National Library of Energy BETA

Sample records for mmboe start year

  1. Kick-Starting the School Year with Operation Clean Desert

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 10, 2012 Kick-Starting the School Year with Operation Clean Desert School is back in session and Operation Clean Desert was there to give it a kick start! On August 21, 2012, the Operation Clean Desert Teacher's Guide made its debut along with the recently revised companion activity book during the 2012 Educator Appreciation Day & Back To School Fair at The Mirage in Las Vegas, NV. Hundreds of teachers attended the event (hosted by MGM Resorts International) and approximately 150

  2. Module Shipments Total Inventory, Start-of-Year

    U.S. Energy Information Administration (EIA) Indexed Site

    Module Shipments Total Inventory, Start-of-Year 906,914 Manufactured During Reporting Year 726,915 Imported During Reporting Year 5,858,676 Purchased from U.S. OEM 33,951 Total Available for Shipment 7,526,456 U.S. Shipments and Sales for Resale 6,054,538 Export Shipments 182,985 Total Shipments 6,237,524 Inventory, End-of-Year 1,288,933 Table 6. Source and disposition of photovoltaic module shipments, 2014 (peak kilowatts) Source Disposition Source: U.S. Energy Information Administration, Form

  3. Cell Shipments Total Inventory, Start-of-Year

    U.S. Energy Information Administration (EIA) Indexed Site

    Cell Shipments Total Inventory, Start-of-Year 628,668 Manufactured and Purchased During Reporting Year 652,696 Imported During Reporting Year 233,377 Total Available for Shipment 1,514,740 Cells Assembled into Modules and Sold for Resale 1,129,525 Export Shipments 106,472 Total Shipments 1,235,997 Inventory, End-of-Year 278,744 Table 5. Source and disposition of photovoltaic cell shipments, 2014 (peak kilowatts) Source Disposition Source: U.S. Energy Information Administration, Form EIA-63B,

  4. Start 2015 with an #EnergyResolution to Save Money and Energy All Year Long

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Start 2015 with an #EnergyResolution to Save Money and Energy All Year Long Start 2015 with an #EnergyResolution to Save Money and Energy All Year Long January 19, 2015 - 9:52am Addthis Create an #EnergyResolution to share how you plan to save money and energy in the New Year. | Graphic courtesy of Joelynn Schroeder, National Renewable Energy Laboratory Create an #EnergyResolution to share how you plan to save money and energy in the New Year. | Graphic courtesy of

  5. COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL YEAR BREAKDOWN OF FUNDS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COST BREAKDOWN AWARD NO: START DATE: EXPIRATION DATE: FISCAL YEAR BREAKDOWN OF FUNDS ELEMENTS FY FY FY FY FY TOTAL Direct Labor Overhead Materials Supplies Travel Other Direct Costs Subcontractors Total Direct Costs G&A Expense Total All Costs DOE Share* Awardee Share* Overhead Rate G&A Rate 1. The cost elements indicated are provided as an example only. Your firm should indicate the costs elements you have used on your invoices. 2. You should indicate the cost incurred for each of your

  6. Design, start up, and three years operating experience of an ammonia scrubbing, distillation, and destruction plant

    SciTech Connect (OSTI)

    Gambert, G.

    1996-12-31

    When the rebuilt Coke Plant started operations in November of 1992, it featured a completely new closed circuit secondary cooler, ammonia scrubbing, ammonia distillation, and ammonia destruction plants. This is the second plant of this type to be built in North America. To remove the ammonia from the gas, it is scrubbed with three liquids: Approximately 185 gallons/minute of cooled stripped liquor from the ammonia stills; Light oil plant condensate; and Optionally, excess flushing liquor. These scrubbers typically reduce ammonia content in the gas from 270 Grains/100 standard cubic feet to 0.2 Grains/100 standard cubic feet.

  7. What are the Starting Points? Evaluating Base-Year Assumptions in the Asian Modeling Exercise

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Waldhoff, Stephanie; Clarke, Leon E.; Fujimori, Shinichiro

    2012-12-01

    A common feature of model inter-comparison efforts is that the base year numbers for important parameters such as population and GDP can differ substantially across models. This paper explores the sources and implications of this variation in Asian countries across the models participating in the Asian Modeling Exercise (AME). Because the models do not all have a common base year, each team was required to provide data for 2005 for comparison purposes. This paper compares the year 2005 information for different models, noting the degree of variation in important parameters, including population, GDP, primary energy, electricity, and CO2 emissions. It then explores the difference in these key parameters across different sources of base-year information. The analysis confirms that the sources provide different values for many key parameters. This variation across data sources and additional reasons why models might provide different base-year numbers, including differences in regional definitions, differences in model base year, and differences in GDP transformation methodologies, are then discussed in the context of the AME scenarios. Finally, the paper explores the implications of base-year variation on long-term model results.

  8. Getting Started

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started Before you can use or access Hopper, you must have an active NERSC account and valid password. If you don't, follow the "Accounts and Allocations" link in "See ...

  9. Getting Started

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started Logging in In order to follow this page, you will need an account, a username and a password. If you do not have all of these things please visit the Accounts Page. ...

  10. Hybrid: Starting

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    button highlighted Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar STARTING When the vehicle is started, the gasoline engine "warms up." If necessary, the electric motor acts as a generator, converting energy from the engine into electricity and storing it in the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is moving. There are arrows flowing from the gasoline

  11. Getting Started

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Started Getting Started Getting a New User Account Fill this form out if you want to request a new PDSF account for yourself... Read More » Accessing PDSF This page describes the basics of logging in to PDSF... Read More » Best Practices A few pointers about the best way to use the PDSF system... Read More » Passwords This page describes how to manage your NERSC/PDSF password. Read More » CHOS Several different Linux environments are provided using CHOS... Read More » Setting Up Your User

  12. Getting started

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting started Getting started Logging In Users can log into Euclid using the Secure Shell (SSH) protocol 2 with the following command: % ssh -l username euclid.nersc.gov When you successfully log in you will land in your $HOME directory. Euclid is a one node system. All jobs that run on Euclid, e.g. compiles, edits, user jobs, etc,. run on the same node. Sample Program Code: Parallel Hello World Although Euclid was not intended for production runs of MPI codes, it is possible to run small MPI

  13. New Starts, Requests for Proposals, Funding Opportunity Announcements and other Similar Arrangements as Implemented under Division B, Title I, Section 1418 of the Department of Defense and Full-Year Continuing Appropriations Act, 2011

    Broader source: Energy.gov [DOE]

    Acquisition Letter 2011-04 implementing instructions and guidance for Section 1101(a)(2) of the Full-Year Continuing Appropriations Act of 2011, Pub. L. 112-10 (hereinafter Full-Year Continuing Appropriations Act of 2011), is hereby revised to add Section 1418 on new starts, requests for proposals, requests for quotations, request for information and funding opportunity announcements.

  14. Start Your Energy Conversion Devices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Department of Energy Start 2015 with an #EnergyResolution to Save Money and Energy All Year Long Start 2015 with an #EnergyResolution to Save Money and Energy All Year Long January 19, 2015 - 9:52am Addthis Create an #EnergyResolution to share how you plan to save money and energy in the New Year. | Graphic courtesy of Joelynn Schroeder, National Renewable Energy Laboratory Create an #EnergyResolution to share how you plan to save money and energy in the New Year. | Graphic courtesy of

  15. Alaska START Application

    Broader source: Energy.gov [DOE]

    Download the application for the START Program for Community Energy Planning and Projects–Round Three.

  16. Daylight Savings Time Starts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daylight Savings Time Starts Daylight Savings Time Starts WHEN: Mar 08, 2015 3:00 AM - 11:59 PM WHERE: World Time Zones CATEGORY: Holiday INTERNAL: Calendar Login Daylight Savings...

  17. START Program Project Sites

    Broader source: Energy.gov [DOE]

    The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through START,...

  18. Getting Started - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Voluntary Protection Program Getting Started Hanford Site Voluntary Protection Program VPP Home VPP Hanford Site Champions Committee Getting Started Maintaining STAR VPP Communications VPP Conferences Getting Started Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size History of VPP (PDF) VPP How To Guide (PDF) VPP Getting Started Tools Employee Pocket Guide (PDF) What is a Personal Safety Action Plan (PDF) Picture This (PDF) VPP Tenets Tenet 1 (PDF)

  19. START Program: Alaska

    Broader source: Energy.gov [DOE]

    Overview fact sheet on the selected DOE Office of Indian Energy Strategic Technical Assistance Response Team (START) projects in Alaska.

  20. Property:StartYear | Open Energy Information

    Open Energy Info (EERE)

    2012 + Antigua and Barbuda-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework + 2009 + Argentina-Climate Change Mitigation and Agriculture in Latin...

  1. Full Hybrid: Starting

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    highlighted Low Speed button Cruising button Passing button Braking button Stopped button STARTING When a full hybrid vehicle is initially started, the battery typically powers all accessories. The gasoline engine only starts if the battery needs to be charged or the accessories require more power than available from the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an

  2. Stop/Start: Overview

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    highlighted Driving button Braking button subbanner graphic: gray bar OVERVIEW Stop/Start hybrids are not true hybrids since electricity from the battery is not used to propel the vehicle. However, the Stop/Start feature is an important, energy-saving building block used in hybrid vehicles. Stop/Start technology conserves energy by shutting off the gasoline engine when the vehicle is at rest, such as at a traffic light, and automatically re-starting it when the driver pushes the gas pedal to go

  3. Blank Starting Slide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rewind Generator Rewind Denison Powerhouse Denison Rewind Rewind Contract - Awarded to Alstom May 2004 - 4.56 million - 526 calendar days Denison Rewind Original Schedule - Start...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    69 YEAR 2014 Males 34 Females 35 YEAR 2014 SES 5 EJEK 1 EN 05 8 EN 04 5 NN (Engineering) 27 NQ (ProfTechAdmin) 22 NU (TechAdmin Support) 1 YEAR 2014 American Indian Alaska...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    42 YEAR 2014 Males 36 Females 6 PAY PLAN YEAR 2014 SES 2 EJEK 5 EN 05 7 EN 04 6 EN 03 1 NN (Engineering) 15 NQ (ProfTechAdmin) 6 YEAR 2014 American Indian Alaska Native Male...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 65 Females 29 YEAR 2012 SES 3 EJEK 5 EN 04 3 NN (Engineering) 21 NQ (ProfTechAdmin) 61 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2011 Males 21 Females 23 YEAR 2011 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 5 YEAR 2011 American Indian Male 0 American...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    92 YEAR 2012 Males 52 Females 40 YEAR 2012 SES 1 EJEK 7 EN 04 13 EN 03 1 NN (Engineering) 27 NQ (ProfTechAdmin) 38 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    558 YEAR 2013 Males 512 Females 46 YEAR 2013 SES 2 EJEK 2 EN 04 1 NN (Engineering) 11 NQ (ProfTechAdmin) 220 NU (TechAdmin Support) 1 NV (Nuc Mat Courier) 321 YEAR 2013...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    11 YEAR 2012 Males 78 Females 33 YEAR 2012 SES 2 EJEK 9 EN 05 1 EN 04 33 NN (Engineering) 32 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 2...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    300 YEAR 2011 Males 109 Females 191 YEAR 2011 SES 9 EJEK 1 NN (Engineering) 2 NQ (ProfTechAdmin) 203 NU (TechAdmin Support) 38 NF (Future Ldrs) 47 YEAR 2011 American Indian...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    02 YEAR 2011 Males 48 Females 54 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 13 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 0 American Indian...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 27 Females 11 YEAR 2013 SES 1 EN 05 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 15 NU (TechAdmin Support) 2 YEAR 2013 American Indian Alaska Native Male...

  14. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2013 Males 20 Females 11 YEAR 2013 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2013 American Indian Alaska Native Male (AIAN,...

  15. YEAR

    National Nuclear Security Administration (NNSA)

    16 YEAR 2012 Males 84 Females 32 YEAR 2012 SES 26 EJEK 2 EN 05 9 NN (Engineering) 39 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 10 YEAR 2012 American Indian Male 0 American...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    34 YEAR 2012 Males 66 Females 68 YEAR 2012 SES 6 NN (Engineering) 15 NQ (ProfTechAdmin) 110 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 1 American Indian Female 2...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    86 YEAR 2012 Males 103 Females 183 YEAR 2012 SES 7 EJEK 1 NN (Engineering) 1 NQ (ProfTechAdmin) 202 NU (TechAdmin Support) 30 NF (Future Ldrs) 45 YEAR 2012 American Indian Male...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    80 YEAR 2012 Males 51 Females 29 YEAR 2012 SES 1 EJEK 22 EN 04 21 NN (Engineering) 14 NQ (ProfTechAdmin) 21 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2012 Males 30 Females 11 YEAR 2012 SES 1 EN 05 1 EN 04 11 NN (Engineering) 9 NQ (ProfTechAdmin) 17 NU (TechAdmin Support) 2 YEAR 2012 American Indian Male 0 American...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2012 Males 19 Females 12 YEAR 2012 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American Indian...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    0 YEAR 2013 Males 48 Females 32 YEAR 2013 SES 2 EJEK 7 EN 04 11 EN 03 1 NN (Engineering) 23 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    40 YEAR 2011 Males 68 Females 72 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 16 NQ (ProfTechAdmin) 115 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 1 American Indian...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    00 YEAR 2012 Males 48 Females 52 YEAR 2012 SES 5 EJEK 1 NN (Engineering) 11 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 0 American Indian...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    137 YEAR 2013 Males 90 Females 47 YEAR 2013 SES 2 SL 1 EJEK 30 EN 04 30 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 45 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    of Employees 14 GENDER YEAR 2012 Males 9 Females 5 YEAR 2012 SES 2 EJEK 2 NN (Engineering) 4 NQ (ProfTechAdmin) 6 YEAR 2012 American Indian Male 0 American Indian Female 0...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2012 Males 21 Females 22 YEAR 2012 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0 American...

