Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

BTU Accounting for Industry  

E-Print Network [OSTI]

convert utility bills to BTUs? All fuels can be measured in terms of BTU content. Natural gas has a million BTUs per thousand cubic feet; propane - 92,000 BTUs per gallon; fuel oil - 140,000 BTUs per gallon; electricity - 3,413 BTUs per KW hour... BTU ACCOUNTING FOR INDUSTRY Robert O. Redd-CPA Seidman & Seidman Grand Rapids, Michigan Today, as never before, American industry needs to identify and control their most criti cal resources. One of these is energy. In 1973 and again in 1976...

Redd, R. O.

1979-01-01T23:59:59.000Z

2

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",3,3,3 " 20-49",5,5,4 " 50-99",6,5,4 " 100-249",5,5,4 " 250-499",7,9,7 " 500 and Over",3,2,2 "Total",2,2,2

3

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 6.3;" 3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",3,3,3

4

Percent Distribution  

Gasoline and Diesel Fuel Update (EIA)

. . Percent Distribution of Natural Gas Supply and Disposition by State, 1996 Table State Estimated Proved Reserves (dry) Marketed Production Total Consumption Alabama................................................................... 3.02 2.69 1.48 Alaska ...................................................................... 5.58 2.43 2.04 Arizona..................................................................... NA 0 0.55 Arkansas.................................................................. 0.88 1.12 1.23 California.................................................................. 1.25 1.45 8.23 Colorado .................................................................. 4.63 2.90 1.40 Connecticut.............................................................. 0 0 0.58 D.C...........................................................................

5

Percent Distribution  

Gasoline and Diesel Fuel Update (EIA)

. . Percent Distribution of Natural Gas Delivered to Consumers by State, 1996 Table State Residential Commercial Industrial Vehicle Fuel Electric Utilities Alabama..................................... 1.08 0.92 2.27 0.08 0.23 Alaska ........................................ 0.31 0.87 0.85 - 1.16 Arizona....................................... 0.53 0.92 0.30 3.91 0.70 Arkansas.................................... 0.88 0.98 1.59 0.11 1.24 California.................................... 9.03 7.44 7.82 43.11 11.64 Colorado .................................... 2.12 2.18 0.94 0.58 0.20 Connecticut................................ 0.84 1.26 0.37 1.08 0.38 D.C............................................. 0.33 0.52 - 0.21 - Delaware.................................... 0.19 0.21 0.16 0.04 0.86 Florida........................................

6

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",2.5,2.5,2.4 " 20-49",5,5,4.3 " 50-99",5.8,5.8,5.3 " 100-249",6.2,6.2,5.3 " 250-499",8.2,8,7.1 " 500 and Over",4.3,3,2.7

7

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

8

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 6.4;" 4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",3,4,4 ," 50-99",5,5,5 ," 100-249",4,4,3

9

Building Energy Software Tools Directory: BTU Analysis Plus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plus Plus BTU Analysis Plus logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The BTU Analysi Plus program is designed for general heating, air-conditioning, and commerical studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis Plus was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella.

10

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network [OSTI]

ABSTRACT Steam is the most transferring heat from But most steam systems LOWEST PRESSURE STEAM SAVES MORE BTU'S THAN YOU THINK Stafford J. Vallery Armstrong Machine Works Three Rivers, Michigan steam to do the process heating rather than...

Vallery, S. J.

11

Catalytic reactor for low-Btu fuels  

DOE Patents [OSTI]

An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

2009-04-21T23:59:59.000Z

12

Property:Geothermal/AnnualGenBtuYr | Open Energy Information  

Open Energy Info (EERE)

AnnualGenBtuYr AnnualGenBtuYr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/AnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 5.3 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 72.5 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 5 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 7 + Americulture Aquaculture Low Temperature Geothermal Facility + 17 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 6.5 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 1.8 +

13

Building Energy Software Tools Directory: BTU Analysis REG  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REG REG BTU Analysis REG logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The REG program is designed for general heating, air-conditioning, and light commercial studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis, was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella. Keywords

14

Property:Geothermal/CapacityBtuHr | Open Energy Information  

Open Energy Info (EERE)

CapacityBtuHr CapacityBtuHr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/CapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 0.8 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 10.3 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 2 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 1 + Americulture Aquaculture Low Temperature Geothermal Facility + 2.4 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 3 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.3 +

15

EIS-0007: Low Btu Coal Gasification Facility and Industrial Park  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

16

U.S. Total Consumption of Heat Content of Natural Gas (BTU per...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

17

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

0. Estimated rail transportation rates for coal, state to state, 2009" 0. Estimated rail transportation rates for coal, state to state, 2009" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin State","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Alabama","Alabama"," W"," $13.59",," W",," $63.63"," 21.4%"," 3,612"," W"," 100.0%"

18

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

1. Estimated rail transportation rates for coal, basin to state, 2008" 1. Estimated rail transportation rates for coal, basin to state, 2008" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin Basin","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Northern Appalachian Basin","Delaware"," W"," $28.49",," W",," $131.87"," 21.6%", 59," W"," 100.0%"

19

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

9. Estimated rail transportation rates for coal, state to state, 2008" 9. Estimated rail transportation rates for coal, state to state, 2008" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin State","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Alabama","Alabama"," W"," $14.43",," W",," $65.38"," 22.1%"," 4,509"," W"," 81.8%"

20

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

2. Estimated rail transportation rates for coal, basin to state, 2009" 2. Estimated rail transportation rates for coal, basin to state, 2009" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin Basin","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Northern Appalachian Basin","Florida"," W"," $38.51",," W",," $140.84"," 27.3%", 134," W"," 100.0%"

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations  

E-Print Network [OSTI]

The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates...

Blackwell, L. T.; Crowder, J. T.

1983-01-01T23:59:59.000Z

22

Method for producing low and medium BTU gas from coal  

SciTech Connect (OSTI)

A process for producing low and medium BTU gas from carbonizable material is described which comprises: partly devolatizing the material and forming hot incandescent coke therefrom by passing a bed of the same part way through a hot furnace chamber on a first horizontally moving grate while supplying a sub-stoichiometric quantity of air to the same and driving the reactions: C + O/sub 2/ = CO/sub 2/; 2C + O/sub 2/ = 2CO discharging the hot incandescent coke from the end of the first grate run onto a second horizontally moving grate run below the first grate run in the same furnace chamber so as to form a bed thereon, the bed formed on the second grate run being considerably thicker than the bed formed on the first grate run, passing the hot incandescent coke bed on the second grate run further through the furnace chamber in a substantially horizontal direction while feeding air and stream thereto so as to fully burn the coke and in ratio of steam to air driving the following reactions: 2C + O/sub 2/ = 2CO; C + H/sub 2/O = H/sub 2/ + CO; C + 2H/sub 2/O = 2H/sub 2/ + CO/sub 2/; CO + H/sub 2/O = H/sub 2/ + CO/sub 2/ taking off the ash residue of the burned coke and taking off the gaseous products of the reactions.

Mansfield, V.; Francoeur, C.M.

1988-06-07T23:59:59.000Z

23

Toxicological characterization of the process stream from an experimental low Btu coal gasifier  

Science Journals Connector (OSTI)

Samples were obtained from selected positions in the process stream of an experimental low Btu gasifier using a five-stage multicyclone train and...Salmonella mammalian microsome mutagenicity assay) and forin vit...

J. M. Benson; J. O. Hill; C. E. Mitchell…

1982-01-01T23:59:59.000Z

24

Mutagenicity of potential effluents from an experimental low btu coal gasifier  

Science Journals Connector (OSTI)

Potential waste effluents produced by an experimental low Btu coal gasifier were assessed for mutagenic activity inSalmonella...strain TA98. Cyclone dust, tar and water effluents were mutagenic, but only followin...

J. M. Benson; C. E. Mitchell; R. E. Royer…

1982-09-01T23:59:59.000Z

25

Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035  

U.S. Energy Information Administration (EIA) Indexed Site

Erin Boedecker, Session Moderator Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011 -4.8% 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference High Technology High technology assumptions with more efficient consumer behavior keep buildings energy to just over 20 quadrillion Btu 3 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu

26

Variable Average Absolute Percent Differences  

U.S. Energy Information Administration (EIA) Indexed Site

Variable Variable Average Absolute Percent Differences Percent of Projections Over- Estimated Gross Domestic Product Real Gross Domestic Product (Average Cumulative Growth)* (Table 2) 1.0 42.6 Petroleum Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a) 35.2 18.6 Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b) 34.7 19.7 Total Petroleum Consumption (Table 4) 6.2 66.5 Crude Oil Production (Table 5) 6.0 59.6 Petroleum Net Imports (Table 6) 13.3 67.0 Natural Gas Natural Gas Wellhead Prices (Constant $) (Table 7a) 30.7 26.1 Natural Gas Wellhead Prices (Nominal $) (Table 7b) 30.0 27.1 Total Natural Gas Consumption (Table 8) 7.8 70.2 Natural Gas Production (Table 9) 7.1 66.0 Natural Gas Net Imports (Table 10) 29.3 69.7 Coal Coal Prices to Electric Generating Plants (Constant $)** (Table 11a)

27

Low-Btu coal gasification in the United States: company topical. [Brick producers  

SciTech Connect (OSTI)

Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

1983-07-01T23:59:59.000Z

28

7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed is to be determined.  

E-Print Network [OSTI]

is to be determined. Assumptions 1 The computers are operated by 4 adult men. 2 The computers consume 40 percent to the amount of electrical energy they consume. Therefore, AC Outside Computer room 4000 Btu/h ( ( ) ( Q Q Q Q. Analysis The unit that will cost less during its lifetime is a better buy. The total cost of a system

Bahrami, Majid

29

,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)",1,"Weekly","12/13/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdw.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdw.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:22 PM"

30

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","8/2013" Monthly","8/2013" ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

31

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:46 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

32

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhda.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhda.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:19 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35611,2.49 35976,2.09 36341,2.27 36707,4.31 37072,3.96 37437,3.38 37802,5.47 38168,5.89 38533,8.69 38898,6.73

33

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/16/2013" Daily","12/16/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdd.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:24 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35437,3.82 35438,3.8 35439,3.61 35440,3.92 35443,4 35444,4.01 35445,4.34 35446,4.71 35447,3.91

34

An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels  

E-Print Network [OSTI]

is the production of low-BTU gas from a coal gasification reactor for combustion before introduction to the topping cycle gas turbine (Minchener, 1990). Most low-BTU gases are heavily loaded with sulfur-containing compounds which appear to be a major problem... with direct combustion of coal and low-BTU gases (Caraway, 1995). Environmental standards require the removal of these compounds which can be expensive and hazardous when removed from coal in post-combustion processes. However, gasification of coal results...

Carney, Christopher Mark

2012-06-07T23:59:59.000Z

35

Percent Yield and Mass of Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Percent Yield and Mass of Water Percent Yield and Mass of Water Name: Lisa Status: educator Grade: 9-12 Location: CA Country: USA Date: Winter 2011-2012 Question: When doing a percent yield activity in lab, we use MgCl hexahydrate and CaSO4. How do we factor the mass of the water that is released during the reaction? Replies: Lisa, Based on your question, I am not quite sure what the experiment is. Are you heating the hydrates and looking at the percent-yield of water removed during the heating? If so, then you would calculate the theoretical yield (using stoichiometry and the balanced chemical equation: MgCl2.6H2O --> MgCl2 + 6H2O) of water released, and compare it to the actual yield of water released in the experiment to get percent yield. Greg (Roberto Gregorius) Canisius College

36

27. 5-percent silicon concentrator solar cells  

SciTech Connect (OSTI)

Recent advances in silicon solar cells using the backside point-contact configuration have been extended resulting in 27.5-percent efficiencies at 10 W/sq cm (100 suns, 24 C), making these the most efficient solar cells reported to date. The one-sun efficiencies under an AM1.5 spectrum normalized to 100 mW/sq cm are 22 percent at 24 C based on the design area of the concentrator cell. The improvements reported here are largely due to the incorportation of optical light trapping to enhance the absorption of weakly absorbed near bandgap light. These results approach the projected efficiencies for a mature technology which are 23-24 percent at one sun and 29 percent in the 100-350-sun (10-35 W/sq cm) range. 10 references.

