National Library of Energy BETA

Sample records for mo morocco sh

  1. Morocco

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    MAURITANIA) SUMMARY In addition to large accumulations of Late-Cretaceous immature oil shale (kerogen) at depths suitable for surface mining 1 , Morocco and its two neighboring...

  2. Casablanca, Morocco: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Morocco. Registered Energy Companies in Casablanca, Morocco Immosolar Morocco Shell Morocco References http:www.geonames.org2553604casablanca.html Retrieved from...

  3. Morocco | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Morocco NNSA Hosts International Nuclear Forensics Workshop with Participants from Eight Countries WASHINGTON, D.C. - During May 11-22, the National Nuclear Security Administration's (NNSA) Nuclear Smuggling Detection and Deterrence program held a hands-on nuclear forensics course at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. The "International Training Course on

  4. Morocco-Low Carbon Development Planning in the Power Sector ...

    Open Energy Info (EERE)

    Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Morocco-Low Carbon Development Planning in the Power Sector Name Morocco-Low Carbon...

  5. Morocco: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Morocco Population 33,250,000 GDP 114,700,000,000 Energy Consumption 0.56 Quadrillion Btu 2-letter ISO code MA 3-letter ISO code MAR Numeric ISO...

  6. SH Coatings LP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SH Coatings LP America's Next Top Energy Innovator Challenge 10147 likes SH Coatings LP Oak Ridge National Laboratory SH Coating protects power lines from inclement weather as well as contamination from salt deposits that often cause flashovers in coastal environments. The coating can be applied to existing power lines and equipment in any field condition. The most important application is coating power lines in ice storm threatened areas. Power lines coated with SHC prevent the ice build-up

  7. Morocco-The World Bank Partnership for Market Readiness (PMR...

    Open Energy Info (EERE)

    Morocco Implement climate change mitigation policy as part of National Plan against Global Warming. PMR Support: Establish MRV framework. Identify and develop crediting NAMAs...

  8. Morocco-UNEP Risoe Technology Needs Assessment Program | Open...

    Open Energy Info (EERE)

    Risoe Technology Needs Assessment Program Jump to: navigation, search Name Morocco-UNEP Risoe-Technology Needs Assessment Program AgencyCompany Organization UNEP-Risoe Centre...

  9. Mo-99

    National Nuclear Security Administration (NNSA)

    its project for domestic production of molybdenum-99 (Mo-99) without highly enriched uranium (HEU).

    Mo-99 is the parent isotope of technetium-99m, which is the most widely...

  10. Mo-99

    National Nuclear Security Administration (NNSA)

    NorthStar Medical Radioisotopes to further develop its technology to produce Mo-99 via neutron capture, bringing the total NNSA support to this project to the maximum of 25...

  11. Energy trump for Morocco: the oil shales

    SciTech Connect (OSTI)

    Rosa, S.D.

    1981-10-01

    The mainstays of the economy in Morocco are still agriculture and phosphates; the latter represent 34% of world exports. Energy demand in 1985 will be probably 3 times that in 1975. Most of the oil, which covers 82% of its energy needs, must be imported. Other possible sources are the rich oil shale deposits and nuclear energy. Four nuclear plants with a total of 600 MW are projected, but shale oil still will play an important role. A contract for building a pilot plant has been met recently. The plant is to be located at Timahdit and cost $13 million, for which a loan from the World Bank has been requested. If successful in the pilot plant, the process will be used in full scale plants scheduled to produce 400,000 tons/yr of oil. Tosco also has a contract for a feasibility study.

  12. World Bank-Morocco Study on the Impact of Climate Change on the...

    Open Energy Info (EERE)

    Morocco Study on the Impact of Climate Change on the Agricultural Sector Jump to: navigation, search Name World Bank-Morocco Study on the Impact of Climate Change on the...

  13. Jurassic extension and Alpine inversion of the northern Morocco

    SciTech Connect (OSTI)

    Zizi, M. )

    1993-09-01

    The lower Mesozoic half grabens of northern Morocco form part of an extensional system that is related to the opening of the western Tethys. They appear to be somewhat younger than the Triassic-Jurassic systems associated with the opening the Atlantic Ocean. During the Tertiary and as consequence of the Alpine collision of Africa with Europe, these half graben systems were inverted as shown by the High and the Middle Atlas mountains. Seismic illustrations of similar but smaller inversion structures are available from the Guercif area and the [open quotes]Rides Prerifaines[close quotes] of northern Morocco. These seismic profiles serve as small models for the much larger Atlas Mountains. In the Guercif area, the inversions are limited in scope, but in the [open quotes]Ride Prerifaines[close quotes] are extensive decollement systems that sole out in the Triassic evaporites. These systems evolve into complex thrust faults and associated lateral ramps that are strongly influenced by the configuration of the Jurassic transtensional systems. Significant hydrocarbon accumulation have been known for some time from the [open quotes]Rides Prerifaines.[close quotes] A review of the geometry of the inverted half-graben systems, combined with detailed stratigraphic studies, is likely to lead to the discovery of additional reserves in the area.

  14. MoS2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... mechanisms for its eventual aging and demise. Figure 3: Typical x-ray diffraction of the poorly crystalline MoS phase. (reference 5) Often transmission electron microscopy (TEM) ...

  15. US WNC MO Site Consumption

    Gasoline and Diesel Fuel Update (EIA)

    WNC MO Site Consumption million Btu 0 500 1,000 1,500 2,000 2,500 US WNC MO ... 9,000 12,000 15,000 US WNC MO Site Consumption kilowatthours 0 300 600 900 1,200 ...

  16. polyurethane foam Goods, S.H.; Neuschwanger, C.L.; Henderson...

    Office of Scientific and Technical Information (OSTI)

    Mechanical properties and energy absorption characteristics of a polyurethane foam Goods, S.H.; Neuschwanger, C.L.; Henderson, C.; Skala, D.M. 36 MATERIALS SCIENCE; FOAMS;...

  17. Interaction between human BAP31 and respiratory syncytial virus small hydrophobic (SH) protein

    SciTech Connect (OSTI)

    Li, Yan; Jain, Neeraj; Limpanawat, Suweeraya; To, Janet; Quistgaard, Esben M.; Nordlund, Par; Thanabalu, Thirumaran; Torres, Jaume

    2015-08-15

    The small hydrophobic (SH) protein is a short channel-forming polypeptide encoded by the human respiratory syncytial virus (hRSV). Deletion of SH protein leads to the viral attenuation in mice and primates, and delayed apoptosis in infected cells. We have used a membrane-based yeast two-hybrid system (MbY2H) and a library from human lung cDNA to detect proteins that bind SH protein. This led to the identification of a membrane protein, B-cell associated protein 31 (BAP31). Transfected SH protein co-localizes with transfected BAP31 in cells, and pulls down endogenous BAP31. Titration of purified C-terminal endodomain of BAP31 against isotopically labeled SH protein in detergent micelles suggests direct interaction between the two proteins. Given the key role of BAP31 in protein trafficking and its critical involvement in pro- and anti-apoptotic pathways, this novel interaction may constitute a potential drug target. - Highlights: • A yeast two-hybrid system (MbY2H) detected BAP31 as a binder of RSV SH protein. • Transfected SH and BAP31 co-localize in lung epithelial cells. • Endogenous BAP31 is pulled down by RSV SH protein. • BAP31 endodomain interacts with the N-terminal α-helix of SH protein in micelles. • This interaction is proposed to be a potential drug target.

  18. LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON

    U.S. Energy Information Administration (EIA) Indexed Site

    81 81 LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON CALEDONIA HURON C REEK LEIC EST ER COL DEN ASH FORD INDIAN FALLS LAWTONS SAR DINIA RPD-037 -2 ...

  19. Technical Qualification Program Self-Assessment Report - NA-SH - 2013 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy NA-SH - 2013 Technical Qualification Program Self-Assessment Report - NA-SH - 2013 DOE Federal Technical Capability Panel provides the requirements for the recruitment, deployment, development, and retention of federal personnel with demonstrated technical capability to safely accomplish the Department's missions and responsibilities. This Program applies to the National Nuclear Security Administration (NNSA) Headquarters (HQ) and Field organizations that have safety

  20. DOE - Office of Legacy Management -- St Louis Airport - MO 01

    Office of Legacy Management (LM)

    - MO 01 FUSRAP Considered Sites St. Louis Airport, MO Alternate Name(s): Airport Site St. Louis Airport Storage Site (SLAPS) Former Robertson Storage Area Robertson Airport MO.01-1 MO.01-2 Location: Brown Road, Robertson, Missouri MO.01-2 Historical Operations: Stored uranium process residues containing uranium, radium, and thorium for the MED and AEC. MO.01-2 MO.01-3 MO.01-4 Eligibility Determination: Eligible MO.01-1 MO.01-7 Radiological Survey(s): Assessment Surveys MO.01-4 MO.01-5 Site

  1. Mo-Si alloy development

    SciTech Connect (OSTI)

    Liu, C.T.; Heatherly, L.; Wright, J.L.

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  2. Structure of the SH3 domain of human osteoclast-stimulating factor at atomic resolution

    SciTech Connect (OSTI)

    Chen, Liqing Wang, Yujun; Wells, David; Toh, Diana; Harold, Hunt; Zhou, Jing; DiGiammarino, Enrico; Meehan, Edward J.

    2006-09-01

    The crystal structure of the SH3 domain of human osteoclast-stimulating factor has been determined and refined to the ultrahigh resolution of 1.07 . The structure at atomic resolution provides an accurate framework for structure-based design of its inhibitors. Osteoclast-stimulating factor (OSF) is an intracellular signaling protein, produced by osteoclasts themselves, that enhances osteoclast formation and bone resorption. It is thought to act via an Src-related signaling pathway and contains SH3 and ankyrin-repeat domains which are involved in proteinprotein interactions. As part of a structure-based anti-bone-loss drug-design program, the atomic resolution X-ray structure of the recombinant human OSF SH3 domain (hOSF-SH3) has been determined. The domain, residues 1272, yielded crystals that diffracted to the ultrahigh resolution of 1.07 . The overall structure shows a characteristic SH3 fold consisting of two perpendicular ?-sheets that form a ?-barrel. Structure-based sequence alignment reveals that the putative proline-rich peptide-binding site of hOSF-SH3 consists of (i) residues that are highly conserved in the SH3-domain family, including residues Tyr21, Phe23, Trp49, Pro62, Asn64 and Tyr65, and (ii) residues that are less conserved and/or even specific to hOSF, including Thr22, Arg26, Thr27, Glu30, Asp46, Thr47, Asn48 and Leu60, which might be key to designing specific inhibitors for hOSF to fight osteoporosis and related bone-loss diseases. There are a total of 13 well defined water molecules forming hydrogen bonds with the above residues in and around the peptide-binding pocket. Some of those water molecules might be important for drug-design approaches. The hOSF-SH3 structure at atomic resolution provides an accurate framework for structure-based design of its inhibitors.

  3. SSL Demonstration: Street Lighting, Kansas City, MO

    SciTech Connect (OSTI)

    2013-08-01

    GATEWAY program report brief summarizing an SSL street lighting demonstration at nine separate installations in Kansas City, MO.

  4. Optimization of the Processing of Mo Disks

    SciTech Connect (OSTI)

    Tkac, Peter; Rotsch, David A.; Stepinski, Dominique; Makarashvili, Vakhtang; Harvey, James; Vandegrift, George F.

    2016-01-01

    The objective of this work is to decrease the processing time for irradiated disks of enriched Mo for the production of 99Mo. Results are given for the dissolution of nonirradiated Mo disks, optimization of the process for large-scale dissolution of sintered disks, optimization of the removal of the main side products (Zr and Nb) from dissolved targets, and dissolution of irradiated Mo disks.

  5. Targeting the SH2-Kinase Interface in Bcr-Abl Inhibits Leukemogenesis

    SciTech Connect (OSTI)

    Grebien, Florian; Hantschel, Oliver; Wojcik, John; Kaupe, Ines; Kovacic, Boris; Wyrzucki, Arkadiusz M.; Gish, Gerald D.; Cerny-Reiterer, Sabine; Koide, Akiko; Beug, Hartmut; Pawson, Tony; Valent, Peter; Koide, Shohei; Superti-Furga, Giulio

    2012-10-25

    Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention.

  6. The insensitivity of reflected sh waves to anisotropy in an underlaying layered medium

    SciTech Connect (OSTI)

    Schoenberg, M.; Costa, J. )

    1991-11-01

    This paper reports on propagation in the plane of mirror symmetry of a monoclinic medium, with displacement normal to the plane which is the most general circumstance in anisotropic media for which pure shear-wave propagation can occur at all angles. Because the pure shear mode is uncoupled from the other two modes, its slowness surface in the plane is an ellipse. When the mirror symmetry plane is vertical the pure shear waves in this plane are SH waves and the elliptical SH sheet of the slowness surface is, in general, tilted with respect to the vertical axis. Consider a half-space of such a monoclinic medium, called medium M, overlain by a halfspace of isotropic medium I with plane SH waves incident on medium M propagating in the vertical symmetry plane of M. Contrary to the appearance of a lack of symmetry about the vertical axis due to the tilt of the SH-wave slowness ellipse, the reflection and transmission coefficients are symmetrical functions of the angle of incidence, and further, there exists an isotropic medium E with uniquely determined density and shear speed which gives exactly the same reflection and transmission coefficients underlying medium I as does monoclinic medium M. This means that the underlying monoclinic medium M can be replaced by isotropic medium E without changing the reflection and transmission coefficients for all values of the angle of incidence.

  7. Measurement of the direct CP -violating parameter ACP in the decay D<mo>+ stretchy='false'>→mo>K<mo>-mo>π<mo>+mo>π+>

    SciTech Connect (OSTI)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M. -A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2014-12-01

    We measure the direct CP-violating parameter ACP for the decay of the charged charm meson, Dmo>+ stretchy="false">→mo>Kmo>-mo>πmo>+mo>πmo>+> (and charge conjugate), using the full 10.4 fbmo>->1 sample of ppmo accent="true" stretchy="false">¯mo> collisions at smo>=>1.96 TeV collected by the D0 detector at the Fermilab Tevatron collider. We extract the raw reconstructed charge asymmetry by fitting the invariant mass distributions for the sum and difference of charge-specific samples. This quantity is then corrected for detector-related asymmetries using data-driven methods and for possible physics asymmetries (from Bmo stretchy="false">→mo

  8. Microsoft Word - CU-ShEEP Information Exchange Webinar_Venayagamoorthy.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DE-OE0000660 Page 1 of 3 Project Title: CU-ShEEP Clemson University's Synchrophasor Engineering Education Program Principal Investigator: G. Kumar Venayagamoorthy Clemson University 303D Riggs Hall, Clemson, SC 29634 gvenaya@clemson.edu Tel. No. 864-6565936 A. PROJECT DESCRIPTION The objective of this project is to establish collaboration with a local utility - Duke Energy, in establishing a Situational Intelligence (SI) Laboratory that will be driven from a Real-Time Grid Simulation Laboratory

  9. DOE - Office of Legacy Management -- Washington University - MO 07

    Office of Legacy Management (LM)

    Washington University - MO 07 FUSRAP Considered Sites Site: WASHINGTON UNIVERSITY (MO.07 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: St. Louis , Missouri MO.07-1 Evaluation Year: 1987 MO.07-1 Site Operations: Activities were limited to programs involving relatively small quantities of radionuclides and chemicals in a controlled environment. MO.07-3 MO.07-1 Site Disposition: Eliminated - Potential for contamination remote MO.07-1

  10. DOE - Office of Legacy Management -- Latty Avenue Site - MO 04

    Office of Legacy Management (LM)

    Latty Avenue Site - MO 04 FUSRAP Considered Sites Latty Avenue Site, MO Alternate Name(s): Futura Coatings Futura Chemical Company Facility Hazelwood Interim Storage Site (HISS) Former Cotter Site, Latty Avenue Properties Contemporary Metals Corp. Continental Mining and Milling MO.04-1 MO.04-2 MO.04-5 MO.04-6 MO.06-8 MO.06-11 Location: 9200 Latty Avenue, Hazelwood, Missouri MO.04-1 Historical Operations: Received, stored, and processed uranium residues for the AEC. Storage and processing were

  11. Mo99 Production Plant Layout

    SciTech Connect (OSTI)

    Woloshun, Keith Albert; Dale, Gregory E.; Naranjo, Angela Carol

    2015-06-25

    The NorthStar Medical Technologies 99Mo production facility configuration is envisioned to be 8 accelerator pairs irradiating 7 100Mo targets (one spare accelerator pair undergoing maintenance while the other 7 pairs are irradiating targets). The required shielding in every direction for the accelerators is initially estimated to be 10 feet of concrete. With the accelerator pairs on one (ground) level and spaced with the required shielding between adjacent pairs, the only practical path for target insertion and removal while minimizing floor space is vertical. The current scheme then requires a target vertical lift of nominally 10 feet through a shield stack. It is envisioned that the lift will be directly into a hot cell where an activated target can be removed from its holder and a new target attached and lowered. The hot cell is on a rail system so that a single hot cell can service all active target locations, as well as deliver the ready targets to the separations lab. On this rail system, coupled to the hot cell, will be a helium recovery and clean-up system. All helium coolant equipment is located on the upper level near to the target removal point.

  12. Characterization of a novel weak interaction between MUC1 and Src-SH3 using nuclear magnetic resonance spectroscopy

    SciTech Connect (OSTI)

    Gunasekara, Nirosha; Sykes, Brian; Hugh, Judith

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer MUC1 binds the Src-SH3 domain potentially triggering Src dependent cell migration. Black-Right-Pointing-Pointer NMR Spectroscopy was used to monitor MUC1-CD and Src SH3 domain titrations. Black-Right-Pointing-Pointer MUC1-CD peptides bind with a low affinity (K{sub d} of 2-3 mM) to a non-canonical site. Black-Right-Pointing-Pointer Weak interactions may mediate dynamic processes like migration. Black-Right-Pointing-Pointer The MUC1-CD and Src-SH3 interaction may be a prime target to inhibit cell migration. -- Abstract: Breast cancer causes death through cancer cell migration and subsequent metastasis to distant organs. In vitro, the MUC1 mucin can mediate breast cancer cell migration by binding to intercellular adhesion molecule-1 (ICAM-1). This migration is dependent on MUC1 cytoplasmic domain (MUC1-CD) activation of the non-receptor tyrosine kinase, Src, possibly through competitive displacement of an inhibitory Src intramolecular SH3 binding. Therefore, we characterized the binding site and affinity of the MUC1-CD for Src-SH3 using multidimensional nuclear magnetic resonance (NMR) spectroscopy to monitor the titration of the {sup 15}N labeled Src-SH3 domain with synthetic native and mutant peptides of MUC1-CD. The results revealed that the dissociation constant (K{sub d}) for the interaction of the native MUC1-CD peptides and Src-SH3 domain was weak with a K{sub d} of 2-3 mM. Notably, the SH3 residues most perturbed upon peptide binding were located outside the usual hydrophobic binding cleft in a previously described alternate binding site on the Src-SH3, suggesting that MUC1-CD binds to a non-canonical site. The binding characteristics outlined here suggest that the interaction between Src-SH3 and MUC1-CD represents a novel weak electrostatic interaction of the type which is increasingly recognized as important in transient and dynamic protein complexes required for cell migration and signal transduction. As such, this

  13. LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON

    U.S. Energy Information Administration (EIA) Indexed Site

    81 § ¨ ¦ 81 LAKESHORE AVON BR ANT-EDEN ALD EN-LANC ASTER AU BURN W SH ELDON CALEDONIA HURON C REEK LEIC EST ER COL DEN ASH FORD INDIAN FALLS LAWTONS SAR DINIA RPD-037 -2 GLENWOOD PU LASKI PAVILION CON CORD COL LINS N ELM A ORC HARD PARK-H AMBU RG DANLEY CORNERS ST ILLWAT ER CHAFF EE-ARCAD E FAYETT E-WATERLOO LAKEVIEW JAVA SEN EC A W ELLER Y AU RORA E ZOAR BU FFALO TIOGA SILVER LAKE AKR ON ROM E RAT HBON E ALM A BET HANY WYOMING ULYSSES BR ANCH W SAN DY CREEK COL LINS BLOOMFIELD E LEBANON

  14. DOE - Office of Legacy Management -- Petrolite Corp - MO 08

    Office of Legacy Management (LM)

    Petrolite Corp - MO 08 FUSRAP Considered Sites Site: PETROLITE CORP (MO.08) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: St. Louis , Missouri MO.08-1 Evaluation Year: 1987 MO.08-4 Site Operations: Research involving test quantities of radioactive materials. MO.08-2 Site Disposition: Eliminated - Licensed - Potential for contamination remote MO.08-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled:

  15. Tuning the electronic structure of monolayer graphene/ Mo S 2...

    Office of Scientific and Technical Information (OSTI)

    Tuning the electronic structure of monolayer graphene Mo S 2 van der Waals ... Title: Tuning the electronic structure of monolayer graphene Mo S 2 van der Waals ...

  16. Update to M&O Contractor Model Subcontract entitled "Standard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    M&O Contractor Model Subcontract entitled "Standard Research Subcontract (Educational Institution or Nonprofit Organization)" Update to M&O Contractor Model Subcontract entitled ...

  17. Missouri Department of National Resources Energy Center Mo DNR...

    Open Energy Info (EERE)

    Department of National Resources Energy Center Mo DNR Jump to: navigation, search Name: Missouri Department of National Resources Energy Center (Mo DNR) Place: Jefferson City,...

  18. Demonstration of LED Street Lighting in Kansas City, MO (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Demonstration of LED Street Lighting in Kansas City, MO Citation Details In-Document Search Title: Demonstration of LED Street Lighting in Kansas City, MO Nine ...

  19. DOE - Office of Legacy Management -- West Lake Landfill - MO...

    Office of Legacy Management (LM)

    Lake Landfill - MO 05 FUSRAP Considered Sites Site: West Lake Landfill (MO.05) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

  20. Thermophysical Properties of U-10MO Alloy

    SciTech Connect (OSTI)

    A. M. Phillips; G. S. Mickum; D. E. Burkes

    2010-11-01

    This report provides an overview of thermophysical properties of unirradiated uranium alloyed with ten weight percent molybdenum (U 10Mo), with particular focus on those material properties needed for modeling of new fuels for HPRRs (High Performance Research Reactors). The report contains both historical data available in the literature on U-10Mo, as well as more recent results conducted by the Global Threat Reduction Initiative fuel development program. The main use of the report is intended as a standard U-10Mo alloy properties reference for reactor models and simulations.

  1. Mo Year Report Period: EIA ID NUMBER:

    U.S. Energy Information Administration (EIA) Indexed Site

    Mo Year Report Period: EIA ID NUMBER: http:www.eia.govsurveyformeia14instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https:...

  2. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    SciTech Connect (OSTI)

    Schulthess, Jason

    2014-09-01

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  3. STAR FORMATION AND YOUNG POPULATION OF THE H II COMPLEX Sh2-294

    SciTech Connect (OSTI)

    Samal, M. R.; Pandey, A. K.; Chauhan, N.; Jose, J.; Ojha, D. K.; Pandey, B.

    2012-08-10

    The Sh2-294 H II region ionized by a single B0V star features several infrared excess sources, a photodissociation region, and also a group of reddened stars at its border. The star formation scenario in this region seems to be quite complex. In this paper, we present follow-up results of Sh2-294 H II region at 3.6, 4.5, 5.8, and 8.0 {mu}m observed with the Spitzer Space Telescope Infrared Array Camera (IRAC), coupled with H{sub 2} (2.12 {mu}m) observation, to characterize the young population of the region and to understand its star formation history. We identified 36 young stellar object (YSO, Class I, Class II, and Class I/II) candidates using IRAC color-color diagrams. It is found that Class I sources are preferentially located at the outskirts of the H II region and associated with enhanced H{sub 2} emission; none of them are located near the central cluster. Combining the optical to mid-infrared (MIR) photometry of the YSO candidates and using the spectral energy distribution fitting models, we constrained stellar parameters and the evolutionary status of 33 YSO candidates. Most of them are interpreted by the model as low-mass (<4 M{sub Sun }) YSOs; however, we also detected a massive YSO ({approx}9 M{sub Sun }) of Class I nature, embedded in a cloud of visual extinction of {approx}24 mag. Present analysis suggests that the Class I sources are indeed a younger population of the region relative to Class II sources (age {approx} 4.5 Multiplication-Sign 10{sup 6} yr). We suggest that the majority of the Class I sources, including the massive YSOs, are second-generation stars of the region whose formation is possibly induced by the expansion of the H II region powered by a {approx}4 Multiplication-Sign 10{sup 6} yr B0 main-sequence star.

  4. Oxidation, Reduction, and Condensation of Alcohols over (MO3)3 (M=Mo, W) Nanoclusters

    SciTech Connect (OSTI)

    Fang, Zongtang; Li, Zhenjun; Kelley, Matthew S.; Kay, Bruce D.; Li, Shenggang; Hennigan, Jamie M.; Rousseau, Roger J.; Dohnalek, Zdenek; Dixon, David A.

    2014-10-02

    The reactions of deuterated methanol, ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol and t-butanol over cyclic (MO3)3 (M = Mo, W) clusters were studied experimentally with temperature programmed desorption (TPD) and theoretically with coupled cluster CCSD(T) theory and density functional theory. The reactions of two alcohols per M3O9 cluster are required to provide agreement with experiment for D2O release, dehydrogenation and dehydration. The reaction begins with the elimination of water by proton transfers and forms an intermediate dialkoxy species which can undergo further reaction. Dehydration proceeds by a ? hydrogen transfer to a terminal M=O. Dehydrogenation takes place via an ? hydrogen transfer to an adjacent MoVI = O atom or a WVI metal center with redox involved for M = Mo and no redox for M = W. The two channels have comparable activation energies. H/D exchange to produce alcohols can take place after olefin is released or via the dialkoxy species depending on the alcohol and the cluster. The Lewis acidity of the metal center with WVI being larger than MoVI results in the increased reactivity of W3O9 over Mo3O9 for dehydrogenation and dehydration.

  5. Elastic modulus of phases in Ti–Mo alloys

    SciTech Connect (OSTI)

    Zhang, Wei-dong; Liu, Yong; Wu, Hong; Song, Min; Zhang, Tuo-yang; Lan, Xiao-dong; Yao, Tian-hang

    2015-08-15

    In this work, a series of binary Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were prepared using non-consumable arc melting. The microstructures were investigated by X-ray diffraction and transmission electron microscope, and the elastic modulus was evaluated by nanoindentation testing technique. The evolution of the volume fractions of ω phase was investigated using X-ray photoelectron spectroscopy. The results indicated that the phase constitution and elastic modulus of the Ti–Mo alloys are sensitive to the Mo content. Ti–3.2Mo and Ti–8Mo alloys containing only α and β phases, respectively, have a low elastic modulus. In contrast, Ti–4.5Mo, Ti–6Mo, Ti–7Mo alloys, with different contents of ω phase, have a high elastic modulus. A simple micromechanical model was used to calculate the elastic modulus of ω phase (E{sub ω}), which was determined to be 174.354 GPa. - Highlights: • Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were investigated. • XPS was used to investigate the volume fractions of ω phase. • The elastic modulus of Ti–Mo alloys is sensitive to the Mo content. • The elastic modulus of ω phase was determined to be 174.354 GPa.

  6. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    SciTech Connect (OSTI)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Deacon, Ashley M.; Wilson, Ian A.

    2015-09-15

    ABSTRACT

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural

  7. Insights into substrate specificity of NlpC/P60 cell wall hydrolases containing bacterial SH3 domains

    SciTech Connect (OSTI)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu -Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc -André; Deacon, Ashley M.; Wilson, Ian A.

