent more than 10% of the total sources recovered by GTRI/OSRP to date. These sources have been recovered from hundreds of sites within the United States (US) and around the world. OSRP grew out of early efforts at the Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program, a loan-lease program that serviced 31 countries, as well as domestic users. In the conduct of these recovery operations, GTRI/OSRP has been required to solve problems related to knowledge-of-inventory, packaging and transportation of fissile and heat-source materials, transfer of ownership, storage of special nuclear material (SNM) both at US Department of Energy (DOE) facilities and commercially, and disposal. Unique issues associated with repatriation from foreign countries, including end user agreements required by some European countries and denials of shipment, will also be discussed.

Whitworth, Julia Rose [Los Alamos National Laboratory; Pearson, Michael W [Los Alamos National Laboratory; Abeyta, Cristy [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

208

LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY  

SciTech Connect

A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

Nash, C.

2012-02-03T23:59:59.000Z

209

Assessment of plutonium in the Savannah River Site environment. Revision 1  

Science Conference Proceedings (OSTI)

Plutonium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fifth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. These are living documents, each to be revised and updated on a two-year schedule. This document describes the sources of plutonium in the environment, its release from SRS, environmental transport and ecological concentration of plutonium, and the radiological impact of SRS releases to the environment. Plutonium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite SNAP 9-A, plane crashes involving nuclear weapons, and small releases from reactors and reprocessing plants. Plutonium has been produced at SRS during the operation of five production reactors and released in small quantities during the processing of fuel and targets in chemical separations facilities. Approximately 0.6 Ci of plutonium was released into streams and about 12 Ci was released to seepage basins, where it was tightly bound by clay in the soil. A smaller quantity, about 3.8 Ci, was released to the atmosphere. Virtually all releases have occurred in F- and H-Area separation facilities. Plutonium concentration and transport mechanisms for the atmosphere, surface water, and ground water releases have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases to the offsite maximum individual can be characterized by a total dose of 15 mrem (atmospheric) and 0.18 mrem (liquid), compared with the dose of 12,960 mrem from non-SRS sources during the same period of time (1954--1989). Plutonium releases from SRS facilities have resulted in a negligible impact to the environment and the population it supports.

Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

1992-12-31T23:59:59.000Z

210

METATHESIS OF PLUTONIUM CARRIER LANTHANUM FLUORIDE PRECIPITATE WITH AN ALKALI  

DOE Patents (OSTI)

A plutonium fluoride precipitate is converted to plutonium hydroxide by digesting the precipitate with an aqueous alkali metal hydroxide solution.

Duffield, R.B.

1960-04-01T23:59:59.000Z

211

PASSIVE NMIS MEASUREMENTS TO ESTIMATE SHAPE OF PLUTONIUM ASSEMBLIES (SLIDE PRESENTATION)  

SciTech Connect

The purpose of this work is to estimate shape of plutonium assemblies using new signatures acquired by passive NMIS measurements (no external source). Applications include identification of containerized regular shapes of plutonium, identification by shape without template, verification of shape for template initialization, and potential utility for estimating shape of holdup in plutonium processing facilities. To illustrate the technique and test its feasibility, laboratory measurements have been performed with californium spontaneous fission sources as a surrogate for plutonium. Advantages of the technique include the following: passive (requires no external source for plutonium measurements), stationary (no scanning of the assembly is required), penetrative (shape is estimated from neutron emissions), obscurable (spatial resolution can be deliberately degraded by changing detector size and/or timing resolution), inexpensive (majority of NMIS components are commercial products), portable (detection system is transported to the item, not vice versa). It is concluded that passive NMIS measurements can infer the mass of plutonium assemblies: NMIS correlations scale directly with spontaneous fission rate (Pu-240); NMIS correlations scale with fissile mass (Pu-239) and multiplication. New third-order correlations can estimate the shape of fission sources (Pu-240 & Pu-239) from passive measurements. Surrogate measurements of californium spontaneous fission sources have demonstrated the feasibility of this concept. Measurements of various shapes of plutonium are necessary to continue the development of this technique.

MARCH-LEUBA, J.A.; MATTINGLY, J.K.; MIHALCZO, J.T.; PEREZ, R.B.; VALENTINE, T.E.

1998-11-25T23:59:59.000Z

212

Plutonium distribution: Summary of public and governmental support issues  

SciTech Connect

Obtaining strong public and governmental support for the plutonium disposition program and for the projects comprising the selected disposition options will be essential to the success of the program in meeting non-proliferation goals established as national policy. This paper summarizes issues related to public and governmental support for plutonium disposition. Recommendations are offered which rest on two fundamental assumptions: (1) public and political support derive from public trust and confidence, and (2) despite widespread support for U.S. non-proliferation goals, establishing and operating facilities to carry out the program will entail controversy. Documentation for the Administration`s policy on non-proliferation as it relates to plutonium disposition is cited and summarized as background for ongoing planning efforts by the Department of Energy (DOE). Consensus is a reasonable goal for efforts to secure public and governmental support for the plutonium disposition program and its elements; unanimity is very unlikely. The program will be aided by the popular recognition of the importance of the nation`s non-proliferation goals, the potential for an energy dividend if an energy production option is selected ({open_quotes}Swords to Plowshares{close_quotes} metaphor), the possibility of influencing disposition decisions in other countries, and the clear need to do something with the excess material ({open_quotes}the no action alternative{close_quotes} will not suffice).

Pasternak, A.

1995-03-31T23:59:59.000Z

213

The United States Plutonium Balance, 1944 - 2009  

National Nuclear Security Administration (NNSA)

ii Preface This report updates Plutonium: The first 50 years which was released by the U.S. Department of Energy (DOE) in 1996. The topic of both reports is plutonium, sometimes...

214

Plutonium and americium separation from salts  

DOE Patents (OSTI)

Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution.

Hagan, Paul G. (Northglenn, CO); Miner, Frend J. (Boulder, CO)

1976-01-01T23:59:59.000Z

215

Zone refining of plutonium metal  

Science Conference Proceedings (OSTI)

The purpose of this study was to investigate zone refining techniques for the purification of plutonium metal. The redistribution of 10 impurity elements from zone melting was examined. Four tantalum boats were loaded with plutonium impurity alloy, placed in a vacuum furnace, heated to 700{degrees}C, and held at temperature for one hour. Ten passes were made with each boat. Metallographic and chemical analyses performed on the plutonium rods showed that, after 10 passes, moderate movement of certain elements were achieved. Molten zone speeds of 1 or 2 inches per hour had no effect on impurity element movement. Likewise, the application of constant or variable power had no effect on impurity movement. The study implies that development of a zone refining process to purify plutonium is feasible. Development of a process will be hampered by two factors: (1) the effect on impurity element redistribution of the oxide layer formed on the exposed surface of the material is not understood, and (2) the tantalum container material is not inert in the presence of plutonium. Cold boat studies are planned, with higher temperature and vacuum levels, to determine the effect on these factors. 5 refs., 1 tab., 5 figs.

NONE

1997-05-01T23:59:59.000Z

216

Design and fabrication of SGS plutonium standards  

Science Conference Proceedings (OSTI)

This paper describes our experience of fabricating four sets of plutonium segmented gamma scanner (SGS) can standards. The fabrication involves careful planning, meticulous execution in weighing the plutonium oxide while minimizing contamination, chemical analyses by three different national laboratories to get accurate and independent plutonium concentrations, vertical scanning to assure mixing of the plutonium and the diluent, and finally the nondestructive verification measurement. By following these steps, we successfully fabricated 4 sets or 20 SGS can standards. 4 refs., 5 figs., 3 tabs.

Hsue, S.T.; Simmonds, S.M.; Longmire, V.L.; Long, S.M.

1991-01-01T23:59:59.000Z

217

Seversk Plutonium Production Elimination Project (SPPEP) | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Seversk Plutonium Production Elimination Project (SPPEP) | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

218

PROCESS OF SEPARATING PLUTONIUM FROM URANIUM  

DOE Patents (OSTI)

A process is presented for recovering plutonium values from aqueous solutions. It comprises forming a uranous hydroxide precipitate in such a plutonium bearing solution, at a pH of at least 5. The plutonium values are precipitated with and carried by the uranium hydroxide. The carrier precipitate is then redissolved in acid solution and the pH is adjusted to about 2.5, causing precipitation of the uranous hydroxide but leaving the still soluble plutonium values in solution.

Brown, H.S.; Hill, O.F.

1958-09-01T23:59:59.000Z

219

Zheleznogorsk Plutonium Production Elimination Project (ZPPEP...  

NLE Websites -- All DOE Office Websites (Extended Search)

Zheleznogorsk Plutonium Production Elimination Project (ZPPEP) | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

220

Plutonium-the element of surprise  

E-Print Network (OSTI)

plutonium c6n never be very large becauserheinsolubilityol Pu(OH)lsels Lrnls on the concentrallonof evenPlutonium-the element of surprise G.R.ChoppinandB.E.Stout This year marked the soth annivrsary ol the original isolation o{ plutonium, making ita relativenewcomerto the PeriodicTable.Ovrthe past 50 years

Short, Daniel

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The occurrence of plutonium in nature  

E-Print Network (OSTI)

Nuclear Energy S e r i e s , Plutonium P r o j e c t Record,Nuclear Energy S e r i e s , Plutonium P r o j e c t Record,Laboratory THE OCCURRENCE OF PLUTONIUM IN NATUIRE Charles A.

Levine, Charles A.; Seaborg, Glenn T.

1950-01-01T23:59:59.000Z

222

Dehydration of plutonium trichloride hydrate  

DOE Patents (OSTI)

A process of preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride is provided.

Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

1991-12-31T23:59:59.000Z

223

Plutonium stabilization and packaging system  

Science Conference Proceedings (OSTI)

This document describes the functional design of the Plutonium Stabilization and Packaging System (Pu SPS). The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements of the DOE standard for safe storage of these materials for 50 years. This system will support completion of stabilization and packaging campaigns of the inventory at a number of affected sites before the year 2002. The package will be standard for all sites and will provide a minimum of two uncontaminated, organics free confinement barriers for the packaged material.

NONE

1996-05-01T23:59:59.000Z

224

On the application of IAEA safeguards to plutonium and highly enriched uranium from military inventories  

SciTech Connect

Progress toward the reduction of nuclear arsenals may render surplus hundreds of tonnes of plutonium and highly enriched uranium by the end of the century. None of the acknowledged nuclear weapon states (NWS) is under a specific obligation to submit surplus military inventories to international control. However, inviting the International Atomic Energy Agency (IAEA) to apply safeguards to the plutonium and highly enriched uranium (HEU) released from military use could contribute to building confidence as part of the reductions currently envisaged and could encourage further steps within the states currently planning reductions or by other NWS. If invited, specific arrangements for the application of IAEA safeguards to plutonium and highly enriched uranium from military inventories would be determined by: the institutional provisions adopted; the specified verification requirements; the amounts and forms of plutonium and HEU and the types of facilities to be safeguarded; facility-specific features for the control and accounting of the plutonium and HEU; and the number of facilities where safeguards will be applied. These considerations would be used to establish the most appropriate verificiation arrangements, including the technology to be employed and inspection scheduling arrangements, to provide effective and efficient safeguards. If an invitation is made, the IAEA Board of Governors must approve of the obligations and commitments of the states involved and of the financial arrangements that will ensure the safeguards can be implemented as agreed. 2 tabs.

Shea, T.E. (International Atomic Energy Agency, Wagramerstrasse, Vienna (Austria))

1993-01-01T23:59:59.000Z

225

The sorption of thorium, protacintium and plutonium onto silica particles in the presence of a colloidal third phase  

E-Print Network (OSTI)

The fate of actinides in the environment is of interest for a several reasons. In oceanic surface waters actinides such as thorium and protactinium, and in particular their ratio, are used as tracers of processes such as boundary scavenging and paleocirculation. Thorium is also used to estimate residence times and particle and colloid fluxes from the euphotic zone, which is useful in global carbon budgets used to assess effects of global warming. Terrestrially, contaminated areas in need of remediation, such as former nuclear weapons production facilities, remain as repositories for no longer needed actinide stockpiles or waste by-products such as plutonium. All three of these actinides: thorium, protactinium, and plutonium are known to be particle-reactive but the extent to which they sorb to immobile particles and mobile colloids can vary with environmental conditions. Understanding controls on adsorption is important in understanding uses and any limitations of these radioactive tracers caused by colloids. Often laboratory studies to understand actinide behavior are conducted at concentrations (micro- to millimolar), which are orders of magnitude higher than they are found in the environment (femto- to picomolar). Colloids, a size class of particles operationally defined as 1 nm to 1 m in size, are ubiquitous in aquatic systems. The effect colloids have on actinide particle association, i.e. competitive or enhancing, can have a profound influence on the ultimate behavior of the actinide. The overall aim of this study is to assess sorption of thorium, protactinium and plutonium onto silica particles as a proxy for inorganic particles found in surface or ocean waters. In addition to the binary system of actinide/silica, the ternary system actinide/ organic colloid/ silica were also carried out to determine the affect of the organic colloid has on particle association. In particular, extracellular polymeric substances (EPS) extracted from laboratory grown bacteria and phytoplankton cultures were utilized as they too are ubiquitous in aquatic systems and have shown to strongly complex actinide ions, with EPS involved in oceanic scavenging of Th, as well as immobilization/mobilization of Pu in contaminated areas on land.

Roberts, Kimberly Ann

2008-05-01T23:59:59.000Z

226

PROCESS FOR SEPARATING PLUTONIUM FROM IMPURITIES  

DOE Patents (OSTI)

A method is described for separating plutonium from aqueous solutions containing uranium. It has been found that if the plutonium is reduced to its 3+ valence state, and the uranium present is left in its higher valence state, then the differences in solubility between certain salts (e.g., oxalates) of the trivalent plutonium and the hexavalent uranium can be used to separate the metals. This selective reduction of plutonium is accomplished by adding iodide ion to the solution, since iodide possesses an oxidation potential sufficient to reduce plutonium but not sufficient to reduce uranium.

Wahl, A.C.

1957-11-12T23:59:59.000Z

227

PLUTONIUM COMPOUNDS AND PROCESS FOR THEIR PREPARATION  

DOE Patents (OSTI)

This patent relates to certain new compounds of plutonium, and to the utilization of these compounds to effect purification or separation of the plutonium. The compounds are organic chelate compounds consisting of tetravalent plutonium together with a di(salicylal) alkylenediimine. These chelates are soluble in various organic solvents, but not in water. Use is made of this property in extracting the plutonium by contacting an aqueous solution thereof with an organic solution of the diimine. The plutonium is chelated, extracted and effectively separated from any impurities accompaying it in the aqueous phase.

Wolter, F.J.; Diehl, H.C. Jr.

1958-01-01T23:59:59.000Z

228

Method of separating thorium from plutonium  

DOE Patents (OSTI)

A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

Clifton, David G. (Los Alamos, NM); Blum, Thomas W. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

229

Method of separating thorium from plutonium  

DOE Patents (OSTI)

A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

Clifton, D.G.; Blum, T.W.

1984-07-10T23:59:59.000Z

230

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparations Underway for 2007 ARM Mobile Facility Deployment in Germany In the Black Forest region of Germany, the COPS field campaign will cover an area of about 700km2, as...

231

PLUTONIUM FUEL PROCESSING AND FABRICATION FOR FAST CERAMIC REACTORS  

SciTech Connect

>A study was made of the processes available for fabrication of plutonium-containing fuel from a fast ceramic reacter, and for chemical reprocessing of irradiated fuel. Radiations from recycled plutonium are evaluated. Adaptation of conventional glove-box handling procedures to the fabrication of recycle plutonium appears practical. It is concluded that acceptable costs are obtainable using moderate extensions of conventional glove- box fabrication methods and wet processing techniques, provided a significant volume of production is available. The minimum economic scale for the preferred chemical reprocessing method, anion exchange, is about 500 Mw(e) of reactor capacity. The minimum scale of economic operation for the fuel refabrication facility corresponds to three 500 Mw(e) reactors, if only steady-state refueling provides the fabrication load. The minimum volume required falls to one 500 Mw(e) reactor, if the continued growth of capacity provides fabrication volume equal to that for refueling. The chemical reprocessing costs obtained range from 0.27 mills/kwh for 1500 Mw(e) of reactor capacity, to 0.10 mills/kwh for 3000 Mw(e) of capacity. The estimated fuel fabrication cost is l/kg of uranium and plutonium in the core region (excluding axial and radial blankets) or .06/ g of plutonium content, When axial blankets, fabricated in the same rods, are included; the combined average is 34/kg of uranium and plutonium. Radial blanket fabrication cost is /kg of uranium. The overall average of all fuel and blankets is /kg of uranium and plutonium. The fabrication cost is 0.29 mills/kwh for a production rate corresponding to 3000 Mw(e) of capacity (or 1500 Mw(e) of capacity plus growth equivalent to one additional reactor core per year). For one 525 Mw(e) reactor, (plus equivalent growth volume) the fabrication cost becomes 0.42 mills/ kwh. (All fuel throughputs are based on fuel life of 100,000 MWD/T.) Using the estimates developed, the total fuel cycle cost for a typical fast reactor design using PuO/sub 2/UO/sub 2/ fuel is estimated to be about 0.9 mills/kwh. (auth)

Zebroski, E.L.; Alter, H.W.; Collins, G.D.

1962-02-01T23:59:59.000Z

232

PLUTONIUM LOADING CAPACITY OF REILLEX HPQ ANION EXCHANGE COLUMN - AFS-2 PLUTONIUM FLOWSHEET FOR MOX  

SciTech Connect

Radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the dependence of column loading performance on the feed composition in the H-Canyon dissolution process for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). These loading experiments show that a representative feed solution containing {approx}5 g Pu/L can be loaded onto Reillex{trademark} HPQ resin from solutions containing 8 M total nitrate and 0.1 M KF provided that the F is complexed with Al to an [Al]/[F] molar ratio range of 1.5-2.0. Lower concentrations of total nitrate and [Al]/[F] molar ratios may still have acceptable performance but were not tested in this study. Loading and washing Pu losses should be relatively low (<1%) for resin loading of up to 60 g Pu/L. Loading above 60 g Pu/L resin is possible, but Pu wash losses will increase such that 10-20% of the additional Pu fed may not be retained by the resin as the resin loading approaches 80 g Pu/L resin.

Kyser, E.; King, W.; O'Rourke, P.

2012-07-26T23:59:59.000Z

233

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2005 [Facility News] 30, 2005 [Facility News] Coastal Clouds Field Campaign Takes Off in July Bookmark and Share The 2-channel NFOV gets careful attention as it joins the suite of instruments collecting data for the ARM Mobile Facility field campaign at Point Reyes National Seashore. The 2-channel NFOV gets careful attention as it joins the suite of instruments collecting data for the ARM Mobile Facility field campaign at Point Reyes National Seashore. Since March 2005, the ARM Mobile Facility (AMF) has been at Point Reyes National Seashore in northern California for the Marine Stratus Radiation, Aerosol, and Drizzle Intensive Operational Period. The goals of this 6-month field campaign are to collect data from cloud/aerosol interactions and to improve understanding of cloud organization that is often associated

234

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

, 2009 [Facility News] , 2009 [Facility News] Mobile Facility Begins Marine Cloud Study in the Azores Bookmark and Share Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Extended deployment will obtain seasonal statistics to improve climate models Today marks the beginning of a 20-month field campaign on Graciosa Island in the Azores to study the seasonal life cycle of marine clouds and how they modulate the global climate system. Sponsored by the U.S. Department

235

SUPPORTING SAFE STORAGE OF PLUTONIUM-BEARING MATERIALS THROUGH SCIENCE, ENGINEERING AND SURVEILLANCE  

Science Conference Proceedings (OSTI)

Reductions in the size of the U. S. nuclear weapons arsenal resulted in the need to store large quantities of plutonium-bearing metals and oxides for prolonged periods of time. To assure that the excess plutonium from the U. S. Department of Energy (DOE) sites was stored in a safe and environmentally friendly manner the plutonium-bearing materials are stabilized and packaged according to well developed criteria published as a DOE Standard. The packaged materials are stored in secure facilities and regular surveillance activities are conducted to assure continuing package integrity. The stabilization, packaging, storage and surveillance requirements were developed through extensive science and engineering activities including those related to: plutonium-environment interactions and container pressurization, corrosion and stress corrosion cracking, plutonium-container material interactions, loss of sealing capability and changes in heat transfer characteristics. This paper summarizes some of those activities and outlines ongoing science and engineering programs that assure continued safe and secure storage of the plutonium-bearing metals and oxides.