  8. START Program 2013: Alaska

    Broader source: Energy.gov [DOE]

    The Strategic Technical Assistance Response Team (START) Program is part of the DOE's Office of Indian Energy Policy and Programs effort to assist in the development of tribal renewable energy projects. Through START, Tribes in the 48 contiguous states and Alaska can apply for and are selected to receive technical assistance from DOE and national laboratory experts to move projects closer to implementation.

  9. YEAR

    National Nuclear Security Administration (NNSA)

    Males 139 Females 88 YEAR 2012 SES 13 EX 1 EJEK 8 EN 05 23 EN 04 20 EN 03 2 NN (Engineering) 91 NQ (ProfTechAdmin) 62 NU (TechAdmin Support) 7 YEAR 2012 American Indian...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    26 YEAR 2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL1 EJEK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 44 NU (TechAdmin Support) 4 YEAR 2014 American ...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    563 YEAR 2012 Males 518 Females 45 YEAR 2012 SES 1 EJEK 2 EN 04 1 EN 03 1 NN (Engineering) 12 NQ (ProfTechAdmin) 209 NU (TechAdmin Support) 2 NV (Nuc Mat Courier) 335 YEAR 2012...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2012 Males 64 Females 33 YEAR 2012 SES 2 EJEK 3 EN 05 1 EN 04 30 EN 03 1 NN (Engineering) 26 NQ (ProfTechAdmin) 32 NU (TechAdmin Support) 2 YEAR 2012 American Indian...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 37 Females 7 YEAR 2012 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 17 NQ (ProfTechAdmin) 6 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 2...

  14. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2011 Males 38 Females 9 YEAR 2011 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 19 NQ (ProfTechAdmin) 7 NU (TechAdmin Support) 1 YEAR 2011 American Indian Male 2...

  15. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 62 Females 26 YEAR 2013 SES 1 EJEK 3 EN 05 1 EN 04 28 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 2 YEAR 2013 American Indian...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    6 YEAR 2012 Males 64 Females 32 YEAR 2012 SES 1 EJEK 5 EN 05 3 EN 04 23 EN 03 9 NN (Engineering) 18 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 4 YEAR 2012 American Indian...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2013 Males 58 Females 27 YEAR 2013 SES 1 EJEK 4 EN 05 3 EN 04 21 EN 03 8 NN (Engineering) 16 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    78 YEAR 2012 Males 57 Females 21 YEAR 2012 SES 2 SL 1 EJEK 12 EN 04 21 EN 03 2 NN (Engineering) 12 NQ (ProfTechAdmin) 24 NU (TechAdmin Support) 4 YEAR 2012 American Indian Male...

  19. Getting Started on Edison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started on Edison Before you can use or access Edison, you must have an active NERSC account and valid password. If you don't, see Accounts and Allocations. Edison should ...

  20. Getting Started at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Getting Started at NERSC September 13, 2011 gerbyao NERSC Training Event 10:00 - 12:00 PDT September 13, 2011 Concurrently presented on the web and at NERSC's Oakland Scientific Facility Getting Started at NERSC For New NERSC Users Richard Gerber, NERSC User Services Group Yushu Yao, NERSC User Services Group This training event is intended for new NERSC Users. Hands-on exercises will be interspersed with the presentations. Please register (it's free!) using the Registration link in the

  1. YEAR

    National Nuclear Security Administration (NNSA)

    2012 Males 149 Females 115 YEAR 2012 SES 17 EX 1 EJEK 7 EN 05 2 EN 04 9 EN 03 2 NN (Engineering) 56 NQ (ProfTechAdmin) 165 NU (TechAdmin Support) 4 GS 13 1 YEAR 2012 American...

  2. Getting Started at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Getting Started at NERSC January 17, 2013 Richard-Gerber.jpg NERSC Training Webinar 10:00 - 12:00 PST January 17, 2013 Presented as a Web Event only Getting Started at NERSC For New NERSC Users Richard Gerber, NERSC User Services Group This training event is intended for new NERSC users. Basic computer skills and some knowledge of how distributed-memory supercomputers work is assumed. Hands-on exercises will be interspersed with the presentations. Please register (it's free!) using the

  3. Getting Started at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Getting Started at NERSC June 7, 2011 gerbyao NERSC Training Event 10:00 - 12:00 PDT June 7, 2011 Concurrently presented on the web and at NERSC's Oakland Scientific Facility Getting Started at NERSC For New NERSC Users Richard Gerber, NERSC User Services Group Yushu Yao, NERSC User Services Group This training event is intended for new NERSC Users. Hands-on exercises will be interspersed with the presentations. Please register (it's free!) using the Registration link in the menu on the

  4. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 61 Females 24 PAY PLAN YEAR 2014 SES 1 EJ/EK 8 EN 04 22 NN (Engineering) 23 NQ (Prof/Tech/Admin) 28 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 3 African American Male (AA M) 0 African American Female (AA F) 0 Asian American Pacific Islander Male (AAPI M) 3 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 13 Hispanic Female (H F) 10 White Male (W M) 43 White Female (W F) 11

  5. YEAR

    National Nuclear Security Administration (NNSA)

    2 YEAR 2014 Males 57 Females 25 PAY PLAN YEAR 2014 SES 3 EJ/EK 4 EN 04 2 NN (Engineering) 20 NQ (Prof/Tech/Admin) 53 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 9 African American Female (AA F) 9 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 3 Hispanic Female (H F) 5 White Male (W M) 43 White Female (W F) 10 DIVERSITY TOTAL WORKFORCE

  6. YEAR

    National Nuclear Security Administration (NNSA)

    93 YEAR 2014 Males 50 Females 43 PAY PLAN YEAR 2014 EJ/EK 3 NN (Engineering) 13 NQ (Prof/Tech/Admin) 74 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 5 African American Female (AA F) 6 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 6 Hispanic Female (H F) 14 White Male (W M) 39 White Female (W F) 21 DIVERSITY

  7. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2014 Males 11 Females 2 PAY PLAN YEAR 2014 SES 2 EJ/EK 1 EN 04 1 NN (Engineering) 5 NQ (Prof/Tech/Admin) 4 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 0 African American Female (AA F) 0 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 10 White Female (W F) 2 DIVERSITY TOTAL WORKFORCE GENDER

  8. YEAR

    National Nuclear Security Administration (NNSA)

    9 YEAR 2014 Males 9 Females 10 YEAR 2014 SES 7 ED 1 EJ/EK 1 EN 05 1 NQ (Prof/Tech/Admin) 8 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 1 African American Female (AA F) 5 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 3 White Male (W M) 7 White Female (W F) 1 PAY PLAN DIVERSITY TOTAL

  9. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 92 Females 43 YEAR 2014 SES 8 EX 1 EJ/EK 4 EN 05 9 EN 04 12 EN 03 2 NN (Engineering) 57 NQ (Prof/Tech/Admin) 42 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 9 African American Female (AA F) 11 Asian American Pacific Islander Male (AAPI M) 4 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 12 Hispanic Female (H F) 7 White Male (W M) 66 White Female (W F) 22 PAY PLAN

  10. YEAR

    National Nuclear Security Administration (NNSA)

    563 YEAR 2014 Males 517 Females 46 PAY PLAN YEAR 2014 SES 2 EJ/EK 2 EN 04 1 NN (Engineering) 11 NQ (Prof/Tech/Admin) 218 NU (Tech/Admin Support) 2 NV (Nuc Mat Courier) 327 YEAR 2014 American Indian Alaska Native Male (AIAN M) 14 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 18 African American Female (AA F) 1 Asian American Pacific Islander Male (AAPI M) 8 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 76 Hispanic Female (H F) 21 White Male

  11. YEAR

    National Nuclear Security Administration (NNSA)

    89 YEAR 2014 Males 98 Females 91 PAY PLAN YEAR 2014 SES 14 EX 1 EJ/EK 3 EN 05 1 EN 04 4 EN 03 1 NN (Engineering) 32 NQ (Prof/Tech/Admin) 130 NU (Tech/Admin Support) 2 GS 15 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 5 African American Female (AA F) 14 Asian American Pacific Islander Male (AAPI M) 3 Asian American Pacific Islander Female (AAPI F) 7 Hispanic Male (H M) 7 Hispanic Female (H F) 10 White Male

  12. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2014 Males 162 Females 81 PAY PLAN YEAR 2014 SES 26 EJ/EK 3 EN 05 7 NN (Engineering) 77 NQ (Prof/Tech/Admin) 108 NU (Tech/Admin Support) 22 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 5 African American Female (AA F) 9 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 2 Hispanic Female (H F) 0 White Male (W M) 154 White Female (W F)

  13. YEAR

    National Nuclear Security Administration (NNSA)

    74 YEAR 2014 Males 96 Females 78 PAY PLAN YEAR 2014 SES 8 EJ/EK 4 EN 04 11 EN 03 1 NN (Engineering) 34 NQ (Prof/Tech/Admin) 113 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 11 Asian American Pacific Islander Male (AAPI M) 5 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 25 Hispanic Female (H F) 25 White Male (W M) 61 White

  14. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2014 Males 7 Females 7 PAY PLAN YEAR 2014 SES 1 NQ (Prof/Tech/Admin) 7 GS 15 1 GS 14 2 GS 13 2 GS 10 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 3 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 4 White Female (W F) 5 DIVERSITY TOTAL WORKFORCE GENDER

  15. YEAR

    National Nuclear Security Administration (NNSA)

    16 YEAR 2014 Males 72 Females 144 PAY PLAN YEAR 2014 SES 8 EJ/EK 1 NQ (Prof/Tech/Admin) 198 NU (Tech/Admin Support) 9 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 10 African American Female (AA F) 38 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 3 Hispanic Male (H M) 15 Hispanic Female (H F) 33 White Male (W M) 44 White Female (W F) 68 DIVERSITY TOTAL

  16. YEAR

    National Nuclear Security Administration (NNSA)

    26 YEAR 2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL 1 EJ/EK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (Prof/Tech/Admin) 44 NU (Tech/Admin Support) 4 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 7 Asian American Pacific Islander Male (AAPI M) 4 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 6 Hispanic Female (H F) 6 White Male (W M) 68 White

  17. YEAR

    National Nuclear Security Administration (NNSA)

    446 YEAR 2014 Males 1626 Females 820 YEAR 2014 SES 97 EX 2 ED 1 SL 1 EJ/EK 84 EN 05 38 EN 04 162 EN 03 18 NN (Engineering) 427 NQ (Prof/Tech/Admin) 1216 NU (Tech/Admin Support) 66 NV (Nuc Mat Courier) 327 GS 15 2 GS 14 2 GS 13 2 GS 10 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 27 American Indian Alaskan Native Female (AIAN F) 24 African American Male (AA M) 90 African American Female (AA F) 141 Asian American Pacific Islander Male (AAPI M) 63 Asian American Pacific Islander Female

  18. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2014 Males 48 Females 33 PAY PLAN YEAR 2014 SES 1 EJ/EK 8 EN 04 10 EN 03 1 NN (Engineering) 27 NQ (Prof/Tech/Admin) 29 NU (Tech/Admin Support) 5 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 3 African American Male (AA M) 0 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 12 Hispanic Female (H F) 12 White Male (W M) 34 White Female

  19. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 10 PAY PLAN YEAR 2014 SES 1 EN 05 1 EN 04 4 NN (Engineering) 12 NQ (Prof/Tech/Admin) 9 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 4 African American Female (AA F) 4 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 13 White Female (W F) 5

  20. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 20 PAY PLAN YEAR 2014 SES 3 EJ/EK 1 EN 03 1 NN (Engineering) 3 NQ (Prof/Tech/Admin) 28 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 1 African American Female (AA F) 1 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 4 Hispanic Female (H F) 7 White Male (W M) 13 White Female (W F) 11

  1. YEAR

    National Nuclear Security Administration (NNSA)

    White Male (W M) 26 White Female (W F) 16 DIVERSITY TOTAL WORKFORCE GENDER Livermore Field ... YEARS OF FEDERAL SERVICE SUPERVISOR RATIO AGE Livermore Field Office As of March 22, 2014 ...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    25 Females 10 YEAR 2014 SES 1 EN 04 11 NN (Engineering) 8 NQ (Prof/Tech/Admin) 13 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 1 African American Female (AA F) 3 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 24 White Female (W F) 6 TOTAL WORKFORCE GENDER Kansas City

  3. YEAR

    National Nuclear Security Administration (NNSA)