    2015-09-15

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60

  8. Insights into substrate specificity of NlpC/P60 cell wall hydrolases containing bacterial SH3 domains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu -Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; et al

    2015-09-15

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting ofmore » two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes, show

  9. Accelerator Production Options for 99MO

    SciTech Connect (OSTI)

    Bertsche, Kirk; /SLAC

    2010-08-25

    Shortages of {sup 99}Mo, the most commonly used diagnostic medical isotope, have caused great concern and have prompted numerous suggestions for alternate production methods. A wide variety of accelerator-based approaches have been suggested. In this paper we survey and compare the various accelerator-based approaches.

  10. Intermetallic phase formation and breakdown of Mo diffusion barriers in Ni-Mo-Cu and Ni-Mo-Monel 400 diffusion triads

    SciTech Connect (OSTI)

    Shueh, Y.

    1988-01-01

    The purpose of this research was to study the kinetics of compound formation and the interdiffusion behavior of a sacrificial type diffusion barrier in a model system. Ni-Mo diffusion couples were annealed in an inert atmosphere at 950-1050{degree}C for 5-300 hours. Ni-Mo-Cu and Ni-Mo-Monel 400 diffusion triads with varied thicknesses of Mo layers sandwiched by Ni and C or Monel 400 disks were annealed under the same conditions. Parabolic growth of the intermetallic phase, {beta}, was observed at 1000{degree}C and 1050{degree}C in the semi-infinite Ni-Mo diffusion couple an din the Ni-Mo-Cu diffusion triad when a finite thickness of the Mo layer remained. The {beta} phase exhibited more or less planar morphology except in the case of some extremely rugged interfaces which were associated with grain boundaries adjacent to these interfaces. Dissociation and recession of the compound layer in Ni-Mo-Cu diffusion triads initiated when the Mo layer was nearly consumed. The product phases of the dissociation reaction are consistent with those predicted from the Ni-Mo-Cu ternary phase diagram. Numerical methods based on a finite difference technique, and an analytical solution based on diffusion controlled parabolic growth and quasi-steady-state approximation in the {beta} phase region were used to analyze the results.

  11. Role of SrMoO{sub 4} in Sr{sub 2}MgMoO{sub 6} synthesis

    SciTech Connect (OSTI)

    Vasala, S.; Yamauchi, H.; Karppinen, M.

    2011-05-15

    Here we investigate the elemental and phase compositions during the solid-state synthesis of the promising SOFC-anode material, Sr{sub 2}MgMoO{sub 6}, and demonstrate that molybdenum does not notably evaporate under the normal synthesis conditions with temperatures up to 1200 {sup o}C due to the formation of SrMoO{sub 4} as an intermediate product at low temperatures, below 600 {sup o}C. However, partial decomposition of the Sr{sub 2}MgMoO{sub 6} phase becomes evident at the higher temperatures ({approx}1500 {sup o}C). The effect of SrMoO{sub 4} on the electrical conductivity of Sr{sub 2}MgMoO{sub 6} is evaluated by preparing a series of Sr{sub 2}MgMoO{sub 6} samples with different amounts of additional SrMoO{sub 4}. Under the reducing operation conditions of an SOFC anode the insulating SrMoO{sub 4} phase is apparently reduced to the highly conductive SrMoO{sub 3} phase. Percolation takes place with 20-30 wt% of SrMoO{sub 4} in a Sr{sub 2}MgMoO{sub 6} matrix, with a notable increase in electrical conductivity after reduction. Conductivity values of 14, 60 and 160 S/cm are determined at 800 {sup o}C in 5% H{sub 2}/Ar for the Sr{sub 2}MgMoO{sub 6} samples with 30, 40 and 50 wt% of added SrMoO{sub 4}, respectively. -- Graphical abstract: SrMoO{sub 4} is formed at low temperatures during the synthesis of Sr{sub 2}MgMoO{sub 6}, which prevents the volatilization of Mo from typical precursor mixtures of this promising SOFC anode material. SrMoO{sub 4} is insulating and it is often found as an impurity in Sr{sub 2}MgMoO{sub 6} samples. It is however readily reduced to highly conducting SrMoO{sub 3}. Composites of Sr{sub 2}MgMoO{sub 6} and SrMoO{sub 3} show increased electrical conductivities compared to pure Sr{sub 2}MgMoO{sub 6} under the reductive operation conditions of an SOFC anode. Display Omitted Highlights: {yields} Sr{sub 2}MgMoO{sub 6} is a promising SOFC anode material. {yields} During the Sr{sub 2}MgMoO{sub 6} synthesis SrMoO{sub 4} is formed at low

  12. Contact metasomatic and hydrothermal minerals in the SH2 deep well, Sabatini Volcanic District, Latium, Italy

    SciTech Connect (OSTI)

    Cavarretta, G.; Tecce, F.

    1987-01-01

    Metasomatic and hydrothermal minerals were logged throughout the SH2 geothermal well, which reached a depth of 2498 m in the Sabatini volcanic district. Below 460 m of volcanics, where the newly formed minerals were mainly chlorite, calcite and zeolites (mostly phillipsite), drilling entered the Allochthonous Flysch Complex. Evidence of the ''Cicerchina facies'' was found down to 1600 m depth. Starting from 1070 m, down to hole bottom, a contact metasomatic complex was defined by the appearance of garnet. Garnet together with K-fledspar, vesuvianite, wilkeite, cuspidine, harkerite, wollastonite and apatite prevail in the top part of the contact metasomatic complex. Vesuvianite and phlogopite characterize the middle part. Phlogopite, pyroxene, spinel and cancrinite predominate in the bottom part. The 1500 m thick metasomatic complex indicates the presence at depth of the intrusion of a trachytic magma which released hot fluids involved in metasomatic mineral-forming reactions. Minerals such as harkerite, wilkeite, cuspidine, cancrinite, vesuvianite and phlogopite indicate the intrusive melt had a high volatile content which is in agreement with the very high explosivity index of this volcanic district. The system is at present sealed by abundant calcite and anhydrite. It is proposed that most, if not all, of the sulphates formed after reaction of SO/sub 2/ with aqueous calcium species rather than from sulphates being remobilized from evaporitic (Triassic) rocks as previously inferred. The hypothesis of a CO/sub 2/-rich deep-derived fluid ascending through major fracture systems and contrasting cooling in the hottest areas of Latium is presented.

  13. Mo-99 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Mo-99 DOE/NNSA Successfully Establishes Uranium Lease and Takeback Program to Support Critical Medical Isotope Production In January 2016, the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) successfully established the Uranium Lease and Take-Back (ULTB) program, as directed in the American Medical Isotopes Production Act of 2012, to support the commercial production of the medical... NNSA's work aids in fight against cancer World Cancer Day encourages citizens

  14. DOE - Office of Legacy Management -- St Louis Downtown Site - MO 02

    Office of Legacy Management (LM)

    Downtown Site - MO 02 FUSRAP Considered Sites St. Louis Downtown, MO Alternate Name(s): Destrehan Street Plant Downtown Site Mallinckrodt Chemical Plant Mallinckrodt Chemical Works MO.02-1 MO.02-3 Location: 65 Destrehan Street, St. Louis, Missouri MO.02-5 Historical Operations: Conducted uranium metal and uranium oxides research, development, and production for MED and AEC. MO.02-6 MO.02-7 Eligibility Determination: Eligible MO.02-1 Radiological Survey(s): Assessment Surveys MO.02-2 MO.02-3 Site

  15. NNSA Awards Mo-99 Cooperative Agreement to General Atomics | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Awards Mo-99 Cooperative Agreement to General Atomics September 30, 2015 WASHINGTON, DC - Today, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) announced that it will award a cooperative agreement to General Atomics (GA) to support its project for domestic production of molybdenum-99 (Mo-99) without highly enriched uranium (HEU). Mo-99 is the parent isotope of technetium-99m, which is the most widely used radioisotope

  16. MoRu/Be multilayers for extreme ultraviolet applications

    DOE Patents [OSTI]

    Bajt, Sasa C.; Wall, Mark A.

    2001-01-01

    High reflectance, low intrinsic roughness and low stress multilayer systems for extreme ultraviolet (EUV) lithography comprise amorphous layers MoRu and crystalline Be layers. Reflectance greater than 70% has been demonstrated for MoRu/Be multilayers with 50 bilayer pairs. Optical throughput of MoRu/Be multilayers can be 30-40% higher than that of Mo/Be multilayer coatings. The throughput can be improved using a diffusion barrier to make sharper interfaces. A capping layer on the top surface of the multilayer improves the long-term reflectance and EUV radiation stability of the multilayer by forming a very thin native oxide that is water resistant.

  17. Demonstration of LED Street Lighting in Kansas City, MO Kinzey...

    Office of Scientific and Technical Information (OSTI)

    Street Lighting in Kansas City, MO Kinzey, Bruce R.; Royer, Michael P.; Hadjian, M.; Kauffman, Rick LED streetlighting; field illuminance measurement LED streetlighting; field...

  18. Predicting sigma formation in mo-bearing stainless steels. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Predicting sigma formation in mo-bearing stainless steels. No abstract prepared. Authors: Perricone, Matthew ; Dupont, John Neuman ; Anderson, T. D. 1 ; Robino, Charles ...

  19. DOE - Office of Legacy Management -- Rogers Iron Works Co - MO 10

    Office of Legacy Management (LM)

    Rogers Iron Works Co - MO 10 FUSRAP Considered Sites Site: ROGERS IRON WORKS CO. (MO.10 ) Elimination from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Rogers Iron Co. MO.10-1 Location: Joplin , Missouri MO.10-1 Evaluation Year: 1990 MO.10-2 MO.10-3 Site Operations: Tested C-liner crushing methods. MO.10-1 Site Disposition: Eliminated - Potential for contamination considered remote based on limited quantities of material handled MO.10-3 MO.10-4 Radioactive Materials

  20. Structure and electronic properties of Cu nanoclusters supported on Mo2C(001) and MoC(001) surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Posada-Pérez, Sergio; Viñes, Francesc; Rodríguez, José A.; Illas, Francesc

    2015-09-15

    In this study, the atomic structure and electronic properties of Cun nanoclusters (n = 4, 6, 7, and 10) supported on cubic nonpolar δ-MoC(001) and orthorhombic C- or Mo-terminated polar β-Mo2C(001) surfaces have been investigated by means of periodic density functional theory based calculations. The electronic properties have been analyzed by means of the density of states, Bader charges, and electron localization function plots. The Cu nanoparticles supported on β-Mo2C(001), either Mo- or C-terminated, tend to present a two-dimensional structure whereas a three-dimensional geometry is preferred when supported on δ-MoC(001), indicating that the Mo:C ratio and the surface polarity playmore » a key role determining the structure of supported clusters. Nevertheless, calculations also reveal important differences between the C- and Mo-terminated β-Mo2C(001) supports to the point that supported Cu particles exhibit different charge states, which opens a way to control the reactivity of these potential catalysts.« less

  1. MOED_of_the_Italian_Republic.PDF | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MOED_of_the_Italian_Republic.PDF MOED_of_the_Italian_Republic.PDF (209.56 KB) More Documents & Publications Scanned_Agreement.pdf International_Agreements_January_2001_December_2004.pdf Implementing Arrangement Between DOE and METI on R&D Cooperation on Clean Energy Technology - April 2015

  2. Irradiation induced structural change in Mo2Zr intermetallic phase

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gan, J.; Keiser, Jr., D. D.; Miller, B. D.; Eriksson, N.; Sohn, Y. H.; Kirk, M.

    2016-05-14

    The Mo2Zr phase has been identified as a major interaction product at the interface of U-10Mo and Zr. Transmission electron microscopy in-situ irradiation with Kr ions at 200 °C with doses up to 2.0E + 16 ions/cm2 was carried out to investigate the radiation stability of the Mo2Zr. The Mo2Zr undergoes a radiation-induced structural change, from a large cubic (cF24) to a small cubic (cI2), along with an estimated 11.2% volume contraction without changing its composition. The structural change begins at irradiation dose below 1.0E + 14 ions/cm2. Furthermore, the transformed Mo2Zr phase demonstrates exceptional radiation tolerance with the developmentmore » of dislocations without bubble formation.« less

  3. Fragile structural transition in Mo3Sb7

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yan, Jiaqiang -Q.; McGuire, Michael A; May, Andrew F; Parker, David S.; Mandrus, D. G.; Sales, Brian C.

    2015-01-01

    Mo3Sb7 single crystals lightly doped with Cr, Ru, or Te are studied in order to explore the interplay between superconductivity, magnetism, and the cubic-tetragonal structural transition. The structural transition at 53 K is extremely sensitive to Ru or Te substitution which introduces additional electrons, but robust against Cr substitution. We observed no sign of a structural transition in superconducting Mo2.91Ru0.09Sb7 and Mo3Sb6.975Te0.025. In contrast, 3 at.% Cr doping only slightly suppresses the structural transition to 48 K while leaving no trace of superconductivity above 1.8 K. Analysis of magnetic properties suggests that the interdimer interaction in Mo3Sb7 is near amore » critical value and essential for the structural transition. Futhermore, all dopants suppress the superconductivity of Mo3Sb7. The tetragonal structure is not necessary for superconductivity.« less

  4. Neutrino scattering off the stable even-even Mo isotopes

    SciTech Connect (OSTI)

    Balasi, K. G.; Kosmas, T. S.; Divari, P. C. [Theoretical Physics Section, University of Ioannina, GR 45110 Ioannina (Greece)

    2009-11-09

    Inelastic neutrino-nucleus reaction cross sections are studied focusing on the neutral current processes. Particularly, we investigate the angular and initial neutrino-energy dependence of the differential and integrated cross sections for low and intermediate energies of the incoming neutrino. The nuclear wave functions for the initial and final nuclear states are constructed in the context of the quasi-particle random phase approximation (QRPA) tested on the reproducibility of the low-lying energy spectrum. The results presented here refer to the isotopes Mo{sup 92}, Mo{sup 94}, Mo{sup 96}, Mo{sup 98} and Mo{sup 100}. These isotopes could play a significant role in supernova neutrino detection in addition to their use in double-beta and neutrinoless double-beta decay experiments (e.g. MOON, NEMO III)

  5. DOE - Office of Legacy Management -- United Nuclear Corp - MO 0-03

    Office of Legacy Management (LM)

    Nuclear Corp - MO 0-03 FUSRAP Considered Sites Site: UNITED NUCLEAR CORP. (MO.0-03) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Mallinckrodt Chemical Works Mallinckrodt Nuclear Corporation MO.0-03-1 MO.0-03-2 Location: Hematite , Missouri MO.0-03-1 Evaluation Year: Circa 1987 MO.0-03-3 Site Operations: Commercial fuel fabrication operation. Licensed to reclaim unirradiated enriched uranium from scrap generated in fuel fabrication and fuel

  6. Structure of Mo(VI) complexes. VI. Mo(VI) oxodiperoxo complexes with urea and some of its derivatives

    SciTech Connect (OSTI)

    Timosheva, A.P.; Kazakova, E.K.; Vul`fson, S.G.

    1995-05-20

    Procedures for synthesizing Mo(VI) oxodiperoxo complexes with urea and some of its derivatives have been described. The dipole moment of the peroxo molybdenum complex with hexametapol and urea, [MoO{sub 5}(HMPT)CO(NH{sub 2}){sub 2}], has been determined, and its structure has been proposed. 10 refs.

  7. NNSA NPO M&O Contract Placement Team receives DOE 2015 Secretary...

    National Nuclear Security Administration (NNSA)

    NPO M&O Contract Placement Team receives DOE 2015 Secretary's Achievement Award Wednesday, ... (NPO) Management and Operating (M&O) Contract Placement team recently received the ...

  8. DOE - Office of Legacy Management -- Spencer Chemical Co - MO 0-01

    Office of Legacy Management (LM)

    MO 0-01 FUSRAP Considered Sites Site: SPENCER CHEMICAL CO. (MO.0-01) Eliminated from further consideration under FUSRAP - an AEC licensed operation Designated Name: Not Designated Alternate Name: Jayhawk Works MO.0-01-1 Location: Joplin , Missouri MO.0-01-1 Evaluation Year: 1985 MO.0-01-2 Site Operations: Processed enriched uranium (UF-6) and scrap to produce primarily uranium dioxide (UO-2) under AEC licenses. MO.0-01-3 MO.0-01-4 Site Disposition: Eliminated - No Authority MO.0-01-2 Radioactive

  9. Catalytic activity in lithium-treated core–shell MoOx/MoS2 nanowires

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cummins, Dustin R.; Martinez, Ulises; Kappera, Rajesh; Voiry, Damien; Martinez-Garcia, Alejandro; Jasinski, Jacek; Kelly, Dan; Chhowalla, Manish; Mohite, Aditya D.; Sunkara, Mahendra K.; et al

    2015-09-22

    Significant interest has grown in the development of earth-abundant and efficient catalytic materials for hydrogen generation. Layered transition metal dichalcogenides present opportunities for efficient electrocatalytic systems. Here, we report the modification of 1D MoOx/MoS2 core–shell nanostructures by lithium intercalation and the corresponding changes in morphology, structure, and mechanism of H2 evolution. The 1D nanowires exhibit significant improvement in H2 evolution properties after lithiation, reducing the hydrogen evolution reaction (HER) onset potential by ~50 mV and increasing the generated current density by ~600%. The high electrochemical activity in the nanowires results from disruption of MoS2 layers in the outer shell, leadingmore » to increased activity and concentration of defect sites. This is in contrast to the typical mechanism of improved catalysis following lithium exfoliation, i.e., crystal phase transformation. As a result, these structural changes are verified by a combination of Raman and X-ray photoelectron spectroscopy (XPS).« less

  10. Mo-O bond doping and related-defect assisted enhancement of photoluminescence in monolayer MoS{sub 2}

    SciTech Connect (OSTI)

    Wei, Xiaoxu; Yu, Zhihao; Cheng, Ying; Yu, Linwei; Wang, Junzhuan Wang, Xinran; Shi, Yi; Hu, Fengrui; Wang, Xiaoyong; Xiao, Min

    2014-12-15

    In this work, we report a strong photoluminescence (PL) enhancement of monolayer MoS{sub 2} under different treatments. We find that by simple ambient annealing treatment in the range of 200?C to 400?C, the PL emission can be greatly enhanced by a factor up to two orders of magnitude. This enhancement can be attributed to two factors: first, the formation of Mo-O bonds during ambient exposure introduces an effective p-doping in the MoS{sub 2} layer; second, localized electrons formed around Mo-O bonds related defective sites where the electrons can be effectively localized with higher binding energy resulting in efficient radiative excitons recombination. Time resolved PL decay measurement showed that longer lifetime of the treated sample consistent with the higher quantum efficiency in PL. These results give more insights to understand the luminescence properties of the MoS{sub 2}.

  11. A novel three dimensional semimetallic MoS{sub 2}

    SciTech Connect (OSTI)

    Tang, Zhen-Kun; Zhang, Hui; Liu, Li-Min; Liu, Hao; Lau, Woon-Ming

    2014-05-28

    Transition metal dichalcogenides (TMDs) have many potential applications, while the performances of TMDs are generally limited by the less surface active sites and the poor electron transport efficiency. Here, a novel three-dimensional (3D) structure of molybdenum disulfide (MoS{sub 2}) with larger surface area was proposed based on first-principle calculations. 3D layered MoS{sub 2} structure contains the basal surface and joint zone between the different nanoribbons, which is thermodynamically stable at room temperature, as confirmed by first principles molecular dynamics calculations. Compared the two-dimensional layered structures, the 3D MoS{sub 2} not only owns the large surface areas but also can effectively avoid the aggregation. Interestingly, although the basal surface remains the property of the intrinsic semiconductor as the bulk MoS{sub 2}, the joint zone of 3D MoS{sub 2} exhibits semimetallic, which is derived from degenerate 3d orbitals of the Mo atoms. The high stability, large surface area, and high conductivity make 3D MoS{sub 2} have great potentials as high performance catalyst.

  12. Slow Mo Guys and Cold Spray | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slow Mo Guys and Cold Spray Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Slow Mo Guys and Cold Spray ) The Slow Mo Guys came to GE Global Research in Niskayuna to film our researchers demonstrate a process called "cold spray", in which metal powders are sprayed at high velocities to build a part or add

  13. Polystyrene/MoS{sub 2}@oleylamine nanocomposites

    SciTech Connect (OSTI)

    Altavilla, Claudia; Ciambelli, Paolo; Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore

    2014-05-15

    The effects of adding different concentrations of MoS{sub 2}@oleylamine nano particles on the thermal and mechanical properties of polystyrene (PS) nanocomposites have been investigated. X-ray diffraction and optical microscopy were used to characterize the morphology of the resulting nanocomposites. The thermal stability of the nanocomposites has been characterized by thermogravimetric analysis. It has been found that the MoS{sub 2}@oleylamine nanoparticles have a good compatibility with the PS matrix forming homogeneous dispersion even at high concentrations. The PS/MoS{sub 2}@oleylamine nanocomposites showed enhanced thermal stability in comparison with neat polystyrene.

  14. Diffusion Barrier Selection from Refractory Metals (Zr, Mo and Nb) via Interdiffusion Investigation for U-Mo RERTR Fuel Alloy

    SciTech Connect (OSTI)

    K. Huang; C. Kammerer; D. D. Keiser, Jr.; Y. H. Sohn

    2014-04-01

    U-Mo alloys are being developed as low enrichment monolithic fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. Diffusional interactions between the U-Mo fuel alloy and Al-alloy cladding within the monolithic fuel plate construct necessitate incorporation of a barrier layer. Fundamentally, a diffusion barrier candidate must have good thermal conductivity, high melting point, minimal metallurgical interaction, and good irradiation performance. Refractory metals, Zr, Mo, and Nb are considered based on their physical properties, and the diffusion behavior must be carefully examined first with U-Mo fuel alloy. Solid-to-solid U-10wt.%Mo vs. Mo, Zr, or Nb diffusion couples were assembled and annealed at 600, 700, 800, 900 and 1000 degrees C for various times. The interdiffusion microstructures and chemical composition were examined via scanning electron microscopy and electron probe microanalysis, respectively. For all three systems, the growth rate of interdiffusion zone were calculated at 1000, 900 and 800 degrees C under the assumption of parabolic growth, and calculated for lower temperature of 700, 600 and 500 degrees C according to Arrhenius relationship. The growth rate was determined to be about 10 3 times slower for Zr, 10 5 times slower for Mo and 10 6 times slower for Nb, than the growth rates reported for the interaction between the U-Mo fuel alloy and pure Al or Al-Si cladding alloys. Zr, however was selected as the barrier metal due to a concern for thermo- mechanical behavior of UMo/Nb interface observed from diffusion couples, and for ductile-to-brittle transition of Mo near room temperature.

  15. Co-Mo Electric Cooperative- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Co-Mo Electric Cooperative provides rebates to its residential and commercial members who install air source, dual fuel, and/or geothermal heat pumps, and certain energy efficient appliances. Heat...

  16. Support effects on hydrotreating activity of NiMo catalysts

    SciTech Connect (OSTI)

    Dominguez-Crespo, M.A. Arce-Estrada, E.M.; Torres-Huerta, A.M.

    2007-10-15

    The effect of the gamma alumina particle size on the catalytic activity of NiMoS{sub x} catalysts prepared by precipitation method of aluminum acetate at pH = 10 was studied. The structural characterization of the supports was measured by using XRD, pyridine FTIR-TPD and nitrogen physisorption. NiMo catalysts were characterized during the preparation steps (annealing and sulfidation) using transmission electron microscopy (TEM). Hydrogen TPR studies of the NiMo catalysts were also carried out in order to correlate their hydrogenating properties and their catalytic functionality. Catalytic tests were carried out in a pilot plant at 613, 633 and 653 K temperatures. The results showed that the rate constants of hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatizing (HDA) at 613-653 K decreased in the following order: A > B > C corresponding to the increase of NiMoS particle size associated to these catalysts.

  17. Anisotropy of heat conduction in Mo/Si multilayers

    SciTech Connect (OSTI)

    Medvedev, V. V.; Yakshin, A. E.; Kruijs, R. W. E. van de; Bijkerk, F.; Yang, J.; Schmidt, A. J.; Zoethout, E.

    2015-08-28

    This paper reports on the studies of anisotropic heat conduction phenomena in Mo/Si multilayers with individual layer thicknesses selected to be smaller than the mean free path of heat carriers. We applied the frequency-domain thermoreflectance technique to characterize the thermal conductivity tensor. While the mechanisms of the cross-plane heat conduction were studied in detail previously, here we focus on the in-plane heat conduction. To analyze the relative contribution of electron transport to the in-plane heat conduction, we applied sheet-resistance measurements. Results of Mo/Si multilayers with variable thickness of the Mo layers indicate that the net in-plane thermal conductivity depends on the microstructure of the Mo layers.

  18. Structural Insights into FeMo Cofactor Biosynthesis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a catalytic component and a specific reductase, which, in the standard system, are referred to as the MoFe protein and the Fe protein. At the active site of the...

  19. CO2ReMoVe | Open Energy Information

    Open Energy Info (EERE)

    of industrial, research and service organizations with experience in CO2 geological storage. References: CO2ReMoVe1 This article is a stub. You can help OpenEI by expanding...

  20. 9 Cr-- 1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  1. M.O. Wascko, LSU NuInt05...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O. Wascko, LSU NuInt05 26 September, 2005 MiniBooNE CC + CCQE Ratio M.O. Wascko, LSU J.R. Monroe, Columbia CC interactions Quasi-Elastic (CCQE) Inclusive Single +...

  2. Ethanol Conversion on Cyclic (MO3)3 (M = Mo, W) Clusters

    SciTech Connect (OSTI)

    Li, Zhenjun; Fang, Zongtang; Kelley, Matthew S.; Kay, Bruce D.; Rousseau, Roger J.; Dohnalek, Zdenek; Dixon, David A.

    2014-03-06

    Oxides of molybdenum and tungsten are an important class of catalytic materials with applications ranging from isomerization of alkanes and alkenes, partial oxidation of alcohols, selective reduction of nitric oxide and metathesis of alkeness.[1-10] While many studies have focused on the structure - function relationships, the nature of high catalytic activity is still being extensively investigated. There is a general agreement that the activity of supported MOx (M = W, Mo) catalysts is correlated with the presence of acidic sites, where the catalytic activity is strongly affected by the type of oxide support, delocalization of electron density, structures of tungsten oxide domains and presence of protons

  3. Microstructures in rapidly solidified Ni-Mo alloys

    SciTech Connect (OSTI)

    Jayaraman, N.; Tewari, S.N.; Hemker, K.J.; Glasgow, T.K.

    1985-01-01

    Ni-Mo alloys of compositions ranging from pure Ni to Ni-40 at % Mo were rapidly solidified by chill block melt spinning in vacuum and were examined by optical metallography, x-ray diffraction and transmission electron microscopy. Rapid solidification resulted in an extension of molybdenum solubility in nickel from 28 to 37.5 at %. A number of different phases and microstructures were seen at different depths (solidification conditions) from the quenched surface of the melt spun ribbons.

  4. DOE - Office of Legacy Management -- Medart Co - MO 09

    Office of Legacy Management (LM)

    Medart Co - MO 09 FUSRAP Considered Sites Site: MEDART CO. (MO.09 ) Eliminated from consideration under FUSRAP - Facility believed to be torn down and the original site built over Designated Name: Not Designated Alternate Name: None Location: 180 Potomoc Street , St. Louis , Missouri MA.09-4 Evaluation Year: Circa 1990 MA.09-3 Site Operations: Conducted test machining operations on uranium bar stock during the early 1950s. MA.09-2 Site Disposition: Eliminated - Potential for contamination

  5. Binding of flexible and constrained ligands to the Grb2 SH2 domain: structural effects of ligand preorganization

    SciTech Connect (OSTI)

    Clements, John H.; DeLorbe, John E.; Benfield, Aaron P.; Martin, Stephen F.

