Sample records for mmt million metric

  1. Hectospec, the MMT's 300 Optical Fiber-Fed Spectrograph

    E-Print Network [OSTI]

    Daniel Fabricant; Robert Fata; John Roll; Edward Hertz; Nelson Caldwell; Thomas Gauron; John Geary; Brian McLeod; Andrew Szentgyorgyi

    2005-08-25T23:59:59.000Z

    The Hectospec is a 300 optical fiber fed spectrograph commissioned at the MMT in the spring of 2004. A pair of high-speed six-axis robots move the 300 fiber buttons between observing configurations within ~300 s and to an accuracy ~25 microns. The optical fibers run for 26 m between the MMT's focal surface and the bench spectrograph operating at R~1000-2000. Another high dispersion bench spectrograph offering R~5,000, Hectochelle, is also available. The system throughput, including all losses in the telescope optics, fibers, and spectrograph peaks at ~10% at the grating blaze in 1" FWHM seeing. Correcting for aperture losses at the 1.5" diameter fiber entrance aperture, the system throughput peaks at $\\sim$17%. Hectospec has proven to be a workhorse instrument at the MMT. Hectospec and Hectochelle together were scheduled for 1/3 of the available nights since its commissioning. Hectospec has returned \\~60,000 reduced spectra for 16 scientific programs during its first year of operation.

  2. Spectrophotometry with Hectospec, the MMT's Fiber-Fed Spectrograph

    E-Print Network [OSTI]

    Daniel G. Fabricant; Michael J. Kurtz; Margaret J. Geller; Nelson Caldwell; Deborah Woods

    2008-09-08T23:59:59.000Z

    We describe techniques for photometric calibration of optical spectra obtained with the MMT's fiber-fed spectrograph, Hectospec. The atmospheric dispersion compensation prisms built into the MMT's f/5 wide field corrector effectively eliminate errors due to differential refraction, and simplify the calibration procedure. The procedures that we describe here are applicable to all 220,000+ spectra obtained to date with Hectospec because the instrument response is stable. We estimate the internal error in the Hectospec measurements by comparing duplicate measurements of $\\sim$1500 galaxies. For a sample of 400 galaxies in the Smithsonian Hectospec Lensing Survey (SHELS) with a median z=0.10, we compare line and continuum fluxes measured by Hectospec through a 1.5 arcsec diameter optical fiber with those measured by the Sloan Digital Sky Survey (SDSS) through a 3 arcsec diameter optical fiber. Agreement of the [OII] and H alpha SHELS and SDSS line fluxes, after scaling by the R band flux in the different apertures, suggests that the spatial variation in star formation rates over a 1.5 to 3 kpc radial scale is small. The median ratio of the Hectospec and SDSS spectra, smoothed over 100 Angstrom scales, is remarkably constant to ~5% over the range of 3850 to 8000 Angstroms. Offsets in the ratio of the median [OII] and H alpha fluxes, the equivalent width of H delta and the continuum index d4000 are a few percent, small compared with other sources of scatter.

  3. Data Reduction Pipeline for the MMT and Magellan Infrared Spectrograph

    E-Print Network [OSTI]

    Chilingarian, Igor; Moran, Sean; Brown, Warren; McLeod, Brian; Fabricant, Daniel

    2015-01-01T23:59:59.000Z

    We describe the new spectroscopic data reduction pipeline for the multi-object MMT/Magellan Infrared Spectrograph. The pipeline is implemented in idl as a stand-alone package and is publicly available in both stable and development versions. We describe novel algorithms for sky subtraction and correction for telluric absorption. We demonstrate that our sky subtraction technique reaches the Poisson limit set by the photon statistics. Our telluric correction uses a hybrid approach by first computing a correction function from an observed stellar spectrum, and then differentially correcting it using a grid of atmosphere transmission models for the target airmass value. The pipeline provides a sufficient level of performance for real time reduction and thus enables data quality control during observations. We reduce an example dataset to demonstrate the high data reduction quality.

  4. Manufacturing Energy and Carbon Footprint - Sector: Computer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for) Electricity Export 0 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

  5. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for) Electricity Export 1 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

  6. (Data in thousand metric tons of zinc content, unless noted) Domestic Production and Use: The value of zinc mined in 1995 was about $700 million. Essentially all came from

    E-Print Network [OSTI]

    188 ZINC (Data in thousand metric tons of zinc content, unless noted) Domestic Production and Use were used principally by the agricultural, chemical, paint, and rubber industries. Major coproducts--United States: 1991 1992 1993 1994 1995e Production: Mine, recoverable 518 523 488 570 600 Primary slab zinc 253

  7. Metric Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MODERN GRID S T R A T E G Y Smart Grid Metrics Monitoring our Progress Smart Grid Implementation Workshop Joe Miller - Modern Grid Team June 19, 2008 1 Conducted by the National...

  8. Earth: 15 Million Years Ago

    E-Print Network [OSTI]

    Masataka Mizushima

    2008-10-13T23:59:59.000Z

    In Einstein's general relativity theory the metric component gxx in the direction of motion (x-direction) of the sun deviates from unity due to a tensor potential caused by the black hole existing around the center of the galaxy. Because the solar system is orbiting around the galactic center at 200 km/s, the theory shows that the Newtonian gravitational potential due to the sun is not quite radial. At the present time, the ecliptic plane is almost perpendicular to the galactic plane, consistent with this modification of the Newtonian gravitational force. The ecliptic plane is assumed to maintain this orientation in the galactic space as it orbits around the galactic center, but the rotational angular momentum of the earth around its own axis can be assumed to be conserved. The earth is between the sun and the galactic center at the summer solstice all the time. As a consequence, the rotational axis of the earth would be parallel to the axis of the orbital rotation of the earth 15 million years ago, if the solar system has been orbiting around the galactic center at 200 km/s. The present theory concludes that the earth did not have seasons 15 million years ago. Therefore, the water on the earth was accumulated near the poles as ice and the sea level was very low. Geological evidence exists that confirms this effect. The resulting global ice-melting started 15 million years ago and is ending now.

  9. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Appliances in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950...

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Televisions in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950...

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Televisions in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More...

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Space Heating in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold","Mixed- Humid","Mixed-Dry"...

  13. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Space Heating in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Space...

  14. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Space Heating in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More...

  15. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Space Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

  16. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Televisions in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold","Mixed- Humid","Mixed-Dry"...

  17. " Million Housing Units, Preliminary"

    U.S. Energy Information Administration (EIA) Indexed Site

    Computers and Other Electronics in U.S. Homes, By Number of Household Members, 2009" " Million Housing Units, Preliminary" ,,"Number of Household Members" ,"Total U.S.1 (millions)"...

  18. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Computers and Other Electronics in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before...

  19. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Computers and Other Electronics in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South"...

  20. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Computers and Other Electronics in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty...

  1. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Water Heating in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Water...

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Water Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Water Heating in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Water Heating in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold","Mixed- Humid","Mixed-Dry"...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Water Heating in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" ,,"Less than...

  6. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used and End Uses in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East...

  7. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used and End Uses in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,"Pacific...

  8. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used and End Uses in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

  9. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Space Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,"Pacific...

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Space Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East...

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Space Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" " ",,,"East North Central Census...

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Space Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census...

  13. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Computers and Other Electronics in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census...

  14. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Computers and Other Electronics in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census...

  15. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Computers and Other Electronics in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

  16. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Computers and Other Electronics in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census...

  17. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census...

  18. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    11 Water Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,"Pacific...

  19. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Water Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

  20. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Water Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East...

  1. DEFINING A STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*, Hashem Akbari, Carl Blumstein, Marilyn Brown, Richard Brown,

    E-Print Network [OSTI]

    Wh/year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metricDEFINING A STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*, Hashem Akbari, Carl Blumstein June 2009 Short title: Defining a standard metric for electricity savings Keywords: Electricity savings

  2. DEFINING A STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*, Hashem Akbari, Carl Blumstein, Marilyn Brown, Richard Brown,

    E-Print Network [OSTI]

    Diamond, Richard

    Wh/year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metricDEFINING A STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*, Hashem Akbari, Carl Blumstein title: Defining a standard metric for electricity savings Keywords: Electricity savings, energy

  3. Energy Department Project Captures and Stores One Million Metric...

    Broader source: Energy.gov (indexed) [DOE]

    formation. The project is part of the development phase of the Department's Regional Carbon Sequestration Partnerships initiative, which is helping develop and deploy carbon...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Televisions in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuels Used and End Uses in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings...

  6. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Space Heating in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With"...

  7. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Space Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total...

  8. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Computers and Other Electronics in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings...

  9. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Computers and Other Electronics in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in...

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Water Heating in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With"...

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Water Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total...

  12. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" ,,"Less than 20,000","20,000 to 39,999","40,000 to 59,999","60,000 to...

  13. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" ,,"Less than 20,000","20,000 to 39,999","40,000 to 59,999","60,000 to...

  14. Metrics for enterprise transformation

    E-Print Network [OSTI]

    Blackburn, Craig D. (Craig David), S. M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    The objective of this thesis is to depict the role of metrics in the evolving journey of enterprise transformation. To this end, three propositions are explored: (i) metrics and measurement systems drive transformation, ...

  15. 9,997,638 Metric Tons of CO2 Injected as of April 9, 2015 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  16. 9,805,742 Metric Tons of CO2 Injected as of February 27, 2015...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  17. 9,981,117 Metric Tons of CO2 Injected as of April 2, 2015 | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  18. 9,355,469 Metric Tons of CO2 Injected as of January 29, 2015...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  19. 9,449,421 Metric Tons of CO2 Injected as of February 12, 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  20. 10,045,885 Metric Tons of CO2 Injected as of April 16, 2015

    Broader source: Energy.gov [DOE]

    This carbon dioxide (CO2) has been injected in the United States as part of DOE’s Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the...

  1. 10,180,047 Metric Tons of CO2 Injected as of May 28, 2015 | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  2. Surveillance Metrics Sensitivity Study

    SciTech Connect (OSTI)

    Bierbaum, R; Hamada, M; Robertson, A

    2011-11-01T23:59:59.000Z

    In September of 2009, a Tri-Lab team was formed to develop a set of metrics relating to the NNSA nuclear weapon surveillance program. The purpose of the metrics was to develop a more quantitative and/or qualitative metric(s) describing the results of realized or non-realized surveillance activities on our confidence in reporting reliability and assessing the stockpile. As a part of this effort, a statistical sub-team investigated various techniques and developed a complementary set of statistical metrics that could serve as a foundation for characterizing aspects of meeting the surveillance program objectives. The metrics are a combination of tolerance limit calculations and power calculations, intending to answer level-of-confidence type questions with respect to the ability to detect certain undesirable behaviors (catastrophic defects, margin insufficiency defects, and deviations from a model). Note that the metrics are not intended to gauge product performance but instead the adequacy of surveillance. This report gives a short description of four metrics types that were explored and the results of a sensitivity study conducted to investigate their behavior for various inputs. The results of the sensitivity study can be used to set the risk parameters that specify the level of stockpile problem that the surveillance program should be addressing.

  3. Surveillance metrics sensitivity study.

    SciTech Connect (OSTI)

    Hamada, Michael S. (Los Alamos National Laboratory); Bierbaum, Rene Lynn; Robertson, Alix A. (Lawrence Livermore Laboratory)

    2011-09-01T23:59:59.000Z

    In September of 2009, a Tri-Lab team was formed to develop a set of metrics relating to the NNSA nuclear weapon surveillance program. The purpose of the metrics was to develop a more quantitative and/or qualitative metric(s) describing the results of realized or non-realized surveillance activities on our confidence in reporting reliability and assessing the stockpile. As a part of this effort, a statistical sub-team investigated various techniques and developed a complementary set of statistical metrics that could serve as a foundation for characterizing aspects of meeting the surveillance program objectives. The metrics are a combination of tolerance limit calculations and power calculations, intending to answer level-of-confidence type questions with respect to the ability to detect certain undesirable behaviors (catastrophic defects, margin insufficiency defects, and deviations from a model). Note that the metrics are not intended to gauge product performance but instead the adequacy of surveillance. This report gives a short description of four metrics types that were explored and the results of a sensitivity study conducted to investigate their behavior for various inputs. The results of the sensitivity study can be used to set the risk parameters that specify the level of stockpile problem that the surveillance program should be addressing.

  4. LOW CARBON & 570 million GVA

    E-Print Network [OSTI]

    Wrigley, Stuart

    LOW CARBON & RENEWABLES #12;£570 million GVA THE SECTOR COMPRISES 326 COMPANIES EMPLOYING 12- tor comprises 326 companies, employing approximately 12,240 people and contributing £570 million nuclear, wind, solar, geo-thermal and tidal power. The total market value of the low carbon environmental

  5. Cyber threat metrics.

    SciTech Connect (OSTI)

    Frye, Jason Neal; Veitch, Cynthia K.; Mateski, Mark Elliot; Michalski, John T.; Harris, James Mark; Trevino, Cassandra M.; Maruoka, Scott

    2012-03-01T23:59:59.000Z

    Threats are generally much easier to list than to describe, and much easier to describe than to measure. As a result, many organizations list threats. Fewer describe them in useful terms, and still fewer measure them in meaningful ways. This is particularly true in the dynamic and nebulous domain of cyber threats - a domain that tends to resist easy measurement and, in some cases, appears to defy any measurement. We believe the problem is tractable. In this report we describe threat metrics and models for characterizing threats consistently and unambiguously. The purpose of this report is to support the Operational Threat Assessment (OTA) phase of risk and vulnerability assessment. To this end, we focus on the task of characterizing cyber threats using consistent threat metrics and models. In particular, we address threat metrics and models for describing malicious cyber threats to US FCEB agencies and systems.

  6. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to...

  7. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family...

  8. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2...

  9. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to...

  10. Mid-Infrared Imaging of the Post-AGB Star AC Herculis with the MMT Adaptive Optics System

    E-Print Network [OSTI]

    Laird M. Close; Beth Biller; William F. Hoffmann; Phil M. Hinz; John H. Bieging; Francois Wildi; Michael Lloyd-Hart; Guido Brusa; Don Fisher; Doug Miller; Roger Angel

    2003-10-20T23:59:59.000Z

    We utilized the MMT's unique deformable secondary adaptive optics system to produce high-resolution (FWHM=0.3"), very high Strehl mid-infrared (9.8, 11.7 & 18 micron) images of the post-AGB star AC Her. The very high (98+/-2%) Strehls achieved with Mid-IR AO led naturally to an ultra-stable PSF independent of airmass, seeing, or location on the sky. We find no significant difference between AC Her's morphology and our unresolved PSF calibration stars (mu UMa & alpha Her) at 9.8, 11.7, & 18 microns. Our current observations do not confirm any extended Mid-IR structure around AC Her. These observations are in conflict with previously reported Keck (seeing-limited) 11.7 and 18 micron images which suggested the presence of a resolved ~0.6" edge-on circumbinary disk. We conclude that AC Her has no extended Mid-IR structure on scales greater than 0.2" (R<75 AU). These first results of Mid-IR AO science are very encouraging for future high accuracy Mid-IR imaging with this technique.

  11. Resolving the Dusty Circumstellar Structure of the Enigmatic Symbiotic Star CH Cygni with the MMT Adaptive Optics System

    E-Print Network [OSTI]

    Beth A. Biller; Laird M. Close; Aigen Li; Massimo Marengo; John H. Bieging; Phil M. Hinz; William F. Hoffmann; Guido Brusa; Doug Miller

    2006-04-14T23:59:59.000Z

    We imaged the symbiotic star CH Cyg and two PSF calibration stars using the unique 6.5m MMT deformable secondary adaptive optics system. Our high-resolution (FWHM=0.3"), very high Strehl (98%+-2%) mid-infrared (9.8 and 11.7 um) images of CH Cyg allow us to probe finer length scales than ever before for this object. CH Cyg is significantly extended compared to our unresolved PSF calibration stars (Mu UMa and Alpha Her) at 9.8 and 11.7 um. We estimated the size of the extension by convolving a number of simple Gaussian models with the Mu UMa PSF and determining which model provided the best fit to the data. Adopting the Hipparcos distance for this object of 270 pc, we found a nearly Gaussian extension with a FWHM at 9.8 um of ~40.5+-2.7 AU (0.15+-0.01") and a FWHM at 11.7 um of 45.9+-2.7 AU (0.17+-0.01"). After subtracting out the Gaussian component of the emission (convolved with our PSF), we found a faint \\~0.7" asymmetric extension which peaks in flux ~0.5" north of the stars. This extension is roughly coincident with the northern knotlike feature seen in HST WFPC2 images obtained in 1999.

