National Library of Energy BETA

Sample records for mo total energy

  1. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  2. Missouri Department of National Resources Energy Center Mo DNR...

    Open Energy Info (EERE)

    Department of National Resources Energy Center Mo DNR Jump to: navigation, search Name: Missouri Department of National Resources Energy Center (Mo DNR) Place: Jefferson City,...

  3. 2009 Total Energy Production by State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State...

  4. MOED_of_the_Italian_Republic.PDF | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MOED_of_the_Italian_Republic.PDF MOED_of_the_Italian_Republic.PDF PDF icon MOED_of_the_Italian_Republic.PDF More Documents & Publications Scanned_Agreement.pdf International_Agreements_January_2001_December_2004.pdf Implementing Arrangement Between DOE and METI on R&D Cooperation on Clean Energy Technology - April 2015

  5. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  6. Co-Mo Electric Cooperative- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Co-Mo Electric Cooperative provides rebates to its residential and commercial members who install air source, dual fuel, and/or geothermal heat pumps, and certain energy efficient appliances. Heat...

  7. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  8. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012. PDF icon National Fuel Cell and Hydrogen Energy Overview More ...

  9. TENESOL formerly known as TOTAL ENERGIE | Open Energy Information

    Open Energy Info (EERE)

    search Name: TENESOL (formerly known as TOTAL ENERGIE) Place: la Tour de Salvagny, France Zip: 69890 Sector: Solar Product: Makes polycrystalline silicon modules, and PV-based...

  10. "Table A28. Total Expenditures for Purchased Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Expenditures for Purchased Energy Sources by Census Region" " and Economic ... "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity...

  11. Total Energy - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections Major Topics Most popular Annual Monthly Projections Recurring U.S. States All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › EIA's Annual Energy Outlook is a projection, not a prediction forecastenergy EIA projects 48% increase in world energy consumption by 2040 natural gasliquid fuelsconsumptioncoalforecastrenewablenuclearenergyInternational Energy

  12. Development of an energy-use estimation methodology for the revised Navy Manual MO-303

    SciTech Connect (OSTI)

    Richman, E.E.; Keller, J.M.; Wood, A.G.; Dittmer, A.L.

    1995-01-01

    The U.S. Navy commissioned Pacific Northwest Laboratory (PNL) to revise and/or update the Navy Utilities Targets Manual, NAVFAC MO-303 (U.S. Navy 1972b). The purpose of the project was to produce a current, applicable, and easy-to-use version of the manual for use by energy and facility engineers and staff at all Navy Public Works Centers (PWCs), Public Works Departments (PWDs), Engineering Field Divisions (EFDs), and other related organizations. The revision of the MO-303 manual involved developing a methodology for estimating energy consumption in buildings and ships. This methodology can account for, and equitably allocate, energy consumption within Navy installations. The analyses used to develop this methodology included developing end-use intensities (EUIs) from a vast collection of Navy base metering and billing data. A statistical analysis of the metering data, weather data, and building energy-use characteristics was used to develop appropriate EUI values for use at all Navy bases. A complete Navy base energy reconciliation process was also created for use in allocating all known energy consumption. Initial attempts to use total Navy base consumption values did not produce usable results. A parallel effort using individual building consumption data provided an estimating method that incorporated weather effects. This method produced a set of building EUI values and weather adjustments for use in estimating building energy use. A method of reconciling total site energy consumption was developed based on a {open_quotes}zero-sum{close_quotes} principle. This method provides a way to account for all energy use and apportion part or all of it to buildings and other energy uses when actual consumption is not known. The entire text of the manual was also revised to present a more easily read understood and usable document.

  13. Achieving Total Employee Engagement in Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Manufacturing Engineering Business Development Partnerships with Internal ... the Energy Champion is to: Instill a culture of energy conservation within their ...

  14. CO2ReMoVe | Open Energy Information

    Open Energy Info (EERE)

    of industrial, research and service organizations with experience in CO2 geological storage. References: CO2ReMoVe1 This article is a stub. You can help OpenEI by expanding...

  15. Trends in Commercial Buildings--Total Primary Energy Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Graph Total Primary Energy Consumption Graph Detail and Data Table 1979 to 1992 primary consumption trend with 95% confidence ranges 1979 to 1992 primary...

  16. Trends in Commercial Buildings--Total Site Energy Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Graph Total Site Energy Consumption Graph Detail and Data Table 1979 to 1992 site consumption trend with 95% confidence ranges 1979 to 1992 site...

  17. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  18. Achieving Total Employee Engagement in Energy Efficiency

    Broader source: Energy.gov [DOE]

    Ratheon and GM share their experiences with employee engagement to achieve energy efficiency and sustainability goals in this presentation.

  19. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: EQUUS Total Return Inc Place: Houston, Texas Product: A business development company and VC investor that trades as a closed-end fund. EQUUS is...

  20. Compare All CBECS Activities: Total Energy Use

    U.S. Energy Information Administration (EIA) Indexed Site

    are more likely to contain specialized, high energy-consuming equipment-food service (cooking and ventilation equipment), inpatient health care (medical equipment), and food sales...

  1. National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012. PDF icon National Fuel Cell and Hydrogen Energy Overview More Documents & Publications U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions: Total Energy USA 2012 Hydrogen and Fuel Cell Activities: 5th

  2. M&O Contract 2008-2013, Alliance for Sustainable Energy, LLC

    Broader source: Energy.gov [DOE]

    Contract No. DE-AC36-08GO28308 M&O Contract 2008-2013, between the Alliance for Sustainable Energy, LLC and the U.S. Department Of Energy. Part I, Section B, Supplies and Services and Price/Costs.

  3. Site-dependent free energy barrier for proton reduction on MoS2 edges

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Site-dependent free energy barrier for proton reduction on MoS2 edges Citation Details In-Document Search Title: Site-dependent free energy barrier for proton reduction on MoS2 edges Authors: Choi, W ; Wood, B C ; Schwegler, E ; Ogitsu, T Publication Date: 2013-05-30 OSTI Identifier: 1113397 Report Number(s): LLNL-JRNL-639087 DOE Contract Number: W-7405-ENG-48 Resource Type: Journal Article Resource Relation: Journal Name: Journal of Physical Chemistry C,

  4. Mo-99

    National Nuclear Security Administration (NNSA)

    NorthStar Medical Radioisotopes to further develop its technology to produce Mo-99 via neutron capture, bringing the total NNSA support to this project to the maximum of 25...

  5. Table 16. Total Energy Consumption, Projected vs. Actual Projected

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6. Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 ...

  6. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units ...

  7. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Cell shipments Total Inventory, start-of-year 328,658 Manufactured during reporting year ... Table 5. Source and disposition of photovoltaic cell shipments, 2013 (peak kilowatts) ...

  8. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  9. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500...... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to ...

  10. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space

  11. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  12. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  13. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  14. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  15. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to

  16. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1

  17. Total................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  18. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  19. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  20. Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  1. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  2. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  3. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8

  4. MO: ZL

    Office of Legacy Management (LM)

    II , --fsi2L /~YlO MO: ZL W./O -1 ;3UN 2 2 1984 DeLanr 6/W/f. NE-20 -24 Authorization for Remedial Action at the Seaway Industrial Park and Ashland 0 1 Co. (I) Sites at Tonawanda, 9 NY, and Mallinckrodt Chemical Co., St. Louis, MO Ba 1s J. LaGrone, Eianager Oak Ridge Operations Office 6/20/E We have determined that the subject sites are contaminated with residual NE-20 radioactive material as a result of the Manhattan Engineer District/Atomic ,/"/1. EnergyXommission operations at those

  5. Table 16. Total Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO

  6. Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 12.0 12.1

  7. Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.2 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9

  8. Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 29.4 29.6

  9. Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 29.3

  10. Total China Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Investment Co Ltd Jump to: navigation, search Name: Total (China) Investment Co. Ltd. Place: Beijing, China Zip: 100004 Product: Total has been present in China for about 30...

  11. Delaware Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...e","-","-","-","-","-" "Other","-","-",11,6,"-" "Total",7182,8534,7524,4842,5628 " " "s Value is less than 0.5 of the table metric, but value is included in any associated total.

  12. Table A55. Number of Establishments by Total Inputs of Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity ... Industry","Total(b)","Bed Boilers","Heat Recovery","Turbines","Heat Recovery","Processes",...

  13. Total Agroindustria Canavieira S A | Open Energy Information

    Open Energy Info (EERE)

    Agroindustria Canavieira S A Jump to: navigation, search Name: Total Agroindustria Canavieira SA Place: Bambui, Minas Gerais, Brazil Product: Ethanol producer in Minas Gerais,...

  14. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  15. Property:Building/SPElectrtyUsePercTotal | Open Energy Information

    Open Energy Info (EERE)

    PElectrtyUsePercTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 100.0 + Sweden Building 05K0002 + 100.0 + Sweden Building 05K0003 +...

  16. Property:RenewableFuelStandard/Total | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardTotal Jump to: navigation, search This is a property of type Number. Pages using the...

  17. AEO2011:Total Energy Supply, Disposition, and Price Summary ...

    Open Energy Info (EERE)

    case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Data and Resources AEO2011:Total...

  18. "Table A36. Total Expenditures for Purchased Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... W "," W "," W ",0," W ",1.1 2824," Organic Fibers, Noncellulosic",459," W "," W ... such combustible energy sources as wood" "waste, hydrogen, or waste oils and tars." " ...

  19. "Table A3. Total Primary Consumption of Combustible Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... produced onsite from input" "materials not classified as energy. Examples of the latter are hydrogen" "produced from the electrolysis of brine; the output of captive (onsite) ...

  20. "Table A11. Total Primary Consumption of Combustible Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... produced onsite from input materials not" "classified as an energy. Examples of the latter are hydrogen produced from the" "electrolysis of brine; the output of captive (onsite) ...

  1. "Table A3. Total Primary Consumption of Combustible Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... produced onsite" "from input materials not classified as energy. Examples of the latter are hydrogen produced from the electrolysis" "of brine; the output of captive (onsite) ...

  2. Minnesota Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",36125,36463,34879,32263,32454 " Coal",33070,32190,31755,29327,28083 " Petroleum",494,405,232,65,31 " Natural ...

  3. "Table A22. Total Quantity of Purchased Energy Sources by...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Fibers",0,0,0,0,0,0,0,0,0,"NF" 2824," Organic Fibers Noncellulosic",0,0,0,0,0,0,0,0,0,"... such combustible energy sources as wood" "waste, hydrogen, or waste oils and tars." " ...

  4. "Table A24. Total Expenditures for Purchased Energy Sources...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Fibers",0,0,0,0,0,0,0,0,0,"NF" 2824," Organic Fibers Noncellulosic",0,0,0,0,0,0,0,0,0,"... such combustible energy sources as wood" "waste, hydrogen, or waste oils and tars." " ...

  5. Texas Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",349849,351720,344813,333227,341054 " Coal",146391,147279,147132,139107,150173 " Petroleum",1789,1309,1034,1405,708 " ...

  6. Tennessee Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Energy Source",2006,2007,2008,2009,2010 "Fossil",61336,61205,57753,42242,46203 " Coal",60498,60237,57058,41633,43670 " Petroleum",160,232,216,187,217 " Natural ...

  7. Property:Geothermal/TotalProjectCost | Open Energy Information

    Open Energy Info (EERE)

    Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A...

  8. File:USDA-CE-Production-GIFmaps-MO.pdf | Open Energy Information

    Open Energy Info (EERE)

    MO.pdf Jump to: navigation, search File File history File usage Missouri Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  9. AB INITIO Modeling of Thermomechanical Properties of Mo-Based Alloys for Fossil Energy Conversion

    SciTech Connect (OSTI)

    Ching, Wai-Yim

    2013-12-31

    In this final scientific/technical report covering the period of 3.5 years started on July 1, 2011, we report the accomplishments on the study of thermo-mechanical properties of Mo-based intermetallic compounds under NETL support. These include computational method development, physical properties investigation of Mo-based compounds and alloys. The main focus is on the mechanical and thermo mechanical properties at high temperature since these are the most crucial properties for their potential applications. In particular, recent development of applying ab initio molecular dynamic (AIMD) simulations to the T1 (Mo{sub 5}Si{sub 3}) and T2 (Mo{sub 5}SiB{sub 2}) phases are highlighted for alloy design in further improving their properties.

  10. Ohio Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Fossil",137494,138543,134878,119712,126652 " Coal",133400,133131,130694,113712,117828 " Petroleum",1355,1148,1438,1312,1442 " Natural Gas",2379,3975,2484,4650,7128 " Other Gases",360,289,261,37,254 "Nuclear",16847,15764,17514,15206,15805 "Renewables",1091,846,1010,1161,1129 "Pumped

  11. Oklahoma Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Fossil",68093,67765,70122,68700,65435 " Coal",35032,34438,36315,34059,31475 " Petroleum",64,160,23,9,18 " Natural Gas",32981,33144,33774,34631,33942 " Other Gases",16,22,10,"-","-" "Nuclear","-","-","-","-","-" "Renewables",2633,5195,6362,6482,6969 "Pumped

  12. Oregon Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Fossil",13621,19224,21446,19338,19781 " Coal",2371,4352,4044,3197,4126 " Petroleum",12,14,15,8,3 " Natural Gas",11239,14858,17387,16133,15651 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",39679,35816,37228,37306,35299 "Pumped

  13. Pennsylvania Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Fossil",138173,143909,137862,136047,145210 " Coal",122558,122693,117583,105475,110369 " Petroleum",1518,1484,938,915,571 " Natural Gas",13542,19198,18731,29215,33718 " Other Gases",554,534,610,443,552 "Nuclear",75298,77376,78658,77328,77828 "Renewables",5317,4782,5353,6035,6577 "Pumped Storage",-698,-723,-354,-731,-708

  14. Louisiana Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",69795,71028,72850,70155,80110 " Coal",24395,23051,24100,23067,23924 " Petroleum",1872,2251,2305,1858,3281 " Natural Gas",41933,43915,45344,44003,51344 " Other Gases",1595,1811,1101,1227,1561 "Nuclear",16735,17078,15371,16782,18639 "Renewables",3676,3807,3774,3600,3577 "Pumped

  15. Maine Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Fossil",8214,7869,8264,7861,8733 " Coal",321,376,352,72,87 " Petroleum",595,818,533,433,272 " Natural Gas",7298,6675,7380,7355,8374 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",8246,7945,8515,8150,7963 "Pumped

  16. Maryland Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32091,33303,29810,26529,27102 " Coal",29408,29699,27218,24162,23668 " Petroleum",581,985,406,330,322 " Natural Gas",1770,2241,1848,1768,2897 " Other Gases",332,378,338,269,215 "Nuclear",13830,14353,14679,14550,13994 "Renewables",2730,2256,2587,2440,2241 "Pumped Storage","-","-","-","-","-"

  17. Massachusetts Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Fossil",36773,40001,34251,30913,34183 " Coal",11138,12024,10629,9028,8306 " Petroleum",2328,3052,2108,897,296 " Natural Gas",23307,24925,21514,20988,25582 " Other Gases","-","-","-","-","-" "Nuclear",5830,5120,5869,5396,5918 "Renewables",2791,2038,2411,2430,2270 "Pumped

  18. Michigan Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Energy Source",2006,2007,2008,2009,2010 "Fossil",80004,84933,80179,75869,78535 " Coal",67780,70811,69855,66848,65604 " Petroleum",402,699,458,399,382 " Natural Gas",11410,13141,9602,8420,12249 " Other Gases",412,282,264,203,299 "Nuclear",29066,31517,31484,21851,29625 "Renewables",3963,3687,3956,3995,4083 "Pumped Storage",-1039,-1129,-916,-857,-1023 "Other",563,303,286,344,332

  19. Mississippi Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Fossil",34254,39184,37408,36266,43331 " Coal",18105,17407,16683,12958,13629 " Petroleum",399,399,76,17,81 " Natural Gas",15706,21335,20607,23267,29619 " Other Gases",44,42,40,25,2 "Nuclear",10419,9359,9397,10999,9643 "Renewables",1541,1493,1391,1424,1504 "Pumped Storage","-","-","-","-","-"

  20. Missouri Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Energy Source",2006,2007,2008,2009,2010 "Fossil",81245,80127,78788,75122,79870 " Coal",77450,75084,73532,71611,75047 " Petroleum",61,60,57,88,126 " Natural Gas",3729,4979,5196,3416,4690 " Other Gases",5,3,3,7,7 "Nuclear",10117,9372,9379,10247,8996 "Renewables",223,1234,2293,2391,2527 "Pumped Storage",48,383,545,567,888 "Other",54,37,24,27,32

  1. Montana Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",17583,18960,18822,16181,19068 " Coal",17085,18357,18332,15611,18601 " Petroleum",419,479,419,490,409 " Natural Gas",68,106,66,78,57 " Other Gases",11,19,6,1,2 "Nuclear","-","-","-","-","-" "Renewables",10661,9971,10704,10422,10442 "Pumped

  2. Nebraska Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",21461,20776,22273,23684,23769 " Coal",20683,19630,21480,23350,23363 " Petroleum",19,36,35,23,31 " Natural Gas",759,1110,758,312,375 " Other Gases","-","-","-","-","-" "Nuclear",9003,11042,9479,9435,11054 "Renewables",1207,625,622,883,1807 "Pumped

  3. Nevada Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28459,29370,31801,33436,30702 " Coal",7254,7091,7812,7540,6997 " Petroleum",17,11,14,16,11 " Natural Gas",21184,22263,23972,25878,23688 " Other Gases",4,4,2,2,6 "Nuclear","-","-","-","-","-" "Renewables",3401,3300,3289,4269,4444 "Pumped

  4. Alabama Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97827,101561,97376,87580,102762 " Coal",78109,77994,74605,55609,63050 " Petroleum",180,157,204,219,200 " Natural Gas",19407,23232,22363,31617,39235 " Other Gases",131,178,204,135,277 "Nuclear",31911,34325,38993,39716,37941 "Renewables",11136,7937,9493,15585,11081 "Pumped

  5. Alaska Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5443,5519,5598,5365,5308 " Coal",617,641,618,631,620 " Petroleum",768,1010,978,1157,937 " Natural Gas",4058,3868,4002,3577,3750 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1231,1302,1177,1337,1452 "Pumped

  6. Arizona Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Fossil",73385,79794,82715,74509,73386 " Coal",40443,41275,43840,39707,43644 " Petroleum",73,49,52,63,66 " Natural Gas",32869,38469,38822,34739,29676 " Other Gases","-","-","-","-","-" "Nuclear",24012,26782,29250,30662,31200 "Renewables",6846,6639,7400,6630,6941 "Pumped Storage",149,125,95,169,209

  7. Arkansas Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",33626,34203,34639,36385,40667 " Coal",24183,25744,26115,25075,28152 " Petroleum",161,94,64,88,45 " Natural Gas",9282,8364,8461,11221,12469 " Other Gases","-","-","-","-","-" "Nuclear",15233,15486,14168,15170,15023 "Renewables",3273,4860,6173,5778,5283 "Pumped Storage",15,30,48,100,-1

  8. California Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Energy Source",2006,2007,2008,2009,2010 "Fossil",112317,122151,125699,118679,112376 " Coal",2235,2298,2280,2050,2100 " Petroleum",2368,2334,1742,1543,1059 " Natural Gas",105691,115700,119992,113463,107522 " Other Gases",2022,1818,1685,1623,1695 "Nuclear",31959,35792,32482,31764,32201 "Renewables",71963,52173,48912,53428,58881 "Pumped Storage",96,310,321,153,-171

  9. Colorado Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Energy Source",2006,2007,2008,2009,2010 "Fossil",48211,50980,48334,45490,45639 " Coal",36269,35936,34828,31636,34559 " Petroleum",21,28,19,13,17 " Natural Gas",11919,15014,13487,13840,11062 " Other Gases",3,2,"-","-","-" "Nuclear","-","-","-","-","-" "Renewables",2687,3054,5324,5132,5133 "Pumped

  10. Connecticut Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Energy Source",2006,2007,2008,2009,2010 "Fossil",16046,14982,12970,12562,14743 " Coal",4282,3739,4387,2453,2604 " Petroleum",1279,1311,514,299,409 " Natural Gas",10484,9930,8070,9809,11716 " Other Gases",2,2,"-","-",14 "Nuclear",16589,16386,15433,16657,16750 "Renewables",1307,1093,1290,1268,1130 "Pumped Storage","-",-15,7,5,9

  11. Delaware Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",7182,8486,7350,4710,5489 " Coal",4969,5622,5267,2848,2568 " Petroleum",132,241,219,258,56 " Natural Gas",1171,1902,1387,1376,2865 " Other Gases",910,721,476,227,"-" "Nuclear","-","-","-","-","-" "Renewables","s",48,163,126,138 "Pumped

  12. Florida Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Energy Source",2006,2007,2008,2009,2010 "Fossil",184530,188433,180167,181553,197662 " Coal",65423,67908,64823,54003,59897 " Petroleum",22904,20203,11971,9221,9122 " Natural Gas",96186,100307,103363,118322,128634 " Other Gases",17,15,10,7,8 "Nuclear",31426,29289,32133,29118,23936 "Renewables",4534,4457,4509,4549,4664 "Pumped

  13. Georgia Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",100299,107165,99661,90634,97823 " Coal",86504,90298,85491,69478,73298 " Petroleum",834,788,742,650,641 " Natural Gas",12961,16079,13428,20506,23884 " Other Gases","-","-","-","-","-" "Nuclear",32006,32545,31691,31683,33512 "Renewables",5988,5652,4927,6085,6502 "Pumped