    9 Females 24 PAY PLAN YEAR 2014 SES 1 EJ/EK 4 EN 05 3 EN 04 22 EN 03 8 NN (Engineering) 15 NQ (Prof/Tech/Admin) 27 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 5 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 21 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 5 Hispanic Female (H F) 3 White Male (W M) 26 White Female (W F) 16

  4. YEAR

    National Nuclear Security Administration (NNSA)

    17 Females 18 PAY PLAN YEAR 2014 SES 1 EJ/EK 3 NQ (Prof/Tech/Admin) 30 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 3 African American Female (AA F) 7 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 2 Hispanic Female (H F) 6 White Male (W M) 10 White Female (W F) 3 DIVERSITY TOTAL WORKFORCE GENDER Associate

  5. YEAR

    National Nuclear Security Administration (NNSA)

    8 Females 25 PAY PLAN YEAR 2014 SES 1 EJ/EK 3 EN 05 1 EN 04 25 EN 03 1 NN (Engineering) 25 NQ (Prof/Tech/Admin) 25 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 3 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 6 Hispanic Female (H F) 6 White Male (W M) 46 White Female (W F) 13

  6. YEAR

    National Nuclear Security Administration (NNSA)

    -9.09% YEAR 2012 2013 SES 1 1 0.00% EN 05 1 1 0.00% EN 04 11 11 0.00% NN (Engineering) 8 8 0.00% NQ (ProfTechAdmin) 17 14 -17.65% NU (TechAdmin Support) 2 2...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    Females 863 YEAR 2013 SES 102 EX 3 SL 1 EJEK 89 EN 05 41 EN 04 170 EN 03 18 NN (Engineering) 448 NQ (ProfTechAdmin) 1249 NU (TechAdmin Support) 76 NV (Nuc Mat Courier) 321...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    Females 942 YEAR 2012 SES 108 EX 4 SL 1 EJEK 96 EN 05 45 EN 04 196 EN 03 20 NN (Engineering) 452 NQ (ProfTechAdmin) 1291 NU (TechAdmin Support) 106 NV (Nuc Mat Courier) 335...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2012 2013 SES 2 1 -50.00% EN 05 0 1 100.00% EN 04 4 4 0.00% NN (Engineering) 13 12 -7.69% NQ (ProfTechAdmin) 13 9 -30.77% NU (TechAdmin Support) 1 1...

  10. Time to Start Getting Ready for Cori

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time to Start Getting Ready for Cori Time to Start Getting Ready for Cori February 4, 2015 by Richard Gerber Cori is coming and it's time to start getting ready. Yes, NERSC's Intel Xeon Phi-based system is still more than a year away, but if you're not already thinking about how you're going to use it, you need to get started. That's because to get your codes to run well (or maybe at all) on NERSC's first "many-core" system it is going to take more than a simple recompile. It's no

  11. Stop/Start: Overview

    Buildings Energy Data Book [EERE]

    Braking button hilighted subbanner graphic: gray bar BRAKING PART 1 Stop/Start vehicles use a combination of regenerative and conventional friction braking to slow the vehicle. In regenerative braking, energy from the wheels turns the electric generator, creating electricity. Using energy from the wheels to turn the generator slows the vehicle. Go to next… stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric starter/generator visible. The car is

  12. Stop/Start: Driving

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    highlighted Braking button subbanner graphic: gray bar PULLING OUT & DRIVING PART 1 The gasoline engine does not run when the vehicle is at rest. When pulling out, the electric starter/generator uses electricity from the battery to instantly start the gasoline engine---the sole source of propulsion for the vehicle. Go to next… stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric starter/generator visible. The car is stopped at an intersection.

  13. START Program | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Assistance START Program START Program The U.S. Department of Energy (DOE) Office of Indian ... assists rural Alaska Native communities in developing strategic energy ...

  14. Starting of turbine engines

    SciTech Connect (OSTI)

    Shekleton, J.R.

    1990-05-01

    This patent describes a relatively small turbine engine. It comprises: a rotary turbine wheel; a rotary compressor coupled to the turbine wheel; an annular combustor for receiving air from the compressor and fuel from a fuel source combusting the same and providing gases of combustion to the turbine wheel to drive the same; substantially identical main fuel injectors including fuel injecting nozzles angularly spaced about the compressor; fuel and air from the compressor being introduced into the combustor generally in the tangential direction; a fuel pump; a control schedule valve; and first and second main fuel solenoid valves. The first valve being operable to connect a minority of the injectors to the control schedule valve and the fuel pump for starting the engine, there being an even number of the injectors and the minority of injectors consisting of two diametrically opposite injectors; the first and second valves being operable to connect all of the injectors to the control schedule valve and the pump for causing normal operation of the engine; the engine further being characterized by the absence of start fuel injectors for the combustor.

  15. Alaska START | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    START Program » Alaska START Alaska START The U.S. Department of Energy (DOE) Office of Indian Energy Alaska Strategic Technical Assistance Response Team (START) Program assists Alaska Native corporations and federally recognized Alaska Native governments with accelerating clean energy projects. Alaska START is a competitive technical assistance opportunity aimed at: Reducing the cost and use of energy for rural Alaska consumers and communities Increasing local capacity, energy efficiency, and

  16. Getting Started and Optimization Strategy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started and Optimization Strategy Getting Started and Optimization Strategy The purpose of this page is to get you started thinking about how to optimize your application for the Knights Landing (KNL) Architecture that will be on Cori. This page will walk you through the high level steps and give an example using a real application that runs at NERSC. How Does Cori Differ From Edison There are several important differences between the Cori (Knights-Landing) node architecture and the

  17. Eversource- Municipal Smart Start Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Eversource (previously Public Service of New Hampshire), an electric utility, offers the Smart Start Program to municipal customers. This program assists municipalities in reducing energy...

  18. START Program: 48 Contiguous States

    Broader source: Energy.gov [DOE]

    Overview fact sheet on the selected DOE Office of Indian Energy Strategic Technical Assistance Response Team (START) projects in the 48 contiguous states.

  19. START Team | Department of Energy

    Energy Savers [EERE]

    Response Team (START) Program assists in the development of tribal renewable energy projects. ... Ms. Doris has managed state and local policy and technical assistance project teams ...

  20. PSNH- Municipal Smart Start Program

    Broader source: Energy.gov [DOE]

    Public Service of New Hampshire (PSNH), an electric utility, offers the Smart Start Program to Municipal customers. This program assists municipalities in reducing energy consumption and electric...

  1. Getting Started | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Assistance » ISO 50001 Energy Management Standard » Getting Started with ISO 50001 Getting Started with ISO 50001 Companies use an energy management system (EnMS) to establish the policies and procedures to systematically track, analyze, and improve energy efficiency. ISO 50001, the global energy management systems standard, specifies requirements for establishing, implementing, maintaining, and improving an EnMS. The standard is based upon the Plan-Do-Check-Act management system,

  2. Impulsively started incompressible turbulent jet

    SciTech Connect (OSTI)

    Witze, P O

    1980-10-01

    Hot-film anemometer measurements are presented for the centerline velocity of a suddenly started jet of air. The tip penetration of the jet is shown to be proportional to the square-root of time. A theoretical model is developed that assumes the transient jet can be characterized as a spherical vortex interacting with a steady-state jet. The model demonstrates that the ratio of nozzle radius to jet velocity defines a time constant that uniquely characterizes the behavior and similarity of impulsively started incompressible turbulent jets.

  3. Starting apparatus for internal combustion engines

    DOE Patents [OSTI]

    Dyches, G.M.; Dudar, A.M.

    1995-01-01

    This report is a patent description for a system to start an internal combustion engine. Remote starting and starting by hearing impaired persons are addressed. The system monitors the amount of current being drawn by the starter motor to determine when the engine is started. When the engine is started the system automatically deactivates the starter motor. Five figures are included.

  4. Prepermit work starts on California crude line

    SciTech Connect (OSTI)

    Not Available

    1991-04-08

    This paper reports on preliminary work leading to permitting efforts for a 171 mile pipeline to move low gravity crude from giant fields of California to the Los Angeles area. The 20 in., unheated pipeline would cost $180-190 million and could go on stream in 3-3 1/2 years. The project has the backing of partners in development of giant Point Arguello field in the Santa Maria basin off Santa Barbara County, a project blocked from start-up for more than 3 years by permitting wrangles. Pipeline sponsors also have proposed moving oil production from development of Santa Ynez Unit in the Santa Barbara Channel. Point Arguello production is expected to start this year with flow limited to 20,000 b/d, moving moved by pipeline to refineries outside Los Angeles. Point Arguello partners want to ship full Arguello production of 80,000-100,00 b/d by tanker until the PPC project is complete, which the county opposes. The group has appealed the county's denial of an interim tankering permit to the California Coastal Commission, which is expected to hold a hearing on the matter this month. The controversy has been further complicated by other, competing projects designed to move Point Arguello crude to market.

  5. START Signed | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    START Signed START Signed Russia Moscow, USSR President Bush signs the Strategic Arms Reduction Treaty (START), which will reduce nuclear weapon stockpiles to 6,000 "accountable" warheads

  6. 2005 Getting Started with Epics Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video Library APS Colloquium Videos * 2007 * 2006 * 2005 * 2004 Getting Started with Epics * 2005 * 2004 2005 Getting Started with Epics Videos ASD Controls and AOD BCDA have...

  7. Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production September 3, 2014 - 12:05pm Addthis News Media ...

  8. Rapid starting methanol reactor system

    DOE Patents [OSTI]

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  9. Transfer Activity Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Historical Yearly Peak Transfer Activity Historical Yearly Peak The plots below show the yearly peak days from 2000 to the present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for the current year shows the data for the year-to-date peak. Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In

  10. DOE Provides $30 Million to Jump Start Bioenergy Research Centers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 30 Million to Jump Start Bioenergy Research Centers DOE Provides $30 Million to Jump Start Bioenergy Research Centers October 1, 2007 - 2:49pm Addthis DOE Bioenergy Research Center Investment Tops $400 Million WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced it has invested nearly $30 million in end-of-fiscal-year (2007) funds to accelerate the start-up of its three new Bioenergy Research Centers, bringing total DOE Bioenergy Research Center investment

  11. Property:StartDate | Open Energy Information

    Open Energy Info (EERE)

    StartDate Jump to: navigation, search This is a property of type Date. Pages using the property "StartDate" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County...

  12. Fundamental deterrence and START III

    SciTech Connect (OSTI)

    Johnson, K.D.

    1998-12-31

    The public`s brief respite from the specter of nuclear holocaust abruptly ended in May 1998 when India, 24 years after its only successful nuclear weapon test, detonated five more just sixty miles from its border with Pakistan. Pakistan quickly declared itself a nuclear power and threatened tests of its own. Various capitals issued condemnations and an assortment of largely symbolic political and economic sanctions. India then proclaimed a moratorium on further testing and announced its willingness to accede to the Comprehensive Test Ban Treaty as a declared nuclear power. Inevitably, India`s tests will prompt Pakistan and China to accelerate their own nuclear programs, to the detriment of regional stability in South Asia.

  13. NUG 2013: Training - Getting Started at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started at NERSC NUG 2013: Training - Getting Started at NERSC February 16, 2013 n logo Friday, Feb. 15 - Training: Getting Started at NERSC NERSC Oakland Scientific Facility 8:30 - Welcome - Richard Gerber, NERSC 9:00 - NERSC Computational and Storage Systems Overview, Charging - Harvey Wasserman, NERSC ( 30 min ) 9:30 - Connecting to NERSC and Transferring Data, David Turner, NERSC ( 30 min ) 10:00 - Accelerating X Applications Using NX, Yushu Yao, NERSC (20 min) 10:20-10:30 - Break

  14. START Program: Alaska Strategic Technical Assistance Response...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistance Response Team (START) Program is a U.S. Department of Energy Offce of Indian Energy Policy and ... and helps tribal communities strategically plan their energy future. ...

  15. START Alaska Historical Energy Usage Spreadsheet

    Broader source: Energy.gov [DOE]

    Communities applying for the DOE Office of Indian Energy Strategic Technical Assistance Response Team (START) Initiative for Community Energy Planning and Projects Round Two are asked to download...

  16. WestStart CALSTART | Open Energy Information

    Open Energy Info (EERE)

    California Zip: 91106 Product: String representation "WestStart-CALST ... nd create jobs." is too long. Coordinates: 29.690847, -95.196308 Show Map Loading map......

  17. CleanStart | Open Energy Information

    Open Energy Info (EERE)

    search Name: CleanStart Place: McClellan, California Zip: CA 95652 Product: US Business Technology Incubator located in California. Coordinates: 38.668696, -121.394799...

  18. Starting Points | National Nuclear Security Administration |...

    National Nuclear Security Administration (NNSA)

    Starting Points Kansas City Plant Related Web Pages Summary Kansas City Plant Home Page Kansas City Plant Contracts DOE Directives NNSA Policy System Kansas City Field Office ...