  12. Performance Metrics for Commercial Buildings

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Wang, Na; Romero, Rachel L.; Deru, Michael P.

    2010-09-30T23:59:59.000Z

    Commercial building owners and operators have requested a standard set of key performance metrics to provide a systematic way to evaluate the performance of their buildings. The performance metrics included in this document provide standard metrics for the energy, water, operations and maintenance, indoor environmental quality, purchasing, waste and recycling and transportation impact of their building. The metrics can be used for comparative performance analysis between existing buildings and industry standards to clarify the impact of sustainably designed and operated buildings.

  13. Farm Buildings Pocketbook in Metric 

    E-Print Network [OSTI]

    Anonymous

    1971-01-01T23:59:59.000Z

    Some useful advice giving standards, dimensions and data in metric for those interested in the design of farm buildings

  14. Social Media Ad Metrics Definitions

    E-Print Network [OSTI]

    Collins, Gary S.

    these metrics to encourage growth through consistency. Social media speaks to a new way of understanding howSocial Media Ad Metrics Definitions Released May 2009 #12;Social Media Metrics Definitions © 2008 & Social Media Committee. About the IAB's User-Generated Content & Social Media Committee: The User

  15. Metrics for Energy Resilience

    SciTech Connect (OSTI)

    Paul E. Roege; Zachary A. Collier; James Mancillas; John A. McDonagh; Igor Linkov

    2014-09-01T23:59:59.000Z

    Energy lies at the backbone of any advanced society and constitutes an essential prerequisite for economic growth, social order and national defense. However there is an Achilles heel to today?s energy and technology relationship; namely a precarious intimacy between energy and the fiscal, social, and technical systems it supports. Recently, widespread and persistent disruptions in energy systems have highlighted the extent of this dependence and the vulnerability of increasingly optimized systems to changing conditions. Resilience is an emerging concept that offers to reconcile considerations of performance under dynamic environments and across multiple time frames by supplementing traditionally static system performance measures to consider behaviors under changing conditions and complex interactions among physical, information and human domains. This paper identifies metrics useful to implement guidance for energy-related planning, design, investment, and operation. Recommendations are presented using a matrix format to provide a structured and comprehensive framework of metrics relevant to a system?s energy resilience. The study synthesizes previously proposed metrics and emergent resilience literature to provide a multi-dimensional model intended for use by leaders and practitioners as they transform our energy posture from one of stasis and reaction to one that is proactive and which fosters sustainable growth.

  16. All conformally flat pure radiation metrics

    E-Print Network [OSTI]

    S. Brian Edgar; Garry Ludwig

    1996-12-20T23:59:59.000Z

    The complete class of conformally flat, pure radiation metrics is given, generalising the metric recently given by Wils.

  17. Quotients of Metric Spaces

    E-Print Network [OSTI]

    Herman, Robert A.

    1968-01-01T23:59:59.000Z

    . PRELIMINARIES 1 CHAPTER II . SFACBS IN WHICH SEQUENCES SUFFICE 6 CHAPTER III . QUOTIENTS OF SEPARABLE METRIC SPACES Ik CHAPTER IV. GENERAL QUOTIENT SPACES 25 CHAPTER V. CLOSED QUOTIENT MAPS 35 CHAPTER VI. OPEN QUOTIENT MAPS 50 CHAPTER VII. OPEN AND CLOSED... QUOTIENT MAPS 55 CHAPTER VIII. ANOTHER RESULT 6l BIBLIOGRAPHY 65 CHAPTER I. PRELIMINARIES We begin by stating some basic definitions and theorems. Definition 1 . 1 ; Let f be a function from a topological space X onto a set Y. Then the quotient...

  18. Defining a Standard Metric for Electricity Savings

    SciTech Connect (OSTI)

    Brown, Marilyn; Akbari, Hashem; Blumstein, Carl; Koomey, Jonathan; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H.; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B.; Greenberg, Steve; Hafemeister, David; Harris, Jeff; Harvey, Hal; Heitz, Eric; Hirst, Eric; Hummel, Holmes; Kammen, Dan; Kelly, Henry; Laitner, Skip; Levine, Mark; Lovins, Amory; Masters, Gil; McMahon, James E.; Meier, Alan; Messenger, Michael; Millhone, John; Mills, Evan; Nadel, Steve; Nordman, Bruce; Price, Lynn; Romm, Joe; Ross, Marc; Rufo, Michael; Sathaye, Jayant; Schipper, Lee; Schneider, Stephen H; Sweeney, James L; Verdict, Malcolm; Vorsatz, Diana; Wang, Devra; Weinberg, Carl; Wilk, Richard; Wilson, John; Worrell, Ernst

    2009-03-01T23:59:59.000Z

    The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70percent capacity factor with 7percent T&D losses. Displacing such a plant for one year would save 3 billion kW h per year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question--Dr. Arthur H. Rosenfeld.

  19. August 2003 IT SECURITY METRICS

    E-Print Network [OSTI]

    August 2003 IT SECURITY METRICS Elizabeth B. Lennon, Editor Information Technology Laboratory approach to measuring information security. Evaluating security at the sys tem level, IT security metrics and techniques contained in NIST SP 800-26, Security Self-Assessment Guide for Information Technology Systems

  20. Variable metric conjugate gradient methods

    SciTech Connect (OSTI)

    Barth, T.; Manteuffel, T.

    1994-07-01T23:59:59.000Z

    1.1 Motivation. In this paper we present a framework that includes many well known iterative methods for the solution of nonsymmetric linear systems of equations, Ax = b. Section 2 begins with a brief review of the conjugate gradient method. Next, we describe a broader class of methods, known as projection methods, to which the conjugate gradient (CG) method and most conjugate gradient-like methods belong. The concept of a method having either a fixed or a variable metric is introduced. Methods that have a metric are referred to as either fixed or variable metric methods. Some relationships between projection methods and fixed (variable) metric methods are discussed. The main emphasis of the remainder of this paper is on variable metric methods. In Section 3 we show how the biconjugate gradient (BCG), and the quasi-minimal residual (QMR) methods fit into this framework as variable metric methods. By modifying the underlying Lanczos biorthogonalization process used in the implementation of BCG and QMR, we obtain other variable metric methods. These, we refer to as generalizations of BCG and QMR.

  1. Microsoft Word - QER Resilience Metrics - Technical Workshp ...

    Office of Environmental Management (EM)

    resiliency metrics for the energy sector and use cases o The framing of a resilience roadmap, and the implication and consequences of introducing new energy resilience metrics...

  2. Technical Workshop: Resilience Metrics for Energy Transmission...

    Energy Savers [EERE]

    of and need for resilience metrics and how they vary by natural gas, liquid fuels and electric grid infrastructures. Issues important to resilience metrics were identified and...

  3. Daylight metrics and energy savings

    SciTech Connect (OSTI)

    Mardaljevic, John; Heschong, Lisa; Lee, Eleanor

    2009-12-31T23:59:59.000Z

    The drive towards sustainable, low-energy buildings has increased the need for simple, yet accurate methods to evaluate whether a daylit building meets minimum standards for energy and human comfort performance. Current metrics do not account for the temporal and spatial aspects of daylight, nor of occupants comfort or interventions. This paper reviews the historical basis of current compliance methods for achieving daylit buildings, proposes a technical basis for development of better metrics, and provides two case study examples to stimulate dialogue on how metrics can be applied in a practical, real-world context.

  4. Segmental alternations and metrical theory

    E-Print Network [OSTI]

    Vaysman, Olga

    2009-01-01T23:59:59.000Z

    This dissertation focuses on phonological alternations that are influenced or constrained by word-internal prosody, i.e. prominence and foot structure, and what these alternations can tell us about metrical theory. Detailed ...

  5. Normalization of Process Safety Metrics

    E-Print Network [OSTI]

    Wang, Mengtian

    2012-10-19T23:59:59.000Z

    and organizational risks, there is an emerging need to evaluate the process safety implementation across an organization through measurements. Thus, the process safety metric is applied as a powerful tool that measures safety activities, status, and performance...

  6. Mining metrics for buried treasure

    E-Print Network [OSTI]

    D. A. Konkowski; T. M. Helliwell

    2005-01-07T23:59:59.000Z

    The same but different: That might describe two metrics. On the surface CLASSI may show two metrics are locally equivalent, but buried beneath one may be a wealth of further structure. This was beautifully described in a paper by M.A.H. MacCallum in 1998. Here I will illustrate the effect with two flat metrics -- one describing ordinary Minkowski spacetime and the other describing a three-parameter family of Gal'tsov-Letelier-Tod spacetimes. I will dig out the beautiful hidden classical singularity structure of the latter (a structure first noticed by Tod in 1994) and then show how quantum considerations can illuminate the riches. I will then discuss how quantum structure can help us understand classical singularities and metric parameters in a variety of exact solutions mined from the Exact Solutions book.

  7. 6.347 metric tons of netting and rope worth $ 10 million .

    E-Print Network [OSTI]

    in the aeration tanks . Heat treatment did not noticeably affect the taste or keep- ing quality of the oyster meat ng. when oysters are held at temperatures just above freezing. or immediately aft er frozen oysters

  8. Energy Department Project Captures and Stores more than One Million Metric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogen and Fuel CellofGeothermalGeothermalHelpTons of CO2

  9. Energy Department Project Captures and Stores One Million Metric Tons of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen O'KaneSystemsDepartmentCarbon | Department of

  10. Energy Department Project Captures and Stores more than One Million Metric

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014Compliance RatesGeothermal

  11. DAYLIGHTING METRICS FOR RESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    unknown authors

    It is now widely accepted that the standard method for daylighting evaluation- the daylight factor- is due for replacement with metrics founded on absolute values for luminous quantities predicted over the course of a full year using sun and sky conditions derived from standardised climate files. The move to more realistic measures of daylighting introduces significant levels of additional complexity in both the simulation of the luminous quantities and the reduction of the simulation data to readily intelligible metrics. The simulation component, at least for buildings with standard glazing materials, is reasonably well understood. There is no consensus however on the composition of the metrics, and their formulation is an ongoing area of active research. Additionally, non-domestic and residential buildings present very different evaluation scenarios and it is not yet clear if a single metric would be applicable to both. This study uses a domestic dwelling as the setting to investigate and explore the applicability of daylighting metrics for residential buildings. In addition to daylighting provision for task and disclosing the potential for reducing electric lighting usage, we also investigate the formulation of metrics for non-visual effects such as entrainment of the circadian system.

  12. COSMOS{sup SM} based composite metrics

    SciTech Connect (OSTI)

    Culross, M.J.; Leslie, M.D.; Toland, J.A. [Raytheon E-Systems, Dallas, TX (United States)

    1996-12-31T23:59:59.000Z

    Process improvement is one of the goals of many organizations. Metrics for measuring process improvement are key to consistent, focused improvement. This paper introduces an approach for developing robust metrics suitable for measuring the improvement in complex processes. The approach uses the Cosmos framework to guide the user in where to collect metrics and it uses the composite metric to guide the user in how to collect metrics.

  13. Million Species EXTINCTION RISK FROM CLIMATE CHANGE

    E-Print Network [OSTI]

    Poff, N. LeRoy

    Saving Million Species EXTINCTION RISK FROM CLIMATE CHANGE Edited by Lee Hannah ISLANDPRESS-in-Publication Data Saving a million species : extinction risk from climate change / edited by LeeHannah. p. cm. ISBN, extinction, extinction risk, biodiversity,freshwater, marine, biology, coral bleaching, species area

  14. Thermodynamic Metrics and Optimal Paths

    SciTech Connect (OSTI)

    Sivak, David; Crooks, Gavin

    2012-05-08T23:59:59.000Z

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  15. Horizon thermodynamics and composite metrics

    E-Print Network [OSTI]

    Lorenzo Sindoni

    2012-11-12T23:59:59.000Z

    We examine the conditions under which the thermodynamic behaviour of gravity can be explained within an emergent gravity scenario, where the metric is defined as a composite operator. We show that due to the availability of a boundary of a boundary principle for the quantum effective action, Clausius-like relations can always be constructed. Hence, any true explanation of the thermodynamic nature of the metric tensor has to be referred to an equilibration process, associated to the presence of an H-theorem, possibly driven by decoherence induced by the pregeometric degrees of freedom, and their entanglement with the geometric ones.

  16. Interpretation of the Cosmological Metric

    E-Print Network [OSTI]

    Richard J. Cook; M. Shane Burns

    2008-09-03T23:59:59.000Z

    The cosmological Robertson-Walker metric of general relativity is often said to have the consequences that (1) the recessional velocity $v$ of a galaxy at proper distance $\\ell$ obeys the Hubble law $v=H\\ell$, and therefore galaxies at sufficiently great distance $\\ell$ are receding faster than the speed of light $c$; (2) faster than light recession does not violate special relativity theory because the latter is not applicable to the cosmological problem, and because ``space itself is receding'' faster than $c$ at great distance, and it is velocity relative to local space that is limited by $c$, not the velocity of distant objects relative to nearby ones; (3) we can see galaxies receding faster than the speed of light; and (4) the cosmological redshift is not a Doppler shift, but is due to a stretching of photon wavelength during propagation in an expanding universe. We present a particular Robertson-Walker metric (an empty universe metric) for which a coordinate transformation shows that none of these interpretation necessarily holds. The resulting paradoxes of interpretation lead to a deeper understanding of the meaning of the cosmological metric.

  17. " Million U.S. Housing Units,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" "Structural and Geographic Characteristics",,"Less than 20,000","20,000 to...

  18. Homogeneous Einstein metrics on SU(n)

    E-Print Network [OSTI]

    Abid H. Mujtaba

    2011-10-10T23:59:59.000Z

    It is known that every compact simple Lie group admits a bi-invariant homogeneous Einstein metric. In this paper we use two ansatz to probe the existence of additional inequivalent Einstein metrics on the Lie group SU (n) for arbitrary n. We provide an explicit construction of (2k+1) inequivalent Einstein metrics on SU (2k) and 2k inequivalent Einstein metrics on SU (2k + 1).

  19. Daylight metrics and energy savings J. Mardaljevic

    E-Print Network [OSTI]

    LBNL-4585E Daylight metrics and energy savings Authors: J. Mardaljevic Institute of Energy 2009; 0: 1­23 ! Daylight metrics and energy savings J. Mardaljevic a , L. Heschong b , E.S. Lee c comfort performance. Current metrics do not account for the temporal and spatial aspects of daylight, nor

  20. BWeb Copy of the Aluminum Chapter from the 1st

    E-Print Network [OSTI]

    Ford, Andrew

    industry. It then exploits the power of arrays to develop a model which distinguishes between smelters for smelting aluminum on a commercial basis (Smith 1988, p. 17). In today's industry, a large smelter might produce around 0.2 million metric tons (mmt) of aluminum each year. The smelter would be located close

  1. Probing Hypergiant Mass Loss with Adaptive Optics Imaging & Polarimetry in the Infrared: MMT-Pol and LMIRCam observations of IRC +10420 & VY Canis Majoris

    E-Print Network [OSTI]

    Shenoy, Dinesh P; Packham, Chris; Lopez-Rodriguez, Enrique

    2015-01-01T23:59:59.000Z

    We present 2 - 5 micron adaptive optics (AO) imaging and polarimetry of the famous hypergiant stars IRC +10420 and VY Canis Majoris. The imaging polarimetry of IRC +10420 with MMT-Pol at 2.2 micron resolves nebular emission with intrinsic polarization of 30%, with a high surface brightness indicating optically thick scattering. The relatively uniform distribution of this polarized emission both radially and azimuthally around the star confirms previous studies that place the scattering dust largely in the plane of the sky. Using constraints on scattered light consistent with the polarimetry at 2.2 micron, extrapolation to wavelengths in the 3 - 5 micron band predicts a scattered light component significantly below the nebular flux that is observed in our LBT/LMIRCam 3 - 5 micron AO imaging. Under the assumption this excess emission is thermal, we find a color temperature of ~ 500 K is required, well in excess of the emissivity-modified equilibrium temperature for typical astrophysical dust. The nebular featur...

  2. Design and Development of Performance Metrics for Elite Runners

    E-Print Network [OSTI]

    Mittal, Nikhil R.