  14. Hawaii Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10646,10538,10356,9812,9655 " Coal",1549,1579,1648,1500,1546 " Petroleum",9054,8914,8670,8289,8087 " Natural Gas","-","-","-","-","-" " Other Gases",43,45,39,22,22 "Nuclear","-","-","-","-","-" "Renewables",738,846,861,817,817 "Pumped

  15. Idaho Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1381,1741,1790,1726,1778 " Coal",82,84,90,83,88 " Petroleum","s","s","s","s","s" " Natural Gas",1298,1657,1700,1644,1689 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-"

  16. Illinois Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97212,103072,101101,94662,99605 " Coal",91649,95265,96644,89967,93611 " Petroleum",136,132,143,113,110 " Natural Gas",5279,7542,4260,4495,5724 " Other Gases",149,134,54,88,161 "Nuclear",94154,95729,95152,95474,96190 "Renewables",1022,1438,3174,3666,5257 "Pumped Storage","-","-","-","-","-"

  17. Indiana Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",129345,129576,128206,114118,121101 " Coal",123645,122803,122036,108312,112328 " Petroleum",148,170,178,157,155 " Natural Gas",2682,4012,3636,3830,6475 " Other Gases",2870,2591,2356,1820,2144 "Nuclear","-","-","-","-","-" "Renewables",710,681,948,2209,3699 "Pumped

  18. Iowa Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Energy Source",2006,2007,2008,2009,2010 "Fossil",37014,41388,42734,38621,42749 " Coal",34405,37986,40410,37351,41283 " Petroleum",208,312,161,85,154 " Natural Gas",2400,3091,2163,1184,1312 " Other Gases","-","-","-","-","-" "Nuclear",5095,4519,5282,4679,4451 "Renewables",3364,3870,5070,8560,10309 "Pumped

  19. Kansas Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",35172,38590,36363,35033,34895 " Coal",33281,36250,34003,32243,32505 " Petroleum",51,207,130,121,103 " Natural Gas",1839,2133,2230,2669,2287 " Other Gases","-","-","-","-","-" "Nuclear",9350,10369,8497,8769,9556 "Renewables",1002,1163,1770,2876,3473 "Pumped

  20. Kentucky Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Fossil",95720,95075,95478,86937,95182 " Coal",91198,90483,91621,84038,91054 " Petroleum",3341,2791,2874,2016,2285 " Natural Gas",1177,1796,979,878,1841 " Other Gases",4,5,4,4,3 "Nuclear","-","-","-","-","-" "Renewables",3050,2134,2377,3681,3020 "Pumped

  1. Utah Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",40306,44634,45466,42034,40599 " Coal",36856,37171,38020,35526,34057 " Petroleum",62,39,44,36,50 " Natural Gas",3389,7424,7366,6444,6455 " Other Gases","-","-",36,28,36 "Nuclear","-","-","-","-","-" "Renewables",952,734,970,1322,1476 "Pumped

  2. Vermont Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9,10,7,7,8 " Coal","-","-","-","-","-" " Petroleum",7,8,4,2,5 " Natural Gas",2,2,3,4,4 " Other Gases","-","-","-","-","-" "Nuclear",5107,4704,4895,5361,4782 "Renewables",1969,1110,1918,1915,1829 "Pumped

  3. Virginia Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",42343,48422,42242,38888,43751 " Coal",34288,35421,31776,25599,25459 " Petroleum",839,2097,1150,1088,1293 " Natural Gas",7215,10904,9315,12201,16999 " Other Gases","-","-","-","-","-" "Nuclear",27594,27268,27931,28212,26572 "Renewables",3810,3814,3709,3896,3720 "Pumped

  4. Washington Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14255,16215,18879,19747,19211 " Coal",6373,8557,8762,7478,8527 " Petroleum",38,37,35,54,32 " Natural Gas",7495,7287,9809,11971,10359 " Other Gases",349,334,272,245,292 "Nuclear",9328,8109,9270,6634,9241 "Renewables",84510,82560,82575,77977,74905 "Pumped Storage",47,45,49,52,53 "Other",62,62,56,59,62

  5. Wisconsin Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Energy Source",2006,2007,2008,2009,2010 "Fossil",46352,47530,47881,43477,46384 " Coal",40116,40028,41706,37280,40169 " Petroleum",877,1013,931,712,718 " Natural Gas",5358,6489,5244,5484,5497 " Other Gases","-","-","-","-","s" "Nuclear",12234,12910,12155,12683,13281 "Renewables",2944,2846,3370,3734,4586 "Pumped

  6. Wyoming Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Fossil",43749,44080,44635,42777,43781 " Coal",42892,43127,43808,41954,42987 " Petroleum",46,47,44,50,56 " Natural Gas",501,594,495,488,459 " Other Gases",310,312,289,284,279 "Nuclear","-","-","-","-","-" "Renewables",1602,1484,1798,3193,4271 "Pumped

  7. Real-space formulation of the electrostatic potential and total energy of

    Office of Scientific and Technical Information (OSTI)

    solids (Journal Article) | SciTech Connect Journal Article: Real-space formulation of the electrostatic potential and total energy of solids Citation Details In-Document Search Title: Real-space formulation of the electrostatic potential and total energy of solids We develop expressions for the electrostatic potential and total energy of crystalline solids which are amenable to direct evaluation in real space. Unlike conventional reciprocal space formulations, no Fourier transforms or

  8. Table A26. Total Quantity of Purchased Energy Sources by Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Quantity of Purchased Energy Sources by Census Region and" " Economic ... ","(1000","(trillion","Row" "Economic Characteristics(a)","Btu)","kWh)","(1000 ...

  9. Table A45. Total Inputs of Energy for Heat, Power, and Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building ...

  10. Comprehensive description of J<mo>/>? production in proton-proton collisions at collider energies

    SciTech Connect (OSTI)

    Ma, Yan -Qing; Venugopalan, Raju

    2014-11-04

    We employ a small x Color Glass Condensate + Non-Relativistic QCD (NRQCD) formalism to compute J/? production at low p? in proton-proton collisions at collider energies. Very good agreement is obtained for total cross-sections, rapidity distributions and low momentum p? distributions. Similar agreement is obtained for ?' production. We observe an overlap region in p? where our results match smoothly to those obtained in a next-to-leading order (NLO) collinearly factorized NRQCD formalism. The relative contribution of color singlet and color octet contributions can be quantified in the CGC+NRQCD framework, with the former contributing approximately 10% of the total cross-section.

  11. Using Qualified Energy Conservation Bonds (QECBs) to Fund a Residential Energy Efficiency Loan Program: Case Study on Saint Louis County, MO

    SciTech Connect (OSTI)

    Zimring, Mark

    2011-06-23

    Qualified Energy Conservation Bonds (QECBs) are federally-subsidized debt instruments that enable state, tribal, and local government issuers to borrow money to fund a range of qualified energy conservation projects. QECBs offer issuers very attractive borrowing rates and long terms, and can fund low-interest energy efficiency loans for home and commercial property owners. Saint Louis County, MO recently issued over $10 million of QECBs to finance the Saint Louis County SAVES residential energy efficiency loan program. The county's experience negotiating QECB regulations and restrictions can inform future issuers.

  12. Mo-99

    National Nuclear Security Administration (NNSA)

    its project for domestic production of molybdenum-99 (Mo-99) without highly enriched uranium (HEU).

    Mo-99 is the parent isotope of technetium-99m, which is the most widely...

  13. U.S. Department of Energy Releases Revised Total System Life Cycle Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimate and Fee Adequacy Report for Yucca Mountain Project | Department of Energy Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca

  14. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    SciTech Connect (OSTI)

    Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

    2008-03-01

    Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

  15. US WNC MO Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    WNC MO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WNC MO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US WNC MO Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US WNC MO Expenditures dollars ELECTRICITY ONLY average per household * Missouri households consume an average of 100 million Btu per year, 12% more than the U.S. average. * Average household energy costs in Missouri are slightly less

  16. Targeted Energy Efficiency Expert Evaluation (E4) Report: Bannister Federal Complex, Kansas City, MO

    SciTech Connect (OSTI)

    Goddard, James K.; Fernandez, Nicholas; Underhill, Ronald M.; Gowri, Krishnan

    2013-03-01

    This is a final report summarizing the efficiency measures identified, implemented and the analysis of energy savings after implementation.

  17. Table A41. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and

  18. Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and

  19. Site-dependent free energy barrier for proton reduction on MoS2...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Lawrence Livermore National Laboratory (LLNL), Livermore, CA Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY

  20. Comparison of 2006 IECC and 2009 IECC Commercial Energy Code Requirements for Kansas City, MO

    SciTech Connect (OSTI)

    Huang, Yunzhi; Gowri, Krishnan

    2011-03-22

    This report summarizes code requirements and energy savings of commercial buildings in climate zone 4 built to the 2009 IECC when compared to the 2006 IECC. In general, the 2009 IECC has higher insulation requirements for exterior walls, roof, and windows and have higher efficiency requirements for HVAC equipment (HVAC equipment efficiency requirements are governed by National Appliance Conversion Act of 1987 (NAECA), and are applicable irrespective of the IECC version adopted). The energy analysis results show that residential and nonresidential commercial buildings meeting the 2009 IECC requirements save between 6.1% and 9.0% site energy, and between 6.4% and 7.7% energy cost when compared to 2006 IECC. Analysis also shows that semiheated buildings have energy and cost savings of 3.9% and 5.6%.

  1. Table A56. Number of Establishments by Total Inputs of Energy for Heat, Powe

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 2" ,,,"RSE" "SIC",,,"Row" "Code(a)","Industry Group and Industry","Total(b)","Factors" ,"RSE Column Factors:",1 20,"FOOD and KINDRED PRODUCTS"

  2. United States Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" "(Thousand Megawatthours)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2885295,2992238,2926731,2726452,2883361 " Coal",1990511,2016456,1985801,1755904,1847290 " Petroleum",64166,65739,46243,38937,37061 " Natural Gas",816441,896590,882981,920979,987697 " Other Gases",14177,13453,11707,10632,11313

  3. United States Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Fossil",761603,763994,770221,774279,782176 " Coal",312956,312738,313322,314294,316800 " Petroleum",58097,56068,57445,56781,55647 " Natural Gas",388294,392876,397460,401272,407028 " Other Gases",2256,2313,1995,1932,2700

  4. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    SciTech Connect (OSTI)

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used in the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.

  5. "Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO

  6. The contribution of low-energy protons to the total on-orbit SEU rate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dodds, Nathaniel Anson; Martinez, Marino J.; Dodd, Paul E.; Shaneyfelt, Marty R.; Sexton, Frederick W.; Black, Jeffrey D.; Lee, David S.; Swanson, Scot E.; Bhuva, B. L.; Warren, K. M.; et al

    2015-11-10

    Low- and high-energy proton experimental data and error rate predictions are presented for many bulk Si and SOI circuits from the 20-90 nm technology nodes to quantify how much low-energy protons (LEPs) can contribute to the total on-orbit single-event upset (SEU) rate. Every effort was made to predict LEP error rates that are conservatively high; even secondary protons generated in the spacecraft shielding have been included in the analysis. Across all the environments and circuits investigated, and when operating within 10% of the nominal operating voltage, LEPs were found to increase the total SEU rate to up to 4.3 timesmore » as high as it would have been in the absence of LEPs. Therefore, the best approach to account for LEP effects may be to calculate the total error rate from high-energy protons and heavy ions, and then multiply it by a safety margin of 5. If that error rate can be tolerated then our findings suggest that it is justified to waive LEP tests in certain situations. Trends were observed in the LEP angular responses of the circuits tested. As a result, grazing angles were the worst case for the SOI circuits, whereas the worst-case angle was at or near normal incidence for the bulk circuits.« less

  7. Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.

    SciTech Connect (OSTI)

    Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

    2008-01-01

    Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution from varying kWh storage capability of battery packs in HEVs and PHEVs from {approx}16 to 64 km of charge depleting distance. Sensitivity analysis is conducted with respect to the effect of replacing the battery once during the vehicle's life. The paper includes one appendix that examines several recent studies of interactions of PHEVs with patterns of electric generation and one that provides definitions, acronyms, and fuel consumption estimation steps.

  8. Framework for Evaluating the Total Value Proposition of Clean Energy Technologies

    SciTech Connect (OSTI)

    Pater, J. E.

    2006-02-01

    Conventional valuation techniques fail to include many of the financial advantages of clean energy technologies. By omitting benefits associated with risk management, emissions reductions, policy incentives, resource use, corporate social responsibility, and societal economic benefits, investors and firms sacrifice opportunities for new revenue streams and avoided costs. In an effort to identify some of these externalities, this analysis develops a total value proposition for clean energy technologies. It incorporates a series of values under each of the above categories, describing the opportunities for recapturing investments throughout the value chain. The framework may be used to create comparable value propositions for clean energy technologies supporting investment decisions, project siting, and marketing strategies. It can also be useful in policy-making decisions.

  9. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    SciTech Connect (OSTI)

    Derrien, H

    2004-05-27

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  10. Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 5060 5130 5185 5240 5287 5335 5379 5438 5482 5529 5599 5658 5694 5738 5797 5874 5925 5984 AEO 1995 5137 5174 5188 5262 5309 5361 5394 5441 5489 5551 5621 5680 5727 5775 5841 5889 5944 AEO 1996 5182 5224 5295 5355 5417 5464 5525 5589 5660 5735 5812 5879 5925 5981 6030 6087 6142 6203

  11. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in Trillion Btu)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"Coal Coke",,"Row" "Code(a)","End-Use

  12. "Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO

  13. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  14. Development of a Total Energy, Environment and Asset Management (TE2AM tm) Curriculum

    SciTech Connect (OSTI)

    2012-12-31

    The University of Wisconsin Department of Engineering Professional Development (EPD) has completed the sponsored project entitled, Development of a Total Energy, Environment and Asset Management (TE2AM™) Curriculum. The project involved the development of a structured professional development program to improve the knowledge, skills, capabilities, and competencies of engineers and operators of commercial buildings. TE2AM™ advances a radically different approach to commercial building design, operation, maintenance, and end-­‐of-­‐life disposition. By employing asset management principles to the lifecycle of a commercial building, owners and occupants will realize improved building performance, reduced energy consumption and positive environmental impacts. Through our commercialization plan, we intend to offer TE2AM™ courses and certificates to the professional community and continuously improve TE2AM™ course materials. The TE2AM™ project supports the DOE Strategic Theme 1 -­‐ Energy Security; and will further advance the DOE Strategic Goal 1.4 Energy Productivity. Through participation in the TE2AM™ curriculum, engineers and operators of commercial buildings will be eligible for a professional certificate; denoting the completion of a prescribed series of learning activities. The project involved a comprehensive, rigorous approach to curriculum development, and accomplished the following goals: 1. Identify, analyze and prioritize key learning needs of engineers, architects and technical professionals as operators of commercial buildings. 2. Design and develop TE2AM™ curricula and instructional strategies to meet learning needs of the target learning community. 3. Establish partnerships with the sponsor and key stakeholders to enhance the development and delivery of learning programs. 4. Successfully commercialize and sustain the training and certificate programs for a substantial time following the term of the award. The project team was successful in achieving the goals and deliverables set forth in the original proposal. Though attempts were made to adhere to the original project timeline, the team requested, and was granted a 6-­‐month project extension, during which time the project was completed.

  15. "Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Residential Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",10.31,10.36,10.36,10.37,10.38,10.4,10.4,10.41,10.43,10.43,10.44,10.45,10.46,10.49,10.51,10.53,10.56,10.6 "AEO 1995",,10.96,10.8,10.81,10.81,10.79,10.77,10.75,10.73,10.72,10.7,10.7,10.69,10.7,10.72,10.75,10.8,10.85 "AEO

  16. "Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",6.82,6.87,6.94,7,7.06,7.13,7.16,7.22,7.27,7.32,7.36,7.38,7.41,7.45,7.47,7.5,7.51,7.55 "AEO 1995",,6.94,6.9,6.95,6.99,7.02,7.05,7.08,7.09,7.11,7.13,7.15,7.17,7.19,7.22,7.26,7.3,7.34 "AEO

  17. "Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Transportation Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,25.86,26.15,26.5,26.88,27.28,27.66,27.99,28.25,28.51,28.72,28.94 "AEO

  18. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 1: technical report

    SciTech Connect (OSTI)

    Cuenca, R.; Formento, J.; Gaines, L.; Marr, B.; Santini, D.; Wang, M.; Adelman, S.; Kline, D.; Mark, J.; Ohi, J.; Rau, N.; Freeman, S.; Humphreys, K.; Placet, M.

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume I contains the major results, a discussion of the conceptual framework of the study, and summaries of the vehicle, utility, fuel production, and manufacturing analyses. It also contains summaries of comments provided by external peer reviewers and brief responses to these comments.

  19. FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund

  20. "Table B29. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003"

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",64783,60028,15996,32970,3818,4907 "Building Floorspace" "(Square

  1. Property:Building/SPPurchasedEngyNrmlYrMwhYrTotal | Open Energy...

    Open Energy Info (EERE)

    dEngyNrmlYrMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4355.0 + Sweden Building 05K0002 + 1530.1 + Sweden Building 05K0003...

  2. Property:Building/SPPurchasedEngyPerAreaKwhM2Total | Open Energy...

    Open Energy Info (EERE)

    EngyPerAreaKwhM2Total" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 221.549575215 + Sweden Building 05K0002 + 213.701117318 + Sweden...

  3. Property:Building/SPPurchasedEngyForPeriodMwhYrTotal | Open Energy...

    Open Energy Info (EERE)

    gyForPeriodMwhYrTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 4228.0 + Sweden Building 05K0002 + 1501.1 + Sweden Building 05K0003...

  4. The design and optimization of two low frequency energy harvesters employing 3C-SiC/AlN/Mo composite layers

    SciTech Connect (OSTI)

    Iqbal, Abid Mohd-Yasin, Faisal Dimitrijev, Sima

    2014-10-24

    This paper presents the design and simulation of twocantilever-based energy harvesters that employs cubic silicon carbide on silicon (3C-SiC-on-Si) wafer as the base material and bottom electrode. Aluminum Nitride (AlN) is employed as the piezoelectric/middle layer due to its excellent material properties and high stability in varying temperature and harsh environment. Molybdenum (Mo) serves as the top layer/electrode. The thickness of the structural layers are optimized through MATLAB and also analyzed via Finite Element Analysis using Intellisuite. Two designs are proposed at low resonant frequency, one with conventional cantilever beam, the other being a T-shaped cantilever beam. Both structures are simulated and their performances are compared.

  5. Table A9. Total Primary Consumption of Energy for All Purposes...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... produced" "onsite from input materials not classified as energy. Examples of the latter" "are hydrogen produced from the electrolysis of brine; the output of captive" "(onsite) ...

  6. Table A30. Total Primary Consumption of Energy for All Purposes...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... produced" "onsite from input materials not classified as energy. Examples of the latter" "are hydrogen produced from the electrolysis of brine; the output of captive" "(onsite) ...

  7. Table A33. Total Primary Consumption of Energy for All Purposes...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... produced" "onsite from input materials not classified as energy. Examples of the latter" "are hydrogen produced from the electrolysis of brine; the output of captive" "(onsite) ...

  8. Country Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Country Total Percent of U.S. total China 1,461,074 34 Republic of Korea 172,379 4 Taiwan 688,311 16 All others 1,966,263 46 Total 4,288,027 100 Note: All Others includes Canada, Czech Republic, Federal Republic of Germany, Malaysia, Mexico, Philippines and Singapore Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Table 7 . Photovoltaic module import shipments by country, 2013 (peak kilowatts)

  9. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  10. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  11. FAST NEUTRON SPECTROMETER USING SPACED SEMICONDUCTORS FOR MEASURING TOTAL ENERGY OF NEUTRONS CAPTURED

    DOE Patents [OSTI]

    Love, T.A.; Murray, R.B.

    1964-04-14

    A fast neutron spectrometer was designed, which utilizes a pair of opposed detectors having a layer of /sup 6/LiF between to produce alpha and T pair for each neutron captured to provide signals, which, when combined, constitute a measure of neutron energy. (AEC)

  12. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    1" " (Estimates in Btu or Physical Units)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding" ,,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural Gas(d)","LPG","and Breeze)","Other(e)","Row" "Code(a)","End-Use

  13. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion

  14. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000

  15. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    " Part 2" " (Estimates in Trillion Btu)",,,,,,,,"Coal" ,,,,,"Distillate",,,"(excluding" ,,,,,"Fuel Oil",,,"Coal Coke",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"and",,"Row" "Code(a)","End-Use Categories","Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural

  16. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000

  17. Total energy study of the microscopic structure and electronic properties of tetragonal perovskite SrTiO{sub 3}

    SciTech Connect (OSTI)

    Rubio-Ponce, A.; Olgun, D.

    2014-05-15

    To study the structural and electronic properties of cubic perovskite SrTiO{sub 3} and its stress-induced tetragonal phase, we have performed total energy calculations and studied the effect of oxygen vacancies on the electronic properties of tetragonal perovskite SrTiO{sub 3}. The method used was the relativistic full-potential linearized augmented plane wave (FLAPW) method. To obtain the geometry that minimizes the total energy, we relaxed the internal atomic sites of the tetragonal cell. As a result of this procedure, we have found that the titanium atoms move toward the plane of the vacancy by 0.03 , and the apical oxygen atoms move to the same plane by approximately 0.14 . These results are discussed in comparison with experimental data.