  19. New tech fights fires before they start

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New tech fights fires before they start New tech fights fires before they start One spark, and like a monster with an unquenchable appetite, a wildfire can burn forests, homes and towns. That's reason enough for the invention of the brand new Simtable, which is being used at Los Alamos National Lab. June 12, 2016 Mars Watch coverage on the Lab's video on KOB4TV New tech fights fires before they start It takes just one spark, and like a monster with an unquenchable appetite, wildfire can burn

  20. Starting Points | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Starting Points Kansas City Plant Related Web Pages Summary Kansas City Plant Home Page Kansas City Plant Contracts DOE Directives NNSA Policy System Kansas City Field Office (KCFO) Home Page List of Applicable Directives in the Current Contract

  1. Introduction to Benchmarking: Starting a Benchmarking Plan

    Broader source: Energy.gov [DOE]

    Presentation for the Introduction to Benchmarking: Starting a Benchmarking Plan webinar, presented on February 21, 2013 as part of the U.S. Department of Energy's Technical Assistance Program (TAP).

  2. START Renewable Energy Project Development Assistance

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Indian Energy is now accepting applications for the third round of the Strategic Technical Assistance Response Team (START) Renewable Energy Project Development Assistance Program to provide Tribes with technical assistance with furthering the development of community- and commercial-scale renewable energy projects.

  3. Verifying the INF and START treaties

    SciTech Connect (OSTI)

    Ifft, Edward

    2014-05-09

    The INF and START Treaties form the basis for constraints on nuclear weapons. Their verification provisions are one of the great success stories of modern arms control and will be an important part of the foundation upon which the verification regime for further constraints on nuclear weapons will be constructed.

  4. Starting apparatus for internal combustion engines

    DOE Patents [OSTI]

    Dyches, Gregory M.; Dudar, Aed M.

    1997-01-01

    An internal combustion engine starting apparatus uses a signal from a curt sensor to determine when the engine is energized and the starter motor should be de-energized. One embodiment comprises a transmitter, receiver, computer processing unit, current sensor and relays to energize a starter motor and subsequently de-energize the same when the engine is running. Another embodiment comprises a switch, current transducer, low-pass filter, gain/comparator, relay and a plurality of switches to energize and de-energize a starter motor. Both embodiments contain an indicator lamp or speaker which alerts an operator as to whether a successful engine start has been achieved. Both embodiments also contain circuitry to protect the starter and to de-energize the engine.

  5. Starting apparatus for internal combustion engines

    SciTech Connect (OSTI)

    Dyches, G.M.; Dudar, A.M.

    1997-02-11

    An internal combustion engine starting apparatus uses a signal from a curt sensor to determine when the engine is energized and the starter motor should be de-energized. One embodiment comprises a transmitter, receiver, computer processing unit, current sensor and relays to energize a starter motor and subsequently de-energize the same when the engine is running. Another embodiment comprises a switch, current transducer, low-pass filter, gain/comparator, relay and a plurality of switches to energize and de-energize a starter motor. Both embodiments contain an indicator lamp or speaker which alerts an operator as to whether a successful engine start has been achieved. Both embodiments also contain circuitry to protect the starter and to de-energize the engine. 5 figs.

  6. Fact #853 December 29, 2014 Stop/Start Technology is in nearly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Note: 2014 estimates are preliminary. Fact 853 Dataset Supporting Information Penetration of Non-Hybrid StopStart in New Light Vehicles Model Year Cars Light Trucks All Cars and ...

  7. Jump start: DuPont exports its energy management program

    SciTech Connect (OSTI)

    1994-11-23

    In August 1993, DuPont launched its innovative Jump Start program, which called for managers in its 25 largest plants to carry out a 120-day crash effort to find ways to reduce energy use at their facilities. The effort produced ideas that will result in $21.5 million in energy savings over six years, exceeding DuPont`s target. It also kicked off a longer-term program the company hopes will cut as much as $300 million, or 15% from energy bills through 2000.

  8. GettingStartedGuide.PDF | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GettingStartedGuide.PDF&0; GettingStartedGuide.PDF&0; PDF icon GettingStartedGuide.PDF&0; More Documents & Publications PARS II 104 Contractor Monthly Upload Home Energy Score...

  9. Starting Small, Thinking Big - Continuum Magazine | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of two long cabins with a view of one roof, which is covered with solar panels. In the background are forest-covered mountains. New rules for interconnecting solar power systems to the grid in the U.S. Virgin Islands have led to a significant growth in installed solar power in the territory. Photo by Don Buchanan, VIEO Starting Small, Thinking Big NREL helps communities of all sizes and types-from islands and tribes to rural villages and cities-transition to clean energy. NREL is fostering

  10. Energy Department Extends Deadline to Apply for START Tribal...

    Energy Savers [EERE]

    Extends Deadline to Apply for START Tribal Renewable Energy Project Development Assistance to May 22, 2015 Energy Department Extends Deadline to Apply for START Tribal Renewable...

  11. Property:Geothermal/ProjectStartDate | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Property Name GeothermalProjectStartDate Property Type Date Description Project Start Date Retrieved from "http:en.openei.orgw...

  12. DOE's Jefferson Lab Receives Approval To Start Construction of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE's Jefferson Lab Receives Approval To Start Construction of 310 Million Upgrade DOE's Jefferson Lab Receives Approval To Start Construction of 310 Million Upgrade NEWPORT ...

  13. Zhengzhou High Tech Start up Investment | Open Energy Information

    Open Energy Info (EERE)

    Zhengzhou High Tech Start up Investment Jump to: navigation, search Name: Zhengzhou High-Tech Start-up Investment Place: Zhengzhou, Henan Province, China Product: Chinese...

  14. Recovering START institutional knowledge (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Recovering START institutional knowledge Citation Details In-Document Search Title: Recovering START institutional knowledge You are accessing a document from the Department of ...

  15. Method and apparatus for starting supersonic compressors

    DOE Patents [OSTI]

    Lawlor, Shawn P

    2013-08-06

    A supersonic gas compressor with bleed gas collectors, and a method of starting the compressor. The compressor includes aerodynamic duct(s) situated for rotary movement in a casing. The aerodynamic duct(s) generate a plurality of oblique shock waves for efficiently compressing a gas at supersonic conditions. A convergent inlet is provided adjacent to a bleed gas collector, and during startup of the compressor, bypass gas is removed from the convergent inlet via the bleed gas collector, to enable supersonic shock stabilization. Once the oblique shocks are stabilized at a selected inlet relative Mach number and pressure ratio, the bleed of bypass gas from the convergent inlet via the bypass gas collectors is effectively eliminated.

  16. START 48 Contiguous United States | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    48 Contiguous United States START 48 Contiguous United States The U.S. Department of Energy (DOE) Office of Indian Energy Strategic Technical Assistance Response Team (START) Program helps competitively selected tribes in the 48 contiguous states, as well as Alaska Native regional corporations, further the development of renewable energy projects. START-supported projects are selected through a competitive application process. Learn more about START projects. The START team is comprised of DOE

  17. Energy Literacy Quick Start Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quick Start Guide Energy Literacy Quick Start Guide Energy Literacy Quick Start Guide Want to teach about energy but don't know where to start? Our Quick Start Guide will help you take information from the Energy Literacy framework and apply it to your unique classroom--whether you teach physics, environmental science, or even social studies! The guide answers some of your basic questions, such as how Energy Literacy aligns to the Next Generation Science Standards, or where to find fun

  18. Technical Assistance Program: Off to a Running Start (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    and skills-based training available to tribal communities throughout the United States. The primary goal of the START initiative, according to DOE-IE Director Tracey A. LeBeau, is to bring about the next generation of energy development in Indian Country. Through energy project planning, quality training, and technical assistance, The START program will leverage the early-stage resource characterization and pre-feasibility investments that DOE has made in Indian Country over the years, and unlock the energy resources that exist on tribal lands to help build a 21st century tribal energy economy. Working collaboratively with a select group of Tribes and Alaska Native entities, the DOE Office of Indian Energy, NREL, and the Denali Commission will empower tribal leaders to make informed energy decisions and help build capacity to bring tribal energy visions to fruition and get renewable energy projects off the ground, said LeBeau. Ultimately, these efforts will serve to further the Obama Administration and DOE's shared commitment to provide Native American and Alaska Native communities with the tools and resources they need to foster tribal energy self-sufficiency and sustainability, advancing job creation and enhancing economic competitiveness.

  19. Extended Deterrence, Nuclear Proliferation, and START III

    SciTech Connect (OSTI)

    Speed, R.D.

    2000-06-20

    Early in the Cold War, the United States adopted a policy of ''extended nuclear deterrence'' to protect its allies by threatening a nuclear strike against any state that attacks these allies. This threat can (in principle) be used to try to deter an enemy attack using conventional weapons or one using nuclear, chemical, or biological weapons. The credibility of a nuclear threat has long been subject to debate and is dependent on many complex geopolitical factors, not the least of which is the military capabilities of the opposing sides. The ending of the Cold War has led to a significant decrease in the number of strategic nuclear weapons deployed by the United States and Russia. START II, which was recently ratified by the Russian Duma, will (if implemented) reduce the number deployed strategic nuclear weapons on each side to 3500, compared to a level of over 11,000 at the end of the Cold War in 1991. The tentative limit established by Presidents Clinton and Yeltsin for START III would reduce the strategic force level to 2000-2500. However, the Russians (along with a number of arms control advocates) now argue that the level should be reduced even further--to 1500 warheads or less. The conventional view is that ''deep cuts'' in nuclear weapons are necessary to discourage nuclear proliferation. Thus, as part of the bargain to get the non-nuclear states to agree to the renewal of the Nuclear Non-Proliferation Treaty, the United States pledged to work towards greater reductions in strategic forces. Without movement in the direction of deep cuts, it is thought by many analysts that some countries may decide to build their own nuclear weapons. Indeed, this was part of the rationale India used to justify its own nuclear weapons program. However, there is also some concern that deep cuts (to 1500 or lower) in the U.S. strategic nuclear arsenal could have the opposite effect. The fear is that such cuts might undermine extended deterrence and cause a crisis in confidence

  20. Eastman, AP start on coal unit

    SciTech Connect (OSTI)

    1995-10-25

    Eastman Chemical and Air Products and Chemicals (AP) have started construction of a $214-million, coal-to-methanol demonstration unit at Eastmans site in Kingsport, TN. The project is part of the Department of Energy`s clean coal technology program and is receiving $93 million in federal support. The demonstration unit-which will have a methanol capacity of 260 tons/day-will use novel catalyst technology for converting coal-derived synthesis gas (syngas) to methanol. Unlike conventional technology that processes syngas through a fixed bed of dry catalyst particles, the liquid-phase methanol process converts the syngas in a single vessel containing catalysts suspended in mineral oil. The companies say the innovation allows the process to better able handle the gases from coal gasifiers and is more stable and reliable than existing processes. Eastman says it will use the methanol produced by the plant as a chemical feedstock. It currently uses methanol as an intermediate in making acetic anhydride and dimethyl terephthalate. In addition, the companies say the methanol will be evaluated as a feedstock in making methyl tert-butyl ether for reformulated fuels. Eastman also says it will evaluate coproducing dimethyl ether (DME) with the methanol. DME can be used as a fuel additive or blended with methanol for a chemical feedstock, according to Eastman.

  1. Dual-Fuel Truck Fleet: Start-Up Experience

    SciTech Connect (OSTI)

    NREL

    1998-09-30

    Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

  2. Green Business in Indian Country Start-Up Award

    Broader source: Energy.gov [DOE]

    Trees, Water, & People is accepting applications for the Green Business in Indian Country Start-Up Award and offering assistance to one selected applicant in starting their own business in a related field.

  3. Cold-Start Performance and Emissions Behavior of Alcohol Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cold-Start Performance and Emissions Behavior of Alcohol Fuels in an SIDI Engine Using Transient Hardware-In-Loop Test Meth Discusses results of cold- and hot-start transient tests ...

  4. Property:ASHRAE 169 Start Date | Open Energy Information

    Open Energy Info (EERE)

    Start Date Jump to: navigation, search This is a property of type Date. Pages using the property "ASHRAE 169 Start Date" Showing 25 pages using this property. (previous 25) (next...

  5. New Jersey SmartStart Buildings- New Construction and Retrofits

    Broader source: Energy.gov [DOE]

    New Jersey SmartStart Buildings is a program sponsored by the New Jersey Board of Public Utilities in partnership with New Jersey’s gas and electric utilities. New Jersey SmartStart Buildings rec...

  6. Construction, Qualification, and Low Rate Production Start-up...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction, Qualification, and Low Rate Production Start-up of a DC Bus Capacitor High ... Construction, Qualification, and Low Rate Production Start-up of a DC Bus Capacitor High ...

  7. Property:Building/StartPeriod | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type Date. Start of the period (first day o the month) Pages using the property "BuildingStartPeriod" Showing 25 pages using this...

  8. PHEV Engine Cold Start Emissions Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cold Start Emissions Management PHEV Engine Cold Start Emissions Management Coordination of engine and powertrain supervisory control strategies to minimize cold start emissions p-05_chambon.pdf (369.94 KB) More Documents & Publications PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy

  9. Start-up control system and vessel for LMFBR

    DOE Patents [OSTI]

    Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.

    1987-01-01

    A reflux condensing start-up system includes a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.

  10. Start-up control system and vessel for LMFBR

    DOE Patents [OSTI]

    Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.

    1987-01-01

    A reflux condensing start-up system comprises a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.