    2010-10-01

    Structures of the Grb2 SH2 domain complexed with a series of flexible and constrained replacements of the phosphotyrosine residue in tripeptides derived from Ac-pYXN (where X = V, I, E and Q) were compared to determine what, if any, structural differences arise as a result of ligand preorganization. Structures of the Grb2 SH2 domain complexed with a series of pseudopeptides containing flexible (benzyl succinate) and constrained (aryl cyclopropanedicarboxylate) replacements of the phosphotyrosine (pY) residue in tripeptides derived from Ac-pYXN-NH{sub 2} (where X = V, I, E and Q) were elucidated by X-ray crystallography. Complexes of flexible/constrained pairs having the same pY + 1 amino acid were analyzed in order to ascertain what structural differences might be attributed to constraining the phosphotyrosine replacement. In this context, a given structural dissimilarity between complexes was considered to be significant if it was greater than the corresponding difference in complexes coexisting within the same asymmetric unit. The backbone atoms of the domain generally adopt a similar conformation and orientation relative to the ligands in the complexes of each flexible/constrained pair, although there are some significant differences in the relative orientations of several loop regions, most notably in the BC loop that forms part of the binding pocket for the phosphate group in the tyrosine replacements. These variations are greater in the set of complexes of constrained ligands than in the set of complexes of flexible ligands. The constrained ligands make more direct polar contacts to the domain than their flexible counterparts, whereas the more flexible ligand of each pair makes more single-water-mediated contacts to the domain; there was no correlation between the total number of proteinligand contacts and whether the phosphotyrosine replacement of the ligand was preorganized. The observed differences in hydrophobic interactions between the complexes of each

  6. DOE - Office of Legacy Management -- St Louis University - MO 0-02

    Office of Legacy Management (LM)

    University - MO 0-02 FUSRAP Considered Sites Site: ST. LOUIS UNIVERSITY (MO.0-02) Eliminated from consideration under FUSRAP - As of 1987 the facility operated under an NRC license Designated Name: Not Designated Alternate Name: None Location: St. Louis , Missouri MO.0-02-1 Evaluation Year: 1987 MO.0-02-1 Site Operations: Performed research activities involving small quantities of radioactive materials in a controlled environment. MO.0-02-1 Site Disposition: Eliminated - No Authority - Potential

  7. Coated U(Mo) Fuel: As-Fabricated Microstructures

    SciTech Connect (OSTI)

    Emmanuel Perez; Dennis D. Keiser, Jr.; Ann Leenaers; Sven Van den Berghe; Tom Wiencek

    2014-04-01

    As part of the development of low-enriched uranium fuels, fuel plates have recently been tested in the BR-2 reactor as part of the SELENIUM experiment. These fuel plates contained fuel particles with either Si or ZrN thin film coating (up to 1 µm thickness) around the U-7Mo fuel particles. In order to best understand irradiation performance, it is important to determine the starting microstructure that can be observed in as-fabricated fuel plates. To this end, detailed microstructural characterization was performed on ZrN and Si-coated U-7Mo powder in samples taken from AA6061-clad fuel plates fabricated at 500°C. Of interest was the condition of the thin film coatings after fabrication at a relatively high temperature. Both scanning electron microscopy and transmission electron microscopy were employed. The ZrN thin film coating was observed to consist of columns comprised of very fine ZrN grains. Relatively large amounts of porosity could be found in some areas of the thin film, along with an enrichment of oxygen around each of the the ZrN columns. In the case of the pure Si thin film coating sample, a (U,Mo,Al,Si) interaction layer was observed around the U-7Mo particles. Apparently, the Si reacted with the U-7Mo and Al matrix during fuel plate fabrication at 500°C to form this layer. The microstructure of the formed layer is very similar to those that form in U-7Mo versus Al-Si alloy diffusion couples annealed at higher temperatures and as-fabricated U-7Mo dispersion fuel plates with Al-Si alloy matrix fabricated at 500°C.

  8. The cluster compound In{sub 4}Ti{sub 1.5}Mo{sub 0.5}Mo{sub 14}O{sub 26} containing Mo{sub 14} clusters and the new mono- and bi-capped trioctahedral Mo{sub 15} and Mo{sub 16} clusters: Synthesis, crystal structure, and electrical and magnetic properties

    SciTech Connect (OSTI)

    Gall, Philippe; Guizouarn, Thierry; Gougeon, Patrick

    2015-07-15

    Single crystals of the new quaternary compound In{sub 4}Ti{sub 1.5}Mo{sub 0.5}Mo{sub 14}O{sub 26} were obtained by solid state reaction. The crystal structure was determined by single-crystal X-ray diffraction. In{sub 4}Ti{sub 1.5}Mo{sub 0.5}Mo{sub 14}O{sub 26} crystallizes in the orthorhombic space group Pbca with unit-cell parameters a=9.4432(14) Å, b=11.4828(12) Å, c=20.299(4) Å and Z=4. Full-matrix least-squares refinement on F{sup 2} using 3807 independent reflections for 219 refinable parameters resulted in R{sub 1}=0.0259 and wR{sub 2}=0.0591. The crystal structure contains in addition to Mo{sub 14} clusters the first examples of mono- and bi-capped trioctahedral Mo{sub 14} i.e. Mo{sub 15} and Mo{sub 16} clusters. The oxygen framework derives from a stacking along the a direction of close-packed layers with sequence (…ABAC…). The Mo–Mo distances range between 2.6938(5) and 2.8420(6) Å and the Mo–O distances between 1.879(5) and 2.250(3) Å, as usually observed in molybdenum oxide clusters. The indium atoms form In{sub 4}{sup 6+} bent chains with In–In distances of 2.6682(5) and 2.6622(8) Å and the Ti atoms are in highly distorted octahedral sites of oxygen atoms with Ti–O distances ranging between 1.865(4) and 2.161(4) Å. Magnetic susceptibility measurements confirm the presence of Ti{sup 4+} cations and the absence of localized moments on the Mo network. Electrical resistivity measurements on a single crystal of In{sub 4}Ti{sub 1.5}Mo{sub 0.5}Mo{sub 14}O{sub 26} show a semimetallic behavior. - Graphical abstract: We present here the synthesis, the crystal structure, and the electrical and magnetic properties of the new compound In{sub 4}Ti{sub 1.5}Mo{sub 0.5}Mo{sub 14}O{sub 26} in which Mo{sub 14} clusters coexist statistically with mono- and bi-capped trioctahedral Mo{sub 14} that is Mo{sub 15} and Mo{sub 16} clusters. - Highlights: • Single crystals of In{sub 4}Ti{sub 1.5}Mo{sub 0.5}Mo{sub 14}O{sub 26} were obtained by solid state

  9. van der Waals forces and confinement in carbon nanopores: Interaction between CH4, COOH, NH3, OH, SH and single-walled carbon nanotubes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weck, Philippe F.; Kim, Eunja; Wang, Yifeng

    2016-04-13

    Interactions between CH4, COOH, NH3, OH, SH and armchair (n,n)(n=4,7,14) and zigzag (n,0)(n=7,12,25) single-walled carbon nanotubes (SWCNTs) have been systematically investigated within the framework of dispersion-corrected density functional theory (DFT-D2). Endohedral and exohedral molecular adsorption on SWCNT walls is energetically unfavorable or weak, despite the use of C6/r6 pairwise London-dispersion corrections. The effects of pore size and chirality on the molecule/SWCNTs interaction were also assessed. Furthermore, chemisorption of COOH, NH3, OH and SH at SWCNT edge sites was examined using a H-capped (7,0) SWCNT fragment and its impact on electrophilic, nucleophilic and radical attacks was predicted by means of Fukuimore » functions.« less

  10. Multiphonon resonant Raman scattering in MoS{sub 2}

    SciTech Connect (OSTI)

    Gołasa, K. Grzeszczyk, M.; Wysmołek, A.; Babiński, A.; Leszczyński, P.; Faugeras, C.; Nicolet, A. A. L.; Potemski, M.

    2014-03-03

    Optical emission spectrum of a resonantly (λ = 632.8 nm) excited molybdenum disulfide (MoS{sub 2}) is studied at liquid helium temperature. More than 20 peaks in the energy range spanning up to 1400 cm{sup −1} from the laser line, which are related to multiphonon resonant Raman scattering processes, are observed. The attribution of the observed lines involving basic lattice vibrational modes of MoS{sub 2} and both the longitudinal (LA(M)) and the transverse (TA(M) and/or ZA(M)) acoustic phonons from the vicinity of the high-symmetry M point of the MoS{sub 2} Brillouin zone is proposed.

  11. Ligand Bridging-Angle-Driven Assembly of Molecular Architectures Based on Quadruply Bonded Mo-Mo Dimers

    SciTech Connect (OSTI)

    Li, Jian-Rong; Yakovenko, Andrey A; Lu, Weigang; Timmons, Daren J; Zhuang, Wenjuan; Yuan, Daqiang; Zhou, Hong-Cai

    2010-12-15

    A systematic exploration of the assembly of Mo?(O?C-)?-based metalorganic molecular architectures structurally controlled by the bridging angles of rigid organic linkers has been performed. Twelve bridging dicarboxylate ligands were designed to be of different sizes with bridging angles of 0, 60, 90, and 120 while incorporating a variety of nonbridging functional groups, and these ligands were used as linkers. These dicarboxylate linkers assemble with quadruply bonded MoMo clusters acting as nodes to give 13 molecular architectures, termed metalorganic polygons/polyhedra with metal cluster node arrangements of a linear shape, triangle, octahedron, and cuboctahedron/anti-cuboctahedron. The syntheses of these complexes have been optimized and their structures determined by single-crystal X-ray diffraction. The results have shown that the shape and size of the resulting molecular architecture can be controlled by tuning the bridging angle and size of the linker, respectively. Functionalization of the linker can adjust the solubility of the ensuing molecular assembly but has little or no effect on the geometry of the product. Preliminary gas adsorption, spectroscopic, and electrochemical properties of selected members were also studied. The present work is trying to enrich metal-containing supramolecular chemistry through the inclusion of well-characterized quadruply bonded MoMo units into the structures, which can widen the prospect of additional electronic functionality, thereby leading to novel properties.

  12. U-Mo Plate Blister Anneal Interim Report

    SciTech Connect (OSTI)

    Francine J. Rice; Daniel M. Wachs; Adam B. Robinson; Dennis D. Keiser Jr.; Jan-Fong Jue; Danielle M. Perez; Ross Finlay

    2010-10-01

    Blister thresholds in fuel elements have been a longstanding performance parameter for fuel elements of all types. This behavior has yet to be fully defined for the RERTR U-Mo fuel types. Blister anneal studies that began in 2007 have been expanded to include plates from more recent RERTR experiments. Preliminary data presented in this report encompasses the early generations of the U-Mo fuel systems and the most recent but still developing fuel system. Included is an overview of relevant dispersion fuel systems for the purposes of comparison.

  13. LICENSE HISTORY MO.8 Petrolite Corporation, St. Louis

    Office of Legacy Management (LM)

    LICENSE HISTORY MO.8 Petrolite Corporation, St. Louis 07,16/93 l See attached Document and Pile Sumnary for MO.8 l License History: l 24-10452-01, 30-051175, 08/13/79. Loose H-3, I-131, P-32. l 24-10452-1, 10/30/64. K66 R. R. Annand et al Multiple. . 70-621, 12-15-61, SNM license for 0.5 kg. of U-235, 93% enriched as a fuel loading and star-up ~curce for Webster Groves, Missouri reactor. l Discussion: Historical documents for this site are limited. The only information available on work done

  14. Letter on the Office of Science M&O Contract Study and the Univerisity...

    Office of Environmental Management (EM)

    of Science M&O Contract Study and the Univerisity of Minnesota 's Institute for Mathematics and its Applications Letter on the Office of Science M&O Contract Study and the ...

  15. Policy Flash 2013-71 AL 2013-11 NON M&O CONTRACTOR BUSINESS SYSTEMS...

    Energy Savers [EERE]

    Policy Flash 2013-71 AL 2013-11 NON M&O CONTRACTOR BUSINESS SYSTEMS CLAUSES FOR SECTION H Policy Flash 2013-71 AL 2013-11 NON M&O CONTRACTOR BUSINESS SYSTEMS CLAUSES FOR SECTION H...

  16. Domestic production of medical isotope Mo-99 moves a step closer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 moves a step closer Irradiated uranium fuel has been recycled and reused for molybdenum-99 ...

  17. Corrosion report for the U-Mo fuel concept

    SciTech Connect (OSTI)

    Henager, Jr., Charles H.; Bennett, Wendy D.; Doherty, Ann L.; Fuller, E. S.; Hardy, John S.; Omberg, Ronald P.

    2014-08-28

    The Fuel Cycle Research and Development (FCRD) program of the Office of Nuclear Energy (NE) has implemented a program to develop a Uranium-Molybdenum (U-Mo) metal fuel for Light Water Reactors (LWR)s. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties, which includes high thermal conductivity for less stored heat energy. With sufficient development, it may be able to provide the Light Water industry with a melt-resistant accident tolerant fuel with improved safety response. However, the corrosion of this fuel in reactor water environments needs to be further explored and optimized by additional alloying. The Pacific Northwest National Laboratory has been tasked with performing ex-reactor corrosion testing to characterize the performance of U-Mo fuel. This report documents the results of the effort to characterize and develop the U-Mo metal fuel concept for LWRs with regard to corrosion testing. The results of a simple screening test in buffered water at 30°C using surface alloyed U-10Mo is documented and discussed. The screening test was used to guide the selection of several potential alloy improvements that were found and are recommended for further testing in autoclaves to simulate PWR water conditions more closely.

  18. Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ye, Gonglan; Gong, Yongji; Lin, Junhao; Li, Bo; He, Yongmin; Pantelides, Sokrates T.; Zhou, Wu; Vajtai, Robert; Ajayan, Pulickel M.

    2016-01-13

    MoS2 is a promising, low-cost material for electrochemical hydrogen production due to its high activity and stability during the reaction. Our work represents an easy method to increase the hydrogen production in electrochemical reaction of MoS2 via defect engineering, and helps to understand the catalytic properties of MoS2.

  19. Tuning magnetism of monolayer MoS{sub 2} by doping vacancy and applying strain

    SciTech Connect (OSTI)

    Zheng, Huiling; Yang, Baishun; Han, Ruilin; Du, Xiaobo; Yan, Yu; Wang, Dingdi

    2014-03-31

    In view of important role of inducing and manipulating the magnetism in two-dimensional materials for the development of low-dimensional spintronic devices, the influences of strain on electronic structure and magnetic properties of commonly observed vacancies doped monolayer MoS{sub 2} are investigated using first-principles calculations. It is shown that unstrained V{sub S}, V{sub S2}, and V{sub MoS3} doped monolayer MoS{sub 2} systems are nonmagnetic, while the ground state of unstrained V{sub MoS6} doped system is magnetic and the magnetic moment is contributed mainly by six Mo atoms around V{sub MoS6}. In particular, tensile strain can induce magnetic moments in V{sub S}, V{sub S2}, and V{sub MoS3} doped monolayer MoS{sub 2} due to the breaking of Mo–Mo metallic bonds around the vacancies, while the magnetization induced by V{sub MoS6} can be effectively manipulated by equibiaxial strain due to the change of Mo–Mo metallic bonds around V{sub MoS6} under strains.

  20. Structure and electronic properties of Cu nanoclusters supported on Mo{sub 2}C(001) and MoC(001) surfaces

    SciTech Connect (OSTI)

    Posada-Pérez, Sergio; Viñes, Francesc; Illas, Francesc

    2015-09-21

    The atomic structure and electronic properties of Cu{sub n} nanoclusters (n = 4, 6, 7, and 10) supported on cubic nonpolar δ-MoC(001) and orthorhombic C- or Mo-terminated polar β-Mo{sub 2} C(001) surfaces have been investigated by means of periodic density functional theory based calculations. The electronic properties have been analyzed by means of the density of states, Bader charges, and electron localization function plots. The Cu nanoparticles supported on β-Mo{sub 2} C(001), either Mo- or C-terminated, tend to present a two-dimensional structure whereas a three-dimensional geometry is preferred when supported on δ-MoC(001), indicating that the Mo:C ratio and the surface polarity play a key role determining the structure of supported clusters. Nevertheless, calculations also reveal important differences between the C- and Mo-terminated β-Mo{sub 2} C(001) supports to the point that supported Cu particles exhibit different charge states, which opens a way to control the reactivity of these potential catalysts.

  1. Structure and electronic properties of Cu nanoclusters supported on Mo2C(001) and MoC(001) surfaces

    SciTech Connect (OSTI)

    Posada-Pérez, Sergio; Viñes, Francesc; Rodríguez, José A.; Illas, Francesc

    2015-09-15

    In this study, the atomic structure and electronic properties of Cun nanoclusters (n = 4, 6, 7, and 10) supported on cubic nonpolar δ-MoC(001) and orthorhombic C- or Mo-terminated polar β-Mo2C(001) surfaces have been investigated by means of periodic density functional theory based calculations. The electronic properties have been analyzed by means of the density of states, Bader charges, and electron localization function plots. The Cu nanoparticles supported on β-Mo2C(001), either Mo- or C-terminated, tend to present a two-dimensional structure whereas a three-dimensional geometry is preferred when supported on δ-MoC(001), indicating that the Mo:C ratio and the surface polarity play a key role determining the structure of supported clusters. Nevertheless, calculations also reveal important differences between the C- and Mo-terminated β-Mo2C(001) supports to the point that supported Cu particles exhibit different charge states, which opens a way to control the reactivity of these potential catalysts.

  2. Thermal transport properties of metal/MoS{sub 2} interfaces from first principles

    SciTech Connect (OSTI)

    Mao, Rui; Kong, Byoung Don; Kim, Ki Wook, E-mail: kwk@ncsu.edu [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-7911 (United States)

    2014-07-21

    Thermal transport properties at the metal/MoS{sub 2} interfaces are analyzed by using an atomistic phonon transport model based on the Landauer formalism and first-principles calculations. The considered structures include chemisorbed Sc(0001)/MoS{sub 2} and Ru(0001)/MoS{sub 2}, physisorbed Au(111)/MoS{sub 2}, as well as Pd(111)/MoS{sub 2} with intermediate characteristics. Calculated results illustrate a distinctive dependence of thermal transfer on the details of interfacial microstructures. More specifically, the chemisorbed case with a stronger bonding exhibits a generally smaller interfacial thermal resistance than the physisorbed. Comparison between metal/MoS{sub 2} and metal/graphene systems suggests that metal/MoS{sub 2} is significantly more resistive. Further examination of lattice dynamics identifies the presence of multiple distinct atomic planes and bonding patterns at the interface as the key origins of the observed large thermal resistance.

  3. Undercooled and rapidly quenched Ni-Mo alloys

    SciTech Connect (OSTI)

    Tewari, S.N.; Glasgow, T.K.

    1986-01-01

    Hypoeutectic, eutectic, and hypereutectic nickel-molybdenum alloys were rapidly solidified by both bulk undercooling and melt spinning techniques. Alloys were undercooled in both electromagnetic levitation and differential thermal analysis equipment. The rate of recalescence depended upon the degree of initial undercooling and the nature (faceted or nonfaceted) of the primary nucleating phase. Alloy melts were observed to undercool more in the presence of primary Beta (NiMo intermetallic) phase than in gamma (fcc solid solution) phase. Melt spinning resulted in an extension of molybdenum solid solubility in gamma nickel, from 28 to 37.5 at % Mo. Although the microstructures observed by undercooling and melt spinning were similar the microsegregation pattern across the gamma dendries was different. The range of microstructures evolved was analyzed in terms of the nature of the primary phase to nucleate, its subsequent dendritic growth, coarsening and fragmentation, and final solidification of interfenderitic liquid.

  4. MoS2 Heterojunctions by Thickness Modulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tosun, Mahmut; Fu, Deyi; Desai, Sujay B.; Ko, Changhyun; Seuk Kang, Jeong; Lien, Der-Hsien; Najmzadeh, Mohammad; Tongay, Sefaattin; Wu, Junqiao; Javey, Ali

    2015-06-30

    In this work, we report lateral heterojunction formation in as-exfoliated MoS2 flakes by thickness modulation. Kelvin probe force microscopy is used to map the surface potential at the monolayer-multilayer heterojunction, and consequently the conduction band offset is extracted. Scanning photocurrent microscopy is performed to investigate the spatial photocurrent response along the length of the device including the source and the drain contacts as well as the monolayer-multilayer junction. The peak photocurrent is measured at the monolayer-multilayer interface, which is attributed to the formation of a type-I heterojunction. Finally, the work presents experimental and theoretical understanding of the band alignment andmore » photoresponse of thickness modulated MoS2 junctions with important implications for exploring novel optoelectronic devices.« less

  5. Development of uranium metal targets for {sup 99}Mo production

    SciTech Connect (OSTI)

    Wiencek, T.C.; Hofman, G.L.

    1993-10-01

    A substantial amount of high enriched uranium (HEU) is used for the production of medical-grade {sup 99}Mo. Promising methods of producing irradiation targets are being developed and may lead to the reduction or elimination of this HEU use. To substitute low enriched uranium (LEU) for HEU in the production of {sup 99}Mo, the target material may be changed to uranium metal foil. Methods of fabrication are being developed to simplify assembly and disassembly of the targets. Removal of the uranium foil after irradiation without dissolution of the cladding is a primary goal in order to reduce the amount of liquid radioactive waste material produced in the process. Proof-of-concept targets have been fabricated. Destructive testing indicates that acceptable contact between the uranium foil and the cladding can be achieved. Thermal annealing tests, which simulate the cladding/uranium diffusion conditions during irradiation, are underway. Plans are being made to irradiate test targets.

  6. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    SciTech Connect (OSTI)

    M.K. Meyer; J. Gan; J.-F. Jue; D.D. Keiser; E. Perez; A. Robinson; D.M. Wachs; N. Woolstenhulme; G.L. Hofman; Y.-S. Kim

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  7. Single Phase Melt Processed Powellite (Ba,Ca) MoO{sub 4} For The Immobilization Of Mo-Rich Nuclear Waste

    SciTech Connect (OSTI)

    Brinkman, Kyle; Marra, James; Fox, Kevin; Reppert, Jason; Crum, Jarrod; Tang, Ming

    2012-09-17

    Crystalline and glass composite materials are currently being investigated for the immobilization of combined High Level Waste (HLW) streams resulting from potential commercial fuel reprocessing scenarios. Several of these potential waste streams contain elevated levels of transition metal elements such as molybdenum (Mo). Molybdenum has limited solubility in typical silicate glasses used for nuclear waste immobilization. Under certain chemical and controlled cooling conditions, a powellite (Ba,Ca)MoO{sub 4} crystalline structure can be formed by reaction with alkaline earth elements. In this study, single phase BaMoO{sub 4} and CaMoO{sub 4} were formed from carbonate and oxide precursors demonstrating the viability of Mo incorporation into glass, crystalline or glass composite materials by a melt and crystallization process. X-ray diffraction, photoluminescence, and Raman spectroscopy indicated a long range ordered crystalline structure. In-situ electron irradiation studies indicated that both CaMoO{sub 4} and BaMoO{sub 4} powellite phases exhibit radiation stability up to 1000 years at anticipated doses with a crystalline to amorphous transition observed after 1 X 10{sup 13} Gy. Aqueous durability determined from product consistency tests (PCT) showed low normalized release rates for Ba, Ca, and Mo (<0.05 g/m{sup 2}).

  8. Single phase melt processed powellite (Ba,Ca)MoO4 for the immobilization of Mo-rich nuclear waste

    SciTech Connect (OSTI)

    Brinkman, Kyle; Fox, Kevin M.; Marra, James C.; Reppert, Jason; Crum, Jarrod V.; Tang, Ming

    2012-10-02

    Crystalline and glass composite materials are currently being investigated for the immobilization of combined High Level Waste (HLW) streams resulting from potential commercial fuel reprocessing scenarios. Several of these potential waste streams contain elevated levels of transition metal elements such as molybdenum (Mo). Molybdenum has limited solubility in typical silicate glasses used for nuclear waste immobilization. Under certain chemical and controlled cooling conditions, a powellite (Ba,Ca)MoO4 crystalline structure can be formed by reaction with alkaline earth elements. In this study, single phase BaMoO4 and CaMoO4 were formed from carbonate and oxide precursors demonstrating the viability of Mo incorporation into glass, crystalline or glass composite materials by a melt and crystallization process. X-ray diffraction, photoluminescence, and Raman spectroscopy indicated a long range ordered crystalline structure. In situ electron irradiation studies indicated that both CaMoO4 and BaMoO4 powellite phases exhibit radiation stability up to 1000 years at anticipated doses with a crystalline to amorphous transition observed after 1 x 1013 Gy. Aqueous durability determined from product consistency tests (PCT) showed low normalized release rates for Ba, Ca, and Mo (<0.05 g/m2).

  9. Design and experimental activities supporting commercial U.S. electron accelerator production of Mo-99

    SciTech Connect (OSTI)

    Dale, Gregory E.; Woloshun, Keith A.; Kelsey IV, Charles T.; Olivas, Eric R.; Holloway, Michael A.; Hurtle, Ken P.; Romero, Frank P.; Dalmas, Dale A.; Chemerisov, Sergey D.; Vandegrift, George F.; Tkac, Peter; Makarashvili, Vakho; Jonah, Charles D.; Harvey, James T.

    2013-04-19

    {sup 99m}Tc, the daughter isotope of {sup 99}Mo, is the most commonly used radioisotope for nuclear medicine in the United States. Under the direction of the National Nuclear Security Administration (NNSA), Los Alamos National Laboratory (LANL) and Argonne National Laboratory (ANL) are partnering with North Star Medical Technologies to demonstrate the viability of large-scale {sup 99}Mo production using electron accelerators. In this process, {sup 99}Mo is produced in an enriched {sup 100}Mo target through the {sup 100}Mo({gamma},n){sup 99}Mo reaction. Five experiments have been performed to date at ANL to demonstrate this process. This paper reviews the current status of these activities, specifically the design and performance of the helium gas target cooling system.

  10. Microsoft Word - chapter FeCrMo_ver2.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference on Hydrogen Compatibility of Materials Low-Alloy Ferritic Steels: Tempered Fe-Cr-Mo Alloys (code 1211) Prepared by: B.P. Somerday, Sandia National Laboratories Editors C. San Marchi B.P. Somerday Sandia National Laboratories This report may be updated and revised periodically in response to the needs of the technical community; up-to-date versions can be requested from the editors at the address given below or downloaded at http://www.ca.sandia.gov/matlsTechRef/ . The success of this

  11. Characterization of modified 9 Cr-1 Mo steel extruded pipe

    SciTech Connect (OSTI)

    Sikka, V.K.; Hart, M.D.

    1985-04-01

    The fabrication of hot-extruded pipe of modified 9 Cr-1 Mo steel at Cameron Iron Works is described. The report also deals with the tempering response; tensile, Charpy impact, and creep properties; and microstructure of the hot-extruded pipe. The tensile properties of the pipe are compared with the average and average -1.65 standard error of estimate curves for various product forms of several commercial heats of this alloy. The creep-rupture properties are compared with the average curve for various product forms of the commercial heats.

  12. Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility

    SciTech Connect (OSTI)

    Washington Division of URS

    2008-07-01

    This report provides the initial “first look” of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.

  13. Recovery of Mo/Si multilayer coated optical substrates

    DOE Patents [OSTI]

    Baker, S.L.; Vernon, S.P.; Stearns, D.G.

    1997-12-16

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO{sub 2} overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates. 5 figs.

  14. Recovery of Mo/Si multilayer coated optical substrates

    DOE Patents [OSTI]

    Baker, Sherry L.; Vernon, Stephen P.; Stearns, Daniel G.

    1997-12-16

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO.sub.2 overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.

  15. Acquisition Guide Chapter 7.3:Acquisition Planning in the M&O Environment

    Broader source: Energy.gov [DOE]

    Acquisition Letter 2013-03, Acquisition Planning Considerations for M&O Contracts, has been moved to the Acquisition Guide as chapter (7.3).