  18. District of Columbia Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",81,75,72,35,200 " Coal","-","-","-","-","-" " Petroleum",81,75,72,35,200 " Natural Gas","-","-","-","-","-" " Other Gases","-","-","-","-","-"

  19. District of Columbia Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",806,806,790,790,790 " Coal","-","-","-","-","-" " Petroleum",806,806,790,790,790 " Natural Gas","-","-","-","-","-" " Other Gases","-","-","-","-","-"

  20. New York Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Energy Source",2006,2007,2008,2009,2010 "Fossil",69880,75234,66756,57187,64503 " Coal",20968,21406,19154,12759,13583 " Petroleum",6778,8195,3745,2648,2005 " Natural Gas",42134,45634,43856,41780,48916 " Other Gases","-","-","-","-","-" "Nuclear",42224,42453,43209,43485,41870 "Renewables",29941,28028,30042,32082,30286 "Pumped

  1. New York Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28071,27582,26726,27022,26653 " Coal",4014,3570,2899,2804,2781 " Petroleum",7241,7286,7273,7335,6421 " Natural Gas",16816,16727,16554,16882,17407 " Other Gases","-","-","-","-",45 "Nuclear",5156,5156,5264,5262,5271 "Renewables",5027,5087,5433,6013,6033 "Pumped Storage",1297,1297,1297,1374,1400

  2. North Carolina Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",79134,84935,80312,70232,80692 " Coal",75487,79983,75815,65083,71951 " Petroleum",451,496,320,297,293 " Natural Gas",3196,4457,4177,4852,8447 " Other Gases","-","-","-","-","-" "Nuclear",39963,40045,39776,40848,40740 "Renewables",5667,4656,4956,7065,6840 "Pumped

  3. North Carolina Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",19673,20247,20305,20230,20081 " Coal",13113,13068,13069,12952,12766 " Petroleum",563,564,558,560,573 " Natural Gas",5997,6616,6679,6718,6742 " Other Gases","-","-","-","-","-" "Nuclear",4975,4975,4958,4958,4958 "Renewables",2292,2301,2294,2294,2499 "Pumped Storage",84,84,90,86,86

  4. North Dakota Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28987,29283,29721,29712,28552 " Coal",28879,29164,29672,29607,28462 " Petroleum",42,51,49,45,38 " Natural Gas",7,17,"s",17,16 " Other Gases",59,53,"-",44,36 "Nuclear","-","-","-","-","-" "Renewables",1894,1940,2959,4484,6150 "Pumped

  5. North Dakota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",4222,4212,4212,4243,4247 " Coal",4127,4119,4119,4148,4153 " Petroleum",77,75,75,71,71 " Natural Gas",10,10,10,15,15 " Other Gases",8,8,8,8,8 "Nuclear","-","-","-","-","-" "Renewables",617,879,1272,1720,1941 "Pumped Storage","-","-","-","-","-"

  6. Ohio Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Fossil",31582,31418,31154,31189,30705 " Coal",22264,22074,21815,21858,21360 " Petroleum",1057,1075,1047,1047,1019 " Natural Gas",8161,8169,8192,8184,8203 " Other Gases",100,100,100,100,123 "Nuclear",2120,2124,2124,2134,2134 "Renewables",175,213,214,216,231 "Pumped Storage","-","-","-","-","-"

  7. Oklahoma Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18301,18083,18364,18532,18350 " Coal",5372,5364,5302,5330,5330 " Petroleum",75,70,71,71,69 " Natural Gas",12854,12649,12985,13125,12951 " Other Gases","-","-",6,6,"-" "Nuclear","-","-","-","-","-" "Renewables",1524,1618,1637,2057,2412 "Pumped

  8. Oregon Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3349,3686,3653,3626,3577 " Coal",585,585,585,585,585 " Petroleum","-","-","-","-","-" " Natural Gas",2764,3101,3068,3041,2992 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-"

  9. Pennsylvania Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32893,32751,32654,32663,32530 " Coal",18771,18581,18513,18539,18481 " Petroleum",4664,4660,4540,4533,4534 " Natural Gas",9349,9410,9507,9491,9415 " Other Gases",110,100,94,101,100 "Nuclear",9234,9305,9337,9455,9540 "Renewables",1365,1529,1619,1971,1984 "Pumped Storage",1513,1521,1521,1521,1521

  10. Rhode Island Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5813,6891,7224,7547,7595 " Coal","-","-","-","-","-" " Petroleum",33,34,26,17,12 " Natural Gas",5780,6857,7198,7530,7583 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-"

  11. Rhode Island Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1743,1754,1754,1754,1754 " Coal","-","-","-","-","-" " Petroleum",31,29,26,16,16 " Natural Gas",1712,1725,1728,1738,1738 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-"

  12. South Carolina Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",45778,47765,47449,44781,48789 " Coal",39473,41583,41540,34478,37671 " Petroleum",237,217,180,523,191 " Natural Gas",6068,5965,5729,9780,10927 " Other Gases","s","s","-","-","-" "Nuclear",50797,53200,51763,52150,51988 "Renewables",3717,3552,2939,4080,4250 "Pumped

  13. South Carolina Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",12100,12682,13281,13189,13207 " Coal",6088,6641,7242,7210,7230 " Petroleum",685,685,705,669,670 " Natural Gas",5327,5355,5335,5311,5308 " Other Gases","-","-","-","-","-" "Nuclear",6472,6472,6472,6486,6486 "Renewables",1594,1587,1592,1580,1623 "Pumped Storage",2616,2826,2666,2716,2666

  14. South Dakota Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3586,3069,3912,3306,3439 " Coal",3316,2655,3660,3217,3298 " Petroleum",5,63,23,8,6 " Natural Gas",266,351,229,80,135 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",3546,3067,3140,4859,6611 "Pumped

  15. South Dakota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1374,1364,1449,1448,1401 " Coal",492,492,497,497,497 " Petroleum",232,226,230,230,228 " Natural Gas",649,645,722,722,676 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1559,1506,1656,1914,2223 "Pumped

  16. Louisiana Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",23904,23379,23207,23087,23906 " Coal",3453,3482,3482,3482,3417 " Petroleum",285,346,346,346,881 " Natural Gas",19980,19384,19345,19225,19574 " Other Gases",186,167,34,34,34 "Nuclear",2119,2127,2154,2142,2142 "Renewables",525,586,586,579,517 "Pumped Storage","-","-","-","-","-"

  17. Maine Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2770,2751,2761,2738,2738 " Coal",85,85,85,85,85 " Petroleum",1030,1031,1031,1008,1008 " Natural Gas",1655,1636,1645,1645,1645 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1418,1462,1478,1606,1692 "Pumped

  18. Maryland Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10071,10028,10125,10050,10012 " Coal",4958,4958,4944,4876,4886 " Petroleum",3140,2965,2991,2986,2933 " Natural Gas",1821,1953,2038,2035,2041 " Other Gases",152,152,152,152,152 "Nuclear",1735,1735,1735,1705,1705 "Renewables",693,723,725,727,799 "Pumped Storage","-","-","-","-","-"

  19. Massachusetts Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Fossil",11050,10670,10621,10770,10763 " Coal",1743,1744,1662,1668,1669 " Petroleum",3219,3137,3120,3125,3031 " Natural Gas",6089,5789,5839,5977,6063 " Other Gases","-","-","-","-","-" "Nuclear",685,685,685,685,685 "Renewables",554,560,557,564,566 "Pumped Storage",1643,1643,1643,1680,1680

  20. Michigan Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Energy Source",2006,2007,2008,2009,2010 "Fossil",23693,23826,23805,23691,23205 " Coal",11860,11910,11921,11794,11531 " Petroleum",1499,673,667,684,640 " Natural Gas",10322,11242,11218,11214,11033 " Other Gases",12,"-","-","-","-" "Nuclear",4006,3969,3969,3953,3947 "Renewables",618,638,773,792,807 "Pumped Storage",1872,1872,1872,1872,1872

  1. Mississippi Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Fossil",15125,14707,14454,14340,14205 " Coal",2548,2542,2555,2555,2526 " Petroleum",36,36,36,35,35 " Natural Gas",12537,12125,11859,11746,11640 " Other Gases",4,4,4,4,4 "Nuclear",1266,1268,1259,1251,1251 "Renewables",229,229,229,229,235 "Pumped Storage","-","-","-","-","-"

  2. Missouri Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18197,18099,18126,18101,18861 " Coal",11299,11259,11240,11231,12070 " Petroleum",1279,1287,1282,1272,1212 " Natural Gas",5619,5553,5604,5598,5579 " Other Gases","-","-","-","-","-" "Nuclear",1190,1190,1190,1190,1190 "Renewables",555,612,734,880,1030 "Pumped Storage",657,657,657,657,657

  3. Montana Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2671,2671,2682,2701,2782 " Coal",2460,2458,2442,2442,2442 " Petroleum",57,59,57,57,54 " Natural Gas",154,154,181,200,284 " Other Gases","-","-",2,2,2 "Nuclear","-","-","-","-","-" "Renewables",2766,2809,2932,3078,3085 "Pumped

  4. Nebraska Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5478,5423,5459,6123,6169 " Coal",3204,3204,3204,3871,3932 " Petroleum",642,330,382,387,387 " Natural Gas",1632,1889,1874,1864,1849 " Other Gases","-","-","-","-","-" "Nuclear",1238,1240,1252,1252,1245 "Renewables",355,308,313,393,443 "Pumped

  5. Nevada Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Energy Source",2006,2007,2008,2009,2010 "Fossil",8412,8638,9942,9950,9914 " Coal",2657,2689,2916,2916,2873 " Petroleum",45,45,45,45,45 " Natural Gas",5711,5905,6982,6990,6996 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1236,1316,1355,1446,1507 "Pumped

  6. New Hampshire Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    New Hampshire" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10331,10066,10660,8411,8519 " Coal",3885,3927,3451,2886,3083 " Petroleum",439,385,136,183,72 " Natural Gas",6007,5754,7073,5342,5365 " Other Gases","-","-","-","-","-" "Nuclear",9398,10764,9350,8817,10910 "Renewables",2275,2389,2808,2878,2710 "Pumped

  7. New Hampshire Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    New Hampshire" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2411,2371,2235,2226,2262 " Coal",528,528,528,528,546 " Petroleum",529,503,503,501,501 " Natural Gas",1354,1341,1205,1198,1215 " Other Gases","-","-","-","-","-" "Nuclear",1244,1245,1245,1247,1247 "Renewables",685,663,694,691,671 "Pumped

  8. New Jersey Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Energy Source",2006,2007,2008,2009,2010 "Fossil",26910,29576,30264,26173,31662 " Coal",10862,10211,9028,5100,6418 " Petroleum",270,453,325,278,235 " Natural Gas",15668,18752,20752,20625,24902 " Other Gases",110,161,159,170,106 "Nuclear",32568,32010,32195,34328,32771 "Renewables",952,864,931,992,868 "Pumped Storage",-299,-269,-275,-202,-194 "Other",569,489,559,520,575

  9. New Jersey Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14363,13741,13771,13759,13676 " Coal",2124,2054,2054,2065,2036 " Petroleum",1810,1345,1514,1362,1351 " Natural Gas",10385,10298,10159,10288,10244 " Other Gases",44,44,44,44,44 "Nuclear",3984,3984,4108,4108,4108 "Renewables",212,215,219,221,230 "Pumped Storage",400,400,400,400,400 "Other",11,11,11,11,11

  10. New Mexico Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Energy Source",2006,2007,2008,2009,2010 "Fossil",35790,34308,35033,37823,34180 " Coal",29859,27604,27014,29117,25618 " Petroleum",41,44,53,45,50 " Natural Gas",5890,6660,7966,8661,8512 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1476,1677,1974,1851,2072 "Pumped

  11. New Mexico Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6520,6620,7366,7308,7312 " Coal",3957,3957,3957,3977,3990 " Petroleum",28,28,28,28,24 " Natural Gas",2535,2634,3381,3302,3298 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",582,582,584,686,818 "Pumped

  12. Alabama Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",21804,21784,22372,22540,23519 " Coal",11557,11544,11506,11486,11441 " Petroleum",43,43,43,43,43 " Natural Gas",10104,10098,10724,10912,11936 " Other Gases",100,100,100,100,100 "Nuclear",5008,4985,4985,4985,5043 "Renewables",3852,3846,3865,3863,3855 "Pumped Storage","-","-","-","-","-"

  13. Alaska Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1485,1561,1593,1591,1618 " Coal",105,105,112,111,111 " Petroleum",575,622,643,644,663 " Natural Gas",805,834,838,836,845 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",400,400,403,422,422 "Pumped

  14. Arizona Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18784,18756,18942,19351,19338 " Coal",5830,5818,5818,6227,6233 " Petroleum",90,93,93,93,93 " Natural Gas",12864,12845,13031,13031,13012 " Other Gases","-","-","-","-","-" "Nuclear",3872,3872,3942,3942,3937 "Renewables",2736,2736,2762,2826,2901 "Pumped Storage",216,216,216,216,216

  15. Arkansas Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10965,11807,11756,11753,12451 " Coal",3846,3846,3861,3864,4535 " Petroleum",23,22,22,22,22 " Natural Gas",7096,7939,7873,7867,7894 " Other Gases","-","-","-","-","-" "Nuclear",1824,1838,1839,1835,1835 "Renewables",1691,1623,1643,1659,1667 "Pumped Storage",28,28,28,28,28

  16. California Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Energy Source",2006,2007,2008,2009,2010 "Fossil",39351,39961,39950,41443,42654 " Coal",389,389,367,367,374 " Petroleum",789,754,752,734,701 " Natural Gas",38001,38556,38635,40146,41370 " Other Gases",171,262,197,197,209 "Nuclear",4390,4390,4390,4390,4390 "Renewables",15776,15774,15945,16295,16460 "Pumped Storage",3688,3688,3813,3813,3813 "Other",8,"-",7,7,11

  17. Colorado Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9644,9979,10229,10545,11204 " Coal",4939,4961,4965,5010,5702 " Petroleum",181,182,184,178,178 " Natural Gas",4523,4836,5080,5357,5325 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",950,1746,1753,1931,2010 "Pumped

  18. Connecticut Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5498,5361,5466,5582,5845 " Coal",551,551,553,564,564 " Petroleum",2926,2709,2741,2749,2989 " Natural Gas",2020,2100,2171,2268,2292 " Other Gases","-","-","-","-","-" "Nuclear",2037,2022,2015,2103,2103 "Renewables",316,285,287,287,281 "Pumped Storage",4,29,29,29,29

  19. Delaware Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3367,3350,3344,3355,3379 " Coal",1083,1083,1083,1074,1054 " Petroleum",695,698,557,557,563 " Natural Gas",1282,1262,1397,1417,1455 " Other Gases",307,307,307,307,307 "Nuclear","-","-","-","-","-" "Renewables",7,7,7,7,10 "Pumped

  20. Florida Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Energy Source",2006,2007,2008,2009,2010 "Fossil",48044,50280,50166,53733,53791 " Coal",10333,10297,10265,10261,9975 " Petroleum",11677,11671,13128,12602,12033 " Natural Gas",26035,28312,26773,30870,31563 " Other Gases","-","-","-","-",220 "Nuclear",3902,3902,3924,3924,3924 "Renewables",1008,1048,1046,1093,1182 "Pumped

  1. Georgia Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28238,28096,28078,28103,28087 " Coal",13438,13275,13256,13211,13230 " Petroleum",2182,2169,2187,2188,2189 " Natural Gas",12618,12652,12635,12705,12668 " Other Gases","-","-","-","-","-" "Nuclear",4060,3995,4061,4061,4061 "Renewables",2526,2706,2642,2648,2689 "Pumped

  2. Hawaii Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2208,2209,2208,2223,2196 " Coal",180,180,180,180,180 " Petroleum",2019,2020,2019,2034,2007 " Natural Gas","-","-","-","-","-" " Other Gases",9,9,9,9,9 "Nuclear","-","-","-","-","-" "Renewables",206,227,228,341,340 "Pumped

  3. Idaho Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Energy Source",2006,2007,2008,2009,2010 "Fossil",667,667,828,834,834 " Coal",17,17,17,17,17 " Petroleum",5,5,5,5,5 " Natural Gas",645,645,805,812,812 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",2528,2514,2535,2909,3140 "Pumped

  4. Illinois Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Energy Source",2006,2007,2008,2009,2010 "Fossil",30626,30435,30662,30795,30554 " Coal",15731,15582,15653,15852,15551 " Petroleum",1143,1097,1099,1090,1106 " Natural Gas",13705,13709,13870,13806,13771 " Other Gases",47,47,40,47,125 "Nuclear",11379,11379,11379,11441,11441 "Renewables",264,916,1145,1777,2112 "Pumped Storage","-","-","-","-","-"

  5. Indiana Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",26899,26922,26850,26808,26186 " Coal",19718,19759,19721,19757,19096 " Petroleum",503,503,503,503,504 " Natural Gas",6052,6048,6007,6003,5766 " Other Gases",626,612,618,545,819 "Nuclear","-","-","-","-","-" "Renewables",91,99,229,1141,1452 "Pumped

  6. Iowa Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9496,10391,10340,10467,10263 " Coal",6097,6967,6928,7107,6956 " Petroleum",1027,1023,1017,1014,1007 " Natural Gas",2371,2402,2395,2346,2299 " Other Gases","-","-","-","-","-" "Nuclear",581,580,580,601,601 "Renewables",1067,1316,2791,3511,3728 "Pumped

  7. Kansas Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9592,9709,10017,10355,10302 " Coal",5203,5208,5190,5180,5179 " Petroleum",565,569,564,564,550 " Natural Gas",3824,3932,4262,4611,4573 " Other Gases","-","-","-","-","-" "Nuclear",1166,1166,1160,1160,1160 "Renewables",366,366,815,1014,1082 "Pumped

  8. Kentucky Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Fossil",19177,19088,19016,19268,19560 " Coal",14386,14374,14301,14553,14566 " Petroleum",135,77,77,77,70 " Natural Gas",4656,4638,4638,4638,4924 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",871,880,886,893,893 "Pumped

  9. Tennessee Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Energy Source",2006,2007,2008,2009,2010 "Fossil",13051,12974,12999,12982,13517 " Coal",8841,8816,8841,8805,8805 " Petroleum",58,58,58,58,58 " Natural Gas",4153,4101,4101,4120,4655 " Other Gases","-","-","-","-","-" "Nuclear",3398,3397,3397,3401,3401 "Renewables",2821,2838,2842,2817,2847 "Pumped Storage",1635,1653,1653,1653,1653

  10. Texas Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",92088,91494,91450,87547,92136 " Coal",19843,19817,20189,20247,22335 " Petroleum",220,216,218,221,204 " Natural Gas",71737,71152,70856,66896,69291 " Other Gases",287,308,187,184,306 "Nuclear",4860,4860,4927,4927,4966 "Renewables",3607,5385,8380,10354,10985 "Pumped Storage","-","-","-","-","-"

  11. Utah Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6398,6830,6819,6897,6969 " Coal",4891,4871,4871,4871,4903 " Petroleum",35,25,25,25,23 " Natural Gas",1473,1934,1923,2002,2042 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",282,293,313,521,528 "Pumped

  12. Vermont Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Energy Source",2006,2007,2008,2009,2010 "Fossil",108,101,101,100,100 " Coal","-","-","-","-","-" " Petroleum",108,101,101,100,100 " Natural Gas","-","-","-","-","-" " Other Gases","-","-","-","-","-" "Nuclear",620,620,620,620,620

  13. Virginia Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14968,15080,15543,15740,15880 " Coal",5774,5794,5773,5777,5868 " Petroleum",2386,2418,2418,2427,2432 " Natural Gas",6809,6869,7351,7536,7581 " Other Gases","-","-","-","-","-" "Nuclear",3432,3404,3404,3404,3501 "Renewables",1251,1347,1368,1403,1487 "Pumped Storage",2997,3161,3161,3241,3241

  14. Washington Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Energy Source",2006,2007,2008,2009,2010 "Fossil",4436,4343,5130,5145,5183 " Coal",1405,1405,1376,1376,1340 " Petroleum",40,4,4,5,15 " Natural Gas",2991,2933,3750,3764,3828 " Other Gases","-","-","-","-","-" "Nuclear",1131,1131,1131,1131,1097 "Renewables",22343,22828,22919,23504,23884 "Pumped Storage",314,314,314,314,314

  15. West Virginia Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",92063,92511,89481,68395,78482 " Coal",91473,91866,89113,68080,78148 " Petroleum",175,200,137,169,155 " Natural Gas",362,389,180,109,140 " Other Gases",53,56,50,36,40 "Nuclear","-","-","-","-","-" "Renewables",1746,1422,1640,2388,2307 "Pumped

  16. West Virginia Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",16113,15769,15756,15766,15779 " Coal",14745,14715,14703,14713,14713 " Petroleum",12,12,11,11,11 " Natural Gas",1357,1042,1042,1042,1056 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",330,330,594,594,715 "Pumped

  17. Wisconsin Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14000,13926,15015,14928,14964 " Coal",7063,6945,7597,7519,8063 " Petroleum",881,949,874,873,790 " Natural Gas",6056,6032,6544,6536,6110 " Other Gases","-","-","-","-","-" "Nuclear",1582,1582,1582,1583,1584 "Renewables",813,836,1003,1212,1267 "Pumped

  18. Wyoming Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6105,6065,6150,6147,6253 " Coal",5847,5847,5932,5929,6035 " Petroleum",6,7,7,7,7 " Natural Gas",160,120,120,120,120 " Other Gases",92,92,92,92,92 "Nuclear","-","-","-","-","-" "Renewables",590,590,983,1408,1722 "Pumped

  19. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  20. Radiative return capabilities of a high-energy, high-luminositye<mo>+mo>e<mo>->collider

    SciTech Connect (OSTI)

    Karliner, Marek; Low, Matthew; Rosner, Jonathan L.; Wang, Lian-Tao

    2015-08-14

    An electron-positron collider operating at a center-of-mass energy ECM can collect events at all lower energies through initial-state radiation (ISR or radiative return). We explore the capabilities for radiative return studies by a proposed high-luminosity collider at ECM = 250 or 90 GeV, to fill in gaps left by lower-energy colliders such as PEP, PETRA, TRISTAN, and LEP. These capabilities are compared with those of the lower-energy e+e- colliders as well as hadron colliders such as the Tevatron and the CERN Large Hadron Collider (LHC). Some examples of accessible questions in dark photon searches and heavy flavor spectroscopy are given.