Dunn, K.; Chandler, G.; Gardner, C.; Louthan, M.; Mcclard, J.

2009-11-10T23:59:59.000Z

236

Multi-generational stewardship of plutonium  

SciTech Connect

The post-cold war era has greatly enhanced the interest in the long-term stewardship of plutonium. The management of excess plutonium from proposed nuclear weapons dismantlement has been the subject of numerous intellectual discussions during the past several years. In this context, issues relevant to long-term management of all plutonium as a valuable energy resource are also being examined. While there are differing views about the future role of plutonium in the economy, there is a recognition of the environmental and health related problems and proliferation potentials of weapons-grade plutonium. The long-term management of plutonium as an energy resource will require a new strategy to maintain stewardship for many generations to come.

Pillay, K.K.S. [Los Alamos National Lab., NM (United States). Nuclear Materials Technology Div.

1997-10-01T23:59:59.000Z

237

SEPARATION OF PLUTONIUM HYDROXIDE FROM BISMUTH HYDROXIDE  

DOE Patents (OSTI)

An tmproved method is described for separating plutonium hydroxide from bismuth hydroxide. The end product of the bismuth phosphate processes for the separation amd concentration of plutonium is a inixture of bismuth hydroxide amd plutonium hydroxide. It has been found that these compounds can be advantageously separated by treatment with a reducing agent having a potential sufficient to reduce bismuth hydroxide to metalltc bisinuth but not sufficient to reduce the plutonium present. The resulting mixture of metallic bismuth and plutonium hydroxide can then be separated by treatment with a material which will dissolve plutonium hydroxide but not metallic bismuth. Sodiunn stannite is mentioned as a preferred reducing agent, and dilute nitric acid may be used as the separatory solvent.

Watt, G.W.

1958-08-19T23:59:59.000Z

238

Air transport of plutonium metal: content expansion initiative for the plutonium air transportable (PAT01) packaging  

Science Conference Proceedings (OSTI)

The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

Caviness, Michael L [Los Alamos National Laboratory; Mann, Paul T [NNSA/ALBUQUERQUE; Yoshimura, Richard H [SNL

2010-01-01T23:59:59.000Z

239

Air transport of plutonium metal : content expansion initiative for the Plutonium Air Transportable (PAT-1) packaging.  

SciTech Connect

The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

Mann, Paul T. (National Nuclear Security Administration); Caviness, Michael L. (Los Alamos National Laboratory); Yoshimura, Richard Hiroyuki

2010-06-01T23:59:59.000Z

240

What is Plutonium? - Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

a critical step toward solving the nation's nuclear waste disposal problem a critical step toward solving the nation's nuclear waste disposal problem What Is Plutonium? Plu-to-ni-um n. Symbol Pu (plÇÇ-tÇ'n‘-bm) A radioactive, silvery, metallic transuranic element, produced artificially by neutron bombardment of uranium, having 15 isotopes with masses ranging from 232 to 246 and half- lives from 20 minutes to 76 million years. It is a radiological poison, specifically absorbed by bone marrow, and is used, especially the highly fissionable isotope Pu239, as a reactor fuel and in nuclear weapons. The American Heritage Dictionary, Second College Edition The U.S. Department of Energy's Carlsbad Field Office is responsible for the management, transportation, and permanent disposal of large amounts of the transuranic wastes left over from both World War II and the

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

METHOD FOR THE PREPARATION OF PLUTONIUM HALIDES AND OXYHALIDES  

DOE Patents (OSTI)

Plutonium trihalide or plutonium(III) oxyhalide is prepared by reacting plutonium dioxide with hydrogen halide at 300 to 1000 deg C in the presence of hydrogen, ammonium iodide, or ammonium bromide.

Davidson, N.R.; Katz, J.J.

1960-02-23T23:59:59.000Z

242

Determination of Plutonium Content in Spent Fuel with Nondestructive Assay  

E-Print Network (OSTI)

LBNL- Determination of Plutonium Content in Spent Fuel withSwinhoe. Determination of Plutonium Content in Spent FuelS. Tobin, Measurement of Plutonium in Spent Nuclear Fuel by

Tobin, S. J.

2010-01-01T23:59:59.000Z

243

PRECIPITATION METHOD FOR THE SEPARATION OF PLUTONIUM AND RARE EARTHS  

DOE Patents (OSTI)

A method of purifying plutonium is given. Tetravalent plutonium is precipitated with thorium pyrophosphate, the plutonium is oxidized to the tetravalent state, and then impurities are precipitated with thorium pyrophosphate.

Thompson, S.G.

1960-04-26T23:59:59.000Z

244

PROCESS FOR THE RECOVERY OF PLUTONIUM  

DOE Patents (OSTI)

A process for the separation of plutonium from uranlum and other associated radioactlve fission products ls descrlbed conslstlng of contacting an acid solution containing plutonium in the tetravalent state and uranium in the hexavalent state with enough ammonium carbonate to form an alkaline solution, adding cupferron to selectlvely form plutonlum cupferrlde, then recoverlng the plutonium cupferride by extraction with a water lmmiscible organic solvent such as chloroform.

Potratz, H.A.

1958-12-16T23:59:59.000Z

245

WET METHOD OF PREPARING PLUTONIUM TRIBROMIDE  

DOE Patents (OSTI)

S> The preparation of anhydrous plutonium tribromide from an aqueous acid solution of plutonium tetrabromide is described, consisting of adding a water-soluble volatile bromide to the tetrabromide to provide additional bromide ions sufficient to furnish an oxidation-reduction potential substantially more positive than --0.966 volt, evaporating the resultant plutonium tribromides to dryness in the presence of HBr, and dehydrating at an elevated temperature also in the presence of HBr.

Davidson, N.R.; Hyde, E.K.

1958-11-11T23:59:59.000Z

246

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2013 [Facility News] 4, 2013 [Facility News] Work Cut Out for ARM Science Board Bookmark and Share With a new fixed site on the horizon in the Azores, a third ARM Mobile Facility gearing up for action in the Arctic, and more aircraft probes and sensors than scientists can shake a stick at, the ARM Facility continues to expand its considerable suite of assets for conducting climate research. Along with this impressive inventory comes the responsibility to ensure the Facility is supporting the highest-value science possible. Enter the ARM Science Board. This eleven-member group annually reviews complex proposals for use of the ARM mobile and aerial facilities. To maintain excellence and integrity in the review process, each member serves a renewable term of two years, with membership updated annually.

247

PLUTONIUM-CUPFERRON COMPLEX AND METHOD OF REMOVING PLUTONIUM FROM SOLUTION  

DOE Patents (OSTI)

A method is presented for separating plutonium from fission products present in solutions of neutronirradiated uranium. The process consists in treating such acidic solutions with cupferron so that the cupferron reacts with the plutonium present to form an insoluble complex. This plutonium cupferride precipitates and may then be separated from the solution.

Potratz, H.A.

1959-01-13T23:59:59.000Z

248

Zone refining of plutonium metal  

Science Conference Proceedings (OSTI)

The zone refining process was applied to Pu metal containing known amounts of impurities. Rod specimens of plutonium metal were melted into and contained in tantalum boats, each of which was passed horizontally through a three-turn, high-frequency coil in such a manner as to cause a narrow molten zone to pass through the Pu metal rod 10 times. The impurity elements Co, Cr, Fe, Ni, Np, U were found to move in the same direction as the molten zone as predicted by binary phase diagrams. The elements Al, Am, and Ga moved in the opposite direction of the molten zone as predicted by binary phase diagrams. As the impurity alloy was zone refined, {delta}-phase plutonium metal crystals were produced. The first few zone refining passes were more effective than each later pass because an oxide layer formed on the rod surface. There was no clear evidence of better impurity movement at the slower zone refining speed. Also, constant or variable coil power appeared to have no effect on impurity movement during a single run (10 passes). This experiment was the first step to developing a zone refining process for plutonium metal.

Blau, M.S.

1994-08-01T23:59:59.000Z

249

Processing and Mechanical Behavior of Unalloyed Plutonium  

Science Conference Proceedings (OSTI)

Abstract Scope, Unalloyed plutonium presents a wide variety of challenges to the ... AlMnCrCuFeNi Multicomponent Alloy with Superior Hardness and Corrosion...

250

EA-0841: Import of Russian Plutonium-238  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of a proposal to purchase plutonium-238 from the Russian Federation (Russia) for use in the Nation's space program.

251

OXIDATIVE METHOD OF SEPARATING PLUTONIUM FROM NEPTUNIUM  

DOE Patents (OSTI)

A method is described of separating neptunium from plutonium in an aqueous solution containing neptunium and plutonium in valence states not greater than +4. This may be accomplished by contacting the solution with dichromate ions, thus oxidizing the neptunium to a valence state greater than +4 without oxidizing any substantial amount of plutonium, and then forming a carrier precipitate which carries the plutonium from solution, leaving the neptunium behind. A preferred embodiment of this invention covers the use of lanthanum fluoride as the carrier precipitate.

Beaufait, L.J. Jr.

1958-06-10T23:59:59.000Z

252

METHOD OF REDUCING PLUTONIUM WITH FERROUS IONS  

DOE Patents (OSTI)

A process is presented for separating hexavalent plutonium from fission product values. To a nitric acid solution containing the values, ferrous ions are added and the solution is heated and held at elevated temperature to convert the plutonium to the tetravalent state via the trivalent state and the plutonium is then selectively precipitated on a BiPO/sub 4/ or LaF/sub 3/ carrier. The tetravalent plutonium formed is optionally complexed with fluoride, oxalate, or phosphate anion prior to carrier precipitation.

Dreher, J.L.; Koshland, D.E.; Thompson, S.G.; Willard, J.E.

1959-10-01T23:59:59.000Z

253

NON-AQUEOUS DISSOLUTION OF MASSIVE PLUTONIUM  

DOE Patents (OSTI)

A method is presented for obtaining non-aqueous solutions or plutonium from massive forms of the metal. In the present invention massive plutonium is added to a salt melt consisting of 10 to 40 weight per cent of sodium chloride and the balance zinc chloride. The plutonium reacts at about 800 deg C with the zinc chloride to form a salt bath of plutonium trichloride, sodium chloride, and metallic zinc. The zinc is separated from the salt melt by forcing the molten mixture through a Pyrex filter.

Reavis, J.G.; Leary, J.A.; Walsh, K.A.

1959-05-12T23:59:59.000Z

254

ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION  

DOE Patents (OSTI)

Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.

Boyd, G.E.; Russell, E.R.; Taylor, M.D.

1961-07-11T23:59:59.000Z

255

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Facility Beta Testing Complete; System Headed to California Seashore Mobile Facility Beta Testing Complete; System Headed to California Seashore Bookmark and Share A key addition to the ARM Climate Research Facility scientific infrastructure is ready to roll...literally. In February, the ARM Mobile Facility (AMF) is being packed up and shipped from Richland, Washington, to the Point Reyes National Seashore north of San Francisco, California. There, it will be reassembled in preparation for its first deployment as part of a 6-month experiment to study the microphysical characteristics of marine stratus clouds, and in particular, marine stratus drizzle processes. Throughout the deployment, the AMF will accommodate aerosol observing equipment for National Oceanic and Atmospheric Administration (NOAA) researchers co-sponsored by ARM and the DOE Aerosol Science Program.

256

Testing the effectiveness of mobile home weatherization measures in a controlled environment: The SERI CMFERT (Collaborative Manufactured Buildings Facility for Energy Research and Training) Project  

SciTech Connect

For several years the Solar Energy Research Institute has been testing the effectiveness of mobile home weatherization measures, with the support of the US DOE Office of State and Local Assistance Programs Weatherization Assistance Program, the DOE Office of Buildings and Community Systems, the seven states within the federal Weatherization Region 7, the Colorado Division of Housing, and the DOE Denver Support Office. During the winter of 1988--89, several weatherization measures were thermally tested on three mobile homes under controlled conditions inside a large environmental enclosure. The effects of each weatherization measure on conduction losses, infiltration losses, and combined furnace and duct-delivered heat efficiency were monitored. The retrofit options included air sealing, duct repair, furnace tune-up, interior storm panels, floor insulation, and roof insulation. The study demonstrated that cost-effective heating energy savings of about 20% to 50% are possible if weatherization techniques adapted to the special construction details in mobile homes are applied. 24 refs., 18 figs., 9 tabs.

Judkoff, R.D.; Hancock, C.E.; Franconi, E.

1990-03-01T23:59:59.000Z

257

U.S. and Russia Sign Plutonium Disposition Agreement | National...  

National Nuclear Security Administration (NNSA)

Agreement U.S. and Russia Sign Plutonium Disposition Agreement September 01, 2000 Washington, DC U.S. and Russia Sign Plutonium Disposition Agreement After two years of...

258

EIS-0277: Management of Certain Plutonium Residues and Scrub...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

77: Management of Certain Plutonium Residues and Scrub Alloy Stored at the Rocky Flats Environmental Technology Site EIS-0277: Management of Certain Plutonium Residues and Scrub...

259

Consolidation of Surplus Plutonium at Savannah River Site | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Management Nuclear Materials & Waste Consolidation of Surplus Plutonium at Savannah River Site Consolidation of Surplus Plutonium at Savannah River Site Waste...

260

Savannah River Site: Plutonium Preparation Project (PuPP) at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site: Plutonium Preparation Project (PuPP) at Savannah River Site Savannah River Site: Plutonium Preparation Project (PuPP) at Savannah River Site Full Document and Summary...

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Additional public meeting on plutonium disposition on September...  

NLE Websites -- All DOE Office Websites (Extended Search)

produce an oxide form of plutonium suitable for disposition and the use of mixed oxide (MOX) fuel fabricated from surplus plutonium in domestic commercial nuclear power reactors...

262

Mobile Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Resources Mobile Resources Mobile Resources Have a mobile device? Find tips and information here. Questions? 505-667-5809 Email For information call the Service Desk at (505) 667-5809 or email mobilelibrary@lanl.gov The following resources are optimized for mobile devices or have mobile apps available for download. Resource Available App Mobile Website Available off Yellow Network with Pairing or Login Additional Information AACR Journals Apple Yes, the Journals are optimized for mobile viewing. Not the whole AACR site. Instructional pdf on pairing with voucher ACS Apple Android No American Institute of Physics Apple No American Mathematical Society No Yes Instructions for pairing mobile devices, tablets, laptops, etc. American Physical Society No Annual Reviews No Yes Instructions for pairing with mobile device available on website.

263

Thermodynamics of the conversion of plutonium dioxide to plutonium monocarbide  

DOE Green Energy (OSTI)

The present study contains an equilibrium thermodynamic analysis of the Pu--C--O system and a discussion from an equilibrium thermodynamic point of view of the direct carbothermic reduction and two-step carbothermic-hydrogen reduction of PuO/sub 2/ to PuC/sub 1-x/. Included are considerations of the partial pressures of the various species in the Pu--C--O and Pu--C--H systems, the process parameters required for conversion of the oxide to the carbide, and the loss of plutonium due to vapor species.

Besmann, T.M.; Lindemer, T.B.

1976-07-01T23:59:59.000Z

264

Pyrochemical process for extracting plutonium from an electrolyte salt  

DOE Patents (OSTI)

A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

Mullins, Lawrence J. (Los Alamos, NM); Christensen, Dana C. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

265

Pyrochemical process for extracting plutonium from an electrolyte salt  

DOE Patents (OSTI)

A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

Mullins, L.J.; Christensen, D.C.

1982-09-20T23:59:59.000Z

266

EIS-0283-S1: Supplement to the Surplus Plutonium Disposition Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-S1: Supplement to the Surplus Plutonium Disposition 3-S1: Supplement to the Surplus Plutonium Disposition Environmental Impact Statement EIS-0283-S1: Supplement to the Surplus Plutonium Disposition Environmental Impact Statement SUMMARY The Supplement evaluates the potential environmental impacts of using MOX fuel in these six specific reactors named in the DCS proposal as well as other program changes made since the SPD Draft EIS was published. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD November 5, 1999 EIS-0236-S1: DOE Notice of Availability of the Draft Environmental Impact Statement National Ignition Facility Draft Environmental Impact Statement to the Stockpile Stewardship and Management November 5, 1999 EIS-0236-S1: Notice of Availability for the Draft Supplemental Programmatic

267

Risk analysis of shipping plutonium pits and mixed oxide fuel  

E-Print Network (OSTI)

With the end of the cold war, there no longer seems to be a credible threat of war between nuclear superpowers, with its possible consequence of billions of fatalities. However, the residue of the cold war, most notably the now excess weapons plutonium, has been identified as the source of a number of potential catastrophes. For example, just a single crude nuclear weapon in the hands of a terrorist organization or rogue state and detonated in even a medium-sized city could lead to hundreds of thousands of deaths. For this reason, the ultimate disposition of this excess plutonium has been identified as a national priority. The process of carrying out this disposition itself carries some risks, and even though any conceivable consequences clearly will be much smaller in magnitude than those cited above, U.S. federal law (the National Environmental Protection Act) mandates that such risks must be analyzed. The ability to carry out one type of such an analysis is demonstrated in this thesis. Specifically, one possible option that has been identified for disposition of excess U.S. weapons plutonium is the transformation into mixed oxide (MOX) fuel, that then would be used as fuel in a commercial nuclear power plant. Any such process will involve the transportation of the MOX fuel from the MOX fuel fabrication facility to the nuclear power plant, and possibly transportation of the plutonium from a storage site to the fuel fabrication facility. This thesis is intended to demonstrate the capability to analyze the risks associated with such transportation campaigns. The primary tool used for these analyses was RADTRAN, a code developed by Sandia National Laboratories for evaluating risk associated with the transportation of radioactive materials. Two sample scenarios were explored relative to the transformation of plutonium pits to MOX fuel. First, the pits would be converted to MOX fuel at a fuel fabrication facility located either at the Pantex Plant or the Savannah River Site (SRS), and then the MOX fuel would be ultimately shipped to a final destination of a commercial power plant, the Palo Verde Generating Station in Arizona. For the scenario of placing the MOX fuel fabrication facility at SRS, pits would need to be shipped from Pantex to SRS and then the MOX fuel would be shipped to Palo Verde. The total number of expected fatalities over a 25 year campaign duration for this scenario would be 1.06, with 0. 1 73 fatalities resulting from latent cancer fatalities due to radiation exposure and 0.89 resulting from traffic accidents. For the placement of the MOX fuel fabrication facility at Pantex, only the MOX fuel would need to be transported from one facility to another, in this case from Pantex to Palo Verde. The total fatalities for this scenario over 25 years would be 0.413, resulting from 5.29 x 10-2 latent cancer fatalities and 0.36 traffic accident fatalities. The maximum exposed individual along any of the three routes would receive 1.0 X 10-5 rem per year or 0.25 mrem over 25 years.

Caldwell, Amy Baker

1997-01-01T23:59:59.000Z

268

Historical review of plutonium storage container failures at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

As part of the DOE Plutonium Vulnerability Assessment, an investigation was made to characterize the can failures at LLNL. Since the LLNL Plutonium Facility was opened for plutonium operations in 1961, there have only been three can failures that could be remembered by plutonium handlers, vault workers, chemical analysts, and material managers. Only one of these can failures was discovered during the processing of more than 606 packages containing plutonium as part of the LLNL Plutonium Inventory Reduction Program. A very low failure rate, especially since some of the 606 cans had been in storage for two to three decades. Two of the three containers that failed were made of aluminum and were packaged with 1.25 inch diameter plutonium metal spheres. The cans were split down their entire length and the plutonium metal was heavily oxidized. The secondary gallon container of the third package failure was found to be imploded in the storage vault. Upon closer examination, the plastic bags around the inner pint can were badly melted and the lid on the can was loose. Like the other two failures, the metal was heavily oxidized. In all three of the can failures, it is theorized that air entered the inner can through incomplete sealing and the oxygen in the air then reacted with the plutonium metal to produce plutonium oxide. Air was supplied to the inner can by permeation through the surrounding plastic bag. The air could have either diffused through the bag or could have been pumped through the twisted and taped ends of the inner most bag. The inner bags and cans were packaged into second bags and cans in an air atmosphere; therefore, trapping air inside the packaging configuration that could have passed through the bags. A failure of the inner can integrity would be necessary for the air to pass into it. In all three LLNL can failure cases, it is believed that the seal of the inner can was not sufficient to prevent a breach of the can environment.

Dodson, K.E.