    2012-01-01T23:59:59.000Z

    metric with distance for Jimmy for both feet Figure 5.29:metric vs. Distance for Jimmy Figure 5.32: Over-strideCDEL metric vs. Distance for Jimmy Figure 5.35: CDEL metric

  3. Multi-Metric Sustainability Analysis

    SciTech Connect (OSTI)

    Cowlin, S.; Heimiller, D.; Macknick, J.; Mann, M.; Pless, J.; Munoz, D.

    2014-12-01T23:59:59.000Z

    A readily accessible framework that allows for evaluating impacts and comparing tradeoffs among factors in energy policy, expansion planning, and investment decision making is lacking. Recognizing this, the Joint Institute for Strategic Energy Analysis (JISEA) funded an exploration of multi-metric sustainability analysis (MMSA) to provide energy decision makers with a means to make more comprehensive comparisons of energy technologies. The resulting MMSA tool lets decision makers simultaneously compare technologies and potential deployment locations.

  4. Normalization of Process Safety Metrics 

    E-Print Network [OSTI]

    Wang, Mengtian

    2012-10-19T23:59:59.000Z

    , for this research, the number of process safety incidents is not available; since all the companies just started recording process safety incidents after API RP 745 was issued. Therefore, the most similar reported indicator-operational oil spills is used... for lagging metrics testing as a proper substitute. The major related data was obtained for this section as follows: • Process and environmental incidents (operational oil spills) • Total oil production volume • Total natural gas production volume • Total...

  5. Secretary Chu Announces $30 Million for Research Competition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Million for Research Competition to Develop Next Generation Energy Storage Technologies Secretary Chu Announces 30 Million for Research Competition to Develop Next Generation...

  6. Energy Department Awards $5 Million to Spur Local Clean Energy...

    Broader source: Energy.gov (indexed) [DOE]

    5 Million to Spur Local Clean Energy Development, Energy Savings Energy Department Awards 5 Million to Spur Local Clean Energy Development, Energy Savings October 14, 2014 -...

  7. Obama Administration Announces $12 Million i6 Green Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12 Million i6 Green Investment to Promote Clean Energy Innovation and Job Creation Obama Administration Announces 12 Million i6 Green Investment to Promote Clean Energy...

  8. Energy Department Awards More Than $7 Million for Innovative...

    Office of Environmental Management (EM)

    More Than 7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles Energy Department Awards More Than 7 Million for Innovative Hydrogen Storage...

  9. Energy Department Announces $35 Million to Advance Fuel Cell...

    Energy Savers [EERE]

    Energy Department Announces 35 Million to Advance Fuel Cell and Hydrogen Technologies Energy Department Announces 35 Million to Advance Fuel Cell and Hydrogen Technologies March...

  10. Energy Department Invests Over $7 Million to Commercialize Cost...

    Energy Savers [EERE]

    Over 7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies Energy Department Invests Over 7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell...

  11. Department of Energy Awards Nearly $7 Million to Advance Fuel...

    Office of Environmental Management (EM)

    Million to Advance Fuel Cell and Hydrogen Storage Systems Research Department of Energy Awards Nearly 7 Million to Advance Fuel Cell and Hydrogen Storage Systems Research August...

  12. Obama Administration Awards More than $96 Million for State Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    96 Million for State Energy Programs in Ohio, Oregon, Virginia and West Virginia Obama Administration Awards More than 96 Million for State Energy Programs in Ohio, Oregon,...

  13. DOE Announces Over $30 Million to Help Universities Train the...

    Office of Environmental Management (EM)

    30 Million to Help Universities Train the Next Generation of Industrial Energy Efficiency Experts DOE Announces Over 30 Million to Help Universities Train the Next Generation of...

  14. ARPA-E Announces $43 Million for Transformational Energy Storage...

    Energy Savers [EERE]

    43 Million for Transformational Energy Storage Projects to Advance Electric Vehicle and Grid Technologies ARPA-E Announces 43 Million for Transformational Energy Storage Projects...

  15. Energy Secretary Chu Announces $384 Million in Recovery Act Funding...

    Energy Savers [EERE]

    384 Million in Recovery Act Funding for Environmental Cleanup in New Mexico Energy Secretary Chu Announces 384 Million in Recovery Act Funding for Environmental Cleanup in New...

  16. Energy Department Announces $15 Million to Help Communities Boost...

    Office of Environmental Management (EM)

    Energy Department Announces 15 Million to Help Communities Boost Solar Deployment Energy Department Announces 15 Million to Help Communities Boost Solar Deployment April 17, 2014...

  17. Energy Department Invests More Than $55 Million to Advance Efficient...

    Energy Savers [EERE]

    Invests More Than 55 Million to Advance Efficient Vehicle Technologies Energy Department Invests More Than 55 Million to Advance Efficient Vehicle Technologies August 15, 2014 -...

  18. Energy Department Announces $11 Million to Advance Renewable...

    Office of Environmental Management (EM)

    1 Million to Advance Renewable Carbon Fiber Production from Biomass Energy Department Announces 11 Million to Advance Renewable Carbon Fiber Production from Biomass July 30, 2014...

  19. Energy Department Announces $6 Million to Accelerate Alternative...

    Office of Environmental Management (EM)

    6 Million to Accelerate Alternative Fuel Vehicle Market Growth Energy Department Announces 6 Million to Accelerate Alternative Fuel Vehicle Market Growth March 9, 2015 - 11:20am...

  20. DOE and USCAR Announce $70 Million Project to Accelerate Development...

    Energy Savers [EERE]

    Announce 70 Million Project to Accelerate Development of Lightweight, High-Strength Materials DOE and USCAR Announce 70 Million Project to Accelerate Development of Lightweight,...

  1. USDA, DOE Announce $18 Million Solicitation for Biomass Research...

    Broader source: Energy.gov (indexed) [DOE]

    Bodman & Johanns Kick Off Renewable Energy Conference with 17.5 Million for Biofuels Research & Development Grants USDA-DOE Make Available 4 Million for Biomass Genomics Research...

  2. Energy Department Announces $32 Million to Boost Solar Workforce...

    Energy Savers [EERE]

    Announces 32 Million to Boost Solar Workforce Training, Drive Solar Energy Innovation Energy Department Announces 32 Million to Boost Solar Workforce Training, Drive Solar Energy...

  3. Department of Energy Finalizes Partial Guarantee for $852 Million...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partial Guarantee for 852 Million Loan to Support California Concentrating Solar Power Plant Department of Energy Finalizes Partial Guarantee for 852 Million Loan to Support...

  4. Energy Department Invests $6 Million to Increase Energy Efficiency...

    Office of Environmental Management (EM)

    6 Million to Increase Energy Efficiency of Schools, Offices, Stores and other U.S. Buildings Energy Department Invests 6 Million to Increase Energy Efficiency of Schools, Offices,...

  5. Secretary of Energy Announces Nearly $24 Million in Grants for...

    Office of Environmental Management (EM)

    Nearly 24 Million in Grants for Carbon Sequestration Research Secretary of Energy Announces Nearly 24 Million in Grants for Carbon Sequestration Research October 23, 2006 -...

  6. Interior Department to Open 190 Million Acres to Geothermal Power...

    Energy Savers [EERE]

    Interior Department to Open 190 Million Acres to Geothermal Power Interior Department to Open 190 Million Acres to Geothermal Power October 29, 2008 - 3:56pm Addthis...

  7. President Obama Announces Over $467 Million in Recovery Act Funding...

    Office of Environmental Management (EM)

    Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar...

  8. Energy Department Announces $18 Million for Innovative Projects...

    Energy Savers [EERE]

    Energy Department Announces 18 Million for Innovative Projects to Advance Geothermal Energy Energy Department Announces 18 Million for Innovative Projects to Advance Geothermal...

  9. President Obama Announces Over $467 Million in Recovery Act Funding...

    Energy Savers [EERE]

    President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for...

  10. DOE Offers $15 Million Geothermal Heat Recovery Opportunity ...

    Office of Environmental Management (EM)

    15 Million Geothermal Heat Recovery Opportunity DOE Offers 15 Million Geothermal Heat Recovery Opportunity August 25, 2010 - 11:11am Addthis Photo of geothermal power plant....

  11. The Geothermal Technologies Office Invests $18 Million for Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Geothermal Technologies Office Invests 18 Million for Innovative Projects The Geothermal Technologies Office Invests 18 Million for Innovative Projects The McGuiness Hills...

  12. Energy Department Announces Up to $31 Million for Initial Phases...

    Office of Environmental Management (EM)

    Up to 31 Million for Initial Phases of Enhanced Geothermal Systems Field Observatory Energy Department Announces Up to 31 Million for Initial Phases of Enhanced Geothermal...

  13. Energy Department Announces $10 million for Wave Energy Demonstration...

    Energy Savers [EERE]

    10 million for Wave Energy Demonstration at Navy's Hawaii Test Site Energy Department Announces 10 million for Wave Energy Demonstration at Navy's Hawaii Test Site April 28, 2014...

  14. Energy Department Finalizes $737 Million Loan Guarantee to Tonopah...

    Energy Savers [EERE]

    Finalizes 737 Million Loan Guarantee to Tonopah Solar Energy for Nevada Project Energy Department Finalizes 737 Million Loan Guarantee to Tonopah Solar Energy for Nevada Project...

  15. Energy Secretary Announces $170 Million Solicitation for Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70 Million Solicitation for Solar Energy Technologies Energy Secretary Announces 170 Million Solicitation for Solar Energy Technologies June 28, 2006 - 2:36pm Addthis Key Element...

  16. Obama Administration Delivers More than $304 Million for Weatherizatio...

    Energy Savers [EERE]

    304 Million for Weatherization Programs in Georgia, Illinois and New York Obama Administration Delivers More than 304 Million for Weatherization Programs in Georgia, Illinois and...

  17. Energy Department Finalizes $337 Million Loan Guarantee to Mesquite...

    Energy Savers [EERE]

    337 Million Loan Guarantee to Mesquite Solar 1 for Innovative Solar Power Plant Energy Department Finalizes 337 Million Loan Guarantee to Mesquite Solar 1 for Innovative Solar...

  18. DOE Moab Site Cost-Effectively Eliminates 200 Million Gallons...

    Office of Environmental Management (EM)

    Site Cost-Effectively Eliminates 200 Million Gallons of Contaminated Ground Water DOE Moab Site Cost-Effectively Eliminates 200 Million Gallons of Contaminated Ground Water July...

  19. Energy Secretary Chu Announces $108 Million in Recovery Act Funding...

    Broader source: Energy.gov (indexed) [DOE]

    cleanup efforts in the state: Moab (108 million) - Accelerate removal of uranium mill tailings away from the Colorado River and dispose of an additional two million tons of...

  20. Department of Energy to Invest Nearly $18 Million for Advanced...

    Energy Savers [EERE]

    Department of Energy to Invest Nearly 18 Million for Advanced Biofuels User Facility Department of Energy to Invest Nearly 18 Million for Advanced Biofuels User Facility March...

  1. Department of Energy Announces up to $12 Million in Investments...

    Energy Savers [EERE]

    up to 12 Million in Investments to Support Development and Production of Drop-In Biofuels Department of Energy Announces up to 12 Million in Investments to Support...

  2. Energy Secretary Moniz Unveils More Than $55 Million to Advance...

    Office of Environmental Management (EM)

    Moniz Unveils More Than 55 Million to Advance Fuel Efficient Vehicle Technologies Energy Secretary Moniz Unveils More Than 55 Million to Advance Fuel Efficient Vehicle...

  3. Obama Administration Launches $130 Million Building Energy Efficiency...

    Energy Savers [EERE]

    Administration Launches 130 Million Building Energy Efficiency Effort Obama Administration Launches 130 Million Building Energy Efficiency Effort February 12, 2010 - 12:00am...

  4. Energy Department to Award $6 Million to State Partnerships to...

    Energy Savers [EERE]

    to Award 6 Million to State Partnerships to Increase Energy Efficiency Energy Department to Award 6 Million to State Partnerships to Increase Energy Efficiency September 19, 2006...

  5. DOE Awards $3 Million Contract to Oak Ridge Associated Universities...

    Office of Environmental Management (EM)

    Million Contract to Oak Ridge Associated Universities for Expert Review of Yucca Mountain Work DOE Awards 3 Million Contract to Oak Ridge Associated Universities for Expert...

  6. Wyoming Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million CubicCubic2009 2010Decade

  7. Wyoming Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million CubicCubic2009

  8. Wyoming Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYearBarrels) Reserves(Million

  9. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May JunFeet) (MillionRepressuring (Million

  10. Models for Millions Department of Statistics

    E-Print Network [OSTI]

    Stine, Robert A.

    Models for Millions Bob Stine Department of Statistics The Wharton School, UniversityDepartment of Statistics Introduction #12;WhartonDepartment of Statistics WhartonDepartment of Statistics Statistics in the News Hot topics Big Data Business Analytics Data Science Are the authors talking about statistics

  11. Million U.S. Housing Units Total...............................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    13.2 1.3 3.5 3.0 3.0 2.5 Table HC9.10 Home Appliances Usage Indicators by Climate Zone, 2005 Housing Units (millions) Greater than 7,000 HDD 5,500 to 7,000 HDD 4,000...

  12. Team Surpasses 1 Million Hours Safety Milestone

    Broader source: Energy.gov [DOE]

    NISKAYUNA, N.Y. – Vigilance and dedication to safety led the EM program’s disposition project team at the Separations Process Research Unit (SPRU) to achieve a milestone of one million hours — over two-and-a-half-years — without injury or illness resulting in time away from work.

  13. Update on the Million Solar Roofs Initiative

    SciTech Connect (OSTI)

    Herig, C.

    1999-05-09T23:59:59.000Z

    The Million Solar Roofs Initiative, announced by the President in June of 1997, spans a period of twelve years and intends to increase domestic deployment of solar technologies. This paper presents an overview of the development of the initiative and significant activities to date.

  14. Comparing Resource Adequacy Metrics: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2014-09-01T23:59:59.000Z

    As the penetration of variable generation (wind and solar) increases around the world, there is an accompanying growing interest and importance in accurately assessing the contribution that these resources can make toward planning reserve. This contribution, also known as the capacity credit or capacity value of the resource, is best quantified by using a probabilistic measure of overall resource adequacy. In recognizing the variable nature of these renewable resources, there has been interest in exploring the use of reliability metrics other than loss of load expectation. In this paper, we undertake some comparisons using data from the Western Electricity Coordinating Council in the western United States.

  15. Metric Construction | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <StevensMcClellan,II JumpMepsolarMesilla,MethanetoMetric

  16. FOUR DECADES OF IRC +10216: EVOLUTION OF A CARBON-RICH DUST SHELL RESOLVED AT 10 {mu}m WITH MMT ADAPTIVE OPTICS AND MIRAC4

    SciTech Connect (OSTI)

    Males, Jared R.; Close, Laird M.; Skemer, Andrew J.; Hinz, Philip M.; Hoffmann, William F. [Steward Observatory, Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Marengo, Massimo, E-mail: jrmales@email.arizona.edu [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States)

    2012-01-10T23:59:59.000Z

    The evolved carbon-rich asymptotic giant branch star IRC +10216 (CW Leo) is the brightest mid-infrared source outside the solar system, as well as one of the closest examples of an evolved star losing mass. It has a complex and variable circumstellar structure on small scales in the near-infrared, and mid-infrared interferometry has revealed a dynamic dust formation zone. We have obtained diffraction-limited imaging and grism spectroscopy of IRC +10216 at the 6.5 m MMT in the N band ({approx}8-13 {mu}m). These new observations show that a change has occurred in the dust shell surrounding IRC +10216 over the last two decades, which is illustrated by a change in the apparent shape of the well-known SiC spectral feature at {approx}11 {mu}m and a reduction in the continuum at 13 {mu}m. As expected, our diffraction-limited spatial information shows an extended circumstellar envelope. We also demonstrate that the dusty envelope appears to be {approx}30% larger at the wavelengths of the SiC feature, likely due to the increased opacity of SiC. The deconvolved full width at half-maximum of the object increases from 0.''43 ({approx} 56 AU) for {lambda} < 10 {mu}m to 0.''58 ({approx}75 AU) at 11.8 {mu}m, then decreases to 0.''5 ({approx}65 AU) at 12.7 {mu}m. Our estimates of IRC +10216's size allow us to plausibly tie the change in the spectrum over the last 12.5 years to the evolution of the dusty circumstellar envelope at speeds of 12-17 km s{sup -1}.