  1. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  2. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  3. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  4. Measurement of fenestration net energy performance: Considerations leading to development of a Mobile Window Thermal Test (MoWitt) facility

    SciTech Connect (OSTI)

    Klems, J.H.

    1988-08-01

    The authors present a detailed consideration of the energy flows entering a building space and the effect of random measurement errors on determining fenestration performance. Estimates of error magnitudes are made for a passive test cell; they show that a more accurate test facility is needed for reliable measurements on fenestration systems with thermal resistance 2-10 times that of single glazing or with shading coefficients less than 0.7. A test facility of this type, built at Lawrence Berkeley Laboratory, is described. The effect of random errors in this facility is discussed and computer calculations of its performance are presented. The discussion shows that, for any measurement facility, random errors are most serious in nighttime measurements, and systematic errors are most important in daytime measurements. It is concluded that, for this facility, errors from both sources should be small.

  5. Environmental assessment of air quality, noise and cooling tower drift from the Jersey City Total Energy Demonstration

    SciTech Connect (OSTI)

    Davis, W.T.; Kolb, J.O.

    1980-06-01

    This assessment covers three specific effects from the operation of the Total Energy (TE) demonstration: (1) air quality from combustion emissions of 600 kW diesel engines and auxiliary boilers fueled with No. 2 distillate oil, (2) noise levels from TE equipment operation, (3) cooling tower drift from two, 2220 gpm, forced-draft cooling towers. For the air quality study, measurements were performed to determine both the combustion emission rates and ground-level air quality at the Demonstration site. Stack analysis of NO/sub x/, SO/sub 2/, CO, particulates, and total hydrocarbons characterized emission rates over a range of operating conditions. Ground-level air quality was monitored during two six-week periods during the summer and winter of 1977. The noise study was performed by measuring sound levels in db(A) in the area within approximately 60 m of the CEB. The noise survey investigated the effects on noise distribution of different wind conditions, time of day or night, and condition of doors - open or closed - near the diesel engines in the CEB. In the cooling tower study, drift emission characteristics were measured to quantify the drift emission before and after cleaning of the tower internals to reduce fallout of large drift droplets in the vicinity of the CEB.

  6. NNSA Awards Mo-99 Cooperative Agreement to General Atomics | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Library / Press Releases NNSA Awards Mo-99 Cooperative Agreement to General Atomics September 30, 2015 WASHINGTON, DC - Today, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) announced that it will award a cooperative agreement to General Atomics (GA) to support its project for domestic production of molybdenum-99 (Mo-99) without highly enriched uranium (HEU). Mo-99 is the parent isotope of technetium-99m, which is the most

  7. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    SciTech Connect (OSTI)

    Duke, Dana Lynn

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  8. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report

    SciTech Connect (OSTI)

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

  9. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report

    SciTech Connect (OSTI)

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

  10. Oxidation, Reduction, and Condensation of Alcohols over (MO3)3 (M=Mo, W) Nanoclusters

    SciTech Connect (OSTI)

    Fang, Zongtang; Li, Zhenjun; Kelley, Matthew S.; Kay, Bruce D.; Li, Shenggang; Hennigan, Jamie M.; Rousseau, Roger J.; Dohnalek, Zdenek; Dixon, David A.

    2014-10-02

    The reactions of deuterated methanol, ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol and t-butanol over cyclic (MO3)3 (M = Mo, W) clusters were studied experimentally with temperature programmed desorption (TPD) and theoretically with coupled cluster CCSD(T) theory and density functional theory. The reactions of two alcohols per M3O9 cluster are required to provide agreement with experiment for D2O release, dehydrogenation and dehydration. The reaction begins with the elimination of water by proton transfers and forms an intermediate dialkoxy species which can undergo further reaction. Dehydration proceeds by a ? hydrogen transfer to a terminal M=O. Dehydrogenation takes place via an ? hydrogen transfer to an adjacent MoVI = O atom or a WVI metal center with redox involved for M = Mo and no redox for M = W. The two channels have comparable activation energies. H/D exchange to produce alcohols can take place after olefin is released or via the dialkoxy species depending on the alcohol and the cluster. The Lewis acidity of the metal center with WVI being larger than MoVI results in the increased reactivity of W3O9 over Mo3O9 for dehydrogenation and dehydration.

  11. Neutrino scattering off the stable even-even Mo isotopes

    SciTech Connect (OSTI)

    Balasi, K. G.; Kosmas, T. S.; Divari, P. C. [Theoretical Physics Section, University of Ioannina, GR 45110 Ioannina (Greece)

    2009-11-09

    Inelastic neutrino-nucleus reaction cross sections are studied focusing on the neutral current processes. Particularly, we investigate the angular and initial neutrino-energy dependence of the differential and integrated cross sections for low and intermediate energies of the incoming neutrino. The nuclear wave functions for the initial and final nuclear states are constructed in the context of the quasi-particle random phase approximation (QRPA) tested on the reproducibility of the low-lying energy spectrum. The results presented here refer to the isotopes Mo{sup 92}, Mo{sup 94}, Mo{sup 96}, Mo{sup 98} and Mo{sup 100}. These isotopes could play a significant role in supernova neutrino detection in addition to their use in double-beta and neutrinoless double-beta decay experiments (e.g. MOON, NEMO III)

  12. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization

    SciTech Connect (OSTI)

    Dong, Xue; Niu, Tianye; Zhu, Lei

    2014-05-15

    Purpose: Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical properties of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution. Methods: The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization. Results: On the Catphan600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one order of magnitude. This improvement is mainly attributed to the high noise correlation in the CT images reconstructed by the proposed algorithm. Iterative reconstruction using different regularization, including quadratic orq-generalized Gaussian Markov random field regularization, achieves similar noise suppression from high noise correlation. However, the proposed TV regularization obtains a better edge preserving performance. Studies of electron density measurement also show that our method reduces the average estimation error from 9.5% to 7.1%. On the anthropomorphic head phantom, the proposed method suppresses the noise standard deviation of the decomposed images by a factor of ?14 without blurring the fine structures in the sinus area. Conclusions: The authors propose a practical method for DECT imaging reconstruction, which combines the image reconstruction and material decomposition into one optimization framework. Compared to the existing approaches, our method achieves a superior performance on DECT imaging with respect to decomposition accuracy, noise reduction, and spatial resolution.

  13. Origin State>> CA CA ID ID ID IL KY MD MO NM NM NY NY OH SC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MO NM NM NY NY OH SC TN TN TN, WA, CA TN TN TN TN Total Shipments by Route Lawrence Livermore National Laboratory General Atomics Batelle Energy Alliance Idaho National Laboratory Advanced Mixed Waste Treatment Project Argonne National Laboratory Paducah Gaseous Diffusion Plant Aberdeen Proving Grounds National Security Technologies Sandia National Laboratory Los Alamos National Laboratory Brookhaven National Laboratory CH2M Hill B&W West Valley, LLC Portsmouth Gaseous Diffusion Plant

  14. Energy Pro USA | Open Energy Information

    Open Energy Info (EERE)

    Pro USA Jump to: navigation, search Name: Energy Pro USA Place: Chesterfield, Missouri Zip: MO 63017 Product: Energy Pro funds and implements demand side energy savings programs to...

  15. Surface structure determinations of ordered sulfur overlayers on Mo(100) and Re(0001) by low-energy electron diffraction intensity analysis

    SciTech Connect (OSTI)

    Jentz, D.W.

    1992-11-01

    A newly developed method for surface structure determination, tensor LEED, combined with automated search was used to analyze the structures. The ordered structures of S on Mo(100) which were studied formed a c(2 {times} 2), c(4 {times} 2), and p(2 {times} l) periodicities at coverages of 0.5, 0.75, 1.0 ML (monolayers, of one sulfur atom per one molybdenum atom) respectively. A MO{sub 2}S-like overlayer, which formed at coverages greater than 1.0 ML, is also discussed. Calculations for the c(2 {times} 2) structure gave a best fit geometry with S adsorbed in a four-fold symmetric hollow site and the second layer buckled by 0.09{Angstrom}. The S-Mo bond length is 2.45{Angstrom} and the Pendry R-factor is 0.21. Preliminary calculations for the c(4 {times} 2) structure did not yield an acceptable fit. The three models tried are discussed. Calculations for p(2 {times} l) data did not yield an acceptable geometry either. The types of models that were tried are discussed. Implications of this analysis are discussed along with results of a scanning tunneling microscopy (STM) investigation. The ordered structures on the RE(0001) surface studied have p(2 {times} 2) and (2{radical}3 {times} 2{radical}3)R30{degree} periodicities and occurred at S coverages of 0.25 and 0.5 ML respectively. Best fit structure for p(2 {times} 2) structure has S adsorbed in a three-fold hollow hcp site and exhibits a buckling of the first and second Re layers. The first layer is buckled by 0.05{Angstrom} and the second layer is buckled by 0.06{Angstrom}. Re-S bond length is 2.32{Angstrom} and Pendry R-factor is 0.21. Preliminary results of dynamical LEED investigation of (2{radical}3 {times} 2{radical}3)R30{degree} structure show reasonable agreement with a model with a 6-S atom basis.

  16. Mo-O bond doping and related-defect assisted enhancement of photoluminescence in monolayer MoS{sub 2}

    SciTech Connect (OSTI)

    Wei, Xiaoxu; Yu, Zhihao; Cheng, Ying; Yu, Linwei; Wang, Junzhuan Wang, Xinran; Shi, Yi; Hu, Fengrui; Wang, Xiaoyong; Xiao, Min

    2014-12-15

    In this work, we report a strong photoluminescence (PL) enhancement of monolayer MoS{sub 2} under different treatments. We find that by simple ambient annealing treatment in the range of 200?C to 400?C, the PL emission can be greatly enhanced by a factor up to two orders of magnitude. This enhancement can be attributed to two factors: first, the formation of Mo-O bonds during ambient exposure introduces an effective p-doping in the MoS{sub 2} layer; second, localized electrons formed around Mo-O bonds related defective sites where the electrons can be effectively localized with higher binding energy resulting in efficient radiative excitons recombination. Time resolved PL decay measurement showed that longer lifetime of the treated sample consistent with the higher quantum efficiency in PL. These results give more insights to understand the luminescence properties of the MoS{sub 2}.

  17. Ahorro Energía: Consejos sobre cómo ahorrar dinero y energía en su casa (Spanish Brochure), Energy Savers Guide

    SciTech Connect (OSTI)

    2012-07-09

    The Spanish-language version of U.S. Department of Energy's consumer guide to saving energy and money at home and on the road.

  18. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  19. Mo-99 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Mo-99 DOE/NNSA Successfully Establishes Uranium Lease and Takeback Program to Support Critical Medical Isotope Production In January 2016, the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) successfully established the Uranium Lease and Take-Back (ULTB) program, as directed in the American Medical Isotopes Production Act of 2012, to support the commercial production of the medical... NNSA's work aids in fight against cancer World Cancer Day encourages citizens

  20. 9 Cr-- 1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  1. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",17,34,"NA",19,"NA","NA","NA"," " "Number of retail

  2. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,"NA","NA","NA","NA",26,1," " "Number of retail

  3. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",11,33,"NA",16,"NA","NA","NA"," " "Number of retail

  4. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",14,"NA","NA",1,2,"NA","NA"," " "Number of retail

  5. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",7,72,"NA",39,"NA","NA","NA"," " "Number of retail

  6. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,137,"NA",42,"NA","NA","NA"," " "Number of retail

  7. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",7,22,"NA",12,"NA","NA","NA"," " "Number of retail

  8. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,86,"NA",42,"NA","NA","NA"," " "Number of retail

  9. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities","NA",148,1,10,"NA","NA","NA"," " "Number of retail

  10. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,22,"NA",21,"NA","NA","NA"," " "Number of retail

  11. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,2,"NA",2,"NA","NA","NA"," " "Number of retail

  12. Buildings Energy Data Book: 9.1 ENERGY STAR

    Buildings Energy Data Book [EERE]

    2 Home Performance with ENERGY STAR, Completed Jobs Rank Program Sponsor State 1 NY State Energy R&D Authority NY 2 National Grid MA 3 Austin Energy TX 4 Wisconsin Energy Conservation Corp. WI 5 New Jersey Board of Public Utilities NJ 6 Energy Trust of Oregon OR 7 Sacramento Municipal Utility District (1) CA 8 Long Island Power Authority NY 9 Metropolitan Energy Center MO 10 Efficiency Vermont VT Total Note(s): Source(s): Personal communication, Chandler Von Schrader, U.S. EPA, February 10,

  13. Stepped-anneal and total helium/hydrogen measurements in high-energy proton-irradiated tungsten

    SciTech Connect (OSTI)

    Oliver, B.M.; Hamilton, M.L.; Garner, F.A.; Sommer, W.F.; Maloy, S.A.; Ferguson, P.D.

    1998-12-31

    To provide structural material design data for the Accelerator Production of Tritium (APT) project, a 1 mA, 800 MeV proton beam at the Los Alamos Neutron Science Center (LANSCE) was used to irradiate a large number of metal samples, including a tungsten target similar to that being considered as the neutron source for the tritium production. The maximum proton fluence to the tungsten target was {approximately} 10{sup 21} protons/cm{sup 2}. An unavoidable byproduct of spallation reactions is the formation of large amounts of hydrogen and helium. Postulated accident scenarios for APT involving the use of tungsten rods clad with Alloy 718, raise concerns as to the amount and rate of release of these gases due to temperatures increases from afterheat accumulation, with the major concern being pressurizing and possibly failure of the cladding. To address these issues, portions of the LANSCE tungsten rods were subjected to temperature histories calculated as likely to occur, and the time-dependent evolution of helium and hydrogen gases was measured. Stepped-anneal and total helium/hydrogen measurements were conducted on multiple samples of the tungsten material. Helium measurements were conducted at Pacific Northwest National Laboratory (PNNL) using a high-sensitivity magnetic-sector isotope-dilution helium analysis system. Stepped-anneal measurements were conducted at temperatures from {approximately} 25 C to {approximately} 1,600 C in {approximately} 100 C steps. Total helium measurements were conducted by rapid vaporization after completion of the stepped-anneal process, and are compared with Monte Carlo calculations performed at Los Alamos National Laboratory (LANL) using the LAHET code system. Hydrogen measurements were conducted between {approximately} 750 C and {approximately} 1,200 C using a high-temperature furnace that had been extensively modified for the application. Hydrogen detection was accomplished by periodic sampling of the furnace gas using a separate quadrupole analyzer. Hydrogen measurements are also compared with LANL calculations.

  14. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  15. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  16. Hadronic Total Cross Sections (R) in E+E- Interactions: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Whalley, M. R.

    A comprehensive compilation of experimental data on total hadronic cross sections, and R ratios, in e+e- interactions is presented. Published data from the Novosibirsk, Orsay, Frascati, SLAC, CORNELL, DESY, KEK and CERN e+e- colliders on both exclusive and inclusive final particle states are included from threshold energies to the highest LEP energies. The data are presented in tabular form supplemented by compilation plots of different exclusive final particle states and of different energy regions. (Taken from abstract of paper, A Compilation of Data on Hadronic Total Cross Sections in E+E- Interactions, M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 29, Number 12A, 2003). The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. The data are also included in the Durham HEP Reaction Data Database, which can be searched at http://hepdata.cedar.ac.uk/reaction

  17. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 1,652 0.0 Alaska 152 0.0 Arizona 912,975 19.9 Arkansas 2,724 0.1 California 2,239,983 48.8 Colorado 49,903 1.1 Connecticut 33,627 0.7 Delaware 3,080 0.1 District of Columbia 1,746 0.0 Florida 22,061 0.5 Georgia 99,713 2.2 Guam 39 0.0 Hawaii 126,595 2.8 Idaho 1,423 0.0 Illinois 8,176 0.2 Indiana 12,912 0.3 Iowa 4,480 0.1 Kansas 523 0.0 Kentucky 2,356 0.1 Louisiana 27,704 0.6 Maine 993 0.0 Maryland 30,528 0.7 Massachusetts 143,539 3.1 Michigan 3,416 0.1

  18. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",23,29,3,9,11,"NA","NA"," " "Number of retail customers",1675038,1078638,16690,187629,12,"NA","NA",2958007 "Retail sales

  19. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    California" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",29,41,2,4,65,17,3," " "Number of retail customers",11676056,3110257,2197,16506,69,185755,"NA",14990840 "Retail sales

  20. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",10,29,1,28,7,"NA","NA"," " "Number of retail customers",1500660,428854,13,632335,7,"NA","NA",2561869 "Retail sales

  1. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",7,8,"NA","NA",3,35,2," " "Number of retail customers",948486,71741,"NA","NA",3,597272,"NA",1617502 "Retail sales

  2. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,9,"NA",1,1,27,1," " "Number of retail customers",267434,66283,"NA",88026,1,38537,"NA",460281 "Retail sales

  3. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,53,"NA",42,1,"NA","NA"," " "Number of retail customers",2410042,333203,"NA",1966788,31,"NA","NA",4710064

  4. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,11,2,17,"NA","NA","NA"," " "Number of retail customers",693393,43895,1,84578,"NA","NA","NA",821867 "Retail

  5. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,41,"NA",26,2,53,3," " "Number of retail customers",1911129,270483,"NA",301219,318,3268220,"NA",5751369 "Retail sales

  6. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,118,1,29,"NA","NA","NA"," " "Number of retail customers",953679,235288,4,292717,"NA","NA","NA",1481688 "Retail

  7. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,30,1,24,2,"NA","NA"," " "Number of retail customers",1220619,210206,17,813201,4,"NA","NA",2244047 "Retail sales

  8. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,4,"NA",2,1,32,6," " "Number of retail customers",39,10603,"NA",2535,1,788335,"NA",801513 "Retail sales

  9. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",10,5,"NA",3,8,52,5," " "Number of retail customers",1638979,28808,"NA",208447,8,610640,"NA",2486882 "Retail sales

  10. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",13,40,"NA","NA",27,40,5," " "Number of retail customers",2182382,399857,"NA","NA",40,544399,"NA",3126678 "Retail

  11. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",8,41,"NA",10,2,12,3," " "Number of retail customers",4177118,306315,"NA",318985,2,6419,"NA",4808839 "Retail sales

  12. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,23,1,25,"NA","NA","NA"," " "Number of retail customers",628656,134500,7,741758,"NA","NA","NA",1504921

  13. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,1,3,29,"NA",2,1," " "Number of retail customers",377770,983,20971,197627,"NA",419,"NA",597770 "Retail sales

  14. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,9,1,8,1,3,3," " "Number of retail customers",1204604,29842,2,37040,1,10,"NA",1271499 "Retail sales

  15. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,5,"NA",1,"NA",20,4," " "Number of retail customers",496060,12226,"NA",78794,"NA",128985,"NA",716065 "Retail sales

  16. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",17,9,"NA",1,35,58,4," " "Number of retail customers",3270179,55120,"NA",11581,39,649669,"NA",3986588 "Retail sales

  17. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",6,8,1,20,6,"NA","NA"," " "Number of retail customers",723562,85741,5,208702,10,"NA","NA",1018020 "Retail sales

  18. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    York" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",19,48,"NA",4,5,69,9," " "Number of retail customers",5052054,1270394,"NA",18139,15,1751992,"NA",8092594 "Retail sales

  19. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,72,1,31,"NA","NA","NA"," " "Number of retail customers",3318839,598354,4,1052477,"NA","NA","NA",4969674

  20. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,12,1,21,"NA","NA","NA"," " "Number of retail customers",238608,11023,21,186997,"NA","NA","NA",436649 "Retail

  1. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",10,85,"NA",25,6,52,6," " "Number of retail customers",2143362,375117,"NA",383167,12,2618989,"NA",5520647 "Retail sales

  2. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,62,1,31,"NA","NA","NA"," " "Number of retail customers",1291253,204450,1,508162,"NA","NA","NA",2003866

  3. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",8,18,1,19,"NA",4,3," " "Number of retail customers",1421279,294747,1,203211,"NA",484,"NA",1919722 "Retail sales

  4. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",15,35,"NA",13,5,73,10," " "Number of retail customers",3554206,83922,"NA",219570,5,2146096,"NA",6003799 "Retail sales

  5. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,1,"NA","NA","NA",17,1," " "Number of retail customers",462381,4658,"NA","NA","NA",32071,"NA",499110

  6. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",6,36,1,31,"NA","NA","NA"," " "Number of retail customers",243148,60553,22,154530,"NA","NA","NA",458253 "Retail

  7. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,61,1,26,1,"NA","NA"," " "Number of retail customers",47264,2213496,23,969214,1,"NA","NA",3229998 "Retail sales

  8. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",89,72,"NA",68,13,"NA","NA"," " "Number of retail customers",7744205,1849743,"NA",2076859,50,"NA","NA",11670857

  9. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",1,40,1,9,1,"NA","NA"," " "Number of retail customers",835233,244217,7,48538,1,"NA","NA",1127996 "Retail sales

  10. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,14,"NA",2,1,"NA","NA"," " "Number of retail customers",258928,54912,"NA",49378,1,"NA","NA",363219 "Retail

  11. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,16,"NA",13,"NA",1,1," " "Number of retail customers",2934456,166751,"NA",629034,"NA",20,"NA",3730261 "Retail sales

  12. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,41,2,18,1,3,1," " "Number of retail customers",1460672,1669068,10,167371,1,17,"NA",3297139 "Retail sales

  13. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",13,82,"NA",24,2,"NA","NA"," " "Number of retail customers",2439647,282258,"NA",260892,2,"NA","NA",2982799

  14. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,13,1,18,"NA","NA","NA"," " "Number of retail customers",198292,36318,5,99606,"NA","NA","NA",334221 "Retail

  15. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",256,1948,6,810,144,188,67," " "Number of retail customers",93329397,21335809,40029,19096482,656,13411030,"NA",147213403 "Retail sales

  16. Country/Continent Total

    U.S. Energy Information Administration (EIA) Indexed Site

    peak kilowatts) Country/Continent Total Percent of U.S. total Africa 14,279 3.7 Asia/Australia 330,200 86.2 Europe 19,771 5.1 South/Central America 7,748 2.0 Canada 5,507 1.4 Mexico 5,747 1.5 Total 383,252 100.0 Table 8. Destination of photovoltaic module export shipments, 2013 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.'