Sinton, R.A.; Kwark, Y.; Gan, J.Y.; Swanson, R.M.

1986-10-01T23:59:59.000Z

37

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Tennessee - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 285 310 230 210 212 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,700 5,478 5,144 4,851 5,825 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

38

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

39

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Connecticut - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

40

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Oregon - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18 21 24 26 24 Production (million cubic feet) Gross Withdrawals From Gas Wells 409 778 821 1,407 1,344 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

42

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

43

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

44

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

45

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

46

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 District of Columbia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

47

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

48

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

49

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

50

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Oregon - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 21 24 26 24 27 Production (million cubic feet) Gross Withdrawals From Gas Wells 778 821 1,407 1,344 770 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

51

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Georgia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

52

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

53

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Delaware - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

54

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 District of Columbia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

55

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

56

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 305 285 310 230 210 Production (million cubic feet) Gross Withdrawals From Gas Wells NA 4,700 5,478 5,144 4,851 From Oil Wells 3,942 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

57

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Nebraska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 186 322 285 276 322 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,331 2,862 2,734 2,092 1,854 From Oil Wells 228 221 182 163 126 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

58

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

59

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

60

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

62

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Georgia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

63

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Connecticut - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

64

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

65

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Florida - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 2,000 2,742 290 13,938 17,129 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

66

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

67

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

68

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

69

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Delaware - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

70

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

71

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

72

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Rhode Island - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

73

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Indiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 525 563 620 914 819 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,701 4,927 6,802 9,075 8,814 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

74

The effect of CO? on the flammability limits of low-BTU gas of the type obtained from Texas lignite  

E-Print Network [OSTI]

Chairman of Advisory Committee: Dr. W. N. Heffington An experimental study was conducted to determine if relatively large amounts of CO in a low-BTU gas of the type 2 derived from underground gasification of Texas lignite would cause significant... ? Flammability limit data for three actual samples of low-BTU gas obtained from an in-situ coal gasification experiment (Heffington, 1981). The HHC are higher LIST OF TABLES (Cont'd) PAGE hydrocarbons orimarily C H and C H . ----- 34 I 2 6 3 8' TABLE 5...

Gaines, William Russell

2012-06-07T23:59:59.000Z

75

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Illinois - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 45 51 50 40 40 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,188 E 1,438 E 1,697 2,114 2,125 From Oil Wells E 5 E 5 E 5 7 0 From Coalbed Wells E 0 E 0 0 0 0 From Shale Gas Wells 0

76

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

50 50 North Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 194 196 188 239 211 Production (million cubic feet) Gross Withdrawals From Gas Wells 13,738 11,263 10,501 14,287 22,261 From Oil Wells 54,896 45,776 38,306 27,739 17,434 From Coalbed Wells 0

77

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Mississippi - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 2,343 2,320 1,979 5,732 1,669 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,673 337,168 387,026 429,829 404,457 From Oil Wells 7,542 8,934 8,714 8,159 43,421 From Coalbed Wells 7,250

78

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,735 6,426 7,303 7,470 7,903 Production (million cubic feet) Gross Withdrawals From Gas Wells R 6,681 R 7,419 R 16,046 R 23,086 20,375 From Oil Wells 0 0 0 0 0 From Coalbed Wells R 86,275 R 101,567

79

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Michigan - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 9,712 9,995 10,600 10,100 11,100 Production (million cubic feet) Gross Withdrawals From Gas Wells R 80,090 R 16,959 R 20,867 R 7,345 18,470 From Oil Wells 54,114 10,716 12,919 9,453 11,620 From Coalbed Wells 0

80

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Montana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,925 7,095 7,031 6,059 6,477 Production (million cubic feet) Gross Withdrawals From Gas Wells R 69,741 R 67,399 R 57,396 R 51,117 37,937 From Oil Wells 23,092 22,995 21,522 19,292 21,777 From Coalbed Wells

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Mississippi - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,315 2,343 2,320 1,979 5,732 Production (million cubic feet) Gross Withdrawals From Gas Wells R 259,001 R 331,673 R 337,168 R 387,026 429,829 From Oil Wells 6,203 7,542 8,934 8,714 8,159 From Coalbed Wells

82

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Indiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,350 525 563 620 914 Production (million cubic feet) Gross Withdrawals From Gas Wells 3,606 4,701 4,927 6,802 9,075 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

83

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 New York - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,680 6,675 6,628 6,736 6,157 Production (million cubic feet) Gross Withdrawals From Gas Wells 54,232 49,607 44,273 35,163 30,495 From Oil Wells 710 714 576 650 629 From Coalbed Wells 0

84

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Texas - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 76,436 87,556 93,507 95,014 100,966 Production (million cubic feet) Gross Withdrawals From Gas Wells R 4,992,042 R 5,285,458 R 4,860,377 R 4,441,188 3,794,952 From Oil Wells 704,092 745,587 774,821 849,560 1,073,301

85

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Ohio - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 34,416 34,963 34,931 46,717 35,104 Production (million cubic feet) Gross Withdrawals From Gas Wells 79,769 83,511 73,459 30,655 65,025 From Oil Wells 5,072 5,301 4,651 45,663 6,684 From Coalbed Wells 0

86

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Colorado - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 25,716 27,021 28,813 30,101 32,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 496,374 459,509 526,077 563,750 1,036,572 From Oil Wells 199,725 327,619 338,565

87

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 South Dakota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 71 71 89 102 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 422 R 1,098 R 1,561 1,300 933 From Oil Wells 11,458 10,909 11,366 11,240 11,516 From Coalbed Wells 0 0

88

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Illinois - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 43 45 51 50 40 Production (million cubic feet) Gross Withdrawals From Gas Wells RE 1,389 RE 1,188 RE 1,438 RE 1,697 2,114 From Oil Wells E 5 E 5 E 5 E 5 7 From Coalbed Wells RE 0 RE

89

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Colorado - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 22,949 25,716 27,021 28,813 30,101 Production (million cubic feet) Gross Withdrawals From Gas Wells R 436,330 R 496,374 R 459,509 R 526,077 563,750 From Oil Wells 160,833 199,725 327,619

90

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Alaska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 239 261 261 269 277 Production (million cubic feet) Gross Withdrawals From Gas Wells 165,624 150,483 137,639 127,417 112,268 From Oil Wells 3,313,666 3,265,401 3,174,747 3,069,683 3,050,654

91

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Ohio - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 34,416 34,416 34,963 34,931 46,717 Production (million cubic feet) Gross Withdrawals From Gas Wells R 82,812 R 79,769 R 83,511 R 73,459 30,655 From Oil Wells 5,268 5,072 5,301 4,651 45,663 From Coalbed Wells

92

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Kentucky - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 16,563 16,290 17,152 17,670 14,632 Production (million cubic feet) Gross Withdrawals From Gas Wells 95,437 R 112,587 R 111,782 133,521 122,578 From Oil Wells 0 1,529 1,518 1,809 1,665 From Coalbed Wells 0

93

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Utah - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,197 5,578 5,774 6,075 6,469 Production (million cubic feet) Gross Withdrawals From Gas Wells R 271,890 R 331,143 R 340,224 R 328,135 351,168 From Oil Wells 35,104 36,056 36,795 42,526 49,947 From Coalbed Wells

94

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 California - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 1,540 1,645 1,643 1,580 1,308 Production (million cubic feet) Gross Withdrawals From Gas Wells 93,249 91,460 82,288 73,017 63,902 From Oil Wells R 116,652 R 122,345 R 121,949 R 151,369 120,880

95

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Utah - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,578 5,774 6,075 6,469 6,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,143 340,224 328,135 351,168 402,899 From Oil Wells 36,056 36,795 42,526 49,947 31,440 From Coalbed Wells 74,399

96

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Louisiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18,145 19,213 18,860 19,137 21,235 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,261,539 R 1,288,559 R 1,100,007 R 911,967 883,712 From Oil Wells 106,303 61,663 58,037 63,638 68,505

97

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Oklahoma - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 38,364 41,921 43,600 44,000 41,238 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,583,356 R 1,452,148 R 1,413,759 R 1,140,111 1,281,794 From Oil Wells 35,186 153,227 92,467 210,492 104,703

98

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 New Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 42,644 44,241 44,784 44,748 32,302 Production (million cubic feet) Gross Withdrawals From Gas Wells R 657,593 R 732,483 R 682,334 R 616,134 556,024 From Oil Wells 227,352 211,496 223,493 238,580 252,326

99

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 West Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 48,215 49,364 50,602 52,498 56,813 Production (million cubic feet) Gross Withdrawals From Gas Wells R 189,968 R 191,444 R 192,896 R 151,401 167,113 From Oil Wells 701 0 0 0 0 From Coalbed Wells

100

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Michigan - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 9,995 10,600 10,100 11,100 10,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 16,959 20,867 7,345 18,470 17,041 From Oil Wells 10,716 12,919 9,453 11,620 4,470 From Coalbed Wells 0

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 West Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 49,364 50,602 52,498 56,813 50,700 Production (million cubic feet) Gross Withdrawals From Gas Wells 191,444 192,896 151,401 167,113 397,313 From Oil Wells 0 0 0 0 1,477 From Coalbed Wells 0

102

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

80 80 Wyoming - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 27,350 28,969 25,710 26,124 26,180 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,649,284 R 1,764,084 R 1,806,807 R 1,787,599 1,709,218 From Oil Wells 159,039 156,133 135,269 151,871 152,589

103

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 New York - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,675 6,628 6,736 6,157 7,176 Production (million cubic feet) Gross Withdrawals From Gas Wells 49,607 44,273 35,163 30,495 25,985 From Oil Wells 714 576 650 629 439 From Coalbed Wells 0

104

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Wyoming - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 28,969 25,710 26,124 26,180 22,171 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,764,084 1,806,807 1,787,599 1,709,218 1,762,095 From Oil Wells 156,133 135,269 151,871 152,589 24,544

105

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,426 7,303 7,470 7,903 7,843 Production (million cubic feet) Gross Withdrawals From Gas Wells 7,419 16,046 23,086 20,375 21,802 From Oil Wells 0 0 0 0 9 From Coalbed Wells 101,567 106,408

106

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Kentucky - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 16,290 17,152 17,670 14,632 17,936 Production (million cubic feet) Gross Withdrawals From Gas Wells 112,587 111,782 133,521 122,578 106,122 From Oil Wells 1,529 1,518 1,809 1,665 0 From Coalbed Wells 0

107

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Pennsylvania - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 52,700 55,631 57,356 44,500 54,347 Production (million cubic feet) Gross Withdrawals From Gas Wells 182,277 R 188,538 R 184,795 R 173,450 242,305 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0

108

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Texas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 87,556 93,507 95,014 100,966 96,617 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,285,458 4,860,377 4,441,188 3,794,952 3,619,901 From Oil Wells 745,587 774,821 849,560 1,073,301 860,675

109

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Alabama - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,860 6,913 7,026 7,063 6,327 Production (million cubic feet) Gross Withdrawals From Gas Wells 158,964 142,509 131,448 116,872 114,407 From Oil Wells 6,368 5,758 6,195 5,975 10,978

110

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Louisiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 19,213 18,860 19,137 21,235 19,792 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,288,559 1,100,007 911,967 883,712 775,506 From Oil Wells 61,663 58,037 63,638 68,505 49,380

111

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 South Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 71 89 102 100 95 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,098 1,561 1,300 933 14,396 From Oil Wells 10,909 11,366 11,240 11,516 689 From Coalbed Wells 0 0 0 0 0

112

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Kansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 17,862 21,243 22,145 25,758 24,697 Production (million cubic feet) Gross Withdrawals From Gas Wells 286,210 269,086 247,651 236,834 264,610 From Oil Wells 45,038 42,647 39,071 37,194 0 From Coalbed Wells 44,066

113

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Arkansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,592 6,314 7,397 8,388 8,538 Production (million cubic feet) Gross Withdrawals From Gas Wells 173,975 164,316 152,108 132,230 121,684 From Oil Wells 7,378 5,743 5,691 9,291 3,000

114

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 California - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 1,645 1,643 1,580 1,308 1,423 Production (million cubic feet) Gross Withdrawals From Gas Wells 91,460 82,288 73,017 63,902 120,579 From Oil Wells 122,345 121,949 151,369 120,880 70,900

115

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Oklahoma - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 41,921 43,600 44,000 41,238 40,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,452,148 1,413,759 1,140,111 1,281,794 1,394,859 From Oil Wells 153,227 92,467 210,492 104,703 53,720

116

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Alaska - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 261 261 269 277 185 Production (million cubic feet) Gross Withdrawals From Gas Wells 150,483 137,639 127,417 112,268 107,873 From Oil Wells 3,265,401 3,174,747 3,069,683 3,050,654 3,056,918

117

Microsoft Word - BH-MM-1066,BM-MM-1067,WH-MM-1068.docx  

Broader source: Energy.gov (indexed) [DOE]

, BM-MM-1067, WH-MM-1068 , BM-MM-1067, WH-MM-1068 Title: Pumping System for 100 MBD Cavern Capacity Maintenance - BH, BM, WH Description: Subcontractor shall provide all labor, tools, materials, equipment, services, transportation, storage and supervision required to install new Variable Frequency Drive (VFD) buildings at the BH, BM, and WH SPR sites. The buildings will house the VFD electrical system used to control the operation of the site pumps. Tasks include excavation for all foundations; construction of concrete foundation, steel support structure, and precast concrete deck; and installation of GFE pre-fabricated metal building on concrete deck. Subcontractor shall evaluate and implement Green Building Design where applicable. Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021)

118

High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas  

SciTech Connect (OSTI)

The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

Horner, M.W.