1994-05-01T23:59:59.000Z

269

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

25, 2013 [Education, Facility News] 25, 2013 [Education, Facility News] Junior Rangers Enjoy Science Education at ARM Facility on Cape Cod Bookmark and Share Children and adults join in the balloon launch countdown at the ARM Mobile Facility site at Cape Cod National Seashore. Weather balloons are launched at regular intervals four times per day throughout the one-year campaign. Children and adults join in the balloon launch countdown at the ARM Mobile Facility site at Cape Cod National Seashore. Weather balloons are launched at regular intervals four times per day throughout the one-year campaign. School break means vacation, and around Cape Cod, that often means a trip to the seashore. On April 17, families looking for fun and educational outdoor activities spent several hours at Cape Cod National Seashore's

270

Plutonium Disposition Program | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Media Room > Fact Sheets > Plutonium Disposition Program Home > Media Room > Fact Sheets > Plutonium Disposition Program Fact Sheet Plutonium Disposition Program Jun 26, 2013 SUPPORTING NUCLEAR NONPROLIFERATION Weapon-grade plutonium and highly enriched uranium (HEU) are the critical ingredients for making a nuclear weapon. With the end of the Cold War, hundreds of tons of these materials were determined to be surplus to U.S. and Russian defense needs. Denying access to plutonium and HEU is the best way to prevent nuclear proliferation to rogue states and terrorist organizations. The most certain method to prevent these materials from falling into the wrong hands is to dispose of them. During the April 2010 Nuclear Security Summit, Secretary of State Hillary Rodham Clinton and Russian Foreign Minister Sergey Lavrov signed a protocol

271

Siegfried S. Hecker, Plutonium, and Nonproliferation  

Office of Scientific and Technical Information (OSTI)

Siegfried S. Hecker, Plutonium Siegfried S. Hecker, Plutonium and Nuclear Nonproliferation Resources with Additional Information · Awards Siegfried S. Hecker Photo Credit: Courtesy of Los Alamos National Laboratory LeRoy Sanchez On September 17, 2009, U.S. Energy Secretary Steven Chu named Siegfried S. Hecker as a winner of the Enrico Fermi Award 'in recognition for his contributions to plutonium metallurgy, his broad scientific leadership and for his energetic and continuing efforts to reduce the danger of nuclear weapons around the globe. Dr. Hecker is credited with resolving a long-standing controversy involving the stability of certain structures (or phases) in plutonium alloys near equilibrium that arose from significant discrepancies between U.S. and former USSR research on plutonium metallurgy.'1

272

Cleanup of plutonium oxide reduction black salts  

Science Conference Proceedings (OSTI)

This work describes pyrochemical processes employed to convert direc oxide reduction (DOR) black salts into discardable white salt and plutonium metal. The DOR process utilizes calcium metal as the reductant in a molten calcium chloride solvent salt to convert plutonium oxide to plutonium metal. An insoluble plutonium-rich dispersion called black salt sometimes forms between the metal phase and the salt phase. Black salts accumulated for processing were treated by one of two methods. One method utilized a scrub alloy of 70 wt % magnesium/30 wt % zinc. The other method utilized a pool of plutonium metal to agglomerate the metal phase. The two processes were similar in that calcium metal reductant and calcium chloride solvent salt were used in both cases. Four runs were performed by each method, and each method produced greater than 93% conversion of the black salt.

Giebel, R.E.; Wing, R.O.

1986-12-17T23:59:59.000Z

273

Manhattan Project: F Reactor Plutonium Production Complex  

Office of Scientific and Technical Information (OSTI)

F REACTOR PLUTONIUM PRODUCTION COMPLEX F REACTOR PLUTONIUM PRODUCTION COMPLEX Hanford Engineer Works, 1945 Resources > Photo Gallery Plutonium production area, Hanford, ca. 1945 The F Reactor plutonium production complex at Hanford. The "boxy" building between the two water towers on the right is the plutonium production reactor; the long building in the center of the photograph is the water treatment plant. The photograph was reproduced from Henry DeWolf Smyth, Atomic Energy for Military Purposes: The Official Report on the Development of the Atomic Bomb under the Auspices of the United States Government, 1940-1945 (Princeton, NJ: Princeton University Press, 1945). The Smyth Report was commissioned by Leslie Groves and originally issued by the Manhattan Engineer District. Princeton University Press reprinted it in book form as a "public service" with "reproduction in whole or in part authorized and permitted."

274

Benchmark Evaluation of Plutonium Nitrate Solution Arrays  

Science Conference Proceedings (OSTI)

In October and November of 1981 thirteen approach-to-critical experiments were performed on a remote split table machine (RSTM) in the Critical Mass Laboratory of Pacific Northwest Laboratory (PNL) in Richland, Washington, using planar arrays of polyethylene bottles filled with plutonium (Pu) nitrate solution. Arrays of up to sixteen bottles were used to measure the critical number of bottles and critical array spacing with a tight fitting Plexiglas{reg_sign} reflector on all sides of the arrays except the top. Some experiments used Plexiglas shells fitted around each bottles to determine the effect of moderation on criticality. Each bottle contained approximately 2.4 L of Pu(NO3)4 solution with a Pu content of 105 g Pu/L and a free acid molarity H+ of 5.1. The plutonium was of low 240Pu (2.9 wt.%) content. These experiments were performed to fill a gap in experimental data regarding criticality limits for storing and handling arrays of Pu solution in reprocessing facilities. Of the thirteen approach-to-critical experiments eleven resulted in extrapolations to critical configurations. Four of the approaches were extrapolated to the critical number of bottles; these were not evaluated further due to the large uncertainty associated with the modeling of a fraction of a bottle. The remaining seven approaches were extrapolated to critical array spacing of 3-4 and 4-4 arrays; these seven critical configurations were evaluation for inclusion as acceptable benchmark experiments in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook. Detailed and simple models of these configurations were created and the associated bias of these simplifications was determined to range from 0.00116 and 0.00162 {+-} 0.00006 ?keff. Monte Carlo analysis of all models was completed using MCNP5 with ENDF/BVII.0 neutron cross section libraries. A thorough uncertainty analysis of all critical, geometric, and material parameters was performed using parameter perturbation methods. It was found that uncertainty in the impurities in the polyethylene bottles, reflector position, bottle outer diameter, and critical array spacing had the largest effect. The total uncertainty ranged from 0.00651 to 0.00920 ?keff. Evaluation methods and results will be presented and discussed in greater detail in the full paper.

M. A. Marshall; J. D. Bess

2011-09-01T23:59:59.000Z

275

Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel  

SciTech Connect

The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

Cowell, B.S.; Fisher, S.E.

1999-02-01T23:59:59.000Z

276

Characterization of plutonium-bearing wastes by chemical analysis and analytical electron microscopy  

Science Conference Proceedings (OSTI)

This report summarizes the results of characterization studies of plutonium-bearing wastes produced at the US Department of Energy weapons production facilities. Several different solid wastes were characterized, including incinerator ash and ash heels from Rocky Flats Plant and Los Alamos National Laboratory; sand, stag, and crucible waste from Hanford; and LECO crucibles from the Savannah River Site. These materials were characterized by chemical analysis and analytical electron microscopy. The results showed the presence of discrete PuO{sub 2}PuO{sub 2{minus}x}, and Pu{sub 4}O{sub 7} phases, of about 1{mu}m or less in size, in all of the samples examined. In addition, a number of amorphous phases were present that contained plutonium. In all the ash and ash heel samples examined, plutonium phases were found that were completely surrounded by silicate matrices. Consequently, to achieve optimum plutonium recovery in any chemical extraction process, extraction would have to be coupled with ultrafine grinding to average particle sizes of less than 1 {mu}m to liberate the plutonium from the surrounding inert matrix.

Behrens, R.G. [Los Alamos National Lab., NM (United States); Buck, E.C.; Dietz, N.L.; Bates, J.K.; Van Deventer, E.; Chaiko, D.J. [Argonne National Lab., IL (United States)

1995-09-01T23:59:59.000Z

277

EIS-0283: Surplus Plutonium Disposition Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes the potential environmental impacts associated with alternatives for the disposition of surplus plutonium.

278

ADSORPTION-BISMUTH PHOSPHATE METHOD FOR SEPARATING PLUTONIUM  

DOE Patents (OSTI)

A process is given for separating plutonium from uranium and fission products. Plutonium and uranium are adsorbed by a cation exchange resin, plutonium is eluted from the adsorbent, and then, after oxidation to the hexavalent state, the plutonium is contacted with a bismuth phosphate carrier precipitate.

Russell, E.R.; Adamson, A.W.; Boyd, G.E.

1960-06-28T23:59:59.000Z

279

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Guest Instruments to Collect Aerosol Data During Coastal Field Campaign Guest Instruments to Collect Aerosol Data During Coastal Field Campaign Bookmark and Share The counter-flow virtual impactor (inset), which can characterize aerosol particles in cloud droplets, joins a number of other guest instruments at the ARM Mobile Facility deployment site at Point Reyes National Seashore in California. The counter-flow virtual impactor (inset), which can characterize aerosol particles in cloud droplets, joins a number of other guest instruments at the ARM Mobile Facility deployment site at Point Reyes National Seashore in California. The ARM Mobile Facility's (AMF's) inaugural field campaign, the Marine Stratus Radiation Aerosol and Drizzle (MASRAD) Intensive Operational Period, is well underway at Point Reyes National Seashore on the northern

280

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

W-Band Cloud Radar Added to ARM Mobile Facility in Africa W-Band Cloud Radar Added to ARM Mobile Facility in Africa Bookmark and Share Most of the WACR is mounted on top of one of the AMF shelters. The WACR computer and chiller (used to keep the WACR cool in temperatures up to 47 degrees C) are located in the shelter below the radar. Most of the WACR is mounted on top of one of the AMF shelters. The WACR computer and chiller (used to keep the WACR cool in temperatures up to 47 degrees C) are located in the shelter below the radar. A W-band ARM Cloud Radar (WACR) recently joined the suite of baseline capabilities offered by the ARM Mobile Facility (AMF). The term "W-band" refers to the specific radio frequency range of this radar, which is a 95 gigahertz pulse Doppler zenith pointing radar, providing profiles of cloud

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites

banner banner Home | People | Site Index Atmospheric Radiation Measurement Climate Research Facility US Department of Energy About Science Campaigns Sites Instruments Measurements Data News Publications Education Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings Propose a Campaign Submitting Proposals: Guidelines Featured Campaigns Campaign Data List of Campaigns Aerial Facility Eastern North Atlantic Mobile Facilities North Slope of Alaska Southern Great Plains Tropical Western Pacific Location Table Contacts Instrument Datastreams Value-Added Products PI Data Products Field Campaign Data Related Data

282

Mobile systems capability plan  

Science Conference Proceedings (OSTI)

This plan was prepared to initiate contracting for and deployment of these mobile system services. 102,000 cubic meters of retrievable, contact-handled TRU waste are stored at many sites around the country. Also, an estimated 38,000 cubic meters of TRU waste will be generated in the course of waste inventory workoff and continuing DOE operations. All the defense TRU waste is destined for disposal in WIPP near Carlsbad NM. To ship TRU waste there, sites must first certify that the waste meets WIPP waste acceptance criteria. The waste must be characterized, and if not acceptable, subjected to additional processing, including repackaging. Most sites plan to use existing fixed facilities or open new ones between FY1997-2006 to perform these functions; small-quantity sites lack this capability. An alternative to fixed facilities is the use of mobile systems mounted in trailers or skids, and transported to sites. Mobile systems will be used for all characterization and certification at small sites; large sites can also use them. The Carlsbad Area Office plans to pursue a strategy of privatization of mobile system services, since this offers a number of advantages. To indicate the possible magnitude of the costs of deploying mobile systems, preliminary estimates of equipment, maintenance, and operating costs over a 10-year period were prepared and options for purchase, lease, and privatization through fixed-price contracts considered.

NONE

1996-09-01T23:59:59.000Z

283

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2011 [Facility News] 22, 2011 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of an ARM mobile facility (AMF), the ARM aerial facility (AAF), and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility, with availability as follows: AMF2 available December 2013 AMF1 available March 2015 AAF available between June and October 2013 Fixed sites available FY2013 Priority will be given to proposals that make comprehensive use of the ARM facilities and focus on long-term goals of the DOE Office of Biological and Environmental Research. Successful proposals will be supplied all operational and logistical resources (provided at no cost to the principal

284

Dismantling an alpha-contaminated facility  

SciTech Connect

The difficult task of removing large pieces of highly contaminated equipment from an obsolete plutonium-239 facility was completed in a seven-month operation that included structural alteration of the process building. Detailed job planning, job execution and contamination control were major factors in accomplishing the task. (auth)

Caldwell, R.D.; Harper, R.M.

1975-09-01T23:59:59.000Z

285

Excess Plutonium: Weapons Legacy or National Asset?  

Science Conference Proceedings (OSTI)

The Nuclear Materials Stewardship Initiative was established in January, 2000, to accelerate the work of achieving integration and cutting long-term costs associated with the management of nuclear materials. As part of that initiative, the Department of Energy (DOE), Office of Environmental Management (EM), has established Nuclear Material Management Groups for the management of excess nuclear materials. As one of these groups, the Plutonium Material Management Group (PMMG) has been chartered to serve as DOE's complex wide resource and point of contact for technical coordination and program planning support in the safe and efficient disposition of the nations excess Plutonium 239. This paper will explain the mission, goals, and objectives of the PMMG. In addition, the paper will provide a broad overview of the status of the plutonium inventories throughout the DOE complex. The DOE currently manages approximately 99.5 MT of plutonium isotopes. Details of the various categories of plutonium, from material designated for national security needs through material that has been declared excess, will be explained. For the plutonium that has been declared excess, the various pathways to disposition (including reuse, recycling, sale, transfer, treatment, consumption, and disposal) will be discussed. At this time 52.5 MT of plutonium has been declared excess and the method of disposition for that material is the subject of study and evaluation within DOE. The role of the PMMG in those evaluations will be outlined.

Klipa, G.; Boeke, S.; Hottel, R.

2002-02-27T23:59:59.000Z

286

PROGRESS IN REDUCING THE NUCLEAR THREAT: UNITED STATES PLUTONIUM CONSOLIDATION AND DISPOSITION  

SciTech Connect

Following the end of the Cold War, the United States identified 61.5 metric tons (MT) of plutonium and larger quantities of enriched uranium that are permanently excess to use in nuclear weapons programs. The Department of Energy (DOE) also began shutting down, stabilizing, and removing inventories from production facilities that were no longer needed to support weapons programs and non-weapons activities. The storage of 'Category I' nuclear materials at Rocky Flats, Sandia National Laboratories, and several smaller sites has been terminated to reduce costs and safeguards risks. De-inventory continues at the Hanford site and the Lawrence Livermore National Laboratory. Consolidation of inventories works in concert with the permanent disposition of excess inventories, including several tonnes of plutonium that have already been disposed to waste repositories and the preparation for transfers to the planned Mixed Oxide (MOX) Fuel Fabrication Facility (for the bulk of the excess plutonium) and alternative disposition methods for material that cannot be used readily in the MOX fuel cycle. This report describes status of plutonium consolidation and disposition activities and their impacts on continuing operations, particularly at the Savannah River Site.

Allender, J.; Koenig, R.; Davies, S.

2009-06-01T23:59:59.000Z

287

VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS  

DOE Patents (OSTI)

The separation of plutonium from uranium and/or tission products by formation of the higher fluorides of uranium and/or plutonium is discussed. Neutronirradiated uranium metal is first convcrted to the hydride. This hydrided product is then treatced with fluorine at about 315 deg C to form and volatilize UF/sup 6/ leaving plutonium behind. The plutonium may then be separated by reacting the residue with fluorine at about 500 deg C and collecting the volatile plutonium fluoride thus formed.

Spedding, F.H.; Newton, A.S.

1959-04-14T23:59:59.000Z

288

VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS  

DOE Patents (OSTI)

The separation of plutonium from uranium and/or fission products by formation of the higher fluorides off uranium and/or plutonium is described. Neutronirradiated uranium metal is first converted to the hydride. This hydrided product is then treated with fluorine at about 315 deg C to form and volatilize UF/sub 6/ leaving plutonium behind. Thc plutonium may then be separated by reacting the residue with fluorine at about 5004DEC and collecting the volatile plutonium fluoride thus formed.

Spedding, F.H.; Newton, A.S.

1959-04-14T23:59:59.000Z

289

Widgets mobility  

Science Conference Proceedings (OSTI)

Widgets are becoming a natural way to design small, intuitive application, and their usage is becoming widespread on both the desktop and the mobile world. However, most widgets systems are web-centric and cannot address service mobility or application ... Keywords: application communication, mobility, widget

Jean Le Feuvre; Cyril Concolato; Jean-Claude Dufourd

2009-09-01T23:59:59.000Z

290

Molecular Interactions of Plutonium(VI) with Synthetic Manganese-Substituted Goethite  

E-Print Network (OSTI)

E. , Thesis, Reactions of Plutonium(VI) with the Iron Oxideof Uranium, Neptunium, Plutonium, Americium and Technetium;Molecular Interactions of Plutonium(VI) with Synthetic

Hu, Yung-Jin

2011-01-01T23:59:59.000Z

291

Quantifying structural damage from self-irradiation in a plutonium superconductor  

E-Print Network (OSTI)

was presented as part of Plutonium Futures - The Science: Atopical Confer- ence on Plutonium and Actinide, Asilomar,in loading one of the plutonium samples. This work was

2006-01-01T23:59:59.000Z

292

Reaction of Plutonium(VI) with the Manganese-Substituted Iron Oxide Mineral Goethite  

E-Print Network (OSTI)

Plutonium(VI) Sorption on Manganese-SubstitutedX-ray Beam-Induced Chemistry on Plutonium Sorbed on Variousof Plutonium . . . . . . . . . . . . . . . . .159 v E Anion

Hu, Yung-Jin Hu

2011-01-01T23:59:59.000Z

293

Structural Characterization of and Plutonium Sorption on Mesoporous and Nanoparticulate Ferrihydrite  

E-Print Network (OSTI)

2.2.1 Plutonium Redox Chemistry . . . . . . . . .2.5 Plutonium Measurement with Liquid Scintillation CountingChemistry . . . . . . . . . . . . . 5.9.4 Plutonium Uptake

Brogan, Luna Kestrel Schwaiger

2012-01-01T23:59:59.000Z

294

U.S. Plutonium "Pit" Production: Additional Facilities, Production  

National Nuclear Security Administration (NNSA)

robust technical confidence in U.S. pits and primaries, and these many 7 alternatives to production, and the costs and risks discussed below, further pit production for the...

295

SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS  

DOE Patents (OSTI)

The separation of uranium and plutonium from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in nitric acid to provide an aqueous solution 3N in nitric acid. The fission products of the solution are extruded by treating the solution with dibutyl carbitol substantially 1.8N in nitric acid. The organic solvent phase is separated and neutralized with ammonium hydroxide and the plutonium reduced with hydroxylamine base to the trivalent state. Treatment of the mixture with saturated ammonium nitrate extracts the reduced plutonium and leaves the uranium in the organic solvent.

Nicholls, C.M.; Wells, I.; Spence, R.

1959-10-13T23:59:59.000Z

296

Weapons-grade plutonium dispositioning. Volume 4. Plutonium dispositioning in light water reactors  

SciTech Connect

This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO{sub 2}-ZrO{sub 2}-CaO) with the addition of thorium oxide (ThO{sub 2}) or a burnable poison such as erbium oxide (Er{sub 2}O{sub 3}) or europium oxide (Eu{sub 2}O{sub 3}) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl{sub 4}-Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams.

Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

1993-06-01T23:59:59.000Z

297

Measurement of single and double glazing thermal performance under realistic conditions using the mobile window thermal test (MoWiTT) facility  

SciTech Connect

The thermal performance of single glazing, clear double glazing, and double glazing with a low-emissivity coating was measured in both south-facing and north-facing orientations under realistic field conditions using the new MoWiTT field test facility. The time-dependent net heat flow through each fenestration was found to be consistent with the predictions of the standard simplified heat transfer model, provided that an angle-dependent shading coefficient is used and diffuse solar gain is included in the calculation. Summer-condition average U-values were derived for each glazing type and were found to agree with the expected values for both types of double glazing. The measured U-value for single glazing was lower than predicted.

Klems, J.; Keller, H.