  16. First-principles characterization of potassium intercalation in the hexagonal 2H-MoS2

    SciTech Connect (OSTI)

    Andersen, Amity; Kathmann, Shawn M.; Lilga, Michael A.; Albrecht, Karl O.; Hallen, Richard T.; Mei, Donghai

    2012-01-12

    Periodic density functional theory calculations were performed to study the structural and electronic properties of potassium intercalated into hexagonal MoS{sub 2} (2H-MoS{sub 2}). Metallic potassium (K) atoms are incrementally loaded in the hexagonal sites of the interstitial spaces between MoS2 sheets of the 2H-MoS{sub 2} bulk structure generating 2H-KxMoS2 (0.125 {<=} x {<=} 1.0) structures. To accommodate the potassium atoms, the interstitial spacing c parameter in the 2H-MoS{sub 2} bulk expands from 12.816 {angstrom} in 2H-MoS{sub 2} to 16.086 {angstrom} in 2H-K{sub 0.125}MoS{sub 2}. The second lowest potassium loading concentration (K{sub 0.25}MoS{sub 2}) results in the largest interstitial spacing expansion (to c = 16.726 {angstrom}). Our calculations show that there is a small gradual contraction of the interstitial spacing as the potassium loading increases with c = 14.839 {angstrom} for KMoS{sub 2}. This interstitial contraction is correlated with an in-plane expansion of the MoS{sub 2} sheets, which is in good agreement with experimental X-ray diffraction (XRD) measurements. The electronic analysis shows that potassium readily donates its 4s electron to the conduction band of the 2H-K{sub x}MoS{sub 2}, and is largely ionic in character. As a result of the electron donation, the 2H-K{sub x}MoS{sub 2} system changes from a semiconductor to a more metallic system with increasing potassium intercalation. For loadings 0.25 {<=} x {<=} 0.625, triangular Mo-Mo-Mo moieties are prominent and tend to form rhombitrihexagonal motifs. Intercalation of H{sub 2}O molecules that solvate the K atoms is likely to occur in catalytic conditions. The inclusion of two H{sub 2}O molecules per K atom in the K{sub 0.25}MoS{sub 2} structure shows good agreement with XRD measurements.

  17. Synthesis of molybdenum disulfide (MoS{sub 2}) for lithium ion battery applications

    SciTech Connect (OSTI)

    Feng Chuanqi; Ma Jun; Li Hua; Zeng Rong; Guo Zaiping; Liu Huakun

    2009-09-15

    This paper reports the use of a rheological phase reaction method for preparing MoS{sub 2} nanoflakes. The characterization by powder X-ray diffraction indicated that MoS{sub 2} had been formed. High resolution electron microscopy observation revealed that the as-prepared MoS{sub 2} nanoflakes had started to curve and partly form MoS{sub 2} nanotubes. The lithium intercalation/de-intercalation behavior of as-prepared MoS{sub 2} nanoflake electrode was also investigated. It was found that the MoS{sub 2} nanoflake electrode exhibited higher specific capacity, with very high cycling stability, compared to MoS{sub 2} nanoparticle electrode. The possible reasons for the high electrochemical performance of the nanoflakes electrodes are also discussed. The outstanding electrochemical properties of MoS{sub 2} nanoflakes obtained by this method make it possible for MoS{sub 2} to be used as a promising anode material.

  18. Conceptual design of a new homogeneous reactor for medical radioisotope Mo-99/Tc-99m production

    SciTech Connect (OSTI)

    Liem, Peng Hong; Tran, Hoai Nam; Sembiring, Tagor Malem; Arbie, Bakri

    2014-09-30

    To partly solve the global and regional shortages of Mo-99 supply, a conceptual design of a nitrate-fuel-solution based homogeneous reactor dedicated for Mo-99/Tc-99m medical radioisotope production is proposed. The modified LEU Cintichem process for Mo-99 extraction which has been licensed and demonstrated commercially for decades by BATAN is taken into account as a key design consideration. The design characteristics and main parameters are identified and the advantageous aspects are shown by comparing with the BATAN's existing Mo-99 supply chain which uses a heterogeneous reactor (RSG GAS multipurpose reactor)

  19. Experimental activities supporting commercial U.S. accelerator production of 99-Mo

    SciTech Connect (OSTI)

    Dale, Gregory E; Chemerisov, Sergey D; Vandegrift, George F

    2010-01-01

    {sup 99m}Tc, the daughter product of {sup 99}Mo, is the most commonly used radioisotope for nuclear medicine in the U.S. Experiments are being performed at Los Alamos National Laboratory and Argonne National Laboratory to demonstrate production of {sup 99}Mo using accelerators. The {sup 100}Mo({gamma},n){sup 99}Mo reaction in an enriched {sup 100}Mo target is currently under investigation. Three scaled low-power production experiments using a 20-MeV electron linac at Argonne have been performed to date. Two of these experiments used natural Mo targets and produced a total of 613 {mu}C of {sup 99}Mo. The third experiment used an enriched {sup 100}Mo target and produced 10.5 mCi of {sup 99}Mo. Following irradiation the targets were dissolved and the low specific activity solution was processed through an ARSII generator from NorthStar Medical Radioisotopes. Yields of {sup 99m}Tc >95% have been observed.

  20. Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Evolution Reaction This content will become publicly available on January 13, 2017 Prev Next Title: Defects Engineered Monolayer MoS2 for Improved Hydrogen ...

  1. Mechanically Activated Combustion Synthesis of MoSi2-Based Composites

    SciTech Connect (OSTI)

    Shafirovich, Evgeny

    2015-09-30

    The thermal efficiency of gas-turbine power plants could be dramatically increased by the development of new structural materials based on molybdenum silicides and borosilicides, which can operate at temperatures higher than 1300 °C with no need for cooling. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. One approach is based on the fabrication of MoSi2-Mo5Si3 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of Mo5Si3. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicate surface layer. In particular, materials based on Mo5SiB2 phase are promising materials that offer favorable combinations of high temperature mechanical properties and oxidation resistance. However, the synthesis of Mo-Si-B multi-phase alloys is difficult because of their extremely high melting temperatures. Mechanical alloying has been considered as a promising method, but it requires long milling times, leading to large energy consumption and contamination of the product by grinding media. In the reported work, MoSi2-Mo5Si3 composites and several materials based on Mo5SiB2 phase have been obtained by mechanically activated self-propagating high-temperature synthesis (MASHS). Short-term milling of Mo/Si mixture in a planetary mill has enabled a self-sustained propagation of the combustion front over the mixture pellet, leading to the formation of MoSi2-T1 composites. Combustion of Mo/Si/B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of MoB, TiC, or TiB2. Upon ignition, Mo/Si/B and Mo/Si/B/Ti mixtures exhibited spin combustion, but the products were porous, contained undesired secondary phases, and had low oxidation resistance. It has been shown that use of

  2. Evaluation of Mo catalyst precursors for hydrotreating coal derived liquids

    SciTech Connect (OSTI)

    Anderson, R.K.; Gibb, D.R.; Kimber, G.M.; Derbyshire, F.J.

    1997-04-01

    Numerous studies have examined the use of dispersed catalysts for promoting the dissolution of coal and upgrading high-boiling and residual liquids. Catalysts have been added in various forms, including oil soluble organometallics and carbonyls, with industrial interest for application to a spectrum of residual feedstocks, and demonstration in coal liquefaction at the pilot plant scale. Dispersed catalysts offer certain advantages over supported catalysts for hydroprocessing such feedstocks. Because of their large molecular size, many of the feed constituents cannot access the internal pore structure of supported catalysts, and hence upgrading must proceed by an indirect process, probably involving H-transfer via lower molecular weight species. Another major deficiency of supported catalysts is their susceptibility to deactivation by reactions which cause the deposition of carbon and metals. Dispersed catalysts can overcome the first of these obstacles and may be less susceptible to deactivation. At the same time, there are also difficulties in the utilization of dispersed catalysts. These include: attaining and maintaining adequate dispersion; and converting the precursor to the active phase. Moreover, the effective catalyst metals, such as Mo, are expensive and their application is only economically viable if they can be used at very low concentrations or efficiently recycled. In direct coal liquefaction, the presence of mineral matter and undissolved coal in the products of coal solubilization mean that a solids separation step is necessary and, inevitably, catalyst will be removed with the reject stream. This program studied the effectiveness of dispersed Mo catalysts for hydroprocessing solids-free residual coal liquids.

  3. Characterization of U-Mo Foils for AFIP-7

    SciTech Connect (OSTI)

    Edwards, Danny J.; Ermi, Ruby M.; Schemer-Kohrn, Alan L.; Overman, Nicole R.; Henager, Charles H.; Burkes, Douglas; Senor, David J.

    2012-11-07

    Twelve AFIP in-process foil samples, fabricated by either Y-12 or LANL, were shipped from LANL to PNNL for potential characterization using optical and scanning electron microscopy techniques. Of these twelve, nine different conditions were examined to one degree or another using both techniques. For this report a complete description of the results are provided for one archive foil from each source of material, and one unirradiated piece of a foil of each source that was irradiated in the Advanced Test Reactor. Additional data from two other LANL conditions are summarized in very brief form in an appendix. The characterization revealed that all four characterized conditions contained a cold worked microstructure to different degrees. The Y-12 foils exhibited a higher degree of cold working compared to the LANL foils, as evidenced by the highly elongated and obscure U-Mo grain structure present in each foil. The longitudinal orientations for both of the Y-12 foils possesses a highly laminar appearance with such a distorted grain structure that it was very difficult to even offer a range of grain sizes. The U-Mo grain structure of the LANL foils, by comparison, consisted of a more easily discernible grain structure with a mix of equiaxed and elongated grains. Both materials have an inhomogenous grain structure in that all of the characterized foils possess abnormally coarse grains.

  4. New Generation of MoSx Based Solid Lubricant Coatings: Recent Developments and Applications

    SciTech Connect (OSTI)

    Haider, Julfikar; Hashmi, M. S. J.

    2011-01-17

    In recent times, there is a growing interest in applying Molybdenum disulphide (MoS{sub x}) solid lubricant coatings on components to improve the tribological performance (i.e. lower friction coefficient and wear rate). The tribological performance of MoS{sub x} coating is strongly dependent on coating properties and tribological environment. MoS{sub x} coatings are highly successful in certain applications such as in space/vacuum technology, but its effectiveness is questioned in other terrestrial applications such as in cutting tool industry due to its lower hardness and poor oxidation resistance leading to shorter life. In order to circumvent this drawback, the paper identifies that current research is being concentrated on developing MoS{sub x} based coatings using three different approaches: (1) Metal or compound addition in MoS{sub x} coating (2)MoS{sub x} layer on hard coating and (3)MoS{sub x} addition in hard coating matrix. Although the primary objective is same in all three cases, the third approach is considered to be more effective in improving the tribological properties of the coating. Finally, the potential applications of MoS{sub x} based coatings in different industrial sectors have been briefly outlined.

  5. Broadband ultra-high transmission of terahertz radiation through monolayer MoS{sub 2}

    SciTech Connect (OSTI)

    Deng, Xue-Yong; Deng, Xin-Hua; Su, Fu-Hai; Liu, Nian-Hua; Liu, Jiang-Tao

    2015-12-14

    In this study, the terahertz (THz) absorption and transmission of monolayer MoS{sub 2} with different carrier concentrations were investigated theoretically. The calculation shows that the THz absorption of monolayer MoS{sub 2} is very low even under high carrier concentrations and large incident angles. The sum of reflection and absorption losses of monolayer MoS{sub 2} is lower than that of graphene by one to three orders of magnitude. The transmission of monolayer MoS{sub 2} is higher than that of two-dimensional electron gases in traditional GaAs and InAs. The field-effect tube structure formed by monolayer MoS{sub 2}-insulation-layer-graphene is also studied. The THz absorption of graphene can reach saturation under low voltage by tuning the voltage between MoS{sub 2} and graphene layers in the structure. The maximum THz absorption of monolayer MoS{sub 2} is approximately 5%. Thus, monolayer MoS{sub 2} is a promising candidate for THz transparent electrodes.

  6. A Solution-Based Approach for Mo-99 Production: Considerations for Nitrate versus Sulfate Media

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Youker, Amanda J.; Chemerisov, Sergey D.; Kalensky, Michael; Tkac, Peter; Bowers, Delbert L.; Vandegrift, George F.

    2013-01-01

    Molybdenum-99 is the parent of Technetium-99m, which is used in nearly 80% of all nuclear medicine procedures. The medical community has been plagued by Mo-99 shortages due to aging reactors, such as the NRU (National Research Universal) reactor in Canada. There are currently no US producers of Mo-99, and NRU is scheduled for shutdown in 2016, which means that another Mo-99 shortage is imminent unless a potential domestic Mo-99 producer fills the void. Argonne National Laboratory is assisting two potential domestic suppliers of Mo-99 by examining the effects of a uranyl nitrate versus a uranyl sulfate target solution configuration onmore » Mo-99 production. Uranyl nitrate solutions are easier to prepare and do not generate detectable amounts of peroxide upon irradiation, but a high radiation field can lead to a large increase in pH, which can lead to the precipitation of fission products and uranyl hydroxides. Uranyl sulfate solutions are more difficult to prepare, and enough peroxide is generated during irradiation to cause precipitation of uranyl peroxide, but this can be prevented by adding a catalyst to the solution. A titania sorbent can be used to recover Mo-99 from a highly concentrated uranyl nitrate or uranyl sulfate solution; however, different approaches must be taken to prevent precipitation during Mo-99 production.« less

  7. Thermal properties of U–Mo alloys irradiated to moderate burnup and power

    SciTech Connect (OSTI)

    Burkes, Douglas E.; Casella, Andrew M.; Casella, Amanda J.; Buck, Edgar C.; Pool, Karl N.; MacFarlan, Paul J.; Edwards, Matthew K.; Smith, Frances N.

    2015-09-01

    A variety of physical and thermal property measurements as a function of temperature and fission density were performed on irradiated U-Mo alloy monolithic fuel samples with a Zr diffusion barrier and clad in aluminum alloy 6061. The U-Mo alloy density, thermal diffusivity, and thermal conductivity are strongly influenced by increasing burnup, mainly as the result of irradiation induced recrystallization and fission gas bubble formation and coalescence. U-Mo chemistry, specifically Mo content, and specific heat capacity was not as sensitive to increasing burnup. Measurements indicated that thermal conductivity of the U-Mo alloy decreased approximately 30% for a fission density of 2.88 × 1021 fissions cm-3 and approximately 45% for a fission density of 4.08 × 1021 fissions cm-3 from unirradiated values at 200 oC. An empirical thermal conductivity degradation model developed previously and summarized here agrees well with the experimental measurements.

  8. Detection of a MoSe{sub 2} secondary phase layer in CZTSe by spectroscopic ellipsometry

    SciTech Connect (OSTI)

    Demircioğlu, Özden; Riedel, Ingo; Gütay, Levent; Mousel, Marina; Redinger, Alex; Rey, Germain; Weiss, Thomas; Siebentritt, Susanne

    2015-11-14

    We demonstrate the application of Spectroscopic Ellipsometry (SE) for identification of secondary phase MoSe{sub 2} in polycrystalline Cu{sub 2}ZnSnSe{sub 4} (CZTSe) samples. A MoSe{sub 2} reference sample was analyzed, and its optical constants (ε{sub 1} and ε{sub 2}) were extracted by SE analysis. This dataset was implemented into an optical model for analyzing SE data from a glass/Mo/CZTSe sample containing MoSe{sub 2} at the back side of the absorber. We present results on the n and k values of CZTSe and show the extraction of the thickness of the secondary phase MoSe{sub 2} layer. Raman spectroscopy and scanning electron microscopy were applied to confirm the SE results.

  9. Photo-oxidation method using MoS2 nanocluster materials

    DOE Patents [OSTI]

    Wilcoxon, Jess P.

    2001-01-01

    A method of photo-oxidizing a hydrocarbon compound is provided by dispersing MoS.sub.2 nanoclusters in a solvent containing a hydrocarbon compound contaminant to form a stable solution mixture and irradiating the mixture to photo-oxide the hydrocarbon compound. Hydrocarbon compounds of interest include aromatic hydrocarbon and chlorinated hydrocarbons. MoS.sub.2 nanoclusters with an average diameter less than approximately 10 nanometers are shown to be effective in decomposing potentially toxic aromatic and chlorinated hydrocarbons, such as phenol, pentachlorophenol, chlorinated biphenols, and chloroform, into relatively non-toxic compounds. The irradiation can occur by exposing the MoS.sub.2 nanoclusters and hydrocarbon compound mixture with visible light. The MoS.sub.2 nanoclusters can be introduced to the toxic hydrocarbons as either a MoS.sub.2 solution or deposited on a support material.

  10. Synthesis and characterization of model MgO supported catalyst with Pt-Mo interactions.

    SciTech Connect (OSTI)

    Alexeev, O.; Kawi, S.; Gates, B.C. [Univ. of California, Davis, CA (United States)] [Univ. of California, Davis, CA (United States); Shelef, M. [Ford Motor Co., Dearborn, MI (United States)] [Ford Motor Co., Dearborn, MI (United States)

    1996-01-04

    MgO supported platinum and platinum-molybdenum catalysts were prepared from organometallic precursors and charaterized structurally to determine how the nature of the bimetallic precursors and the treatment conditions affected the interaction between the two metals. Samples were prepared from [PtCl{sub 2}(PhCN){sub 2}], [PtCl{sub 2}(PhCN){sub 2}] + [Mo(CO){sub 6}], and [C@Pt[Mo(CO){sub 3}(C{sub 5}H{sub 5})]{sub 2}(PhCN){sub 2}] BC@ characterized by infrared and extended X-ray absorption fine structure (EXAFS) spectroscopies, tranmission electron microscopy, and chemisorption of H{sub 2}, CO, and O{sub 2}. The samples were treated in H{sub 2} at 400{degree}C prior to most of the characterizatons. Incorporation of Mo reduced the chemisorption of CO and of H{sub 2}. EXAFS spectra measured at the Pt L{sub III} edge and at the Mo K edge showed substantial Pt-Mo contributions with a Pt-Mo cordination number of about 2 and an average distance of 2.63 A for the sample prepared from [C@Pt[Mo(CO){sub 3}(C{sub 5}H{sub 5})]{sub 2}(PhCN){sub 2}] BC@. In constract, no significant Pt-Mo contribution was observed for the sample prepared from [PtCl{sub 2}(PhCN){sub 2}]+ [Mo(CO){sub 6}]. Electron micrographs and EXAFS results show that interaction between Pt and Mo ions in the former sample helped to maintain the platinum in a highly dispersed form, with supported platinum clusters being smaller than about 10 A. 53 refs., 9 figs., 9 tabs.

  11. Shell Morocco | Open Energy Information

    Open Energy Info (EERE)

    of Lubricants for motorists and industries; Storage and Distribution of Oils and LPG; Marine and Aviation; Off-Shore Exploration Year Founded: 1922 Phone Number: +212 (0)...

  12. Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein

    SciTech Connect (OSTI)

    Zhang, Li-Mei; Morrison, Christine N.; Kaiser, Jens T.; Rees, Douglas C.

    2015-02-01

    Determination of the nitrogenase MoFe protein from C. pasteurianum at 1.08 Å resolution and comparison to its distinct ortholog from A. vinelandii at atomic resolution reveals conserved structural arrangements that are significant to the function of nitrogenase. The X-ray crystal structure of the nitrogenase MoFe protein from Clostridium pasteurianum (Cp1) has been determined at 1.08 Å resolution by multiwavelength anomalous diffraction phasing. Cp1 and the ortholog from Azotobacter vinelandii (Av1) represent two distinct families of nitrogenases, differing primarily by a long insertion in the α-subunit and a deletion in the β-subunit of Cp1 relative to Av1. Comparison of these two MoFe protein structures at atomic resolution reveals conserved structural arrangements that are significant to the function of nitrogenase. The FeMo cofactors defining the active sites of the MoFe protein are essentially identical between the two proteins. The surrounding environment is also highly conserved, suggesting that this structural arrangement is crucial for nitrogen reduction. The P clusters are likewise similar, although the surrounding protein and solvent environment is less conserved relative to that of the FeMo cofactor. The P cluster and FeMo cofactor in Av1 and Cp1 are connected through a conserved water tunnel surrounded by similar secondary-structure elements. The long α-subunit insertion loop occludes the presumed Fe protein docking surface on Cp1 with few contacts to the remainder of the protein. This makes it plausible that this loop is repositioned to open up the Fe protein docking surface for complex formation.

  13. ACBEDGF1DIH P Q2R§STDVU@DVW RYX1`bacSedVagf ShFiSpaqSTr1H£s)t

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ¢¤¥§¦©¨ ¥! ¥ " ¥#¢ $ %¡'&( $ %&()0&1%234 ¥5¨  6§!7580 9 @&1¢2 ACBEDGF1DIH P Q2R§STDVU@DVW RYX1`bacSedVagf ShFiSpaqSTr1H£s)t Wvuwr1HxHbD y €B‚Sƒr„Hx€†…0‡ˆ€†‰@rW‘€’B‚rwWq` “•”!–˜—w™edgfih j rkD Pl€†Wv…eacr1H£sm‡r„ant …o€p r1a q DrH y rw…ƒ…TDGBcBIsmt Wvuwr„H¤HbD s

  14. Surface Structures of Cubo-octahedral Pt-Mo Catalyst Nanoparticles from Monte Carlo Simulations

    SciTech Connect (OSTI)

    Wang, Guofeng; Van Hove, M.A.; Ross, P.N.; Baskes, M.I.

    2005-03-31

    The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 at. percent. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5 to 14 at. percent higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertices of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.

  15. Distributed Production of Radionuclide Mo-99 Charles A. Gentile, Adam B.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cohen and George Ascione | Princeton Plasma Physics Lab Distributed Production of Radionuclide Mo-99 Charles A. Gentile, Adam B. Cohen and George Ascione This invention is for the production of Technetium-99m (Tc-99m), a widely used medical isotope in a distributed and in-situ fashion. Tc-99m results when Molybdenum 99 (Mo-99) decays. Mo-99 is typically produced in a nuclear reactor, but it can be produced from naturally occurring Molybdenum 100 or from Molybdenum 98 using either neutrons or

  16. Spectroscopic signatures of AA' and AB stacking of chemical vapor deposited bilayer MoS2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xia, Ming; Li, Bo; Yin, Kuibo; Capellini, Giovanni; Niu, Gang; Gong, Yongji; Zhou, Wu; Ajayan, Pulickel M.; Xie, Ya -Hong

    2015-11-04

    We discuss prominent resonance Raman and photoluminescence spectroscopic differences between AA'and AB stacked bilayer molybdenum disulfide (MoS2) grown by chemical vapor deposition are reported. Bilayer MoS2 islands consisting of the two stacking orders were obtained under identical growth conditions. Also, resonance Raman and photoluminescence spectra of AA' and AB stacked bilayer MoS2 were obtained on Au nanopyramid surfaces under strong plasmon resonance. Both resonance Raman and photoluminescence spectra show distinct features indicating clear differences in interlayer interaction between these two phases. The implication of these findings on device applications based on spin and valley degrees of freedom.

  17. Elevated temperature stability of a 6% Mo superaustenitic stainless alloy

    SciTech Connect (OSTI)

    Grubb, J.F.

    1996-11-01

    A 6% Mo superaustenitic stainless alloy (UNS N08367) was exposed at temperatures in the 1,000 to 1,900 F (538 to 1,038 C) range for times up to 10,000 hours. The effect of these exposures on mechanical properties and corrosion resistance has been examined. Exposure of N08367 alloy at 1,900 F (1,056 C) for 1 to 10 hours does not result in precipitation of intermetallic phases, does not embrittle it, and does not degrade its corrosion resistance. Exposure of N08367 alloy at 1,300 to 1,800 F (704 to 982 C) does precipitate intermetallic phases, does embrittle it, and does degrade its corrosion resistance. Short-term exposure of N08367 alloy at 1,000 or 1,100 F (538 to 593 C) does not cause precipitation of intermetallic phases, with consequent embrittlement and loss of corrosion resistance, but long-term exposures do. Extrapolation of the embrittlement time vs. temperature curves shows that the current 800 F (427 C) use temperature limit for N08367 alloy is safe.

  18. Thermo-physical Properties of DU-10 wt.% Mo Alloys

    SciTech Connect (OSTI)

    Douglas E. Burkes; Cynthia A. Papesch; Andrew P. Maddison; Thomas Hartmann; Francine J. Rice

    2010-08-01

    Low-enriched uranium alloyed with 10 wt% molybdenum is under consideration by the Global Threat Reduction Initiative reactor convert program as a very high density fuel to enable the conversion of high-performance research reactors away from highly-enriched uranium fuels. As with any fuel development program, the thermophysical properties of the fuel as a function of temperature are extremely important and must be well characterized in order to effectively model and predict fuel behavior under normal and off-normal irradiation conditions. For the alloy system under investigation, there is a lack of thermophysical property data, and in most cases, the data is relatively inconsistent and lacks sufficient explanation. Available literature on this alloy system comes mainly from studies done during the 1960s and 1970s, and often does not include sufficient information on fabrication history or conditions to draw conclusions for the current application. The current paper has investigated specific heat capacity, coefficient of linear thermal expansion, density, and thermal diffusivity that were then used to calculate alloy thermal conductivity as a function of temperature. The data obtained from this investigation was compared to available literature on similar U-Mo alloys, and in most cases are in good agreement.

  19. Electrochemical Testing of Ni-Cr-Mo-Gd Alloys

    SciTech Connect (OSTI)

    T. E. Lister; R. E. Mizia; H. Tian

    2005-10-01

    The waste package site recommendation design specified a boron-containing stainless steel, Neutronit 976/978, for fabrication of the internal baskets that will be used as a corrosion-resistant neutron-absorbing material. Recent corrosion test results gave higher-than-expected corrosion rates for this material. The material callout for these components has been changed to a Ni-Cr-Mo-Gd alloy (ASTM-B 932-04, UNS N06464) that is being developed at the Idaho National Laboratory. This report discusses the results of initial corrosion testing of this material in simulated in-package environments that could contact the fuel baskets after breach of the waste package outer barrier. The corrosion test matrix was executed using the potentiodynamic and potentiostatic electrochemical test techniques. The alloy performance shows low rates of general corrosion after initial removal of a gadolinium-rich second phase that intersects the surface. The high halide-containing test solutions exhibited greater tendencies toward initiation of crevice corrosion.

  20. Monolayers of MoS{sub 2} as an oxidation protective nanocoating material

    SciTech Connect (OSTI)

    Sen, H. Sener; Sahin, H.; Peeters, F. M.; Durgun, E.

    2014-08-28

    First-principle calculations are employed to investigate the interaction of oxygen with ideal and defective MoS{sub 2} monolayers. Our calculations show that while oxygen atoms are strongly bound on top of sulfur atoms, the oxygen molecule only weakly interacts with the surface. The penetration of oxygen atoms and molecules through a defect-free MoS{sub 2} monolayer is prevented by a very high diffusion barrier indicating that MoS{sub 2} can serve as a protective layer for oxidation. The analysis is extended to WS{sub 2} and similar coating characteristics are obtained. Our calculations indicate that ideal and continuous MoS{sub 2} and WS{sub 2} monolayers can improve the oxidation and corrosion-resistance of the covered surface and can be considered as an efficient nanocoating material.