1980-12-01T23:59:59.000Z

119

Colorado Natural Gas % of Total Residential Deliveries (Percent...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

% of Total Residential Deliveries (Percent) Colorado Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

120

Connecticut Natural Gas % of Total Residential Deliveries (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

% of Total Residential Deliveries (Percent) Connecticut Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DEFLECTION MEASUREMENTS OF 25 mm ALUMINUM COLLARS  

E-Print Network [OSTI]

MEASUREMENTS OF 25 mm ALUMINUM COLLARS· C. Peters LawrenceMEASUREMENTS OF 25 mm ALUMINUM COLLARS" C. Peters Lawrenceinch thick 7075- T6 aluminum alloy plate. Inside corners

Peters, C.

2010-01-01T23:59:59.000Z

122

Low/medium-Btu coal-gasification-assessment program for potential users in New Jersey. Final report  

SciTech Connect (OSTI)

Burns and Roe Industrial Services Corporation and Public Service Electric and Gas in association with Scientific Design Company have completed a technical and economic evaluation of coal gasification. The evaluation also addressed the regulatory, institutional, and environmental issues of coal gasification. Two uses of coal-derived medium Btu (MBU) gas were explored: (1) substitute boiler fuel for electric generation and (2) substitute fuel for industrial customers using natural gas. The summary and conclusions of his evaluation are: The Sewaren Generating Station was selected as potentially the most suitable site for the coal gasification plant. The Texaco process was selected because it offered the best combination of efficiency and pilot plant experience; in addition, it is a pressurized process which is advantageous if gas is to be supplied to industrial customers via a pipeline. Several large industrial gas customers within the vicinities of Sewaren and Hudson Generating Stations indicated that MBG would be considered as an alternate fuel provided that its use was economically justified. The capital cost estimates for a 2000 tons/day and a 1000 tons/day gasification plant installed at Sewaren Generating Station are $115.6 million and $73.8 million, in 1980 dollars, respectively. The cost of supplying MBG to industrial customers is competitive with existing pipeline natural gas on a Btu heating value basis for gasifier capacity factors of 35% or higher.

Not Available

1981-05-01T23:59:59.000Z

123

a 3.37 mm length b 3.32 mm diameter  

E-Print Network [OSTI]

5.2 ml retinal subtense 300 µm/deg retinal arc 51 mm retinal area* 1024 ± 184 mm2 total.3 µl retinal subtense 31 µm/deg retinal arc 4.9 mm retinal area 15.6 mm2 cone:rod ratio 0/deg retinal arc 10.6 mm retinal area 52 mm2 cone:rod ratio mean cone density* mm-2 mean rod

Marc, Robert E.

124

Federal Government Increases Renewable Energy Use Over 1000 Percent since  

Broader source: Energy.gov (indexed) [DOE]

Federal Government Increases Renewable Energy Use Over 1000 Percent Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal November 3, 2005 - 12:35pm Addthis WASHINGTON, DC - The Department of Energy (DOE) announced today that the federal government has exceeded its goal of obtaining 2.5 percent of its electricity needs from renewable energy sources by September 30, 2005. The largest energy consumer in the nation, the federal government now uses 2375 Gigawatt hours (GWh) of renewable energy -- enough to power 225,000 homes or a city the size of El Paso, Texas, for a year. "Particularly in light of tight oil and gas supplies caused by Hurricanes Katrina and Rita, it is important that all Americans - including the

125

Federal Government Increases Renewable Energy Use Over 1000 Percent since  

Broader source: Energy.gov (indexed) [DOE]

Federal Government Increases Renewable Energy Use Over 1000 Percent Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal November 3, 2005 - 12:35pm Addthis WASHINGTON, DC - The Department of Energy (DOE) announced today that the federal government has exceeded its goal of obtaining 2.5 percent of its electricity needs from renewable energy sources by September 30, 2005. The largest energy consumer in the nation, the federal government now uses 2375 Gigawatt hours (GWh) of renewable energy -- enough to power 225,000 homes or a city the size of El Paso, Texas, for a year. "Particularly in light of tight oil and gas supplies caused by Hurricanes Katrina and Rita, it is important that all Americans - including the

126

Ninety - Two Percent Minimum Heater Efficiency By 1980  

E-Print Network [OSTI]

Technology is now available to increase heater efficiencies to 92 percent and more. By 1980, this technology will be field proven and corrosion and reliability problems identified and resolved. Recent studies have shown that a minimum efficiency...

Mieth, H. C.; Hardie, J. E.

1980-01-01T23:59:59.000Z

127

BOSS Measures the Universe to One-Percent Accuracy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This and future measures at this precision are the key to determining the nature of dark energy. "One-percent accuracy in the scale of the universe is the most precise such...

128

RECORD OF CATEGORICAL EXCLUSION DETERMINATION Project ID No. BC-MM-1029, BH-MM-1030, BM-MM-1031, WH-MM-1032  

Broader source: Energy.gov (indexed) [DOE]

1029, BH-MM-1030, BM-MM-1031, WH-MM-1032 1029, BH-MM-1030, BM-MM-1031, WH-MM-1032 Title: Install Power Metering for SPR Site Buildings Description: Subcontractor shall provide all labor, tools, materials, equipment, and supervision required to install power metering at the four SPR sites. The meters will monitor energy consumption at the SPR site control, administrative, and maintenance buildings. Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021) 10 CFR 1021.410 (Application of Categorical Exclusions) (a) The actions listed in Appendices A and B of Subpart D are classes of actions that DOE has determined do not individually or cumulatively have a significant effect on the human environment (categorical exclusions). (b) To find that a proposal is categorically excluded, DOE shall determine the following:

129

NETL: News Release - President's Initiative to Seek 90 Percent Mercury  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 21, 2004 April 21, 2004 President's Initiative to Seek 90 Percent Mercury Removal We Energies to Test TOXECON(tm) Process in Michigan Coal-fired Power Plant WASHINGTON, DC - The Department of Energy (DOE) and We Energies today initiated a joint venture to demonstrate technology that will remove an unprecedented 90 percent of mercury emissions from coal-based power plants. Presque Isle Power Plant - We Energies' Presque Isle Power Plant located on the shores of Lake Superior in the Upper Peninsula of Michigan. As part of the President's Clean Coal Power Initiative of technology development and demonstration, the new project supports current proposals to reduce mercury emissions in the range of 70 percent through a proposed regulation pending before the Environmental Protection Agency or, in the

130

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings  

DOE Patents [OSTI]

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

1984-07-03T23:59:59.000Z

131

Table 2. Percent of Households with Vehicles, Selected Survey Years  

U.S. Energy Information Administration (EIA) Indexed Site

Percent of Households with Vehicles, Selected Survey Years " Percent of Households with Vehicles, Selected Survey Years " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",85.5450237,89.00343643,88.75545852,89.42917548,87.25590956,92.08566108 "Household Characteristics" "Census Region and Division" " Northeast",77.22222222,"NA",79.16666667,82.9015544,75.38461538,85.09615385 " New England",88.37209302,"NA",81.81818182,82.9787234,82,88.52459016 " Middle Atlantic ",73.72262774,"NA",78.37837838,82.31292517,74.30555556,83.67346939 " Midwest ",85.51401869,"NA",90.66666667,90.17094017,92.30769231,91.47286822 " East North Central",82,"NA",88.81987578,89.88095238,91.51515152,90.55555556

132

Table B29. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

9. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 1999" 9. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled","All Buildings","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled" "All Buildings ................",4657,1097,1012,751,1796,67338,8864,16846,16966,24662 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,668,352,294,1034,6774,1895,1084,838,2957 "5,001 to 10,000 ..............",1110,282,292,188,348,8238,2026,2233,1435,2544

133

Table B30. Percent of Floorspace Lit When Open, Number of Buildings and Floorspa  

U.S. Energy Information Administration (EIA) Indexed Site

0. Percent of Floorspace Lit When Open, Number of Buildings and Floorspace, 1999" 0. Percent of Floorspace Lit When Open, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Lita","1 to 50 Percent Lit","51 to 99 Percent Lit","100 Percent Lit","All Buildings","Not Lita","1 to 50 Percent Lit","51 to 99 Percent Lit","100 Percent Lit" "All Buildings ................",4657,498,835,1228,2096,67338,3253,9187,20665,34233 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,323,351,517,1156,6774,915,1061,1499,3299 "5,001 to 10,000 ..............",1110,114,279,351,367,8238,818,2014,2614,2793

134

U.S. Utility-Scale Solar 60 Percent Towards Cost-Competition...  

Energy Savers [EERE]

U.S. Utility-Scale Solar 60 Percent Towards Cost-Competition Goal U.S. Utility-Scale Solar 60 Percent Towards Cost-Competition Goal February 12, 2014 - 11:05am Addthis News Media...

135

Table B28. Percent of Floorspace Heated, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" 8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated","All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated" "All Buildings ................",4657,641,576,627,2813,67338,5736,7593,10745,43264 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,366,230,272,1479,6774,1091,707,750,4227 "5,001 to 10,000 ..............",1110,164,194,149,603,8238,1148,1504,1177,4409

136

Polarized mm And sub-mm Emission From Sgr A* At The Galactic Center  

E-Print Network [OSTI]

The recent detection of significant linear polarization at mm and sub-mm wavelengths in the spectrum of Sgr A* (if confirmed) will be a useful probe of the conditions within several Schwarzschild radii ($r_S$) of the event horizon at the Galactic Center. Hydrodynamic simulations of gas flowing in the vicinity of this object suggest that the infalling gas circularizes when it approaches within $5-25 r_S$ of the black hole. We suggest that the sub-mm ``excess'' of emission seen in the spectrum of Sgr A* may be associated with radiation produced within the inner Keplerian region and that the observed polarization characteristics provide direct evidence for this phenomenon. The overall spectrum from this region, including the high-energy component due to bremsstrahlung and inverse Compton scattering processes, is at or below the recent {\\it Chandra} measurement, and may account for the X-ray source if it turns out to be the actual counterpart to Sgr A*.