  11. Getting Started | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started User Facilities User Facilities Home User Facilities at a Glance User Resources Getting Started User Safety Access Models User Agreements Data Management Resources Acknowledging User Facilities User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Resources Getting Started Print Text

  12. Energy Literacy Framework A Quick Start Guide for Educators

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Framework A Quick Start Guide for Educators Energy - it's everywhere! When you turn on the lights, listen to the radio, heat your home, fuel your car, or use a computer, you are using energy. Energy is crucial to every- thing we do and experience. Understanding energy can help us make better informed decisions about our homes, communities, and our nation. If you are new to energy education, then the following answers to questions about Energy Literacy will help you get started. Start thinking

  13. Cold-Start Emissions Control in Hybrid Vehicles Equipped with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Reports results from study of ...

  14. Eleven Tribes Jump START Clean Energy Projects, Summer 2012 ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and Kevin Davidson of the Hualapai Tribe Planning and Economic Development Department discuss utility-scale solar and wind project potential during a START site visit in Arizona. ...

  15. Property:Incentive/StartDateString | Open Energy Information

    Open Energy Info (EERE)

    Pages using the property "IncentiveStartDateString" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) +...

  16. 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

    Open Energy Info (EERE)

    02092014 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

  17. NNSA Authorizes Start-Up of Highly Enriched Uranium Materials...

    National Nuclear Security Administration (NNSA)

    Authorizes Start-Up of Highly Enriched Uranium Materials Facility at Y-12 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  18. The coming year - 2012 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the other hand, we are about to start a calendar year with a budget for the rest of the fiscal year already decided, at least at the higher levels. Just before the end of the ...

  19. Wind Farms through the Years | Department of Energy

    Energy Savers [EERE]

    Wind Farms through the Years Wind Farms through the Years 1975 Start Slow Stop Year Wind Farms Homes Powered Added Current Year 833 Wind Farms Online. Enough to Power 15 M Homes...

  20. Getting Started on ALCF Resources | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started on ALCF Resources Start Date: Aug 24 2016 - 9:00am to 12:30pm Location: Webinar Event Website: http://www.alcf.anl.gov/workshops/getting-started-alcf-resources-videoco... This essential introductory videoconference is intended for new ALCF users, but is open to any user interested in learning how to make the best use of our systems. This interactive course covers the basics you'll need to get your projects up and running. Learn ways to minimize wait time in job queues; receive

  1. Getting Started on ALCF Resources | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started on ALCF Resources Start Date: Sep 15 2016 - 9:00am to 12:30pm Location: Webinar Event Website: http://www.alcf.anl.gov/workshops/getting-started-alcf-resources-videoco... This essential introductory videoconference is intended for new ALCF users, but is open to any user interested in learning how to make the best use of our systems. This interactive course covers the basics you'll need to get your projects up and running. Learn ways to minimize wait time in job queues; receive

  2. START Site Visit Examines Viability of Tribal Community Solar Project

    Broader source: Energy.gov [DOE]

    Members of the Office of Indian Energy START team, the Southern Ute Tribe, and Southern Ute Alternative Energy meet to discuss a potential solar photovoltaic project using a community ownership model.

  3. Gasoline Compression Ignition - Start of Injection Timing Sweep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us For more information, contact Greg Cunningham at (630) 252-8232 or media@anl.gov. Gasoline Compression Ignition - Start of Injection Timing Sweep (VERIFI) Share Topic...

  4. St. Gobain Innovation Competition for Start-Ups

    Broader source: Energy.gov [DOE]

    The Saint-Gobain NOVA Innovation Competition rewards start-ups offering the most innovative solutions in the field of habitat, sustainable products, advanced materials, renewable energy sources and high-efficiency building solutions.

  5. Subfreezing Start/Stop Protocol for and Advanced Metallic Open...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subfreezing StartStop Protocol for and Advanced Metallic Open-Flowfield Fuel Cell Stack Part of a 100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. ...

  6. Getting Started with ISO 50001 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ISO 50001 Energy Management Standard » Getting Started with ISO 50001 Getting Started with ISO 50001 Companies use an energy management system (EnMS) to establish the policies and procedures to systematically track, analyze, and improve energy efficiency. ISO 50001, the global energy management systems standard, specifies requirements for establishing, implementing, maintaining, and improving an EnMS. The standard is based upon the Plan-Do-Check-Act management system, which is familiar to many

  7. Testimony Before the Senate Armed Services Committee, New START Treaty

    National Nuclear Security Administration (NNSA)

    Hearing | National Nuclear Security Administration | (NNSA) Testimony Before the Senate Armed Services Committee, New START Treaty Hearing July 20, 2010 Chairman Levin, Ranking Member McCain, and Members of the Committee, thank you for the opportunity to testify on the Treaty between the United States of America and the Russian Federation on Measures for the Further Reduction and Limitation of Strategic Offensive Arms, known as "New START." Last month, Secretary of Energy Chu

  8. Department of Energy Announces Start of Western Area Power Administration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Project | Department of Energy Start of Western Area Power Administration Recovery Act Project Department of Energy Announces Start of Western Area Power Administration Recovery Act Project September 16, 2009 - 12:00am Addthis WASHINGTON, DC - With the goal of bringing new jobs and green power to the West, Energy Secretary Steven Chu announced today a large-scale transmission project to be financed using funding from the American Recovery and Reinvestment Act. The Western Area

  9. Minto Upgrades Community Lodge with START Support | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minto Upgrades Community Lodge with START Support Minto Upgrades Community Lodge with START Support October 20, 2014 - 5:00pm Addthis With DOE support, workers weatherize the exterior of the Lakeview Lodge in Minto, Alaska. Photo from Russell Snyder, Interior Regional Housing Authority, NREL 31796 With DOE support, workers weatherize the exterior of the Lakeview Lodge in Minto, Alaska. Photo from Russell Snyder, Interior Regional Housing Authority, NREL 31796 The Lakeview Lodge is the heart of

  10. Belarus ratifies START I pact; Ukraine remains last holdout

    SciTech Connect (OSTI)

    Lockwood, D.

    1993-03-01

    The Belarus Parliment ratified START I by a vote of 218 to 1 on February 4, 1993. The Parliment also voted to accede to the nuclear Non-Proliferation Treaty as a non-nuclear weapon state. The Parliment also passed two companion accords with Russia to coordinate the withdrawal of the ICBMs now in Belarus and to define the legal states of those weapons. Ukraine remains the only party to START I that has not yet approved the treaty.

  11. Stop and Restart Effects on Modern Vehicle Starting System Components

    SciTech Connect (OSTI)

    Windover, Paul R.; Owens, Russell J.; Levinson, Terry M.; Laughlin, Michael; Gaines, Linda

    2015-01-01

    Many drivers of personal and commercial vehicles believe that turning the vehicle off and on frequently instead of idling will cause premature wear of the starter system (starter motor and starter battery). As a result, they are concerned that the replacement cost of the starter motor and/or battery due to increased manual engine cycling would be more than the cumulative cost of the fuel saved by not idling unnecessarily. A number of variables play a role in addressing this complex concern, including the number of starting cycles per day, the time between starting cycles, the intended design life of the starting system, the amount of fuel used to restart an engine, and the cumulative cost of the saved fuel. Qualitative and quantitative information from a variety of sources was used to develop a life-cycle economic model to evaluate the cost and quantify the realistic factors that are related to the permissible frequency of starter motor cycles for the average vehicle to economically minimize engine idle time. Annual cost savings can be calculated depending on shutdown duration and the number of shutdown cycles per day. Analysis shows that cost savings are realized by eliminating idling exceeding one minute by shutting down the engine and restarting it. For a typical motorist, the damage to starting system components resulting from additional daily start cycles will be negligible. Overall, it was found that starter life is mostly dependent on the total number of start cycles, while battery life is more dependent on ensuring a full charge between start events.

  12. Nonrecovery cokemaking/cogeneration complex at Inland Steel scheduled to start up in mid-1998

    SciTech Connect (OSTI)

    Samways, N.L.

    1997-12-01

    A 1.33 million ton/year cokemaking/cogeneration power complex is under construction at the Indiana Harbor Works. The cokemaking plant consists of four batteries of nonrecovery type coke ovens representing a total of 268 ovens. The cogeneration energy facilities include: 16 heat recovery boilers; a steam turbine generator, and a flue gas desulfurization system. Start-up is scheduled for mid-1998. Both facilities are described.

  13. Major Projects with Quick Starts & Jobs Creation Office of Clean Coal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Major Projects with Quick Starts & Jobs Creation Office of Clean Coal Summary of Projects and Job Creation The following table outlines the near-term possibilities for projects that capture and sequester carbon from coal-based systems. The potential jobs associated with these activities are listed along with likely construction and operation dates. Since the funding is primarily for construction and associated activities, a rough estimate of 30 job years per $1 million dollars expended was

  14. Modeling and cold start in alcohol-fueled engines

    SciTech Connect (OSTI)

    Markel, A.J.; Bailey, B.K.

    1998-05-01

    Neat alcohol fuels offer several benefits over conventional gasoline in automotive applications. However, their low vapor pressure and high heat of vaporization make it difficult to produce a flammable vapor composition from a neat alcohol fuel during a start under cold ambient conditions. Various methods have been introduced to compensate for this deficiency. In this study, the authors applied computer modeling and simulation to evaluate the potential of four cold-start technologies for engines fueled by near-neat alcohol. The four technologies were a rich combustor device, a partial oxidation reactor, a catalytic reformer, and an enhanced ignition system. The authors ranked the competing technologies by their ability to meet two primary criteria for cold starting an engine at {minus}25 deg C and also by several secondary parameters related to commercialization. Their analysis results suggest that of the four technologies evaluated, the enhanced ignition system is the best option for further development.

  15. Edison Down for About One Month Starting June 24

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Down for About One Month Starting June 24 Edison Down for About One Month Starting June 24 June 4, 2013 by Francesca Verdier The Edison Phase II system arrives at NERSC in June, and will boost the Phase I core count by more than a factor of 10. In order to integrate the new components and upgrade existing ones, the entire Edison system will be unavailable for about one month beginning June 24. This includes the login nodes and the scratch file system. Please plan your work accordingly. While we

  16. scriptEnv - loading modules before starting a script

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scriptEnv - loading modules before starting a script scriptEnv - loading modules before starting a script In some cases a script needs to load modules before the script can be executed, but it can often be inconvenient or impossible to provide wrapper scripts which load the needed modules. CGI scripts on the gpweb resources or in the NERSC portal environment which require the genepool-specific python/perl/R or databases configuration modules are a strong example of this. NERSC provides the

  17. Cold-start characteristics of polymer electrolyte fuel cells

    SciTech Connect (OSTI)

    Mishler, Jeff; Mukundan, Rangachary; Wang, Yun; Mishler, Jeff; Mukherjee, Partha P

    2010-01-01

    In this paper, we investigate the electrochemical reaction kinetics, species transport, and solid water dynamics in a polymer electrolyte fuel cell (PEFC) during cold start. A simplitied analysis is developed to enable the evaluation of the impact of ice volume fraction on cell performance during coldstart. Supporting neutron imaging data are also provided to reveal the real-time water evolution. Temperature-dependent voltage changes due to the reaction kinetics and ohmic loss are also analyzed based on the ionic conductivity of the membrane at subfreezing temperature. The analysis is valuable for the fundamental study of PEFC cold-start.

  18. PEM Fuel Cell Freeze Durability and Cold Start Project

    SciTech Connect (OSTI)

    Patterson, T.; O'Neill, Jonathan

    2008-01-02

    UTC has taken advantage of the unique water management opportunities inherent in micro-porous bipolar-plates to improve the cold-start performance of its polymer electrolyte fuel cells (PEFC). Diagnostic experiments were used to determine the limiting factors in micro-porous plate PEFC freeze performance and the causes of any performance decay. Alternative cell materials were evaluated for their freeze performance. Freeze-thaw cycling was also performed to determine micro-porous plate PEFC survivability. Data from these experiments has formed the basis for continuing development of advanced materials capable of supporting DOE's cold-start and durability objectives.

  19. Innovative Wave Power Device Starts Producing Clean Power in Hawaii |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Wave Power Device Starts Producing Clean Power in Hawaii Innovative Wave Power Device Starts Producing Clean Power in Hawaii July 6, 2015 - 6:31pm Addthis With support from the Energy Department and the U.S. Navy, a prototype wave energy device has advanced successfully from initial concept to grid-connected, open-sea pilot testing. The device, called Azura, was recently launched and installed in a 30-meter test berth at the Navy's Wave Energy Test Site (WETS) in Kaneohe

  20. Eleven Tribes Jump START Clean Energy Projects, Summer 2012 (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    This newsletter describes key activities of the DOE Office of Indian Energy Policy and Programs for Summer 2012. The U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) has selected 11 Tribes - five in Alaska and six in the contiguous United States - to receive on-the-ground technical support for community-based energy efficiency and renewable energy projects as part of DOE-IE's Strategic Technical Assistance Response Team (START) Program. START finalists were selected based on the clarity of their requests for technical assistance and the ability of START to successfully work with their projects or community. Technical experts from DOE and its National Renewable Energy Laboratory (NREL) will work directly with community-based project teams to analyze local energy issues and assist the Tribes in moving their projects forward. In Alaska, the effort will be bolstered by DOE-IE's partnership with the Denali Commission, which will provide additional assistance and expertise, as well as funding to fuel the Alaska START initiative.