  17. Sandia National Laboratories: performance metric evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    metric evaluation PV Plant Performance Technical Briefing Published in PV Power Tech On March 4, 2015, in Computational Modeling & Simulation, Energy, Facilities, News, News &...

  18. Implicit Multifunction Theorems in complete metric spaces

    E-Print Network [OSTI]

    2010-06-10T23:59:59.000Z

    Implicit Multifunction Theorems in complete metric spaces. Huynh Van Ngai ? Nguyen Huu Tron† and. Michel Théra ‡. Abstract. In this paper, we establish some ...

  19. Defining a Standard Metric for Electricity Savings

    E-Print Network [OSTI]

    Koomey, Jonathan

    2009-01-01T23:59:59.000Z

    1991. The Potential for Electricity Efficiency Improvementswww.eia.doe.gov/cneaf/electricity/page/eia860.html>. FigureA STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*,

  20. Original Article Error Bounds and Metric Subregularity

    E-Print Network [OSTI]

    2014-06-18T23:59:59.000Z

    theory of error bounds of extended real-valued functions. Another objective is to ... Another observation is that neighbourhood V in the original definition of metric.

  1. TORIC LEBRUN METRICS AND JOYCE METRICS NOBUHIRO HONDA AND JEFF VIACLOVSKY

    E-Print Network [OSTI]

    Viaclovsky, Jeff

    TORIC LEBRUN METRICS AND JOYCE METRICS NOBUHIRO HONDA AND JEFF VIACLOVSKY Abstract. We show that Foundation under grant DMS-1105187. Mathematics Subject Classification (2010) 53A30. 1 #12;2 NOBUHIRO HONDA

  2. Texas Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May Jun1 (Million

  3. Pennsylvania Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYearAdditionsLiquidsRepressuring (Million

  4. Reparametrization invariance of the classical metric

    E-Print Network [OSTI]

    G. G. Kirilin

    2006-11-16T23:59:59.000Z

    There is a statement on the parametrization dependence of the classical metric in the recent paper of N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, gr-qc/0610096. I completely disagree with this statement. Here I show reparametrization invariance of the classical metric.

  5. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2007, the United States consumed about 11% of world chromite ore production in

    E-Print Network [OSTI]

    48 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production. Stainless- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption was about $408 million as measured

  6. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2011, the United States was expected to consume about 5% of world chromite

    E-Print Network [OSTI]

    42 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2010 was $883 million as measured by the value

  7. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2009, the United States was expected to consume about 7% of world chromite

    E-Print Network [OSTI]

    42 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and chromium metal. Stainless- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2008 was $1,283 million

  8. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2010, the United States was expected to consume about 2% of world chromite

    E-Print Network [OSTI]

    42 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2009 was $358 million as measured by the value

  9. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2008, the United States consumed about 10% of world chromite ore production in

    E-Print Network [OSTI]

    44 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production. Stainless- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2007 was $548 million as measured

  10. Smart Grid Status and Metrics Report Appendices

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01T23:59:59.000Z

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  11. Program for implementing software quality metrics

    SciTech Connect (OSTI)

    Yule, H.P.; Riemer, C.A.

    1992-04-01T23:59:59.000Z

    This report describes a program by which the Veterans Benefit Administration (VBA) can implement metrics to measure the performance of automated data systems and demonstrate that they are improving over time. It provides a definition of quality, particularly with regard to software. Requirements for management and staff to achieve a successful metrics program are discussed. It lists the attributes of high-quality software, then describes the metrics or calculations that can be used to measure these attributes in a particular system. Case studies of some successful metrics programs used by business are presented. The report ends with suggestions on which metrics the VBA should use and the order in which they should be implemented.

  12. Topology on locally finite metric spaces

    E-Print Network [OSTI]

    Capraro, Valerio

    2011-01-01T23:59:59.000Z

    The necessity of a theory of General Topology and, most of all, of Algebraic Topology on locally finite metric spaces comes from many areas of research in both Applied and Pure Mathematics: Molecular Biology, Mathematical Chemistry, Computer Science, Topological Graph Theory and Metric Geometry. In this paper we propose the basic notions of such a theory and some applications: we replace the classical notions of continuous function, homeomorphism and homotopic equivalence with the notions of NPP-function, NPP-local-isomorphism and NPP-homotopy (NPP stands for Nearest Point Preserving); we also introduce the notion of NPP-isomorphism. We construct three invariants under NPP-isomorphisms and, in particular, we define the fundamental group of a locally finite metric space. As first applications, we propose the following: motivated by the longstanding question whether there is a purely metric condition which extends the notion of amenability of a group to any metric space, we propose the property SN (Small Neighb...

  13. adaptive metric knn: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We also prove that the set of points where a path with values in a metric space Maleva, Olga 97 SOBOLEV METRICS ON THE MANIFOLD OF ALL RIEMANNIAN METRICS Mathematics Websites...

  14. Comparative vs. Absolute Performance Assessment with Environmental Sustainability Metrics

    E-Print Network [OSTI]

    High, Karen

    Comparative vs. Absolute Performance Assessment with Environmental Sustainability Metrics Xun Jin Different goals and potential audiences determine that two types of environmental performance assessments metrics can be partitioned into two camps. One suite of metrics aim to assess the environmental

  15. Better Buildings Challenge Saves $840 Million in Energy Costs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Saves 840 Million in Energy Costs, Adds New Water Savings Goal Better Buildings Challenge Saves 840 Million in Energy Costs, Adds New Water Savings Goal May 27, 2015 - 10:08am...

  16. Department of Energy Announces more than $18 Million to Strengthen...

    Office of Environmental Management (EM)

    more than 18 Million to Strengthen Nuclear Education at U.S. Universities and Colleges Department of Energy Announces more than 18 Million to Strengthen Nuclear Education at U.S....

  17. VOLUME & VALUE OF CATCH BY REGIONS 1970 Million Pounds

    E-Print Network [OSTI]

    .7 million; in 1969, $580.8 million. There were record packs of tuna, shrimp, and animal (pet) food. Recorded, and retail. In 1970, demand for fiShery products was strong. Both consumption and prices rose. On the average

  18. Department of Energy Announces $40 Million to Develop the Next...

    Office of Environmental Management (EM)

    0 Million to Develop the Next Generation Nuclear Plant Department of Energy Announces 40 Million to Develop the Next Generation Nuclear Plant March 8, 2010 - 12:00am Addthis...

  19. Energy Department Announces Up to $7 Million to Expand Clean...

    Energy Savers [EERE]

    Up to 7 Million to Expand Clean Energy and Energy Efficiency on Tribal Lands Energy Department Announces Up to 7 Million to Expand Clean Energy and Energy Efficiency on Tribal...

  20. Department of Energy Offers $102 Million Conditional Commitment...

    Office of Environmental Management (EM)

    Offers 102 Million Conditional Commitment for Loan Guarantee to U.S. Geothermal Inc. Department of Energy Offers 102 Million Conditional Commitment for Loan Guarantee to U.S....

  1. Department of Energy Offers $102 Million Conditional Commitment...

    Office of Environmental Management (EM)

    02 Million Conditional Commitment for Loan Guarantee to U.S. Geothermal, Inc. Department of Energy Offers 102 Million Conditional Commitment for Loan Guarantee to U.S. Geothermal,...

  2. Energy Department Announces $7 Million to Reduce Non-Hardware...

    Office of Environmental Management (EM)

    7 Million to Reduce Non-Hardware Costs of Solar Energy Systems Energy Department Announces 7 Million to Reduce Non-Hardware Costs of Solar Energy Systems November 15, 2011 -...

  3. EM Completes Salt Waste Disposal Units $8 Million under Budget...

    Office of Environmental Management (EM)

    EM Completes Salt Waste Disposal Units 8 Million under Budget at Savannah River Site EM Completes Salt Waste Disposal Units 8 Million under Budget at Savannah River Site February...

  4. Energy Department Announces $13.4 Million to Develop Advanced...

    Office of Environmental Management (EM)

    .4 Million to Develop Advanced Biofuels and Bioproducts Energy Department Announces 13.4 Million to Develop Advanced Biofuels and Bioproducts October 9, 2014 - 11:48am Addthis The...

  5. Secretary Chu Announces $93 Million from Recovery Act to Support...

    Broader source: Energy.gov (indexed) [DOE]

    93 Million from Recovery Act to Support Wind Energy Projects Secretary Chu Announces 93 Million from Recovery Act to Support Wind Energy Projects April 29, 2009 - 12:00am Addthis...

  6. Energy Department Invests Over $7 Million to Deploy Tribal Clean...

    Energy Savers [EERE]

    Invests Over 7 Million to Deploy Tribal Clean Energy Projects Energy Department Invests Over 7 Million to Deploy Tribal Clean Energy Projects November 14, 2013 - 10:00am Addthis...

  7. Energy Department Invests Over $10 Million to Improve Grid Reliability...

    Energy Savers [EERE]

    10 Million to Improve Grid Reliability and Resiliency Energy Department Invests Over 10 Million to Improve Grid Reliability and Resiliency June 11, 2014 - 6:20pm Addthis NEWS...

  8. Kentucky Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet)

  9. Kentucky Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet)Year Jan Feb Mar Apr May

  10. Louisiana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569 02,208,9204.49 4.65 4.15

  11. Louisiana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569 02,208,9204.49 4.65 4.15Year

  12. Maryland Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.05.03 5.68 4.61 5.60

  13. Maryland Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.05.03 5.68 4.61 5.60Year Jan

  14. Michigan Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exports (NoYear Jan2009 2010 2011Decade

  15. Michigan Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exports (NoYear Jan2009 2010

  16. Mississippi Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet) PriceLiquids, Proved2009Decade

  17. Mississippi Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet) PriceLiquids,

  18. Missouri Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)SameThousand CubicDecade Year-0

  19. Missouri Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)SameThousand CubicDecade

  20. Montana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889Decade03 4.83 4.53 4.34

  1. Montana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889Decade03 4.83 4.53 4.34Year Jan

  2. Colorado Natural Gas Processed (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecadeDecadeYear(Million Cubic

  3. Kentucky Natural Gas Processed (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet) DecadeYear(Million Cubic Feet)

  4. Colorado Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet)2008 2009 2010Decade

  5. Colorado Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet)2008 2009 2010DecadeYear

  6. Ohio Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear Jan Feb Mar AprProcessed (Million

  7. Oklahoma Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear JanYear Jan(Million Cubic Feet)

  8. Arizona Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year Jan FebRepressuring (Million

  9. Arkansas Natural Gas Processed (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year% ofInputYear(Million Cubic

  10. Arkansas Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year% ofInputYear(Million

  11. Arkansas Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year% ofInputYear(MillionYear Jan

  12. Virginia Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year JanDecade Year-0 Year-1 Year-2 (MillionDecade

  13. Virginia Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year JanDecade Year-0 Year-1 Year-2 (MillionDecadeYear Jan Feb

  14. Michigan Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubicDecade Year-0Year(Million Cubic

  15. Mississippi Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale% ofElements)(Million

  16. Montana Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) Year Jan Feb(Million Cubic Feet)

  17. Illinois Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million CubicRepressuring

  18. Nebraska Natural Gas Processed (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (Million Cubic Feet)2009 2010

  19. Nebraska Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (Million Cubic Feet)2009

  20. Nebraska Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (Million Cubic Feet)2009Repressuring

  1. Nevada Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (MillionYearNADecadeand2009 2010Decade

  2. Nevada Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (MillionYearNADecadeand2009

  3. Nevada Natural Gas Wellhead (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan Feb Mar Apr May Jun(Million

  4. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May JunFeet) (MillionRepressuring

  5. Louisiana Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecade Year-0Input (Million Cubic2009

  6. Pennsylvania Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand CubicFuel Consumption (Million2008Year

  7. Office of HC Strategy Budget and Performance Metrics (HC-50)...

    Energy Savers [EERE]

    Strategy Budget and Performance Metrics (HC-50) Office of HC Strategy Budget and Performance Metrics (HC-50) Mission Statement and Function Statement The Office of Human Capital...

  8. Design and Development of Performance Metrics for Elite Runners

    E-Print Network [OSTI]

    Mittal, Nikhil R.

    2012-01-01T23:59:59.000Z

    Loss (CDEL) CDEL is another important metric for analyzing runningLoss (CDEL) CDEL is another important metric for analyzing running

  9. Integration of the EM Corporate QA Performance Metrics With Performanc...

    Office of Environmental Management (EM)

    Integration of the EM Corporate QA Performance Metrics With Performance Analysis Process Integration of the EM Corporate QA Performance Metrics With Performance Analysis Process...

  10. Metrics for border management systems.

    SciTech Connect (OSTI)

    Duggan, Ruth Ann

    2009-07-01T23:59:59.000Z

    There are as many unique and disparate manifestations of border systems as there are borders to protect. Border Security is a highly complex system analysis problem with global, regional, national, sector, and border element dimensions for land, water, and air domains. The complexity increases with the multiple, and sometimes conflicting, missions for regulating the flow of people and goods across borders, while securing them for national security. These systems include frontier border surveillance, immigration management and customs functions that must operate in a variety of weather, terrain, operational conditions, cultural constraints, and geopolitical contexts. As part of a Laboratory Directed Research and Development Project 08-684 (Year 1), the team developed a reference framework to decompose this complex system into international/regional, national, and border elements levels covering customs, immigration, and border policing functions. This generalized architecture is relevant to both domestic and international borders. As part of year two of this project (09-1204), the team determined relevant relative measures to better understand border management performance. This paper describes those relative metrics and how they can be used to improve border management systems.

  11. Energy-Momentum Distribution in Weyl Metrics

    E-Print Network [OSTI]

    M. Sharif; Tasnim Fatima

    2005-07-16T23:59:59.000Z

    In this paper, we evaluate energy and momentum density distributions for the Weyl metric by using the well-known prescriptions of Einstein, Landau-Lifshitz, Papaterou and M$\\ddot{o}$ller. The metric under consideration is the static axisymmetric vacuum solution to the Einstein field equations and one of the field equations represents the Laplace equation. Curzon metric is the special case of this spacetime. We find that the energy density is different for each prescription. However, momentum turns out to be constant in each case.

  12. Invariant torsion and G_2-metrics

    E-Print Network [OSTI]

    Diego Conti; Thomas Bruun Madsen

    2014-10-22T23:59:59.000Z

    We introduce and study a notion of invariant intrinsic torsion geometry which appears, for instance, in connection with the Bryant-Salamon metric on the spinor bundle over S^3. This space is foliated by six-dimensional hypersurfaces, each of which carries a particular type of SO(3)-structure; the intrinsic torsion is invariant under SO(3). The last condition is sufficient to imply local homogeneity of such geometries, and this allows us to give a classification. We close the circle by showing that the Bryant-Salamon metric is the unique complete metric with holonomy G_2 that arises from SO(3)-structures with invariant intrinsic torsion.

  13. Clean Cities Annual Metrics Report 2009 (Revised)

    SciTech Connect (OSTI)

    Johnson, C.

    2011-08-01T23:59:59.000Z

    Document provides Clean Cities coalition metrics about the use of alternative fuels; the deployment of alternative fuel vehicles, hybrid electric vehicles (HEVs), and idle reduction initiatives; fuel economy activities; and programs to reduce vehicle miles driven.

  14. Thermodynamic motivations of spherically symmetric static metrics

    E-Print Network [OSTI]

    H. Moradpour; S. Nasirimoghadam

    2015-06-14T23:59:59.000Z

    Bearing the thermodynamic arguments together with the two definitions of mass in mind, we try to find metrics with spherical symmetry. We consider the adiabatic condition along with the Gong-Wang mass, and evaluate the $g_{rr}$ element which points to a null hypersurface. In addition, we generalize the thermodynamics laws to this hypersurface to find its temperature and thus the corresponding surface gravity which enables us to get a relation for the $g_{tt}$ element. Finally, we investigate the mathematical and physical properties of the discovered metric in the Einstein relativity framework which shows that the primary mentioned null hypersurface is an event horizon. We also show that if one considers the Misner-Sharp mass in the calculations, the Schwarzschild metric will be got. The relationship between the two mass definitions in each metric is studied. The results of considering the geometrical surface gravity are also addressed.