  1. Substrate interactions with suspended and supported monolayer MoS2: Angle-resolved photoemission spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jin, Wencan; Yeh, Po -Chun; Zaki, Nader; Zhang, Datong; Liou, Jonathan T.; Dadap, Jerry I.; Barinov, Alexey; Yablonskikh, Mikhail; Sadowski, Jerzy T.; Sutter, Peter; et al

    2015-03-17

    We report the directly measured electronic structure of exfoliated monolayer molybdenum disulfide (MoS₂) using micrometer-scale angle-resolved photoemission spectroscopy. Measurements of both suspended and supported monolayer MoS₂ elucidate the effects of interaction with a substrate. Thus, a suggested relaxation of the in-plane lattice constant is found for both suspended and supported monolayer MoS₂ crystals. For suspended MoS₂, a careful investigation of the measured uppermost valence band gives an effective mass at Γ¯ and Κ¯ of 2.00m₀ and 0.43m₀, respectively. We also measure an increase in the band linewidth from the midpoint of Γ¯Κ¯ to the vicinity of Κ¯ and briefly discussmore » its possible origin.« less

  2. Large theoretical thermoelectric power factor of suspended single-layer MoS{sub 2}

    SciTech Connect (OSTI)

    Babaei, Hasan E-mail: babaei@auburn.edu; Khodadadi, J. M.; Sinha, Sanjiv

    2014-11-10

    We have calculated the semi-classical thermoelectric power factor of suspended single-layer (SL)- MoS{sub 2} utilizing electron relaxation times derived from ab initio calculations. Measurements of the thermoelectric power factor of SL-MoS{sub 2} on substrates reveal poor power factors. In contrast, we find the thermoelectric power factor of suspended SL-MoS{sub 2} to peak at ∼2.8 × 10{sup 4} μW/m K{sup 2} at 300 K, at an electron concentration of 10{sup 12} cm{sup −2}. This figure is higher than that in bulk Bi{sub 2}Te{sub 3}, for example. Given its relatively high thermal conductivity, suspended SL-MoS{sub 2} may hold promise for in-plane thin-film Peltier coolers, provided reasonable mobilities can be realized.

  3. Nanoscale Phase Separation In Epitaxial Cr-Mo and Cr-V Alloy...

    Office of Scientific and Technical Information (OSTI)

    In Epitaxial Cr-Mo and Cr-V Alloy Thin Films Studied Using Atom Probe Tomography. ... Therefor laser assisted atom probe tomography (APT) was utilized to study the phase ...

  4. A pseudo binary y-Gd solidification diagram for Ni-Cr-Mo-Gd alloys...

    Office of Scientific and Technical Information (OSTI)

    Title: A pseudo binary y-Gd solidification diagram for Ni-Cr-Mo-Gd alloys. No abstract prepared. Authors: Dupont, John Neuman 1 ; Minicozzi, Michael J. 1 ; Robino, Charles ...

  5. File:USDA-CE-Production-GIFmaps-MO.pdf | Open Energy Information

    Open Energy Info (EERE)

    MO.pdf Jump to: navigation, search File File history File usage Missouri Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  6. DE-EM-0001971 WIPP M&O J-8 PART III - LIST OF DOCUMENTS, EXHIBITS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AND MEASUREMENT PLAN (PEMP) DE-EM-0001971 WIPP M&O J-9 Draft PERFORMANCE EVALUATION AND MEASUREMENT PLAN (PEMP) OCTOBER 1 (2012) through SEPTEMBER 30, (2013) Contract No. ...

  7. Giant and tunable valley degeneracy splitting in MoTe 2 (Journal...

    Office of Scientific and Technical Information (OSTI)

    This content will become publicly available on September 7, 2016 Title: Giant and tunable valley degeneracy splitting in MoTe 2 Authors: Qi, Jingshan ; Li, Xiao ; Niu, Qian ; Feng, ...

  8. Microscopic origin of low frequency noise in MoS{sub 2} field-effect transistors

    SciTech Connect (OSTI)

    Ghatak, Subhamoy; Jain, Manish; Ghosh, Arindam; Mukherjee, Sumanta; Sarma, D. D.

    2014-09-01

    We report measurement of low frequency 1/f noise in molybdenum di-sulphide (MoS{sub 2}) field-effect transistors in multiple device configurations including MoS{sub 2} on silicon dioxide as well as MoS{sub 2}-hexagonal boron nitride (hBN) heterostructures. All as-fabricated devices show similar magnitude of noise with number fluctuation as the dominant mechanism at high temperatures and density, although the calculated density of traps is two orders of magnitude higher than that at the SiO{sub 2} interface. Measurements on the heterostructure devices with vacuum annealing and dual gated configuration reveals that along with the channel, metal-MoS{sub 2} contacts also play a significant role in determining noise magnitude in these devices.

  9. Surface confined quantum well state in MoS{sub 2}(0001) thin...

    Office of Scientific and Technical Information (OSTI)

    Our findings of scQWS in MoSsub 2 shed some light on understanding the electronic properties of 2D materials with implications in future 2D electronic devices. Authors: Sun, ...

  10. Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Exceptionally ... Here we report the exceptionally high GFA of an FeCoCrMoCBY ... OSTI Identifier: 20702296 Resource Type: Journal Article ...

  11. Bonding between graphene and MoS{sub 2} monolayers without and...

    Office of Scientific and Technical Information (OSTI)

    layer and in-gap states with linear dispersion contributed mostly by the graphene layer. ... Moreover, we calculate the dielectric function of the Li intercalated grapheneMoSsub 2 ...

  12. AB INITIO Modeling of Thermomechanical Properties of Mo-Based Alloys for Fossil Energy Conversion

    SciTech Connect (OSTI)

    Ching, Wai-Yim

    2013-12-31

    In this final scientific/technical report covering the period of 3.5 years started on July 1, 2011, we report the accomplishments on the study of thermo-mechanical properties of Mo-based intermetallic compounds under NETL support. These include computational method development, physical properties investigation of Mo-based compounds and alloys. The main focus is on the mechanical and thermo mechanical properties at high temperature since these are the most crucial properties for their potential applications. In particular, recent development of applying ab initio molecular dynamic (AIMD) simulations to the T1 (Mo{sub 5}Si{sub 3}) and T2 (Mo{sub 5}SiB{sub 2}) phases are highlighted for alloy design in further improving their properties.

  13. Microsoft Word - chapter FeNiCrMo_ver4.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The carbon and alloy steel categories selected for the Technical Reference for Hydrogen ... Since a full range of data is not available for each steel, data for all Ni-Cr-Mo steels ...

  14. A WSe{sub 2}/MoSe{sub 2} heterostructure photovoltaic device

    SciTech Connect (OSTI)

    Flöry, Nikolaus; Jain, Achint; Bharadwaj, Palash; Parzefall, Markus; Novotny, Lukas; Taniguchi, Takashi; Watanabe, Kenji

    2015-09-21

    We report on the photovoltaic effect in a WSe{sub 2}/MoSe{sub 2} heterojunction, demonstrating gate tunable current rectification with on/off ratios of over 10{sup 4}. Spatially resolved photocurrent maps show the photovoltaic effect to originate from the entire overlap region. Compared to WSe{sub 2}/MoS{sub 2} heterostructures, our devices perform better at long wavelengths and yield higher quantum efficiencies, in agreement with Shockley-Queisser theory.

  15. Demonstration of LED Street Lighting in Kansas City, MO (Technical Report)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Demonstration of LED Street Lighting in Kansas City, MO Citation Details In-Document Search Title: Demonstration of LED Street Lighting in Kansas City, MO Nine different streetlighting products were installed on various streets in Kansas City, Missouri during February, 2011, to evaluate their performance relative to the incumbent high-pressure sodium (HPS) lighting. The applications investigated included 100 W, 150 W, 250 W, and 400 W HPS installations. Initial measurements

  16. Climate Action Champions: Mid-America Regional Council, KS and MO |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Mid-America Regional Council, KS and MO Climate Action Champions: Mid-America Regional Council, KS and MO The Mid-America Regional Council (MARC) is a nonprofit association of city and county governments and the metropolitan planning organization for the bistate Kansas City region. They provide a forum for the region to work together to advance social, economic and environmental progress. MARC received the Climate Action Champion designation in consortium with the City

  17. U-EXTRACTION--IMPROVEMENTS IN ELIMINATION OF Mo BY USE OF FERRIC ION

    DOE Patents [OSTI]

    Clark, H.M.; Duffey, D.

    1958-06-10

    An improved solvent extraction process is described whereby U may be extracted by a water immiscible organic solvent from an aqueous solution of uranyl nitrate. It has been found that Mo in the presence of phosphate ions appears to form a complex with the phosphate which extracts along with the U. This extraction of Mo may be suppressed by providing ferric ion in the solution prior to the extraction step. The ferric ion is preferably provided in the form of ferric nitrate.

  18. DOE - Office of Legacy Management -- Weldon Spring Chemical Co - MO 03

    Office of Legacy Management (LM)

    Weldon Spring Chemical Co - MO 03 FUSRAP Considered Sites Site: Weldon Spring Chemical Co. (MO.03) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Weldon Spring, Missouri, Site Documents Related to Weldon Spring Chemical Co. Summary of Work Session - Focus Area: Monitoring and Maintenance. Summary of Weldon Spring Long-Term Stewardship

  19. Synthesis of MoO{sub 3} nanoparticles for azo dye degradation by catalytic ozonation

    SciTech Connect (OSTI)

    Manivel, Arumugam; Lee, Gang-Juan; Chen, Chin-Yi; Chen, Jing-Heng; Ma, Shih-Hsin; Horng, Tzzy-Leng; Wu, Jerry J.

    2015-02-15

    Highlights: • Synthesis of one-dimensional MoO{sub 3} nanostructures using hydrothermal, microwave, and sonochemical methods. • Sonochemical synthesized MoO{sub 3} presents the best efficiency for the dye removal by catalytic ozonation. • Efficient environmental remediation process. - Abstract: One-dimensional molybdenum trioxide nanostructures were prepared in three different approaches, including thermal, microwave, and sonochemical methods. The physicochemical properties of the obtained MoO{sub 3} nanoparticles were investigated by diffused reflectance spectroscopy, X-ray diffraction analysis, field emission scanning electron microscopy, high resolution transmission electron microscopy, and Brunauer–Emmett–Teller surface area analysis. Among the methods as investigated, sonochemical synthesis gave well-dispersed fine MoO{sub 3} nanoparticles compared with the other approaches. All the synthesized MoO{sub 3} nanostructures were examined for the catalytic ozonation to degrade azo dye in aqueous environment. Different performances were obtained for the catalyst prepared in different methods and the catalytic efficiencies were found to be the order of sonochemical, microwave, and then thermal methods. The sonochemical MoO{sub 3} catalyst allowed the total dye removal within 20 min and its good performance was justified according to their higher surface area with higher number of active sites that provide effective dye interaction for better degradation.

  20. Stability of precipitate phases in Fe-rich Fe-Cr-Ni-Mo alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T

    2015-01-01

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the and phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. Two key findings resulted from this work. One is that the phase is stable at high temperature and transformed into the phase at lowmoretemperature. The other is that both the and phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.less

  1. MoS{sub 2} nanotube exfoliation as new synthesis pathway to molybdenum blue

    SciTech Connect (OSTI)

    Visic, B.; Gunde, M. Klanjsek; Kovac, J.; Iskra, I.; Jelenc, J.; Remskar, M.; Centre of Excellence Namaste, Jamova cesta 39, SI-1000 Ljubljana

    2013-02-15

    Graphical abstract: . Display Omitted Highlights: ? New synthesis approach to obtaining molybdenum blue via exfoliated MoS{sub 2} nanotubes. ? Material is prone to self assembly and is stable in high vacuum. ? Molecules are as small as 2 nm and their clusters are up to tens of nanometers. ? Change in absorption and oxidation states from the precursor MoS{sub 2}. -- Abstract: Molybdenum blue-type materials are usually obtained by partially reducing Mo{sup VI+} in acidic solutions, while in the presented method it is formed in ethanol solution of exfoliated MoS{sub 2} nanotubes, where the MoS{sub 2} flakes are the preferential location for their growth. Material was investigated by means of scanning electron and atomic force microscopy, showing the structure and self assembly, while also confirming that it is stable in high vacuum with molecules as small as 1.6 nm and the agglomerates of few tens of nanometres. The ultravioletvisible and photoelectron spectrometry show the change in absorption properties and oxidation states from MoS{sub 2} structure to molybdenum blue, while the presence of sulphur suggests that this is a new type of molybdenum blue material.

  2. High reflectance and low stress Mo2C/Be multilayers

    DOE Patents [OSTI]

    Bajt, Sasa; Barbee, Jr., Troy W.

    2001-01-01

    A material for extreme ultraviolet (EUV) multilayers that will reflect at about 11.3 nm, have a high reflectance, low stress, and high thermal and radiation stability. The material consists of alternating layers of Mo.sub.2 C and Be deposited by DC magnetron sputtering on a substrate, such as silicon. In one example a Mo.sub.2 C/Be multilayer gave 65.2% reflectance at 11.25 nm measured at 5 degrees off normal incidence angle, and consisted of 70 bilayers with a deposition period of 5.78 nm, and was deposited at 0.83 mTorr argon (Ar) sputtering pressure, with the first and last layers being Be. The stress of the multilayer is tensile and only +88 MPa, compared to +330 MPa of a Mo/Be multilayers of the same thickness. The Mo.sub.2 C/Be multilayer was capped with carbon which produced an increase in reflectivity of about 7% over a similar multilayer with no carbon capping material, thus raising the reflectivity from 58.3% to over 65%. The multilayers were formed using either Mo.sub.2 C or Be as the first and last layers, and initial testing has shown the formation of beryllium carbide at the interfaces between the layers which both stabilizes and has a smoothing effect, and appear to be smoother than the interfaces in Mo/Be multilayers.

  3. Effects of thermal treatment on the co-rolled U-Mo fuel foils

    SciTech Connect (OSTI)

    Dennis D. Keiser, Jr.; Tammy L. Trowbridge; Cynthia R. Breckenridge; Brady L. Mackowiak; Glenn A. Moore; Barry H. Rabin; Mitchell K. Meyer

    2014-11-01

    A monolithic fuel type is being developed to convert US high performance research and test reactors such as Advanced Test Reactor (ATR) at Idaho National Laboratory from highly enriched uranium (HEU) to low-enriched uranium (LEU). The interaction between the cladding and the U-Mo fuel meat during fuel fabrication and irradiation is known to have negative impacts on fuel performance, such as mechanical integrity and dimensional stability. In order to eliminate/minimize the direct interaction between cladding and fuel meat, a thin zirconium diffusion barrier was introduced between the cladding and U-Mo fuel meat through a co-rolling process. A complex interface between the zirconium and U-Mo was developed during the co-rolling process. A predictable interface between zirconium and U-Mo is critical to achieve good fuel performance since the interfaces can be the weakest link in the monolithic fuel system. A post co-rolling annealing treatment is expected to create a well-controlled interface between zirconium and U-Mo. A systematic study utilizing post co-rolling annealing treatment has been carried out. Based on microscopy results, the impacts of the annealing treatment on the interface between zirconium and U-Mo will be presented and an optima annealing treatment schedule will be suggested. The effects of the annealing treatment on the fuel performance will also be discussed.

  4. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed intomore » the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.« less

  5. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    SciTech Connect (OSTI)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed into the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.

  6. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    SciTech Connect (OSTI)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed into the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.

  7. Atomic oxygen interaction with nickel multilayer and antimony oxide doped MoS{sub 2} films

    SciTech Connect (OSTI)

    Dugger, M.T.

    1994-12-31

    Sputtered MoS{sub 2} is a solid lubricant capable of ultralow friction coefficients (below 0.05) load-bearing capacity. Since it exhibits low friction in vacuum, low outgassing rate, is non-migrating and lacks organic binders, this material is an attractive lubricant for space mechanisms. To exploit these new materials to their fullest potential, designers of space-based motion systems require data on the effects of atomic oxygen exposure on dense, sputtered MoS{sub 2}. This paper describes the effects of atomic oxygen in low earth orbit on the friction and surface composition of sputtered MoS{sub 2} films. Sputtered multilayer films of MoS{sub 2} with nickel (0.7 nm Ni per 10 nm MoS{sub 2}, for 1 {mu}m total film thickness), and MoS{sub 2} cosputtered with antimony oxide (nominally 2 {mu}m thick) were exposed to 2.2 to 2.5 x 10{sup 20} oxygen/cm{sup 2} over a period of 42.25 hours in earth orbit on the United States space shuttle. Identical specimens were kept as controls in desiccated storage for the duration of the mission, and another set was exposed to an equivalent fluence of atomic oxygen in the laboratory. The friction coefficient in air and vacuum, and the composition of worn surfaces, were determined prior to the shuttle flight and again after the shuttle flight. Results are described.

  8. Collective electronic behaviors of laterally heterostructured armchair MoS{sub 2}-NbS{sub 2} nanoribbons

    SciTech Connect (OSTI)

    Wu, Nannan; Zhou, Wenzhe; Zou, Hui; Chen, Yu; Yang, Zhixiong; Xiong, Xiang; Ouyang, Fangping

    2015-08-28

    Based on density functional theory, we have investigated the electronic properties of molybdenum disulfide-niobium disulfide hybrid nanoribbons (MoS{sub 2}-NbS{sub 2} NRs). It is found that the MoS{sub 2} edge, MoS{sub 2} center, NbS{sub 2} edge, and NbS{sub 2} center have distinct contributions to the collective electronic behaviors of MoS{sub 2}-NbS{sub 2} NRs. Its behavior, metallic or semiconductor, depends on whether the central area of NR contains NbS{sub 2} chain or not. This dependence has been also revealed in the electronic structures of NbS{sub 2}-MoS{sub 2}-NbS{sub 2} NR and MoS{sub 2}-NbS{sub 2}-MoS{sub 2} NR, of which the former is semiconductor and the latter is metal. In comparison with MoS{sub 2} NR of the same width, the hybrid has a different bandgap that was caused by the coupled effects between NbS{sub 2} edge and MoS{sub 2} edge. This fact makes MoS{sub 2}-NbS{sub 2} NRs a possible candidate for nanoelectronic devices based on heterostructured transition-metal dichalcogenide.

  9. Microstructure evolution of Li uptake/removal in MoO{sub 2}@C nanoparticles with high lithium storage performance

    SciTech Connect (OSTI)

    Liu, Yulong; Zhang, Hong; Ouyang, Pan; Chen, Wenhao [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Zhicheng, E-mail: zhchli@mail.csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2014-02-01

    Highlights: The carbon-coated MoO{sub 2} (MoO{sub 2}@C) ultra fine nanoparticles are synthesized by one-pot hydrothermal method. MoO{sub 2}@C nanoparticles have high specific capacity, excellent cycling performance and rate performance. Phase transformations for lithium ion uptake/removal are examined carefully by TEM. Phase transformations are highly reversible during the redox process. - Abstract: A facile one pot strategy of a hydrothermal methodology was applied to synthesize the carbon coated MoO{sub 2} (MoO{sub 2}@C) nanostructured particles, which are composed of ultra fine nanoparticles with homogeneous carbon coating about several nanometers. As an electrode in lithium ion batteries, the MoO{sub 2}@C shows a high specific capacity and reversible capacity (730 mA h g{sup ?1} after 60 cycles). Microstructure investigations, by using a high resolution transmission electron microscopy, of the MoO{sub 2}@C based electrodes employed at various states during the first discharge/charge cycle were conducted to elucidate the lithium ion uptake/removal mechanism and cycling behavior. In the lithium uptake process, the original MoO{sub 2} phase transfers into Li{sub 0.98}MoO{sub 2} through an addition type reaction, and then nanosized metallic Mo emerges as a result of a conversion reaction. In turn, Mo could be oxidized to the intermediate Li{sub 0.98}MoO{sub 2} before converting to hyperfine MoO{sub 2} phase on upcoming lithium removal process.

  10. MCNPX-CINDER'90 Simulation of Photonuclear Mo-99 Production Experiments

    SciTech Connect (OSTI)

    Kelsey, Charles T. IV [Los Alamos National Laboratory; Chemerizov, Sergey D. [Argonne National Laboratory; Dale, Gregory E. [Los Alamos National Laboratory; Harvey, James T. [NorthStar Medical Radioisotopes; Tkac, Peter [Argonne National Laboratory; Vandegrift, George R III [Argonne National Laboratory

    2011-01-01

    The MCNPX and CINDER'90 codes were used to support design of experiments investigating Mo-99 production with a 20-MeV electron beam. Bremsstrahlung photons produced by the electron beam interacting with the target drive the desired Mo-100({gamma},n)Mo-99 reaction, as well as many undesired reactions important to accurate prediction of radiation hazards. MCNPX is a radiation transport code and CINDER'90 is a transmutation code. They are routinely used together for accelerator activation calculations. Low energy neutron fluxes and production rates for nonneutron and high energy neutron induced reactions computed using MCNPX are inputs to CINDER'90. CINDER'90 presently has only a neutron reaction cross section library up to 25 MeV and normally the other reaction rates come from MCNPX physics models. For this work MCNPX photon flux tallies modified by energy response functions prepared from evaluated photonuclear cross section data were used to tally the reaction rates for CINDER'90 input. The cross section evaluations do not provide isomer to ground state yield ratios so a spin based approximation was used. Post irradiation dose rates were calculated using MCNPX with CINDER'90 produced decay photon spectra. The sensitivity of radionuclide activities and dose rates to beam parameters including energy, position, and profile, as well as underlying isomer assumptions, was investigated. Three experimental production targets were irradiated, two natural Mo and one Mo-100 enriched. Natural Mo foils upstream of the targets were used to analyze beam position and profile by exposing Gafchromic film to the foils after each irradiation. Activation and dose rate calculations were rerun after the experiments using measured beam parameters for comparison with measured Mo-99 activities and dose rates.

  11. Doping against the native propensity of MoS₂: Degenerate hole doping by cation substitution

    SciTech Connect (OSTI)

    Suh, Joonki; Park, Tae-Eon; Lin, Der-Yuh; Fu, Deyi; Park, Joonsuk; Jung, Hee Joon; Chen, Yabin; Ko, Changhyun; Jang, Chaun; Sun, Yinghui; Sinclair, Robert; Chang, Joonyeon; Tongay, Sefaattin; Wu, Junqiao

    2014-12-10

    Layered transition metal dichalcogenides (TMDs) draw much attention as the key semiconducting material for two-dimensional electrical, optoelectronic, and spintronic devices. For most of these applications, both n- and p-type materials are needed to form junctions and support bipolar carrier conduction. However, typically only one type of doping is stable for a particular TMD. For example, molybdenum disulfide (MoS₂) is natively an n-type presumably due to omnipresent electron-donating sulfur vacancies, and stable/controllable p-type doping has not been achieved. The lack of p-type doping hampers the development of charge-splitting p–n junctions of MoS₂, as well as limits carrier conduction to spin-degenerate conduction bands instead of the more interesting, spin-polarized valence bands. Traditionally, extrinsic p-type doping in TMDs has been approached with surface adsorption or intercalation of electron-accepting molecules. However, practically stable doping requires substitution of host atoms with dopants where the doping is secured by covalent bonding. In this work, we demonstrate stable p-type conduction in MoS₂ by substitutional niobium (Nb) doping, leading to a degenerate hole density of ~3 × 10¹⁹ cm⁻³. Structural and X-ray techniques reveal that the Nb atoms are indeed substitutionally incorporated into MoS₂ by replacing the Mo cations in the host lattice. van der Waals p–n homojunctions based on vertically stacked MoS₂ layers are fabricated, which enable gate-tunable current rectification. A wide range of microelectronic, optoelectronic, and spintronic devices can be envisioned from the demonstrated substitutional bipolar doping of MoS₂. From the miscibility of dopants with the host, it is also expected that the synthesis technique demonstrated here can be generally extended to other TMDs for doping against their native unipolar propensity.

  12. In Situ Time-Resolved Characterization of Ni-MoO2 Catalysts for the Water-Gas Shift Reaction

    SciTech Connect (OSTI)

    Wen,W.; Calderon, J.; Brito, J.; Marinkovic, N.; Hanson, J.; Rodriquez, J.

    2008-01-01

    Active catalysts for the water-gas shift (WGS, CO + H2O ? H2 + CO2) reaction were synthesized from nickel molybdates ({beta}-NiMoO4 and nH2O{center_dot}NiMoO4) as precursors, and their structural transformations were monitored using in situ time-resolved X-ray diffraction and X-ray absorption near-edge spectroscopy. In general, the nickel molybdates were not stable and underwent partial reduction in the presence of CO or CO/H2O mixtures at high temperatures. The interaction of {beta}-NiMoO4 with the WGS reactants at 500 C led to the formation of a mixture of Ni (24 nm particle size) and MoO2 (10 nm particle size). These Ni-MoO2 systems displayed good catalytic activity at 350, 400, and 500 C. At 350 and 400 C, catalytic tests revealed that the Ni-MoO2 system was much more active than isolated Ni (some activity) or isolated MoO2 (negligible activity). Thus, cooperative interactions between the admetal and oxide support were probably responsible for the high WGS activity of Ni-MoO2. In a second synthetic approach, the NiMoO4 hydrate was reduced to a mixture of metallic Ni, NiO, and amorphous molybdenum oxide by direct reaction with H2 gas at 350 C. In the first pass of the water-gas shift reaction, MoO2 appeared gradually at 500 C with a concurrent increase of the catalytic activity. For these catalysts, the particle size of Ni (4 nm) was much smaller than that of the MoO2 (13 nm). These systems were found to be much more active WGS catalysts than Cu-MoO2, which in turn is superior to commercial low-temperature Cu-ZnO catalysts.

  13. Method for the production of .sup.99m Tc compositions from .sup.99 Mo-containing materials

    DOE Patents [OSTI]

    Bennett, Ralph G.; Christian, Jerry D.; Grover, S. Blaine; Petti, David A.; Terry, William K.; Yoon, Woo Y.

    1998-01-01

    An improved method for producing .sup.99m Tc compositions from .sup.99 Mo compounds. .sup.100 Mo metal or .sup.100 MoO.sub.3 is irradiated with photons in a particle (electron) accelerator to ultimately produce .sup.99 MoO.sub.3. This composition is then heated in a reaction chamber to form a pool of molten .sup.99 MoO.sub.3 with an optimum depth of 0.5-5 mm. A gaseous mixture thereafter evolves from the molten .sup.99 MoO.sub.3 which contains vaporized .sup.99 MoO.sub.3, vaporized .sup.99m TcO.sub.3, and vaporized .sup.99m TcO.sub.2. This mixture is then combined with an oxidizing gas (O.sub.2(g)) to generate a gaseous stream containing vaporized .sup.99m Tc.sub.2 O.sub.7 and vaporized .sup.99 MoO.sub.3. Next, the gaseous stream is cooled in a primary condensation stage in the reaction chamber to remove vaporized .sup.99 MoO.sub.3. Cooling is undertaken at a specially-controlled rate to achieve maximum separation efficiency. The gaseous stream is then cooled in a sequential secondary condensation stage to convert vaporized .sup.99m Tc.sub.2 O.sub.7 into a condensed .sup.99m Tc-containing reaction product which is collected.

  14. Method for the production of {sup 99m}Tc compositions from {sup 99}Mo-containing materials

    DOE Patents [OSTI]

    Bennett, R.G.; Christian, J.D.; Grover, S.B.; Petti, D.A.; Terry, W.K.; Yoon, W.Y.

    1998-09-01

    An improved method is described for producing {sup 99m}Tc compositions from {sup 99}Mo compounds. {sup 100}Mo metal or {sup 100}MoO{sub 3} is irradiated with photons in a particle (electron) accelerator to ultimately produce {sup 99}MoO{sub 3}. This composition is then heated in a reaction chamber to form a pool of molten {sup 99}MoO{sub 3} with an optimum depth of 0.5--5 mm. A gaseous mixture thereafter evolves from the molten {sup 99}MoO{sub 3} which contains vaporized {sup 99}MoO{sub 3}, vaporized {sup 99m}TcO{sub 3}, and vaporized {sup 99m}TcO{sub 2}. This mixture is then combined with an oxidizing gas (O{sub 2(g)}) to generate a gaseous stream containing vaporized {sup 99m}Tc{sub 2}O{sub 7} and vaporized {sup 99}MoO{sub 3}. Next, the gaseous stream is cooled in a primary condensation stage in the reaction chamber to remove vaporized {sup 99}MoO{sub 3}. Cooling is undertaken at a specially-controlled rate to achieve maximum separation efficiency. The gaseous stream is then cooled in a sequential secondary condensation stage to convert vaporized {sup 99m}Tc{sub 2}O{sub 7} into a condensed {sup 99m}Tc-containing reaction product which is collected. 1 fig.