  1. Fast Thorium Molten Salt Reactors Started with Plutonium

    SciTech Connect (OSTI)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.

    2006-07-01

    One of the pending questions concerning Molten Salt Reactors based on the {sup 232}Th/{sup 233}U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since {sup 233}U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing {sup 233}U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce {sup 233}U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/{sup 233}U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into {sup 233}U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with {sup 233}U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with {sup 233}U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  2. Exploration of cloud computing late start LDRD #149630 : Raincoat. v. 2.1.

    SciTech Connect (OSTI)

    Echeverria, Victor T.; Metral, Michael David; Leger, Michelle A.; Gabert, Kasimir Georg; Edgett, Patrick Garrett; Thai, Tan Q.

    2010-09-01

    This report contains documentation from an interoperability study conducted under the Late Start LDRD 149630, Exploration of Cloud Computing. A small late-start LDRD from last year resulted in a study (Raincoat) on using Virtual Private Networks (VPNs) to enhance security in a hybrid cloud environment. Raincoat initially explored the use of OpenVPN on IPv4 and demonstrates that it is possible to secure the communication channel between two small 'test' clouds (a few nodes each) at New Mexico Tech and Sandia. We extended the Raincoat study to add IPSec support via Vyatta routers, to interface with a public cloud (Amazon Elastic Compute Cloud (EC2)), and to be significantly more scalable than the previous iteration. The study contributed to our understanding of interoperability in a hybrid cloud.

  3. Y YEAR

    National Nuclear Security Administration (NNSA)

    2 40 -4.76% YEAR 2013 2014 Males 37 35 -5.41% Females 5 5 0% YEAR 2013 2014 SES 2 2 0% EJEK 5 4 -20.00% EN 05 5 7 40.00% EN 04 6 6 0% EN 03 1 1 0% NN...

  4. Y YEAR

    National Nuclear Security Administration (NNSA)

    79 67 -15.19% YEAR 2013 2014 Males 44 34 -22.73% Females 35 33 -5.71% YEAR 2013 2014 SES 6 4 -33.33% EJEK 1 1 0% EN 05 9 8 -11.11% EN 04 6 5 -16.67% NN...

  5. Western Pond Turtle Head-starting and Reintroduction; 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Van Leuven, Susan; Allen, Harriet; Slavin, Kate

    2004-09-01

    This report covers the results of the western pond turtle head-starting and reintroduction project for the period of October 2003-September 2004. Wild hatchling western pond turtles from the Columbia River Gorge were reared at the Woodland Park and Oregon Zoos in 2003 and 2004 as part of the recovery effort for this Washington State endangered species. The objective of the program is to reduce losses to introduced predators like bullfrogs and largemouth bass by raising the hatchlings to a size where they are too large to be eaten by most of these predators. Sixty-nine turtles were over-wintered at the Woodland Park Zoo and 69 at the Oregon Zoo. Of these, 136 head-started juvenile turtles were released at three sites in the Columbia Gorge in 2004. Two were held back to attain more growth in captivity. Thirty-four were released at the Klickitat ponds, 19 at the Klickitat lake, 21 at the Skamania site, and 62 at Pierce National Wildlife Refuge (NWR). This brought the total number of head-start turtles released since 1991 to 246 for the Klickitat ponds, 114 for the Klickitat lake, 167 for the Skamania pond complex, and 250 at Pierce NWR. In 2004, 32 females from the two Columbia Gorge populations were equipped with transmitters and monitored for nesting activity. Twenty-one of the females nested and produced 85 hatchlings. The hatchlings were collected in September and October and transported to the Woodland Park and Oregon zoos for rearing in the head-start program. Data collection for a four-year telemetry study of survival and habitat use by juvenile western pond turtles at Pierce NWR concluded in 2004. Radio transmitters on study animals were replaced as needed until all replacements were in service; afterward, the turtles were monitored until their transmitters failed. The corps of study turtles ranged from 39 in August 2003 to 2 turtles at the end of August 2004. These turtles showed the same seasonal pattern of movements between summer water and upland winter

  6. Starting low compression ratio rotary Wankel diesel engine

    SciTech Connect (OSTI)

    Kamo, R.; Yamada, T.Y.; Hamada, Y.

    1987-01-01

    The single stage rotary Wankel engine is difficult to convert into a diesel version having an adequate compression ratio and a compatible combustion chamber configuration. Past efforts in designing a rotary-type Wankel diesel engine resorted to a two-stage design. Complexity, size, weight, cost and performance penalties were some of the drawbacks of the two-stage Wankel-type diesel designs. This paper presents an approach to a single stage low compression ratio Wankel-type rotary engine. Cold starting of a low compression ratio single stage diesel Wankel becomes the key problem. It was demonstrated that the low compression single stage diesel Wankel type rotary engine can satisfactorily be cold started with a properly designed combustion chamber in the rotor and a variable heat input combustion aid.

  7. Getting Started on ALCF Resources - Videoconferences | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility on ALCF Resources - Videoconferences Getting Started on ALCF Resources - Videoconferences This essential introductory videoconference is intended for new ALCF users, but is open to any user interested in learning how to make the best use of our systems. Led by ALCF staff, this interactive course covers the basics you'll need to get your projects up and running. Learn ways to minimize wait time in job queues; receive tips for backing up your data; and gain experience

  8. SNL Starting Points | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    SNL Starting Points Sandia Field Office Home Page SNL Contract DOE Directives NNSA Policy System SNL's Economic Impact Brochure SNL's Fact Sheets SNL's Accomplishments SNL Partnerships Annual Report (Added June 30) SNL Strategic Plan SNL Strategic Plan FY16-FY20 State of the Labs Presentation State of the Labs Presentation 2015 SNL Corporate Overview and Organization SNL Corporate Overview FY16 SNL Corporate Overview FY 16 Presenter Notes SNL Organization Chart Agreements 2014 MTC Joint Review

  9. Sandia starts silicon wafer production for three nuclear weapon programs |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) starts silicon wafer production for three nuclear weapon programs Wednesday, March 25, 2015 - 3:24pm Sandia National Laboratories has begun making silicon wafers for three nuclear weapon modernization programs, the largest production series in the history of its Microsystems and Engineering Sciences Applications (MESA) complex. MESA's silicon fab in October began producing base wafers for Application-Specific Integrated Circuits for the

  10. Graduate Fellows learn skills on starting careers as fellowships end |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Graduate Fellows learn skills on starting careers as fellowships end Tuesday, January 19, 2016 - 12:00am NNSA Blog NGFP Fellows at the annual NGFP Career Skills Workshop, where they met with PNNL and NNSA leaders to gain practical guidance and best practices for applying to positions after their fellowships. The NNSA Graduate Fellowship Program (NGFP) participated a Career Skills Workshop earlier this month in Washington. The annual event

  11. PPPL physicists simulate innovative method for starting up tokamaks without

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using a solenoid | Princeton Plasma Physics Lab physicists simulate innovative method for starting up tokamaks without using a solenoid By Raphael Rosen January 4, 2016 Tweet Widget Google Plus One Share on Facebook PPPL Scientist Francesca Poli (Photo by Elle Starkman/PPPL Office of Communications) PPPL Scientist Francesca Poli Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have produced self-consistent computer simulations that capture the

  12. PPPL physicists simulate innovative method for starting up tokamaks without

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using a solenoid | Princeton Plasma Physics Lab physicists simulate innovative method for starting up tokamaks without using a solenoid By Raphael Rosen January 4, 2016 Tweet Widget Google Plus One Share on Facebook PPPL Scientist Francesca Poli (Photo by Elle Starkman/PPPL Office of Communications) PPPL Scientist Francesca Poli Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have produced self-consistent computer simulations that capture the

  13. Helping Cleantech Start-ups with Employee Compensation - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Helping Cleantech Start-ups with Employee Compensation October 17, 2011 The Colorado Center for Renewable Energy Economic Development (CREED) at U.S. Department of Energy's National Renewable Energy Laboratory (NREL) invites cleantech entrepreneurs to attend the next event in its Entrepreneur Series. The Oct. 20 class, "How do you pay your CEO," will help cleantech entrepreneurs determine how to compensate a team, particularly when the company is short on cash. To help

  14. Long pulse EBW start-up experiments in MAST

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shevchenko, V. F.; Baranov, Y. F.; Bigelow, T.; Caughman, J. B.; Diem, S.; Dukes, C.; Finburg, P.; Hawes, J.; Gurl, C.; Griffiths, J.; et al

    2015-03-12

    Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even inmore » cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.« less

  15. Long pulse EBW start-up experiments in MAST

    SciTech Connect (OSTI)

    Shevchenko, V. F.; Baranov, Y. F.; Bigelow, T.; Caughman, J. B.; Diem, S.; Dukes, C.; Finburg, P.; Hawes, J.; Gurl, C.; Griffiths, J.; Mailloux, J.; Peng, M.; Saveliev, A. N.; Takase, Y.; Tanaka, H.; Taylor, G.

    2015-03-12

    Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.

  16. Start-up Plan for Plautonium-238 Production for Radioisotope Power System (Report to Congress- June 2010)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Administration has requested the restart of plutonium?238 (Pu?238) production in fiscal year (FY) 2011. The following joint start?up plan, consistent with the President's request, has been developed collaboratively between the Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA), and defines the roles and contributions of major users of Pu?238 in response to Congressional request.

  17. Y YEAR

    National Nuclear Security Administration (NNSA)

    7 35 -5.41% ↓ YEAR 2013 2014 Males 27 25 -7.41% ↓ Females 10 10 0% / YEAR 2013 2014 SES 1 1 0% / EN 05 1 1 0% / EN 04 11 10 -9.09% ↓ NN (Engineering) 8 8 0% / NQ (Prof/Tech/Admin) 14 15 7.14% ↑ NU (Tech/Admin Support) 2 0 -100% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 1 1 0% / African American Female (AA,F) 3 3 0% / Asian American Pacific Islander Male (AAPI,M) 0 0 0% /

  18. Y YEAR

    National Nuclear Security Administration (NNSA)

    5 79 -7.06% ↓ YEAR 2013 2014 Males 59 57 -3.39% ↓ Females 26 22 -15.38% ↓ YEAR 2013 2014 SES 1 0 -100% ↓ EJ/EK 4 3 -25.00% ↓ EN 05 3 2 -33.33% ↓ EN 04 22 22 0% / EN 03 8 8 0% / NN (Engineering) 16 15 -6.25% ↓ NQ (Prof/Tech/Admin) 28 26 -7.14% ↓ NU (Tech/Admin Support) 3 3 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 2 2 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 5 4 -20.00% ↓ African American Female (AA,F) 3 2

  19. Y YEAR

    National Nuclear Security Administration (NNSA)

    91 81 -10.99% ↓ YEAR 2013 2014 Males 67 56 -16.42% ↓ Females 24 25 4.17% ↑ YEAR 2013 2014 SES 1 2 100% ↑ EJ/EK 9 8 -11.11% ↓ EN 04 25 22 -12.00% ↓ NN (Engineering) 24 20 -16.67% ↓ NQ (Prof/Tech/Admin) 29 26 -10.34% ↓ NU (Tech/Admin Support) 3 3 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 2 2 0% / American Indian Alaskan Native Female (AIAN,F) 3 3 0% / African American Male (AA,M) 0 0 0% / African American Female (AA,F) 0 0 0% / Asian American Pacific Islander

  20. Y YEAR

    National Nuclear Security Administration (NNSA)

    21 -4.55% ↓ YEAR 2013 2014 Males 10 8 -20.00% ↓ Females 12 13 8.33% ↑ YEAR 2013 2014 SES 10 7 -30.00% ↓ EX 0 2 100% ↑ EJ/EK 1 1 0% / EN 05 0 1 100% ↑ EN 04 0 1 100% ↑ NQ (Prof/Tech/Admin) 9 8 -11.11% ↓ NU (Tech/Admin Support) 1 1 0% / ED 00 1 0 -100% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 2 1 -50.00% ↓ African American Male (AA,M) 1 1 0% / African American Female (AA,F) 5 4 -20.00% ↓ Asian

  1. Y YEAR

    National Nuclear Security Administration (NNSA)

    41 155 9.93% ↑ YEAR 2013 2014 Males 92 106 15.22% ↑ Females 49 49 0% / YEAR 2013 2014 SES 8 8 0% / EX 1 1 0% / EJ/EK 4 4 0% / EN 05 11 10 -9.09% ↓ EN 04 11 14 27.27% ↑ EN 03 2 5 150% ↑ NN (Engineering) 60 63 5.00% ↑ NQ (Prof/Tech/Admin) 44 50 13.64% ↑ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 1 1 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 7 10 42.86% ↑ African American Female (AA,F) 13 11 -15.38% ↓ Asian American

  2. Y YEAR

    National Nuclear Security Administration (NNSA)