1986-11-01T23:59:59.000Z

298

PRODUCTION OF PLUTONIUM FLUORIDE FROM BISMUTH PHOSPHATE PRECIPITATE CONTAINING PLUTONIUM VALUES  

DOE Patents (OSTI)

A process is given for separating plutonium from fission products present on a bismuth phosphate carrier. The dried carrier is first treated with hydrogen fluoride at between 500 and 600 deg C whereby some fission product fluorides volatilize away from plutonium tetrafluoride, and nonvolatile fission product fluorides are formed then with anhydrous fluorine at between 400 and 500 deg C. Bismuth and plutonium distill in the form of volatile fluorides away from the nonvolatile fission product fluorides. The bismuth and plutonium fluorides are condensed at below 290 deg C.

Brown, H.S.; Bohlmann, E.G.

1961-05-01T23:59:59.000Z

299

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2011 [Facility News] 1, 2011 [Facility News] Data from Field Campaign in Black Forest, Germany, are Red Hot Bookmark and Share During COPS, the ARM Mobile Facility operated in Heselbach, Germany, obtaining measurements encompassing the entire life cycle of precipitation. The AMF site also hosted a number of guest instruments for supplemental field campaigns throughout the deployment. During COPS, the ARM Mobile Facility operated in Heselbach, Germany, obtaining measurements encompassing the entire life cycle of precipitation. The AMF site also hosted a number of guest instruments for supplemental field campaigns throughout the deployment. A paper published in a special issue of the Quarterly Journal of the Royal Meteorological Society describing the scientific strategy, field phase, and

300

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2006 [Facility News] 15, 2006 [Facility News] Radar Wind Profiler Joins ARM Mobile Facility Instrument Suite Bookmark and Share This spring, a 915 MHz radar wind profiler (RWP) was successfully installed at the ARM Mobile Facility (AMF) site in Niamey, Niger, West Africa, for the remainder of the 1-year RADAGAST field campaign which started in January. The RWP will provide information about wind speed, wind direction, and wind shear, and also enable measurements of the turbulence in the lower part of the troposphere. This may be a key variable in determining the vertical distribution of dust in the experimental domain. Gradients in the radar's reflectivity spectrum may also help to provide continuous identification of the depth of the boundary layer in the summer months, when refractive gradients are likely to be maximized by low-level moisture.

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

December 3, 2004 [Facility News] December 3, 2004 [Facility News] First Deployment of ARM Mobile Facility to Occur on California Coast Bookmark and Share Image - Point Reyes Beach Image - Point Reyes Beach Point Reyes National Seashore, on the California coast north of San Francisco, has been identified as the official location for the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). As part of a 6-month field campaign beginning in March 2005 to study the microphysical characteristics of marine stratus and, in particular, marine stratus drizzle processes, the AMF will provide a mature instrument system to help fill information gaps in the existing limited surveys of marine stratus microphysical structure. Marine stratus clouds are known to be susceptible to the byproducts of fossil fuel consumption, a

302

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 20, 2011 [Facility News] May 20, 2011 [Facility News] From Snow to Sand; Mobile Facility Headed to the Maldives Bookmark and Share AMF2 operations team members pack up the 3-channel microwave radiometer at the STORMVEX valley floor site in Steamboat Springs, Colorado. AMF2 operations team members pack up the 3-channel microwave radiometer at the STORMVEX valley floor site in Steamboat Springs, Colorado. After spending six very snowy months at Steamboat Springs, Colorado, the second ARM Mobile Facility (AMF2) is switching gears and heading to the tropical climes of the Maldives in the Indian Ocean. In mid-April, the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX) came to a close, ending the final chapter of the AMF2's maiden deployment. After packing up the instruments and data systems, the AMF2 team is now preparing

303

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2006 [Facility News] January 15, 2006 [Facility News] ARM Mobile Facility Begins Year-Long Deployment in Africa Bookmark and Share Beginning on January 9, the ARM Mobile Facility began officially collecting atmospheric data from a location at the airport in Niamey, Niger, Africa. As part of the RADAGAST field campaign, the AMF will measure the effects of absorbing aerosols from desert dust in the dry season, and the effects of deep convective clouds and associated moisture loadings on the transmission of atmospheric radiation during the summer monsoon. These measurements will be combined with associated satellite data to provide the first well-sampled direct estimates of the energy balance across the atmosphere. This dataset will provide valuable information to an ongoing effort called

304

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2008 [Facility News] April 30, 2008 [Facility News] ARM Outreach Materials Chosen for Earth Day Display in Washington DC Bookmark and Share Posters for the ARM Mobile Facility and ARM Education and Outreach were selected for the 2008 Earth Day display at DOE Headquarters. Posters for the ARM Mobile Facility and ARM Education and Outreach were selected for the 2008 Earth Day display at DOE Headquarters. Earth Day is officially honored each year on April 22, however, many groups sponsor activities throughout the entire month of April. At DOE Headquarters in Washington DC, two ARM posters were selected to join a poster display representing programs from numerous DOE offices. The display was featured in the Forrestal Building's ground-level and first floor lobby areas throughout the week of April 21. The posters were then displayed at

305

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2007 [Facility News] 15, 2007 [Facility News] Microwave Radiometers Put to the Test in Germany Bookmark and Share A 2-channel microwave radiometer (left) and a 12-channel microwave radiometer profiler (right) are part of a larger collection of instruments deployed at the ARM Mobile Facility site in Heselbach, Germany, in 2007. A 2-channel microwave radiometer (left) and a 12-channel microwave radiometer profiler (right) are part of a larger collection of instruments deployed at the ARM Mobile Facility site in Heselbach, Germany, in 2007. Microwave radiometers (MWRs) are instruments used to measure emissions of water vapor and liquid water molecules in the atmosphere at specific microwave frequencies. Different MWRs are used to measure various frequencies, but the accuracy of all their retrievals is somewhat suspect,

306

Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3  

Science Conference Proceedings (OSTI)

This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

Sullivan, N.

1995-05-02T23:59:59.000Z

307

Direct vitrification of plutonium-containing materials (PCM`s) with the glass material oxidation and dissolution system (GMODS)  

SciTech Connect

The end of the cold war has resulted in excess PCMs from nuclear weapons and associated production facilities. Consequently, the US government has undertaken studies to determine how best to manage and dispose of this excess material. The issues include (a) ensurance of domestic health, environment, and safety in handling, storage, and disposition, (b) international arms control agreements with Russia and other countries, and (c) economics. One major set of options is to convert the PCMs into glass for storage or disposal. The chemically inert characteristics of glasses make them a desirable chemical form for storage or disposal of radioactive materials. A glass may contain only plutonium, or it may contain plutonium along with other radioactive materials and nonradioactive materials. GMODS is a new process for the direct conversion of PCMs (i.e., plutonium metal, scrap, and residues) to glass. The plutonium content of these materials varies from a fraction of a percent to pure plutonium. GMODS has the capability to also convert other metals, ceramics, and amorphous solids to glass, destroy organics, and convert chloride-containing materials into a low-chloride glass and a secondary clean chloride salt strewn. This report is the initial study of GMODS for vitrification of PCMs as input to ongoing studies of plutonium management options. Several tasks were completed: initial analysis of process thermodynamics, initial flowsheet analysis, identification of equipment options, proof-of-principle experiments, and identification of uncertainties.

Forsberg, C.W. Beahm, E.C.; Parker, G.W.; Rudolph, J.C.; Haas, P.A.; Malling, G.F.; Elam, K.; Ott, L.

1995-10-30T23:59:59.000Z

308

Influence of Iron Redox Transformations on Plutonium Sorption to Sediments  

SciTech Connect

Plutonium subsurface mobility is primarily controlled by its oxidation state, which in turn is loosely coupled to the oxidation state of iron in the system. Experiments were conducted to examine the effect of sediment iron mineral composition and oxidation state on plutonium sorption and oxidation state. A pH 6.3 vadose zone sediment containing iron oxides and iron-containing phyllosilicates was treated with various complexants (ammonium oxalate) and reductants (dithionite-citrate-bicarbonate) to selectively leach and/or reduce iron oxide and phyllosilicate phases. Mssbauer spectroscopy was used to identify initial iron mineral composition of the sediment and monitor dissolution and reduction of iron oxides. Sorption of Pu(V) was monitored over one week for each of six treated sediment fractions. Plutonium oxidation state speciation in the aqueous and solid phases was monitored using solvent extraction, coprecipitation, and XANES. Mssbauer spectroscopy showed that the sediment contained 25-30% hematite, 60-65% Al-goethite, and <10%Fe(III) in phyllosilicate; there was no detectable Fe(II). Upon reduction with a strong chemical reductant (dithionite-citrate buffer, DCB), much of the hematite and goethite disappeared and the Fe in the phyllosilicate reduced to Fe(II). The rate of sorption was found to correlate with the 1 fraction of Fe(II) remaining within each treated sediment phase. Pu(V) was the only oxidation state measured in the aqueous phase, irrespective of treatment, whereas Pu(IV) and much smaller amounts of Pu(V) and Pu(VI) were measured in the solid phase. Surface-mediated reduction of Pu(V) to Pu(IV) occurred in treated and untreated sediment samples; Pu(V) remained on untreated sediment surface for two days before reducing to Pu(IV). Similar to the sorption kinetics, the reduction rate was correlated with sediment Fe(II) concentration. The correlation between Fe(II) concentrations and Pu(V) reduction demonstrates the potential impact of changing iron mineralogy on plutonium subsurface transport through redox transition areas. These findings should influence the conceptual models of long-term stewardship of Pu contaminated sites that have fluctuating redox conditions, such as vadose zones or riparian zones.

Hixon, Amy E.; Hu, Yung-Jin; Kaplan, Daniel I.; Kukkadapu, Ravi K.; Nitsche, Heino; Qafoku, Odeta; Powell, Brian A.

2010-10-01T23:59:59.000Z

309

Plutonium less mysterious with nuclear magnetic resonance  

NLE Websites -- All DOE Office Websites (Extended Search)

Plutonium less mysterious with nuclear magnetic resonance Plutonium less mysterious with nuclear magnetic resonance Plutonium less mysterious with nuclear magnetic resonance For more than 50 years, chemists and physicists have been searching for the plutonium-239 magnetic resonance signal. May 21, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

310

Sweden Plutonium Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Sweden Plutonium Removal | National Nuclear Security Administration Sweden Plutonium Removal | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > content > Four-Year Plan > Sweden Plutonium Removal Sweden Plutonium Removal Location Sweden United States 62° 24' 4.4136" N, 15° 22' 51.096" E See map: Google Maps Printer-friendly version Printer-friendly version

311

Determination of plutonium in human urine  

SciTech Connect

Report is made of chemical procedures for determination of plutonium in human urine. The procedures are provided in outline form and statistical methods are provided for interpretation of the results.

Langham, W.H.

1947-08-14T23:59:59.000Z

312

Plutonium in groundwater at the 100K-Area of the U.S. DOE Hanford Site  

E-Print Network (OSTI)

Engineer Works (HEW) as the world's first Pu production facility constructed for the United StatesPlutonium in groundwater at the 100K-Area of the U.S. DOE Hanford Site Minhan Daia,b , Ken O.S. Department of Energy's (DOE) Hanford Site. Total concentrations of Pu isotopes were extremely low (10?4 to 10

Buesseler, Ken

313

Plutonium: The first 50 years. United States plutonium production, acquisition, and utilization from 1944 through 1994  

Science Conference Proceedings (OSTI)

The report contains important newly declassified information regarding the US production, acquisition, and removals of plutonium. This new information, when combined with previously declassified data, has allowed the DOE to issue, for the first time, a truly comprehensive report on the total DOE plutonium inventory. At the December 7, 1993, Openness Press Conference, the DOE declassified the plutonium inventories at eight locations totaling 33.5 metric tons (MT). This report declassifies the remainder of the DOE plutonium inventory. Newly declassified in this report is the quantity of plutonium at the Pantex Site, near Amarillo, Texas, and in the US nuclear weapons stockpile of 66.1 MT, which, when added to the previously released inventory of 33.5 MT, yields a total plutonium inventory of 99.5 MT. This report will document the sources which built up the plutonium inventory as well as the transactions which have removed plutonium from that inventory. This report identifies four sources that add plutonium to the DOE/DoD inventory, and seven types of transactions which remove plutonium from the DOE/DoD inventory. This report also discusses the nuclear material control and accountability system which records all nuclear material transactions, compares records with inventory and calculates material balances, and analyzes differences to verify that nuclear materials are in quantities as reported. The DOE believes that this report will aid in discussions in plutonium storage, safety, and security with stakeholders as well as encourage other nations to declassify and release similar data. These data will also be available for formulating policies with respect to disposition of excess nuclear materials. The information in this report is based on the evaluation of available records. The information contained in this report may be updated or revised in the future should additional or more detailed data become available.

NONE

1996-02-01T23:59:59.000Z

314

Reclamation of plutonium from pyrochemical processing residues  

Science Conference Proceedings (OSTI)

Savannah River Laboratory (SRL), Savannah River Plant (SRP), and Rocky Flats Plant (RFP) have jointly developed a process to recover plutonium from molten salt extraction residues. These NaCl, KCL, and MgCl/sub 2/ residues, which are generated in the pyrochemical extraction of /sup 241/Am from aged plutonium metal, contain up to 25 wt % dissolved plutonium and up to 2 wt % americium. The overall objective was to develop a process to convert these residues to a pure plutonium metal product and discardable waste. To meet this objective a combination of pyrochemical and aqueous unit operations was used. The first step was to scrub the salt residue with a molten metal (aluminum and magnesium) to form a heterogeneous ''scrub alloy'' containing nominally 25 wt % plutonium. This unit operation, performed at RFP, effectively separated the actinides from the bulk of the chloride salts. After packaging in aluminum cans, the ''scrub alloy'' was then dissolved in a nitric acid - hydrofluoric acid - mercuric nitrate solution at SRP. Residual chloride was separated from the dissolver solution by precipitation with Hg/sub 2/(NO/sub 3/)/sub 2/ followed by centrifuging. Plutonium was then separated from the aluminum, americium and magnesium using the Purex solvent extraction system. The /sup 241/Am was diverted to the waste tank farm, but could be recovered if desired.

Gray, L.W.; Gray, J.H.; Holcomb, H.P.; Chostner, D.F.

1987-04-01T23:59:59.000Z

315

ARM - Mobile Aerosol Observing System  

NLE Websites -- All DOE Office Websites (Extended Search)

FacilitiesMobile Aerosol Observing System FacilitiesMobile Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Aerosol Observing System Intensive aerosol observations conducted on the campus of Brookhaven National Laboratory on Long Island, New York, using the ARM Mobile Aerosol Observing System. Intensive aerosol observations conducted on the campus of Brookhaven

316

Benchmark Evaluation of Plutonium Hemispheres Reflected by Steel and Oil  

Science Conference Proceedings (OSTI)

During the period from June 1967 through September 1969 a series of critical experiments was performed at the Rocky Flats Critical Mass Laboratory with spherical and hemispherical plutonium assemblies as nested hemishells as part of a Nuclear Safety Facility Experimental Program to evaluate operational safety margins for the Rocky Flats Plant. These assemblies were both bare and fully or partially oil-reflected. Many of these experiments were subcritical with an extrapolation to critical configurations or critical at a particular oil height. Existing records reveal that 167 experiments were performed over the course of 28 months. Unfortunately, much of the data was not recorded. A reevaluation of the experiments had been summarized in a report for future experimental and computational analyses. This report examines only fifteen partially oil-reflected hemispherical assemblies. Fourteen of these assemblies also had close-fitting stainless-steel hemishell reflectors, used to determine the effective critical reflector height of oil with varying steel-reflector thickness. The experiments and their uncertainty in keff values were evaluated to determine their potential as valid criticality benchmark experiments of plutonium.

John Darrell Bess

2008-06-01T23:59:59.000Z

317

PROCESS OF FORMING PLUOTONIUM SALTS FROM PLUTONIUM EXALATES  

DOE Patents (OSTI)

A process is presented for converting plutonium oxalate to other plutonium compounds by a dry conversion method. According to the process, lower valence plutonium oxalate is heated in the presence of a vapor of a volatile non- oxygenated monobasic acid, such as HCl or HF. For example, in order to produce plutonium chloride, the pure plutonium oxalate is heated to about 700 deg C in a slow stream of hydrogen plus HCl. By the proper selection of an oxidizing or reducing atmosphere, the plutonium halide product can be obtained in either the plus 3 or plus 4 valence state.

Garner, C.S.

1959-02-24T23:59:59.000Z

318

SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS  

DOE Patents (OSTI)

A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This process provides a convenient and efficient means for isolating plutonium.

Boyd, G.E.; Adamson, A.W.; Schubert, J.; Russell, E.R.

1958-10-01T23:59:59.000Z

319

Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA  

SciTech Connect

Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

Dean, L.N. [Advanced Sciences, Inc., (United States)

1994-02-01T23:59:59.000Z

320

Method for Plutonium-Gallium Separation by Anodic Dissolution of a Solid Plutonium-Gallium Alloy  

DOE Patents (OSTI)

Purified plutonium and gallium are efficiently recovered from a solid plutonium-gallium (Pu-Ga) alloy by using an electrorefining process. The solid Pu-Ga alloy is the cell anode, preferably placed in a moving basket within the electrolyte. As the surface of the Pu-Ga anode is depleted in plutonium by the electrotransport of the plutonium to a cathode, the temperature of the electrolyte is sufficient to liquify the surface, preferably at about 500 C, resulting in a liquid anode layer substantially comprised of gallium. The gallium drips from the liquified surface and is collected below the anode within the electrochemical cell. The transported plutonium is collected on the cathode surface and is recovered.

Miller, William E.; Tomczuk, Zygmunt

1998-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Double contingency controls in the pit disassembly and conversion facility  

Science Conference Proceedings (OSTI)

A Pit Disassembly and Conversion Facility (PDCF) will be built and operated at DOE'S Savannah River Site (SRS) in South Carolina. The facility will process over three metric tons of plutonium per year. There will be a significant amount of special nuclear material (SNM) moving through the various processing modules in the facility, and this will obviously require well-designed engineering controls to prevent criticality accidents. The PDCF control system will interlock glovebox entry doors closed if the correct amount of SNM has not been removed from the exit enclosure. These same engineering controls will also be used to verify that only plutonium goes to plutonium processing gloveboxes, enriched uranium goes to enriched uranium processing, and that neither goes into non-SNM processing gloveboxes.

Christensen, L. (Lowell); Brady-Raap, M. (Michaele)

2002-01-01T23:59:59.000Z

322

Stabilization of Plutonium in Subsurface Environments via Microbial Reduction and Biofilm Formation  

Science Conference Proceedings (OSTI)

Plutonium has a long half-life (2.4 x 104 years) and is of concern because of its chemical and radiological toxicity, high-energy alpha radioactive decay. A full understanding of its speciation and interactions with environmental processes is required in order to predict, contain, or remediate contaminated sites. Under aerobic conditions Pu is sparingly soluble, existing primarily in its tetravalent oxidation state. To the extent that pentavalent and hexavalent complexes and small colloidal species form they will increase the solubility and resultant mobility from contamination sources. There is evidence that in both marine environments and brines substantial fractions of the plutonium in solution is present as hexavalent plutonyl, PuO2 2+.

Hakim Boukhalfa; Gary A. Icopini; Sean D. Reilly; Mary P. Neu

2007-04-19T23:59:59.000Z

323

Evaluation of Possible Surrogates for Validation of the Oxidation Furnace for the Plutonium Disposition Project  

Science Conference Proceedings (OSTI)

The Plutonium Disposition project (PuD) is considering an alternative furnace design for direct metal oxidation (DMO) of plutonium metal to use as a feed for potential disposition routes. The proposed design will use a retort to oxidize the feed at temperatures up to 500 C. The atmosphere will be controlled using a metered mixture of oxygen, helium and argon to control the oxidation at approximately 400 torr. Since plutonium melts at 664 C, and may potentially react with retort material to form a lower melting point eutectic, the oxidation process will be controlled by metering the flow of oxygen to ensure that the bulk temperature of the material does not exceed this temperature. A batch processing time of <24 hours is desirable to meet anticipated furnace throughput requirements. The design project includes demonstration of concept in a small-scale demonstration test (i.e., small scale) and validation of design in a full-scale test. These tests are recommended to be performed using Pu surrogates due to challenges in consideration of the nature of plutonium and operational constraints required when handling large quantities of accountable material. The potential for spreading contamination and exposing workers to harmful levels of cumulative radioactive dose are motivation to utilize non-radioactive surrogates. Once the design is demonstrated and optimized, implementation would take place in a facility designed to accommodate these constraints. Until then, the use of surrogates would be a safer, less expensive option for the validation phase of the project. This report examines the potential for use of surrogates in the demonstration and validation of the DMO furnace for PuD. This report provides a compilation of the technical information and process requirements for the conversion of plutonium metal to oxide by burning in dry environments. Several potential surrogates were evaluated by various criteria in order to select a suitable candidate for large scale demonstration. First, the structure of the plutonium metal/oxide interface was compared to potential surrogates. Second the data for plutonium oxidation kinetics were reviewed and rates for oxidation were compared with surrogates. The criteria used as a basis for recommendation was selected in order to provide a reasonable oxidation rate during the validation phase. Several reference documents were reviewed and used to compile the information in this report. Since oxidation of large monolithic pieces of plutonium in 75% oxygen is the preferable oxidizing atmosphere for the intended process, this report does not focus on the oxidation of powders, but focuses instead on larger samples in flowing gas.