  15. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    SciTech Connect (OSTI)

    Jian Gan; Brandon Miller; Dennis Keiser; Adam Robinson; James Madden; Pavel Medvedev; Daniel Wachs

    2014-04-01

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists of fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.

  16. Elementary Steps of Syngas Reactions on Mo2C(001): Adsorption Thermochemistry and Bond Dissociation

    SciTech Connect (OSTI)

    Medford, Andrew

    2012-02-16

    Density functional theory (DFT) and ab initio thermodynamics are applied in order to investigate the most stable surface and subsurface terminations of Mo{sub 2}C(001) as a function of chemical potential and in the presence of syngas. The Mo-terminated (001) surface is then used as a model surface to evaluate the thermochemistry and energetic barriers for key elementary steps in syngas reactions. Adsorption energy scaling relations and Broensted-Evans-Polanyi relationships are established and used to place Mo{sub 2}C into the context of transition metal surfaces. The results indicate that the surface termination is a complex function of reaction conditions and kinetics. It is predicted that the surface will be covered by either C{sub 2}H{sub 2} or O depending on conditions. Comparisons to transition metals indicate that the Mo-terminated Mo{sub 2}C(001) surface exhibits carbon reactivity similar to transition metals such as Ru and Ir, but is significantly more reactive towards oxygen.

  17. FeAl and Mo-Si-B Intermetallic Coatings Prepared by Thermal Spraying

    SciTech Connect (OSTI)

    Totemeier, T.C.; Wright, R.N.; Swank, W.D.

    2003-04-22

    FeAl and Mo-Si-B intermetallic coatings for elevated temperature environmental resistance were prepared using high-velocity oxy-fuel (HVOF) and air plasma spray (APS) techniques. For both coating types, the effect of coating parameters (spray particle velocity and temperature) on the microstructure and physical properties of the coatings was assessed. Fe-24Al (wt.%) coatings were prepared using HVOF thermal spraying at spray particle velocities varying from 540 m/s to 700 m/s. Mo-13.4Si-2.6B coatings were prepared using APS at particle velocities of 180 and 350 m/s. Residual stresses in the HVOF FeAl coatings were compressive, while stresses in the APS Mo-Si-B coatings were tensile. In both cases, residual stresses became more compressive with increasing spray particle velocity due to increased peening imparted by the spray particles. The hardness and elastic moduli of FeAl coatings also increased with increasing particle velocity, again due to an increased peening effect. For Mo-Si-B coatings, plasma spraying at 180 m/s resulted in significant oxidation of the spray particles and conversion of the T1 phase into amorphous silica and {alpha}-Mo. The T1 phase was retained after spraying at 350 m/s.

  18. Fragile structural transition in Mo3Sb7

    SciTech Connect (OSTI)

    Yan, Jiaqiang -Q.; McGuire, Michael A; May, Andrew F; Parker, David S.; Mandrus, D. G.; Sales, Brian C.

    2015-08-10

    Mo3Sb7 single crystals lightly doped with Cr, Ru, or Te are studied in order to explore the interplay between superconductivity, magnetism, and the cubic-tetragonal structural transition. The structural transition at 53 K is extremely sensitive to Ru or Te substitution which introduces additional electrons, but robust against Cr substitution. We observed no sign of a structural transition in superconducting Mo2.91Ru0.09Sb7 and Mo3Sb6.975Te0.025. In contrast, 3 at.% Cr doping only slightly suppresses the structural transition to 48 K while leaving no trace of superconductivity above 1.8 K. Analysis of magnetic properties suggests that the interdimer interaction in Mo3Sb7 is near a critical value and essential for the structural transition. Futhermore, all dopants suppress the superconductivity of Mo3Sb7. The tetragonal structure is not necessary for superconductivity.

  19. Surface oxidation energetics and kinetics on MoS{sub 2} monolayer

    SciTech Connect (OSTI)

    KC, Santosh; Longo, Roberto C.; Wallace, Robert M.; Cho, Kyeongjae

    2015-04-07

    In this work, surface oxidation of monolayer MoS{sub 2} (one of the representative semiconductors in transition-metal dichalcogenides) has been investigated using density functional theory method. Oxygen interaction with MoS{sub 2} shows that, thermodynamically, the surface tends to be oxidized. However, the dissociative absorption of molecular oxygen on the MoS{sub 2} surface is kinetically limited due to the large energy barrier at low temperature. This finding elucidates the air stability of MoS{sub 2} surface in the atmosphere. Furthermore, the presence of defects significantly alters the surface stability and adsorption mechanisms. The electronic properties of the oxidized surface have been examined as a function of oxygen adsorption and coverage as well as substitutional impurities. Our results on energetics and kinetics of oxygen interaction with the MoS{sub 2} monolayer are useful for the understanding of surface oxidation, air stability, and electronic properties of transition-metal dichalcogenides at the atomic scale.

  20. Research update: Spin transfer torques in permalloy on monolayer MoS2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Wei; Sklenar, Joseph; Hsu, Bo; Jiang, Wanjun; Jungfleisch, Matthias B.; Xiao, Jiao; Fradin, Frank Y.; Liu, Yaohua; Pearson, John E.; Ketterson, John B.; et al

    2016-03-03

    We observe current induced spin transfertorque resonance in permalloy (Py) grown on monolayer MoS2. By passing rf current through the Py/MoS2 bilayer, field-like and damping-like torques are induced which excite the ferromagnetic resonance of Py. The signals are detected via a homodyne voltage from anisotropic magnetoresistance of Py. In comparison to other bilayer systems with strong spin-orbit torques, the monolayer MoS2 cannot provide bulk spin Hall effects and thus indicates the purely interfacial nature of the spin transfer torques. Furthermore, our results indicate the potential of two-dimensional transition-metal dichalcogenide for the use of interfacial spin-orbitronics applications.

  1. Electronic and magnetic properties of Mo doped graphene; full potential approach

    SciTech Connect (OSTI)

    Thakur, Jyoti Kashyap, Manish K.; Singh, Mukhtiyar; Saini, Hardev S.

    2015-05-15

    The electronic and magnetic properties of Pristine and Mo doped Graphene have been calculated using WIEN2k implementation of full potential linearized augmented plane wave (FPLAPW) method based on Density Functional Theory (DFT). The exchange and correlation (XC) effects were taken into account by generalized gradient approximation (GGA). The calculated results show that Mo doping creates magnetism in Graphene by shifting the energy levels at E{sub F} and opens up a channel for Graphene to be used in real nanoscale device applications. The unpaired d-electrons of Mo atom are responsible for induced magnetism in Graphene. Magnetic ordering created in Graphene in this way makes it suitable for recording media, magnetic sensors, magnetic inks and spintronic devices.

  2. Highly conducting SrMoO{sub 3} thin films for microwave applications

    SciTech Connect (OSTI)

    Radetinac, Aldin Mani, Arzhang; Ziegler, Jürgen; Alff, Lambert; Komissinskiy, Philipp; Melnyk, Sergiy; Nikfalazar, Mohammad; Zheng, Yuliang; Jakoby, Rolf

    2014-09-15

    We have measured the microwave resistance of highly conducting perovskite oxide SrMoO{sub 3} thin film coplanar waveguides. The epitaxial SrMoO{sub 3} thin films were grown by pulsed laser deposition and showed low mosaicity and smooth surfaces with a root mean square roughness below 0.3 nm. Layer-by-layer growth could be achieved for film thicknesses up to 400 nm as monitored by reflection high-energy electron diffraction and confirmed by X-ray diffraction. We obtained a constant microwave resistivity of 29 μΩ·cm between 0.1 and 20 GHz by refining the frequency dependence of the transmission coefficients. Our result shows that SrMoO{sub 3} is a viable candidate as a highly conducting electrode material for all-oxide microwave electronic devices.

  3. Controlling the metal to semiconductor transition of MoS2 and WS2 in solution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chou, Stanley Shihyao; Yi-Kai Huang; Kim, Jaemyung; Kaehr, Bryan James; Foley, Brian M.; Lu, Ping; Conner Dykstra; Hopkins, Patrick E.; Brinker, C. Jeffrey; Jiaxing Huang; et al

    2015-01-22

    Lithiation-exfoliation produces single to few-layered MoS2 and WS2 sheets dispersible in water. However, the process transforms them from the pristine semiconducting 2H phase to a distorted metallic phase. Recovery of the semiconducting properties typically involves heating of the chemically exfoliated sheets at elevated temperatures. Therefore, it has been largely limited to sheets deposited on solid substrates. We report the dispersion of chemically exfoliated MoS2 sheets in high boiling point organic solvents enabled by surface functionalization and the controllable recovery of their semiconducting properties directly in solution. Ultimately, this process connects the scalability of chemical exfoliation with the simplicity of solutionmore » processing, enabling a facile method for tuning the metal to semiconductor transitions of MoS2 and WS2 within a liquid medium.« less

  4. Observation of localized states in atomically thin MoS{sub 2} field effect transistor

    SciTech Connect (OSTI)

    Ghatak, Subhamoy; Pal, Atindra Nath; Ghosh, Arindam

    2013-12-04

    We present electrical transport and low frequency (1/f) noise measurements on mechanically exfoliated single, bi and trilayer MoS{sub 2}-based FET devices on Si/SiO{sub 2} substrate. We find that the electronic states in MoS{sub 2} are localized at low temperatures (T) and conduction happens through variable range hopping (VRH). A steep increase of 1/f noise with decreasing T, typical for localized regime was observed in all of our devices. From gate voltage dependence of noise, we find that the noise power is inversely proportional to square of the number density (? 1/n{sup 2}) for a wide range of T, indicating number density fluctuations to be the dominant source of 1/f noise in these MoS{sub 2} FETs.

  5. Exciton-dominant electroluminescence from a diode of monolayer MoS{sub 2}

    SciTech Connect (OSTI)

    Ye, Yu; Ye, Ziliang; Gharghi, Majid; Zhu, Hanyu; Wang, Yuan; Zhao, Mervin; Yin, Xiaobo; Zhang, Xiang

    2014-05-12

    In two-dimensional monolayer MoS{sub 2}, excitons dominate the absorption and emission properties. However, the low electroluminescent efficiency and signal-to-noise ratio limit our understanding of the excitonic behavior of electroluminescence. Here, we study the microscopic origin of the electroluminescence from a diode of monolayer MoS{sub 2} fabricated on a heavily p-type doped silicon substrate. Direct and bound-exciton related recombination processes are identified from the electroluminescence. At a high electron-hole pair injection rate, Auger recombination of the exciton-exciton annihilation of the bound exciton emission is observed at room temperature. Moreover, the efficient electrical injection demonstrated here allows for the observation of a higher energy exciton peak of 2.255?eV in the monolayer MoS{sub 2} diode, attributed to the excited exciton state of a direct-exciton transition.

  6. Thermal stability of fission gas bubble superlattice in irradiated U10Mo fuel

    SciTech Connect (OSTI)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Robinson, A. B.; Wachs, D. M.; Meyer, M. K.

    2015-09-01

    To investigate the thermal stability of the fission gas bubble superlattice, a key microstructural feature in both irradiated U-7Mo dispersion and U-10Mo monolithic fuel plates, a FIB-TEM sample of the irradiated U-10Mo fuel with a local fission density of 3.51021 fissions/cm3 was used for an in-situ heating TEM experiment. The temperature of the heating holder was raised at a ramp rate of approximately 10 C/min up to ~700 C, kept at that temperature for about 34 min, continued to 850 C with a reduced rate of 5 C/min. The result shows a high thermal stability of the fission gas bubble superlattice. The implication of this observation on the fuel microstructural evolution and performance under irradiation is discussed.

  7. Electrical and photovoltaic characteristics of MoS{sub 2}/Si p-n junctions

    SciTech Connect (OSTI)

    Hao, Lanzhong Liu, Yunjie Gao, Wei; Han, Zhide; Xue, Qingzhong; Zeng, Huizhong; Wu, Zhipeng; Zhu, Jun; Zhang, Wanli

    2015-03-21

    Bulk-like molybdenum disulfide (MoS{sub 2}) thin films were deposited on the surface of p-type Si substrates using dc magnetron sputtering technique and MoS{sub 2}/Si p-n junctions were formed. The vibrating modes of E{sup 1}{sub 2g} and A{sub 1g} were observed from the Raman spectrum of the MoS{sub 2} films. The current density versus voltage (J-V) characteristics of the junction were investigated. A typical J-V rectifying effect with a turn-on voltage of 0.2 V was shown. In different voltage range, the electrical transporting of the junction was dominated by diffusion current and recombination current, respectively. Under the light illumination of 15 mW cm{sup −2}, the p-n junction exhibited obvious photovoltaic characteristics with a short-circuit current density of 3.2 mA cm{sup −2} and open-circuit voltage of 0.14 V. The fill factor and energy conversion efficiency were 42.4% and 1.3%, respectively. According to the determination of the Fermi-energy level (∼4.65 eV) and energy-band gap (∼1.45 eV) of the MoS{sub 2} films by capacitance-voltage curve and ultraviolet-visible transmission spectra, the mechanisms of the electrical and photovoltaic characteristics were discussed in terms of the energy-band structure of the MoS{sub 2}/Si p-n junctions. The results hold the promise for the integration of MoS{sub 2} thin films with commercially available Si-based electronics in high-efficient photovoltaic devices.

  8. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gong, Yongji; Lei, Sidong; Lou, Jun; Liu, Zheng; Vajtai, Robert; Zhou, Wu; Ajayan, Pullikel M.; Ye, Gonglan; Li, Bo; He, Yongmin; et al

    2015-08-03

    Two dimensional (2D) materials have attracted great attention due to their unique properties and atomic thickness. Although various 2D materials have been successfully synthesized with different optical and electrical properties, a strategy for fabricating 2D heterostructures must be developed in order to construct more complicated devices for practical applications. Here we demonstrate for the first time a two-step chemical vapor deposition (CVD) method for growing transition-metal dichalcogenide (TMD) heterostructures, where MoSe2 was synthesized first and followed by an epitaxial growth of WSe2 on the edge and on the top surface of MoSe2. Compared to previously reported one-step growth methods, thismore » two-step growth has the capability of spatial and size control of each 2D component, leading to much larger (up to 169 μm) heterostructure size, and cross-contamination can be effectively minimized. Furthermore, this two-step growth produces well-defined 2H and 3R stacking in the WSe2/MoSe2 bilayer regions and much sharper in-plane interfaces than the previously reported MoSe2/WSe2 heterojunctions obtained from one-step growth methods. The resultant heterostructures with WSe2/MoSe2 bilayer and the exposed MoSe2 monolayer display rectification characteristics of a p-n junction, as revealed by optoelectronic tests, and an internal quantum efficiency of 91% when functioning as a photodetector. As a result, a photovoltaic effect without any external gates was observed, showing incident photon to converted electron (IPCE) efficiencies of approximately 0.12%, providing application potential in electronics and energy harvesting.« less

  9. Thermal aging modeling and validation on the Mo containing Fe-Cr-Ni alloys

    SciTech Connect (OSTI)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-04-01

    Thermodynamics of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys is critical knowledge to understand thermal aging effect on the phase stability of Mo-containing austenitic steels, which subsequently facilitates alloy design/improvement and degradation mitigation of these materials for reactor applications. Among the intermetallic phases, Chi (χ), Laves, and Sigma (σ) are often of concern because of their tendency to cause embrittlement of the materials. The focus of this study is thermal stability of the Chi and Laves phases as they were less studied compared to the Sigma phase. Coupled with thermodynamic modeling, thermal stability of intermetallic phases in Mo containing Fe-Cr-Ni alloys was investigated at 1000, 850 and 700 C for different annealing times. The morphologies, compositions and crystal structures of the precipitates of the intermetallic phases were carefully examined by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and transmission electron microscopy. Three key findings resulted from this study. First, the Chi phase is stable at high temperature, and with decreasing temperature it transforms into the Laves phase that is stable at low temperature. Secondly, Cr, Mo, Ni are soluble in both the Chi and Laves phases, with the solubility of Mo playing a major role in the relative stability of the intermetallic phases. Thirdly, in situ transformation from Chi phase to Laves phase was directly observed, which increased the local strain field, generated dislocations in the intermetallic phases, and altered the precipitate phase orientation relationship with the austenitic matrix. The thermodynamic models that were developed and validated were then applied to evaluating the effect of Mo on the thermal stability of intermetallic phases in type 316 and NF709 stainless steels.

  10. SEM and TEM Characterization of As-Fabricated U-7Mo Disperson Fuel Plates

    SciTech Connect (OSTI)

    D. D. Keiser, Jr.; B. Yao; E. Perez; Y. H. Sohn

    2009-11-01

    The starting microstructure of a dispersion fuel plate can have a dramatic impact on the overall performance of the plate during irradiation. To improve the understanding of the as-fabricated microstructures of dispersion fuel plates, SEM and TEM analysis have been performed on RERTR-9A archive fuel plates, which went through an additional hot isostatic procsssing (HIP) step during fabrication. The fuel plates had depleted U-7Mo fuel particles dispersed in either Al-2Si or 4043 Al alloy matrix. For the characterized samples, it was observed that a large fraction of the ?-phase U-7Mo alloy particles had decomposed during fabrication, and in areas near the fuel/matrix interface where the transformation products were present significant fuel/matrix interaction had occurred. Relatively thin Si-rich interaction layers were also observed around the U-7Mo particles. In the thick interaction layers, (U)(Al,Si)3 and U6Mo4Al43 were identified, and in the thin interaction layers U(Al,Si)3, U3Si3Al2, U3Si5, and USi1.88-type phases were observed. The U3Si3Al2 phase contained some Mo. Based on the results of this work, exposure of dispersion fuel plates to relatively high temperatures during fabrication impacts the overall microstructure, particularly the nature of the interaction layers around the fuel particles. The time and temperature of fabrication should be carefully controlled in order to produce the most uniform Si-rich layers around the U-7Mo particles.

  11. Primary arm spacing in chill block melt spun Ni-Mo alloys

    SciTech Connect (OSTI)

    Tewari, S.N.; Glasgow, T.K.

    1986-01-01

    Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt % Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacings measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.

  12. Neutrino-nucleus scattering of {sup 95,97}Mo and {sup 116}Cd

    SciTech Connect (OSTI)

    Ydrefors, E.; Almosly, W.; Suhonen, J.

    2013-12-30

    Accurate knowledge about the nuclear responses to supernova neutrinos for relevant nuclear targets is important both for neutrino detection and for astrophysical applications. In this paper we discuss the cross sections for the charged-current neutrino-nucleus scatterings off {sup 95,97}Mo and {sup 116}Cd. The microscopic quasiparticle-phonon model is adopted for the odd-even nuclei {sup 95,97}Mo. In the case of {sup 116}Cd we present cross sections both for the Bonn one-boson-exchange potential and self-consistent calculations based on modern Skyrme interactions.

  13. Morgan Wascko Imperial College London M.O. Wascko FNAL User's Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the BooNEs Morgan Wascko Imperial College London M.O. Wascko FNAL User's Meeting M. Sorel Goals of the BooNEs * MiniBooNE: Confirm or rule out LSND * SciBooNE: * Near detector measurements for MiniBooNE * Precise cross section measurements * Especially useful for T2K 2 M.O. Wascko FNAL User's Meeting Goals of the BooNEs * MiniBooNE: Confirm or rule out LSND * SciBooNE: * Near detector measurements for MiniBooNE * Precise cross section measurements * Especially useful for T2K 2 W + ν µ n p

  14. Persistent photoconductivity in two-dimensional Mo1-xW xSe2–MoSe2 van der Waals heterojunctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Puretzky, Alexander A.; Basile, Leonardo; Idrobo, Juan Carlos; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai; Li, Xufan; Lin, Ming -Wei; Wang, Kei

    2016-02-16

    Van der Waals (vdW) heterojunctions consisting of vertically-stacked individual or multiple layers of two-dimensional (2D) layered semiconductors, especially the transition metal dichalcogenides (TMDs), are fascinating new artificial solids just nanometers-thin that promise novel optoelectronic functionalities due to the sensitivity of their electronic and optical properties to strong quantum confinement and interfacial interactions. Here, monolayers of n-type MoSe2 and p-type Mo1-xW xSe2–MoSe2 are grown by vapor transport methods, then transferred and stamped to form artificial vdW heterostructures with different interlayer orientations. Atomic-resolution Z-contrast electron microscopy and electron diffraction are used to characterize both the individual monolayers and the atomic registry betweenmore » layers in the bilayer vdW heterostructures. These measurements are compared with photoluminescence and low-frequency Raman spectroscopy, which indicates strong interlayer coupling in heterostructures. Remarkably, the heterojunctions exhibit an unprecedented photoconductivity effect that persists at room temperature for several days. This persistent photoconductivity is shown to be tunable by applying a gate bias that equilibrates the charge distribution. Furthermore, these measurements indicate that such ultrathin vdW heterojunctions can function as rewritable optoelectronic switches or memory elements under time-dependent photo-illumination, an effect which appears promising for new monolayer TMDs-based optoelectronic devices applications.« less

  15. Catalytic activity in lithium-treated core–shell MoOx/MoS2 nanowires

    SciTech Connect (OSTI)

    Cummins, Dustin R.; Martinez, Ulises; Kappera, Rajesh; Voiry, Damien; Martinez-Garcia, Alejandro; Jasinski, Jacek; Kelly, Dan; Chhowalla, Manish; Mohite, Aditya D.; Sunkara, Mahendra K.; Gupta, Gautam

    2015-09-22

    Significant interest has grown in the development of earth-abundant and efficient catalytic materials for hydrogen generation. Layered transition metal dichalcogenides present opportunities for efficient electrocatalytic systems. Here, we report the modification of 1D MoOx/MoS2 core–shell nanostructures by lithium intercalation and the corresponding changes in morphology, structure, and mechanism of H2 evolution. The 1D nanowires exhibit significant improvement in H2 evolution properties after lithiation, reducing the hydrogen evolution reaction (HER) onset potential by ~50 mV and increasing the generated current density by ~600%. The high electrochemical activity in the nanowires results from disruption of MoS2 layers in the outer shell, leading to increased activity and concentration of defect sites. This is in contrast to the typical mechanism of improved catalysis following lithium exfoliation, i.e., crystal phase transformation. As a result, these structural changes are verified by a combination of Raman and X-ray photoelectron spectroscopy (XPS).

  16. Photoelectron imaging spectroscopy of MoC{sup −} and NbN{sup −} diatomic anions: A comparative study

    SciTech Connect (OSTI)

    Liu, Qing-Yu; Li, Zi-Yu; He, Sheng-Gui E-mail: chenh@iccas.ac.cn; Hu, Lianrui; Chen, Hui E-mail: chenh@iccas.ac.cn; Ning, Chuan-Gang; Ma, Jia-Bi

    2015-04-28

    The isoeletronic diatomic MoC{sup −} and NbN{sup −} anions have been prepared by laser ablation and studied by photoelectron imaging spectroscopy combined with quantum chemistry calculations. The photoelectron spectra of NbN{sup −} can be very well assigned on the basis of literature reported optical spectroscopy of NbN. In contrast, the photoelectron spectra of MoC{sup −} are rather complex and the assignments suffered from the presence of many electronically hot bands and limited information from the reported optical spectroscopy of MoC. The electron affinities of NbN and MoC have been determined to be 1.450 ± 0.003 eV and 1.360  ±  0.003 eV, respectively. The good resolution of the imaging spectroscopy provided a chance to resolve the Ω splittings of the X{sup 3}Σ{sup −} (Ω = 0 and 1) state of MoC and the X{sup 4}Σ{sup −} (Ω = 1/2 and 3/2) state of MoC{sup −} for the first time. The spin-orbit splittings of the X{sup 2}Δ state of NbN{sup −} and the a{sup 2}Δ state of MoC{sup −} were also determined. The similarities and differences between the electronic structures of the NbN and MoC systems were discussed.

  17. SULFUR CHEMISTRY IN THE INTERSTELLAR MEDIUM: THE EFFECT OF VIBRATIONAL EXCITATION OF H{sub 2} IN THE REACTION S{sup +}+H{sub 2} →SH{sup +}+H

    SciTech Connect (OSTI)

    Zanchet, Alexandre; Herrero, Victor J.; Agúndez, Marcelino; Aguado, Alfredo; Roncero, Octavio

    2013-11-01

    Specific rate constants for the S{sup +}+H{sub 2} reaction are calculated using the ground quartet state potential energy surface and quasi-classical trajectories method. The calculations are performed for H{sub 2} in different vibrational states v = 0-4 and thermal conditions for rotational and translational energies. The calculations lead to slow rate constants for the H{sub 2} vibrational levels v = 0, 1, but a significant enhancement of reactivity is observed when v > 1. The inverse reaction is also studied and rate constants for v = 0 are presented. For comparison, we also recompile previous results of state-to-state rate constants of the C{sup +}+H{sub 2} for H{sub 2} in rovibrational state v, j = (0,0), (1,0), (1,1), and (2,0). The calculated rate coefficients are fitted using an improved form of the standard three-parameter Arrhenius-like equation, which is found to be very accurate in fitting rate constants over a wide range of temperatures (10-4000 K). We investigate the impact of the calculated rate coefficients on the formation of SH{sup +} in the photon-dominated region Orion Bar and find an abundance enhancement of nearly three orders of magnitude when the reaction of S{sup +} with vibrationally excited H{sub 2} is taken into account. The title reaction is thus one of the principal mechanisms in forming SH{sup +} in interstellar clouds.

  18. High blue-near ultraviolet photodiode response of vertically stacked graphene-MoS{sub 2}-metal heterostructures

    SciTech Connect (OSTI)

    Wi, Sungjin; Chen, Mikai; Nam, Hongsuk; Liu, Amy C.; Meyhofer, Edgar; Liang, Xiaogan

    2014-06-09

    We present a study on the photodiode response of vertically stacked graphene/MoS{sub 2}/metal heterostructures in which MoS{sub 2} layers are doped with various plasma species. In comparison with undoped heterostructures, such doped ones exhibit significantly improved quantum efficiencies in both photovoltaic and photoconductive modes. This indicates that plasma-doping-induced built-in potentials play an important role in photocurrent generation. As compared to indium-tin-oxide/ MoS{sub 2}/metal structures, the presented graphene/MoS{sub 2}/metal heterostructures exhibit greatly enhanced quantum efficiencies in the blue-near ultraviolet region, which is attributed to the low density of recombination centers at graphene/MoS{sub 2} heterojunctions. This work advances the knowledge for making photo-response devices based on layered materials.

  19. Single-layer MoS{sub 2} roughness and sliding friction quenching by interaction with atomically flat substrates

    SciTech Connect (OSTI)

    Quereda, J.; Castellanos-Gomez, A.; Agrat, N.; Rubio-Bollinger, G.

    2014-08-04

    We experimentally study the surface roughness and the lateral friction force in single-layer MoS{sub 2} crystals deposited on different substrates: SiO{sub 2}, mica, and hexagonal boron nitride (h-BN). Roughness and sliding friction measurements are performed by atomic force microscopy. We find a strong dependence of the MoS{sub 2} roughness on the underlying substrate material, being h-BN the substrate which better preserves the flatness of the MoS{sub 2} crystal. The lateral friction also lowers as the roughness decreases, and attains its lowest value for MoS{sub 2} flakes on h-BN substrates. However, it is still higher than for the surface of a bulk MoS{sub 2} crystal, which we attribute to the deformation of the flake due to competing tip-to-flake and flake-to-substrate interactions.