    563 560 -0.53% ↓ YEAR 2013 2014 Males 518 514 -0.77% ↓ Females 45 46 2.22% ↑ YEAR 2013 2014 SES 2 2 0% / EJ/EK 2 2 0% / EN 04 1 1 0% / NN (Engineering) 11 11 0% / NQ (Prof/Tech/Admin) 218 221 1.38% ↑ NU (Tech/Admin Support) 1 2 100% ↑ NV (Nuc Mat Courier) 328 321 -2.13% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 15 15 0% / American Indian Alaskan Native Female (AIAN,F) 2 2 0% / African American Male (AA,M) 19 18 -5.26% ↓ African American Female (AA,F) 1 1 0% /

  3. Y YEAR

    National Nuclear Security Administration (NNSA)

    97 180 -8.63% ↓ YEAR 2013 2014 Males 105 89 -15.24% ↓ Females 92 91 -1.09% ↓ YEAR 2013 2014 SES 14 13 -7.14% ↓ EX 1 1 0% / EJ/EK 3 3 0% / EN 05 1 1 0% / EN 04 4 2 -50.00% ↓ EN 03 1 1 0% / EN 00 0 3 100% ↑ NN (Engineering) 35 27 -22.86% ↓ NQ (Prof/Tech/Admin) 135 126 -6.67% ↓ NU (Tech/Admin Support) 2 2 0% / GS 15 0 1 100% ↑ GS 13 1 0 -100% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 2 1 -50.00% ↓ American Indian Alaskan Native Female (AIAN,F) 0 0 0% /

  4. Y YEAR

    National Nuclear Security Administration (NNSA)

    *Total number of Employees 122 112 -8.20% ↓ YEAR 2013 2014 Males 90 84 -6.67% ↓ Females 32 28 -12.50% ↓ YEAR 2013 2014 SES 26 24 -7.69% ↓ EJ/EK 3 3 0% / EN 05 8 9 12.50% ↑ NN (Engineering) 48 47 -2.08% ↓ NQ (Prof/Tech/Admin) 30 26 -13.33% ↓ NU (Tech/Admin Support) 7 3 -57.14% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 3 3 0% / African American Female (AA,F) 7 6 -14.29%

  5. Y YEAR

    National Nuclear Security Administration (NNSA)

    4 79 -5.95% ↓ YEAR 2013 2014 Males 59 55 -6.78% ↓ Females 25 24 -4.00% ↓ YEAR 2013 2014 SES 3 3 0% / EJ/EK 4 4 0% / EN 04 2 1 -50.00% ↓ NN (Engineering) 20 20 0% / NQ (Prof/Tech/Admin) 55 51 -7.27% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 0 0 0% / African American Male (AA,M) 10 10 0% / African American Female (AA,F) 9 8 -11.11% ↓ Asian American Pacific Islander Male (AAPI,M) 2 2 0% / Asian American Pacific

  6. Y YEAR

    National Nuclear Security Administration (NNSA)

    8 87 -1.14% ↓ YEAR 2013 2014 Males 46 46 0% / Females 42 41 -2.38% ↓ YEAR 2013 2014 SES 1 0 -100% ↓ EJ/EK 4 2 -50.00% ↓ NN (Engineering) 12 12 0% / NQ (Prof/Tech/Admin) 68 70 2.94% ↑ NU (Tech/Admin Support) 3 3 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 2 2 0% / African American Male (AA,M) 5 5 0% / African American Female (AA,F) 5 6 20.00% ↑ Asian American Pacific Islander Male (AAPI,M) 0 0 0% / Asian

  7. Y YEAR

    National Nuclear Security Administration (NNSA)

    1 14 27.27% ↑ YEAR 2013 2014 Males 9 12 33.33% ↑ Females 2 2 0% / YEAR 2013 2014 SES 2 2 0% / EJ/EK 1 1 0% / EN 04 0 1 100% ↑ EN 00 0 1 100% ↑ NN (Engineering) 5 5 0% / NQ (Prof/Tech/Admin) 3 4 33.33% ↑ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 0 0 0% / African American Male (AA,M) 0 0 0% / African American Female (AA,F) 0 0 0% / Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian American Pacific

  8. Y YEAR

    National Nuclear Security Administration (NNSA)

    79 164 -8.38% ↓ YEAR 2013 2014 Males 100 92 -8.00% ↓ Females 79 72 -8.86% ↓ YEAR 2013 2014 SES 8 8 0% / EJ/EK 4 3 -25.00% ↓ EN 04 11 11 0% / EN 03 1 1 0% / EN 00 0 2 100% ↑ NN (Engineering) 39 32 -17.95% ↓ NQ (Prof/Tech/Admin) 111 104 -6.31% ↓ NU (Tech/Admin Support) 5 3 -40.00% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 1 2 100% ↑ American Indian Alaskan Native Female (AIAN,F) 2 1 -50.00% ↓ African American Male (AA,M) 4 3 -25.00% ↓ African American

  9. Y YEAR

    National Nuclear Security Administration (NNSA)

    40 36 -10.00% ↓ YEAR 2013 2014 Males 18 18 0% / Females 22 18 -18.18% ↓ YEAR 2013 2014 SES 3 2 -33.33% ↓ EJ/EK 1 1 0% / EN 03 1 1 0% / NN (Engineering) 3 3 0% / NQ (Prof/Tech/Admin) 30 27 -10.00% ↓ NU (Tech/Admin Support) 2 2 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 0 0 0% / African American Male (AA,M) 1 1 0% / African American Female (AA,F) 1 1 0% / Asian American Pacific Islander Male (AAPI,M) 0 0 0% /

  10. Y YEAR

    National Nuclear Security Administration (NNSA)

    4 30 -11.76% ↓ YEAR 2013 2014 Males 16 14 -12.50% ↓ Females 18 16 -11.11% ↓ YEAR 2013 2014 SES 1 1 0% / EJ/EK 3 1 -66.67% ↓ NQ (Prof/Tech/Admin) 29 27 -6.90% ↓ NU (Tech/Admin Support) 1 1 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 1 1 0% / American Indian Alaskan Native Female (AIAN,F) 2 2 0% / African American Male (AA,M) 3 3 0% / African American Female (AA,F) 7 6 -14.29% ↓ Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian American Pacific Islander

  11. Y YEAR

    National Nuclear Security Administration (NNSA)

    9 209 -8.73% ↓ YEAR 2013 2014 Males 76 76 0% / Females 153 133 -13.07% ↓ YEAR 2013 2014 SES 9 6 -33.33% ↓ EJ/EK 1 1 0% / NQ (Prof/Tech/Admin) 208 194 -6.73% ↓ NU (Tech/Admin Support) 11 8 -27.27% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 2 2 0% / American Indian Alaskan Native Female (AIAN,F) 3 2 -33.33% ↓ African American Male (AA,M) 10 10 0% / African American Female (AA,F) 39 36 -7.69% ↓ Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian American

  12. Y YEAR

    National Nuclear Security Administration (NNSA)

    7 80 -8.05% ↓ YEAR 2013 2014 Males 62 57 -8.06% ↓ Females 25 23 -8.00% ↓ YEAR 2013 2014 SES 1 1 0% / EJ/EK 3 3 0% / EN 05 1 1 0% / EN 04 27 24 -11.11% ↓ EN 03 1 0 -100% ↓ NN (Engineering) 26 25 -3.85% ↓ NQ (Prof/Tech/Admin) 26 24 -7.69% ↓ NU (Tech/Admin Support) 2 2 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 1 1 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 3 2 -33.33% ↓ African American Female (AA,F) 3 3 0% / Asian

  13. Y YEAR

    National Nuclear Security Administration (NNSA)

    502 2381 -4.84% ↓ YEAR 2013 2014 Males 1663 1593 -4.21% ↓ Females 839 788 -6.08% ↓ YEAR 2013 2014 SES 104 90 -13.46% ↓ EX 2 4 100% ↑ SL 1 0 -100% ↓ EJ/EK 88 73 -17.05% ↓ EN 05 40 41 2.50% ↑ EN 04 169 157 -7.10% ↓ EN 03 18 21 100% ↑ EN 00 0 6 100% ↑ NN (Engineering) 441 416 -5.67% ↓ NQ (Prof/Tech/Admin) 1239 1190 -3.95% ↓ NU (Tech/Admin Support) 66 57 -13.64% ↓ NV (Nuc Mat Courier) 328 321 -2.13% ↓ GS 15 1 2 100% ↑ GS 13 2 2 0% / GS 10 3 1 -66.67% ↓ YEAR 2013

  14. Y YEAR

    National Nuclear Security Administration (NNSA)

    80 83 3.75% ↑ YEAR 2013 2014 Males 48 50 4.17% ↑ Females 32 33 3.13% ↑ YEAR 2013 2014 SES 2 1 -50.00% ↓ EJ/EK 8 7 -12.50% ↓ EN 04 11 9 -18.18% ↓ EN 03 1 1 0% / NN (Engineering) 24 27 12.50% ↑ NQ (Prof/Tech/Admin) 32 33 3.13% ↑ NU (Tech/Admin Support) 2 5 150% ↑ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 3 3 0% / African American Male (AA,M) 0 0 0% / African American Female (AA,F) 2 2 0% / Asian American

  15. Y YEAR

    National Nuclear Security Administration (NNSA)

    8 27 -3.57% ↓ YEAR 2013 2014 Males 18 17 -5.56% ↓ Females 10 10 0% / YEAR 2013 2014 SES 1 1 0% / EN 05 1 1 0% / EN 04 4 3 -25.00% ↓ NN (Engineering) 12 12 0% / NQ (Prof/Tech/Admin) 9 9 0% / NU (Tech/Admin Support) 1 1 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 4 4 0% / African American Female (AA,F) 3 4 33.33% ↑ Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian

  16. Phase I. Lanthanum-based Start Materials for Hydride Batteries

    SciTech Connect (OSTI)

    Gschneidner, K. A.; Schmidt, F. A.; Frerichs, A. E.; Ament, K. A.

    2013-08-20

    The purpose of Phase I of this work is to focus on developing a La-based start material for making nickel-metal (lanthanum)-hydride batteries based on our carbothermic-silicon process. The goal is to develop a protocol for the manufacture of (La1-xRx)(Ni1-yMy)(Siz), where R is a rare earth metal and M is a non-rare earth metal, to be utilized as the negative electrode in nickel-metal hydride (NiMH) rechargeable batteries.

  17. Science on Saturday starts Jan. 11 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Saturday starts Jan. 11 By Jeanne Jackson DeVoe January 10, 2014 Tweet Widget Google Plus One Share on Facebook Joshua E. G. Peek, a Hubble Fellow at Columbia University's Department of Astronomy and son of PPPL physicist and former director Robert Goldston, discussed "Outer Space!" at a Science on Saturday lecture in 2013. (Photo by Elle Starkman/PPPL Office of Communications) Joshua E. G. Peek, a Hubble Fellow at Columbia University's Department of Astronomy and son of

  18. Cold start characteristics of ethanol as an automobile fuel

    DOE Patents [OSTI]

    Greiner, Leonard

    1982-01-01

    An alcohol fuel burner and decomposer in which one stream of fuel is preheated by passing it through an electrically heated conduit to vaporize the fuel, the fuel vapor is mixed with air, the air-fuel mixture is ignited and combusted, and the combustion gases are passed in heat exchange relationship with a conduit carrying a stream of fuel to decompose the fuel forming a fuel stream containing hydrogen gas for starting internal combustion engines, the mass flow of the combustion gas being increased as it flows in heat exchange relationship with the fuel carrying conduit, is disclosed.

  19. The MicroBooNE Experiment - Getting Started

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started on MicroBooNE Welcome to MicroBooNE! This page is designed to help new MicroBooNE collaborators find their way around the experiment and Fermilab. Table of Contents Fermilab ID, Computing Accounts, and Required Training Visas for non-US Citizens Traveling to Fermilab Housing/Hotels Getting Around Communication within the Collaboration Software Getting Help Step One First, make sure the PI of your institution has sent an email to the MicroBooNE spokespeople letting them know that

  20. Sandia Energy - Power Production Started on All Three SWiFT Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Production Started on All Three SWiFT Turbines Home Renewable Energy Energy SWIFT Facilities Partnership News Wind Energy News & Events Power Production Started on All Three...

  1. Colorado Start-Up Awarded First 'America's Next Top Energy Innovator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colorado Start-Up Awarded First 'America's Next Top Energy Innovator' Agreement Colorado Start-Up Awarded First 'America's Next Top Energy Innovator' Agreement May 20, 2011 - ...

  2. Year Modules

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual photovoltaic module shipments, 2004-2014 (peak kilowatts) Year Modules 2004 143,274 2005 204,996 2006 320,208 2007 494,148 2008 920,693 2009 1,188,879 2010 2,644,498 2011 3,772,075 2012 4,655,005 2013 4,984,881 2014 6,237,524 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Note: Includes both U.S. Shipments and Exports.

  3. Year Modules

    U.S. Energy Information Administration (EIA) Indexed Site

    dollars per peak watt) Year Modules 2004 $2.99 2005 $3.19 2006 $3.50 2007 $3.37 2008 $3.49 2009 $2.79 2010 $1.96 2011 $1.59 2012 $1.15 2013 $0.75 2014 $0.87 Table 4. Average value of photovoltaic modules, 2004-2014 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Note: Dollars are not adjusted for inflation.