  15. Thermodynamic motivations of spherically symmetric static metrics

    E-Print Network [OSTI]

    Moradpour, H

    2015-01-01T23:59:59.000Z

    Bearing the thermodynamic arguments together with the two definitions of mass in mind, we try to find metrics with spherical symmetry. We consider the adiabatic condition along with the Gong-Wang mass, and evaluate the $g_{rr}$ element which points to a null hypersurface. In addition, we generalize the thermodynamics laws to this hypersurface to find its temperature and thus the corresponding surface gravity which enables us to get a relation for the $g_{tt}$ element. Finally, we investigate the mathematical and physical properties of the discovered metric in the Einstein relativity framework which shows that the primary mentioned null hypersurface is an event horizon. We also show that if one considers the Misner-Sharp mass in the calculations, the Schwarzschild metric will be got. The relationship between the two mass definitions in each metric is studied. The results of considering the geometrical surface gravity are also addressed.

  16. Microsoft Word - QER Resilience Metrics - Technical Workshp ...

    Broader source: Energy.gov (indexed) [DOE]

    their progress to-date on developing a long-term roadmap on resilience metrics for electric power, gas, and oil infrastructure and their proposed uses. Location The session...

  17. Contributions to Metric Number Technical Report

    E-Print Network [OSTI]

    Dent, Alexander W.

    Contributions to Metric Number Theory Paul Rowe Technical Report RHUL­MA­2002­2 5 December 2002, Professor Glyn Harman, for sug- gestions of problems to attempt, helpful advice on methods and help

  18. Clean Cities 2011 Annual Metrics Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities 2011 Annual Metrics Report Caley Johnson National Renewable Energy Laboratory Technical Report NRELTP-7A30-56091 December 2012 NREL is a national laboratory of the...

  19. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01T23:59:59.000Z

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  20. Product Concept Metrics: a Preliminary Study Working Paper

    E-Print Network [OSTI]

    Takala, Roope

    Metrics for product concept evaluation and screening is a relatively unstudied topic of product development.

  1. Identifying Metrical and Temporal Structure with an Autocorrelation Phase Matrix

    E-Print Network [OSTI]

    Eck, Doug

    - odic and metrical structure in digital audio. Oscillator models (Large and Kolen, 1994; Eck, 2002) have

  2. The dynamics of metric-affine gravity

    SciTech Connect (OSTI)

    Vitagliano, Vincenzo, E-mail: vitaglia@sissa.it [SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste (Italy); INFN, Sez. di Trieste, Via Valerio 2, 34127 Trieste (Italy); Sotiriou, Thomas P., E-mail: T.Sotiriou@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Liberati, Stefano, E-mail: liberati@sissa.it [SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste (Italy); INFN, Sez. di Trieste, Via Valerio 2, 34127 Trieste (Italy)

    2011-05-15T23:59:59.000Z

    Highlights: > The role and the dynamics of the connection in metric-affine theories is explored. > The most general second order action does not lead to a dynamical connection. > Including higher order invariants excites new degrees of freedom in the connection. > f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy theories to study the properties of metric-affine gravity.

  3. Implementing the Data Center Energy Productivity Metric

    SciTech Connect (OSTI)

    Sego, Landon H.; Marquez, Andres; Rawson, Andrew; Cader, Tahir; Fox, Kevin M.; Gustafson, William I.; Mundy, Christopher J.

    2012-10-01T23:59:59.000Z

    As data centers proliferate in both size and number, their energy efficiency is becoming increasingly important. We discuss the properties of a number of the proposed metrics of energy efficiency and productivity. In particular, we focus on the Data Center Energy Productivity (DCeP) metric, which is the ratio of useful work produced by the data center to the energy consumed performing that work. We describe our approach for using DCeP as the principal outcome of a designed experiment using a highly instrumented, high performance computing data center. We found that DCeP was successful in clearly distinguishing between different operational states in the data center, thereby validating its utility as a metric for identifying configurations of hardware and software that would improve (or even maximize) energy productivity. We also discuss some of the challenges and benefits associated with implementing the DCeP metric, and we examine the efficacy of the metric in making comparisons within a data center and among data centers.

  4. Labor Department Offers $500 Million for Clean Energy Job Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    five grant competitions, totaling 500 million, to fund projects that prepare workers for green jobs in the energy efficiency and renewable energy industries. Four of the...

  5. Energy Department Invests $7 Million to Commercialize Fuel Cells...

    Energy Savers [EERE]

    than 7 million for projects that will help bring cost-effective, advanced hydrogen and fuel cell technologies online faster. This investment-across four projects in Georgia,...

  6. Department of Energy Announces $64 Million in Hydrogen Research...

    Office of Environmental Management (EM)

    of over 64 million in research and development projects aimed at making hydrogen fuel cell vehicles and refueling stations available, practical and affordable for American...

  7. Secretary Chu Announces More than $155 Million for Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dayton University of Delaware University of Louisiana at Lafayette University of Michigan West Virginia University State Agencies (3.84 million total, approximately 350,000...

  8. LOW-HIGH VALUES FOR PETROLEUM AVERAGE INVENTORY RANGES (MILLION...

    Gasoline and Diesel Fuel Update (EIA)

    ENERGY INFORMATION ADMINISTRATION LOW-HIGH VALUES FOR PETROLEUM AVERAGE INVENTORY RANGES (MILLION BARRELS) FILE UPDATED April 2004 Line Month Low High Number Product Name Geography...

  9. $787 Million Total in Small Business Contract Funding Awarded...

    National Nuclear Security Administration (NNSA)

    787 Million Total in Small Business Contract Funding Awarded in FY2009 by DOE Programs in Oak Ridge | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...

  10. Energy Department Announces $10 Million for Innovative Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Articles Laying the Foundation for Energy Efficient Commercial Buildings Daylighting Basics Energy Department Announces 10 Million for Full-Scale Wave Energy Device Testing...

  11. Energy Department Finalizes $150 Million Loan Guarantee to 1366...

    Office of Environmental Management (EM)

    for a Loan Guarantee to Support Breakthrough Solar Manufacturing Process The Reality of Solar Panels at 50% Cost Department of Energy Finalizes 197 Million Loan Guarantee to...

  12. $60 Million to Fund Projects Advancing Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The SunShot initiative announces a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States.

  13. Energy Department Announces $10 Million to Speed Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Speed Enhanced Geothermal Systems into the Market Energy Department Announces 10 Million to Speed Enhanced Geothermal Systems into the Market February 24, 2014 - 11:46am...

  14. Energy Department Announces $3 Million to Support Clean Energy...

    Office of Environmental Management (EM)

    Businesses and Entrepreneurs Energy Department Announces Over 12 Million to Spur Solar Energy Innovation Geothermal Home About the Geothermal Technologies Office Enhanced...

  15. Secretary Chu Announces Nearly $15 Million for Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the full spectrum of research, development, and deployment for solid-state lighting (SSL) technologies and will leverage an additional 4 million in private sector funding....

  16. DOE to Award $100 Million for Energy Frontier Research Centers...

    Office of Science (SC) Website

    to Award 100 Million for Energy Frontier Research Centers Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC...

  17. Energy Department Announces $5 Million for Residential Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    opportunity, the Department will make 1 million available through its annual Buildings University Innovators and Leaders Development (BUILD) funding opportunity to support...

  18. Department of Energy Awards $338 Million to Accelerate Domestic...

    Broader source: Energy.gov (indexed) [DOE]

    to 338 million in Recovery Act funding for the exploration and development of new geothermal fields and research into advanced geothermal technologies. These grants will support...

  19. Energy Department Announces $3 Million to Identify New Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of Energy today announced 3 million to spur geothermal energy development using play fairway analysis. This technique identifies prospective geothermal resources...

  20. President Requests $842.1 Million for Fossil Energy Programs...

    Energy Savers [EERE]

    commercial storage. In FY 2012, NEHHOR converted to a 1 million barrel configuration of Ultra Low Sulfur Diesel (ULSD) stored in the Northeast terminals, to meet new Northeast...

  1. ,"Sherwood, ND Natural Gas Pipeline Exports to Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  2. ,"Warroad, MN Natural Gas Pipeline Exports to Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  3. ,"Grand Island, NY Natural Gas Pipeline Exports to Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  4. ,"Calais, ME Natural Gas Pipeline Exports to Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  5. ,"Massena, NY Natural Gas Pipeline Exports to Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  6. ,"Waddington, NY Natural Gas Pipeline Exports to Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  7. Energy Department Announces $9 Million to Lower Costs, Increase...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lower Costs, Increase Performance of Solar Energy Systems Energy Department Announces 9 Million to Lower Costs, Increase Performance of Solar Energy Systems December 2, 2014 -...

  8. Small Business Innovation Research Announces $1.15 Million to...

    Energy Savers [EERE]

    million funding opportunity for small businesses to expand U.S. markets for geothermal electricity production or direct-use applications (not including ground source heat...

  9. Secretary Chu Announces Nearly $80 Million Investment for Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    of nearly 80 million under the American Recovery and Reinvestment Act for advanced biofuels research and fueling infrastructure that will help support the development of a clean...

  10. Secretary Chu Announces up to $62 Million for Concentrating Solar...

    Office of Environmental Management (EM)

    to 62 million over five years to research, develop, and demonstrate Concentrating Solar Power (CSP) systems capable of providing low-cost electrical power. This funding will...

  11. ,"New York Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:43:21 AM" "Back to Contents","Data 1: New York Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"...

  12. Energy Department Announces $3 Million to Identify New Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis The U.S. Department of Energy today announced 3 million to spur geothermal energy development using play fairway analysis. This technique identifies prospective...

  13. Department of Energy Offers Severstal Dearborn, LLC a $730 Million...

    Office of Environmental Management (EM)

    Department of Energy Finalizes a 967 Million Loan Guarantee to Support the Agua Caliente Solar Project Department of Energy Conditional Loan Guarantee Commitment to Support the...

  14. Obama Administration Announces Nearly $100 Million for Smart...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in communities across the country. Secretary Chu made the announcement while visiting a Pepco engineering and service center in Rockville, Maryland that is receiving 4.4 million...

  15. Secretary Chu Announces $620 Million for Smart Grid Demonstration...

    Office of Environmental Management (EM)

    620 Million for Smart Grid Demonstration and Energy Storage Projects: Recovery Act Funding Will Upgrade the Electrical Grid, Save Energy, and Create Jobs Secretary Chu Announces...

  16. Energy Department Announces $12 Million for Technologies to Produce...

    Broader source: Energy.gov (indexed) [DOE]

    and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Addthis Related Articles DOE Offers 12 Million for...

  17. Metric Cubes in Some Music of Brahms

    E-Print Network [OSTI]

    Murphy, Scott

    2009-01-01T23:59:59.000Z

    Pl ea se n ot e th at t hi s is a n au th or -p ro du ce d PD F of a n ar ti cl e ac ce pt ed fo r pu bl ic at io n fo llo w in g pe er r ev ie w . T he p ub lis he r ve rs io n is a va ila bl e on it s si te . [This...: Murphy, Scott. “Metric Cubes in Some Music of Brahms,” Journal of Music Theory 53/1 (Spring, 2009): 1-56. DOI:10.1215/00222909-2009-020. Abstract: The metric cube is a kind of graph of meters proposed as a complement to the types of metric spaces...

  18. Enhanced Accident Tolerant LWR Fuels: Metrics Development

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; Lori Braase; Rose Montgomery; Chris Stanek; Robert Montgomery; Lance Snead; Larry Ott; Mike Billone

    2013-09-01T23:59:59.000Z

    The Department of Energy (DOE) Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) is conducting research and development on enhanced Accident Tolerant Fuels (ATF) for light water reactors (LWRs). This mission emphasizes the development of novel fuel and cladding concepts to replace the current zirconium alloy-uranium dioxide (UO2) fuel system. The overall mission of the ATF research is to develop advanced fuels/cladding with improved performance, reliability and safety characteristics during normal operations and accident conditions, while minimizing waste generation. The initial effort will focus on implementation in operating reactors or reactors with design certifications. To initiate the development of quantitative metrics for ATR, a LWR Enhanced Accident Tolerant Fuels Metrics Development Workshop was held in October 2012 in Germantown, MD. This paper summarizes the outcome of that workshop and the current status of metrics development for LWR ATF.

  19. Metrics for a Sustainable Produced By

    E-Print Network [OSTI]

    Levinson, David M.

    Metrics for a Sustainable EcoVillage #12;2 Produced By: Nam Nguyen Master of Urban and Regional Project Manager Project for Pride in Living (PPL) Jeffrey Skrenes Housing Director Hawthorne Neighborhood Council Photo source: Unless otherwise noted, photos are provided by People for Pride in Living

  20. Clean Cities 2010 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, C.

    2012-10-01T23:59:59.000Z

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2010. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  1. Einstein Product Metrics in Diverse Dimensions

    E-Print Network [OSTI]

    K. R. Koehler

    2006-01-27T23:59:59.000Z

    We use direct products of Einstein Metrics to construct new solutions to Einstein's Equations with cosmological constant. We illustrate the technique with three families of solutions having the geometries Kerr/de Sitter X de Sitter, Kerr/anti-de Sitter X anti-de Sitter and Kerr X Kerr.

  2. Einstein Metrics on Rational Homology 7-Spheres

    E-Print Network [OSTI]

    Einstein Metrics on Rational Homology 7-Spheres Charles P. Boyer Krzysztof Galicki Michael Nakamaye Abstract: In this paper we demonstrate the existence of Sasakian-Einstein structures on certain 2-connected rational homology 7-spheres. These appear to be the #12;rst non-regular examples of Sasakian-Einstein

  3. An Attack Surface Metric Pratyusa K. Manadhata

    E-Print Network [OSTI]

    K. Manadhata This research was sponsored in part by the Defense Advanced Research Project Agency by the National Science Foundation under grants no. CCR-0121547 and CNS-0433540, SAP Labs, LLC under award no metrics has recently become more pressing. In this thesis, we introduce the measure of a software system

  4. Fourier Transform, Riemann Surfaces and Indefinite Metric

    E-Print Network [OSTI]

    Fominov, Yakov

    Fourier Transform, Riemann Surfaces and Indefinite Metric P. G. Grinevich, S.P.Novikov Zakharov Park, College Park, USA #12;What is Fourier Transform in Riemann Surfaces? Which Problems need it? Discrete Analog of The Fourier/Laurent bases in Riemann Sur- faces was constructed by Krichever-Novikov (KN

  5. Performance Metrics Research Project - Final Report

    SciTech Connect (OSTI)

    Deru, M.; Torcellini, P.

    2005-10-01T23:59:59.000Z

    NREL began work for DOE on this project to standardize the measurement and characterization of building energy performance. NREL's primary research objectives were to determine which performance metrics have greatest value for determining energy performance and to develop standard definitions and methods of measuring and reporting that performance.

  6. Clean Cities 2011 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, C.

    2012-12-01T23:59:59.000Z

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2011. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  7. Evaluation Criteria for Human-Automation Performance Metrics

    E-Print Network [OSTI]

    Pina, Patricia Elena

    Previous research has identified broad metric classes for human-automation performance to facilitate metric selection, as well as understanding and comparison of research results. However, there is still lack of an objective ...

  8. Ideal Based Cyber Security Technical Metrics for Control Systems

    SciTech Connect (OSTI)

    W. F. Boyer; M. A. McQueen

    2007-10-01T23:59:59.000Z

    Much of the world's critical infrastructure is at risk from attack through electronic networks connected to control systems. Security metrics are important because they provide the basis for management decisions that affect the protection of the infrastructure. A cyber security technical metric is the security relevant output from an explicit mathematical model that makes use of objective measurements of a technical object. A specific set of technical security metrics are proposed for use by the operators of control systems. Our proposed metrics are based on seven security ideals associated with seven corresponding abstract dimensions of security. We have defined at least one metric for each of the seven ideals. Each metric is a measure of how nearly the associated ideal has been achieved. These seven ideals provide a useful structure for further metrics development. A case study shows how the proposed metrics can be applied to an operational control system.

  9. Financial Metrics Data Collection Protocol, Version 1.0

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Gorrissen, Willy J.; Wang, Na

    2010-04-30T23:59:59.000Z

    Brief description of data collection process and plan that will be used to collect financial metrics associated with sustainable design.

  10. Complex Systems--Goals & Metrics Long-term Objective

    E-Print Network [OSTI]

    Hayden, Nancy J.