Fulvio Melia; Siming Liu; Robert Coker

2001-01-18T23:59:59.000Z

137

direction. Three different pipette solutions were used: Cs-gluconate solution (150 mM CsOH, 5 mM CsCl, 135 mM sucrose, 10 mM HEPES, 1.5 mM EGTA and 1.5 mM EDTA  

E-Print Network [OSTI]

was varied from 20 mM to 5 mM by addition of the corresponding amount of 1 M CaCl2 stock solution into one-Tris solution (205 mM HEPES (pH 7.2 with Trisma base)). Bath solution with 105 mM [Ca2þ ]c (105 mM CaCl2 solution) contained 105 mM CaCl2, 10 mM HEPES (pH 7.2 with Trisma base or NaOH). This solution

Scholey, Jonathan

138

Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0: March 26, 0: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection to someone by E-mail Share Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Facebook Tweet about Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Twitter Bookmark Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Google Bookmark Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Delicious Rank Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Digg

139

Comparison of the percent recoveries of activated charcoal and Spherocarb after storage utilizing thermal desorption  

E-Print Network [OSTI]

between the two adsorbents. The parameters of storage in- cluded various durations of time, temperatures, and concentrations. Rather than the present conventional solvent desorption methods, thermal desorption was used in the analysis of samples... Duncan's Multiple Range Test For Variable Percent. 32 6 Mean Percent Recoveries For The Interaction Between Type Of Adsorbent And Storage Time . 7 Mean Percent Recoveries For The Interaction Between Sample Concentration And Storage Time. 39 40 8...

Stidham, Paul Emery

2012-06-07T23:59:59.000Z

140

EECBG 11-002 Clarification of Ten Percent Limitation on Use of...  

Energy Savers [EERE]

Energy Efficiency and Renewable Energy (EERE), Energy Efficiency and Conservation Block Grant Program (EECBG), ten percent limitation, administrative expenses, the Energy...

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Policy ForumSeries "Beyond 33 Percent: California's Renewable Energy Future,  

E-Print Network [OSTI]

Policy ForumSeries "Beyond 33 Percent: California's Renewable Energy Future, From Near with the UC Davis Policy Institute is the UC Davis Energy Institute. Renewables Beyond 33 Percent October 17 as it transitions to a renewable energy future. Featuring panelists from government, industry and academia

California at Davis, University of

142

PRESS RELEASES OF SENATOR PETE DOMENICI Domenici Supports 12 Percent Increase for Nuclear Energy, Disputes Fusion  

E-Print Network [OSTI]

PRESS RELEASES OF SENATOR PETE DOMENICI Domenici Supports 12 Percent Increase for Nuclear Energy his support for a 12 percent increase in federal funding for nuclear energy research, but challenged of modern nuclear power plants. Domenici is chairman of the Energy and Water Development Appropriations

143

Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 |  

Broader source: Energy.gov (indexed) [DOE]

Could Produce 20 Percent of U.S. Electricity By 2030 Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 May 12, 2008 - 11:30am Addthis DOE Report Analyzes U.S. Wind Resources, Technology Requirements, and Manufacturing, Siting and Transmission Hurdles to Increasing the Use of Clean and Sustainable Wind Power WASHINGTON, DC - The U.S Department of Energy (DOE) today released a first-of-its kind report that examines the technical feasibility of harnessing wind power to provide up to 20 percent of the nation's total electricity needs by 2030. Entitled "20 Percent Wind Energy by 2030", the report identifies requirements to achieve this goal including reducing the cost of wind technologies, citing new transmission infrastructure, and

144

Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 |  

Broader source: Energy.gov (indexed) [DOE]

Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 May 12, 2008 - 11:30am Addthis DOE Report Analyzes U.S. Wind Resources, Technology Requirements, and Manufacturing, Siting and Transmission Hurdles to Increasing the Use of Clean and Sustainable Wind Power WASHINGTON, DC - The U.S Department of Energy (DOE) today released a first-of-its kind report that examines the technical feasibility of harnessing wind power to provide up to 20 percent of the nation's total electricity needs by 2030. Entitled "20 Percent Wind Energy by 2030", the report identifies requirements to achieve this goal including reducing the cost of wind technologies, citing new transmission infrastructure, and

145

Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40 percent. EM has reduced its pre-Recovery Act footprint of 931 square miles, established in 2009, by 688 square miles. Reducing its contaminated footprint to 243 square miles has proven to be a monumental task, and a challenge the EM team was ready to take on from the beginning. Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated More Documents & Publications 2011 ARRA Newsletters

146

Coal deposit characterization by gamma-gamma density/percent dry ash relationships  

E-Print Network [OSTI]

: pb = C + Va(pa) Equation 3 where C is a constant. Ash content can therefore be geophysically determined as variations In log-derived bulk density measurements are in direct response to variations in ash content. However, when any of the above... by applying the relationships between geophysi cally-derived gamma-gamma density and laboratory-derived percent dry ash. The linear gamma-gamma density/percent dry ash relationship is dependent upon a constant fuel ratio (percent fixed carbon...

Wright, David Scott

1984-01-01T23:59:59.000Z

147

Course Outline ENG 2MM3 Electrical Circuits & Power  

E-Print Network [OSTI]

-Phase Induction Motor; 5. DC Generators & DC Motors; 6. Efficiency/Heating of Electric Machines; 7. ActiveCourse Outline ENG 2MM3 Electrical Circuits & Power Winter 2010 Instructor: Prof. Matiar Howlader Web Page: www.ece.mcmaster.ca/~mrhowlader/ENG2MM3Notes Text Books: 1. Electrical Power and Controls

Haykin, Simon

148

Course Outline ENG 2MM3 Electrical Circuits & Power  

E-Print Network [OSTI]

-Phase Induction Motor; 5. DC Generators & DC Motors; 6. Efficiency/Heating of Electric Machines; 7. ActiveCourse Outline ENG 2MM3 Electrical Circuits & Power Fall 2010 Instructor: Prof. Matiar Howlader Web Page: www.ece.mcmaster.ca/~mrhowlader/ENG2MM3Notes Text Books: 1. Electrical Power and Controls

Haykin, Simon

149

1.25 mM NaH2PO4, 1 mM CaCl2, 1 mM MgCl2, 26 mM NaHCO3 and 10 mM dextrose, bubbled with 95% O2/5% CO2 (pH 7.4). Slices (300400 mm thick) were prepared with a  

E-Print Network [OSTI]

1.25 mM NaH2PO4, 1 mM CaCl2, 1 mM MgCl2, 26 mM NaHCO3 and 10 mM dextrose, bubbled with 95% O2/5% CO cerebrospinal fluid (ACSF: 124 mM NaCl, 2 mM KCl, 1.5 mM MgSO4, 1.25 mM NaH2PO4, 2.5 mM CaCl2, 26 mM NaHCO3, 10

Zuker, Charles

150

If I generate 20 percent of my national electricity from wind...  

Open Energy Info (EERE)

generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

151

EECBG 11-002 Clarification of Ten Percent Limitation on Use of Funds for Administrative Expenses  

Broader source: Energy.gov [DOE]

U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency and Conservation Block Grant Program (EECBG), ten percent limitation, administrative expenses, the Energy Independence and Security Act of 2007.

152

Skills, education, and the rise of earnings inequality among the “other 99 percent  

Science Journals Connector (OSTI)

...disaster assistance, food assistance) that buffer...executives and financial professionals...evidence of rents in top 1 percent...macro-micro-minnesota/2012/02...attractive financial proposition on average...research assistance. Supported...

David H. Autor

2014-05-23T23:59:59.000Z

153

Fact #727: May 14, 2012 Nearly Twenty Percent of Households Own Three or More Vehicles  

Broader source: Energy.gov [DOE]

Household vehicle ownership has changed over the last six decades. In 1960, over twenty percent of households did not own a vehicle, but by 2010, that number fell to less than 10%. The number of...

154

97 percent of special nuclear material de-inventoried from LLNL | National  

National Nuclear Security Administration (NNSA)

97 percent of special nuclear material de-inventoried from LLNL | National 97 percent of special nuclear material de-inventoried from LLNL | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > 97 percent of special nuclear material de-inventoried ... 97 percent of special nuclear material de-inventoried from LLNL Posted By Office of Public Affairs

155

Effects of time constraint and percent defective on visual inspection performance  

E-Print Network [OSTI]

EFFECTS OF TIME CONSTRAINT AND PERCENT DEFECTIVE ON VISUAL INSPECTION PERFORMANCE A Thesis by WALTER EDGAR GILMORE II Submitted to the Graduate College of Texas ABM University in partial fulfillment of the requirement for the degree MASTER... OF SCIENCE August 1982 Major Subject: Industrial Engineering EFFECTS OF TIME CONSTRAINT AND PERCENT DEFECTIVE ON VISUAL INSPECTION PERFORMANCE A Thesis by WALTER EDGAR GILMORE II Approved as to sty1e and content by: Chairman of Committ e) (Memb r...

Gilmore, Walter Edgar

2012-06-07T23:59:59.000Z

156

40 MM Grenade Launcher Qualification Requirements at Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

40 MM Grenade Launcher Qualification Requirements at Department of 40 MM Grenade Launcher Qualification Requirements at Department of Energy Sites, IG-0806 40 MM Grenade Launcher Qualification Requirements at Department of Energy Sites, IG-0806 The Department of Energy and its National Nuclear Security Administration (NNSA), operate some of the most sensitive Federal facilities in the United States. Because of the mission requirements, safeguards and security is a top priority at these sites. As part of its security regime, the Department maintains a cadre of armed protective force officers to prevent and defend against malevolent acts. In recent years, the Department has worked to enhance security by increasing the capabilities of weapon systems used by the protective force officers. One such weapon is the 40 mm grenade launcher, which utilizes high explosive

157

40 MM Grenade Launcher Qualification Requirements at Department...  

Office of Environmental Management (EM)

years, the Department has worked to enhance security by increasing the capabilities of weapon systems used by the protective force officers. One such weapon is the 40 mm grenade...

158

Better Buildings Challenge Partners Pledge 20 Percent Energy Drop By 2020 |  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings Challenge Partners Pledge 20 Percent Energy Drop Better Buildings Challenge Partners Pledge 20 Percent Energy Drop By 2020 Better Buildings Challenge Partners Pledge 20 Percent Energy Drop By 2020 November 9, 2011 - 10:00am Addthis This is the Atlanta Better Buildings Challenge Breakout Session Panel with representatives from the City of Atlanta Office of Sustainability, Southface, the U.S. General Services Administration, and two Atlanta BBC partner organizations. | Photo courtesy of Fred Perry Photography This is the Atlanta Better Buildings Challenge Breakout Session Panel with representatives from the City of Atlanta Office of Sustainability, Southface, the U.S. General Services Administration, and two Atlanta BBC partner organizations. | Photo courtesy of Fred Perry Photography Maria Tikoff Vargas

159

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test |  

Broader source: Energy.gov (indexed) [DOE]

Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test August 21, 2012 - 1:00pm Addthis Washington, DC - The successful bench-scale test of a novel carbon dioxide (CO2) capturing sorbent promises to further advance the process as a possible technological option for reducing CO2 emissions from coal-fired power plants. The new sorbent, BrightBlack™, was originally developed for a different application by Advanced Technology Materials Inc. (ATMI) , a subcontractor to SRI for the Department of Energy (DOE)-sponsored test at the University of Toledo. Through partnering with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) and others, SRI developed a method to

160

If I generate 20 percent of my national electricity from wind and solar -  

Open Energy Info (EERE)

If I generate 20 percent of my national electricity from wind and solar - If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home > Groups > DOE Wind Vision Community I think that the economics of fossil fuesl are well understood. Some gets to find the fuel and sell it. The fuel and all associated activities factor into the economic equation of the nation and the wrold. What is the economics of generating 20 percent of my total capacity from say wind? And all of it replaces coal powered electricty ? What happended to GDP ? Is the economy a net gain or net loss ? The value of the electricity came into the system, but no coal is bought or sold. Submitted by Jamespr on 6 May, 2013 - 17:46 0 answers Groups Menu You must login in order to post into this group.