Duncan, A.

2007-12-31T23:59:59.000Z

324

Optimization and implementation study of plutonium disposition using existing CANDU Reactors. Final report  

SciTech Connect

Since early 1994, the Department of Energy has been sponsoring studies aimed at evaluating the merits of disposing of surplus US weapons plutonium as Mixed Oxide (MOX) fuel in existing commercial Canadian Pressurized Heavy Water reactors, known as CANDU`s. The first report, submitted to DOE in July, 1994 (the 1994 Executive Summary is attached), identified practical and safe options for the consumption of 50 to 100 tons of plutonium in 25 years in some of the existing CANDU reactors operating the Bruce A generating station, on Lake Huron, about 300 km north east of Detroit. By designing the fuel and nuclear performance to operate within existing experience and operating/performance envelope, and by utilizing existing fuel fabrication and transportation facilities and methods, a low cost, low risk method for long term plutonium disposition was developed. In December, 1995, in response to evolving Mission Requirements, the DOE requested a further study of the CANDU option with emphasis on more rapid disposition of the plutonium, and retaining the early start and low risk features of the earlier work. This report is the result of that additional work.

NONE

1996-09-01T23:59:59.000Z

325

Supplement to the Surplus Plutonium Disposition Draft Environmental Impact Statement  

Science Conference Proceedings (OSTI)

On May 22, 1997, DOE published a Notice of Intent in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the ''Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS)''. ''The Surplus Plutonium Disposition Draft Environmental Impact Statement'' (SPD Draft EIS) (DOWEIS-0283-D) was prepared in accordance with NEPA and issued in July 1998. It identified the potential environmental impacts of reasonable alternatives for the proposed siting, construction, and operation of three facilities for plutonium disposition. These three facilities would accomplish pit disassembly and conversion, immobilization, and MOX fuel fabrication. For the alternatives that included MOX fuel fabrication, the draft also described the potential environmental impacts of using from three to eight commercial nuclear reactors to irradiate MOX fuel. The potential impacts were based on a generic reactor analysis that used actual reactor data and a range of potential site conditions. In May 1998, DCE initiated a procurement process to obtain MOX fuel fabrication and reactor irradiation services. The request for proposals defined limited activities that may be performed prior to issuance of the SPD EIS Record of Decision (ROD) including non-site-specific work associated with the development of the initial design for the MOX fuel fabrication facility, and plans (paper studies) for outreach, long lead-time procurements, regulatory management, facility quality assurance, safeguards, security, fuel qualification, and deactivation. No construction on the proposed MOX facility would begin before an SPD EIS ROD is issued. In March 1999, DOE awarded a contract to Duke Engineering & Services; COGEMA, Inc.; and Stone & Webster (known as DCS) to provide the requested services. The procurement process included the environmental review specified in DOE's NEPA regulations in 10 CFR 1021.216. The six reactors selected are Catawba Nuclear Station Units 1 and 2 in South Carolina McGuire Nuclear Station Units 1 and 2 in North Carolina, and North Anna Power Station Units 1 and 2 in Virginia. The Supplement describes the potential environmental impacts of using MOX fuel in these six specific reactors named in the DCS proposal as well as other program changes made since the SPD Draft EIS was published.

N /A

1999-05-14T23:59:59.000Z

326

Preserving Plutonium-244 as a National Asset  

SciTech Connect

Plutonium-244 (244 Pu) is an extremely rare and long-lived isotope of plutonium with a half-life of 80 million years. Measureable amounts of 244 Pu are found in neither reactor-grade nor weapons-grade plutonium. Production of this isotope requires a very high thermal flux to permit the two successive neutron captures that convert 242 Pu to 243 Pu to 244 Pu, particularly given the short (about 5 hour) half-life of 243 Pu. Such conditions simply do not exist in plutonium production processes. Therefore, 244 Pu is ideal for precise radiochemical analyses measuring plutonium material properties and isotopic concentrations in items containing plutonium. Isotope dilution mass spectrometry is about ten times more sensitive when using 244 Pu rather than 242 Pu for determining plutonium isotopic content. The isotope can also be irradiated in small quantities to produce superheavy elements. The majority of the existing global inventory of 244 Pu is contained in the outer housing of Mark-18A targets at the Savannah River Site (SRS). The total inventory is about 20 grams of 244 Pu in about 400 grams of plutonium distributed among the 65 targets. Currently, there are no specific plans to preserve these targets. Although the cost of separating and preserving this material would be considerable, it is trivial in comparison to new production costs. For all practical purposes, the material is irreplaceable, because new production would cost billions of dollars and require a series of irradiation and chemical separation cycles spanning up to 50 years. This paper will discuss a set of options for overcoming the significant challenges to preserve the 244 Pu as a National Asset: (1) the need to relocate the material from SRS in a timely manner, (2) the need to reduce the volume of material to the extent possible for storage, and (3) the need to establish an operational capability to enrich the 244 Pu in significant quantities. This paper suggests that if all the Mark-18A plutonium is separated, it would occupy a small volume and would be inexpensive to store while an enrichment capability is developed. Very small quantities could be enriched in existing mass separators to support critical needs.

Patton, Bradley D [ORNL; Alexander, Charles W [ORNL; Benker, Dennis [ORNL; Collins, Emory D [ORNL; Romano, Catherine E [ORNL; Wham, Robert M [ORNL

2011-01-01T23:59:59.000Z

327

A Supplement Analysis on Plutonium Consolidation at Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE))

DOEs April 2002 decision to consolidate surplus, non-pit weapons-usable plutonium at Savannah River Site did not affect a 1997 DOE decision to continue storage of non-pit surplus plutonium at...

328

NNSA's Global Threat Reduction Initiative Completes First Plutonium...  

NLE Websites -- All DOE Office Websites (Extended Search)

was the first shipment of plutonium to the United States under this program. Over 3 kilograms of plutonium was removed and included Swedish, UK, and U.S. origin material stemming...

329

Associate Directorate of Plutonium Science and Manufacturing Workforce Development Program  

E-Print Network (OSTI)

Associate Directorate of Plutonium Science and Manufacturing Workforce Development Program Issue No elements address workforce challenges faced by a Pu Enterprise Environment with a focus on Pu Sustainment. The Plutonium Science & Manufacturing Summer Student Program (PSMSSP) supports the Laboratory's need

330

The design and evaluation of an international plutonium storage system  

E-Print Network (OSTI)

To address the proliferation risk of separated plutonium, a technical and institutional design of an international plutonium storage system (IPSS) is presented. The IPSS is evaluated from two perspectives: its ability to ...

Bae, Eugene

2001-01-01T23:59:59.000Z

331

The United States Plutonium Balance, 1944-2009 | National Nuclear...  

National Nuclear Security Administration (NNSA)

The United States Plutonium Balance, 1944-2009 The United States has released an inventory of its plutonium balances from 1944 through 2009. The document serves as an update...

332

Plutonium Chemistry in the UREX+ Separation Processes  

SciTech Connect

The project "Plutonium Chemistry in the UREX+ Separation Processes is led by Dr. Alena Paulenova of Oregon State University under collaboration with Dr. George Vandegrift of ANL and Dr. Ken Czerwinski of the University of Nevada at Las Vegas. The objective of the project is to examine the chemical speciation of plutonium in UREX+ (uranium/tributylphosphate) extraction processes for advanced fuel technology. Researchers will analyze the change in speciation using existing thermodynamics and kinetic computer codes to examine the speciation of plutonium in aqueous and organic phases. They will examine the different oxidation states of plutonium to find the relative distribution between the aqueous and organic phases under various conditions such as different concentrations of nitric acid, total nitrates, or actinide ions. They will also utilize techniques such as X-ray absorbance spectroscopy and small-angle neutron scattering for determining plutonium and uranium speciation in all separation stages. The project started in April 2005 and is scheduled for completion in March 2008.

ALena Paulenova; George F. Vandegrift, III; Kenneth R. Czerwinski

2009-10-01T23:59:59.000Z

333

Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant  

Science Conference Proceedings (OSTI)

During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site`s defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site`s N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX`s physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail.

Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J. [Los Alamos Technical Associates, Inc., NM (US); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (US)

1993-04-01T23:59:59.000Z

334

DOE nuclear material packaging manual: storage container requirements for plutonium oxide materials  

Science Conference Proceedings (OSTI)

Loss of containment of nuclear material stored in containers such as food-pack cans, paint cans, or taped slip lid cans has generated concern about packaging requirements for interim storage of nuclear materials in working facilities such as the plutonium facility at Los Alamos National Laboratory (LANL). In response, DOE has recently issued DOE M 441.1 'Nuclear Material Packaging Manual' with encouragement from the Defense Nuclear Facilities Safety Board. A unique feature compared to transportation containers is the allowance of filters to vent flammable gases during storage. Defining commonly used concepts such as maximum allowable working pressure and He leak rate criteria become problematic when considering vented containers. Los Alamos has developed a set of container requirements that are in compliance with 441.1 based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide. The pre and post drop-test He leak rates depend upon container size as well as the material contents. For containers that are routinely handled, ease of handling and weight are a major consideration. Relatively thin-walled containers with flat bottoms are desired yet they cannot be He leak tested at a differential pressure of one atmosphere due to the potential for plastic deformation of the flat bottom during testing. The He leak rates and He leak testing configuration for containers designed for plutonium bearing materials will be presented. The approach to meeting the other manual requirements such as corrosion and thermal degradation resistance will be addressed. The information presented can be used by other sites to evaluate if their conditions are bounded by LANL requirements when considering procurement of 441.1 compliant containers.

Veirs, D Kirk [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

335

Plutonium metal and alloy preparation by molten chloride reduction  

Science Conference Proceedings (OSTI)

Satisfactory reduction of molten plutonium trichloride (pure and in combination with 20 wt % sodium chloride) by calcium, lanthanum, and cerium has been demonstrated on the 10-g scale. The yields were satisfactory for this scale of operation, and it is indicated that these reductions may be useful for large-scale operations. Significant separations of plutonium from rare earth impurities was demonstrated for lanthanum and cerium reductions. Preparation of plutonium-cerium and plutonium-cerium-cobalt alloys during reduction was also demonstrated.

Reavis, J.G.

1984-01-01T23:59:59.000Z

336

Independent Activity Report, Hanford Plutonium Finishing Plant- May 2012  

Energy.gov (U.S. Department of Energy (DOE))

Criticality Safety Information Meeting for the Hanford Plutonium Finishing Plant [HIAR-RL-2012-05-14

337

COLUMBIC OXIDE ADSORPTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM IONS  

DOE Patents (OSTI)

A process is described for separating plutonium ions from a solution of neutron irradiated uranium in which columbic oxide is used as an adsorbert. According to the invention the plutonium ion is selectively adsorbed by Passing a solution containing the plutonium in a valence state not higher than 4 through a porous bed or column of granules of hydrated columbic oxide. The adsorbed plutonium is then desorbed by elution with 3 N nitric acid.

Beaton, R.H.

1959-07-14T23:59:59.000Z

338

U.S. and Russia Sign Plutonium Disposition Agreement | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plutonium Disposition Agreement | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

339

PROCESS OF ELIMINATING HYDROGEN PEROXIDE IN SOLUTIONS CONTAINING PLUTONIUM VALUES  

DOE Patents (OSTI)

A procedure is given for peroxide precipitation processes for separating and recovering plutonium values contained in an aqueous solution. When plutonium peroxide is precipitated from an aqueous solution, the supernatant contains appreciable quantities of plutonium and peroxide. It is desirable to process this solution further to recover plutonium contained therein, but the presence of the peroxide introduces difficulties; residual hydrogen peroxide contained in the supernatant solution is eliminated by adding a nitrite or a sulfite to this solution.

Barrick, J.G.; Fries, B.A.

1960-09-27T23:59:59.000Z

340

Plutonium Isotopic Measurements by Gamma-Ray Spectroscopy  

SciTech Connect

The nondestructive assay of plutonium is important as a safeguard tool in accounting for stategic nuclear material. Several nondestructive assay techniques, e.g., calorimetry and spontaneous fission assay detectors, require a knowledge of plutonium and americium isotopic ratios to convert their raw data to total grams of plutonium. This paper describes a nondestructive technique for calculating plutonium-238, plutonium-240, plutonium-241 and americium-241 relative to plutonium-239 from measured peak areas in the high resolution gamma-ray spectra of solid plutonium samples. Gamma-ray attenuation effects have been minimized by selecting sets of neighboring peaks in the spectrum whose components are due to the different isotopes. Since the detector efficiencies are approximately the same for adjacent peaks, the accuracy of the isotopic ratios are dependent on the half-lives, branching intensities and measured peak areas. The data presented describes the results obtained by analyzing gamma-ray spectra in the energy region from 120 to 700 keV. The majority of the data analyzed was obtained from plutonium material containing 6% plutonium-240. Sample weights varied from 0.25 g to approximately 1.2 kg. The methods have also been applied to plutonium samples containing up to 23% plutonium-240 with weights of 0.25 to 200g. Results obtained by gamma-ray spectroscopy are compared to chemical analyses of aliquots taken from the bulk samples.

Haas, Francis X.; Lemming, John F.

1976-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Method for dissolving delta-phase plutonium  

DOE Patents (OSTI)

A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate and potassium fluoride (HAN) to a temperature between 40 and 70 C, then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not ore than 2M, the HAN approximately 0.66M, and the potassium fluoride 1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

Karraker, D.G.

1992-12-31T23:59:59.000Z

342

Excess plutonium disposition: The deep borehole option  

SciTech Connect

This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.

Ferguson, K.L.

1994-08-09T23:59:59.000Z

343

REVIEW OF PLUTONIUM OXIDATION LITERATURE  

Science Conference Proceedings (OSTI)

A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles ( 250 {micro}m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for metal temperatures in the 500-600 C range.

Korinko, P.

2009-11-12T23:59:59.000Z

344

REVIEW OF PLUTONIUM OXIDATION LITERATURE  

SciTech Connect

A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles (<15 {micro}m), moderately sized particles (15 < x < 250 {micro}m) and large particles (> 250 {micro}m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for metal temperatures in the 500-600 C range.

Korinko, P.

2009-11-12T23:59:59.000Z

345

Alternating layers of plutonium and lead or indium as surrogate for plutonium  

Science Conference Proceedings (OSTI)

Elemental plutonium (Pu) assumes more crystal structures than other elements, plausibly due to bonding f electrons becoming non-bonding. Complex geometries hamper understanding of the transition in Pu, but calculations predict this transition in a system with simpler geometry: alternating layers either of plutonium and lead or of plutonium and indium. Here the transition occurs via a pairing-up of atoms within Pu layers. Calculations stepping through this pairing-up reveal valuable details of the transition, for example that the transition from bonding to non-bonding proceeds smoothly.

Rudin, Sven Peter [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

346

Nuclear Facilities Production Facilities  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for...

347

Dehydration of plutonium or neptunium trichloride hydrate  

DOE Patents (OSTI)

A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.

Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

1992-03-24T23:59:59.000Z

348

Mobile cinema  

E-Print Network (OSTI)

This thesis develops techniques and methods that extend the art and craft of storytelling, and in particular enable the creation of mobile cinema. Stories are always constrained by the medium in which they are told and the ...

Pan, Pengkai, 1972-

2004-01-01T23:59:59.000Z

349

First Plutonium Bomb Successfully Tested | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Plutonium Bomb Successfully Tested | National Nuclear Security Plutonium Bomb Successfully Tested | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > First Plutonium Bomb Successfully Tested First Plutonium Bomb Successfully Tested July 16, 1945 Los Alamos, NM First Plutonium Bomb Successfully Tested

350

First Plutonium Bomb Successfully Tested | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Plutonium Bomb Successfully Tested | National Nuclear Security Plutonium Bomb Successfully Tested | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > First Plutonium Bomb Successfully Tested First Plutonium Bomb Successfully Tested July 16, 1945 Los Alamos, NM First Plutonium Bomb Successfully Tested

351

SEPARATION OF PLUTONIUM FROM LANTHANUM BY CHELATION-EXTRACTION  

DOE Patents (OSTI)

Plutonium can be separated from a mixture of plutonlum and lanthanum in which the lanthanum to plutonium molal ratio ls at least five by adding the ammonium salt of N-nitrosoarylhydroxylamine to an aqueous solution having a pH between about 3 and 0.2 and containing the plutonium in a valence state of at least +3, to form a plutonium chelate compound of N-nitrosoarylhydroxylamine. The plutonium chelate compound may be recovered from the solution by extracting with an immiscible organic solvent such as chloroform.

James, R.A.; Thompson, S.G.

1958-12-01T23:59:59.000Z

352

Assessment of the risk of transporting plutonium oxide and liquid plutonium nitrate by truck  

SciTech Connect

A methodology for assessing the risk in transporting radioactive materials and the results of the initial application of the methodology to shipment of plutonium by truck are presented. (LK)

1975-08-01T23:59:59.000Z

353

Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and Waste Treatment, Storage and Disposal Activities  

SciTech Connect

A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46 Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.

Jardine, L J; Borisov, G B

2004-07-21T23:59:59.000Z

354

Plutonium Decontamination of Uranium using CO2 Cleaning  

SciTech Connect

A concern of the Department of Energy (DOE) Environmental Management (EM) and Defense Programs (DP), and of the Los Alamos National Laboratory (LANL) and the Lawrence Livermore National Laboratory (LLNL), is the disposition of thousands of legacy and recently generated plutonium (Pu)-contaminated, highly enriched uranium (HEU) parts. These parts take up needed vault space. This presents a serious problem for LLNL, as site limit could result in the stoppage of future weapons work. The Office of Fissile Materials Disposition (NN-60) will also face a similar problem as thousands of HEU parts will be created with the disassembly of site-return pits for plutonium recovery when the Pit Disassembly and Conversion Facility (PDCF) at the Savannah River Site (SRS) becomes operational. To send HEU to the Oak Ridge National Laboratory and the Y-12 Plant for disposition, the contamination for metal must be less than 20 disintegrations per minute (dpm) of swipable transuranic per 100 cm{sup 2} of surface area or the Pu bulk contamination for oxide must be less than 210 parts per billion (ppb). LANL has used the electrolytic process on Pu-contaminated HEU weapon parts with some success. However, this process requires that a different fixture be used for every configuration; each fixture cost approximately $10K. Moreover, electrolytic decontamination leaches the uranium metal substrate (no uranium or plutonium oxide) from the HEU part. The leaching rate at the uranium metal grain boundaries is higher than that of the grains and depends on the thickness of the uranium oxide layer. As the leaching liquid flows past the HEU part, it carries away plutonium oxide contamination and uranium oxide. The uneven uranium metal surface created by the leaching becomes a trap for plutonium oxide contamination. In addition, other DOE sites have used CO{sub 2} cleaning for Pu decontamination successfully. In the 1990's, the Idaho National Engineering Laboratory investigated this technology and showed that CO{sub 2} pellet blasting (or CO{sub 2} cleaning) reduced both fixed and smearable contamination on tools. In 1997, LLNL proved that even tritium contamination could be removed from a variety of different matrices using CO{sub 2}cleaning. CO{sub 2} cleaning is a non-toxic, nonconductive, nonabrasive decontamination process whose primary cleaning mechanisms are: (1) Impact of the CO{sub 2} pellets loosens the bond between the contaminant and the substrate. (2) CO{sub 2} pellets shatter and sublimate into a gaseous state with large expansion ({approx}800 times). The expanding CO{sub 2} gas forms a layer between the contaminant and the substrate that acts as a spatula and peels off the contaminant. (3) Cooling of the contaminant assists in breaking its bond with the substrate. Thus, LLNL conducted feasibility testing to determine if CO{sub 2} pellet blasting could remove Pu contamination (e.g., uranium oxide) from uranium metal without abrading the metal matrix. This report contains a summary of events and the results of this test.