  20. MoS{sub 2} functionalization for ultra-thin atomic layer deposited dielectrics

    SciTech Connect (OSTI)

    Azcatl, Angelica; McDonnell, Stephen; Santosh, K.C.; Peng, Xin; Dong, Hong; Qin, Xiaoye; Addou, Rafik; Lu, Ning; Kim, Moon J.; Cho, Kyeongjae; Wallace, Robert M.; Mordi, Greg I.; Kim, Jiyoung

    2014-03-17

    The effect of room temperature ultraviolet-ozone (UV-O{sub 3}) exposure of MoS{sub 2} on the uniformity of subsequent atomic layer deposition of Al{sub 2}O{sub 3} is investigated. It is found that a UV-O{sub 3} pre-treatment removes adsorbed carbon contamination from the MoS{sub 2} surface and also functionalizes the MoS{sub 2} surface through the formation of a weak sulfur-oxygen bond without any evidence of molybdenum-sulfur bond disruption. This is supported by first principles density functional theory calculations which show that oxygen bonded to a surface sulfur atom while the sulfur is simultaneously back-bonded to three molybdenum atoms is a thermodynamically favorable configuration. The adsorbed oxygen increases the reactivity of MoS{sub 2} surface and provides nucleation sites for atomic layer deposition of Al{sub 2}O{sub 3}. The enhanced nucleation is found to be dependent on the thin film deposition temperature.

  1. Ferromagnetic superexchange in insulating Cr2MoO6 by controlling orbital hybridization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, M.; Do, D.; Dela Cruz, Clarina R.; Dun, Zhiling; Cheng, J. -G.; Goto, H.; Uwatoko, Yoshiya; Zou, T.; Zhou, Haidon D.; Mahanti, Subhendra D.; et al

    2015-09-11

    We report the magnetic and electronic structures of the newly synthesized inverse-trirutile compound Cr2MoO6. Despite the same crystal symmetry and similar bond-lengths and bond-angles to Cr2TeO6, Cr2MoO6 possesses a magnetic structure of the Cr2MoO6 type, different from that seen in Cr2TeO6. Ab-initio electronic structure calculations show that the sign and strength of the Cr-O-Cr exchange coupling is strongly influenced by the hybridization between Mo 4d and O 2p orbitals. This result further substantiates our recently proposed mechanism for tuning the exchange interaction between two magnetic atoms by modifying the electronic states of the non-magnetic atoms in the exchange path throughmore » orbital hybridization. This approach is fundamentally different from the conventional methods of controlling the exchange interaction by either carrier injection or through structural distortions.« less

  2. Equation of state of bcc-Mo by static volume compression to 410 GPa

    SciTech Connect (OSTI)

    Akahama, Yuichi; Hirao, Naohisa; Ohishi, Yasuo; Singh, Anil K.

    2014-12-14

    Unit cell volumes of Mo and Pt have been measured simultaneously to ≈400 GPa by x-ray powder diffraction using a diamond anvil cell and synchrotron radiation source. The body-centered cubic (bcc) phase of Mo was found to be stable up to 410 GPa. The equation of state (EOS) of bcc-Mo was determined on the basis of Pt pressure scale. A fit of Vinet EOS to the volume compression data gave K{sub 0} = 262.3(4.6) GPa, K{sub 0}′ = 4.55(16) with one atmosphere atomic volume V{sub 0} = 31.155(24) A{sup 3}. The EOS was in good agreement with the previous ultrasonic data within pressure difference of 2.5%–3.3% in the multimegabar range, though the EOS of Mo proposed from a shock compression experiment gave lower pressure by 7.2%–11.3% than the present EOS. The agreement would suggest that the Pt pressure scale provides an accurate pressure value in an ultra-high pressure range.

  3. The Microstructure of Rolled Plates from Cast Billets of U-10Mo Alloys

    SciTech Connect (OSTI)

    Nyberg, Eric A.; Joshi, Vineet V.; Burkes, Douglas; Lavender, Curt A.

    2015-03-01

    This report covers the examination of 13 samples of rolled plates from three separate castings of uranium, alloyed with 10 wt% molybdenum (U-10Mo) which were sent from the Y-12 National Security Complex (Y12) to the Pacific Northwest National Laboratory (PNNL).

  4. A New Molybdenum Nitride Catalyst with Rhombohedral MoS2 Structure for Hydrogenation Applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Shanmin; Ge, Hui; Sun, Shouli; Zhang, Jianzhong; Liu, Fangming; Wen, Xiaodong; Yu, Xiaohui; Wang, Liping; Zhang, Yi; Xu, Hongwu; et al

    2015-03-23

    Nitrogen-rich transition-metal nitrides hold great promise to be the next-generation catalysts for clean and renewable energy applications. However, incorporation of nitrogen into the crystalline lattices of transition metals is thermodynamically unfavorable at atmospheric pressure; most of the known transition metal nitrides are nitrogen-deficient with molar ratios of N:metal less than a unity. In this work, we have formulated a high-pressure route for the synthesis of a nitrogen-rich molybdenum nitride through a solid-state ion-exchange reaction. The newly discovered nitride, 3R-MoN2, adopts a rhombohedral R3m structure, isotypic with MoS2. This new nitride exhibits catalytic activities that are three times more active thanmore » the traditional catalyst MoS2 for the hydrodesulfurization of dibenzothiophene and more than twice as high in the selectivity to hydrogenation. The nitride is also catalytically active in sour methanation of syngas with >80% CO and H2 conversion at 723 K. Lastly, our formulated route for the synthesis of 3R-MoN2 is at a moderate pressure of 3.5 GPa and, thus, is feasible for industrial-scale catalyst production.« less

  5. Magnetic Force Microscopy Study of Zr2Co11 -Based Nanocrystalline Materials: Effect of Mo Addition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Lanping; Jin, Yunlong; Zhang, Wenyong; Sellmyer, David J.

    2015-01-01

    Tmore » he addition of Molybdenum was used to modify the nanostructure and enhance coercivity of rare-earth-free Zr2Co11-based nanocrystalline permanent magnets. he effect of Mo addition on magnetic domain structures of melt spun nanocrystalline Zr16Co84-xMox(x=0, 0.5, 1, 1.5, and 2.0) ribbons has been investigated. It was found that magnetic properties and local domain structures are strongly influenced by Mo doping. he coercivity of the samples increases with the increase in Mo content (x≤1.5). he maximum energy product(BH)maxincreases with increasingxfrom 0.5 MGOe forx=0to a maximum value of 4.2 MGOe forx=1.5. he smallest domain size with a relatively short magnetic correlation length of 128 nm and largest root-mean-square phase shiftΦrmsvalue of 0.66° are observed for thex=1.5. he optimal Mo addition promotes magnetic domain structure refinement and thus leads to a significant increase in coercivity and energy product in this sample.« less

  6. On the combined gradient-stochastic plasticity model: Application to Mo-micropillar compression

    SciTech Connect (OSTI)

    Konstantinidis, A. A.; Zhang, X.; Aifantis, E. C.

    2015-02-17

    A formulation for addressing heterogeneous material deformation is proposed. It is based on the use of a stochasticity-enhanced gradient plasticity model implemented through a cellular automaton. The specific application is on Mo-micropillar compression, for which the irregularities of the strain bursts observed have been experimentally measured and theoretically interpreted through Tsallis' q-statistics.

  7. Effect of mechanical strain on electronic properties of bulk MoS{sub 2}

    SciTech Connect (OSTI)

    Kumar, Sandeep Kumar, Jagdish Sastri, O. S. K. S.

    2015-05-15

    Ab-initio density functional theory based calculations of electronic properties of bulk and monolayer Molybdenum di-Sulfide (MoS{sub 2}) have been performed using all electron Full Potential Linearised Augmentad Plane Wave (FPLAPW) method using Elk code. We have used Generalised Gradient Approximation (GGA) for exchange and correlation functionals and performed calculaitons of Lattice parameters, Density Of States (DOS) and Band Structure (BS). Band structure calculations revealed that bulk MoS{sub 2} has indirect band gap of 0.97 eV and mono-layer MoS{sub 2} has direct band gap which has increased to 1.71 eV. These are in better agreement with experimental values as compared with the other calculations using pseudo-potential code. The effect of mechanical strain on the electronic properties of bulk MoS{sub 2} has also been studied. For the different values of compressive strain (varying from 2% to 8% in steps of 2%) along the c-axis, the corresponding DOS and BS are obtained. We observed that the band gap decreases by about 15% for every 2% increase in strain along the c-axis.

  8. Electric contributions to magnetic force microscopy response from graphene and MoS{sub 2} nanosheets

    SciTech Connect (OSTI)

    Li, Lu Hua Chen, Ying

    2014-12-07

    Magnetic force microscopy (MFM) signals have recently been detected from whole pieces of mechanically exfoliated graphene and molybdenum disulfide (MoS{sub 2}) nanosheets, and magnetism of the two nanomaterials was claimed based on these observations. However, non-magnetic interactions or artefacts are commonly associated with MFM signals, which make the interpretation of MFM signals not straightforward. A systematic investigation has been done to examine possible sources of the MFM signals from graphene and MoS{sub 2} nanosheets and whether the MFM signals can be correlated with magnetism. It is found that the MFM signals have significant non-magnetic contributions due to capacitive and electrostatic interactions between the nanosheets and conductive cantilever tip, as demonstrated by electric force microscopy and scanning Kevin probe microscopy analyses. In addition, the MFM signals of graphene and MoS{sub 2} nanosheets are not responsive to reversed magnetic field of the magnetic cantilever tip. Therefore, the observed MFM response is mainly from electric artefacts and not compelling enough to correlate with magnetism of graphene and MoS{sub 2} nanosheets.

  9. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    SciTech Connect (OSTI)

    Kundrát, Vojtěch; Sullivan, John; Ye, Haitao; Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin

    2015-04-15

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) – tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  10. Effect of Na-doped Mo on Selenization Pathways for CuGa/In Metallic Precursors

    SciTech Connect (OSTI)

    Krishnan, Rangarajan; Tong, Gabriel; Kim, Woo Kyoung; Payzant, E Andrew; Adelhelm, Christoph; Franzke, Enrico; Winkler, Jörg; Anderson, Timothy J

    2013-01-01

    Reaction pathways were followed for selenization of CuGa/In precursor structures using in-situ high temperature X-ray diffraction (HTXRD). Precursor films were deposited on Na-free and Na-doped Mo (3 and 5 at %)/Na-free glass. The precursor film was constituted with CuIn, In, Cu9Ga4, Cu3Ga, Cu16In9 and Mo. HTXRD measurements during temperature ramp selenization showed CIS formation occurs first, followed by CGS formation, and then mixing on the group III sub-lattice to form CIGS. CIGS formation was observed to be complete at ~450 C for samples deposited on 5 at % Na-doped Mo substrates. MoSe2 formation was evidenced after the CIGS synthesis reaction was complete. The Ga distribution in the annealed CIGS was determined by Rietveld refinement. Isothermal reaction studies were conducted for CIGS (112) formation in the temperature range 260-320 C to estimate the rate constants.

  11. EIS-0475: Disposition of the Bannister Federal Complex, Kansas City, MO

    Office of Energy Efficiency and Renewable Energy (EERE)

    NNSA/DOE announces its intent to prepare an EIS for the disposition of the Bannister Federal Complex, Kansas City, MO. NNSA previously decided in a separate NEPA review (EA-1592) to relocate its operations from the Bannister Federal Complex to a newly constructed industrial campus eight miles from the current location.

  12. MoSi 2 Oxidation in 670-1498 K Water Vapor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sooby Wood, Elizabeth; Parker, Stephen S.; Nelson, Andrew T.; Maloy, Stuart A.; Butt, D.

    2016-03-08

    Molybdenum disilicide (MoSi2) has well documented oxidation resistance at high temperature (T > 1273 K) in dry O2 containing atmospheres due to the formation of a passive SiO2 surface layer. But, its behavior under atmospheres where water vapor is the dominant species has received far less attention. Oxidation testing of MoSi2 was performed at temperatures ranging from 670–1498 K in both 75% water vapor and synthetic air (Ar-O2, 80%–20%) containing atmospheres. Here the thermogravimetric and microscopy data describing these phenomena are presented. Over the temperature range investigated, MoSi2 displays more mass gain in water vapor than in air. The oxidationmore » kinetics observed in water vapor differ from that of the air samples. Two volatile oxides, MoO2(OH)2 and Si(OH)4, are thought to be the species responsible for the varied kinetics, at 670–877 K and at 1498 K, respectively. Finally, we observed an increase in oxidation (140–300 mg/cm2) from 980–1084 K in water vapor, where passivation is observed in air.« less

  13. Interaction Layer Characteristics in U-xMo Dispersion/Monolithic Fuels

    SciTech Connect (OSTI)

    D. L. Porter

    2010-11-01

    Published data concerning the interaction layer (IL) formed between U-xMo fuel alloy and aluminum (Al)-based matrix or cladding materials was reviewed, including the effects of silicon (Si) content in the matrix/cladding, molybdenum (Mo) content in the fuel, pre irradiation thermal treatments, irradiation, and test temperature. The review revealed that tests conducted in the laboratory produce results different from those conducted in an irradiation environment. However, the laboratory testing relates well to thermal treatments performed prior to irradiation and helps in understanding the effects that these pre irradiation treatments have on in reactor performance. A pre-formed, Si-enriched IL seems to be important in delaying the onset of rapid growth of fission gas bubbles at low irradaiiation temperatures. Several other conclusions can be drawn: 1. An IL with phases akin to UAl3 is desired for optimum fuel performance, but at low temperatures, and especially in an irradiation atmosphere, the desired (Al+Si)/(U+Mo) ratio of three is difficult to produce. When the fuel operating temperature is low, it is important to create a pre-irradiation IL, enriched in Si. This pre-formed IL is relatively stable, performs well in terms of swelling resistance, and prevents rapid IL growth during irradiation. 2. At higher operating temperatures (>150–170°C), IL formation in reactor may not be so dependent on pre-irradiation IL formation, especially at high burnup; a pre-fabricated IL seems to be less stable at high burnup and high operating temperature. Moreover, the (Al+SI)/(U+Mo) ratio of three occurs more often at higher temperature. For these two reasons, it is important at high operating temperature to also have a matrix with significant Si content to create an IL in reactor with the right characteristics. 3. Out-of-reactor testing seems to indicate that Si in the matrix material is required in some concentration (2%, 5%, ?) to provide for a thin, Si-enriched IL formed

  14. Novel Processing of mo-si-b Intermetallics for improved efficiency of power systems

    SciTech Connect (OSTI)

    M.J. Kramer; O. Degirmen; A.J. Thom; M. Akinc

    2004-09-30

    Multiphase composite alloys based on the Mo-Si-B system are candidate materials for ultra-high temperature applications. In non load-bearing applications such as thermal barrier coatings or heat exchangers in fossil fuel burners, these materials may be ideally suited. Alloys based on the Mo{sub 5}Si{sub 3}B{sub x} phase (Tl phase) possess excellent oxidation resistance to at least 1600 C in synthetic air atmospheres. However, the ability of Tl-based alloys to resist aggressive combustion environments has not yet been determined. The present work seeks to investigate the resistance of these Mo-Si-B alloys to simulated combustion atmospheres. Material was pre-alloyed by combustion synthesis, and samples for testing were prepared by classic powder metallurgical processing techniques. Precursor material synthesized by self-heating-synthesis was sintered to densities exceeding 98% in an argon atmosphere at 1800 C. The approximate phase assemblage of the material was 57% Tl, 29% MoB, 14% MoSi{sub 2} (wt%). The alloy was oxidized from 1000-1100 C in flowing air containing water vapor at 18 Torr. At 1000 C the material achieved a steady state mass loss, and at 1100 C the material undergoes a steady state mass gain. The oxidation rate of these alloys in this temperature regime was accelerated by the presence of water vapor compared to oxidation in dry air. The results of microstructural analysis of the tested alloys will be discussed. Techniques and preliminary results for fabricating near-net-shaped parts will also be presented.

  15. Modeling of Interaction Layer Growth Between U-Mo Particles and an Al Matrix

    SciTech Connect (OSTI)

    Yeon Soo Kim; G. L. Hofman; Ho Jin Ryu; Jong Man Park; A. B. Robinson; D. M. Wachs

    2013-12-01

    Interaction layer growth between U-Mo alloy fuel particles and Al in a dispersion fuel is a concern due to the volume expansion and other unfavorable irradiation behavior of the interaction product. To reduce interaction layer (IL) growth, a small amount of Si is added to the Al. As a result, IL growth is affected by the Si content in the Al matrix. In order to predict IL growth during fabrication and irradiation, empirical models were developed. For IL growth prediction during fabrication and any follow-on heating process before irradiation, out-of-pile heating test data were used to develop kinetic correlations. Two out-of-pile correlations, one for the pure Al matrix and the other for the Al matrix with Si addition, respectively, were developed, which are Arrhenius equations that include temperature and time. For IL growth predictions during irradiation, the out-of-pile correlations were modified to include a fission-rate term to consider fission enhanced diffusion, and multiplication factors to incorporate the Si addition effect and the effect of the Mo content. The in-pile correlation is applicable for a pure Al matrix and an Al matrix with the Si content up to 8 wt%, for fuel temperatures up to 200 degrees C, and for Mo content in the range of 6 10wt%. In order to cover these ranges, in-pile data were included in modeling from various tests, such as the US RERTR-4, -5, -6, -7 and -9 tests and Koreas KOMO-4 test, that were designed to systematically examine the effects of the fission rate, temperature, Si content in Al matrix, and Mo content in U-Mo particles. A model converting the IL thickness to the IL volume fraction in the meat was also developed.

  16. The carburization of transition metal molybdates (MxMoO?, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO? hydrogenation

    SciTech Connect (OSTI)

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; Stachiola, Dario; Brito, Joaquin L.

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo?C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu?(MoO?)?(OH)?, a-NiMoO? and CoMoO?nH?O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was ?-Mo?C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu?, Ni? and Co? cations inside each molybdate. The synthesized Cu/Mo?C, Ni/Mo?C and Co/Mo?C catalysts were highly active for the hydrogenation of CO?. The metal/Mo?C systems exhibited large variations in the selectivity towards methanol, methane and CnH?n?? (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo?C displayed a high selectivity for CO and methanol production. Ni/Mo?C and Co/Mo?C were the most active catalysts for the activation and full decomposition of CO?, showing high selectivity for the production of methane (Ni case) and CnH?n?? (n > 2) hydrocarbons (Co case).

  17. MoS{sub 2}@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties

    SciTech Connect (OSTI)

    Tan, Ying-Hua; Yu, Ke Li, Jin-Zhu; Fu, Hao; Zhu, Zi-Qiang

    2014-08-14

    The molybdenum disulfide (MoS{sub 2})@ZnO nano-heterojunctions were successfully fabricated through a facile three-step synthetic process: prefabrication of the ZnO nanoparticles, the synthesis of MoS{sub 2} nanoflowers, and the fabrication of MoS{sub 2}@ZnO heterojunctions, in which ZnO nanoparticles were uniformly self-assembled on the MoS{sub 2} nanoflowers by utilizing polyethyleneimine as a binding agent. The photocatalytic activities of the composite samples were evaluated by monitoring the photodegradation of methylene blue (MB). Compared with pure MoS{sub 2} nanoflowers, the composites show higher adsorption capability in dark and better photocatalytic efficiency due to the increased specific surface area and improved electron-hole pair separation. After irradiation for 100?min, the remaining MB in solution is about 7.3%. Moreover, the MoS{sub 2}@ZnO heterojunctions possess enhanced field emission properties with lower turn-on field of 3.08?V ?m{sup ?1}and lower threshold field of 6.9?V ?m{sup ?1} relative to pure MoS{sub 2} with turn-on field of 3.65?V ?m{sup ?1} and threshold field of 9.03?V ?m{sup ?1}.

  18. Microstructural Characterization of U-7Mo/Al-Si Alloy Matrix Dispersion Fuel Plates Fabricated at 500°C

    SciTech Connect (OSTI)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Bo Yao; Emmanuel Perez; Yongho Sohn; Curtis R. Clark

    2011-05-01

    The starting microstructure of a dispersion fuel plate will impact the overall performance of the plate during irradiation. To improve the understanding of the as-fabricated microstructures of U–Mo dispersion fuel plates, particularly the interaction layers that can form between the fuel particles and the matrix, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses have been performed on samples from depleted U–7Mo (U–7Mo) dispersion fuel plates with either Al–2 wt.% Si(Al–2Si) or AA4043 alloy matrix. It was observed that in the thick interaction layers, U(Al, Si)3 and U6Mo4Al43 were present, and in the thin interaction layers, (U, Mo) (Al, Si)3, U(Al, Si)4, U3Si3Al2, U3Si5, and possibly USi-type phases were observed. The U3Si3Al2 phase contained some Mo. Based on the results of this investigation, the time that a dispersion fuel plate is exposed to a relatively high temperature during fabrication will impact the nature of the interaction layers around the fuel particles. Uniformly thin, Si-rich layers will develop around the U–7Mo particles for shorter exposure times, and thicker, Si-depleted layers will develop for the longer exposure times.

  19. Theoretical study on strain induced variations in electronic properties of 2H-MoS{sub 2} bilayer sheets

    SciTech Connect (OSTI)

    Dong, Liang; Dongare, Avinash M.; Namburu, Raju R.; O'Regan, Terrance P.; Dubey, Madan

    2014-02-03

    The strain dependence of the electronic properties of bilayer sheets of 2H-MoS{sub 2} is studied using ab initio simulations based on density functional theory. An indirect band gap for bilayer MoS{sub 2} is observed for all variations of strain along the basal plane. Several transitions for the indirect band gap are observed for various strains for the bilayer structure. The variation of the band gap and the carrier effective masses for the holes and the electrons for the bilayer MoS{sub 2} structure under conditions of uniaxial strain, biaxial strain, as well as uniaxial stress is investigated.

  20. AMoRE: Collaboration for searches for the neutrinoless double-beta decay of the isotope of {sup 100}Mo with the aid of {sup 40}Ca{sup 100}MoO{sub 4} as a cryogenic scintillation detector

    SciTech Connect (OSTI)

    Khanbekov, N. D., E-mail: xanbekov@gmail.com [Institute of Theoretical and Experimental Physics (Russian Federation)

    2013-09-15

    The AMoRE (Advanced Mo based Rare process Experiment) Collaboration is planning to employ {sup 40}Ca{sup 100}MoO{sub 4} single crystals as a cryogenic Scintillation detector for studying the neutrinoless double-beta decay of the isotope {sup 100}Mo. A simultaneous readout of phonon and scintillation signals is performed in order to suppress the intrinsic background. The planned sensitivity of the experiment that would employ 100 kg of {sup 40}Ca{sup 100}MoO{sub 4} over five years of data accumulation would be T{sub 1/2}{sup 0{nu}} = 3 Multiplication-Sign 10{sup 26} yr, which corresponds to values of the effective Majorana neutrino mass in the range of Left-Pointing-Angle-Bracket m{sub {nu}} Right-Pointing-Angle-Bracket {approx} 0.02-0.06 eV.

  1. Bimetallic Nb-Mo carbide hydroprocessing catalysts: Synthesis, characterization, and activity studies

    SciTech Connect (OSTI)

    Yu, C.C.; Ramanathan, S.; Dhandapani, B.; Oyama, S.T.; Chen, J.G.

    1997-01-23

    A series of bimetallic carbides, Nb{sub 1.0}Mo{sub x}OC (x = 0.67-2.0), hydroprocessing catalysts, were synthesized from oxide precursors and were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure, elemental analysis, CO chemisorption, surface area measurements, and temperature-programmed reduction. The catalysts were active for quinoline hydrodenitrogenation and showed highest hydrodesulfurization at Nb{sub 1.0}Mo{sub 1.75}OC. The bimetallic compounds showed enhancement in activity and stability as compared with their monometallic carbides. The spent catalysts did not show any sulfide, oxide, or metal peaks, indicating that the catalysts were stable and tolerant to sulfur. 35 refs., 10 figs., 5 tabs.

  2. Improved performance of U-Mo dispersion fuel by Si addition in Al matrix.

    SciTech Connect (OSTI)

    Kim, Y S; Hofman, G L

    2011-06-01

    The purpose of this report is to collect in one publication and fit together work fragments presented in many conferences in the multi-year time span starting 2002 to the present dealing with the problem of large pore formation in U-Mo/Al dispersion fuel plates first observed in 2002. Hence, this report summarizes the excerpts from papers and reports on how we interpreted the relevant results from out-of-pile and in-pile tests and how this problem was dealt with. This report also provides a refined view to explain in detail and in a quantitative manner the underlying mechanism of the role of silicon in improving the irradiation performance of U-Mo/Al.

  3. A multiscale method for the analysis of defect behavior in MO during electron irradiation

    SciTech Connect (OSTI)

    Rest, J.; Insepov, Z.; Ye, B.; Yun, D.

    2014-10-01

    In order to overcome a lack of experimental information on values for key materials properties and kinetic coefficients, a multiscale modeling approach is applied to defect behavior in irradiated Mo where key materials properties, such as point defect (vacancy and interstitial) migration enthalpies as well as kinetic factors such as dimer formation, defect recombination, and self interstitial–interstitial loop interaction coefficients, are obtained by molecular dynamics calculations and implemented into rate-theory simulations of defect behavior. The multiscale methodology is validated against interstitial loop growth data obtained from electron irradiation of pure Mo. It is shown that the observed linear behavior of the loop diameter vs. the square root of irradiation time is a direct consequence of the 1D migration of self-interstitial atoms.

  4. Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collette, R.; King, J.; Buesch, C.; Keiser, Jr., D. D.; Williams, W.; Miller, B. D.; Schulthess, J.

    2016-04-01

    The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends whenmore » comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. Here, the results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program.« less

  5. Microstructure evolution in solution treated Ti15Mo alloy processed by high pressure torsion

    SciTech Connect (OSTI)

    Jane?ek, Milo; ?ek, Jakub; Strsk, Josef; Vclavov, Kristna; Hruka, Petr; Polyakova, Veronika; Gatina, Svetlana; Semenova, Irina

    2014-12-15

    Microstructure evolution and mechanical properties of ultra-fine grained Ti15Mo alloy processed by high pressure torsion were investigated. High pressure torsion straining resulted in strong grain refinement as-observed by transmission electron microscopy. Microhardness and light microscopy showed two distinct regions (i) a central region with radial material flow and low microhardness (340 HV) and (ii) a peripheral region with rotational material flow and high microhardness (430 HV). Positron annihilation spectroscopy showed that the only detectable defects in the material are dislocations, whose density increases with the radial distance and the number of high pressure torsion revolutions. The local chemical environment around defects does not differ significantly from the average composition. - Highlights: Beta-Ti alloy Ti15Mo was processed by high pressure torsion (HPT). Lateral inhomogeneity of the microstructure and microhardness was found. Dislocations are the only lattice defects detectable by positron annihilation. Molybdenum is not preferentially segregated along dislocation cores.

  6. Handbook for electron beam welding of 8-inch thick 2-1/4 Cr-1 Mo

    SciTech Connect (OSTI)

    Weber, Charles M.

    1980-08-01

    Purpose of this handbook is to provide a detailed procedure for electron beam welding 8 in. thick SA387 Grade 22 Class 2. Adherence to the procedure will allow others to produce electron beam welds in 8 in. thick 2-1/4 Cr-1 Mo. A justification or description of the effects of alterations of the welding procedure is not included in this report. These effects, along with a metallographic characterization and the mechanical properties produced by the welding procedure, etc., are described in report DOE/10244-10, Electron Beam Welding of 8-in. thick 2-1/4 Cr-1 Mo, Final Report under Contract DE-AC05-77OR10244.