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test |  

Broader source: Energy.gov (indexed) [DOE]

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test August 21, 2012 - 1:00pm Addthis Washington, DC - The successful bench-scale test of a novel carbon dioxide (CO2) capturing sorbent promises to further advance the process as a possible technological option for reducing CO2 emissions from coal-fired power plants. The new sorbent, BrightBlack™, was originally developed for a different application by Advanced Technology Materials Inc. (ATMI) , a subcontractor to SRI for the Department of Energy (DOE)-sponsored test at the University of Toledo. Through partnering with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) and others, SRI developed a method to

162

Moab Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches  

Broader source: Energy.gov (indexed) [DOE]

Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches Significant Milestone Moab Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches Significant Milestone June 3, 2011 - 12:00pm Addthis Media Contacts Donald Metzler Moab Federal Project Director (970) 257-2115 Wendee Ryan S&K Aerospace Public Affairs Manager (970) 257-2145 Grand Junction, CO - One quarter of the uranium mill tailings pile located in Moab, Utah, has been relocated to the Crescent Junction, Utah, site for permanent disposal. Four million tons of the 16 million tons total has been relocated under the Uranium Mill Tailings Remedial Action Project managed by the U.S. Department of Energy (DOE). A little over 2 years ago, Remedial Action Contractor EnergySolutions began

163

Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated  

Broader source: Energy.gov (indexed) [DOE]

November 2, 2012 November 2, 2012 WASHINGTON, D.C. - The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40 percent. EM has reduced its pre-Recovery Act footprint of 931 square miles, established in 2009, by 688 square miles. Reducing its contaminated footprint to 243 square miles has proven to be a monu- mental task, and a challenge the EM team was ready to take on from the beginning. In 2009, EM identified a goal of 40 percent footprint reduction by September 2011 as its High Priority Performance Goal. EM achieved that goal in April 2011, five months ahead of schedule, and continues to achieve footprint reduction, primarily at Savannah River Site and Hanford. Once

164

26-percent efficient point-junction concentrator solar cells with a front metal grid  

SciTech Connect (OSTI)

This paper reports on silicon concentrator cells with point diffusions and metal contacts on both the front and back sides. The design minimizes reflection losses by forming an inverted pyramid topography on the front surface and by shaping the metal grid lines in the form of a triangular ridge. A short-circuit current density of 39.6 mA/cm{sup 2} has been achieved even though the front grid covers 16 percent of the cell's active area of 1.56 cm{sup 2}. This, together with an open-circuit voltage of 700 mV, has led to an efficiency of 22 percent at one sun, AM1.5 global spectrum. Under direct-spectrum, 8.8-W/cm{sup 2}, concentrated light, the efficiency is 26 percent. This is the highest ever reported for a silicon cell having a front metal grid.

Cuevas, A.; Sinton, R.A.; Midkiff, N.E.; Swanson, R.M. (Stanford Univ., CA (USA). Dept. of Electrical Engineering)

1990-01-01T23:59:59.000Z

165

Moab Reaches 40-Percent Mark in Tailings Removal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Moab Reaches 40-Percent Mark in Tailings Removal Moab Reaches 40-Percent Mark in Tailings Removal Moab Reaches 40-Percent Mark in Tailings Removal December 24, 2013 - 12:00pm Addthis A haul truck carrying a container is loaded with mill tailings at the Moab site. Once loaded and lidded, the container will be placed on a railcar for shipment by train to the Crescent Junction disposal site. A haul truck carrying a container is loaded with mill tailings at the Moab site. Once loaded and lidded, the container will be placed on a railcar for shipment by train to the Crescent Junction disposal site. MOAB, Utah - The Moab Uranium Mill Tailings Remedial Action Project had a productive year, despite continued budget constraints and a first-ever, three-month curtailment of shipping operations last winter. On June 18, the project reached a significant milestone of having shipped 6

166

Achieving a ten percent greenhouse gas reduction by 2020 Response to  

E-Print Network [OSTI]

's environmental and economic goals are to ensure ... (e) greenhouse gas emissions will be at least ten per cent). The Nova Scotia Department of Energy also assumes this level of emissions by 2020 in its background paper of carbon dioxide. #12;Energy Research Group: Achieving a ten percent greenhouse gas reduction 2 shows NRCan

Hughes, Larry

167

What is the problem? Buildings account for 40 percent of U.S.  

E-Print Network [OSTI]

What is the problem? Buildings account for 40 percent of U.S. energy use and a similar percentage with buildings and appliances are projected to grow faster than those from any other sector. In order to ensure that building energy consumption be significantly reduced. One way this can be achieved is through

168

M/M/1 Queueing System with Delayed Controlled Vacation  

E-Print Network [OSTI]

M/M/1 Queueing System with Delayed Controlled Vacation Yonglu Deng , Zhongshan University W. John systems using a time division multiple access (TDMA) scheme (Frey and Takahashi, [7]). Researchers have that of a server's cold switch-on. The case of delayed vacation has also very recently been studied by Frey

Zhao, Yiqiang Q.

169

Design and testing of a dual 8-T 380-mm/12-T 220-mm split superconducting solenoid for ORNL  

SciTech Connect (OSTI)

A superconducting high field magnet facility has recently been prepared for operation at the Oak Ridge National Laboratory (ORNL). The facility consists of a background NbTi coil and an insert coil made of Nb/sub 3/Sn tape. The background coil produces an 8-T central field, with a peak field of 8.8 T, in a bore of 380 mm and contains radial access ports of 67-mm diam. Details of magnet design both for the background coil and insert coil will be presented. The protection scheme will be discussed and test results will be given.

Ballou, J.K.; Brown, R.L.; Fietz, W.A.; Forseman, J.W.; Gray, W.H.; Kenney, W.J.; Wysor, R.B.; Markiewicz, W.D.; Van Alstyne, R.G.

1981-01-01T23:59:59.000Z

170

A combined cycle designed to achieve greater than 60 percent efficiency  

SciTech Connect (OSTI)

In cooperation with the US Department of Energy`s Morgantown Energy Technology Center, Westinghouse is working on Phase 2 of an 8-year Advanced Turbine Systems Program to develop the technologies required to provide a significant increase in natural gas-fired combined cycle power generation plant efficiency. In this paper, the technologies required to yield an energy conversion efficiency greater than the Advanced Turbine Systems Program target value of 60 percent are discussed. The goal of 60 percent efficiency is achievable through an improvement in operating process parameters for both the combustion turbine and steam turbine, raising the rotor inlet temperature to 2,600 F (1,427 C), incorporation of advanced cooling techniques in the combustion turbine expander, and utilization of other cycle enhancements obtainable through greater integration between the combustion turbine and steam turbine.

Briesch, M.S.; Bannister, R.L.; Diakunchak, I.S.; Huber, D.J. [Westinghouse Electric Corp., Orlando, FL (United States)

1994-12-31T23:59:59.000Z

171

Posters Surface Flux Intercomparison Between the MM5 Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Posters Surface Flux Intercomparison Between the MM5 Model and Observations During the Storm-Scale Observations Regional Measurement Program-Fronts Experiment Systems Test 1992 J. Dudhia and S. P. Oncley Mesoscale and Microscale Meteorology Division Atmospheric Technology Division National Center for Atmospheric Research Boulder, Colorado Introduction Mesoscale model 5 (MM5) is being used as a data assimilation tool for the Atmospheric Radiation Measurement (ARM) Program. There is a need to verify that the model physics is consistent with observations under a range of conditions. Surface fluxes of heat, moisture, and momentum are a particular area of uncertainty in the model owing to their dependence on surface properties, some of which are time-dependent. The National Center for Atmospheric Research (NCAR)

172

Ultrasonic methods for measuring liquid viscosity and volume percent of solids  

SciTech Connect (OSTI)

This report describes two ultrasonic techniques under development at Argonne National Laboratory (ANL) in support of the tank-waste transport effort undertaken by the U.S. Department of Energy in treating low-level nuclear waste. The techniques are intended to provide continuous on-line measurements of waste viscosity and volume percent of solids in a waste transport line. The ultrasonic technique being developed for waste-viscosity measurement is based on the patented ANL viscometer. Focus of the viscometer development in this project is on improving measurement accuracy, stability, and range, particularly in the low-viscosity range (<30 cP). A prototype instrument has been designed and tested in the laboratory. Better than 1% accuracy in liquid density measurement can be obtained by using either a polyetherimide or polystyrene wedge. To measure low viscosities, a thin-wedge design has been developed and shows good sensitivity down to 5 cP. The technique for measuring volume percent of solids is based on ultrasonic wave scattering and phase velocity variation. This report covers a survey of multiple scattering theories and other phenomenological approaches. A theoretical model leading to development of an ultrasonic instrument for measuring volume percent of solids is proposed, and preliminary measurement data are presented.

Sheen, S.H.; Chien, H.T.; Raptis, A.C.

1997-02-01T23:59:59.000Z

173

RECORD OF CATEGORICAL EXCLUSION DETERMINATION Project ID No. BC-MM-669 and BC-MM-673  

Broader source: Energy.gov (indexed) [DOE]

669 and BC-MM-673 669 and BC-MM-673 Title: BC Site Building Upgrades, Phases II and III Description: Subcontractor shall provide all labor, tools, materials, equipment, and supervision required to perform various building upgrades at BC Buildings 401, 402, 403, 408, 415, and 416 (Phase II) and BC Buildings 401, 402, 413, and 414 (Phase III). Subcontractor shall evaluate and implement Green Building Design where applicable. Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021) 10 CFR 1021.410 (Application of Categorical Exclusions) (a) The actions listed in Appendices A and B of Subpart D are classes of actions that DOE has determined do not individually or cumulatively have a significant effect on the human environment (categorical exclusions).

174

New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability  

Broader source: Energy.gov [DOE]

This case study outlines how General Motors (GM) developed a highly efficient pumping system for their Pontiac Operations Complex in Pontiac, Michigan. In short, GM was able to replace five original 60- to 100-hp pumps with three 15-hp pumps whose speed could be adjusted to meet plant requirements. As a result, the company reduced pumping system energy consumption by 80 percent (225,100 kWh per year), saving an annual $11,255 in pumping costs. With a capital investment of $44,966 in the energy efficiency portion of their new system, GM projected a simple payback of 4 years.

175

Microsoft Word - BM-MM-762A,GFE.docx  

Broader source: Energy.gov (indexed) [DOE]

A A Title: Replace Brine Disposal System Header to BM Brine Tank, GFE Description: Manufacturer shall provide the piping and fittings associated with the replacement of the brine disposal system header to the BM Brine Tank as Government Furnished Equipment (GFE). The manufacturer shall load all materials onto transports supplied by others. Installation will be performed by others under BM-MM-762. Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021) 10 CFR 1021.410 (Application of Categorical Exclusions) (a) The actions listed in Appendices A and B of Subpart D are classes of actions that DOE has determined do not individually or cumulatively have a significant effect on the human environment (categorical exclusions).

176

--No Title--  

Buildings Energy Data Book [EERE]

1 2005 Residential Delivered Energy Consumption Intensities, by Housing Type Per Square Per Household Per Household Percent of Type Foot (thousand Btu) (1) (million Btu) Members...

177

Digital Frequency Domain Multiplexer for mm-Wavelength Telescopes  

SciTech Connect (OSTI)

An FPGA based digital signal processing (DSP) system for biasing and reading out multiplexed bolometric detectors for mm-wavelength telescopes is presented. This readout system is being deployed for balloon-borne and ground based cosmology experiments with the primary goal of measuring the signature of inflation with the Cosmic Microwave Background Radiation. The system consists of analog superconducting electronics running at 250 mK and 4 K, coupled to digital room temperature backend electronics described here. The digital electronics perform the real time functionality with DSP algorithms implemented in firmware. A soft embedded processor provides all of the slow housekeeping control and communications. Each board in the system synthesizes multi-frequency combs of 8 to 32 carriers in the MHz band to bias the detectors. After the carriers have been modulated with the sky-signal by the detectors, the same boards digitize the comb directly. The carriers are mixed down to base-band and low pass filtered. The signal bandwidth of 0.050Hz-100 Hz places extreme requirements on stability and requires powerful filtering techniques to recover the sky-signal from the MHz carriers.

Spieler, Helmuth G; Dobbs, Matt; Bissonnette, Eric; Spieler, Helmuth G.

2007-07-23T23:59:59.000Z

178

Latest developments with the 400 MM bore Pielstick engine  

SciTech Connect (OSTI)

For over forty years, S.E.M.T. Pielstick has been manufacturing the 400 mm bore, four-stroke, medium-speed PC diesel engine. The evolution has continued up to the present and the latest issue is the PC2-6B design, featuring an output of 615 kW per cylinder. This result was made possible by a multifold, ongoing development program. Experience, gained on the nearly 4000 PC engines built so far for marine and stationary applications, was combined with technological progress in engine design, materials and components. These elements all contribute to make the present engines, not only over three times as powerful, but also more reliable and more economical to run, featuring a lower specific fuel consumption and requiring less maintenance. The 1000 hours endurance test on the three-cylinder experimental engine has allowed tuning of the PC2-6B to the nominal power of 615 kW/cylinder at 500 r/min and verification of safety margins with the engine running at 600 r/min. The same program highlighted the low emission values of the new engine, summarized as: NO{sub x}, < 6 g/kWh; CO, $LS 0.6 g/kWh; HC, < 0.5 g/kWh; and smoke, < 0.15{degree} Bosch.