Blau, M

2002-12-01T23:59:59.000Z

355

Plutonium Decontamination of Uranium using CO2 Cleaning  

SciTech Connect

A concern of the Department of Energy (DOE) Environmental Management (EM) and Defense Programs (DP), and of the Los Alamos National Laboratory (LANL) and the Lawrence Livermore National Laboratory (LLNL), is the disposition of thousands of legacy and recently generated plutonium (Pu)-contaminated, highly enriched uranium (HEU) parts. These parts take up needed vault space. This presents a serious problem for LLNL, as site limit could result in the stoppage of future weapons work. The Office of Fissile Materials Disposition (NN-60) will also face a similar problem as thousands of HEU parts will be created with the disassembly of site-return pits for plutonium recovery when the Pit Disassembly and Conversion Facility (PDCF) at the Savannah River Site (SRS) becomes operational. To send HEU to the Oak Ridge National Laboratory and the Y-12 Plant for disposition, the contamination for metal must be less than 20 disintegrations per minute (dpm) of swipable transuranic per 100 cm{sup 2} of surface area or the Pu bulk contamination for oxide must be less than 210 parts per billion (ppb). LANL has used the electrolytic process on Pu-contaminated HEU weapon parts with some success. However, this process requires that a different fixture be used for every configuration; each fixture cost approximately $10K. Moreover, electrolytic decontamination leaches the uranium metal substrate (no uranium or plutonium oxide) from the HEU part. The leaching rate at the uranium metal grain boundaries is higher than that of the grains and depends on the thickness of the uranium oxide layer. As the leaching liquid flows past the HEU part, it carries away plutonium oxide contamination and uranium oxide. The uneven uranium metal surface created by the leaching becomes a trap for plutonium oxide contamination. In addition, other DOE sites have used CO{sub 2} cleaning for Pu decontamination successfully. In the 1990's, the Idaho National Engineering Laboratory investigated this technology and showed that CO{sub 2} pellet blasting (or CO{sub 2} cleaning) reduced both fixed and smearable contamination on tools. In 1997, LLNL proved that even tritium contamination could be removed from a variety of different matrices using CO{sub 2}cleaning. CO{sub 2} cleaning is a non-toxic, nonconductive, nonabrasive decontamination process whose primary cleaning mechanisms are: (1) Impact of the CO{sub 2} pellets loosens the bond between the contaminant and the substrate. (2) CO{sub 2} pellets shatter and sublimate into a gaseous state with large expansion ({approx}800 times). The expanding CO{sub 2} gas forms a layer between the contaminant and the substrate that acts as a spatula and peels off the contaminant. (3) Cooling of the contaminant assists in breaking its bond with the substrate. Thus, LLNL conducted feasibility testing to determine if CO{sub 2} pellet blasting could remove Pu contamination (e.g., uranium oxide) from uranium metal without abrading the metal matrix. This report contains a summary of events and the results of this test.

Blau, M

2002-12-01T23:59:59.000Z

356

Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options  

Science Conference Proceedings (OSTI)

The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

Brownson, D.A.; Hanson, D.J.; Blackman, H.S. [and others

1993-06-01T23:59:59.000Z

357

Project Plan Remove Special Nuclear Material (SNM) from Plutonium Finishing Plant (PFP) Project  

Science Conference Proceedings (OSTI)

This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Remove SNM Materials. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617, Rev.0. This project plan is the top-level definitive project management document for the PFP Remove SNM Materials project. It specifies the technical, schedule, requirements and the cost baseline to manage the execution of the Remove SNM Materials project. Any deviation to the document must be authorized through the appropriate change control process. The Remove SNM Materials project provides the necessary support and controls required for DOE-HQ, DOE-RL, BWHC, and other DOE Complex Contractors the path forward to negotiate shipped/receiver agreements, schedule shipments, and transfer material out of PFP to enable final deactivation.

BARTLETT, W.D.

1999-09-14T23:59:59.000Z

358

PROJECTIZING AN OPERATING NUCLEAR FACILITY  

SciTech Connect

This paper will discuss the evolution of an operations-based organization to a project-based organization to facilitate successful deactivation of a major nuclear facility. It will describe the plan used for scope definition, staff reorganization, method estimation, baseline schedule development, project management training, and results of this transformation. It is a story of leadership and teamwork, pride and success. Workers at the Savannah River Site's (SRS) F Canyon Complex (FCC) started with a challenge--take all the hazardous byproducts from nearly 50 years of operations in a major, first-of-its-kind nuclear complex and safely get rid of them, leaving the facility cold, dark, dry and ready for whatever end state is ultimately determined by the United States Department of Energy (DOE). And do it in four years, with a constantly changing workforce and steadily declining funding. The goal was to reduce the overall operating staff by 93% and budget by 94%. The facilities, F Canyon and its adjoined sister, FB Line, are located at SRS, a 310-square-mile nuclear reservation near Aiken, S.C., owned by DOE and managed by Washington Group International subsidiary Washington Savannah River Company (WSRC). These facilities were supported by more than 50 surrounding buildings, whose purpose was to provide support services during operations. The radiological, chemical and industrial hazards inventory in the old buildings was significant. The historical mission at F Canyon was to extract plutonium-239 and uranium-238 from irradiated spent nuclear fuel through chemical processing. FB Line's mission included conversion of plutonium solutions into metal, characterization, stabilization and packaging, and storage of both metal and oxide forms. The plutonium metal was sent to another DOE site for use in weapons. Deactivation in F Canyon began when chemical separations activities were completed in 2002, and a cross-functional project team concept was implemented to successfully accomplish deactivation. This concept had to allow for continued operations in FB Line until 2005, while providing distinct task-oriented teams for deactivation of the FCC. Facility workers, always the most knowledgeable about any facility, were integral parts of the project team. The team defined the scope, developed a bottoms-up estimate, reorganized personnel to designated project teams, and developed a baseline schedule with about 12,000 activities. Training was implemented to prepare the facility workers to use project management tools and concepts, which were to execute the project, coordinate activities and track progress. The project budget was estimated at $579 million. The team completed F Canyon and FB Line deactivation in August 2006, four months ahead of schedule and under budget.

Adams, N

2007-07-08T23:59:59.000Z

359

Manhattan Project: More Piles and Plutonium, 1942  

Office of Scientific and Technical Information (OSTI)

"Met Lab" alumni at the University of Chicago -- Fermi is on the far left of the front row; Zinn is on Fermi's left; Anderson is on the far right of the front row; and Szilard is over Anderson's right shoulder. MORE PILES AND PLUTONIUM "Met Lab" alumni at the University of Chicago -- Fermi is on the far left of the front row; Zinn is on Fermi's left; Anderson is on the far right of the front row; and Szilard is over Anderson's right shoulder. MORE PILES AND PLUTONIUM (1942) Events > Difficult Choices, 1942 More Uranium Research, 1942 More Piles and Plutonium, 1942 Enter the Army, 1942 Groves and the MED, 1942 Picking Horses, November 1942 Final Approval to Build the Bomb, December 1942 At the University of Chicago, meanwhile, Arthur Compton had consolidated most fission research at his new Metallurgical Laboratory(Met Lab). Compton decided to combine all pile research by stages. He continued to fund Enrico Fermi's pile research at Columbia University, while Fermi began preparations to move his work to Chicago. Funding continued as well for the theoretical work of Eugene Wigner at Princeton and of J. Robert Oppenheimer at the University of California, Berkeley. Compton also appointed Leo Szilard head of materials acquisition and arranged for Glenn T. Seaborg to move his plutonium work from Berkeley to Chicago in April 1942.

360

Plutonium isotope ratio variations in North America  

Science Conference Proceedings (OSTI)

Historically, approximately 12,000 TBq of plutonium was distributed throughout the global biosphere by thermo nuclear weapons testing. The resultant global plutonium fallout is a complex mixture whose {sup 240}Pu/{sup 239}Pu atom ratio is a function of the design and yield of the devices tested. The average {sup 240}Pu/{sup 239}Pu atom ratio in global fallout is 0.176 + 014. However, the {sup 240}Pu/{sup 239}Pu atom ratio at any location may differ significantly from 0.176. Plutonium has also been released by discharges and accidents associated with the commercial and weapons related nuclear industries. At many locations contributions from this plutonium significantly alters the {sup 240}Pu/{sup 239}Pu atom ratios from those observed in global fallout. We have measured the {sup 240}Pu/{sup 239}Pu atom ratios in environmental samples collected from many locations in North America. This presentation will summarize the analytical results from these measurements. Special emphasis will be placed on interpretation of the significance of the {sup 240}Pu/{sup 239}Pu atom ratios measured in environmental samples collected in the Arctic and in the western portions of the United States.

Steiner, Robert E [Los Alamos National Laboratory; La Mont, Stephen P [Los Alamos National Laboratory; Eisele, William F [Los Alamos National Laboratory; Fresquez, Philip R [Los Alamos National Laboratory; Mc Naughton, Michael [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory

2010-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

RECOVERY OF PLUTONIUM BY CARRIER PRECIPITATION  

DOE Patents (OSTI)

The recovery of plutonium from an aqueous nitric acid Zr-containing solution of 0.2 to 1N acidity is accomplished by adding fluoride anions (1.5 to 5 mg/l), and precipitating the Pu with an excess of H/sub 2/0/sub 2/ at 53 to 65 deg C. (AEC)

Goeckermann, R.H.

1961-04-01T23:59:59.000Z

362

Development of the plutonium oxide vitrification system  

Science Conference Proceedings (OSTI)

Repository disposal of plutonium in a suitable, immobilized form is being considered as one option for the disposition of surplus weapons-usable plutonium. Accelerated development efforts were completed in 1997 on two potential immobilization forms to facilitate downselection to one form for continued development. The two forms studied were a crystalline ceramic based on Synroc technology and a lanthanide borosilicate (LaBS) glass. As part of the glass development program, melter design activities and component testing were completed to demonstrate the feasibility of using glass as an immobilization medium. A prototypical melter was designed and built in 1997. The melter vessel and drain tube were constructed of a Pt/Rh alloy. Separate induction systems were used to heat the vessel and drain tube. A Pt/Rh stirrer was incorporated into the design to facilitate homogenization of the melt. Integrated powder feeding and off-gas systems completed the overall design. Concurrent with the design efforts, testing was conducted using a plutonium surrogate LaBS composition in an existing (near-scale) melter to demonstrate the feasibility of processing the LaBS glass on a production scale. Additionally, the drain tube configuration was successfully tested using a plutonium surrogate LaBS glass.

Marshall, K.M.; Marra, J.C.; Coughlin, J.T.; Calloway, T.B.; Schumacher, R.F.; Zamecnik, J.R.; Pareizs, J.M.

1998-01-01T23:59:59.000Z

363

Plutonium Management in the Medium Term  

SciTech Connect

For many years various countries with access to commercial reprocessing services have been routinely recycling plutonium as UO{sub 2}/PuO{sub 2} mixed oxide (MOX) fuel in light water reactors (LWRs). This LWR MOX recycle strategy is still widely regarded as an interim step leading to the eventual establishment of sustainable fast reactor fuel cycles. The OECD/NEA Working Party on the Physics of Plutonium Fuels and Innovative Fuel Cycles (WPPR) has recently completed a review of the technical options for plutonium management in what it refers to as the 'medium term'. For the purpose of the review, the WPPR considers the medium term to cover the period from now up to the point at which fast reactor fuel cycles are established on a commercial scale. The review identified a number of different designs of innovative plutonium fuel assemblies intended to be used in current LWR cores, in LWRs with significantly different moderation properties, as well as in high-temperature gas reactors. The full review report describes these various options and highlights their respective advantages and disadvantages. This paper briefly summarizes the main findings of the review.

Hesketh, Kevin [BNFL Nuclear Sciences and Technology Services (United Kingdom); Schlosser, Gerhard; Porsch, Dieter F. [Framatome ANP (France); Wolf, Timm [Framatome ANP (France); Koeberl, Oliver [CEA Cadarache (France); Lance, Benoit [Belgonucleaire (Belgium); Chawla, Rakesh [Paul Scherrer Institut (Switzerland); Gehin, Jess C. [Oak Ridge National Laboratory (United States); Ellis, Ron [Oak Ridge National Laboratory (United States); Uchikawa, Sadao [Japan Atomic Energy Research Institute (Japan); Sato, Osamu [Japan Atomic Energy Research Institute (Japan); Okubo, Tsutomu [Japan Atomic Energy Research Institute (Japan); Mineo, Hideaki [Japan Atomic Energy Research Institute (Japan); Yamamoto, Toru [Nuclear Power Engineering Corporation (Japan); Sagayama, Yutaka [Japan Nuclear Cycle Development Institute (Japan); Sartori, Enrico [Organization for Economic Cooperation and Development (France)

2004-12-15T23:59:59.000Z

364

NNSS Soils Monitoring: Plutonium Valley (CAU366)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

Miller Julianne J.,Mizell Steve A.,Nikolich George, Campbell Scott

2012-02-01T23:59:59.000Z

365

PLUTONIUM PURIFICATION PROCESS EMPLOYING THORIUM PYROPHOSPHATE CARRIER  

DOE Patents (OSTI)

The separation and purification of plutonium from the radioactive elements of lower atomic weight is described. The process of this invention comprises forming a 0.5 to 2 M aqueous acidffc solution containing plutonium fons in the tetravalent state and elements with which it is normally contaminated in neutron irradiated uranium, treating the solution with a double thorium compound and a soluble pyrophosphate compound (Na/sub 4/P/sub 2/O/sub 7/) whereby a carrier precipitate of thorium A method is presented of reducing neptunium and - trite is advantageous since it destroys any hydrazine f so that they can be removed from solutions in which they are contained is described. In the carrier precipitation process for the separation of plutonium from uranium and fission products including zirconium and columbium, the precipitated blsmuth phosphate carries some zirconium, columbium, and uranium impurities. According to the invention such impurities can be complexed and removed by dissolving the contaminated carrier precipitate in 10M nitric acid, followed by addition of fluosilicic acid to about 1M, diluting the solution to about 1M in nitric acid, and then adding phosphoric acid to re-precipitate bismuth phosphate carrying plutonium.

King, E.L.

1959-04-28T23:59:59.000Z

366

ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1997-08-01T23:59:59.000Z

367

DOE Permitting Hydrogen Facilities: Using Fuel Cells for Backup...  

NLE Websites -- All DOE Office Websites (Extended Search)

cells provide highly effective backup to power these facilities in event of electrical grid power outages. The telecommunications industry has expanded rapidly as mobile...

368

Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques  

E-Print Network (OSTI)

LBNL- Determining Plutonium Mass in Spent Fuel withSwinhoe. Determination of Plutonium Content in Spent FuelS. Tobin, Measurement of Plutonium in Spent Nuclear Fuel by

Tobin, S. J.

2010-01-01T23:59:59.000Z

369

Low-level detection and quantification of Plutonium(III, IV, V, and VI) using a liquid core waveguide  

E-Print Network (OSTI)

R. , Determination of Plutonium Oxidation States at TraceThe Absorption Spectra of Plutonium Ions in Perchloric Acidor company? Yes/No Plutonium Futures The Science

Wilson, Richard E.; Hu, Yung-Jin; Nitsche, Heino

2003-01-01T23:59:59.000Z

370

PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS  

SciTech Connect

The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The incorporation of 1 wt % Pu in the glass did not adversely impact glass viscosity (as assessed using Hf surrogate) or glass durability. Finally, evaluation of DWPF glass pour samples that had Pu concentrations below the 897 g/m{sup 3} limit showed that Pu concentrations in the glass pour stream were close to targeted compositions in the melter feed indicating that Pu neither volatilized from the melt nor stratified in the melter when processed in the DWPF melter.

Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

2011-01-04T23:59:59.000Z

371

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

August 31, 2008 [Facility News] August 31, 2008 [Facility News] Phase 2 of Orbiting Carbon Observatory Field Campaign Begins Bookmark and Share A camera, weather station, and sun tracker with a protective dome are located on the roof of the fully automated FTS mobile laboratory. Inside the shelter, the spectrometer receives the reflected solar beam from the sun tracker, while the main computer system operates all the instruments and acquires the data. A camera, weather station, and sun tracker with a protective dome are located on the roof of the fully automated FTS mobile laboratory. Inside the shelter, the spectrometer receives the reflected solar beam from the sun tracker, while the main computer system operates all the instruments and acquires the data. The Orbiting Carbon Observatory, or OCO, is a National Aeronautics and

372

Technology and fabrication of plutonium-238 radionuclide heat sources  

Science Conference Proceedings (OSTI)

This paper outlines a brief technical description of the facility for production of plutonium-238 and fabrication of Radionuclide Heat Sources (RHS) containing Pu-238. Technical capabilities of the RHS fabrication facility are presented. The results of development of the RHS design for sea application are discussed. RHS fuel pellet comprises the tantalum shell with an annular slot intended for release of radiogenic helium and the Pu-238 dioxide core with reinforcing elements inside which contact with the shell. RHS is a double encapsulation consisting of the inner {open_quote}{open_quote}power{close_quote}{close_quote} capsule and the outer corrosion-resistant capsule. The chromium-nickel-molybdenum XH65MB alloy which is equivalent to Hastelloy-C alloy has been selected as a material for both capsules. Upon expiration of working life, RHS design is capable of withstanding the internal pressure of radiogenic helium at 1073 K within 30 minutes and the external hydrostatic pressure of 100 MPa at normal temperature. {copyright} {ital 1996 American Institute of Physics.}

Malikh, Y.A.; Aldoshin, A.I. [Production Association Mayak, 31 Lenin Street, Ozyorsk, 456780 (Russia); Danilkin, E.A. [The State Scientific Center of Russia, 5 Rogov Street, Moscow (Russia)

1996-03-01T23:59:59.000Z

373

A Note on the Reaction of Hydrogen and Plutonium  

DOE Green Energy (OSTI)

Plutonium hydride has many practical and experimental purposes. The reaction of plutonium and hydrogen has interesting characteristics, which will be explored in the following analysis. Plutonium is a radioactive actinide metal that emits alpha particles. When plutonium metal is exposed to air, the plutonium oxides and hydrides, and the volume increases. PuH{sub 2} and Pu{sub 2}O{sub 3} are the products. Hydrogen is a catalyst for plutonium's corrosion in air. The reaction can take place at room temperature because it is fairly insensitive to temperature. Plutonium hydride, or PuH{sub 2}, is black and metallic. After PuH{sub 2} is formed, it quickly flakes off and burns. The reaction of hydrogen and plutonium is described as pyrophoric because the product will spontaneously ignite when oxygen is present. This tendency must be considered in the storage of metal plutonium. The reaction is characterized as reversible and nonstoichiometric. The reaction goes as such: Pu + H{sub 2} {yields} PuH{sub 2}. When PuH{sub 2} is formed, the hydrogen/plutonium ratio is between 2 and 2.75 (approximately). As more hydrogen is added to the system, the ratio increases. When the ratio exceeds 2.75, PuH{sub 3} begins to form along with PuH{sub 2}. Once the ratio surpasses 2.9, only PuH{sub 3} remains. The volume of the plutonium sample increases because of the added hydrogen and the change in crystal structure which the sample undergoes. As more hydrogen is added to a system of metal plutonium, the crystal structure evolves. Plutonium has a crystal structure classified as monoclinic. A monoclinic crystal structure appears to be a rectangular prism. When plutonium reacts with hydrogen, the product PuH{sub 2}, becomes a fluorite structure. It can also be described as a face centered cubic structure. PuH{sub 3} forms a hexagonal crystal structure. As plutonium evolves from metal plutonium to plutonium hydride to plutonium trihydride, the crystal structure evolves from monoclinic to fluorite to hexagonal. This change in crystal structure as a result of adding hydrogen is a shared characteristic with other actinide elements. Americium is isostructural with plutonium because they both form cubic dihyrides and hexagonal trihydrides. Reacting hydrogen with plutonium has the practical application of separating plutonium from other materials that don't react as well with hydrogen. When plutonium is placed in a chamber where there is very little oxygen, it can react with hydrogen without igniting. The hydrogen plutonium reaction can then be reversed, thus regaining the separated plutonium. Another application of this reaction is that it can be used to predict how plutonium reacts with other substances. Deuterium and tritium are two isotopes of hydrogen that are of interest. They are known to react likewise to hydrogen because they have similar properties. The reaction of plutonium and isotopes of hydrogen can prove to be very informative.