  4. Method for starting operation of a resistance melter

    DOE Patents [OSTI]

    Chapman, Christopher Charles

    1977-01-01

    A method for starting the operation of a resistance furnace, where heating occurs by passing a current through the charge between two furnace electrodes and the charge is a material which is essentially electrically nonconductive when in a solid physical state but which becomes more electrically conductive when in a molten physical state, by connecting electrical resistance heating wire between the furnace electrodes, placing the wire in contact with the charge material between the electrodes and passing a current through the wire to heat the wire to a temperature sufficient to melt the material between the furnace electrodes so that as the material melts, current begins to pass between the electrodes through the melted material, further heating and melting more material until all current between the electrodes passes through the charge material without the aid or presence of the resistance element.

  5. Method of forming and starting a sodium sulfur battery

    DOE Patents [OSTI]

    Paquette, David G.

    1981-01-01

    A method of forming a sodium sulfur battery and of starting the reactive capability of that battery when heated to a temperature suitable for battery operation is disclosed. An anodic reaction zone is constructed in a manner that sodium is hermetically sealed therein, part of the hermetic seal including fusible material which closes up openings through the container of the anodic reaction zone. The hermetically sealed anodic reaction zone is assembled under normal atmospheric conditions with a suitable cathodic reaction zone and a cation-permeable barrier. When the entire battery is heated to an operational temperature, the fusible material of the hermetically sealed anodic reaction zone is fused, thereby allowing molten sodium to flow from the anodic reaction zone into reactive engagement with the cation-permeable barrier.

  6. AVTA: 2010 Volkswagon Golf Diesel Start-Stop Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Volkswagon Golf Diesel vehicle with stop-start technology. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  7. AVTA: 2010 Mazda 3 Hatchback Start-Stop Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Mazda3 hatchback with stop-start technology. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  8. START Program for Renewable Energy Project Development Assistance – Round Three Application

    Broader source: Energy.gov [DOE]

    Download the application for the START Program for Renewable Energy Project Development Assistance–Round Three.

  9. Wisconsin Start-up Taps into Wind Supply Chain

    Broader source: Energy.gov [DOE]

    This time last year, Mary Jo Celichowski was at home in Oshkosh, Wis., unemployed and a little antsy after the motor parts company she was working at down-sized. Today, it's a bit different.

  10. Major Projects with Quick Starts & Jobs Creation Office of Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ramgen 30 30 60 2009 2010 2012 1,800 Total Job Years Including Fund Infusion 349,65 ... Several ongoing large-scale geologic storage projects would benefit from an infusion of ...

  11. The start-up of the DIOS pilot plant (DIOS Project)

    SciTech Connect (OSTI)

    Sawada, Terutoshi

    1995-12-01

    The DIOS process has been successfully developed as an 8-year project commenced in April 1988. Based on the results of the element studies reported at the previous conference and at other meetings, the pilot plant, with a designed capacity of 500 t/d, was constructed and started up in october 1993. After the starting operation with the single smelting reduction furnace in the beginning of the first campaign, the pilot plant has been principally operated in integration, that is, with the smelting reduction furnace connected with the preheating and prereduction furnaces. So far five campaigns have been successfully conducted on schedule. The operation has been improved gradually and the designed performance has been achieved. New processes are targeted at the direct use of coal and iron ore fines to eliminate not only the problematic coke ovens but also pellet and sinter plants. The direct smelting reduction processes currently at the most advanced stage of development are the DIOS in Japan, the AISI in the USA and the HIsmelt in Australia.

  12. Reducing cold-start emissions by catalytic converter thermal management

    SciTech Connect (OSTI)

    Burch, S D; Potter, T F; Keyser, M A; Brady, M J; Michaels, K F

    1995-01-01

    Vacuum insulation and phase-change thermal storage have been used to enhance the heat retention of a prototype catalytic converter. Storing heat in the converter between trips allows exhaust gases to be converted more quickly, significantly reducing cold-start emissions. Using a small metal hydride, the thermal conductance of the vacuum insulation can be varied continuously between 0.49 and 27 W/m{sup 2}K (R-12 to R-0.2 insulation) to prevent overheating of the catalyst. A prototype was installed in a Dodge Neon with a 2.0-liter engine. Following a standard preconditioning and a 23-hour cold soak, an FTP (Federal Test Procedure) emissions test was performed. Although exhaust temperatures during the preconditioning were not hot enough to melt the phase-change material, the vacuum insulation performed well, resulting in a converter temperature of 146{degrees}C after the 23-hour cold soak at 27{degrees}C. Compared to the same converter at ambient conditions, overall emissions of CO and HC were reduced by 52 % and 29 %, to 0.27 and 0.037 g/mile, respectively. The maximum converter temperature during the FTP cycle was 720{degrees}C. This limited testing was performed with a nearly-fresh palladium-only catalyst, but demonstrates the potential of this vacuum insulation approach for emissions reduction and thermal control. Further testing is ongoing. An initial assessment of several production issues is made, including high-volume fabrication challenges, durability, and cost.

  13. Data Center Celebrates 20 Years of Delivering Savings

    Office of Energy Efficiency and Renewable Energy (EERE)

    Many great technology stories have started with just one humble computer and a desk. Twenty years ago this month, the Department of Energy’s Alternative Fuels and Advanced Vehicles Data Center (AFDC) started just this way at the National Renewable Energy Laboratory (NREL).

  14. On eigenfunction expansion solutions for the start-up of fluid...

    Office of Scientific and Technical Information (OSTI)

    On eigenfunction expansion solutions for the start-up of fluid flow Citation Details In-Document Search Title: On eigenfunction expansion solutions for the start-up of fluid flow ...

  15. Property:OpenEI/UtilityRate/StartDate | Open Energy Information

    Open Energy Info (EERE)

    StartDate Jump to: navigation, search This is a property of type Date. Name: Start Date Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  16. Contact and Stress Anisotropies in Start-Up Flow of Colloidal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact and Stress Anisotropies in Start-Up Flow of Colloidal Suspensions Authors: Martys, N.S., Lootens, D., George, W., and H Spatiotemporal correlations in start-up flows of...

  17. Registration Starts Soon for Hanford's Two Annual Public Tour Programs -

    Office of Environmental Management (EM)

    Now Open for 2013 Science Bowl Teams Registration Now Open for 2013 Science Bowl Teams October 2, 2012 - 10:00am Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington - Today, U.S. Energy Secretary Steven Chu announced that registration is now open for the 2013 National Science Bowl (NSB). This marks the beginning of the 23rd year of the nation's largest science competition, which is sponsored by the Department of Energy's (DOE's) Office of Science. Local middle school and high school students

  18. Major deepwater pipelay vessel starts work in North Sea

    SciTech Connect (OSTI)

    Heerema, E.P.

    1998-05-04

    Industry`s deepwater pipelaying capability has received a boost this year with the entry into the world`s fleet of Solitaire, a dynamically positioned pipelay vessel of about 350 m including stinger. The converted bulk carrier, formerly the Trentwood, will arrive on station in the North Sea and begin laying pipe this month on Statoil`s Europipe II project, a 600-km, 42-in. OD gas pipeline from Norway to Germany. Next year, the vessel will install pipe for the Exxon U.S.A.`s Gulf of Mexico South Diana development (East Breaks Block 945) in a water depth of 1,643 m and for Mobil Oil Canada as part of the Sable Island Offshore and Energy Project offshore Nova Scotia. Using the S-lay mode, Solitaire is particularly well-suited for laying large lines economically, including the deepwater projects anticipated for the US Gulf of Mexico. Table 1 presents Solitaire`s technical specifications. The design, construction, pipelaying, and justification for building vessels such as the Solitaire are discussed.

  19. A look back at Union Carbides [first] 20 Years in Nuclear Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    first 20 Years in Nuclear Energy The Gaseous Diffusion Plants Note: Union Carbide Nuclear Division, which started out as Carbide and Carbon Chemicals Company, operated the...

  20. Union Carbides Last 20 Years in Oak Ridge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1965 (at the start of the last 20 year period we are describing) was Dr. Clarence E. Larson. He had come to Y-12 in 1943 from California (U. of C., Davis) where he was E. O....

  1. Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Right Now Ten Ways You Can Start to Cut Petroleum Use Right Now to someone by E-mail Share Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Facebook Tweet about Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Twitter Bookmark Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Google Bookmark Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on

  2. Development of a Rapid-Start On-Board Automotive Steam Reformer

    SciTech Connect (OSTI)

    Whyatt, Greg A.; Fischer, Christopher M.; Davis, James M.

    2004-04-29

    The paper reports on the status of efforts to engineer a microchannel steam reforming system to enable a rapid cold start capability. The steam reformer is intended to be coupled with a WGS and PROX reactor to provide reformate to a PEM fuel cell for an automotive propulsion application. A compact and efficient microchannel steam reformer was previously developed that required ~15 minutes to accomplish a cold start. The objective of the current work was to reduce this start time to <30 seconds without sacrificing steady-state efficiency. The paper describes the changes made in the reforming system to enable cold start capability and presents data on reformate flow and temperature transients during cold start testing. The results demonstrate that the system is capable of producing reformate within 22 seconds after a cold start. A strategy for integrating the system with a WGS and PROX reactor to provide a rapid start fuel processing system is described.

  3. Lessons learned from an installation perspective for chemical demilitarization plant start-up at four operating incineration sites.

    SciTech Connect (OSTI)

    Motz, L.; Decision and Information Sciences

    2011-02-21

    This study presents the lessons learned by chemical storage installations as they prepared for the start of chemical demilitarization plant operations at the four current chemical incinerator sites in Alabama, Arkansas, Oregon, and Utah. The study included interviews with persons associated with the process and collection of available documents prepared at each site. The goal was to provide useful information for the chemical weapons storage sites in Colorado and Kentucky that will be going through plant start-up in the next few years. The study is not a compendium of what to do and what not to do. The information has been categorized into ten lessons learned; each is discussed individually. Documents that may be useful to the Colorado and Kentucky sites are included in the appendices. This study should be used as a basis for planning and training.

  4. Utility-Scale Solar through the Years | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility-Scale Solar through the Years Utility-Scale Solar through the Years 1984 Start Slow Stop Year Solar Plants Homes Powered 682 Solar Plants Online. Enough to Power 1.7 M Homes Source: Preliminary data from the 2013 EIA-860 report

  5. Methanol market slowly tightens as Brazil starts soaking up material

    SciTech Connect (OSTI)

    Young, I.

    1992-11-25

    Although the US methanol market's response to mandated oxygen requirements in reformulated gasoline has been disappointing, the European market has surprisingly been tightening in recent weeks and looks set for a price rise in first-quarter 1993. The tightness is being felt mainly in the Mediterranean market, where the Libyan methanol plant is running at only 70% because of problems with gas feedstock supplies. More significantly, the Brazilian government has now given the go-ahead for a yearlong extension on imports of methanol for use as an ethanol replacement in fuel blending. The new authorization sets a monthly import limit of 48,000 m.t. during that period. Libya is an important supplier of methanol to the Brazilian market and has already shipped about 20,000 m.t. since the authorization was given. Another major supplier to Brazil is Russia, from its two giant 750,000-m.t./year plants at Gubakha and Tomsk. The material is shipped from the terminal at Yuzhnyy on the Black Sea, in Ukrainian territory since the collapse of the Soviet Union.

  6. Integrated starting and running amalgam assembly for an electrodeless fluorescent lamp

    DOE Patents [OSTI]

    Borowiec, Joseph Christopher; Cocoma, John Paul; Roberts, Victor David

    1998-01-01

    An integrated starting and running amalgam assembly for an electrodeless SEF fluorescent lamp includes a wire mesh amalgam support constructed to jointly optimize positions of a starting amalgam and a running amalgam in the lamp, thereby optimizing mercury vapor pressure in the lamp during both starting and steady-state operation in order to rapidly achieve and maintain high light output. The wire mesh amalgam support is constructed to support the starting amalgam toward one end thereof and the running amalgam toward the other end thereof, and the wire mesh is rolled for friction-fitting within the exhaust tube of the lamp. The positions of the starting and running amalgams on the wire mesh are jointly optimized such that high light output is achieved quickly and maintained, while avoiding any significant reduction in light output between starting and running operation.

  7. The Art of the Start: Moving Science from the Lab to the Marketplace

    ScienceCinema (OSTI)

    Larry Bock

    2010-01-08

    April 25, 2009 Berkeley Lab Nano*High lecture: The Art of the Start: Moving Science from the Lab to the Marketplace

  8. NNSA Authorizes Start of Design for New Uranium Storage Facility | National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration | (NNSA) Authorizes Start of Design for New Uranium Storage Facility September 06, 2002 PDF icon 9-5-

  9. ARPA-E Announces Start-up Companies, Strategic Partnerships and...

    Broader source: Energy.gov (indexed) [DOE]

    ARPA-E Announces Start-up Companies, Strategic Partnerships and Private Sector Funding at ... strategic partnerships, and secure private sector funding to help move ARPA-E ...

  10. DOE Announces Start of Recovery Act Funded Cleanup Projects at Y-12

    Broader source: Energy.gov [DOE]

    DOE announces that cleanup of the Old Salvage Yard at the Y-12 National Security Complex has started using funding received from the Recovery Act.