  17. d::;":,",:::,, ST. LOUIS.7. MO,

    Office of Legacy Management (LM)

    i ,' CKRODT CHEMICAL d::;":,",:::,, ST. LOUIS.7. MO, PiARCH 14, ,jq;ll MR. H. L. PRICE, ... I AL PERAT I ONS DF MALL- INCKRODT ' CHEMICAL b:ORKS WOULD LIKE TO MAKE.APPLlCATlON ...

  18. Measurement of the 240Pu/239Pu mass ratio using a transition-edge-sensor microcalorimeter for total decay energy spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoover, Andrew S.; Bond, Evelyn M.; Croce, Mark P.; Holesinger, Terry G.; Kunde, Gerd J.; Rabin, Michael W.; Wolfsberg, Laura E.; Bennett, Douglas A.; Hays-Wehle, James P.; Schmidt, Dan R.; et al

    2015-02-27

    In this study, we have developed a new category of sensor for measurement of the 240Pu/239Pu mass ratio from aqueous solution samples with advantages over existing methods. Aqueous solution plutonium samples were evaporated and encapsulated inside of a gold foil absorber, and a superconducting transition-edge-sensor microcalorimeter detector was used to measure the total reaction energy (Q-value) of nuclear decays via heat generated when the energy is thermalized. Since all of the decay energy is contained in the absorber, we measure a single spectral peak for each isotope, resulting in a simple spectral analysis problem with minimal peak overlap. We foundmore » that mechanical kneading of the absorber dramatically improves spectral quality by reducing the size of radioactive inclusions within the absorber to scales below 50 nm such that decay products primarily interact with atoms of the host material. Due to the low noise performance of the microcalorimeter detector, energy resolution values of 1 keV fwhm (full width at half-maximum) at 5.5 MeV have been achieved, an order of magnitude improvement over α-spectroscopy with conventional silicon detectors. We measured the 240Pu/239Pu mass ratio of two samples and confirmed the results by comparison to mass spectrometry values. These results have implications for future measurements of trace samples of nuclear material.« less

  19. Total Energy Outcome City Pilot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... budget, all but 6,526, has gone toward development of an outcome based code program. ... Additional Funding: No other funding has been utilized Budget History 090112- FY2013 ...

  20. Experimental activities supporting commercial U.S. accelerator production of 99-Mo

    SciTech Connect (OSTI)

    Dale, Gregory E [Los Alamos National Laboratory; Chemerisov, Sergey D [ANL; Vandegrift, George F [ANL

    2010-01-01

    {sup 99m}Tc, the daughter product of {sup 99}Mo, is the most commonly used radioisotope for nuclear medicine in the U.S. Experiments are being performed at Los Alamos National Laboratory and Argonne National Laboratory to demonstrate production of {sup 99}Mo using accelerators. The {sup 100}Mo({gamma},n){sup 99}Mo reaction in an enriched {sup 100}Mo target is currently under investigation. Three scaled low-power production experiments using a 20-MeV electron linac at Argonne have been performed to date. Two of these experiments used natural Mo targets and produced a total of 613 {mu}C of {sup 99}Mo. The third experiment used an enriched {sup 100}Mo target and produced 10.5 mCi of {sup 99}Mo. Following irradiation the targets were dissolved and the low specific activity solution was processed through an ARSII generator from NorthStar Medical Radioisotopes. Yields of {sup 99m}Tc >95% have been observed.

  1. Extreme ultraviolet spectra of highly ionized Ge, Kr and Mo emitted by imploding plasmas

    SciTech Connect (OSTI)

    Goldsmith, S.; Feldman, U.; Cohen, L.; Behring, W.E.

    1984-01-01

    Spectra of highly ionized Ge, Kr and Mo in the spectral region of 10 to 80A were excited in laser-produced plasmas. The plasma was obtained by focusing the energy of the 24 laser beams of the University of Rochester Omega system on 0.4 mm diameter microballoon targets. The laser pulse duration was in the range of 0.87 to 1.09 ns, with total energy in the range of 1.8 to 2.2 kJ. The observed spectral lines include n = 2-2 transitions in the oxygen and fluorine isoelectronic sequences and n = 3 to 4 transitions in the sodium, magnesium and aluminum isoelectronic sequences. The present observations are compared with previous experimental and theoretical studies.

  2. ARM - Measurement - Shortwave broadband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths ...

  3. Optimization of the Processing of Mo Disks

    SciTech Connect (OSTI)

    Tkac, Peter; Rotsch, David A.; Stepinski, Dominique; Makarashvili, Vakhtang; Harvey, James; Vandegrift, George F.

    2016-01-01

    The objective of this work is to decrease the processing time for irradiated disks of enriched Mo for the production of 99Mo. Results are given for the dissolution of nonirradiated Mo disks, optimization of the process for large-scale dissolution of sintered disks, optimization of the removal of the main side products (Zr and Nb) from dissolved targets, and dissolution of irradiated Mo disks.

  4. SSL Demonstration: Street Lighting, Kansas City, MO

    SciTech Connect (OSTI)

    2013-08-01

    GATEWAY program report brief summarizing an SSL street lighting demonstration at nine separate installations in Kansas City, MO.

  5. Table 11.5a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,573,566,415 218,383,703 145,398,976 363,247 5,590,014 1,943,302,355 14,468,564 1,059 984,406

  6. Mechanically Activated Combustion Synthesis of MoSi2-Based Composites

    SciTech Connect (OSTI)

    Shafirovich, Evgeny

    2015-09-30

    The thermal efficiency of gas-turbine power plants could be dramatically increased by the development of new structural materials based on molybdenum silicides and borosilicides, which can operate at temperatures higher than 1300 °C with no need for cooling. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. One approach is based on the fabrication of MoSi2-Mo5Si3 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of Mo5Si3. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicate surface layer. In particular, materials based on Mo5SiB2 phase are promising materials that offer favorable combinations of high temperature mechanical properties and oxidation resistance. However, the synthesis of Mo-Si-B multi-phase alloys is difficult because of their extremely high melting temperatures. Mechanical alloying has been considered as a promising method, but it requires long milling times, leading to large energy consumption and contamination of the product by grinding media. In the reported work, MoSi2-Mo5Si3 composites and several materials based on Mo5SiB2 phase have been obtained by mechanically activated self-propagating high-temperature synthesis (MASHS). Short-term milling of Mo/Si mixture in a planetary mill has enabled a self-sustained propagation of the combustion front over the mixture pellet, leading to the formation of MoSi2-T1 composites. Combustion of Mo/Si/B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of MoB, TiC, or TiB2. Upon ignition, Mo/Si/B and Mo/Si/B/Ti mixtures exhibited spin combustion, but the products were porous, contained undesired secondary phases, and had low oxidation resistance. It has been shown that use of SHS compaction (quasi-isostatic pressing after combustion) significantly improves oxidation resistance of the obtained MoSi2-Mo5Si3 composites. The “chemical oven” technique has been successfully employed to fabricate low-porous Mo5SiB2–TiC, Mo5SiB2–TiB2, and Mo–Mo5SiB2–Mo3Si materials. Among them, Mo5SiB2–TiB2 material possesses good mechanical properties and simultaneously exhibits excellent oxidation resistance at temperatures up to 1500 °C.

  7. Corrosion report for the U-Mo fuel concept

    SciTech Connect (OSTI)

    Henager, Jr., Charles H.; Bennett, Wendy D.; Doherty, Ann L.; Fuller, E. S.; Hardy, John S.; Omberg, Ronald P.

    2014-08-28

    The Fuel Cycle Research and Development (FCRD) program of the Office of Nuclear Energy (NE) has implemented a program to develop a Uranium-Molybdenum (U-Mo) metal fuel for Light Water Reactors (LWR)s. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties, which includes high thermal conductivity for less stored heat energy. With sufficient development, it may be able to provide the Light Water industry with a melt-resistant accident tolerant fuel with improved safety response. However, the corrosion of this fuel in reactor water environments needs to be further explored and optimized by additional alloying. The Pacific Northwest National Laboratory has been tasked with performing ex-reactor corrosion testing to characterize the performance of U-Mo fuel. This report documents the results of the effort to characterize and develop the U-Mo metal fuel concept for LWRs with regard to corrosion testing. The results of a simple screening test in buffered water at 30°C using surface alloyed U-10Mo is documented and discussed. The screening test was used to guide the selection of several potential alloy improvements that were found and are recommended for further testing in autoclaves to simulate PWR water conditions more closely.

  8. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  9. Table 8.4a Consumption for Electricity Generation by Energy Source: Total (All Sectors), 1949-2011 (Sum of Tables 8.4b and 8.4c; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Consumption for Electricity Generation by Energy Source: Total (All Sectors), 1949-2011 (Sum of Tables 8.4b and 8.4c; Billion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal 5 Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 1949 1,995,055 414,632 569,375 NA 2,979,062 0 1,424,722 5,803 NA NA NA NA 1,430,525 NA 5,420 4,415,007 1950

  10. DOE - Office of Legacy Management -- Washington University - MO 07

    Office of Legacy Management (LM)

    Washington University - MO 07 FUSRAP Considered Sites Site: WASHINGTON UNIVERSITY (MO.07 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: St. Louis , Missouri MO.07-1 Evaluation Year: 1987 MO.07-1 Site Operations: Activities were limited to programs involving relatively small quantities of radionuclides and chemicals in a controlled environment. MO.07-3 MO.07-1 Site Disposition: Eliminated - Potential for contamination remote MO.07-1

  11. New Insights Into a Functioning Mg-ion Cathode-Chevrel Phase Mo6S8 -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Center for Energy Storage Research April 24, 2014, Research Highlights New Insights Into a Functioning Mg-ion Cathode-Chevrel Phase Mo6S8 An isosurface of the charge density difference between pristine Mo6S8 and the inclusion of a single Mg2+ intercalant (and accompanying 2 electrons). Colors: Yellow (cyan) indicates an increase (decrease) in electron density, the Mg atom is shown in orange, S yellow, Mo purple. Scientific Achievement First-principles analysis of the screening of Mg2+

  12. Climate Action Champions: Mid-America Regional Council, KS and MO |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Mid-America Regional Council, KS and MO Climate Action Champions: Mid-America Regional Council, KS and MO The Mid-America Regional Council (MARC) is a nonprofit association of city and county governments and the metropolitan planning organization for the bistate Kansas City region. They provide a forum for the region to work together to advance social, economic and environmental progress. MARC received the Climate Action Champion designation in consortium with the City

  13. Mo99 Production Plant Layout

    SciTech Connect (OSTI)

    Woloshun, Keith Albert; Dale, Gregory E.; Naranjo, Angela Carol

    2015-06-25

    The NorthStar Medical Technologies 99Mo production facility configuration is envisioned to be 8 accelerator pairs irradiating 7 100Mo targets (one spare accelerator pair undergoing maintenance while the other 7 pairs are irradiating targets). The required shielding in every direction for the accelerators is initially estimated to be 10 feet of concrete. With the accelerator pairs on one (ground) level and spaced with the required shielding between adjacent pairs, the only practical path for target insertion and removal while minimizing floor space is vertical. The current scheme then requires a target vertical lift of nominally 10 feet through a shield stack. It is envisioned that the lift will be directly into a hot cell where an activated target can be removed from its holder and a new target attached and lowered. The hot cell is on a rail system so that a single hot cell can service all active target locations, as well as deliver the ready targets to the separations lab. On this rail system, coupled to the hot cell, will be a helium recovery and clean-up system. All helium coolant equipment is located on the upper level near to the target removal point.

  14. DOE - Office of Legacy Management -- Spencer Chemical Co - MO...

    Office of Legacy Management (LM)

    MO 0-01 FUSRAP Considered Sites Site: SPENCER CHEMICAL CO. (MO.0-01) Eliminated from ... Also see Documents Related to SPENCER CHEMICAL CO. MO.0-01-1 - Spencer Chemical Company ...

  15. DOE - Office of Legacy Management -- St Louis Airport - MO 01

    Office of Legacy Management (LM)

    Operations: Stored uranium process residues containing uranium, radium, and thorium for the MED and AEC. MO.01-2 MO.01-3 MO.01-4 Eligibility Determination: Eligible ...

  16. US WNC MO Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Missouri ...

  17. DOE - Office of Legacy Management -- United Nuclear Corp - MO...

    Office of Legacy Management (LM)

    Nuclear Corp - MO 0-03 FUSRAP Considered Sites Site: UNITED NUCLEAR CORP. (MO.0-03) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate ...

  18. Demonstration of LED Street Lighting in Kansas City, MO (Technical...

    Office of Scientific and Technical Information (OSTI)

    Demonstration of LED Street Lighting in Kansas City, MO Citation Details In-Document Search Title: Demonstration of LED Street Lighting in Kansas City, MO Nine different ...

  19. Update to M&O Contractor Model Subcontract entitled "Standard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to M&O Contractor Model Subcontract entitled "Standard Research Subcontract (Educational Institution or Nonprofit Organization)" Update to M&O Contractor Model Subcontract entitled ...

  20. Tuning the electronic structure of monolayer graphene/ Mo S 2...

    Office of Scientific and Technical Information (OSTI)

    Tuning the electronic structure of monolayer graphene Mo S 2 van der Waals ... Title: Tuning the electronic structure of monolayer graphene Mo S 2 van der Waals ...

  1. DOE - Office of Legacy Management -- West Lake Landfill - MO...

    Office of Legacy Management (LM)

    Lake Landfill - MO 05 FUSRAP Considered Sites Site: West Lake Landfill (MO.05) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

  2. ARM - Measurement - Shortwave narrowband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 mum, passes ...

  3. ARM - Measurement - Shortwave narrowband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 mum, passes ...

  4. ARM - Measurement - Shortwave spectral total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave spectral total downwelling irradiance The rate at which radiant energy, at specrally-resolved wavelengths between 0.4 and 4 mum, is being emitted ...

  5. MCNPX-CINDER'90 Simulation of Photonuclear Mo-99 Production Experiments

    SciTech Connect (OSTI)

    Kelsey, Charles T. IV [Los Alamos National Laboratory; Chemerizov, Sergey D. [Argonne National Laboratory; Dale, Gregory E. [Los Alamos National Laboratory; Harvey, James T. [NorthStar Medical Radioisotopes; Tkac, Peter [Argonne National Laboratory; Vandegrift, George R III [Argonne National Laboratory

    2011-01-01

    The MCNPX and CINDER'90 codes were used to support design of experiments investigating Mo-99 production with a 20-MeV electron beam. Bremsstrahlung photons produced by the electron beam interacting with the target drive the desired Mo-100({gamma},n)Mo-99 reaction, as well as many undesired reactions important to accurate prediction of radiation hazards. MCNPX is a radiation transport code and CINDER'90 is a transmutation code. They are routinely used together for accelerator activation calculations. Low energy neutron fluxes and production rates for nonneutron and high energy neutron induced reactions computed using MCNPX are inputs to CINDER'90. CINDER'90 presently has only a neutron reaction cross section library up to 25 MeV and normally the other reaction rates come from MCNPX physics models. For this work MCNPX photon flux tallies modified by energy response functions prepared from evaluated photonuclear cross section data were used to tally the reaction rates for CINDER'90 input. The cross section evaluations do not provide isomer to ground state yield ratios so a spin based approximation was used. Post irradiation dose rates were calculated using MCNPX with CINDER'90 produced decay photon spectra. The sensitivity of radionuclide activities and dose rates to beam parameters including energy, position, and profile, as well as underlying isomer assumptions, was investigated. Three experimental production targets were irradiated, two natural Mo and one Mo-100 enriched. Natural Mo foils upstream of the targets were used to analyze beam position and profile by exposing Gafchromic film to the foils after each irradiation. Activation and dose rate calculations were rerun after the experiments using measured beam parameters for comparison with measured Mo-99 activities and dose rates.

  6. Thermophysical Properties of U-10MO Alloy

    SciTech Connect (OSTI)

    A. M. Phillips; G. S. Mickum; D. E. Burkes

    2010-11-01

    This report provides an overview of thermophysical properties of unirradiated uranium alloyed with ten weight percent molybdenum (U 10Mo), with particular focus on those material properties needed for modeling of new fuels for HPRRs (High Performance Research Reactors). The report contains both historical data available in the literature on U-10Mo, as well as more recent results conducted by the Global Threat Reduction Initiative fuel development program. The main use of the report is intended as a standard U-10Mo alloy properties reference for reactor models and simulations.

  7. Midwest Energy Codes Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DCEO City of Chicago DTE Energy Minnesota Dept. of Commerce Fresh Energy BCAP ... Columbia MO 80 80 Nebraska 0.5 Million Minnesota 2.1 Million Minnesota ---- 1290 ...

  8. Neutron Total Cross Sections of {sup 235}U From Transmission Measurements in the Energy Range 2 keV to 300 keV and Statistical Model Analysis of the Data

    SciTech Connect (OSTI)

    Derrien, H.; Harvey, J.A.; Larson, N.M.; Leal, L.C.; Wright, R.Q.

    2000-05-01

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample.1 The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al.4 in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code 2 was used for a statistical model analysis of the total cross section, selected fission cross sections and data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained 3 from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  9. Mo Year Report Period: EIA ID NUMBER:

    U.S. Energy Information Administration (EIA) Indexed Site

    Mo Year Report Period: EIA ID NUMBER: http:www.eia.govsurveyformeia14instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https:...

  10. Release on M&O Selection Final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Services LLC, of Bethesda, Maryland) has been awarded a 1.3 billion contract for management and operating (M&O) at DOE's Waste Isolation Pilot Plant (WIPP) in Carlsbad,...

  11. PVT -- A photovoltaic/thermal concentrator total energy system: Final phase 1 project report. Building opportunities in the U.S. for photovoltaics (PV:BONUS) Two

    SciTech Connect (OSTI)

    1998-12-31

    United Solar completed its Phase 1 report and its proposal for Phase 2 of the PVBONUS Two program at the end of March 1998. At the same time, it also completed and submitted a proposal to the California Energy Commission PIER program for additional funding to cost-share development and testing of a pre-production model of the PVT-14. It was unsuccessful in both of these proposed efforts. While waiting for the proposal decisions, work continued in April and May to analyze the system design and component decisions described below. This document is a final summation report on the Phase 1 effort of the PVBONUS Two program that describes the key technical issues that United Solar and its subcontractor, Industrial Solar Technology Corporation, worked on in preparation of a Phase 2 award. The decisions described were ones that will guide the design and fabrication of a pre-production prototype of a 1500:1 mirrored concentrator with gallium arsenide cells when United solar resumes its development work. The material below is organized by citing the key components that underwent a design review, what the company considered, what was decided, the name of the expected supplier, if not to be produced in-house, and some information about expected costs. The cost figures given are usually budgetary estimates, not the result of firm quotations or extensive analysis.