Noone, Bailey C [Los Alamos National Laboratory

2012-08-15T23:59:59.000Z

374

ARM - ARM Facility at EGU 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

CenterARM Facility at EGU 2012 CenterARM Facility at EGU 2012 Media Contact Lynne Roeder lynne-dot-roeder-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes89 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 BAECC 1 BBOP 4 MAGIC 12 MC3E 17 SGP 2 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field Notes Blog feed Events feed Employment Research Highlights Data Announcements Education News Archive What's this? Social Media Guidance ARM Facility at EGU 2012 At the 2012 European Geophysical Union General Assembly in Vienna, the ARM Climate Research Facility is hosting a booth located near the escalators in the Exhibition Entrance Hall. In their first time attending the assembly,

375

Lymph node clearance of plutonium from subcutaneous wounds in beagles  

SciTech Connect

The lymph node clearance of /sup 239/Pu O/sub 2/ administered as insoluble particles from subcutaneous implants was studied in adult beagles to simulate accidental contamination of hand wounds. External scintillation data were collected from the popliteal lymph nodes of each dog after 9.2 to 39.4 mu Ci of plutonium oxide was subcutaneously implanted into the left or right hind paws. The left hind paw was armputated 4 weeks after implantation to prevent continued deposition of plutonium oxide particles in the left popliteal lymph node. Groups of 3 dogs were sacrificed 4, 8, 16, and 32 weeks after plutonium implantation for histopathologic, electron microscopic, and radiochemical analysis of regional lymph nodes. An additional group of dogs received treatment with the chelating agent diethyenetriaminepentaacetic acid (DTPA). Plutonium rapidly accumulated in the popliteal lymph nodes after subcutaneous injection into the hind paw, and 1 to 10% of the implant dose was present in the popliteal lymph nodes at the time of necropsy. Histopathologic changes in the popliteal lymph nodes with plutonium particles were characterized primarily by reticular cell hyperplasia, increased numbers of macrophages, necrosis, and fibroplasia. Eventually, the plutonium particles became sequestered by scar tissue that often replaced the entire architecture of the lymph node. Light microscopic autoradiographs of the popliteal lymph nodes showed a time-related increase in number of alpha tracks per plutonium source. Electron microscopy showed that the plutonium particles were aggregated in phagolysosomes of macrophages. There was slight clearance of plutonium from the popliteal lymph nodes of dogs monitored for 32 weeks. The clearance of plutonium particles from the popliteal lymph nodes was associated with necrosis of macrophages. The external iliac lymph nodes contained fewer plutonium particles than the popliteal lymph nodes and histopathologic changes were less severe. The superficial inguinal lymph nodes of one dog contained appreciable amounts of plutonium. Treatment with diethylenetriaminepentaacetic acid (DTPA) did not have a measurable effect on the clearance of plutonium from the popliteal lymph nodes. (60 references) (auth)

Dagle, G.E.

1973-08-01T23:59:59.000Z

376

Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

FLEX lab image, windows testing lab, scientist inside a lab, Research Facilities EETD maintains advanced research and test facilities for buildings, energy technologies, air...

377

Licensed fuel facility status report: Inventory difference data, January 1986-June 1986  

SciTech Connect

NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233.

1987-02-01T23:59:59.000Z

378

Licensed fuel facility status report: Inventory difference data, July 1986-December 1986  

SciTech Connect

NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233.

1987-08-01T23:59:59.000Z

379

Mobile Window Thermal Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Window Thermal Test (MoWiTT) Facility Mobile Window Thermal Test (MoWiTT) Facility winter.jpg (469135 bytes) The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems is one strategy for reducing the energy use of buildings. But the net energy flowing through a window is a combination of temperature- driven thermal flows and transmission of incident solar energy, both of which vary with time. U-factor and solar heat gain coefficient (SHGC), the window properties that control these flows, depend partly on ambient conditions. Window energy flows can affect how much energy a building uses, depending on when the window flows are available to help meet other energy demands within the building, and when they are adverse, adding to building energy use. This leads to a second strategy for reducing building energy use: using the beneficial solar gain available through a window, either for winter heating or for daylighting, while minimizing adverse flows.

380

Department of Energy Announces Decision to Consolidate Surplus Plutonium in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decision to Consolidate Surplus Decision to Consolidate Surplus Plutonium in South Carolina Department of Energy Announces Decision to Consolidate Surplus Plutonium in South Carolina September 5, 2007 - 3:16pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced its decision to consolidate surplus, non-pit plutonium at its Savannah River Site (SRS) in South Carolina, greatly reducing storage costs and significantly enhancing security across the nation's weapons complex. DOE will begin shipping the surplus, non-pit plutonium no sooner than 30 days from today and under the plan this surplus plutonium is expected to be shipped to SRS by 2010. "Consolidation is a key part of the Department's efforts to properly manage surplus plutonium and follows our dedication to non-proliferation,

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-S2: Surplus Plutonium Disposition Supplemental 3-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement Summary This EIS analyzes the potential environmental impacts associated with changes to the surplus plutonium disposition program, including changes to the inventory of surplus plutonium and proposed new alternatives. The original EIS is available here. For more information, see: www.nnsa.energy.gov/nepa/spdsupplementaleis Public Comment Opportunities None available at this time. Documents Available for Download April 25, 2013 EIS-0283-S2: Interim Action Determination Surplus Plutonium Disposition Supplemental Environmental Impact Statement (K-Area Materials Storage (KAMS) Area Expansion at the Savannah River Site)

382

Plutonium disposition via immobilization in ceramic or glass  

SciTech Connect

The management of surplus weapons plutonium is an important and urgent task with profound environmental, national, and international security implications. In the aftermath of the Cold War, Presidential Policy Directive 13, and various analyses by renown scientific, technical, and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths for the long term disposition of surplus weapons- usable plutonium. The central goal of this effort is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons as the much larger and growing stock of plutonium contained in spent fuel from civilian reactors. One disposition option being considered for surplus plutonium is immobilization, in which the plutonium would be incorporated into a glass or ceramic material that would ultimately be entombed permanently in a geologic repository for high-level waste.

Gray, L.W.; Kan, T.; Shaw, H.F.; Armantrout, A.

1997-03-05T23:59:59.000Z

383

Department of Energy Announces Decision to Consolidate Surplus Plutonium in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Announces Decision to Consolidate Surplus Department of Energy Announces Decision to Consolidate Surplus Plutonium in South Carolina Department of Energy Announces Decision to Consolidate Surplus Plutonium in South Carolina September 5, 2007 - 3:16pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced its decision to consolidate surplus, non-pit plutonium at its Savannah River Site (SRS) in South Carolina, greatly reducing storage costs and significantly enhancing security across the nation's weapons complex. DOE will begin shipping the surplus, non-pit plutonium no sooner than 30 days from today and under the plan this surplus plutonium is expected to be shipped to SRS by 2010. "Consolidation is a key part of the Department's efforts to properly manage surplus plutonium and follows our dedication to non-proliferation,

384

Concentration and purification of plutonium or thorium  

DOE Patents (OSTI)

In this invention a first solution obtained from such as a plutonium/thorium purification process or the like, containing plutonium (Pu) and/or thorium (Th) in such as a low nitric acid (HNO.sub.3) concentration may have the Pu and/or Th separated and concentrated by passing an electrical current from a first solution having disposed therein an anode to a second solution having disposed therein a cathode and separated from the first solution by a cation permeable membrane, the Pu or Th cation permeating the cation membrane and forming an anionic complex within the second solution, and electrical current passage affecting the complex formed to permeate an anion membrane separating the second solution from an adjoining third solution containing disposed therein an anode, thereby effecting separation and concentration of the Pu and/or Th in the third solution.

Hayden, John A. (Arvada, CO); Plock, Carl E. (Golden, CO)

1976-01-01T23:59:59.000Z

385

CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES  

SciTech Connect

This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

WITTEKIND WD

2007-10-03T23:59:59.000Z

386

The Plutonium-Copper Phase Diagram  

SciTech Connect

The constitution of the plutonium-copper binary alloy as determined by differential thermal analysis is presented. The system is characterized by two congruent melting compounds, PuCu2 (m.p. 865 degrees C.) and Pu4Cu17 (m.p. 954 degrees C.); two incongruent melting compounds, PuCu4 (m.p. 906 degrees C.) and Pu2Cu11 (m.p. 926 degrees C.); three eutectics, 96 atom per cent copper (m.p. 626 degrees), 70.5 atom per cent copper (m.p. 849 degrees C.), and 91 atom per cent copper (m.p. 881 degrees C.); and two peritectics at 75 atom per cent (m.p. 906 degrees C.) and 85.5 atom per cent (m.p. 926 degrees C.). Solid solution was found above 97 atom per cent plutonium. The apparatus, the method of investigation, and the binary alloy phase diagram is discussed.

Rhinehammer, T. B.; Etter, D. E.; Jones, L. V.

1960-01-01T23:59:59.000Z

387

REMOTE CONTROL EQUIPMENT FOR PLUTONIUM METAL PRODUCTION  

SciTech Connect

Design and construction of remote control equipment for plutonium metal production are described. Criteria for the design of the equipment included the following: rubber gloves were to be completely eliminated; all mechanisms were to be built as integral units to facilitate replacement through use of the plastic- bag technique; no accessory equipment such as switches, valves, piping, or cylinders were to be inside the contaminated enclosure unless required to handle the plutonium; and all units were to be tested in mockups before final design. The chemical process, general layout, and operating function are outlined. Descriptions are given of all mechanical units, electrical systems, hydroxide slurry systems, ventilation systems, and chemical tanks and manifolds. (W.L.H.)

Hazen, W.C.

1951-10-01T23:59:59.000Z

388

Plutonium stabilization and handling (PuSH)  

SciTech Connect

This Functional Design Criteria (FDC) addresses construction of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. The major sections of the project are: site preparation; SPS Procurement, Installation, and Testing; storage vault modification; and characterization equipment additions. The SPS will be procured as part of a Department of Energy nationwide common procurement. Specific design crit1460eria for the SPS have been extracted from that contract and are contained in an appendix to this document.

Weiss, E.V.

1997-01-23T23:59:59.000Z

389

Facility Microgrids  

Science Conference Proceedings (OSTI)

Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

2005-05-01T23:59:59.000Z

390

Residential Mobility and Latino Political Mobilization  

E-Print Network (OSTI)

Brians, Craig Leonard. 1997. Residential Mobility, VoterHighton, Benjamin. 2000. "Residential Mobility, Community2003. Language Choice, Residential Stability and Voting

Ramirez, Ricardo

2005-01-01T23:59:59.000Z

391

STUDIES IN THE NUCLEAR CHEMISTRY OF PLUTONIUM, AMERICIUM, AND CURIUM AND MASSES OF THE HEAVIEST ELEMENTS  

E-Print Network (OSTI)

Nuclear Energy Series, Plutonium Project Record, Vol. 14B,Nuclear Energy Series, Plutonium Project Record, Vol. 9, p.Nuclear Energy Series, Plutonium Project Record, Vol. l4B,

Glass, Richard Alois

2011-01-01T23:59:59.000Z

392

METHOD FOR RECOVERING PLUTONIUM VALUES FROM SOLUTION USING A BISMUTH HYDROXIDE CARRIER PRECIPITATE  

DOE Patents (OSTI)

Carrier precipitation processes for separating plutonium values from aqueous solutions are described. In accordance with the invention a bismuth hydroxide precipitate is formed in the plutonium-containing solution, thereby carrying plutonium values from the solution.

Faris, B.F.

1961-04-25T23:59:59.000Z

393

Complexation and redox interactions between aqueous plutonium and manganese oxide interfaces  

E-Print Network (OSTI)

The Chemistry of Plutonium (American Nuclear Society,XAS studies with sorbed plutonium on tuff, J. Synch. Rad.state determination of plutonium aquo ions using x-ray

2001-01-01T23:59:59.000Z

394

Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel  

E-Print Network (OSTI)

and S.J. Thompson,Determining Plutonium in Spent Fuel withTobin, Determination of Plutonium Content in Spent FuelFluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

Ludewigt, Bernhard A

2011-01-01T23:59:59.000Z

395

Paper: Safeguards design for a plutonium concentrator  

Science Conference Proceedings (OSTI)

In this paper we consider the design of a nonlinear estimator to be used in conjunction with on-line detectors for a plutonium nitrate concentrator. Using a complex state-of-the-art process model to simulate 'realistic' data, we show that the estimator ... Keywords: (diversion detection), (nuclear safeguards), Kalman filter, decision theory, nonlinear filtering, nuclear plants, on-line operation, optimal filtering, state estimation

J. V. Candy; R. B. Rozsa

1980-11-01T23:59:59.000Z

396

Dose estimates of alternative plutonium pyrochemical processes.  

Science Conference Proceedings (OSTI)

We have coupled our dose calculation tool Pandemonium with a discrete-event, object-oriented, process-modeling system ProMosO to analyze a set of alternatives for plutonium purification operations. The results follow expected trends and indicate, from a dose perspective, that an experimental flowsheet may warrant further research to see if it can be scaled to industrial levels. Flowsheets that include fluoride processes resulted in the largest doses.

Kornreich, D. E. (Drew E.); Jackson, J. W. (Joseph W.); Boerigter, S. T. (Stephen T.); Averill, W. A. (William A.); Fasel, J. H. (Joseph H.)

2002-01-01T23:59:59.000Z

397

MEANS FOR PRODUCING PLUTONIUM CHAIN REACTIONS  

DOE Patents (OSTI)

A neutronic reactor is described with an active portion capable of operating at an energy level of 0.5 to 1000 ev comprising discrete bodies of Pu/ sup 239/ disposed in a body of water which contains not more than 5 molecules of water to one atom of plutonium, the total amount of Pu/sup 239/ being sufficient to sustain a chain reaction. (auth)

Wigner, E.P.; Weinberg, A.M.

1961-01-24T23:59:59.000Z

398

LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

Fisher, S.E.; Holdaway, R.; Ludwig, S.B. [and others

1998-08-01T23:59:59.000Z

399

SUSCEPTIBILIT MAGNTIQUE DE QUELQUES SULFURES ET OXYDES DE PLUTONIUM  

E-Print Network (OSTI)

susceptibilite magnétique des sulfures de plutonium : PuS, Pu3S4, PU2S3CXI PuS2. Ces composes non conduc- teurs, semble-t-il, aussi pu3+. II. Prdparation des produits. - II.1. PURET? DES PRODUITS. - Le plutonium que'appuyant sur des mesures cristallographiques, que dans PuS2 et Pu2s3(x le plutonium ait la valence trois. Il

Paris-Sud XI, Université de

400

PLUTONIUM ISOTOPES I N THE NORTH ATLANTIC KEN 0. BUESSELER  

E-Print Network (OSTI)

The a r t i f i c i a l radionuclide Plutonium (Pu) has been introduced i n t o the environment p r i m ~ : Dbis Recalculated from Core E Pu Data f o r D i f f e r e n t Input Years . 165 #12;CHAPTER 1 Plutonium environment. The main source of t h i s plutonium (Pu) i s atmospheric nuclear weapons t e s t i n g during

Buesseler, Ken

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Chloride removal from plutonium-aluminum alloy dissolver solution prior to purex solvent extraction  

Science Conference Proceedings (OSTI)

The Savannah River Plant (SRP), operated by E. I. du Pont de Nemours Co. for the United States Department of Energy, has successfully recovered plutonium from plutonium-aluminum alloy processed through the F-Canyon Separations facility. The alloy, produced at the Rocky Flats Plant, results from recovery of plutonium residues from spent chloride salts from pyrochemical processing. The alloy, termed scrub alloy'' or Rocky Flats scrub alloy'' (RFSA), contains up to 15 weight percent chloride impurity prior to mercuric ion catalyzed dissolution with fluoride-containing nitric acid. Solutions containing 850 to 3000 {mu}g/mL (parts per million) of chloride result. During subsequent Purex solvent extraction of this solution with 30% tri-n-butyl phosphate in normal paraffin diluent, chloride is rejected to the aqueous waste stream. This stream is eventually evaporated for waste treatment and acid recovery. Chloride concentrations in the product streams, subject to further processing, must be less than 100 {mu}g/mL to prevent excessive corrosion of equipment. This paper describes scrub alloy production at RFP, its dissolution and head end treatment to remove chloride, chloride values in subsequent processing streams including environmental discharges, and the turbidimetric analysis technique. 2 tabs.

Holcomb, H.P.

1990-01-01T23:59:59.000Z

402

Los Alamos National Laboratory and Lawrence Livermore National Laboratory Plutonium Sustainment Monthly Program Report September 2012  

SciTech Connect

In March of 2012 the Plutonium Sustainment program at LANL completed or addressed the following high-level activities: (1) Delivered Revision 2 of the Plutonium Sustainment Manufacturing Study, which incorporated changes needed due to the release of the FY2013 President's Budget and the delay in the Chemistry and Metallurgy Research Replacement Nuclear Facility (CMRRNF). (2) W87 pit type development activities completed a detailed process capability review for the flowsheet in preparation for the Engineering Development Unit Build. (3) Completed revising the Laser Beam Welding schedule to address scope and resource changes. (4) Completed machining and inspecting the first set of high-fidelity cold parts on Precitech 2 for Gemini. (5) The Power Supply Assembly Area started floor cutting with a concrete saw and continued legacy equipment decommissioning. There are currently no major issues associated with achieving MRT L2 Milestones 4195-4198 or the relevant PBIs associated with Plutonium Sustainment. There are no budget issues associated with FY12 final budget guidance. Table 1 identifies all Baseline Change Requests (BCRs) that were initiated, in process, or completed during the month. The earned value metrics overall for LANL are within acceptable thresholds, so no high-level recovery plan is required. Each of the 5 major LANL WBS elements is discussed in detail.

McLaughlin, Anastasia Dawn [Los Alamos National Laboratory; Storey, Bradford G. [Los Alamos National Laboratory; Bowidowicz, Martin [Los Alamos National Laboratory; Robertson, William G. [Los Alamos National Laboratory; Hobson, Beverly F. [Los Alamos National Laboratory

2012-10-22T23:59:59.000Z

403

Mobile Security and Forensics  

Science Conference Proceedings (OSTI)

Mobile Security and Forensics. Summary: The goal of the project is to improve the security of mobile devices and software. ...

2013-01-15T23:59:59.000Z

404

PLUTONIUM METALLIC FUELS FOR FAST REACTORS  

Science Conference Proceedings (OSTI)

Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

2007-02-07T23:59:59.000Z

405

TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION  

Science Conference Proceedings (OSTI)

Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

Allender, J.; Beams, J.; Sanders, K.; Myers, L.

2013-07-16T23:59:59.000Z

406

President Truman Increases Production of Uranium and Plutonium | National  

National Nuclear Security Administration (NNSA)

Increases Production of Uranium and Plutonium | National Increases Production of Uranium and Plutonium | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > President Truman Increases Production of Uranium and Plutonium President Truman Increases Production of Uranium and Plutonium October 09, 1950

407

METHOD OF OXIDIZING PLUTONIUM ION WITH BISMUTHATE ION  

DOE Patents (OSTI)

A method is presented for oxidizing plutonium from the tetravalent state to the hexavalent state by means of bismuthate oxidizing agents.

Garner, C.S.

1959-12-15T23:59:59.000Z

408

Hot Isostatic Pressing of Chlorine-Containing Plutonium Residues ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Some of the plutonium residues wastes at Sellafield contain ... Effect of Alloy Composition on the Environmental cracking of Nickel Alloys in...

409

134 Process Development for the Immobilisation of Surplus Plutonium  

Science Conference Proceedings (OSTI)

Using cerium as a plutonium surrogate, a systematic study of processing conditions has ... 001 A Tem Study of Cobalt-Base Alloy Prototypes with Controlled...

410

President Truman Increases Production of Uranium and Plutonium...  

National Nuclear Security Administration (NNSA)

Increases Production of Uranium and Plutonium | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

411

K2: Microstructural Development of Plutonium Alloys via Cooling ...  

Science Conference Proceedings (OSTI)

Presentation Title, K2: Microstructural Development of Plutonium Alloys via Cooling Curve ... to gain a better understanding of Pu microstructural development.

412

A Model Ceramic System for Plutonium Disposition - Programmaster ...  

Science Conference Proceedings (OSTI)

As-Cast Microstructures in Alloys of U, Pu, and Zr with Minor Actinides (Np, Am) ... Irradiation Effects in Ceramics for Inert Matrix Fuel and Plutonium Disposition.

413

President Truman Increases Production of Uranium and Plutonium...  

NLE Websites -- All DOE Office Websites (Extended Search)

content Facebook Flickr RSS Twitter YouTube President Truman Increases Production of Uranium and Plutonium | National Nuclear Security Administration Our Mission Managing the...