    ://www.uvm.edu/cmplxsys/. Moving forward--Goals, Metrics, and Resources: Approach: Kaizen. Measurability is ke

  11. Tenneco raises $75 million for independents' E and P

    SciTech Connect (OSTI)

    Not Available

    1992-07-20T23:59:59.000Z

    Tenneco Gas's ventures group, Houston, has raised $75 million to invest in gas exploration and production by independent operations on the U.S. Gulf Coast. Institutional investors committed $50 million to the fund and a group of industrial investors $25 million. Tenneco the the fund will expand to accommodate additional investors through this year. This paper reports that the company's ventures group is evaluating acquisition and drilling opportunities with independents. Ventures group capital will be invested in independent exploratory, development, and producing properties.

  12. Ashland outlines $261 million in refinery unit construction

    SciTech Connect (OSTI)

    Not Available

    1992-08-31T23:59:59.000Z

    This paper reports that Ashland Petroleum Co. has spelled out $261 million in projects completed, under way, or planned to produce cleaner fuel and further reduce emissions at two U.S. refineries. The company: Started up at $13 million pollution control system at its 213,400 b/cd Catlettsburg, Ky., plant. Started construction on six projects at its 67,100 b/cd St. Paul Park, Minn., refinery that will cost about $114 million and enable the plant to produce cleaner burning diesel fuel and further reduce emissions.

  13. Massachusetts Natural Gas Underground Storage Withdrawals (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0Feet) (Million(MillionFeet)

  14. Colorado Natural Gas Plant Liquids Production Extracted in Kansas (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet) (Million(Million

  15. Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet) (Million(MillionCubic

  16. Wisconsin Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear JanThousand(Million

  17. Wisconsin Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear JanThousand(MillionDecade

  18. Wyoming Natural Gas Plant Liquids Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million Cubic Feet)Fuel(Million

  19. Metrics Are Fitness Functions Too Mark Harman John Clark

    E-Print Network [OSTI]

    Singer, Jeremy

    that there is an alternative, complementary, view of a metric: as a fitness function, used to guide a search for optimal' (MAFF) approach offers a number of additional benefits to metrics research and practice because systems. It describes the properties of a metric which make it a good fitness function and explains

  20. Metrics for measuring distances in configuration spaces

    SciTech Connect (OSTI)

    Sadeghi, Ali, E-mail: ali.sadeghi@unibas.ch; Ghasemi, S. Alireza; Schaefer, Bastian; Mohr, Stephan; Goedecker, Stefan [Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel (Switzerland)] [Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel (Switzerland); Lill, Markus A. [Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907 (United States)] [Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907 (United States)

    2013-11-14T23:59:59.000Z

    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices.

  1. Minnesota Company 3M Awarded $3 Million by Energy Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of 3 million to 3M Company in St. Paul, Minnesota, to lower the cost of advanced fuel cell systems by developing cost-effective, durable, and highly efficient fuel cell...

  2. Energy Department Announces $2 Million to Develop Supply Chain...

    Broader source: Energy.gov (indexed) [DOE]

    today announced up to 2 million to develop the domestic supply chain for hydrogen and fuel cell technologies and study the competitiveness of U.S. hydrogen and fuel cell system...

  3. Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...

    Energy Savers [EERE]

    ERDF comprises a series disposal areas called cells. Each pair of cells is 70 feet deep, 500 feet wide and 1,000 feet long at the base - large enough to hold about three million...

  4. DOE Awards $15 Million in Technical Assistance to Support Major...

    Office of Environmental Management (EM)

    of Energy (DOE) today announced the first phase of awards, valued at 15 million, for the Net-Zero Energy Commercial Building Initiative (CBI). Twenty-one companies, which will...

  5. DOE Announces Over $8 Million to Increase Use and Availability...

    Broader source: Energy.gov (indexed) [DOE]

    Announces Over 8 Million to Increase Use and Availability of Alternative Fuels WASHINGTON, DC -Today, U.S. Department of Energy (DOE) Secretary Samuel W. Bodman announced 8.6...

  6. Energy Department Announces $3 Million to Lower Cost of Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lower Cost of Geothermal Energy and Boost U.S. Supply of Critical Materials Energy Department Announces 3 Million to Lower Cost of Geothermal Energy and Boost U.S. Supply of...

  7. Department of Energy Closes $400 Million Loan Guarantee for State...

    Broader source: Energy.gov (indexed) [DOE]

    Chu announced today that a 400 million loan guarantee has been finalized for Abound Solar Manufacturing, LLC to manufacture state-of-the-art thin-film solar panels. The Abound...

  8. NNSA Provides More Than $290 Million in Small Business Contract...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Provides More Than ... NNSA Provides More Than 290 Million in Small Business Contract Obligations in FY 2012 Posted: December 18, 2012 - 11:45am In recognition of its commitment...

  9. Department of Energy Offers $90.6 Million Conditional Commitment...

    Office of Environmental Management (EM)

    invested 17.5 million in seven companies in its first round of funding -- and those companies have gone on to attract more than 1.6 billion of private financing as they...

  10. Oak Ridge: Approaching 4 Million Safe Work Hours

    Broader source: Energy.gov [DOE]

    Workers at URS | CH2M Oak Ridge (UCOR), the prime contractor for EM’s Oak Ridge cleanup, are approaching a milestone of 4 million safe work hours without a lost time away incident.

  11. Energy Department Awards More Than $1 Million to Three States...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 - 1:12pm Addthis In support of President Obama's goal of doubling U.S. energy productivity by 2030, the Energy Department today announced new awards of more than 1 million...

  12. Department of Energy's Paducah Site Reaches Million-Hour Safety...

    Office of Environmental Management (EM)

    a core value" attitude. "Our team adheres to the concept that we will only achieve productivity through safety," LATA Kentucky Project Manager Mark Duff said. "The million-hour...

  13. President Requests $881.6 Million for Fossil Energy Programs

    Broader source: Energy.gov [DOE]

    President Obama's FY 2010 budget seeks $881.6 million for the Office of Fossil Energy to support improved energy security and rapid development of climate-oriented technology.

  14. President Requests $760.4 Million for Fossil Energy Programs

    Broader source: Energy.gov [DOE]

    President Obama's FY 2011 budget seeks $760.4 million for the Office of Fossil Energy to support improved energy security and rapid development of climate-oriented technology.

  15. Secretary Chu Announces Closing of $117 Million Loan Guarantee...

    Office of Environmental Management (EM)

    Power Project Secretary Chu Announces Closing of 117 Million Loan Guarantee for Kahuku Wind Power Project July 27, 2010 - 12:00am Addthis Washington D.C. --- Energy Secretary...

  16. ,"New York Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:22:39 AM" "Back to Contents","Data 1: New York Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160SNY2"...

  17. Obama Administration Offers $59 Million in Conditional Loan Guarantees...

    Energy Savers [EERE]

    expansion of its assembly plant in Pocatello, Idaho, to produce its one megawatt wind turbine. Beacon Power, an energy storage company, has been offered 43 million to support the...

  18. Energy Department Announces $180 Million for Ambitious New Initiative...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secretary Steven Chu today announced the start of an ambitious initiative to capture the potential of wind energy off American coasts. As part of a planned six-year 180 million...

  19. Metric perturbation theory of quantum dynamics

    E-Print Network [OSTI]

    Antony L Tambyrajah

    2006-10-06T23:59:59.000Z

    A theory of quantum dynamics based on a discrete structure underlying the space time manifold is developed for single particles. It is shown that at the micro domain the interaction of particles with the underlying discrete structure results in the quantum space time manifold. Regarding the resulting quantum space-time as perturbation from the Lorentz metric it is shown it is possible to discuss the dynamics of particles in the quantum domain.

  20. Smart Grid Status and Metrics Report

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Weimar, Mark R.; Kirkham, Harold

    2014-07-01T23:59:59.000Z

    To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the grid’s capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.

  1. Optical metrics and birefringence of anisotropic media

    E-Print Network [OSTI]

    Alexander B. Balakin; Winfried Zimdahl

    2005-04-12T23:59:59.000Z

    The material tensor of linear response in electrodynamics is constructed out of products of two symmetric second rank tensor fields which in the approximation of geometrical optics and for uniaxial symmetry reduce to "optical" metrics, describing the phenomenon of birefringence. This representation is interpreted in the context of an underlying internal geometrical structure according to which the symmetric tensor fields are vectorial elements of an associated two-dimensional space.

  2. Variable metric methods for automatic history matching

    E-Print Network [OSTI]

    Armasu, Razvan

    1985-01-01T23:59:59.000Z

    . Automatic history matching codes presently in use employ steepest descent with optimal control, and although they were proven superior to others, their performance is not entirely satisfactory due to the poor rate of convergence as the performance index... rates of convergence when compared to the steepest descent They can be made to start out as steepest descent and end up as a second order algorithm, using functional and gradient information only, In this work several variable metric algorithms...

  3. A New Method For Robust High-Precision Time-Series Photometry From Well-Sampled Images: Application to Archival MMT/Megacam Observations of the Open Cluster M37

    E-Print Network [OSTI]

    Chang, S -W; Hartman, J D

    2015-01-01T23:59:59.000Z

    We introduce new methods for robust high-precision photometry from well-sampled images of a non-crowded field with a strongly varying point-spread function. For this work, we used archival imaging data of the open cluster M37 taken by MMT 6.5m telescope. We find that the archival light curves from the original image subtraction procedure exhibit many unusual outliers, and more than 20% of data get rejected by the simple filtering algorithm adopted by early analysis. In order to achieve better photometric precisions and also to utilize all available data, the entire imaging database was re-analyzed with our time-series photometry technique (Multi-aperture Indexing Photometry) and a set of sophisticated calibration procedures. The merit of this approach is as follows: we find an optimal aperture for each star with a maximum signal-to-noise ratio, and also treat peculiar situations where photometry returns misleading information with more optimal photometric index. We also adopt photometric de-trending based on ...

  4. Self-benchmarking Guide for Laboratory Buildings: Metrics, Benchmarks, Actions

    E-Print Network [OSTI]

    Mathew, Paul

    2010-01-01T23:59:59.000Z

    Site Energy Intensity (BTU/sf-yr). A Performance BenchmarkAnnual natural gas energy use (Million BTU) dE3: Annual fueloil energy use (Million BTU) dE4: Annual other fuel energy

  5. Energy Department Awards $2.6 Million to Boost Combustion Efficiency...

    Office of Environmental Management (EM)

    2.6 Million to Boost Combustion Efficiency in Industrial Boilers Energy Department Awards 2.6 Million to Boost Combustion Efficiency in Industrial Boilers September 26, 2005 -...

  6. Energy Department Accepting Applications for a $3.6 Million Hydroelect...

    Office of Environmental Management (EM)

    Accepting Applications for a 3.6 Million Hydroelectric Production Incentive Program Energy Department Accepting Applications for a 3.6 Million Hydroelectric Production Incentive...

  7. Department of Energy Finalizes $96.8 Million Loan Guarantee for...

    Office of Environmental Management (EM)

    Finalizes 96.8 Million Loan Guarantee for Oregon Geothermal Project Department of Energy Finalizes 96.8 Million Loan Guarantee for Oregon Geothermal Project February 24, 2011 -...

  8. DOE Announces $27 Million to Reduce Costs of Solar Energy Projects...

    Broader source: Energy.gov (indexed) [DOE]

    7 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces 27 Million to Reduce Costs of Solar Energy Projects, Streamline...

  9. ARPA-E Announces Projects Have Attracted Over $450 Million in...

    Office of Environmental Management (EM)

    Million in Private Sector Funding, Spurred Start-up Company Formation and Fostered ARPA-E Announces Projects Have Attracted Over 450 Million in Private Sector Funding, Spurred...

  10. Metrics For Comparing Plasma Mass Filters

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2012-08-15T23:59:59.000Z

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter. __________________________________________________

  11. Metrics for comparing plasma mass filters

    SciTech Connect (OSTI)

    Fetterman, Abraham J.; Fisch, Nathaniel J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States)

    2011-10-15T23:59:59.000Z

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter.

  12. Measurable Control System Security through Ideal Driven Technical Metrics

    SciTech Connect (OSTI)

    Miles McQueen; Wayne Boyer; Sean McBride; Marie Farrar; Zachary Tudor

    2008-01-01T23:59:59.000Z

    The Department of Homeland Security National Cyber Security Division supported development of a small set of security ideals as a framework to establish measurable control systems security. Based on these ideals, a draft set of proposed technical metrics was developed to allow control systems owner-operators to track improvements or degradations in their individual control systems security posture. The technical metrics development effort included review and evaluation of over thirty metrics-related documents. On the bases of complexity, ambiguity, or misleading and distorting effects the metrics identified during the reviews were determined to be weaker than necessary to aid defense against the myriad threats posed by cyber-terrorism to human safety, as well as to economic prosperity. Using the results of our metrics review and the set of security ideals as a starting point for metrics development, we identified thirteen potential technical metrics - with at least one metric supporting each ideal. Two case study applications of the ideals and thirteen metrics to control systems were then performed to establish potential difficulties in applying both the ideals and the metrics. The case studies resulted in no changes to the ideals, and only a few deletions and refinements to the thirteen potential metrics. This led to a final proposed set of ten core technical metrics. To further validate the security ideals, the modifications made to the original thirteen potential metrics, and the final proposed set of ten core metrics, seven separate control systems security assessments performed over the past three years were reviewed for findings and recommended mitigations. These findings and mitigations were then mapped to the security ideals and metrics to assess gaps in their coverage. The mappings indicated that there are no gaps in the security ideals and that the ten core technical metrics provide significant coverage of standard security issues with 87% coverage. Based on the two case studies and evaluation of the seven assessments, the security ideals demonstrated their value in guiding security thinking. Further, the final set of core technical metrics has been demonstrated to be both usable in the control system environment and provide significant coverage of standard security issues.

  13. Saudi production capacity climbing to 10 million b/d

    SciTech Connect (OSTI)

    Not Available

    1994-07-11T23:59:59.000Z

    Saudi Arabia this year is completing its expansion of production capacity and developing recent discoveries to enhance export flexibility. The 3 million b/d capacity expansion to 10 million b/d, announced in 1989, is on target for completion by year end 1994. Most of the effort involves restoration of mothballed production equipment and installation of several gas-oil separation plants (GOSPs) in existing fields. But Saudi Arabian Oil Co. (Saudi Aramco) also this year will start up production of extra-light oil from a new field in the central part of the kingdom. Start-up of Hawtah area production demonstrates success of an oil search Aramco began after receiving exclusive exploration rights to nearly all of Saudi Arabia's prospective area in 1986. From new fields and traditional producing areas, therefore, Saudi Arabia has the potential to expand production capacity beyond 10 million b/d. The paper describes the development of the extra capacity.