  12. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  13. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  14. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  15. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  16. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  17. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  18. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  19. Electrical and photovoltaic characteristics of MoS{sub 2}/Si p-n junctions

    SciTech Connect (OSTI)

    Hao, Lanzhong Liu, Yunjie Gao, Wei; Han, Zhide; Xue, Qingzhong; Zeng, Huizhong; Wu, Zhipeng; Zhu, Jun; Zhang, Wanli

    2015-03-21

    Bulk-like molybdenum disulfide (MoS{sub 2}) thin films were deposited on the surface of p-type Si substrates using dc magnetron sputtering technique and MoS{sub 2}/Si p-n junctions were formed. The vibrating modes of E{sup 1}{sub 2g} and A{sub 1g} were observed from the Raman spectrum of the MoS{sub 2} films. The current density versus voltage (J-V) characteristics of the junction were investigated. A typical J-V rectifying effect with a turn-on voltage of 0.2?V was shown. In different voltage range, the electrical transporting of the junction was dominated by diffusion current and recombination current, respectively. Under the light illumination of 15?mW?cm{sup ?2}, the p-n junction exhibited obvious photovoltaic characteristics with a short-circuit current density of 3.2?mA?cm{sup ?2} and open-circuit voltage of 0.14?V. The fill factor and energy conversion efficiency were 42.4% and 1.3%, respectively. According to the determination of the Fermi-energy level (?4.65?eV) and energy-band gap (?1.45?eV) of the MoS{sub 2} films by capacitance-voltage curve and ultraviolet-visible transmission spectra, the mechanisms of the electrical and photovoltaic characteristics were discussed in terms of the energy-band structure of the MoS{sub 2}/Si p-n junctions. The results hold the promise for the integration of MoS{sub 2} thin films with commercially available Si-based electronics in high-efficient photovoltaic devices.

  20. Missouri's 4th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Kokam America Mid America Biofuels LLC MidMissouri Energy LLC Missouri Department of National Resources Energy Center Mo DNR National Ethanol Vehicle Coalition NEVC US Ethanol...

  1. Summary Max Total Units

    Energy Savers [EERE]

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  2. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    SciTech Connect (OSTI)

    Schulthess, Jason

    2014-09-01

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  3. Energy Production Over the Years | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pick an energy source Total Energy Produced Coal Crude Oil Natural Gas Total Renewable Energy Non-Biofuel Renewable Energy Biofuels Nuclear Power Source: EIA State Energy Data ...

  4. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Aerosols, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  5. Farmers City Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Location Atchison County MO Coordinates...

  6. Surface confined quantum well state in MoS{sub 2}(0001) thin film (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Surface confined quantum well state in MoS{sub 2}(0001) thin film Citation Details In-Document Search Title: Surface confined quantum well state in MoS{sub 2}(0001) thin film Surface confined quantum well state (scQWS) is a QWS confined around the surface of a thin film whose electronic energy is smaller than the work function of the film. The scQWS is rather rare in most thin films. Here, we show the existence of scQWS in thin films of transition metal

  7. Total Space Heat-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    12 1 18 (*) 2 1 Q 6 Buildings without Cooling ... 30 1 (*) 4 (*) 14 (*) 4 (*) 1 6 Water-Heating Energy Source Electricity ... 402 21 57 42...

  8. Property:TotalValue | Open Energy Information

    Open Energy Info (EERE)

    22,888,360 + American Transmission Company LLC Smart Grid Project + 2,661,650 + Atlantic City Electric Company Smart Grid Project + 37,400,000 + Avista Utilities Smart Grid...

  9. Highly conducting SrMoO{sub 3} thin films for microwave applications

    SciTech Connect (OSTI)

    Radetinac, Aldin Mani, Arzhang; Ziegler, Jrgen; Alff, Lambert; Komissinskiy, Philipp; Melnyk, Sergiy; Nikfalazar, Mohammad; Zheng, Yuliang; Jakoby, Rolf

    2014-09-15

    We have measured the microwave resistance of highly conducting perovskite oxide SrMoO{sub 3} thin film coplanar waveguides. The epitaxial SrMoO{sub 3} thin films were grown by pulsed laser deposition and showed low mosaicity and smooth surfaces with a root mean square roughness below 0.3?nm. Layer-by-layer growth could be achieved for film thicknesses up to 400?nm as monitored by reflection high-energy electron diffraction and confirmed by X-ray diffraction. We obtained a constant microwave resistivity of 29???cm between 0.1 and 20?GHz by refining the frequency dependence of the transmission coefficients. Our result shows that SrMoO{sub 3} is a viable candidate as a highly conducting electrode material for all-oxide microwave electronic devices.

  10. Electronic and magnetic properties of Mo doped graphene; full potential approach

    SciTech Connect (OSTI)

    Thakur, Jyoti Kashyap, Manish K.; Singh, Mukhtiyar; Saini, Hardev S.

    2015-05-15

    The electronic and magnetic properties of Pristine and Mo doped Graphene have been calculated using WIEN2k implementation of full potential linearized augmented plane wave (FPLAPW) method based on Density Functional Theory (DFT). The exchange and correlation (XC) effects were taken into account by generalized gradient approximation (GGA). The calculated results show that Mo doping creates magnetism in Graphene by shifting the energy levels at E{sub F} and opens up a channel for Graphene to be used in real nanoscale device applications. The unpaired d-electrons of Mo atom are responsible for induced magnetism in Graphene. Magnetic ordering created in Graphene in this way makes it suitable for recording media, magnetic sensors, magnetic inks and spintronic devices.

  11. Exciton-dominant electroluminescence from a diode of monolayer MoS{sub 2}

    SciTech Connect (OSTI)

    Ye, Yu; Ye, Ziliang; Gharghi, Majid; Zhu, Hanyu; Wang, Yuan; Zhao, Mervin; Yin, Xiaobo; Zhang, Xiang

    2014-05-12

    In two-dimensional monolayer MoS{sub 2}, excitons dominate the absorption and emission properties. However, the low electroluminescent efficiency and signal-to-noise ratio limit our understanding of the excitonic behavior of electroluminescence. Here, we study the microscopic origin of the electroluminescence from a diode of monolayer MoS{sub 2} fabricated on a heavily p-type doped silicon substrate. Direct and bound-exciton related recombination processes are identified from the electroluminescence. At a high electron-hole pair injection rate, Auger recombination of the exciton-exciton annihilation of the bound exciton emission is observed at room temperature. Moreover, the efficient electrical injection demonstrated here allows for the observation of a higher energy exciton peak of 2.255?eV in the monolayer MoS{sub 2} diode, attributed to the excited exciton state of a direct-exciton transition.

  12. Surface oxidation energetics and kinetics on MoS{sub 2} monolayer

    SciTech Connect (OSTI)

    KC, Santosh; Longo, Roberto C.; Wallace, Robert M.; Cho, Kyeongjae

    2015-04-07

    In this work, surface oxidation of monolayer MoS{sub 2} (one of the representative semiconductors in transition-metal dichalcogenides) has been investigated using density functional theory method. Oxygen interaction with MoS{sub 2} shows that, thermodynamically, the surface tends to be oxidized. However, the dissociative absorption of molecular oxygen on the MoS{sub 2} surface is kinetically limited due to the large energy barrier at low temperature. This finding elucidates the air stability of MoS{sub 2} surface in the atmosphere. Furthermore, the presence of defects significantly alters the surface stability and adsorption mechanisms. The electronic properties of the oxidized surface have been examined as a function of oxygen adsorption and coverage as well as substitutional impurities. Our results on energetics and kinetics of oxygen interaction with the MoS{sub 2} monolayer are useful for the understanding of surface oxidation, air stability, and electronic properties of transition-metal dichalcogenides at the atomic scale.

  13. Elementary Steps of Syngas Reactions on Mo2C(001): Adsorption Thermochemistry and Bond Dissociation

    SciTech Connect (OSTI)

    Medford, Andrew

    2012-02-16

    Density functional theory (DFT) and ab initio thermodynamics are applied in order to investigate the most stable surface and subsurface terminations of Mo{sub 2}C(001) as a function of chemical potential and in the presence of syngas. The Mo-terminated (001) surface is then used as a model surface to evaluate the thermochemistry and energetic barriers for key elementary steps in syngas reactions. Adsorption energy scaling relations and Broensted-Evans-Polanyi relationships are established and used to place Mo{sub 2}C into the context of transition metal surfaces. The results indicate that the surface termination is a complex function of reaction conditions and kinetics. It is predicted that the surface will be covered by either C{sub 2}H{sub 2} or O depending on conditions. Comparisons to transition metals indicate that the Mo-terminated Mo{sub 2}C(001) surface exhibits carbon reactivity similar to transition metals such as Ru and Ir, but is significantly more reactive towards oxygen.

  14. DOE - Office of Legacy Management -- Rogers Iron Works Co - MO...

    Office of Legacy Management (LM)

    of Ohio Analytical Data Sheet 9908; August 2, 1956 MO.10-2 - MemorandumChecklist, Williams to File; Subject: Rogers Iron; June 1, 1990 MO.10-3 - DOE Memorandum; Williams to the...

  15. DOE - Office of Legacy Management -- Latty Avenue Site - MO 04

    Office of Legacy Management (LM)

    MO.04-1 - DOE Letter; Keller to Jarboe; Subject: Agreement for Use of Property at 9200 Latty Avenue, Hazelwood, Missouri; November 22, 1983 MO.04-10 - DOE Report (ORNLRASA-857); ...

  16. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  17. Accelerator Production Options for 99MO

    SciTech Connect (OSTI)

    Bertsche, Kirk; /SLAC

    2010-08-25

    Shortages of {sup 99}Mo, the most commonly used diagnostic medical isotope, have caused great concern and have prompted numerous suggestions for alternate production methods. A wide variety of accelerator-based approaches have been suggested. In this paper we survey and compare the various accelerator-based approaches.

  18. ARM - Measurement - Shortwave broadband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Shortwave broadband total upwelling irradiance The rate at which radiant energy, at a wavelength between 0.4 and 4 mum, is being emitted upwards into a ...

  19. Intermetallic phase formation and breakdown of Mo diffusion barriers in Ni-Mo-Cu and Ni-Mo-Monel 400 diffusion triads

    SciTech Connect (OSTI)

    Shueh, Y.

    1988-01-01

    The purpose of this research was to study the kinetics of compound formation and the interdiffusion behavior of a sacrificial type diffusion barrier in a model system. Ni-Mo diffusion couples were annealed in an inert atmosphere at 950-1050{degree}C for 5-300 hours. Ni-Mo-Cu and Ni-Mo-Monel 400 diffusion triads with varied thicknesses of Mo layers sandwiched by Ni and C or Monel 400 disks were annealed under the same conditions. Parabolic growth of the intermetallic phase, {beta}, was observed at 1000{degree}C and 1050{degree}C in the semi-infinite Ni-Mo diffusion couple an din the Ni-Mo-Cu diffusion triad when a finite thickness of the Mo layer remained. The {beta} phase exhibited more or less planar morphology except in the case of some extremely rugged interfaces which were associated with grain boundaries adjacent to these interfaces. Dissociation and recession of the compound layer in Ni-Mo-Cu diffusion triads initiated when the Mo layer was nearly consumed. The product phases of the dissociation reaction are consistent with those predicted from the Ni-Mo-Cu ternary phase diagram. Numerical methods based on a finite difference technique, and an analytical solution based on diffusion controlled parabolic growth and quasi-steady-state approximation in the {beta} phase region were used to analyze the results.

  20. Role of SrMoO{sub 4} in Sr{sub 2}MgMoO{sub 6} synthesis

    SciTech Connect (OSTI)

    Vasala, S.; Yamauchi, H.; Karppinen, M.

    2011-05-15

    Here we investigate the elemental and phase compositions during the solid-state synthesis of the promising SOFC-anode material, Sr{sub 2}MgMoO{sub 6}, and demonstrate that molybdenum does not notably evaporate under the normal synthesis conditions with temperatures up to 1200 {sup o}C due to the formation of SrMoO{sub 4} as an intermediate product at low temperatures, below 600 {sup o}C. However, partial decomposition of the Sr{sub 2}MgMoO{sub 6} phase becomes evident at the higher temperatures ({approx}1500 {sup o}C). The effect of SrMoO{sub 4} on the electrical conductivity of Sr{sub 2}MgMoO{sub 6} is evaluated by preparing a series of Sr{sub 2}MgMoO{sub 6} samples with different amounts of additional SrMoO{sub 4}. Under the reducing operation conditions of an SOFC anode the insulating SrMoO{sub 4} phase is apparently reduced to the highly conductive SrMoO{sub 3} phase. Percolation takes place with 20-30 wt% of SrMoO{sub 4} in a Sr{sub 2}MgMoO{sub 6} matrix, with a notable increase in electrical conductivity after reduction. Conductivity values of 14, 60 and 160 S/cm are determined at 800 {sup o}C in 5% H{sub 2}/Ar for the Sr{sub 2}MgMoO{sub 6} samples with 30, 40 and 50 wt% of added SrMoO{sub 4}, respectively. -- Graphical abstract: SrMoO{sub 4} is formed at low temperatures during the synthesis of Sr{sub 2}MgMoO{sub 6}, which prevents the volatilization of Mo from typical precursor mixtures of this promising SOFC anode material. SrMoO{sub 4} is insulating and it is often found as an impurity in Sr{sub 2}MgMoO{sub 6} samples. It is however readily reduced to highly conducting SrMoO{sub 3}. Composites of Sr{sub 2}MgMoO{sub 6} and SrMoO{sub 3} show increased electrical conductivities compared to pure Sr{sub 2}MgMoO{sub 6} under the reductive operation conditions of an SOFC anode. Display Omitted Highlights: {yields} Sr{sub 2}MgMoO{sub 6} is a promising SOFC anode material. {yields} During the Sr{sub 2}MgMoO{sub 6} synthesis SrMoO{sub 4} is formed at low temperatures. {yields} Formation of SrMoO{sub 4} effectively prevents volatilization of Mo at high temperatures. {yields} Insulating SrMoO{sub 4} reduces to highly conductive SrMoO{sub 3} under SOFC-anode conditions. {yields} Composites of Sr{sub 2}MgMoO{sub 6} and SrMoO{sub 3} show high electrical conductivities.

  1. Electrical properties of a-C:Mo films produced by dual-cathode filtered cathodic arc plasma deposition

    SciTech Connect (OSTI)

    Sansongsiri, Sakon; Anders, Andre; Yodsombat, Banchob

    2008-01-20

    Molybdenum-containing amorphous carbon (a-C:Mo) thin films were prepared using a dual-cathode filtered cathodic arc plasma source with a molybdenum and a carbon (graphite) cathode. The Mo content in the films was controlled by varying the deposition pulse ratio of Mo and C. Film sheet resistance was measured in situ at process temperature, which was close to room temperature, as well as ex situ as a function of temperature (300-515 K) in ambient air. Film resistivity and electrical activation energy were derived for different Mo and C ratios and substrate bias. Film thickness was in the range 8-28 nm. Film resistivity varied from 3.55x10-4 Omega m to 2.27x10-6 Omega m when the Mo/C pulse ratio was increased from 0.05 to 0.4, with no substrate bias applied. With carbon-selective bias, the film resistivity was in the range of 4.59x10-2 and 4.05 Omega m at a Mo/C pulse ratio of 0.05. The electrical activation energy decreased from 3.80x10-2 to 3.36x10-4 eV when the Mo/C pulse ratio was increased in the absence of bias, and from 0.19 to 0.14 eV for carbon-selective bias conditions. The resistivity of the film shifts systematically with the amounts of Mo and upon application of substrate bias voltage. The intensity ratio of the Raman D-peak and G-peak (ID/IG) correlated with the pre-exponential factor (sigma 0) which included charge carrier density and density of states.

  2. 21 briefing pages total

    Energy Savers [EERE]

    1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law

  3. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national energy security by developing energy sources with limited impacts on environment ... Energy Engineering High Energy Density Plasmas, Fluids Information Science, ...

  4. Magnetic Force Microscopy Study of Zr2Co11 -Based Nanocrystalline Materials: Effect of Mo Addition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Lanping; Jin, Yunlong; Zhang, Wenyong; Sellmyer, David J.

    2015-01-01

    Tmore » he addition of Molybdenum was used to modify the nanostructure and enhance coercivity of rare-earth-free Zr2Co11-based nanocrystalline permanent magnets. he effect of Mo addition on magnetic domain structures of melt spun nanocrystalline Zr16Co84-xMox(x=0, 0.5, 1, 1.5, and 2.0) ribbons has been investigated. It was found that magnetic properties and local domain structures are strongly influenced by Mo doping. he coercivity of the samples increases with the increase in Mo content (x≤1.5). he maximum energy product(BH)maxincreases with increasingxfrom 0.5 MGOe forx=0to a maximum value of 4.2 MGOe forx=1.5. he smallest domain size with a relatively short magnetic correlation length of 128 nm and largest root-mean-square phase shiftΦrmsvalue of 0.66° are observed for thex=1.5. he optimal Mo addition promotes magnetic domain structure refinement and thus leads to a significant increase in coercivity and energy product in this sample.« less

  5. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity,...

  6. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gong, Yongji; Lei, Sidong; Lou, Jun; Liu, Zheng; Vajtai, Robert; Zhou, Wu; Ajayan, Pullikel M.

    2015-08-03

    Two dimensional (2D) materials have attracted great attention due to their unique properties and atomic thickness. Although various 2D materials have been successfully synthesized with different optical and electrical properties, a strategy for fabricating 2D heterostructures must be developed in order to construct more complicated devices for practical applications. Here we demonstrate for the first time a two-step chemical vapor deposition (CVD) method for growing transition-metal dichalcogenide (TMD) heterostructures, where MoSe2 was synthesized first and followed by an epitaxial growth of WSe2 on the edge and on the top surface of MoSe2. Compared to previously reported one-step growth methods, thismore » two-step growth has the capability of spatial and size control of each 2D component, leading to much larger (up to 169 μm) heterostructure size, and cross-contamination can be effectively minimized. Furthermore, this two-step growth produces well-defined 2H and 3R stacking in the WSe2/MoSe2 bilayer regions and much sharper in-plane interfaces than the previously reported MoSe2/WSe2 heterojunctions obtained from one-step growth methods. The resultant heterostructures with WSe2/MoSe2 bilayer and the exposed MoSe2 monolayer display rectification characteristics of a p-n junction, as revealed by optoelectronic tests, and an internal quantum efficiency of 91% when functioning as a photodetector. As a result, a photovoltaic effect without any external gates was observed, showing incident photon to converted electron (IPCE) efficiencies of approximately 0.12%, providing application potential in electronics and energy harvesting.« less

  7. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  9. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  10. Total Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  11. Missouri's 9th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    East Central Ag Products MEMC Electronic Materials Inc Mid America Biofuels LLC Missouri Bio Products Missouri Department of National Resources Energy Center Mo DNR Missouri...

  12. MoRu/Be multilayers for extreme ultraviolet applications

    DOE Patents [OSTI]

    Bajt, Sasa C.; Wall, Mark A.

    2001-01-01

    High reflectance, low intrinsic roughness and low stress multilayer systems for extreme ultraviolet (EUV) lithography comprise amorphous layers MoRu and crystalline Be layers. Reflectance greater than 70% has been demonstrated for MoRu/Be multilayers with 50 bilayer pairs. Optical throughput of MoRu/Be multilayers can be 30-40% higher than that of Mo/Be multilayer coatings. The throughput can be improved using a diffusion barrier to make sharper interfaces. A capping layer on the top surface of the multilayer improves the long-term reflectance and EUV radiation stability of the multilayer by forming a very thin native oxide that is water resistant.

  13. DOE - Office of Legacy Management -- Petrolite Corp - MO 08

    Office of Legacy Management (LM)

    Materials Handled: Yes Primary Radioactive Materials Handled: Uranium Flouride & Thorium Oxide MO.08-2 Radiological Survey(s): None Indicated Site Status: Eliminated from ...

  14. Microsoft Word - chapter FeCrMo_ver2.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Alloy Ferritic Steels Fe-Cr-Mo Tempered December 8, 2005 ... strength level, material processing, and heat treatment 1. ... yield strength, hydrogen gas pressure, and temperature. ...

  15. Demonstration of LED Street Lighting in Kansas City, MO Kinzey...

    Office of Scientific and Technical Information (OSTI)

    Street Lighting in Kansas City, MO Kinzey, Bruce R.; Royer, Michael P.; Hadjian, M.; Kauffman, Rick LED streetlighting; field illuminance measurement LED streetlighting; field...

  16. Predicting sigma formation in mo-bearing stainless steels. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Predicting sigma formation in mo-bearing stainless steels. No abstract prepared. Authors: Perricone, Matthew ; Dupont, John Neuman ; Anderson, T. D. 1 ; Robino, Charles ...

  17. NREL: Building America Total Quality Management - 2015 Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the Presentation PDF icon NREL: Building America Total Quality Management - 2015 Peer Review More Documents & Publications Home Performance with ENERGY STAR - 2014 BTO Peer Review NREL: Building America Total Quality Management - 2015 Peer Review R25 Polyisocyanurate Composite Insulation Material

  18. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  19. Structure and electronic properties of Cu nanoclusters supported on Mo2C(001) and MoC(001) surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Posada-Pérez, Sergio; Viñes, Francesc; Rodríguez, José A.; Illas, Francesc

    2015-09-15

    In this study, the atomic structure and electronic properties of Cun nanoclusters (n = 4, 6, 7, and 10) supported on cubic nonpolar δ-MoC(001) and orthorhombic C- or Mo-terminated polar β-Mo2C(001) surfaces have been investigated by means of periodic density functional theory based calculations. The electronic properties have been analyzed by means of the density of states, Bader charges, and electron localization function plots. The Cu nanoparticles supported on β-Mo2C(001), either Mo- or C-terminated, tend to present a two-dimensional structure whereas a three-dimensional geometry is preferred when supported on δ-MoC(001), indicating that the Mo:C ratio and the surface polarity playmore » a key role determining the structure of supported clusters. Nevertheless, calculations also reveal important differences between the C- and Mo-terminated β-Mo2C(001) supports to the point that supported Cu particles exhibit different charge states, which opens a way to control the reactivity of these potential catalysts.« less

  20. Real-space formulation of the electrostatic potential and total...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Real-space formulation of the electrostatic potential and total energy of solids Citation Details In-Document Search Title: Real-space formulation of the ...