414

Characteristics and Stability of Oxide Films on Plutonium Surfaces.  

E-Print Network (OSTI)

??The oxidation of plutonium (Pu) metal continues to be an area of considerable activity. The reaction characteristics have significant implications for production use, storage, and (more)

Garca Flores, Harry Guillermo

2010-01-01T23:59:59.000Z

415

Determination of Plutonium Content in Spent Fuel with Nondestructive Assay  

E-Print Network (OSTI)

Down Spectroscopy for Direct Pu Mass Measurements, 8thof reasons for quantifying plutonium (Pu) in spent fuel suchas independently verifying the Pu content declared by a

Tobin, S. J.

2010-01-01T23:59:59.000Z

416

Supplement Analysis For Disposal of Certain Rocky Flats Plutonium...  

NLE Websites -- All DOE Office Websites (Extended Search)

of plutonium that will actually be repackaged at RFETS. With regard to the most severe accident scenario, an earthquake, the impacts would be greater than predicted in the...

417

Magnetic separation as a plutonium residue enrichment process  

Science Conference Proceedings (OSTI)

We have subjected several plutonium contaminated residues to Open Gradient Magnetic Separation (OGMS) on an experimental scale. Separation of graphite, bomb reduction sand, and bomb reduction sand, and bomb reduction sand, slag, and crucible, resulted in a plutonium rich fraction and a plutonium lean fraction. The lean fraction varied between about 20% to 85% of the feed bulk. The plutonium content of the lean fraction can be reduced from about 2% in the feed to the 0.1% to 0.5% range dependent on the portion of the feed rejected to this lean fraction. These values are low enough in plutonium to meet economic discard limits and be considered for direct discard. Magnetic separation of direct oxide reduction and electrorefining pyrochemical salts gave less favorable results. While a fraction very rich in plutonium could be obtained, the plutonium content of the lean fraction was to high for direct discard. This may still have chemical processing applications. OGMS experiments at low magnetic field strength on incinerator ash did give two fractions but the plutonium content of each fraction was essentially identical. Thus, no chemical processing advantage was identified for magnetic separation of this residue. The detailed results of these experiments and the implications for OGMS use in recycle plutonium processing are discussed. 4 refs., 3 figs., 9 tabs.

Avens, L.R.; McFarlan, J.T.; Gallegos, U.F.

1989-01-01T23:59:59.000Z

418

Rare Earth and Plutonium Doping of Apatite - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Rare Earth and Plutonium Doping of Apatite ... Influence of Cation Composition and Temperature on the Solubility and Oxidation State of Ce ...

419

Criticality Safety Information Meeting for the Hanford Plutonium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluations Activity Report for Criticality Safety Information Meeting for the Plutonium Finishing Plant Dates of Activity : May 14, 2012 Report Preparer: Ivon Fergus...

420

Chapter 5 -- Experiments with Plutonium, Uranium, and Polonium  

NLE Websites -- All DOE Office Websites (Extended Search)

5: Experiments With Plutonium, Uranium, and Polonium Introduction The Manhattan District Experiments The AEC's Reaction: Preserving Secrecy while Requiring Disclosure Human...

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Plutonium Certified Reference Materials Price List | U.S. DOE...  

Office of Science (SC) Website

Plutonium Certified Reference Materials Price List New Brunswick Laboratory (NBL) NBL Home About Programs Certified Reference Materials Prices and Certificates Ordering Information...

422

Elimination of Weapons-Grade Plutonium Production | National...  

National Nuclear Security Administration (NNSA)

Elimination of Weapons-Grade Plutonium Production | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

423

Ion exchange separation and mass spectrometric analysis of uranium for solutions containing plutonium  

SciTech Connect

An ion exchange technique separates plutonium from uranium using Dowex-1 resin and a methanol--HCl plutonium elutriant. The method is applicable to both trace uranium determination and uranium isotopic distribution analysis by mass spectrometry. Distribution coefficients for plutonium, and elution curves for uranium and plutonium are shown. For uranium analysis the percent relative standard deviation is 0.8 at 120-2400 micrograms uranium per gram plutonium and 5.0 at 5 micrograms uranium per gram plutonium. (auth)

McBride, K.C.

1975-06-01T23:59:59.000Z

424

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 11, 2007 [Facility News] January 11, 2007 [Facility News] ARM Mobile Facility Moves to China in 2008 for Study of Aerosol Impacts on Climate Bookmark and Share Onshore winds and a mountain range to the west of Shanghai form a natural basin which traps particulates in the air above the Yangtze River delta region. (Illustration courtesy of Patricia Ebrey, University of Washington) Onshore winds and a mountain range to the west of Shanghai form a natural basin which traps particulates in the air above the Yangtze River delta region. (Illustration courtesy of Patricia Ebrey, University of Washington) China generates exceptionally high amounts of aerosol particles whose influence on the atmosphere has been detected across the Pacific Rim. In the Yangtze River delta in southeast China, these high aerosol loadings

425

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2013 [Facility News] April 30, 2013 [Facility News] Gearing Up for Science in Amazon Rainforest Bookmark and Share In March 2013, an initial instrument suite began operating near Manacupuru, in the Brazilian state of Amazonas, as part of the GOAMAZON field campaign. In March 2013, an initial instrument suite began operating near Manacupuru, in the Brazilian state of Amazonas, as part of the GOAMAZON field campaign. Preparing for the biggest and most complex deployment of field resources to date, the ARM Mobile Facility operations team from Los Alamos National Laboratory spent three weeks in Brazil in early March tackling a range of protocol and logistics tasks for next year's GOAMAZON field campaign. Between ARM and Brazilian collaborators, about 80 instruments will obtain

426

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2005 [Facility News] 31, 2005 [Facility News] Ancillary Site to Provide Key Data from Africa Bookmark and Share In January 2006, the ARM Mobile Facility (AMF) begins a year-long field campaign in Africa as part of a multi-year international experiment called the African Monsoon Multidisciplinary Analysis (AMMA). The AMF will be placed at the airport in Niamey, Niger, well within view of the Global Earth Radiation Budget (GERB) geostationary satellite. Cloud and radiative property measurements collected by the AMF will be used in conjunction with GERB data for a greater understanding of the atmosphere than could be gained from either dataset alone. While preparing for the campaign, the science team identified the need for instrumentation at an off-site location to compare radiative measurements from the natural environment of

427

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 15, 2010 [Facility News] April 15, 2010 [Facility News] Second Phase of African Scientific Exchange Underway Bookmark and Share Left to right: Dr. Zewdu Segele and Hama Hamidou examine reflectivity measurements made by the W-band ARM cloud radar in Niamey during July 2006. Left to right: Dr. Zewdu Segele and Hama Hamidou examine reflectivity measurements made by the W-band ARM cloud radar in Niamey during July 2006. Continuing an international collaboration that began with the ARM Mobile Facility deployment to Niamey, Niger, in 2006, meteorologist Hama Hamidou from the University of Niamey recently arrived at the Cooperative Institute for Mesoscale Meteorological Studies at the University of Oklahoma for a six-month scientific exchange. Under the guidance of Dr. Zewdu Segele, a

428

Plutonium Residue Recovery (PuRR) Project: Quarterly progress report, July-September 1988  

Science Conference Proceedings (OSTI)

During this quarter, process development activities were concentrated on methods for recycling the salt and alloy reagents used by PuRR. Promising techniques were identified for further investigation, development and refinement. Processes for the recycling of salts, in particular, were also shown to be of potential benefit in reducing waste streams in the current plutonium metal production cycle. At Argonne National Laboratory (ANL), the first attempt at reduction of ash heels was made. The recovery of plutonium from this most intractable of residues was gratifyingly high. Magnesium was used for reduction of ash heel into a zinc alloy, and calcium was used for reduction into a copper-magnesium alloy. For the zinc-magnesium run 99.9% reduction was achieved in two reduction stages. For the copper-magnesium-calcium run, 99.8% reduction was obtained in a single stage. The reduction alloy from the copper-magnesium-calcium system was subjected to salt extraction by reaction with CdCl/sub 2/. Only 96.5% of the reduced plutonium was extracted. Quantitative extraction was expected; the cause for the incomplete extraction will be investigated. A similar salt extraction will be performed with the reduction ingot from the zinc-magnesium system. At Lawrence Livermore National Laboratory (LLNL), further progress was made toward readying the gloveboxes in the Plutonium Facility for use. Preliminary steps were taken to prepare ash-heel residues for experiments to attempt gross mechanical separation as a head-end stage for PuRR. 3 refs., 3 figs.

Pittenger, L.C.; Alire, R.M.; Coops, M.S.; Landrum, J.H.; Priest, R.E.; Thompson, D.S.; Gregg, D.W.; Pierce, R.D.; Johnson, G.K.; Mulcahey, T.P.

1988-12-12T23:59:59.000Z

429

LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

430

ACCOUNTING FOR A VITRIFIED PLUTONIUM WASTE FORM IN THE YUCCA MOUNTAIN REPOSITORY TOTAL SYSTEM PERFORMANCE ASSESSMENT (TSPA)  

Science Conference Proceedings (OSTI)

A vitrification technology utilizing a lanthanide borosilicate (LaBS) glass appears to be a viable option for dispositioning excess weapons-useable plutonium that is not suitable for processing into mixed oxide (MOX) fuel. A significant effort to develop a glass formulation and vitrification process to immobilize plutonium was completed in the mid-1990s to support the Plutonium Immobilization Program (PIP). Further refinement of the vitrification process was accomplished as part of the Am/Cm solution vitrification project. The LaBS glass formulation was found to be capable of immobilizing in excess of 10 wt% Pu and to be very tolerant of the impurities accompanying the plutonium material streams. Thus, this waste form would be suitable for dispositioning plutonium owned by the Department of Energy-Office of Environmental Management (DOE-EM) that may not be well characterized and may contain high levels of impurities. The can-in-canister technology demonstrated in the PIP could be utilized to dispose of the vitrified plutonium in the federal radioactive waste repository. The can-in-canister technology involves placing small cans of the immobilized Pu form into a high level waste (HLW) glass canister fitted with a rack to hold the cans and then filling the canister with HLW glass. Testing was completed to demonstrate that this technology could be successfully employed with little or no impact to current Defense Waste Processing Facility (DWPF) operation and that the resulting canisters were essentially equivalent to the present HLW glass canisters to be dispositioned in the federal repository. The performance of wastes in the repository and, moreover, the performance of the entire repository system is being evaluated by the Department of Energy-Office of Civilian Radioactive Waste Management (DOE-RW) using a Total System Performance Assessment (TSPA) methodology. Technical bases documents (e.g., Analysis/Modeling Reports (AMR)) that address specific issues regarding waste form performance are being used to develop process models as input to the TSPA analyses. In this report, models developed in five AMRs for waste forms currently slated for disposition in the repository are evaluated for their applicability to waste forms with plutonium immobilized in LaBS glass using the can-in-canister technology. Those AMRs address: high-level waste glass degradation; radionuclide inventory; in-package chemistry; dissolved concentration limits of radioactive elements; and colloid-associated radionuclide concentrations. Based on evaluation of how the models treated HLW glass and similarities in the corrosion behaviors of borosilicate HLW glasses and LaBS glass, the models in the AMRs were deemed to be directly applicable to the disposition of excess weapons-useable plutonium. The evaluations are summarized.

Marra, J

2007-02-12T23:59:59.000Z

431

Plutonium Oxidation and Subsequent Reduction by Mn (IV) Minerals  

Science Conference Proceedings (OSTI)

Plutonium sorbed to rock tuff was preferentially associated with manganese oxides. On tuff and synthetic pyrolusite (Mn{sup IV}O{sub 2}), Pu(IV) or Pu(V) was initially oxidized, but over time Pu(IV) became the predominant oxidation state of sorbed Pu. Reduction of Pu(V/VI), even on non-oxidizing surfaces, is proposed to result from a lower Gibbs free energy of the hydrolyzed Pu(IV) surface species versus that of the Pu(V) or Pu(VI) surface species. This work suggests that despite initial oxidation of sorbed Pu by oxidizing surfaces to more soluble forms, the less mobile form of Pu, Pu(IV), will dominate Pu solid phase speciation during long term geologic storage. The safe design of a radioactive waste or spent nuclear fuel geologic repository requires a risk assessment of radionuclides that may potentially be released into the surrounding environment. Geochemical knowledge of the radionuclide and the surrounding environment is required for predicting subsurface fate and transport. Although difficult even in simple systems, this task grows increasingly complicated for constituents, like Pu, that exhibit complex environmental chemistries. The environmental behavior of Pu can be influenced by complexation, precipitation, adsorption, colloid formation, and oxidation/reduction (redox) reactions (1-3). To predict the environmental mobility of Pu, the most important of these factors is Pu oxidation state. This is because Pu(IV) is generally 2 to 3 orders of magnitude less mobile than Pu(V) in most environments (4). Further complicating matters, Pu commonly exists simultaneously in several oxidation states (5, 6). Choppin (7) reported Pu may exist as Pu(IV), Pu(V), or Pu(VI) oxic natural groundwaters. It is generally accepted that plutonium associated with suspended particulate matter is predominantly Pu(IV) (8-10), whereas Pu in the aqueous phase is predominantly Pu(V) (2, 11-13). The influence of the character of Mn-containing minerals expected to be found in subsurface repository environments on Pu oxidation state distributions has been the subject of much recent research. Kenney-Kennicutt and Morse (14), Duff et al. (15), and Morgenstern and Choppin (16) observed oxidation of Pu facilitated by Mn(IV)-bearing minerals. Conversely, Shaughnessy et al. (17) used X-ray Absorption near-edge spectroscopy (XANES) to show reduction of Pu(VI) by hausmannite (Mn{sup II}Mn{sub 2}{sup III}O{sub 4}) and manganite ({gamma}-Mn{sup III}OOH) and Kersting et al., (18) observed reduction of Pu(VI) by pyrolusite (Mn{sup IV}O{sub 2}). In this paper, we attempt to reconcile the apparently conflicting datasets by showing that Mn-bearing minerals can indeed oxidize Pu, however, if the oxidized species remains on the solid phase, the oxidation step competes with the formation of Pu(IV) that becomes the predominant solid phase Pu species with time. The experimental approach we took was to conduct longer term (approximately two years later) oxidation state analyses on the Pu sorbed to Yucca Mountain tuff (initial analysis reported by Duff et al., (15)) and measure the time-dependant changes in the oxidation state distribution of Pu in the presence of the Mn mineral pyrolusite.

KAPLAN, DANIEL

2005-09-13T23:59:59.000Z

432

Characterization of representative materials in support of safe, long term storage of surplus plutonium in DOE-STD-3013 containers  

SciTech Connect

The Surveillance and Monitoring Program (SMP) is a joint LANL/SRS effort funded by DOE/EM to provide the technical basis for the safe, long-term storage (up to 50 years) of over 6 metric tons of plutonium stored in over 5000 DOE-STD-3013 containers at various facilities around the DOE complex. The majority of this material is plutonium that is surplus to the nuclear weapons program, and much of it is destined for conversion to mixed oxide fuel for use in US nuclear power plants. The form of the plutonium ranges from relatively pure metal and oxide to very impure oxide. The performance of the 3013 containers has been shown to depend on moisture content and on the levels, types and chemical forms of the impurities. The oxide materials that present the greatest challenge to the storage container are those that contain chloride salts. The chlorides (NaCl, KCl, CaCl{sub 2}, and MgCl{sub 2}) range from less than half of the impurities present to nearly all the impurities. Other common impurities include oxides and other compounds of calcium, magnesium, iron, and nickel. Over the past 15 years the program has collected a large body of experimental data on over 60 samples of plutonium chosen to represent the broader population of materials in storage. This paper will summarize the characterization data, including the origin and process history, particle size, surface area, density, calorimetry, chemical analysis, moisture analysis, prompt gamma, gas generation and corrosion behavior.

Smith, Paul H [Los Alamos National Laboratory; Narlesky, Joshua E [Los Alamos National Laboratory; Worl, Laura A [Los Alamos National Laboratory; Gillispie, Obie W [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

433

Anchored mobilities: mobile technology and transnational migration  

Science Conference Proceedings (OSTI)

Mobile technologies are deployed into diverse social, cultural, political and geographic settings, and incorporated into diverse forms of personal and collective mobility. We present an ethnography of transnational Thai retirees and their uses of mobile ... Keywords: aging, ethnography, mobile technology, mobilility, transnational

Amanda Williams; Ken Anderson; Paul Dourish

2008-02-01T23:59:59.000Z

434

Understanding individual and collective mobility patterns from smart card records: A case study in Shenzhen  

E-Print Network (OSTI)

Understanding the dynamics of the inhabitants' daily mobility patterns is essential for the planning and management of urban facilities and services. In this paper, novel aspects of human mobility patterns are investigated ...

Ratti, Carlo

435

Application: Facilities  

Science Conference Proceedings (OSTI)

... Option.. Papavergos, PG; 1991. Halon 1301 Use in Oil and Gas Production Facilities: Alaska's North Slope.. Ulmer, PE; 1991. ...

2011-12-22T23:59:59.000Z

436

Processing of Non-PFP Plutonium Oxide in Hanford Plants  

Science Conference Proceedings (OSTI)

Processing of non-irradiated plutonium oxide, PuO2, scrap for recovery of plutonium values occurred routinely at Hanfords Plutonium Finishing Plant (PFP) in glovebox line operations. Plutonium oxide is difficult to dissolve, particularly if it has been high-fired; i.e., calcined to temperatures above about 400C and much of it was. Dissolution of the PuO2 in the scrap typically was performed in PFPs Miscellaneous Treatment line using nitric acid (HNO3) containing some source of fluoride ion, F-, such as hydrofluoric acid (HF), sodium fluoride (NaF), or calcium fluoride (CaF2). The HNO3 concentration generally was 6 M or higher whereas the fluoride concentration was ~0.5 M or lower. At higher fluoride concentrations, plutonium fluoride (PuF4) would precipitate, thus limiting the plutonium dissolution. Some plutonium-bearing scrap also contained PuF4 and thus required no added fluoride. Once the plutonium scrap was dissolved, the excess fluoride was complexed with aluminum ion, Al3+, added as aluminum nitrate, Al(NO3)39H2O, to limit collateral damage to the process equipment by the corrosive fluoride. Aluminum nitrate also was added in low quantities in processing PuF4.

Jones, Susan A.; Delegard, Calvin H.

2011-03-10T23:59:59.000Z

437

PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS  

DOE Patents (OSTI)

S>A method is described for separating plutonium, in a valence state of less than five, from an aqueous solution in which it is dissolved. The niethod consists in adding potassium and sulfate ions to such a solution while maintaining the solution at a pH of less than 7.1, and isolating the precipitate of potassium plutonium sulfate thus formed.

Duffield, R.B.

1959-02-24T23:59:59.000Z

438

COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL  

DOE Patents (OSTI)

A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

Seaborg, G.T.

1960-08-01T23:59:59.000Z

439

Recommended plutonium release fractions from postulated fires. Final report  

Science Conference Proceedings (OSTI)

This report was written at the request of EG&G Rocky Flats, Inc. in support of joint emergency planning for the Rocky Flats Plant (RFP) by EG&G and the State of Colorado. The intent of the report is to provide the State of Colorado with an independent assessment of any respirable plutonium releases that might occur in the event of a severe fire at the plant. Fire releases of plutonium are of interest because they have been used by EG&G to determine the RFP emergency planning zones. These zones are based on the maximum credible accident (MCA) described in the RFP Final Environmental Impact Statement (FEIS) of 1980, that MCA is assumed to be a large airplane crashing into a RFP plutonium building.The objective of this report was first, to perform a worldwide literature review of relevant release experiments from 1960 to the present and to summarize those findings, and second, to provide recommendations for application of the experimental data to fire release analyses at Rocky Flats. The latter step requires translation between experimental and expected RFP accident parameters, or ``scaling.`` The parameters of particular concern are: quantities of material, environmental parameters such as the intensity of a fire, and the physico-chemical forms of the plutonium. The latter include plutonium metal, bulk plutonium oxide powder, combustible and noncombustible wastes contaminated with plutonium oxide powder, and residues from plutonium extraction processes.

Kogan, V.; Schumacher, P.M.

1993-12-01T23:59:59.000Z

440

Fuel bundle design for enhanced usage of plutonium fuel  

DOE Patents (OSTI)

A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.

Reese, Anthony P. (San Jose, CA); Stachowski, Russell E. (Fremont, CA)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mobile plutonium facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most cur