Chellini, R.

1995-06-01T23:59:59.000Z

179

Extraction of Plutonium into 30 Percent Tri-Butyl Phosphate from Nitric Acid Solution Containing Fluoride, Aluminum, and Boron  

SciTech Connect (OSTI)

This work consists of experimental batch extraction data for plutonium into 30 volume-percent tri-butyl phosphate at ambient temperature from such a solution matrix and a model of this data using complexation constants from the literature.

Kyser, E.A.

2000-01-06T23:59:59.000Z

180

"EIA-914 Production Weighted Response Rates, Percent"  

U.S. Energy Information Administration (EIA) Indexed Site

EIA-914 Production Weighted Response Rates, Percent" EIA-914 Production Weighted Response Rates, Percent" "Areas",38353,38384,38412,38443,38473,38504,38534,38565,38596,38626,38657,38687,38718,38749,38777,"application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel"

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A correlation of water solubility in jet fuels with API gravity: aniline point percent aromatics, and temperature.  

E-Print Network [OSTI]

A CORRELATION OF WATER SOLUBILITY IN JET FUELS WITH API GRAVITY, ANILINE POINT PERCENT AROMATICS, AND TEMPERATURE A Thesis By ALONZO B YINGTON Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE January, 1964 Major Subject: Petroleum Engineering A CORRELATION OF MATER SOLUBILITT IH JET FUELS WITS API GEAVITT, ANILINE POINT, PERCENT ARONATICS, AND TENPERATURE A Thesis By ALOHZO BYIHGTOH Approved...

Byington, Alonzo

2012-06-07T23:59:59.000Z

182

"Table 1. Aeo Reference Case Projection Results" "Variable","Average Absolute Percent Differences","Percent of Projections Over- Estimated"  

U.S. Energy Information Administration (EIA) Indexed Site

Aeo Reference Case Projection Results" Aeo Reference Case Projection Results" "Variable","Average Absolute Percent Differences","Percent of Projections Over- Estimated" "Gross Domestic Product" "Real Gross Domestic Product (Average Cumulative Growth)* (Table 2)",0.9772689079,42.55319149 "Petroleum" "Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a)",35.19047501,18.61702128 "Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b)",34.68652106,19.68085106 "Total Petroleum Consumption (Table 4)",6.150682783,66.4893617 "Crude Oil Production (Table 5)",5.99969572,59.57446809 "Petroleum Net Imports (Table 6)",13.27260615,67.0212766 "Natural Gas"

183

Heat Transfer -2 A pure platinum wire with diameter D = 3 mm and length L = 20 mm is placed outside on a day when air temperature  

E-Print Network [OSTI]

Heat Transfer - 2 A pure platinum wire with diameter D = 3 mm and length L = 20 mm is placed outside on a day when air temperature T = 10o C. The heat transfer coefficient at the wire's surface h equation that includes all heat transfer mechanisms involved in this problem. Write this energy balance

Virginia Tech

184

Episodic Performance and Sensitivity of the Urbanized MM5 (uMM5) to Perturbations in Surface Properties in Houston Texas  

Science Journals Connector (OSTI)

We present an application of a fine-resolution, meso-urban meteorological model (urbanized MM5; uMM5) to a multi-day episode in August 2000 in the Houston-Galveston Texas, USA region. The model’s episodic ... ini...

Haider Taha

2008-05-01T23:59:59.000Z

185

A Polarizable QM/MM Explicit Solvent Model for Computational Electrochemistry in Water  

E-Print Network [OSTI]

We present a quantum mechanical/molecular mechanical (QM/MM) explicit solvent model for the computation of standard reduction potentials E[subscript 0]. The QM/MM model uses density functional theory (DFT) to model the ...

Wang, Lee-Ping

186

Production of low BTU gas from biomass  

E-Print Network [OSTI]

and transported with little difficulty. It was decided to use a fluidized bed reactor for the gasification. Fluidized bed reactors offer many advantages when utilized as a medium for gasifi- cation of solid fuels. Some of them are excellent mixing... carbon and graphite. The results showed the equilibrium constant to be a function of temperature alone, independent of carbon source, particle size and other physical properties of the carbon. Brink (1976) studied the pyrolysis and gasifi- cation...

Lee, Yung N.

2012-06-07T23:59:59.000Z

187

Breakdown of 2mm symmetry in electron diffraction from multiwalled carbon nanotubes  

E-Print Network [OSTI]

Breakdown of 2mm symmetry in electron diffraction from multiwalled carbon nanotubes Zejian Liu of single-walled carbon nanotubes always have 2mm symmetry regardless if the nanotubes them- selves have such symmetry. We here show that, for the case of multiwalled carbon nanotubes, the 2mm symmetry can break down

Qin, Lu-Chang

188

ITER: Japan to assign 20 percent of construction work to EU firms; Proposal for EU official to assume chief executive  

E-Print Network [OSTI]

ITER: Japan to assign 20 percent of construction work to EU firms; Proposal for EU official to assume chief executive position MAINICHI (Top Play) (Lead para.) December 7, 2004 Japan and the European Experimental Reactor (ITER). Japan yesterday revealed the details of a proposal to host the project. Tokyo has

189

HighFidelity Rapid Prototyping of 300mm Fabs through Discrete Event System Modeling #  

E-Print Network [OSTI]

High­Fidelity Rapid Prototyping of 300mm Fabs through Discrete Event System Modeling # Jonghun Park and control. Keywords: High­fidelity modeling, 300mm Fab, Flexible Automation, Colored Petri Nets, Web­based Simulation, Rapid Prototyping # A preliminary version of this paper appeared in [28]. + Corresponding author

Reveliotis, Spiridon "Spyros"

190

Evaluation of Offshore Wind Simulations with MM5 in the Japanese and Danish Coastal Waters  

E-Print Network [OSTI]

Evaluation of Offshore Wind Simulations with MM5 in the Japanese and Danish Coastal Waters Teruo to evaluate the accuracy of offshore wind simulation with the mesoscale model MM5, long-term simulations to simulate offshore wind conditions in the Japanese coastal waters even using a mesoscale model, compared

Heinemann, Detlev

191

MECHANICAL TEST RESULTS ON DIPOLE MODEL C-l 25 mm ALUMINUM COLLARS  

E-Print Network [OSTI]

P~. FI'9 . ~ C.C rv'IW\\ 707~-Th ALUMINUM ' ~LAI2.. o Pl.ATTDIPOLE MODEL C-1 25 mm ALUMINUM COLLARS C. Peters FebruaryON DIPOLE MODEL C-I 25 mm ALUMINUM COLLARS· Craig Peters

Peters, C.

2010-01-01T23:59:59.000Z

192

PART 1. Student background University ID Social Security number Birthdate (mm/dd/yyyy)  

E-Print Network [OSTI]

Support Resources. Do not return this form to your college or academic department. Return this form to: Academic Support Resources By U.S. Postal Service mail Academic Support Resources 20 Fraser Hall 106 from no less than 20 percent post-consumer waste. Please recycle.*OTR161* updated by date for office

Amin, S. Massoud

193

Of horseshoes and heliotropes: Dynamics of dust in the Encke Gap M.M. Hedman a,  

E-Print Network [OSTI]

Of horseshoes and heliotropes: Dynamics of dust in the Encke Gap M.M. Hedman a, , J.A. Burns a located within the Cassini Division's Laplace Gap demonstrates ``heliotropic'' behavior: its geometric

Hamilton, Douglas P.

194

MagLab - Cell 15: 45.1 Tesla / 32 mm Hybrid Magnet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Magnets & Facilities Arrow Cell 15: 45.1 Tesla 32 mm Hybrid Magnet The labs flagship magnet, the 45 T Hybrid, is composed of a 33.5 T resistive magnet nested in an 11.5 T...

195

Optical rotation in RbTiOAsO4 (point group mm2) W. Kaminsky*, I  

E-Print Network [OSTI]

Optical rotation in RbTiOAsO4 (point group mm2) W. Kaminsky*, I , P. A. ThomasII and A. M. Glazer, UK Received March 5, 2001; accepted September 13, 2001 Abstract. Measurement of optical rotation in RbTiOAsO4 (RTA) with the tilter method resulted in an optical rotation of r12 ¼ þ17ð3� /mm

Kaminsky, Werner

196

Development and application of QM/MM methods to study the solvation effects and surfaces  

SciTech Connect (OSTI)

Quantum mechanical (QM) calculations have the advantage of attaining high-level accuracy, however QM calculations become computationally inefficient as the size of the system grows. Solving complex molecular problems on large systems and ensembles by using quantum mechanics still poses a challenge in terms of the computational cost. Methods that are based on classical mechanics are an inexpensive alternative, but they lack accuracy. A good trade off between accuracy and efficiency is achieved by combining QM methods with molecular mechanics (MM) methods to use the robustness of the QM methods in terms of accuracy and the MM methods to minimize the computational cost. Two types of QM combined with MM (QM/MM) methods are the main focus of the present dissertation: the application and development of QM/MM methods for solvation studies and reactions on the Si(100) surface. The solvation studies were performed using a discreet solvation model that is largely based on first principles called the effective fragment potential method (EFP). The main idea of combining the EFP method with quantum mechanics is to accurately treat the solute-solvent and solvent-solvent interactions, such as electrostatic, polarization, dispersion and charge transfer, that are important in correctly calculating solvent effects on systems of interest. A second QM/MM method called SIMOMM (surface integrated molecular orbital molecular mechanics) is a hybrid QM/MM embedded cluster model that mimics the real surface.3 This method was employed to calculate the potential energy surfaces for reactions of atomic O on the Si(100) surface. The hybrid QM/MM method is a computationally inexpensive approach for studying reactions on larger surfaces in a reasonably accurate and efficient manner. This thesis is comprised of four chapters: Chapter 1 describes the general overview and motivation of the dissertation and gives a broad background of the computational methods that have been employed in this work. Chapter 2 illustrates the methodology of the interface of the EFP method with the configuration interaction with single excitations (CIS) method to study solvent effects in excited states. Chapter 3 discusses the study of the adiabatic electron affinity of the hydroxyl radical in aqueous solution and in micro-solvated clusters using a QM/EFP method. Chapter 4 describes the study of etching and diffusion of oxygen atom on a reconstructed Si(100)-2 x 1 surface using a hybrid QM/MM embedded cluster model (SIMOMM). Chapter 4 elucidates the application of the EFP method towards the understanding of the aqueous ionization potential of Na atom. Finally, a general conclusion of this dissertation work and prospective future direction are presented in Chapter 6.

Dibya, Pooja Arora

2010-05-16T23:59:59.000Z

197

The W43-MM1 mini-starburst ridge, a test for star formation efficiency models  

E-Print Network [OSTI]

Context: Star formation efficiency (SFE) theories are currently based on statistical distributions of turbulent cloud structures and a simple model of star formation from cores. They remain poorly tested, especially at the highest densities. Aims: We investigate the effects of gas density on the SFE through measurements of the core formation efficiency (CFE). With a total mass of $\\sim2\\times10^4$ M$_\\odot$, the W43-MM1 ridge is one of the most convincing candidate precursor of starburst clusters and thus one of the best place to investigate star formation. Methods: We used high-angular resolution maps obtained at 3 mm and 1 mm within W43-MM1 with the IRAM Plateau de Bure Interferometer to reveal a cluster of 11 massive dense cores (MDCs), and, one of the most massive protostellar cores known. An Herschel column density image provided the mass distribution of the cloud gas. We then measured the 'instantaneous' CFE and estimated the SFE and the star formation rate (SFR) within subregions of the W43-MM1 ridge. ...