  1. "Table A8. Selected Energy Operating Ratios for Total Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",1033.2,20.4,10.6,0,3,5.3 3331," Primary Copper",4840.7,22.9,5.5,"W","W","NF" 3334," ...s",867.5,17.7,9.3,0,3.6,11 3331," Primary Copper",2623.2,63.5,3.8,0,"W","NF" 3334," ...

  2. "Table A15. Selected Energy Operating Ratios for Total Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Generation by Census Region and Economic" " Characteristics of the Establishment, ... Consumption","of Natural Gas","Row" "Economic Characteristics(a)","(million ...

  3. "Table A50. Selected Energy Operating Ratios for Total Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ," 20-49",531,8.3,3.7,0.6,10.3,6.3 ," 50-99",702.8,9.2,4.2,4.6,12.3,5 ," 100-249",1365.5,13,6.1,16.4,10,4.4 ," 250-499",2680.8,20.3,9.4,24.5,12.8,3.9 ," 500 and ...

  4. "Table A45. Selected Energy Operating Ratios for Total Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    " ,"(million dollars)" ," Under 20",251.8,4.6,2.5,0.4,12.8,5.6 ," 20-49",507.8,6.8,3.2,0.3,8.4,6.8 ," 50-99",748.2,8.2,3.8,1.7,8.8,4.1 ," 100-249",1252.4,10.6,5.2,13.1,9.8,3.6 ," ...

  5. "Table A46. Selected Energy Operating Ratios for Total Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    "20-39","ALL INDUSTRY GROUPS" ,"Employment Size " ," Under 50",312.4,4.4,2.2,0.6,14.6,7.5 ," 50-99",599.4,8.1,3.7,1.3,8.1,8.4 ," 100-249",726.9,9.1,4.2,4.9,8.3,3.7 ," ...

  6. "Table A48. Selected Energy Operating Ratios for Total Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Value of Shipments and Receipts" "(million dollars)" " Under 20",251.8,4.6,2.5,0.4,12.8,5.6 " 20-49",507.8,6.8,3.2,0.3,8.4,6.8 " 50-99",748.2,8.2,3.8,1.7,8.8,4.1 " ...

  7. "Table A51. Selected Energy Operating Ratios for Total Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    "20-39","ALL INDUSTRY GROUPS" ,"Employment Size " ," Under 50",273.2,4.9,2.3,3.2,"W",7.3 ," 50-99",494.5,7.8,3.4,2.4,12.5,7.8 ," 100-249",782.5,11,4.8,5.9,10.4,5 ," ...

  8. "Table A47. Selected Energy Operating Ratios for Total Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Column Factors:",0.7,0.7,0.7,1.7,1.7 , 20,"Food and Kindred Products",806,6.7,2.7,0.2,7.7,... Column Factors:",0.7,0.9,0.7,1.5,1.5 , 20,"Food and Kindred Products",513.7,4,1.7," W "," ...

  9. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the United States-all while reducing our dependence on foreign oil and creating jobs in rural America. http:energy.goveerevideosenergy-101-feedstocks-biofuels-and-mo...

  10. ENERGY

    Energy Savers [EERE]

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http:energy.govqtr 2015-01-13 Page 2 The United States faces serious ...

  11. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy /newsroom/_assets/images/energy-icon.png Energy Research into alternative forms of energy, and improving and securing the power grid, is a major national security imperative. Health Space Computing Energy Earth Materials Science Technology The Lab All Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  12. Chairman's Overview | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Workers demonstrate the nitrogen tank used to inflate tires in St. Peters, MO. | Courtesy of the City of St. Peters Workers demonstrate the nitrogen tank used to inflate tires in St. Peters, MO. | Courtesy of the City of St. Peters April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Residents of St. Peters, Missouri are seeing several improvements in their community thanks to a $512,800 Energy Efficiency and Conservation Block Grant

  13. Fragile structural transition in Mo3Sb7

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yan, Jiaqiang -Q.; McGuire, Michael A; May, Andrew F; Parker, David S.; Mandrus, D. G.; Sales, Brian C.

    2015-01-01

    Mo3Sb7 single crystals lightly doped with Cr, Ru, or Te are studied in order to explore the interplay between superconductivity, magnetism, and the cubic-tetragonal structural transition. The structural transition at 53 K is extremely sensitive to Ru or Te substitution which introduces additional electrons, but robust against Cr substitution. We observed no sign of a structural transition in superconducting Mo2.91Ru0.09Sb7 and Mo3Sb6.975Te0.025. In contrast, 3 at.% Cr doping only slightly suppresses the structural transition to 48 K while leaving no trace of superconductivity above 1.8 K. Analysis of magnetic properties suggests that the interdimer interaction in Mo3Sb7 is near amore » critical value and essential for the structural transition. Futhermore, all dopants suppress the superconductivity of Mo3Sb7. The tetragonal structure is not necessary for superconductivity.« less

  14. Results of U-xMo (x=7, 10, 12 wt.%) Alloy versus Al-6061 Cladding Diffusion Couple Experiments Performed at 500, 550 and 600 Degrees C

    SciTech Connect (OSTI)

    Emmanuel Perez; Dennis D. Keiser, Jr.; Yongho Sohn

    2013-04-01

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been developing low enrichment fuel systems encased in Al 6061 for use in research and test reactors. U–Mo alloys in contact with Al and Al alloys can undergo diffusional interactions that can result in the development of interdiffusion zones with complex fine-grained microstructures composed of multiple phases. A monolithic fuel currently being developed by the RERTR program has local regions where the U–Mo fuel plate is in contact with the Al 6061 cladding and, as a result, the program finds information about interdiffusion zone development at high temperatures of interest. In this study, the microstructural development of diffusion couples consisting of U-7wt.%Mo, U-10wt.%Mo, and U-12wt.%Mo vs. Al 6061 (or 6061 aluminum) cladding, annealed at 500, 550, 600 degrees C for 1, 5, 20, 24, or 132 hours, was analyzed by backscatter electron microscopy and x-ray energy dispersive spectroscopy on a scanning electron microscope. Concentration profiles were determined by standardized wavelength dispersive spectroscopy and standardless x-ray energy dispersive spectroscopy. The results of this work shows that the presence of surface layers at the U–Mo/Al 6061 interface can dramatically impact the overall interdiffusion behavior in terms of rate of interaction and uniformity of the developed interdiffusion zones. It further reveals that relatively uniform interaction layers with higher Si concentrations can develop in U–Mo/Al 6061 couples annealed at shorter times and that longer times at temperature result in the development of more non-uniform interaction layers with more areas that are enriched in Al. At longer annealing times and relatively high temperatures, U–Mo/Al 6061 couples can exhibit more interaction compared to U–Mo/pure Al couples. The minor alloying constituents in Al 6061 cladding can result in the development of many complex phases in the interaction layer of U–Mo/Al–6061 cladding couples, and some phases in the interdiffusion zones of U–Mo/Al–6061 cladding couples are likely similar to those observed for U–Mo/pure Al couples.

  15. Reaction-bonding preparation of Si{sub 3}N{sub 4}/MoSi{sub 2} and Si{sub 3}N{sub 4}/WSi{sub 2} composites from elemental powders

    SciTech Connect (OSTI)

    Zhang, B.R.; Marino, F.

    1997-01-01

    Si{sub 3}N{sub 4}/MoSi{sub 2} and Si{sub 3}N{sub 4}/WSi{sub 2} composites were prepared by reaction-bonding processes using as starting materials powder mixtures of Si-Mo and Si-W, respectively. A presintering step in an Ar-base atmosphere was used before nitriding for the formation of MoSi{sub 2} and WSi{sub 2}; the nitridation in a N{sub 2}-base atmosphere was followed after presintering with the total stepwise cycle of 1,350 C {times} 20 h + 1,400 C {times} 20 h + 1,450 C {times} 2 h. The final phases obtained in the two different composites were Si{sub 3}N{sub 4} and MoSi{sub 2} or WSi{sub 2}; no free elemental Si and Mo or W were detected by X-ray diffraction.

  16. Facile deposition of Ag{sub 3}PO{sub 4} on graphene-like MoS{sub 2} nanosheets for highly efficient photocatalysis

    SciTech Connect (OSTI)

    Wang, Peifu; Shi, Penghui; Hong, Yuanchen; Zhou, Xuejun; Yao, Weifeng

    2015-02-15

    Graphical abstract: The photocatalytic performance of Ag{sub 3}PO{sub 4} was highly improved by the in situ deposition of Ag{sub 3}PO{sub 4} particles on graphene-like MoS{sub 2} nanosheets. - Highlights: A novel composite photocatalyst was synthesized by depositing Ag{sub 3}PO{sub 4} on the graphene-like MoS{sub 2} nanosheets. Ag{sub 3}PO{sub 4}/MoS{sub 2} photocatalyst exhibited a high photocatalytic activity for RhB degradation. Graphene-like MoS{sub 2} nanosheets. MoS{sub 2} nanosheets play an important role in photocatalytic activity by serving as an effective acceptor of the photogenerated carriers. - Abstract: A facile method for the in situ deposition of Ag{sub 3}PO{sub 4} on graphene-like MoS{sub 2} nanosheets was developed to improve the photocatalytic performance of Ag{sub 3}PO{sub 4} catalysts. The heterostructure of Ag{sub 3}PO{sub 4}/MoS{sub 2} composites was characterized by using X-ray diffraction spectra (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The prepared Ag{sub 3}PO{sub 4}/MoS{sub 2} photocatalyst exhibited a much higher photocatalytic activity than that of Ag{sub 3}PO{sub 4} for the degradation of Rhodamine B (RhB) under visible light irradiation (>400 nm). The improved photocatalytic activity of Ag{sub 3}PO{sub 4}/MoS{sub 2} is attributed to the efficient separation of photogenerated electronhole pairs in the composite. This result provides a new perspective on the design of high-performance photocatalysts which is promising for energy applications.

  17. Rotationally Commensurate Growth of MoS[subscript 2] on Epitaxial...

    Office of Scientific and Technical Information (OSTI)

    Rotationally Commensurate Growth of MoSsubscript 2 on Epitaxial Graphene Citation Details In-Document Search Title: Rotationally Commensurate Growth of MoSsubscript 2 on ...

  18. Study on Shielding Requirements for Radioactive Waste Transportation in a Mo-99 Production Plant - 13382

    SciTech Connect (OSTI)

    Melo Rego, Maria Eugenia de; Kazumi Sakata, Solange; Vicente, Roberto; Hiromoto, Goro [Nuclear and Energy Research Institute, IPEN-CNEN/SP (Brazil)] [Nuclear and Energy Research Institute, IPEN-CNEN/SP (Brazil)

    2013-07-01

    Brazil is currently planning to produce {sup 99}Mo from fission of low enriched uranium (LEU) targets. The planned end of irradiation activity of {sup 99}Mo is about 185 TBq (5 kCi) per week to meet the present domestic demand of {sup 99m}Tc generators. The radioactive wastes from the production plant will be transferred to a waste treatment facility at the same site. The total activity of the actinides, fission and activation products present in the wastes can be predicted based on the yields of fission and activation data for the irradiation conditions, such as composition and mass of uranium targets, irradiation time, neutron flux, production schedule, etc., which were in principle already established by the project management. The transportation of the wastes from the production plant to the treatment facility will be done by means of special shielded packages. An assessment of the shielding required for the packages has been done and the results are presented here, aiming at contributing to the design of the waste management facility for the {sup 99}Mo production plant. (authors)

  19. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur Distillate Fuel Oil, Greater than 500 ppm ...

  20. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  1. Total........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351

  2. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

  3. Total.............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  4. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  5. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  6. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  7. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  8. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  9. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  10. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  11. Total................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central

  12. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  13. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  14. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1

  15. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat

  16. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  17. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  18. Total....................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5

  19. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  20. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  1. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  2. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  3. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing

  4. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  5. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  6. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One

  7. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  8. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7

  9. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  10. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  11. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  12. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  13. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  14. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  15. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  16. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  17. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  18. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  19. Total.................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................ 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it............................... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System.............................................................. 65.9 1.1 6.4 6.4 5.4 Without a

  20. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  1. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  2. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  3. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  4. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  5. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  6. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  7. Total.........................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  8. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration, Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.'rounding. ... Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.' CellModule ...

  9. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 41.8 2,603 2,199 1,654 941 795 598 1-Car Garage...... 9.5 2,064 1,664 1,039 775 624 390 2-Car Garage......

  10. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Glass in Windows Single-pane Glass...... 27.4 ... Q Q N Q N N Proportion of Windows Replaced All......

  11. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Glass in Windows Single-pane Glass......Q Q Q Q Proportion of Windows Replaced All......

  12. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump......

  13. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump......

  14. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump...... 53.5 ...

  15. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System...... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump......

  16. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Cooling Equipment...... 17.8 2.1 1.8 0.3 Have Cooling Equipment...... 93.3 23.5 16.0 7.5 Use ...

  17. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment...... 17.8 4.0 2.4 1.7 Have Cooling Equipment...... 93.3 ...

  18. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment...... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment...... 93.3 26.5 6.5 2.5 ...

  19. Imaging findings and pharmacokinetics of 111-indium ZME-018 monoclonal antibody (MoAb) in malignant melanoma

    SciTech Connect (OSTI)

    Murray, J.L.; Rosenblum, M.; Lamki, L.; Haynie, T.P.; Glenn, H.; Jahns, M.; Plager, C.; Hersh, E.M.; Unger, M.; Carlo, D.L.

    1985-05-01

    13 patients with metastatic melanoma were studied using 5 mCi of In-111 labeled MoAb ZME-018 which reacts with GP 240 melanoma-associated antigen. The MoAb was infused over 2 h at doses of 2.5 mg (5 pts), 5 mg (5 pts), and 10 mg (3 pts). Total body tomograms and planar spot views with region of interest analysis were performed at 4, 24 and 72 hours post infusion. No adverse side effects were noted. There was rapid distribution to spleen, bone, bone marrow, liver, and testes. Tumor sites could be visualized as early as 24 hours but were more easily seen at 72 hours when the background activity was less. 20 of 46 (43%) previously documented metastases were identified. More sites imaged with increasing concentrations of MoAB, I.E., 25% at 2.5 mg; 67% at 5 mg; 70% at 10 mg. Tumor localization occurred in a significant number of patients especially at MoAb doses above 2.5 mg. In two instances, uptake of 111-In occurred in previously undiagnosed sites. The pharmacokinetics of MoAb were analyzed at each dose level. At the 5 mg dose, the terminal phase half-life for 111-In in plasma was 24.5 +- 2.7 hours. The apparent volume of distribution (Vd) was 4.03 +- 5iota similar to the plasma value, and the calculated clearance rate for 111-In label was 0.0259 + 0.002 ml/kg/min. Mean urinary excretion of 111-In label was 8.7 +- 0.6% of the administered dose over 48 hours after administration. The calculated pharmacokinetic parameters were independent of antibody dose. ZME 018 was cleared more rapidly from plasma, compared to previous studies with P97 antimelanoma MoAb.

  20. A novel three dimensional semimetallic MoS{sub 2}

    SciTech Connect (OSTI)

    Tang, Zhen-Kun; Zhang, Hui; Liu, Li-Min; Liu, Hao; Lau, Woon-Ming

    2014-05-28

    Transition metal dichalcogenides (TMDs) have many potential applications, while the performances of TMDs are generally limited by the less surface active sites and the poor electron transport efficiency. Here, a novel three-dimensional (3D) structure of molybdenum disulfide (MoS{sub 2}) with larger surface area was proposed based on first-principle calculations. 3D layered MoS{sub 2} structure contains the basal surface and joint zone between the different nanoribbons, which is thermodynamically stable at room temperature, as confirmed by first principles molecular dynamics calculations. Compared the two-dimensional layered structures, the 3D MoS{sub 2} not only owns the large surface areas but also can effectively avoid the aggregation. Interestingly, although the basal surface remains the property of the intrinsic semiconductor as the bulk MoS{sub 2}, the joint zone of 3D MoS{sub 2} exhibits semimetallic, which is derived from degenerate 3d orbitals of the Mo atoms. The high stability, large surface area, and high conductivity make 3D MoS{sub 2} have great potentials as high performance catalyst.

  1. Measurement of the Effective Weak Mixing Angle inpp<mo stretchy='false'>¯mo> stretchy='false'>→mo>Z<mo>/γ* stretchy='false'>→mo>e<mo>+mo>e<mo>->Events

    SciTech Connect (OSTI)

    Abazov, V.  M.; Abbott, B.; Acharya, B.  S.; Adams, M.; Adams, T.; Agnew, J.  P.; Alexeev, G.  D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D.  V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J.  F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S.  B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P.  C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E.  E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X.  B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C.  P.; Camacho-Pérez, E.; Casey, B.  C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K.  M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S.  W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W.  E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S.  J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S.  P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H.  T.; Diesburg, M.; Ding, P.  F.; Dominguez, A.; Dubey, A.; Dudko, L.  V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V.  D.; Enari, Y.; Evans, H.; Evdokimov, V.  N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H.  E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P.  H.; Garcia-Bellido, A.; García-González, J.  A.; Gavrilov, V.; Geng, W.; Gerber, C.  E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P.  D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M.  W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J.  M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A.  P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M.  D.; Hirosky, R.; Hoang, T.; Hobbs, J.  D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J.  L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A.  S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M.  S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A.  W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y.  N.; Kiselevich, I.; Kohli, J.  M.; Kozelov, A.  V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V.  A.; Lammers, S.; Lebrun, P.; Lee, H.  S.; Lee, S.  W.; Lee, W.  M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q.  Z.; Lim, J.  K.; Lincoln, D.; Linnemann, J.; Lipaev, V.  V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A.  L.; Maciel, A.  K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V.  L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C.  L.; Meijer, M.  M.; Melnitchouk, A.; Menezes, D.; Mercadante, P.  G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N.  K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H.  A.; Negret, J.  P.; Neustroev, P.; Nguyen, H.  T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S.  K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M. -A.; Podstavkov, V.  M.; Popov, A.  V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P.  N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M.  P.; Santos, A.  S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R.  D.; Scheglov, Y.; Schellman, H.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A.  A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G.  R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D.  A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V.  V.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W.  M.; Varelas, N.; Varnes, E.  W.; Vasilyev, I.  A.; Verkheev, A.  Y.; Vertogradov, L.  S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H.  D.; Wang, M.  H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M.  R. J.; Wilson, G.  W.; Wobisch, M.; Wood, D.  R.; Wyatt, T.  R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y.  A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S.  W.; Yu, J.  M.; Zennamo, J.; Zhao, T.  G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2015-07-22

    We present a measurement of the fundamental parameter of the standard model, the weak mixing angle sin2θeff which determines the relative strength of weak and electromagnetic interactions, in pp¯→Z/γ*→e+e- events at a center of mass energy of 1.96 TeV, using data corresponding to 9.7 fb-1 of integrated luminosity collected by the D0 detector at the Fermilab Tevatron. The effective weak mixing angle is extracted from the forward-backward charge asymmetry as a function of the invariant mass around the Z boson pole. The measured value of sin2θeff=0.23147±0.00047 is the most precise measurement from light quark interactions to date, with a precision close to the best LEP and SLD results.

  2. Energy Intensity Indicators: Coverage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coverage Energy Intensity Indicators: Coverage This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use ...

  3. Polystyrene/MoS{sub 2}@oleylamine nanocomposites

    SciTech Connect (OSTI)

    Altavilla, Claudia; Ciambelli, Paolo; Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore

    2014-05-15

    The effects of adding different concentrations of MoS{sub 2}@oleylamine nano particles on the thermal and mechanical properties of polystyrene (PS) nanocomposites have been investigated. X-ray diffraction and optical microscopy were used to characterize the morphology of the resulting nanocomposites. The thermal stability of the nanocomposites has been characterized by thermogravimetric analysis. It has been found that the MoS{sub 2}@oleylamine nanoparticles have a good compatibility with the PS matrix forming homogeneous dispersion even at high concentrations. The PS/MoS{sub 2}@oleylamine nanocomposites showed enhanced thermal stability in comparison with neat polystyrene.