  14. Software Modeling of S-Metrics Visualizer: Synergetic Interactive Metrics Visualization Tool

    E-Print Network [OSTI]

    Dascalu, Sergiu

    utilization, earned-value cost and schedule performance) to provide enhanced management insight in a timely and visualization tool for Windows. Throughout the software development process managers must be aware problems that occur throughout the project's evolution. Software metrics help managers to better monitor

  15. Louisiana Natural Gas LNG Storage Additions (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569 0 0Year JanAdditions (Million

  16. Maryland Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.0 0.0YearCommercial (Million

  17. Massachusetts Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.04,0009,929Withdrawals (Million

  18. Massachusetts Natural Gas Pipeline and Distribution Use (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0Feet) (Million Cubic Feet)

  19. Massachusetts Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0Feet) (Million CubicperDecade

  20. Massachusetts Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0Feet) (Million

  1. Michigan Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exports (NoYear Jan (Million Cubic Feet)

  2. Michigan Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exports (NoYear Jan (Million CubicFuel

  3. Michigan Natural Gas Plant Liquids Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exports (NoYear Jan (Million

  4. Michigan Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exports (NoYear Jan (MillionProved

  5. Minnesota Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercial Consumers (Number of (Million

  6. Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet) Price AllFuelCommercial (Million

  7. Montana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889Decade Year-0and (Million Cubic

  8. Montana Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889Decade Year-0and (MillionFuel

  9. South Carolina Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndia (Million2,116CubicWithdrawals (Million

  10. California Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590Fuel Consumption (Million (Million Cubic

  11. California Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590Fuel Consumption (Million (MillionFuel

  12. Colorado Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet) (Million Cubic Feet)

  13. Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet) (Million CubicFuel

  14. Colorado Natural Gas Plant Liquids Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet) (Million

  15. Washington Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810 0CubicFeet) Lease (Million

  16. West Virginia Natural Gas Plant Liquids Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(Million Cubic Feet) West Virginia

  17. West Virginia Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(Million Cubic Feet) WestProved

  18. West Virginia Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(Million Cubic Feet)Nov-14

  19. West Virginia Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(Million Cubic Feet)Nov-14Repressuring

  20. West Virginia Natural Gas Residential Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(Million CubicDecade Year-0 Year-1

  1. West Virginia Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(Million CubicDecade Year-0 Year-1Total

  2. West Virginia Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(Million CubicDecade Year-0

  3. West Virginia Natural Gas Underground Storage Net Withdrawals (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(Million CubicDecade Year-0Cubic

  4. West Virginia Natural Gas Underground Storage Withdrawals (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(Million CubicDecade

  5. West Virginia Natural Gas Underground Storage Withdrawals (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(Million CubicDecadeFeet) Year Jan

  6. West Virginia Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(Million CubicDecadeFeet) Year

  7. West Virginia Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(Million CubicDecadeFeet)

  8. West Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(Million

  9. West Virginia Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear Jan Feb Mar Apr May Jun

  10. West Virginia Natural Gas in Underground Storage (Working Gas) (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear Jan Feb Mar AprYearCubic

  11. West Virginia Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear Jan Feb Marfrom

  12. West Virginia Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear Jan Feb MarfromFeet)

  13. West Virginia Working Natural Gas Underground Storage Capacity (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear Jan

  14. Wisconsin Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear Jan 201151 -18 -290 0 0

  15. Wisconsin Natural Gas Industrial Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear Jan 201151 -18 -290 0

  16. Wisconsin Natural Gas LNG Storage Additions (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear Jan 201151 -18

  17. Wisconsin Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear Jan 201151 -18Withdrawals

  18. Wisconsin Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear Jan 201151Industrial

  19. Wisconsin Natural Gas Residential Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear JanThousand Cubic28

  20. Wisconsin Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear JanThousand Cubic28Total

  1. Wisconsin Natural Gas Underground Storage Injections All Operators (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear JanThousand

  2. Wisconsin Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear

  3. Wyoming Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYearVehicleTrading,781Year Jan

  4. Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million Cubic Feet) Wyoming

  5. Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million Cubic Feet)Fuel

  6. Wyoming Natural Gas Plant Liquids Production Extracted in Colorado (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million Cubic

  7. Wyoming Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million CubicCubic Feet)

  8. Wyoming Natural Gas Residential Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million CubicCubic200932,399Decade

  9. Wyoming Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million

  10. Wyoming Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYear Jan Feb Mar Apr May

  11. Wyoming Natural Gas Underground Storage Net Withdrawals (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYear Jan Feb Mar Apr

  12. Wyoming Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYear Jan Feb Mar AprDecade

  13. Wyoming Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYear Jan Feb Mar

  14. Wyoming Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYear Jan Feb MarDecade

  15. Wyoming Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYear Jan Feb MarDecadeYear

  16. Wyoming Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYear Jan FebDecade Year-0

  17. Wyoming Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYear Jan FebDecade

  18. Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYear Jan FebDecadeBase

  19. Wyoming Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYear

  20. Wyoming Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYearYear Jan Feb Mar Apr

  1. Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYearYear Jan

  2. Illinois Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million381Withdrawals (Million

  3. Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (Million Cubic Feet) (Million Cubic

  4. Nebraska Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (Million Cubic Feet) (MillionFuel

  5. Nebraska Natural Gas Plant Liquids Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (Million Cubic Feet) (MillionFuelPlant

  6. Nevada Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (MillionYearNADecadeand (Million Cubic

  7. Wyoming Natural Gas Processed in Wyoming (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYearBarrels)Wyoming (Million

  8. Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousandUnderground Storage Volume (Million Cubic

  9. Texas Onshore Natural Gas Processed in Texas (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation, ProvedProcessed (Million Cubic Feet)Texas (Million Cubic

  10. A study on metrics for simulation programming languages

    E-Print Network [OSTI]

    Nallapati, Kumar V.

    1986-01-01T23:59:59.000Z

    proposes models for metrics specially designed for use in simulation modeling which can help in evaluating the performance and resource requirements of simulation programming languages. Certain existing software metrics for general purpose programming... GPSS and SIMAN. With these characteristics and the existing metrics, models were developed for evaluation of software and hardware requirements for a given simulation problem. ACKNOWLEDGEMENTS I thank Dr. Sallie Sheppard, Chairperson of my committee...

  11. Spherically Symmetric, Metrically Static, Isolated Systems in Quasi-Metric Gravity

    E-Print Network [OSTI]

    Dag Østvang

    2014-05-09T23:59:59.000Z

    The gravitational field exterior respectively interior to a spherically symmetric, isolated body made of perfect fluid is examined within the quasi-metric framework (QMF). It is required that the gravitational field is "metrically static", meaning that it is static except for the effects of the global cosmic expansion on the spatial geometry. Dynamical equations for the gravitational field are set up and an exact solution is found for the exterior part. Besides, equations of motion applying to inertial test particles moving in the exterior gravitational field are set up. By construction the gravitational field of the system is not static with respect to the cosmic expansion. This means that the radius of the source increases and that distances between circular orbits of inertial test particles increase according to the Hubble law. Moreover it is shown that if this model of an expanding gravitational field is taken to represent the gravitational field of the Sun (or isolated planetary systems), this has no serious consequences for observational aspects of planetary motion. On the contrary some observational facts of the Earth-Moon system are naturally explained within the QMF. Finally the QMF predicts different secular increases for two different gravitational coupling parameters. But such secular changes are neither present in the Newtonian limit of the quasi-metric equations of motion nor in the Newtonian limit of the quasi-metric field equations valid inside metrically static sources. Thus standard interpretations of space experiments testing the secular variation of G are explicitly theory-dependent and do not apply to the QMF.

  12. Resilient Control Systems Practical Metrics Basis for Defining Mission Impact

    SciTech Connect (OSTI)

    Craig G. Rieger

    2014-08-01T23:59:59.000Z

    "Resilience” describes how systems operate at an acceptable level of normalcy despite disturbances or threats. In this paper we first consider the cognitive, cyber-physical interdependencies inherent in critical infrastructure systems and how resilience differs from reliability to mitigate these risks. Terminology and metrics basis are provided to integrate the cognitive, cyber-physical aspects that should be considered when defining solutions for resilience. A practical approach is taken to roll this metrics basis up to system integrity and business case metrics that establish “proper operation” and “impact.” A notional chemical processing plant is the use case for demonstrating how the system integrity metrics can be applied to establish performance, and

  13. Enterprise performance measurement system : metric design framework and tools

    E-Print Network [OSTI]

    Teo, Kai Siang

    2013-01-01T23:59:59.000Z

    Existing metric selection methodologies and performance measurement frameworks provide practicing managers with good checklists and tools to evaluate and design their enterprise performance measurement systems (EPMS) and ...

  14. On the Riemann Extension of the Schwarzschild Metric

    E-Print Network [OSTI]

    V. Dryuma

    2004-04-30T23:59:59.000Z

    Some solutions of the Einstein equations for the eight-dimensional Riemann extension of the classical four-dimensional Schwarzschild metric are considered.

  15. Hölder Metric Subregularity with Applications to Proximal Point Method

    E-Print Network [OSTI]

    2012-02-02T23:59:59.000Z

    Feb 2, 2012 ... analysis and generalized differentiation, we derive neighborhood and ...... failure of metric subregularity in the above very natural sense.

  16. Summary of Proposed Metrics - QER Technical Workshop on Energy...

    Energy Savers [EERE]

    resources available) to enable decisions - Prototype metrics - Use Cases created for electric power, oil, and natural gas systems o Applies common principles across energy...

  17. On isotropic metric of Schwarzschild solution of Einstein equation

    E-Print Network [OSTI]

    T. Mei

    2006-10-24T23:59:59.000Z

    The known static isotropic metric of Schwarzschild solution of Einstein equation cannot cover with the range of r<2MG, a new isotropic metric of Schwarzschild solution is obtained. The new isotropic metric has the characters: (1) It is dynamic and periodic. (2) It has infinite singularities of the spacetime. (3) It cannot cover with the range of 0metric.

  18. Conceptual Framework for Developing Resilience Metrics for the...

    Office of Environmental Management (EM)

    Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States (September 2014) Conceptual Framework for Developing...

  19. Energy for 500 million Homes: Drivers and Outlook for

    E-Print Network [OSTI]

    -up analysis of residential building energy consumption in China using data from a wide variety of sourcesLBNL-2417E Energy for 500 million Homes: Drivers and Outlook for Residential Energy Consumption and Outlook for Residential Energy Consumption in China Nan Zhou*, Michael A. McNeil, Mark Levine Keywords

  20. Einstein metrics and Brans-Dicke superfields

    SciTech Connect (OSTI)

    Marques, S.

    1988-01-01T23:59:59.000Z

    It is obtained here a space conformal to the Einstein space-time, making the transition from an internal bosonic space, constructed with the Majorana constant spinors in the Majorana representation, to a bosonic ''superspace,'' through the use of Einstein vierbeins. These spaces are related to a Grassmann space constructed with the Majorana spinors referred to above, where the ''metric'' is a function of internal bosonic coordinates. The conformal function is a scale factor in the zone of gravitational radiation. A conformal function dependent on space-time coordinates can be constructed in that region when we introduce Majorana spinors which are functions of those coordinates. With this we obtain a scalar field of Brans-Dicke type. 11 refs.

  1. Symplectic fusion rings and their metric

    E-Print Network [OSTI]

    D. Gepner; A. Schwimmer

    1992-04-08T23:59:59.000Z

    The fusion of fields in a rational conformal field theory gives rise to a ring structure which has a very particular form. All such rings studied so far were shown to arise from some potentials. In this paper the fusion rings of the WZW models based on the symplectic group are studied. It is shown that they indeed arise from potentials which are described. These potentials give rise to new massive perturbations of superconformal hermitian symmetric models. The metric of the perturbation is computed and is shown to be given by solutions of the sinh--gordon equation. The kink structure of the theories is described, and it is argued that these field theories are integrable. The $S$ matrices for the fusion theories are argued to be non--minimal extensions of the $G_k\\times G_1/ G_{k+1}$ $S$ matrices with the adjoint perturbation, in the case of $G=SU(N)$.

  2. Clean Cities 2013 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, C.; Singer, M.

    2014-10-01T23:59:59.000Z

    Each year, the U.S. Department of Energy asks its Clean Cities program coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction (IR) initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this 2013 Annual Metrics Report.

  3. Bi-metric Gravity and "Dark Matter"

    E-Print Network [OSTI]

    I. T. Drummond

    2000-08-18T23:59:59.000Z

    We present a bi-metric theory of gravity containing a length scale of galactic size. For distances less than this scale the theory satisfies the standard tests of General Relativity. For distances greater than this scale the theory yields an effective gravitational constant much larger than the locally observed value of Newton's constant. The transition from one regime to the other through the galactic scale can explain the observed rotation curves of galaxies and hence the effects normally attributed to the presence of dark matter. Phenomena on an extragalactic scale such as galactic clusters and the expansion of the universe are controlled by the enhanced gravitational coupling. This provides an explanation of the missing matter normally invoked to account for the observed value of Hubble's constant in relation to observed matter.

  4. Distance Metric Learning for Large Margin Nearest Neighbor Classification

    E-Print Network [OSTI]

    Weinberger, Kilian

    Distance Metric Learning for Large Margin Nearest Neighbor Classification Kilian Q. Weinberger}@cis.upenn.edu Abstract We show how to learn a Mahanalobis distance metric for k-nearest neigh- bor (kNN) classification in kNN classification--for example, achieving a test error rate of 1.3% on the MNIST handwritten digits

  5. Cortical Hemisphere Registration Via Large Deformation Diffeomorphic Metric Curve

    E-Print Network [OSTI]

    Qiu, Anqi

    on the relation between individual brains and the atlas. This is a powerful approach allowing us to study a largeCortical Hemisphere Registration Via Large Deformation Diffeomorphic Metric Curve Mapping Anqi Qiu1 Science, Johns Hopkins University Abstract. We present large deformation diffeomorphic metric curve

  6. Comparison of Distance Metrics for Hierarchical Data in Medical Databases

    E-Print Network [OSTI]

    Aickelin, Uwe

    sufficiently well in clustering the patient population using k-means clustering algorithm. I. INTRODUCTIONComparison of Distance Metrics for Hierarchical Data in Medical Databases Diman Hassan, Uwe of these metrics have been compared to other measures to find their efficiency. In [5], a comparison has been made

  7. Metrics for Evaluating Conventional and Renewable Energy Technologies (Presentation)

    SciTech Connect (OSTI)

    Mann, M. K.

    2013-01-01T23:59:59.000Z

    With numerous options for the future of natural gas, how do we know we're going down the right path? How do we designate a metric to measure and demonstrate change and progress, and how does that metric incorporate all stakeholders and scenarios?

  8. Estimation of Photovoltaic System Reliability and Performance Metrics

    E-Print Network [OSTI]

    Liberzon, Daniel

    1 Estimation of Photovoltaic System Reliability and Performance Metrics Sairaj V. Dhople, Student reliability and perfor- mance analysis of grid-tied photovoltaic (PV) systems is for- mulated using Markov and energy yield, and reliability metrics such as availability. The paper also provides an analytical method

  9. The Posterior metric and the Goodness of Gibbsianness

    E-Print Network [OSTI]

    Külske, Christof

    exhibit the minimal necessary structure for such double-layer systems. As- suming no a priori metric, specification, posterior metric. University of Groningen, Institute of Mathematics and Computing Science, Dobrushin uniqueness has a lot of advantages, being not very technical, but very general, requiring little

  10. advanced web metrics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    web metrics First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A Survey of Web Metrics DEVANSHU DHYANI...

  11. Berkeley Lab scientists develop criteria for $20 million energy challenge

    SciTech Connect (OSTI)

    Walker, Iain

    2009-01-01T23:59:59.000Z

    Berkeley Labs Iain Walker and his colleagues in environmental energy research helped the Siebel Foundation develop the criteria for its Energy Free Home Challenge, which comes with a $20 million global incentive prize. The Challenge is a competition to create a new generation of systems and technologies for practical homes that realize a net-zero, non-renewable energy footprint without increasing the cost of ownership. It is open to everyone everywhere — university teams to handymen and hobbyists.

  12. Berkeley Lab scientists develop criteria for $20 million energy challenge

    ScienceCinema (OSTI)

    Walker, Iain

    2013-05-29T23:59:59.000Z

    Berkeley Labs Iain Walker and his colleagues in environmental energy research helped the Siebel Foundation develop the criteria for its Energy Free Home Challenge, which comes with a $20 million global incentive prize. The Challenge is a competition to create a new generation of systems and technologies for practical homes that realize a net-zero, non-renewable energy footprint without increasing the cost of ownership. It is open to everyone everywhere ? university teams to handymen and hobbyists.