Louvet, Fabien; Hennebelle, Patrick; Bonnell, Ian; Bontemps, Sylvain; Gusdorf, Antoine; Hill, Tracey; Gueth, Frédéric; Peretto, Nicolas; Duarte-Cabral, Ana; Stephan, Gwendoline; Schilke, Peter; Csengeri, Timéa; Luong, Quang Nguyen; Lis, Darek

2014-01-01T23:59:59.000Z

198

450 mm dual frequency capacitively coupled plasma sources: Conventional, graded, and segmented electrodes  

SciTech Connect (OSTI)

Wafer diameters for microelectronics fabrication will soon transition from 300 to 450 mm at a time when excitation frequencies for capacitively coupled plasmas (CCPs) are increasing to 200 MHz or higher. Already for 300 mm tools, there is evidence that wave behavior (i.e., propagation, constructive, and destructive interference) affects the uniformity of processing. The increase in diameter to 450 mm is likely to exacerbate these effects, perhaps requiring nontraditional tool designs. This is particularly important in dual frequency (DF) CCP tools in which there are potential interactions between frequencies. In this paper, results from a two-dimensional computational investigation of Ar plasma properties in a 450 mm DF-CCP reactor, incorporating a full-wave solution of Maxwell's equations, are discussed. As in 300 mm DF-CCP reactors, the electron density collapses toward the center of the reactor with increasing high frequency (HF), however, with more pronounced finite wavelength effects. Graded conductivity electrodes with multilayer of dielectrics are computationally demonstrated as a possible means to suppress wave effects thereby increasing plasma uniformity. Segmentation of the HF electrode also improves the plasma uniformity by making the electrical distance between the feeds and the sheath edges as uniform as possible.

Yang Yang [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Kushner, Mark J. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122 (United States)

2010-12-01T23:59:59.000Z

199

Microsoft Word - NO-MM-827 New Orleans Emergency Generator Installation (900 building).docx  

Broader source: Energy.gov (indexed) [DOE]

MM-827 MM-827 Title: New Orleans Emergency Generator Installation (900 Building) Description: Subcontractor shall provide all labor, tools, materials, equipment, and supervision required to relocate the New Orleans emergency generator at the 900 building, to install a new Automatic Transfer Switch, and to provide generator status alarms. Tasks includes construction of a new concrete slab foundation, relocation of the existing portable generator from the trailer to the foundation, electrical installation of the generator, installation of fencing around the generator, and miscellaneous architectural work. Some of the existing equipment and components being dismantled, removed or demolished have been designated for government salvage. Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021)

200

Bloom, fruit development, and embryo development of peaches in a mild-winter region, and use of percent dry weight of ovule as a maturity index  

E-Print Network [OSTI]

persica (L.) Batsch] were examined, and percent dry weight of ovule (PDO) was studied as an embryo maturity index for stratification-germination in the breeding program. Differences in bloom times of 5 bloom period (BP) reference cultisms resulted...

Bacon, Terry A

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Name and Contact Information * Indicates a required field * Date of Birth (MM/DD/YYYY)  

E-Print Network [OSTI]

Name and Contact Information * Indicates a required field * Date of Birth (MM/DD/YYYY) * o Female o courses offered as part of a certificate or diploma program are exempt from GST, even if you are only certificates and diplomas for eligible students. If you have any questions or requests about the collection

202

Press Advertising 39x3col (390mm x 3 cols)  

E-Print Network [OSTI]

Press Advertising 39x3col (390mm x 3 cols) Total cost of ad Canberra Times $1,682.49 HES $4. 200 words Canberra Times $1,037.29 HES $2,785.00 STANDALONE Press advertising describes job advertisements in a printed medium such as newspapers, magazines and journals. We currently primarily advertised

Botea, Adi

203

Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away  

E-Print Network [OSTI]

in extrapolating radiation risk estimates from epidemi- ologically accessible doses down to very low doses where) and for assessing the risk from a low-dose exposure to a carcinogen such as ionizing radiation, where only a smallBiological effects in unirradiated human tissue induced by radiation damage up to 1 mm away Oleg V

204

Polystyrene PS648 outlet optical birefringence pattern, piston speed 1.0mm/s  

E-Print Network [OSTI]

The optical birefringence pattern obtained from polystyrene PS648 flowing through a narrow slit. Experiment conducted on the Cambridge Multi Pass Rheometer (MPR4) at a piston speed of 1.0 mm/s at 170C. Video shows the outlet flow (from top to bottom)....

Hassell, David

2008-08-27T23:59:59.000Z

205

Polystyrene PS648 inlet optical birefringence pattern, piston speed 1.4mm/s  

E-Print Network [OSTI]

The optical birefringence pattern obtained from polystyrene PS648 flowing through a narrow slit. Experiment conducted on the Cambridge Multi Pass Rheometer (MPR4) at a piston speed of 1.4 mm/s at 170C. Video shows the inlet flow (from bottom to top)....

Hassell, David

2008-08-27T23:59:59.000Z

206

Polystyrene PS648 inlet optical birefringence pattern, piston speed 1.0mm/s  

E-Print Network [OSTI]

The optical birefringence pattern obtained from polystyrene PS648 flowing through a narrow slit. Experiment conducted on the Cambridge Multi Pass Rheometer (MPR4) at a piston speed of 1.0 mm/s at 170C. Video shows the inlet flow (from bottom to top)....

Hassell, David

2008-08-27T23:59:59.000Z

207

Polystyrene PS648 outlet optical birefringence pattern, piston speed 1.4mm/s  

E-Print Network [OSTI]

The optical birefringence pattern obtained from polystyrene PS648 flowing through a narrow slit. Experiment conducted on the Cambridge Multi Pass Rheometer (MPR4) at a piston speed of 1.4 mm/s at 170C. Video shows the outlet flow (from top to bottom)....

Hassell, David

2008-08-27T23:59:59.000Z

208

Polystyrene PS648 outlet optical birefringence pattern, piston speed 0.16mm/s  

E-Print Network [OSTI]

The optical birefringence pattern obtained from polystyrene PS648 flowing through a narrow slit. Experiment conducted on the Cambridge Multi Pass Rheometer (MPR4) at a piston speed of 0.16 mm/s at 170C. Video shows the outlet flow (from top...

Hassell, David

2008-08-27T23:59:59.000Z

209

Polystyrene PS648 inlet optical birefringence pattern, piston speed 0.16mm/s  

E-Print Network [OSTI]

The optical birefringence pattern obtained from polystyrene PS648 flowing through a narrow slit. Experiment conducted on the Cambridge Multi Pass Rheometer (MPR4) at a piston speed of 0.16 mm/s at 170C. Video shows the inlet flow (from bottom to top)....

Hassell, David

2008-08-27T23:59:59.000Z

210

Greenland ice sheet surface mass balance variability (1988-2004) from calibrated Polar MM5 output*  

E-Print Network [OSTI]

1 Greenland ice sheet surface mass balance variability (1988-2004) from calibrated Polar MM5 output in Environmental Sciences, University of Colorado, Boulder, CO, USA 4 National Snow and Ice Data Center, University coherent regional patterns of Greenland ice sheet surface mass balance (SMB) change over a 17-year period

Howat, Ian M.

211

Spectral imaging of the Sagittarius B2 region in multiple 7-mm molecular lines  

Science Journals Connector (OSTI)

......3-cm and 3-mm bands (combining their N and N into one source). We also include mid-IR fluxes from the MSX catalogue Baby Gator interface. 10 We have fitted data from our own observations with the ATCA at 1.54 GHz (Fig. A1) and 36 GHz (Fig. 2......

P. A. Jones; M. G. Burton; N. F. H. Tothill; M. R. Cunningham

2011-03-11T23:59:59.000Z

212

Spectral imaging of the Sagittarius B2 region in multiple 7-mm molecular lines  

Science Journals Connector (OSTI)

......B2 region in multiple 7-mm molecular lines P. A. Jones 1 2 * M. G. Burton 1 N...EX4 4QL We have undertaken a spectral-line imaging survey of a 6 6 arcmin2 area around...velocity-integrated emission images for 47 lines: 38 molecular lines and nine radio recombination......

P. A. Jones; M. G. Burton; N. F. H. Tothill; M. R. Cunningham

2011-03-11T23:59:59.000Z

213

Corneal Topography of Excimer Laser Photorefractive Keratectomy Using a 6-mm Beam Diameter  

Science Journals Connector (OSTI)

Objective: The purpose of the study is to define qualitative patterns of corneal topography after excimer laser photorefractive keratectomy (PRK) using a 6-mm beam diameter, investigate changes in patterns over time, and identify associations of topography patterns with clinical outcomes. Design: Multicenter, prospective cohort study. Participants: Ninety-eight eyes of 90 patients with myopia who had undergone PRK using the Summit Technology, Inc., excimer laser with a 6-mm beam diameter. Intervention: Computer-assisted videokeratography data were analyzed for eyes having undergone PRK. Topography patterns at 3, 6, and 12 months after surgery were classified and associations with clinical outcomes assessed. Main Outcomes Measured: Topography patterns after PRK were determined at 3, 6, and 12 months after surgery. Associations with preoperative characteristics of age and attempted correction, and postoperative outcomes of uncorrected and spectacle-corrected visual acuity, predictability, astigmatism, corneal haze, glare, halo, and patient satisfaction were analyzed. Results: At 1 year, 21.4% of corneas showed a homogeneous topography, 27.6% showed a toric-with-axis configuration, 10.2% showed a toric-against-axis configuration, 7.1% showed an irregularly irregular topography, 24.5% showed a keyhole/semicircular pattern, and 9.2% showed focal topographic variants. From 3 to 6 months, 40.1 % of maps changed; from 6 to 12 months, 53.1 % of maps changed, generally to optically smoother, regular patterns. Older age and higher attempted correction were associated with the development of more irregular patterns. The irregular groups showed worse predictability than did the regular groups and a tendency for slight overcorrection. The average reported glare/halo of 1.33 (scale = 0 to 5) in this study was less than in a previous study of the 4.5- to 5-mm treatment zone. However, of six patients expressing dissatisfaction with the results of surgery, three ranked their glare or halo at the maximum level. Conclusions: Topography patterns using a 6-mm beam diameter are identifiable, improve with time, and may affect clinical outcomes after photorefractive keratectomy (PRK). The keyhole/semicircular pattern is more prevalent with a 6 mm treatment zone than with smaller treatment zones. Although optical side effects of glare and halo appear to be reduced with the 6-mm treatment, a small number of patients still report substantial glare or halo after the procedure.

Peter S. Hersh; Shetal I. Shah

1997-01-01T23:59:59.000Z

214

RECORD OF CATEGORICAL EXCLUSION DETERMINATION Project 10 No. BH-MM-746  

Broader source: Energy.gov (indexed) [DOE]

BH-MM-746 BH-MM-746 Title: BH Anhydrite Pond Liner Replacement Description: Subcontractor shall provide all labor, tools, equipment, materials, consumables, services, insurance, transportation, storage and supervision required to replace the BH Anhydrite Pond Liner. Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021) 10 CFR 1021.410 (Application of Categorical Exclusions) (a) The actions listed in Appendices A and B of Subpart D are classes of actions that DOE has determined do not individually or cumulatively have a significant effect on the human environment (categorical exclusions). (b) To find that a proposal is categorically excluded, DOE shall determine the following: (1) The proposed action fits within a class of actions that is listed in Appendix A or B of Subpart D;

215

Microsoft Word - WH-MM-818B-819B NEPA.docx  

Broader source: Energy.gov (indexed) [DOE]

8B & WH-MM-819B 8B & WH-MM-819B Title: Repair WH Brine Tanks, WHT-14 & WHT-15 Description: Subcontractor shall shall provide all materials, tools, equipment, supplies, transportation, facilities, labor, supervision, and services required to perform the work associated with the repair of the WH Brine Tanks, WHT-14 & WHT-15. Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021) 10 CFR 1021.410 (Application of Categorical Exclusions) (a) The actions listed in Appendices A and B of Subpart D are classes of actions that DOE has determined do not individually or cumulatively have a significant effect on the human environment (categorical exclusions). (b) To find that a proposal is categorically excluded, DOE shall determine the following:

216

RECORD OF CATEGORICAL EXCLUSION DETERMINATION Project ID No. WH-MM-1000  

Broader source: Energy.gov (indexed) [DOE]

MM-1000 MM-1000 Title: Inspection and Repair of WH-SUN 42-inch Crude Oil Pipeline Description: Subcontractor shall provide all supervision, transportation, labor, materials and equipment required to locate, excavate, and inspect an internal corrosion anomaly at two locations on the WH to SUN Terminal 42-inch crude oil pipeline. Inspections will be performed by Automated Ultrasonic Testing. Repairs shall be performed based on the inspection results. All work will be performed on the DOE pipeline right-of-way. Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021) 10 CFR 1021.410 (Application of Categorical Exclusions) (a) The actions listed in Appendices A and B of Subpart D are classes of actions that DOE has determined do not individually or cumulatively have a significant effect on the human environment

217

THE MAGNETIC FIELD MORPHOLOGY OF THE CLASS 0 PROTOSTAR L1157-mm  

SciTech Connect (OSTI)

We present the first detection of polarization around the Class 0 low-mass protostar L1157-mm at two different wavelengths. We show polarimetric maps at large scales (10'' resolution at 350 {mu}m) from the SHARC-II Polarimeter and at smaller scales (1.''2-4.''5 at 1.3 mm) from the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The observations are consistent with each other and show inferred magnetic field lines aligned with the outflow. The CARMA observations suggest a full hourglass magnetic field morphology centered about the core; this is only the second well-defined hourglass detected around a low-mass protostar to date. We apply two different methods to CARMA polarimetric observations to estimate the plane-of-sky magnetic field magnitude, finding values of 1.4 and 3.4 mG.