  4. Slow Mo Guys and Cold Spray | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slow Mo Guys and Cold Spray Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Slow Mo Guys and Cold Spray ) The Slow Mo Guys came to GE Global Research in Niskayuna to film our researchers demonstrate a process called "cold spray", in which metal powders are sprayed at high velocities to build a part or add

  5. Concept Feasibility Report for Using Co-Extrusion to Bond Metals to Complex Shapes of U-10Mo

    SciTech Connect (OSTI)

    Lavender, Curt A.; Paxton, Dean M.; Smith, Mark T.; Soulami, Ayoub; Joshi, Vineet V.; Burkes, Douglas

    2013-12-30

    In support of the Convert Program of the U.S. Department of Energys National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative (GTRI), Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate fuel for the U.S. high-performance research reactors (USHPRR). This report documents the results of PNNLs efforts to develop the extrusion process for this concept. The approach to the development of a co-extruded complex-shaped fuel has been described and an extrusion of DU-10Mo was made. The initial findings suggest that given the extrusion forces required for processing U-10Mo, the co-extrusion process can meet the production demands of the USHPRR fuel and may be a viable production method. The development activity is in the early stages and has just begun to identify technical challenges to address details such as dimensional tolerances and shape control. New extrusion dies and roll groove profiles have been developed and will be assessed by extrusion and rolling of U-10Mo during the next fiscal year. Progress on the development and demonstration of the co-extrusion process for flat and shaped fuel is reported in this document

  6. Diffusion Barrier Selection from Refractory Metals (Zr, Mo and Nb) via Interdiffusion Investigation for U-Mo RERTR Fuel Alloy

    SciTech Connect (OSTI)

    K. Huang; C. Kammerer; D. D. Keiser, Jr.; Y. H. Sohn

    2014-04-01

    U-Mo alloys are being developed as low enrichment monolithic fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. Diffusional interactions between the U-Mo fuel alloy and Al-alloy cladding within the monolithic fuel plate construct necessitate incorporation of a barrier layer. Fundamentally, a diffusion barrier candidate must have good thermal conductivity, high melting point, minimal metallurgical interaction, and good irradiation performance. Refractory metals, Zr, Mo, and Nb are considered based on their physical properties, and the diffusion behavior must be carefully examined first with U-Mo fuel alloy. Solid-to-solid U-10wt.%Mo vs. Mo, Zr, or Nb diffusion couples were assembled and annealed at 600, 700, 800, 900 and 1000 degrees C for various times. The interdiffusion microstructures and chemical composition were examined via scanning electron microscopy and electron probe microanalysis, respectively. For all three systems, the growth rate of interdiffusion zone were calculated at 1000, 900 and 800 degrees C under the assumption of parabolic growth, and calculated for lower temperature of 700, 600 and 500 degrees C according to Arrhenius relationship. The growth rate was determined to be about 10 3 times slower for Zr, 10 5 times slower for Mo and 10 6 times slower for Nb, than the growth rates reported for the interaction between the U-Mo fuel alloy and pure Al or Al-Si cladding alloys. Zr, however was selected as the barrier metal due to a concern for thermo- mechanical behavior of UMo/Nb interface observed from diffusion couples, and for ductile-to-brittle transition of Mo near room temperature.

  7. Exciton-dominated dielectric function of atomically thin MoS2 films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Yiling; Yu, Yifei; Cai, Yongqing; Li, Wei; Gurarslan, Alper; Peelaers, Hartwin; Aspnes, David E.; Van de Walle, Chris G.; Nguyen, Nhan V.; Zhang, Yong -Wei; et al

    2015-11-24

    We systematically measure the dielectric function of atomically thin MoS2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS2 films and its contribution to the dielectric function maymore » dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. Lastly, the knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.« less

  8. Exciton-dominated dielectric function of atomically thin MoS2 films

    SciTech Connect (OSTI)

    Yu, Yiling; Yu, Yifei; Cai, Yongqing; Li, Wei; Gurarslan, Alper; Peelaers, Hartwin; Aspnes, David E.; Van de Walle, Chris G.; Nguyen, Nhan V.; Zhang, Yong -Wei; Cao, Linyou

    2015-11-24

    We systematically measure the dielectric function of atomically thin MoS2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS2 films and its contribution to the dielectric function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. Lastly, the knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.

  9. M.O. Wascko, LSU NuInt05...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O. Wascko, LSU NuInt05 26 September, 2005 MiniBooNE CC + CCQE Ratio M.O. Wascko, LSU J.R. Monroe, Columbia CC interactions Quasi-Elastic (CCQE) Inclusive Single +...

  10. Structural Insights into FeMo Cofactor Biosynthesis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a catalytic component and a specific reductase, which, in the standard system, are referred to as the MoFe protein and the Fe protein. At the active site of the...

  11. Support effects on hydrotreating activity of NiMo catalysts

    SciTech Connect (OSTI)

    Dominguez-Crespo, M.A. Arce-Estrada, E.M.; Torres-Huerta, A.M.

    2007-10-15

    The effect of the gamma alumina particle size on the catalytic activity of NiMoS{sub x} catalysts prepared by precipitation method of aluminum acetate at pH = 10 was studied. The structural characterization of the supports was measured by using XRD, pyridine FTIR-TPD and nitrogen physisorption. NiMo catalysts were characterized during the preparation steps (annealing and sulfidation) using transmission electron microscopy (TEM). Hydrogen TPR studies of the NiMo catalysts were also carried out in order to correlate their hydrogenating properties and their catalytic functionality. Catalytic tests were carried out in a pilot plant at 613, 633 and 653 K temperatures. The results showed that the rate constants of hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatizing (HDA) at 613-653 K decreased in the following order: A > B > C corresponding to the increase of NiMoS particle size associated to these catalysts.

  12. Ethanol Conversion on Cyclic (MO3)3 (M = Mo, W) Clusters

    SciTech Connect (OSTI)

    Li, Zhenjun; Fang, Zongtang; Kelley, Matthew S.; Kay, Bruce D.; Rousseau, Roger J.; Dohnalek, Zdenek; Dixon, David A.

    2014-03-06

    Oxides of molybdenum and tungsten are an important class of catalytic materials with applications ranging from isomerization of alkanes and alkenes, partial oxidation of alcohols, selective reduction of nitric oxide and metathesis of alkeness.[1-10] While many studies have focused on the structure - function relationships, the nature of high catalytic activity is still being extensively investigated. There is a general agreement that the activity of supported MOx (M = W, Mo) catalysts is correlated with the presence of acidic sites, where the catalytic activity is strongly affected by the type of oxide support, delocalization of electron density, structures of tungsten oxide domains and presence of protons

  13. Energy

    Office of Legacy Management (LM)

    ..) ".. _,; ,' . ' , ,; Depar?.me.nt ,of.' Energy Washington; DC 20585 : . ' , - $$ o"\ ' ~' ,' DEC ?;$ ;y4,,, ~ ' .~ The Honorable John Kalwitz , 200 E. Wells Street Milwaukee, W~isconsin 53202, . . i :. Dear,Mayor 'Kalwitz: " . " Secretary of Energy Hazel' O'Leary has announceha new,approach 'to,openness in " the Department of Ene~rgy (DOE) and its communications with'the public. In -. support of~this initiative, we areipleased to forward the enclosed information

  14. Experimental study of the electric dipole strength in the even Mo nuclei and its deformation dependence

    SciTech Connect (OSTI)

    Erhard, M.; Junghans, A. R.; Nair, C.; Schwengner, R.; Beyer, R.; Klug, J.; Kosev, K.; Wagner, A.; Grosse, E.

    2010-03-15

    Two methods based on bremsstrahlung were applied to the stable even Mo isotopes for the experimental determination of the photon strength function covering the high excitation energy range above 4 MeV with its increasing level density. Photon scattering was used up to the neutron separation energies S{sub n} and data up to the maximum of the isovector giant resonance (GDR) were obtained by photoactivation. After a proper correction for multistep processes the observed quasicontinuous spectra of scattered photons show a remarkably good match to the photon strengths derived from nuclear photoeffect data obtained previously by neutron detection and corrected in absolute scale by using the new activation results. The combined data form an excellent basis to derive a shape dependence of the E1 strength in the even Mo isotopes with increasing deviation from the N=50 neutron shell (i.e., with the impact of quadrupole deformation and triaxiality). The wide energy coverage of the data allows for a stringent assessment of the dipole sum rule and a test of a novel parametrization developed previously which is based on it. This parametrization for the electric dipole strength function in nuclei with A>80 deviates significantly from prescriptions generally used previously. In astrophysical network calculations it may help to quantify the role the p-process plays in cosmic nucleosynthesis. It also has impact on the accurate analysis of neutron capture data of importance for future nuclear energy systems and waste transmutation.

  15. U.S. Energy Information Administration (EIA) - Data

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Flow Archives Energy Flow Diagrams 2014 Total energy Primary Energy Consumption by Source and Sector Petroleum Natural gas Coal Electricity Energy Flow Diagrams 2013 Total...

  16. Microstructures in rapidly solidified Ni-Mo alloys

    SciTech Connect (OSTI)

    Jayaraman, N.; Tewari, S.N.; Hemker, K.J.; Glasgow, T.K.

    1985-01-01

    Ni-Mo alloys of compositions ranging from pure Ni to Ni-40 at % Mo were rapidly solidified by chill block melt spinning in vacuum and were examined by optical metallography, x-ray diffraction and transmission electron microscopy. Rapid solidification resulted in an extension of molybdenum solubility in nickel from 28 to 37.5 at %. A number of different phases and microstructures were seen at different depths (solidification conditions) from the quenched surface of the melt spun ribbons.

  17. Determination of Total Solids in Biomass and Total Dissolved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The published moisture loss on drying for sodium tartrate is 15.62% (84.38% total solids). 14.6 Sample size: Determined by sample matrix. 14.7 Sample storage: Samples should be ...

  18. Precision Measurement of the<mo stretchy='false'>(mo>e<mo>+mo><mo>+e- stretchy='false'>)mo>Flux in Primary Cosmic Rays from 0.5GeV to 1TeV with the Alpha Magnetic Spectrometer on the International Space Station

    SciTech Connect (OSTI)

    Aguilar, M.; Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bigongiari, G.; Bindi, V.; Bizzaglia, S.; Bizzarri, M.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Borsini, S.; Boschini, M.?J.; Bourquin, M.; Burger, J.; Cadoux, F.; Cai, X.?D.; Capell, M.; Caroff, S.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M.?J.; Chang, Y.?H.; Chen, A.?I.; Chen, H.; Cheng, G.?M.; Chen, H.?S.; Cheng, L.; Chikanian, A.; Chou, H.?Y.; Choumilov, E.; Choutko, V.; Chung, C.?H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Crispoltoni, M.; Cui, Z.; Dai, M.; Delgado, C.; Della Torre, S.; Demirkz, M.?B.; Derome, L.; Di Falco, S.; Di Masso, L.; Dimiccoli, F.; Daz, C.; von Doetinchem, P.; Donnini, F.; Du, W.?J.; Duranti, M.; DUrso, D.; Eline, A.; Eppling, F.?J.; Eronen, T.; Fan, Y.?Y.; Farnesini, L.; Feng, J.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Galaktionov, Y.; Gallucci, G.; Garca, B.; Garca-Lpez, R.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Gillard, W.; Giovacchini, F.; Goglov, P.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guandalini, C.; Guerri, I.; Guo, K.?H.; Habiby, M.; Haino, S.; Han, K.?C.; He, Z.?H.; Heil, M.; Hoffman, J.; Hsieh, T.?H.; Huang, Z.?C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W.?Y.; Jinchi, H.; Kanishev, K.; Kim, G.?N.; Kim, K.?S.; Kirn, Th.; Kossakowski, R.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M.?S.; Kunz, S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H.?T.; Lee, S.?C.; Leluc, C.; Li, H.?L.; Li, J.?Q.; Li, Q.; Li, Q.; Li, T.?X.; Li, W.; Li, Y.; Li, Z.?H.; Li, Z.?Y.; Lim, S.; Lin, C.?H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, H.; Lomtadze, T.; Lu, M.?J.; Lu, Y.?S.; Luebelsmeyer, K.; Luo, F.; Luo, J.?Z.; Lv, S.?S.; Majka, R.; Malinin, A.; Ma, C.; Marn, J.; Martin, T.; Martnez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D.?C.; Morescalchi, L.; Mott, P.; Mller, M.; Ni, J.?Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Pauluzzi, M.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Postaci, E.; Putze, A.; Quadrani, L.; Qi, X.?M.; Rih, T.; Rancoita, P.?G.; Rapin, D.; Ricol, J.?S.; Rodrguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Sbarra, C.; Schael, S.; Schmidt, S.?M.; Schuckardt, D.; Schulz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E.?S.; Shan, B.?S.; Shan, Y.?H.; Shi, J.?Y.; Shi, X.?Y.; Shi, Y.?M.; Siedenburg, T.; Son, D.; Spada, F.; Spinella, F.; Sun, W.; Sun, W.?H.; Tacconi, M.; Tang, C.?P.; Tang, X.?W.; Tang, Z.?C.; Tao, L.; Tescaro, D.; Ting, Samuel C.?C.; Ting, S.?M.; Tomassetti, N.; Torsti, J.; Trko?lu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vaurynovich, S.; Vecchi, M.; Velasco, M.; Vialle, J.?P.; Wang, L.?Q.; Wang, Q.?L.; Wang, R.?S.; Wang, X.; Wang, Z.?X.; Weng, Z.?L.; Whitman, K.; Wienkenhver, J.; Wu, H.; Xia, X.; Xie, M.; Xie, S.; Xiong, R.?Q.; Xin, G.?M.; Xu, N.?S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q.?H.; Yi, H.; Yu, Y.?J.; Yu, Z.?Q.; Zeissler, S.; Zhang, J.?H.; Zhang, M.?T.; Zhang, X.?B.; Zhang, Z.; Zheng, Z.?M.; Zhuang, H.?L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; Zurbach, C.

    2014-11-26

    We present a measurement of the cosmic ray (e++e-) flux in the range 0.5 GeV to 1 TeV based on the analysis of 10.6 million (e++e-) events collected by AMS. The statistics and the resolution of AMS provide a precision measurement of the flux. The flux is smooth and reveals new and distinct information. Above 30.2 GeV, the flux can be described by a single power law with a spectral index ?= -3.170 0.008(stat+syst) 0.008(energy scale).

  19. Growth kinetics and microstructural evolution during hot isostatic pressing of U-10 wt.% Mo monolithic fuel plate in AA6061 cladding with Zr diffusion barrier

    SciTech Connect (OSTI)

    Y. Park; J. Yoo; K. Huang; D. D. Keiser, Jr.; J. F. Jue; B. Rabin; G. Moore; Y. H. Sohn

    2014-04-01

    Phase constituents and microstructure changes in RERTR fuel plate assemblies as functions of temperature and duration of hot-isostatic pressing (HIP) during fabrication were examined. The HIP process was carried out as functions of temperature (520, 540, 560 and 580 °C for 90 min) and time (45–345 min at 560 °C) to bond 6061 Al-alloy to the Zr diffusion barrier that had been co-rolled with U-10 wt.% Mo (U10Mo) fuel monolith prior to the HIP process. Scanning and transmission electron microscopies were employed to examine the phase constituents, microstructure and layer thickness of interaction products from interdiffusion. At the interface between the U10Mo and Zr, following the co-rolling, the UZr2 phase was observed to develop adjacent to Zr, and the a-U phase was found between the UZr2 and U10Mo, while the Mo2Zr was found as precipitates mostly within the a-U phase. The phase constituents and thickness of the interaction layer at the U10Mo-Zr interface remained unchanged regardless of HIP processing variation. Observable growth due to HIP was only observed for the (Al,Si)3Zr phase found at the Zr/AA6061 interface, however, with a large activation energy of 457 ± 28 kJ/mole. Thus, HIP can be carried to improve the adhesion quality of fuel plate without concern for the excessive growth of the interaction layer, particularly at the U10Mo-Zr interface with the a-U, Mo2Zr, and UZr2 phases.

  20. Radiation Stability of Mo2Zr Phase as an Interaction Product in U-10M0/Zr/Al 6061 Monolithic Fuel Plate

    SciTech Connect (OSTI)

    Jian Gan; Brandon D. Miller; Dennis D. Keiser; Daniel M. Wachs; W. Sprowes; Y. H. Sohn; M. Kirk

    2015-04-01

    Abstract Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (< 20% U-235 enrichment). These fuel plates contain a Zr diffusion barrier between the U-10Mo fuel and Al-6061 cladding that suppresses the interaction between the two that is known to be problematic under irradiation. However, the Zr also interacts with the U-10Mo and Al-6061 cladding during fuel fabrication to produce a variety of interaction phases. The results from recent post-irradiation-examination (PIE) of the irradiated monolithic fuel plates suggested that the microstructural development of the U-10Mo/Zr interaction phases under irradiation may have an impact on fuel performance. The Mo2Zr phase has been identified as a major interaction product at the interface of U-10Mo and Zr. TEM in-situ irradiation with 500 keV Kr ions at 200 ?C temperature to 2?1016 ions/cm2 was carried out to investigate its radiation stability. The Mo2Zr undergoes a radiation-induced structural change, from a large cubic (cF24, a0 = 0.7588 nm) to a small bcc cubic (cI2, a0 = 0.3185 nm), along with an estimated 11.3% volume contraction without changing its composition. The Mo2Zr phase demonstrated exceptional radiation tolerance with the development of dislocation showing no evidence of bubble formation. The irradiation to the same ion dose with the reduced ion energy at 250 keV reveals a high concentration of small bubbles (< 2 nm) as a result of increased Kr ion retention in the sample. .

  1. TotalView Training 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TotalView Training 2015 TotalView Training 2015 NERSC will host an in-depth training course on TotalView, a graphical parallel debugger developed by Rogue Wave Software, on Thursday, March 26, 2015. This will be provided by Rogue Wave Software staff members. The training will include a lecture and demo sessions in the morning, followed by a hands-on parallel debugging session in the afternoon. Location This event will be presented online using WebEx technology and in person at NERSC Oakland

  2. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The...

  3. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Freeport, TX Hidalgo, TX Laredo, TX McAllen, TX Penitas, TX Rio Bravo, TX Rio Grande, TX Roma, TX Total ...

  4. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  5. 2014 Total Electric Industry- Customers

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 6,243,013 862,269 28,017 8 ...

  6. "2014 Total Electric Industry- Customers"

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers" "(Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",6243013,8...

  7. Corrosion and degradation of a polyurethane/Co-Ni-Cr-Mo pacemaker lead

    SciTech Connect (OSTI)

    Sung, P.; Fraker, A.C.

    1987-12-01

    An investigation to study changes in the metal surfaces and the polyurethane insulation of heart pacemaker leads under controlled in vitro conditions was conducted. A polyurethane (Pellethane 2363-80A)/Co-Ni-Cr-Mo (MP35N) wire lead was exposed in Hanks' physiological saline solution for 14 months and then analyzed using scanning electron microscopy, x-ray energy dispersive analysis, and small angle x-ray scattering. Results showed that some leakage of solution into the lead had occurred and changes were present on both the metal and the polyurethane surfaces.

  8. Pairing correlations and thermodynamical quantities in {sup 96,97}Mo

    SciTech Connect (OSTI)

    Kargar, Z.

    2007-06-15

    The nuclear level densities of {sup 96,97}Mo are calculated in the framework of superconducting theory. The parameters of nuclear level density are so chosen that the saddle point conditions are satisfied and the best fit to the experimental data yields. Then, using these parameters the energy, the entropy and the spin cut-off factor are calculated as a function of temperature. The curves show structures, reflecting the phase transition from a correlated to an uncorrelated phase. The critical temperature for quenching of pairing correlations is found at T{sub c}{approx}0.7-0.9 MeV.

  9. Energy

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    M onthly Energy Re< view Ila A a m 0 II 8 IIIW *g U In this issue: New data on nuclear electricity in Eastern Europe (Table 10.4) 9'Ij a - Ordering Information This publication...

  10. Coated U(Mo) Fuel: As-Fabricated Microstructures

    SciTech Connect (OSTI)

    Emmanuel Perez; Dennis D. Keiser, Jr.; Ann Leenaers; Sven Van den Berghe; Tom Wiencek

    2014-04-01

    As part of the development of low-enriched uranium fuels, fuel plates have recently been tested in the BR-2 reactor as part of the SELENIUM experiment. These fuel plates contained fuel particles with either Si or ZrN thin film coating (up to 1 µm thickness) around the U-7Mo fuel particles. In order to best understand irradiation performance, it is important to determine the starting microstructure that can be observed in as-fabricated fuel plates. To this end, detailed microstructural characterization was performed on ZrN and Si-coated U-7Mo powder in samples taken from AA6061-clad fuel plates fabricated at 500°C. Of interest was the condition of the thin film coatings after fabrication at a relatively high temperature. Both scanning electron microscopy and transmission electron microscopy were employed. The ZrN thin film coating was observed to consist of columns comprised of very fine ZrN grains. Relatively large amounts of porosity could be found in some areas of the thin film, along with an enrichment of oxygen around each of the the ZrN columns. In the case of the pure Si thin film coating sample, a (U,Mo,Al,Si) interaction layer was observed around the U-7Mo particles. Apparently, the Si reacted with the U-7Mo and Al matrix during fuel plate fabrication at 500°C to form this layer. The microstructure of the formed layer is very similar to those that form in U-7Mo versus Al-Si alloy diffusion couples annealed at higher temperatures and as-fabricated U-7Mo dispersion fuel plates with Al-Si alloy matrix fabricated at 500°C.

  11. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption (million gallons) Total Floorspace of Buildings Using...

  12. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  13. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  14. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  15. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  16. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

  17. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

  18. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  19. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  20. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...