  7. LANL Experience Rolling Zr-Clad LEU-10Mo Foils for AFIP-7

    SciTech Connect (OSTI)

    Hammon, Duncan L.; Clarke, Kester D.; Alexander, David J.; Kennedy, Patrick K.; Edwards, Randall L.; Duffield, Andrew N.; Dombrowski, David E.

    2015-05-29

    The cleaning, canning, rolling and final trimming of Low Enriched Uranium-10 wt. pct. Molybdenum (LEU-10Mo) foils for ATR (Advanced Test Reactor) fuel plates to be used in the AFIP-7 (ATR Full Size Plate In Center Flux Trap Position) experiments are summarized. Six Zr-clad foils were produced from two LEU-10Mo castings supplied to Los Alamos National Laboratory (LANL) by Y-12 National Security Complex. Details of cleaning and canning procedures are provided. Hot- and cold-rolling results are presented, including rolling schedules, images of foils in-process, metallography and local compositions of regions of interest, and details of final foil dimensions and process yield. This report was compiled from the slides for the presentation of the same name given by Duncan Hammon on May 12, 2011 at the AFIP-7 Lessons Learned meeting in Salt Lake City, UT, with Los Alamos National Laboratory document number LA-UR 11-02898.

  8. Determination of the direct double- β -decay Q value of Zr 96 and atomic masses of Zr 90 <mo>-> 92 <mo>,> 94 <mo>,> 96 and Mo 92 <mo>,> 94 <mo>-> 98 <mo>,> 100

    SciTech Connect (OSTI)

    Gulyuz, K.; Ariche, J.; Bollen, G.; Bustabad, S.; Eibach, M.; Izzo, C.; Novario, S. J.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Valverde, A. A.

    2015-05-06

    Experimental searches for neutrinoless double-β decay offer one of the best opportunities to look for physics beyond the standard model. Detecting this decay would confirm the Majorana nature of the neutrino, and a measurement of its half-life can be used to determine the absolute neutrino mass scale. Important to both tasks is an accurate knowledge of the Q value of the double-β decay. The LEBIT Penning trap mass spectrometer was used for the first direct experimental determination of the ⁹⁶Zr double-β decay Q value: Qββ=3355.85(15) keV. This value is nearly 7 keV larger than the 2012 Atomic Mass Evaluation [M. Wang et al., Chin. Phys. C 36, 1603 (2012)] value and one order of magnitude more precise. The 3-σ shift is primarily due to a more accurate measurement of the ⁹⁶Zr atomic mass: m(⁹⁶Zr)=95.90827735(17) u. Using the new Q value, the 2νββ-decay matrix element, |M|, is calculated. Improved determinations of the atomic masses of all other zirconium (90-92,94,96Zr) and molybdenum (92,94-98,100Mo) isotopes using both ¹²C₈ and ⁸⁷Rb as references are also reported.

  9. High strength Sn-Mo-Nb-Zr alloy tubes and method of making same

    DOE Patents [OSTI]

    Cheadle, Brian A.

    1977-01-01

    Tubes for use in nuclear reactors fabricated from a quaternary alloy comprising 2.5-4.0 wt% Sn, 0.5-1.5 wt% Mo, 0.5-1.5 wt% Nb, balance essentially Zr. The tubes are fabricated by a process of hot extrusion, heat treatment, cold working to size and age hardening, so as to produce a microstructure comprising elongated .alpha. grains with an acicular transformed .beta. grain boundary phase.

  10. NNSA Works to Establish a Reliable Supply of Mo-99 Produced Without Highly

    National Nuclear Security Administration (NNSA)

    Enriched Uranium | National Nuclear Security Administration | (NNSA) NNSA Works to Establish a Reliable Supply of Mo-99 Produced Without Highly Enriched Uranium October 29, 2014 As part of its nuclear nonproliferation mission, and in support of the American Medical Isotopes Production Act of 2012 (AMIPA), the Department of Energy's National Nuclear Security Administration (DOE/NNSA) is working to develop a reliable and sustainable means of producing the life-saving medical isotope

  11. Production and Characterization of Atomized U-Mo Powder by the Rotating Electrode Process

    SciTech Connect (OSTI)

    C.R. Clark; B.R. Muntifering; J.F. Jue

    2007-09-01

    In order to produce feedstock fuel powder for irradiation testing, the Idaho National Laboratory has produced a rotating electrode type atomizer to fabricate uranium-molybdenum alloy fuel. Operating with the appropriate parameters, this laboratory-scale atomizer produces fuel in the desired size range for the RERTR dispersion experiments. Analysis of the powder shows a homogenous, rapidly solidified microstructure with fine equiaxed grains. This powder has been used to produce irradiation experiments to further test adjusted matrix U-Mo dispersion fuel.

  12. Co-Rolled U10Mo/Zirconium-Barrier-Layer Monolithic Fuel Foil Fabrication Process

    SciTech Connect (OSTI)

    G. A. Moore; M. C. Marshall

    2010-01-01

    Integral to the current UMo fuel foil processing scheme being developed at Idaho National Laboratory (INL) is the incorporation of a zirconium barrier layer for the purpose of controlling UMo-Al interdiffusion at the fuel-meat/cladding interface. A hot “co-rolling” process is employed to establish a ~25-µm-thick zirconium barrier layer on each face of the ~0.3-mm-thick U10Mo fuel foil.

  13. Chemical isolation of .sup.82 Sr from proton-irradiated Mo targets

    DOE Patents [OSTI]

    Grant, Patrick M.; Kahn, Milton; O'Brien, Jr., Harold A.

    1976-01-01

    Spallation reactions are induced in Mo targets with 200-800 MeV protons to produce microcurie to millicurie amounts of a variety of radionuclides. A six-step radiochemical procedure, incorporating precipitation, solvent extractions, and ion exchange techniques, has been developed for the separation and purification of Sr radioactivities from other spallation products and the bulk target material. Radiostrontium can be quantitatively recovered in a sufficiently decontaminated state for use in biomedical generator development.

  14. Crystal structure of the spin-glass pyrochlore, Y/sub 2/Mo/sub 2/O/sub 7/

    SciTech Connect (OSTI)

    Reimers, J.N.; Greedan, J.E.; Sato, M.

    1988-02-01

    The crystal structure of the spin-glass material, Y/sub 2/Mo/sub 2/O/sub 7/, has been determined from powder neutron diffraction data using profile (Rietveld) methods. The data are consistent with the fully ordered cubic pyrochlore structure, a/sub 0/ = 10.230(1) A with Y in 16d, Mo in 16c, O in 48f(x = 0.3382(1), and O' in 8b of Fd3m. Attempts to refine models with O' disordered over the 32e sites or between the 8a and 8b sites resulted in convergence to the 8b positions. Derived Y-O and Mo-O distances are in excellent agreement with those found in isostructural materials giving indirect evidence for Y-Mo ordering over the cation sites.

  15. Tribological properties of self-lubricating NiAl/Mo-based composites containing AgVO{sub 3} nanowires

    SciTech Connect (OSTI)

    Liu, Eryong; Gao, Yimin; Bai, Yaping; Yi, Gewen; Wang, Wenzhen; Zeng, Zhixiang; Jia, Junhong

    2014-11-15

    Silver vanadate (AgVO{sub 3}) nanowires were synthesized by hydrothermal method and self-lubricating NiAl/Mo-AgVO{sub 3} composites were fabricated by powder metallurgy technique. The composition and microstructure of NiAl/Mo-based composites were characterized and the tribological properties were investigated from room temperature to 900 C. The results showed that NiAl/Mo-based composites were consisted of nanocrystalline B2 ordered NiAl matrix, Al{sub 2}O{sub 3}, Mo{sub 2}C, metallic Ag and vanadium oxide phase. The appearance of metallic Ag and vanadium oxide phase can be attributed to the decomposition of AgVO{sub 3} during sintering. Wear testing results confirmed that NiAl/Mo-based composites have excellent tribological properties over a wide temperature range. For example, the friction coefficient and wear rate of NiAl/Mo-based composites containing AgVO{sub 3} were significantly lower than the composites containing only metallic Mo or AgVO{sub 3} lubricant when the temperature is above 300 C, which can be attributed to the synergistic lubricating action of metallic Mo and AgVO{sub 3} lubricants. Furthermore, Raman results indicated that the composition on the worn surface of NiAl-based composites was self-adjusted after wear testing at different temperatures. For example, Ag{sub 3}VO{sub 4} and Fe{sub 3}O{sub 4} lubricants were responsible for the improvement of tribological properties at 500 C, AgVO{sub 3}, Ag{sub 3}VO{sub 4} and molybdate for 700 C, and AgVO{sub 3} and molybdate for 900 C of NiAl-based composites with the addition of metallic Mo and AgVO{sub 3}. - Highlights: NiAl/Mo-AgVO{sub 3} nanocomposites were prepared by mechanical alloying and sintering. AgVO{sub 3} decomposed to metallic Ag and vanadium oxide during the sintering process. NiAl/Mo-AgVO{sub 3} exhibited superior tribological properties at a board temperature range. Phase composition on the worn surface was varied with temperatures. Self-adjusted action was responsible

  16. Study on Shielding Requirements for Radioactive Waste Transportation in a Mo-99 Production Plant - 13382

    SciTech Connect (OSTI)

    Melo Rego, Maria Eugenia de; Kazumi Sakata, Solange; Vicente, Roberto; Hiromoto, Goro

    2013-07-01

    Brazil is currently planning to produce {sup 99}Mo from fission of low enriched uranium (LEU) targets. The planned end of irradiation activity of {sup 99}Mo is about 185 TBq (5 kCi) per week to meet the present domestic demand of {sup 99m}Tc generators. The radioactive wastes from the production plant will be transferred to a waste treatment facility at the same site. The total activity of the actinides, fission and activation products present in the wastes can be predicted based on the yields of fission and activation data for the irradiation conditions, such as composition and mass of uranium targets, irradiation time, neutron flux, production schedule, etc., which were in principle already established by the project management. The transportation of the wastes from the production plant to the treatment facility will be done by means of special shielded packages. An assessment of the shielding required for the packages has been done and the results are presented here, aiming at contributing to the design of the waste management facility for the {sup 99}Mo production plant. (authors)

  17. Exciton-dominated dielectric function of atomically thin MoS2 films

    SciTech Connect (OSTI)

    Yu, Yiling; Yu, Yifei; Cai, Yongqing; Li, Wei; Gurarslan, Alper; Peelaers, Hartwin; Aspnes, David E.; Van de Walle, Chris G.; Nguyen, Nhan V.; Zhang, Yong -Wei; Cao, Linyou

    2015-11-24

    We systematically measure the dielectric function of atomically thin MoS2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS2 films and its contribution to the dielectric function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. Lastly, the knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.

  18. Exciton-dominated dielectric function of atomically thin MoS2 films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Yiling; Yu, Yifei; Cai, Yongqing; Li, Wei; Gurarslan, Alper; Peelaers, Hartwin; Aspnes, David E.; Van de Walle, Chris G.; Nguyen, Nhan V.; Zhang, Yong -Wei; et al

    2015-11-24

    We systematically measure the dielectric function of atomically thin MoS2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS2 films and its contribution to the dielectric function maymore » dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. Lastly, the knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.« less

  19. Gate controlled electronic transport in monolayer MoS{sub 2} field effect transistor

    SciTech Connect (OSTI)

    Zhou, Y. F.; Wang, B.; Yu, Y. J.; Wei, Y. D. E-mail: jianwang@hku.hk; Xian, H. M.; Wang, J. E-mail: jianwang@hku.hk

    2015-03-14

    The electronic spin and valley transport properties of a monolayer MoS{sub 2} are investigated using the non-equilibrium Green's function formalism combined with density functional theory. Due to the presence of strong Rashba spin orbit interaction (RSOI), the electronic valence bands of monolayer MoS{sub 2} are split into spin up and spin down Zeeman-like texture near the two inequivalent vertices K and K′ of the first Brillouin zone. When the gate voltage is applied in the scattering region, an additional strong RSOI is induced which generates an effective magnetic field. As a result, electron spin precession occurs along the effective magnetic field, which is controlled by the gate voltage. This, in turn, causes the oscillation of conductance as a function of the magnitude of the gate voltage and the length of the gate region. This current modulation due to the spin precession shows the essential feature of the long sought Datta-Das field effect transistor (FET). From our results, the oscillation periods for the gate voltage and gate length are found to be approximately 2.2 V and 20.03a{sub B} (a{sub B} is Bohr radius), respectively. These observations can be understood by a simple spin precessing model and indicate that the electron behaviors in monolayer MoS{sub 2} FET are both spin and valley related and can easily be controlled by the gate.

  20. Supercondutivity at 9K in Mo5PB2 with evidence for multiple gaps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McGuire, Michael A.; Parker, David S.

    2016-02-09

    Superconductivity is observed with critical temperatures near 9 K in the tetragonal compound Mo5PB2. This material adopts the Cr5B3 structure type common to superconducting Nb5Si3–xBx, Mo5SiB2, and W5SiB2, which have critical temperatures of 5.8–7.8 K. We have synthesized polycrystalline samples of the compound, made measurements of electrical resistivity, magnetic susceptibility, and heat capacity, and performed first-principles electronic structure calculations. The highest Tc value (9.2 K) occurs in slightly phosphorus rich samples, with composition near Mo5P1.1B1.9, and the upper critical field Hc2 at T = 0 is estimated to be ≈17 kOe. Together, the measurements and band-structure calculations indicate intermediate couplingmore » (λ=1.0), phonon mediated superconductivity. Here, the temperature dependence of the heat capacity and upper critical field Hc2 below Tc suggest multiple superconducting gaps may be present.« less

  1. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xufan; Lin, Ming-Wei; Lin, Junhao; Huang, Bing; Puretzky, Alexander A.; Ma, Cheng; Wang, Kai; Zhou, Wu; Pantelides, Sokrates T.; Chi, Miaofang; et al

    2016-04-01

    Two-dimensional (2D) heterostructures hold the promise for future atomically-thin electronics and optoelectronics due to their diverse functionalities. While heterostructures consisting of different transition metal dichacolgenide monolayers with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) or edge epitaxy, constructing heterostructures from monolayers of layered semiconductors with large lattice misfits still remains challenging. Here, we report the growth of monolayer GaSe/MoSe2 heterostructures with large lattice misfit by two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientation between themore » two layers, forming an incommensurate vdW heterostructure. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe2 monolayer domains in lateral GaSe/MoSe2 heterostructures, GaSe monolayers are found to overgrow MoSe2 during CVD, forming a stripe of vertically stacked vdW heterostructure at the crystal interface. Such vertically-stacked vdW GaSe/MoSe2 heterostructures are shown to form p-n junctions with effective transport and separation of photo-generated charge carriers between layers, resulting in a gate-tunable photovoltaic response. In conclusion, these GaSe/MoSe2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells.« less

  2. Electrical properties of a-C:Mo films produced by dual-cathode filtered cathodic arc plasma deposition

    SciTech Connect (OSTI)

    Sansongsiri, Sakon; Anders, Andre; Yodsombat, Banchob

    2008-01-20

    Molybdenum-containing amorphous carbon (a-C:Mo) thin films were prepared using a dual-cathode filtered cathodic arc plasma source with a molybdenum and a carbon (graphite) cathode. The Mo content in the films was controlled by varying the deposition pulse ratio of Mo and C. Film sheet resistance was measured in situ at process temperature, which was close to room temperature, as well as ex situ as a function of temperature (300-515 K) in ambient air. Film resistivity and electrical activation energy were derived for different Mo and C ratios and substrate bias. Film thickness was in the range 8-28 nm. Film resistivity varied from 3.55x10-4 Omega m to 2.27x10-6 Omega m when the Mo/C pulse ratio was increased from 0.05 to 0.4, with no substrate bias applied. With carbon-selective bias, the film resistivity was in the range of 4.59x10-2 and 4.05 Omega m at a Mo/C pulse ratio of 0.05. The electrical activation energy decreased from 3.80x10-2 to 3.36x10-4 eV when the Mo/C pulse ratio was increased in the absence of bias, and from 0.19 to 0.14 eV for carbon-selective bias conditions. The resistivity of the film shifts systematically with the amounts of Mo and upon application of substrate bias voltage. The intensity ratio of the Raman D-peak and G-peak (ID/IG) correlated with the pre-exponential factor (sigma 0) which included charge carrier density and density of states.

  3. Superconducting and structural properties of {delta}-MoC{sub 0.681} cubic molybdenum carbide phase

    SciTech Connect (OSTI)

    Sathish, C.I. [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan) [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Guo, Yanfeng, E-mail: GUO.Yanfeng@nims.go.jp [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)] [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Wang, Xia [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan) [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Tsujimoto, Yoshihiro [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)] [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Li, Jun [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan) [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Zhang, Shoubao [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)] [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Matsushita, Yoshitaka [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148 (Japan)] [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148 (Japan); Shi, Youguo; Tian, Huanfang; Yang, Huaixin; Li, Jianqi [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)] [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yamaura, Kazunari, E-mail: YAMAURA.Kazunari@nims.go.jp [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan) [Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2012-12-15

    The superconducting and lattice properties of {delta}-MoC{sub 0.681} were studied by electromagnetic measurements, synchrotron X-ray diffraction, neutron diffraction, and electron diffraction. The superconducting properties (T{sub c}=12 K) of {delta}-MoC{sub 0.681} were well characterized by a weak coupling model. The carbon vacancies present in the host cubic structure were found to be robust, although the material was synthesized from stoichiometric carbon and Mo powder under a high-pressure of 6 GPa. A thermodynamically-stable structure with ordered vacancies did not account for the robust features of {delta}-MoC{sub 0.681} since the vacancies are unlikely to be ordered in long range in the host structure. A model based on inherent phonon instability theoretically predicted for a stoichiometric MoC phase might be responsible for the robust features of {delta}-MoC{sub 0.681}. - Graphical Abstract: The cubic molybdenum carbide shows an excellent superconductivity with robust carbon vacancies. Inherent phonon instability theoretically predicted for a stoichiometric MoC phase might be responsible for the vacancies rather than a thermodynamically-stable structure with vacancies ordering. Highlights: Black-Right-Pointing-Pointer The 12 K superconductivity is well characterized by a weakly coupling model. Black-Right-Pointing-Pointer Carbon vacancies are robust and disordered in the cubic host structure. Black-Right-Pointing-Pointer Inherent phonon instability might be responsible for the robust carbon vacancies in {delta}-MoC{sub 0.681}.

  4. Low-frequency 1/f noise in MoS{sub 2} transistors: Relative contributions of the channel and contacts

    SciTech Connect (OSTI)

    Renteria, J.; Jiang, C.; Samnakay, R.; Rumyantsev, S. L.; Goli, P.; Balandin, A. A.; Shur, M. S.

    2014-04-14

    We report on the results of the low-frequency (1/f, where f is frequency) noise measurements in MoS{sub 2} field-effect transistors revealing the relative contributions of the MoS{sub 2} channel and Ti/Au contacts to the overall noise level. The investigation of the 1/f noise was performed for both as fabricated and aged transistors. It was established that the McWhorter model of the carrier number fluctuations describes well the 1/f noise in MoS{sub 2} transistors, in contrast to what is observed in graphene devices. The trap densities extracted from the 1/f noise data for MoS{sub 2} transistors, are 2??10{sup 19}?eV{sup ?1}cm{sup ?3} and 2.5??10{sup 20}?eV{sup ?1}cm{sup ?3} for the as fabricated and aged devices, respectively. It was found that the increase in the noise level of the aged MoS{sub 2} transistors is due to the channel rather than the contact degradation. The obtained results are important for the proposed electronic applications of MoS{sub 2} and other van der Waals materials.

  5. Preparation of Al{sub 2}O{sub 3}/Mo nanocomposite powder via chemical route and spray drying

    SciTech Connect (OSTI)

    Lo, M.; Cheng, F.; Wei, W.J.

    1996-08-01

    A route to prepare nanometer-sized Mo particulates in Al{sub 2}O{sub 3} was attempted by a combination of solution reactions in molecular scale and forcing precipitation by a spray-drying technique. MoO{sub 3} was first dissolved in ammonia water and then added in the slurry with high purity, submicrometer Al{sub 2}O{sub 3} powder. Mixed suspension was spray-dried, and then the dried granules were reduced by hydrogen gas and further hot-pressing to a bulky composite at various temperatures. Dissolution of Mo oxide, adsorption reactions on alumina surface, and surface potential of alumina particles in homogeneous ammonia suspension were studied. Characterization of the granules, including compactability, flowing properties, surface morphology, grain growth of Mo and Al{sub 2}O{sub 3}, and mixing homogeneity, were examined. Homogeneity of the spray-dried granules was determined by the calculation of mixing index and the observation of the microstructure of sintered body. The existence of intergranular, intragranular, and nanosized Mo particulates within Al{sub 2}O{sub 3} grains was observed by transmission electron microscopy (TEM). All the evidences revealed that homogeneous composites with nanometer-sized Mo had been successfully prepared by this attempt with the proposed chemical route and following spray-drying process. {copyright}{ital 1996 Materials Research Society.}

  6. Kinetic study of hydrogen evolution reaction on Ni{sub 30} Mo{sub 70}, Co{sub 30}Mo{sub 70}, Co{sub 30}Ni{sub 70} and Co{sub 10}Ni{sub 20}Mo{sub 70} alloy electrodes

    SciTech Connect (OSTI)

    Dominguez-Crespo, M.A.; Plata-Torres, M.; Torres-Huerta, A.M.; Arce-Estrada, E.M. . E-mail: earce@ipn.mx; Hallen-Lopez, J.M.

    2005-07-15

    The hydrogen evolution reaction on nanocrystalline Ni{sub 30}Mo{sub 70}, Co{sub 30}Mo{sub 70}, Co{sub 30}Ni{sub 70}, and Co{sub 10}Ni{sub 20}Mo{sub 70}, metallic powders prepared by mechanical alloying was investigated with linear polarization and ac impedance methods, in 30 wt.% KOH aqueous solution at room temperature. The formation process and structural properties of these nanocrystalline materials were characterized by X-ray diffraction and transmission electron microscopy. Alloyed powders showed the presence of two phases: an fcc solid solution and intermetallic compounds of Ni, Co and Mo. Based on polarization and ac impedance measurements, an improved electrocatalytic activity for hydrogen evolution reaction was observed in mechanically alloyed Co{sub 30}Ni{sub 70} powders, which is slightly higher than milled metallic Ni powders.

  7. S-H bond activation in H{sub 2}S and thiols by [RhMn(CO){sub 4}(Ph{sub 2}PCH{sub 2}PPh{sub 2}){sub 2}]. Compounds containing terminal or bridging sulfhydryl and thiolato groups

    SciTech Connect (OSTI)

    Li-Sheng Wang; McDonald, R.; Cowie, M. [Univ. of Alberta, Edmonton (Canada)

    1994-08-17

    A rhodium-magnesium carbonyl-phosphines reacted with thiols to yield the products of S-H addition. Further reactions result in bridging sulfide can be alkylated or protonated at the sulfur. The compound, [RhMn(CO){sub 4}({mu}-S)(dppm){sub 2}], was structurally characterized by X-ray crystallography.

  8. Characterization of few-layer 1T-MoSe{sub 2} and its superior performance in the visible-light induced hydrogen evolution reaction

    SciTech Connect (OSTI)

    Gupta, Uttam; Naidu, B. S.; Maitra, Urmimala; Rao, C. N. R.; Singh, Anjali; Shirodkar, Sharmila N.; Waghmare, Umesh V.

    2014-09-01

    Based on earlier results on the photocatalytic properties of MoS{sub 2}, the 1T form of MoSe{sub 2}, prepared by lithium intercalation and exfoliation of bulk MoSe{sub 2}, has been employed for the visible-light induced generation of hydrogen. 1T-MoSe{sub 2} is found to be superior to both 2H and 1T MoS{sub 2} as well as 2H-MoSe{sub 2} in producing hydrogen from water, the yield being in the 6075 mmol?h{sup ?1}?g{sup ?1} range with a turn over frequency of 1519 h{sup ?1}. First principles calculations reveal that 1T-MoSe{sub 2} has a lower work function than 2H-MoSe{sub 2} as well as 1T and 2H-MoS{sub 2}, making it easier to transfer an electron from 1T-MoSe{sub 2} for the production of H{sub 2}.

  9. Li3Mo4P5O24: A two-electron cathode for lithium-ion batteries with three-dimensional diffusion pathways

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wen, Bohua; Khalifah, Peter G.; Liu, Jue; Chernova, Natasha A.; Wang, Xiaoya; Janssen, Yuri; Omenya, Fredrick; Whittingham, M. Stanley

    2016-03-05

    The structure of the novel compound Li3Mo4P5O24 has been solved from single crystal X-ray diffraction data. The Mo cations in Li3Mo4P5O24 are present in four distinct types of MoO6 octahedra, each of which has one open vertex at the corner participating in a Mo=O double bond and whose other five corners are shared with PO4 tetrahedra. On the basis of a bond valence sum difference map (BVS-DM) analysis, this framework is predicted to support the facile diffusion of Li+ ions, a hypothesis that is confirmed by electrochemical testing data, which show that Li3Mo4P5O24 can be utilized as a rechargeable batterymore » cathode material. It is found that Li can both be removed from and inserted into Li3Mo4P5O24. The involvement of multiple redox processes occurring at the same Mo site is reflected in electrochemical plateaus around 3.8 V associated with the Mo6+/Mo5+ redox couple and 2.2 V associated with the Mo5+/Mo4+ redox couple. The two-electron redox properties of Mo cations in this structure lead to a theoretical capacity of 198 mAh/g. When cycled between 2.0 and 4.3 V versus Li+/Li, an initial capacity of 113 mAh/g is observed with 80% of this capacity retained over the first 20 cycles. Lastly, this compound therefore represents a rare example of a solid state cathode able to support two-electron redox capacity and provides important general insights about pathways for designing next-generation cathodes with enhanced specific capacities.« less

  10. A practical grinding-assisted dry synthesis of nanocrystalline NiMoO{sub 4} polymorphs for oxidative dehydrogenation of propane

    SciTech Connect (OSTI)

    Chen Miao; Wu Jialing; Liu Yongmei; Cao Yong; Guo Li; He Heyong; Fan Kangnian

    2011-12-15

    A practical two-stage reactive grinding-assisted pathway waste-free and cost-effective for the synthesis of NiMoO{sub 4} has been successfully developed. It was demonstrated that proper design in synthetic strategy for grinding plays a crucial role in determining the ultimate polymorph of NiMoO{sub 4}. Specifically, direct grinding (DG) of MoO{sub 3} and NiO rendered {alpha}-NiMoO{sub 4} after annealing, whereas sequential grinding (SG) of the two independently pre-ground oxides followed by annealing generated {beta}-NiMoO{sub 4} solid solution. Characterizations in terms of Raman and X-ray diffraction suggest the creation of {beta}-NiMoO{sub 4} precursor in the latter alternative is the key aspect for the formation of {beta}-NiMoO{sub 4}. The DG-derived {alpha}-NiMoO{sub 4} tested by oxidative dehydrogenation of propane exhibited superior activity in contrast to its analog synthesized via conventional coprecipitation. It is suggested that the favorable chemical composition facilely obtained via grinding in contrast to that by coprecipitation was essential for achieving a more selective production of propylene. - Graphical Abstract: Grinding-assisted synthesis of NiMoO{sub 4} offers higher and more reproducible activities in contrast to coprecipitation for oxidative dehydrogenation of propane, and both {alpha}- and {beta}-NiMoO{sub 4} can be synthesized. Highlights: Black-Right-Pointing-Pointer NiMoO{sub 4} was prepared through grinding-assisted pathway. Black-Right-Pointing-Pointer Direct/sequential grinding rendered {alpha}-, {beta}-NiMoO{sub 4}, respectively. Black-Right-Pointing-Pointer Grinding-derived {alpha}-NiMoO{sub 4} showed high and reproducible activity for oxidative dehydrogenation of propane.