  13. Colorado Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric andIndustrialSan(Million

  14. Colorado Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricSales (Billion (Million Cubic2009Year Jan Feb Mar

  15. South Dakota Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade Year-0TotalH (Million

  16. Nebraska Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) in DelawareTotal Consumption (Million Cubic Feet)Year Jan

  17. New York Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (Million Cubic Feet) New York Natural

  18. New York Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (Million Cubic Feet) New York

  19. New York Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (Million Cubic Feet)Nov-14

  20. New York Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (Million Cubic Feet)Nov-14Year

  1. New York Natural Gas Underground Storage Net Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (Million CubicYear Jan Feb Mar Apr

  2. New York Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (Million CubicYear Jan Feb Mar

  3. New York Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (Million CubicYear Jan FebDecade

  4. Nogales, AZ Liquefied Natural Gas Exports (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8 2.415 - - -

  5. North Carolina Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8Input Supplemental

  6. North Carolina Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8Input

  7. North Carolina Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawalsElements)Total Consumption (Million

  8. Oklahoma Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May JunFeet) (Million Cubic

  9. Pennsylvania Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYearAdditions (Million Cubic Feet)

  10. Pennsylvania Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYearAdditions (Million Cubic

  11. Pennsylvania Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYearAdditionsLiquids Production (Million

  12. Maryland Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (Million Cubic Feet) Maryland

  13. Practical Diagnostics for Evaluating Residential Commissioning Metrics

    SciTech Connect (OSTI)

    Wray, Craig; Walker, Iain; Siegel, Jeff; Sherman, Max

    2002-06-11T23:59:59.000Z

    In this report, we identify and describe 24 practical diagnostics that are ready now to evaluate residential commissioning metrics, and that we expect to include in the commissioning guide. Our discussion in the main body of this report is limited to existing diagnostics in areas of particular concern with significant interactions: envelope and HVAC systems. These areas include insulation quality, windows, airtightness, envelope moisture, fan and duct system airflows, duct leakage, cooling equipment charge, and combustion appliance backdrafting with spillage. Appendix C describes the 83 other diagnostics that we have examined in the course of this project, but that are not ready or are inappropriate for residential commissioning. Combined with Appendix B, Table 1 in the main body of the report summarizes the advantages and disadvantages of all 107 diagnostics. We first describe what residential commissioning is, its characteristic elements, and how one might structure its process. Our intent in this discussion is to formulate and clarify these issues, but is largely preliminary because such a practice does not yet exist. Subsequent sections of the report describe metrics one can use in residential commissioning, along with the consolidated set of 24 practical diagnostics that the building industry can use now to evaluate them. Where possible, we also discuss the accuracy and usability of diagnostics, based on recent laboratory work and field studies by LBNL staff and others in more than 100 houses. These studies concentrate on evaluating diagnostics in the following four areas: the DeltaQ duct leakage test, air-handler airflow tests, supply and return grille airflow tests, and refrigerant charge tests. Appendix A describes those efforts in detail. In addition, where possible, we identify the costs to purchase diagnostic equipment and the amount of time required to conduct the diagnostics. Table 1 summarizes these data. Individual equipment costs for the 24 practical diagnostics range from a few hundred dollars to many thousands of dollars. The higher costs are associated with infrared thermography and state-of-the-art automated diagnostic systems. Most tests can be performed in one hour or less, using equipment priced toward the lower end of the cost spectrum.

  14. Weighting and Bayes Nets for Rollup of Surveillance Metrics

    SciTech Connect (OSTI)

    Henson, Kriste [Los Alamos National Laboratory; Sentz, Kari [Los Alamos National Laboratory; Hamada, Michael [Los Alamos National Laboratory

    2012-04-30T23:59:59.000Z

    The LANL IKE team proposes that the surveillance metrics for several data stream that are used to detect the same failure mode be weighted. Similarly, the failure mode metrics are weighted to obtain a subsystem metric. E.g., if there n data streams (nodes 1-n), the failure mode (node 0) metric is obtained as M{sub 0} = w{sub 1}M{sub 1} + {hor_ellipsis} + w{sub n}M{sub n}, where {Sigma}{sub i=1}{sup n} w{sub i} = 1. This proposal has been implemented with Bayes Nets using the Netica/IKE software by specifying an appropriate conditional probability table (CPT). This CPT is calculated using the same form as (1), where the data stream metrics for the true (T) and false (F) states are replaced by 1 and 0, respectively. Then using this CPT, the failure mode metric calculated by Netica/IKE equals (1). This result has two nice features. First, the rollup Bayes nets is doing can be easily explained. Second, because Bayes Nets can implement this rollup using Netica/IKE, then data marshalling (allocating next year's budget) can be studied. A proof that the claim 'failure mode metric calculated by Netica/IKE equals (1)' for n = 2 and n = 3 follows as well as the sketch of a proof by induction for general n.

  15. Transitive closure and metric inequality of weighted graphs: detecting protein interaction modules using cliques

    E-Print Network [OSTI]

    Ding, Chris; He, Xiaofeng; Xiong, Hui; Peng, Hanchuan; Holbrook, Stephen R.

    2006-01-01T23:59:59.000Z

    Closure and Metric Inequality of Weighted Graphs – Detectingleads to a transitivity inequality which is equivalentto ultra-metric inequality. This can be used to de?ne

  16. Schwarzschild-like metric and a quantum vacuum

    E-Print Network [OSTI]

    P. R. Silva

    2013-02-01T23:59:59.000Z

    A quantum vacuum, represented by a viscous fluid, is added to the Einstein vacuum, surrounding a spherical distribution of mass. This gives as a solution, in spherical coordinates, a Schwarzschild-like metric. The plot of g00 and g11 components of the metric, as a function of the radial coordinate, display the same qualitative behavior as that of the Schwarzschild metric. However, the temperature of the event horizon is equal to the Hawking temperature multiplied by a factor of two, while the entropy is equal to half of the Bekenstein one.

  17. Analysis of Solar Cell Quality Using Voltage Metrics: Preprint

    SciTech Connect (OSTI)

    Toberer, E. S.; Tamboli, A. C.; Steiner, M.; Kurtz, S.

    2012-06-01T23:59:59.000Z

    The highest efficiency solar cells provide both excellent voltage and current. Of these, the open-circuit voltage (Voc) is more frequently viewed as an indicator of the material quality. However, since the Voc also depends on the band gap of the material, the difference between the band gap and the Voc is a better metric for comparing material quality of unlike materials. To take this one step further, since Voc also depends on the shape of the absorption edge, we propose to use the ultimate metric: the difference between the measured Voc and the Voc calculated from the external quantum efficiency using a detailed balance approach. This metric is less sensitive to changes in cell design and definition of band gap. The paper defines how to implement this metric and demonstrates how it can be useful in tracking improvements in Voc, especially as Voc approaches its theoretical maximum.

  18. Self-benchmarking Guide for Data Centers: Metrics, Benchmarks, Actions

    E-Print Network [OSTI]

    Mathew, Paul

    2010-01-01T23:59:59.000Z

    good practice” for data center infrastructure efficiency metric. Data Center Benchmarking Guidegood practice benchmark and 0.6 kW/ton as a better practice benchmark. Data Center Benchmarking Guide

  19. A Graph Analytic Metric for Mitigating Advanced Persistent Threat

    SciTech Connect (OSTI)

    Johnson, John R.; Hogan, Emilie A.

    2013-06-04T23:59:59.000Z

    This paper introduces a novel graph analytic metric that can be used to measure the potential vulnerability of a cyber network to specific types of attacks that use lateral movement and privilege escalation such as the well known Pass The Hash, (PTH). The metric is computed from an oriented subgraph of the underlying cyber network induced by selecting only those edges for which a given property holds between the two vertices of the edge. The metric with respect to a select node on the subgraph is defined as the likelihood that the select node is reachable from another arbitrary node in the graph. This metric can be calculated dynamically from the authorization and auditing layers during the network security authorization phase and will potentially enable predictive deterrence against attacks such as PTH.

  20. Momentum space metric, non-local operator, and topological insulators

    E-Print Network [OSTI]

    Shunji Matsuura; Shinsei Ryu

    2010-07-13T23:59:59.000Z

    Momentum space of a gapped quantum system is a metric space: it admits a notion of distance reflecting properties of its quantum ground state. By using this quantum metric, we investigate geometric properties of momentum space. In particular, we introduce a non-local operator which represents distance square in real space and show that this corresponds to the Laplacian in curved momentum space, and also derive its path integral representation in momentum space. The quantum metric itself measures the second cumulant of the position operator in real space, much like the Berry gauge potential measures the first cumulant or the electric polarization in real space. By using the non-local operator and the metric, we study some aspects of topological phases such as topological invariants, the cumulants and topological phase transitions. The effect of interactions to the momentum space geometry is also discussed.

  1. Analyses Of Two End-User Software Vulnerability Exposure Metrics

    SciTech Connect (OSTI)

    Jason L. Wright; Miles McQueen; Lawrence Wellman

    2012-08-01T23:59:59.000Z

    The risk due to software vulnerabilities will not be completely resolved in the near future. Instead, putting reliable vulnerability measures into the hands of end-users so that informed decisions can be made regarding the relative security exposure incurred by choosing one software package over another is of importance. To that end, we propose two new security metrics, average active vulnerabilities (AAV) and vulnerability free days (VFD). These metrics capture both the speed with which new vulnerabilities are reported to vendors and the rate at which software vendors fix them. We then examine how the metrics are computed using currently available datasets and demonstrate their estimation in a simulation experiment using four different browsers as a case study. Finally, we discuss how the metrics may be used by the various stakeholders of software and to software usage decisions.

  2. Directional Hölder metric subregularity and application to tangent ...

    E-Print Network [OSTI]

    2014-11-04T23:59:59.000Z

    When ? = 1, we write and say simply SCr1F(¯x, ¯y)(u) := SCrF(¯x, ¯y)(u) : the directional strict limit set critical for metric subregularity of F at (¯x, ¯y) in direction u.

  3. algorithm performance metrics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: New set of metrics for the computational performance of IS-ENES Earth System Models TRCMGC1473 U performance of Earth System Models is developed and used for an...

  4. An SMT-Selection Metric to Improve Multithreaded Applications' Performance

    E-Print Network [OSTI]

    Fedorova, Alexandra

    An SMT-Selection Metric to Improve Multithreaded Applications' Performance Justin R. Funston Simon Fraser University* Abstract--Simultaneous multithreading (SMT) increases CPU utilization- cation scalability or when there is significant contention for CPU resources. This paper describes an SMT

  5. Jefferson Lab Awards $14.1 Million Contract To Virginia Beach...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14.1 Million Contract To Virginia Beach Construction Company HallD This architectural rendering depicts Jefferson Lab's Hall D complex, to be built as part of a 310 million...

  6. DOE Announces $1.4 Million for Industry-Laboratory Teams to Study...

    Office of Environmental Management (EM)

    .4 Million for Industry-Laboratory Teams to Study Using Nuclear Energy for Clean Hydrogen DOE Announces 1.4 Million for Industry-Laboratory Teams to Study Using Nuclear Energy for...

  7. Energy Department Invests $3.2 Million to Support Clean Energy...

    Office of Environmental Management (EM)

    3.2 Million to Support Clean Energy Small Businesses and Entrepreneurs Energy Department Invests 3.2 Million to Support Clean Energy Small Businesses and Entrepreneurs June 20,...

  8. Energy Department Announces $10 Million for Full-Scale Wave Energy...

    Office of Environmental Management (EM)

    10 Million for Full-Scale Wave Energy Device Testing Energy Department Announces 10 Million for Full-Scale Wave Energy Device Testing October 29, 2014 - 2:55pm Addthis The Energy...

  9. Photo of the Week: What You Needed to Contain 100 Million Degree...

    Broader source: Energy.gov (indexed) [DOE]

    Photo of the Week: What You Needed to Contain 100 Million Degree Plasma for 100 Millionths of a Second... in 1974 Photo of the Week: What You Needed to Contain 100 Million Degree...

  10. Secretary Chu Announces up to $10 Million to Support Plug-In...

    Office of Environmental Management (EM)

    0 Million to Support Plug-In Hybrid Electric School Buses Secretary Chu Announces up to 10 Million to Support Plug-In Hybrid Electric School Buses April 17, 2009 - 12:00am Addthis...

  11. Energy Department Makes $2.5 Million Available for Native American...

    Office of Environmental Management (EM)

    Makes 2.5 Million Available for Native American Tribes to Develop Renewable Energy Resources Energy Department Makes 2.5 Million Available for Native American Tribes to Develop...

  12. DOE Provides up to $51.8 Million to Modernize the U.S. Electric...

    Office of Environmental Management (EM)

    Provides up to 51.8 Million to Modernize the U.S. Electric Grid System. June 27, 2007 DOE Provides up to 51.8 Million to Modernize the U.S. Electric Grid System. June 27, 2007...

  13. Workers at Paducah Site Exceed 1.5 Million Hours Without Lost...

    Office of Environmental Management (EM)

    at Paducah Site Exceed 1.5 Million Hours Without Lost-Time Injury, Illness Workers at Paducah Site Exceed 1.5 Million Hours Without Lost-Time Injury, Illness October 30, 2014 -...

  14. Energy Department Announces up to $4 Million to Advance Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces up to 4 Million to Advance Low-Cost Hydrogen Production from Renewable and Low Carbon Sources Energy Department Announces up to 4 Million to Advance Low-Cost Hydrogen...

  15. Energy Department Announces $4.5 Million to Expand Usage of Alternativ...

    Energy Savers [EERE]

    4.5 Million to Expand Usage of Alternative Fuels Energy Department Announces 4.5 Million to Expand Usage of Alternative Fuels July 16, 2014 - 11:00am Addthis In support of...

  16. Energy Department Awards $2.2 Million to Drive Innovative Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Awards 2.2 Million to Drive Innovative Solutions, Lower Costs of Solar Energy Department Awards 2.2 Million to Drive Innovative Solutions, Lower Costs of Solar March 10, 2014 -...

  17. DOE Seeks to Invest up to $90 Million in Advanced Geothermal...

    Office of Environmental Management (EM)

    90 Million in Advanced Geothermal Energy Technology and Research DOE Seeks to Invest up to 90 Million in Advanced Geothermal Energy Technology and Research June 18, 2008 - 1:29pm...

  18. DOE Seeks to Invest up to $90 Million in Advanced Geothermal...

    Energy Savers [EERE]

    DOE Seeks to Invest up to 90 Million in Advanced Geothermal Energy Technology and Research DOE Seeks to Invest up to 90 Million in Advanced Geothermal Energy Technology and...

  19. Department of Energy Announces up to $70 Million to Advance Technology...

    Office of Environmental Management (EM)

    up to 70 Million to Advance Technology and Reduce Cost of Geothermal Energy Department of Energy Announces up to 70 Million to Advance Technology and Reduce Cost of Geothermal...

  20. Department of Energy Finalizes $96.8 Million Loan Guarantee for...

    Office of Environmental Management (EM)

    96.8 Million Loan Guarantee for Oregon Geothermal Project Department of Energy Finalizes 96.8 Million Loan Guarantee for Oregon Geothermal Project February 24, 2011 - 12:00am...

  1. BLM Finalizes Plans to Open 190 Million Acres to Geothermal Power...

    Energy Savers [EERE]

    Finalizes Plans to Open 190 Million Acres to Geothermal Power BLM Finalizes Plans to Open 190 Million Acres to Geothermal Power January 7, 2009 - 12:42pm Addthis Photo of a...

  2. Department of Energy Announces $8.5 Million to Advance Solar...

    Office of Environmental Management (EM)

    8.5 Million to Advance Solar Energy Grid Integration Systems Department of Energy Announces 8.5 Million to Advance Solar Energy Grid Integration Systems September 7, 2010 -...

  3. Obama-Biden Administration Announces Nearly $517.8 Million in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nearly 517.8 Million in Weatherization Funding and Energy Efficiency Grants for New York Obama-Biden Administration Announces Nearly 517.8 Million in Weatherization Funding and...

  4. CALIFORNIA ENERGY COMMISSION Administered ARRA Funded Programs (2/17/10) State Energy Program $226 million

    E-Print Network [OSTI]

    and water efficiency, renewable energy, smart grid and clean transportation fields. ARRA Funding: $20. ARRA Funding: $25 million Target Audience: City and county governments Leveraged Funding million Target Audience: Community colleges, training & employment partnerships, cities & counties

  5. Energy Department Awards $3.5 Million to Develop Cost-Competitive...

    Office of Environmental Management (EM)

    3.5 Million to Develop Cost-Competitive Algal Biofuels Energy Department Awards 3.5 Million to Develop Cost-Competitive Algal Biofuels July 17, 2014 - 11:52am Addthis The Energy...

  6. Energy Department Awards $4.5 Million for Innovative Wind Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Awards 4.5 Million for Innovative Wind Power R&D Projects Energy Department Awards 4.5 Million for Innovative Wind Power R&D Projects September 5, 2014 -...

  7. U.S. Department of Energy to Invest up to $13.7 Million for Breakthrou...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Invest More than 21 Million for Next Generation Solar Energy Projects Photovoltaic Polycrystalline Thin-Film Cell Basics DOE to Provide Up to 17.6 Million for Solar...

  8. Iowa Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0 Year-1 (Million Cubic

  9. Kansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYear Jan Feb Mar (Million Cubic

  10. Kansas Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYear Jan Feb Mar (MillionFuel

  11. Kentucky Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai, AK LiquefiedCubic Feet) NewYear

  12. Kentucky Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai, AKExtensionsNov-14Feet) Decade

  13. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,

  14. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet) Year Jan Feb Mar Apr May

  15. Kentucky Natural Gas Industrial Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet) Year Jan Feb Mar

  16. Kentucky Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet) Year Jan Feb

  17. Kentucky Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet) Year Jan FebFeet) Year

  18. Kentucky Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet) Year Jan FebFeet)

  19. Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet) Year JanIndustrial

  20. Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet) Year