Stephens, Ian W.; Looney, Leslie W.; Kwon, Woojin; Crutcher, Richard M. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Hull, Charles L. H.; Plambeck, Richard L. [Astronomy Department and Radio Astronomy Laboratory, 601 Campbell Hall, University of California, Berkeley, CA 94720 (United States); Chapman, Nicholas; Novak, Giles; Matthews, Tristan [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Davidson, Jacqueline [School of Physics, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia); Vaillancourt, John E. [SOFIA Science Center, Universities Space Research Association, NASA Ames Research Center, MS 232-11, Moffett Field, CA 94035-0001 (United States); Shinnaga, Hiroko, E-mail: stephen6@illinois.edu [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A'ohoku Place, Hilo, HI 96720 (United States)

2013-05-20T23:59:59.000Z

218

A Magnetic Dynamo Origin For The Sub-mm Excess In Sgr A*  

E-Print Network [OSTI]

The sub-mm bump observed in the spectrum of Sgr A* appears to indicate the existence of a compact emitting component within several Schwarzschild radii, $r_S$, of the nucleus at the Galactic Center. This is interesting in view of the predicted circularized flow within $\\sim 5-10 r_S$, based on detailed multi-dimensional hydrodynamic simulations of Bondi-Hoyle accretion onto this unusual object. In this paper, we examine the physics of magnetic field generation by a Keplerian dynamo subject to the conditions pertaining to Sgr A*, and show that the sub-mm bump can be produced by thermal synchrotron emission in this inner region. This spectral feature may therefore be taken as indirect evidence for the existence of this circularization. In addition, the self-Comptonization of the sub-mm bump appears to produce an X-ray flux exceeding that due to bremsstrahlung from this region, which may account for the X-ray counterpart to Sgr A* discovered recently by {\\it Chandra}. However, the required accretion rate in the Keplerian flow is orders of magnitude smaller than that predicted by the Bondi-Hoyle simulations. We speculate that rapid evaporation, in the form of a wind, may ensue from the heating associated with turbulent mixing of gas elements with large eccentricity as they settle down into a more or less circular (i.e., low eccentricity) trajectory. The spectrum of Sgr A* longward of $\\sim 1-2$ mm may be generated outside of the Keplerian flow, where the gas is making a transition from a quasi-spherical infall into a circularized pattern.

Fulvio Melia; Siming Liu; Robert Coker

2001-05-27T23:59:59.000Z

219

Correlated Sub-mm and X-ray Variability in Sgr A*  

E-Print Network [OSTI]

PAPER WITHDRAWN. The recent detection of Sgr A* in the X-ray band, together with the radio polarization measurements conducted over the past few years, offer the best constraints yet for understanding the nature of the emitting gas within several Schwarzschild radii ($r_S$) of this supermassive black hole candidate at the Galactic Center. Earlier, we showed that the sub-mm radiation from this source may be associated with thermal synchrotron emission from an inner Keplerian region within the circularization radius of the accreting plasma. In this paper, we extend this analysis in a very important way, by calculating the implied high-energy emission of Sgr A* associated with the orbiting, hot, magnetized gas. We find that for the accretion rate inferred from the fits to the sub-mm data, the dominant contribution to Sgr A*'s X-ray flux is due to self-Comptonization of the radio photons, rather than from bremsstrahlung. The latter is a two-body process, which would produce significant X-ray emission only at much higher accretion rates. This picture leads to the testable prediction that the physical conditions within the inner $\\sim5r_S$ are variable on a time scale of order a year. In particular, the accretion rate $\\dot M$ appears to have changed by about 15% between the sub-mm measurements in 1996 and 1999. Given that the radio and self-Comptonized fluxes are strongly correlated in this picture, the upcoming second generation Chandra observations of Sgr A* may provide the direct evidence required to test this model.

Fulvio Melia; Siming Liu; Marco Fatuzzo

2002-05-28T23:59:59.000Z

220

L1448-MM OBSERVATIONS BY THE HERSCHEL KEY PROGRAM, ''DUST, ICE, AND GAS IN TIME'' (DIGIT)  

SciTech Connect (OSTI)

We present Herschel/Photodetector Array Camera and Spectrometer (PACS) observations of L1448-MM, a Class 0 protostar with a prominent outflow. Numerous emission lines are detected at 55 1000 K) environment, indicative of a shock origin. For OH, IR-pumping processes play an important role in the level population. The molecular emission in L1448-MM is better explained with a C-shock model, but the atomic emission of PACS [O I] and Spitzer/Infrared Spectrograph [Si II] emission is not consistent with C-shocks, suggesting multiple shocks in this region. Water is the major line coolant of L1448-MM in the PACS wavelength range, and the best-fit LVG models predict that H{sub 2}O and CO emit (50%-80%) of their line luminosity in the PACS wavelength range.

Lee, Jinhee; Lee, Jeong-Eun [Department of Astronomy and Space Science, Kyung Hee University, Yongin-shi, Kyungki-do 449-701 (Korea, Republic of); Lee, Seokho [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Green, Joel D.; Evans, Neal J. II [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Choi, Minho [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Yuseong, Daejeon 305-348 (Korea, Republic of); Kristensen, Lars [Harvard-Smithsonian Center for Astrophysics, MS78, Cambridge, MA 02138 (United States); Dionatos, Odysseas; Jørgensen, Jes K., E-mail: jeongeun.lee@khu.ac.kr [Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen (Denmark); Collaboration: DIGIT Team

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sub-mm tests of the gravitational inverse-square law  

E-Print Network [OSTI]

Sub-mm tests of the gravitational inverse-square law are interesting from several quite different perspectives. This paper discusses work by the Eot-Wash group performed since the publication of our initial result in February 2001. We find no evidence for short-range Yukawa interactions. Our results provide an upper limit of 200 micrometers on the size of the largest ``extra'' dimension, and for the unification scenario with 2 large extra dimensions, set an upper limit of 150 micrometers on the size of those dimensions.

E. G. Adelberger

2002-02-02T23:59:59.000Z

222

Sub-mm disk waviness characteristics and slider flying dynamics under thermal FH control  

Science Journals Connector (OSTI)

The flying dynamics and flying stability of a slider are the key issues at sub-5 nm flying height (FH) under thermal FH control. The resonant frequencies of current sliders are at 100 kHz level. At present linear disk velocities, the disk waviness at sub-mm level and 10 micron level can excite the resonant modes of the slider and induce FH modulation. This work uses the triple-harmonic method to monitor the dynamic FH signal during the process of thermal FH control. As the FH reduces, the same disk waviness characteristics excite larger dynamic FH modulation.

Zhi-Min Yuan; Siang Huei Leong; Sumitro Joyo Taslim; Ka Wei Ng; Bo Liu

2008-01-01T23:59:59.000Z

223

Fe/Al2O3 C2H4 Hata mm/10 min  

E-Print Network [OSTI]

Fe/Al2O3 C2H4 () () () () () () () * () 1. (SWNT) SWNT (CVD) (CNT)[1] Hata mm/10 min SWNT (Super Growth)[2]Al2O3 Fe C2H4 SWNT Fe/Al2O3 C2H4 CVD SWNT CNT CNT 2 SiO2 Al2O3 20 (RBM) 1350 cm-1 (D-Band)Fe G/D RBM Fe SWNT Al 15 nm Fe 0.6 nm CVD TEM Fig. 3 3 nm SWNT

Maruyama, Shigeo

224

Self-consistent QM/MM methodologies for structural refinement of photosystem II and other macromolecules of biological interest  

SciTech Connect (OSTI)

The combination of quantum mechanics and molecular mechanics (QM/MM) is one of the most promising approaches to study the structure, function, and properties of proteins and nucleic acids. However, there some instances in which the limitations of either the MM (lack of a proper electronic description) or QM (limited to a few number of atoms) methods prevent a proper description of the system. To address this issue, we review here our approach to fine-tune the structure of biological systems using post-QM/MM refinements. These protocols are based on spectroscopy data, and/or partitioning of the system to extend the QM description to a larger region of a protein. We illustrate these methodologies through applications to several biomolecules, which were pre-optimized at the QM/MM level and then further refined using postQM/MM refinement methodologies: mod(QM/MM), which refines the atomic charges of the residues included in the MM region accounting for polarization effects; mod(QM/MM)-opt that partition the MM region in smaller parts and optimizes each part in an iterative. self-consistent way, and the Polarized-Extended X-Ray Absorption Fine Structure (P-EXAFS) fitting procedure, which fine-tune the atomic coordinates to reproduce experimental polarized EXAFS spectra. The first two techniques were applied to the guanine quadruplex. while the P-EXAFS refinement was applied to the oxygen evolving complex of photosystem II.

Batista, Enrique R [Los Alamos National Laboratory; Sproviero, Eduardo M [YALE UNIV; Newcomer, Michael [YALE UNIV; Gascon, Jose A [YALE UNIV; Batista, Victor S [YALE UNIV

2008-01-01T23:59:59.000Z

225

Organizations around the world lose an estimated five percent of their annual revenues to fraud, according to a survey of fraud experts conducted by the Association of Certified  

E-Print Network [OSTI]

Organizations around the world lose an estimated five percent of their annual revenues to fraud, according to a survey of fraud experts conducted by the Association of Certified Fraud Examiners (ACFE, the University's total expense for scholarships and fellowships was $110,067,000. Fraud cost includes reported

Sanders, Seth

226

www.global.unam.mx www.unam.mx UNAM is home to more than 45 research institutes, centers and university programs; 50 percent of the  

E-Print Network [OSTI]

and university programs; 50 percent of the research carried out in Mexico is generated by our institution. Our researchers cover the spectrum of disciplines, including energy, engineering, environmental sciences, genomic sciences, medicine, nanotechnologies, sustainable development, and water. Nationwide, one out of every 3

Petriu, Emil M.

227

An 8-mm diameter Fiber Robot Positioner for Massive Spectroscopy Surveys  

E-Print Network [OSTI]

Massive spectroscopic survey are becoming trendy in astrophysics and cosmology, as they can address new fundamental knowledge such as Galactic Archaeology and probe the nature of the mysterious Dark Energy. To enable massive spectroscopic surveys, new technology are being developed to place thousands of optical fibers at a given position on a focal plane. These technology needs to be: 1) accurate, with micrometer positional accuracy; 2) fast to minimize overhead; 3) robust to minimize failure; and 4) low cost. In this paper we present the development of a new 8-mm in diameter fiber positionner robot using two 4mm DC-brushless gearmotors, developed in the context of the Dark Energy Spectroscopic Instrument. This development was conducted by a Spanish-Swiss (ES-CH) team led by the Instituto de F\\'isica Te\\'orica (UAM-CSIC) and the Laboratoire d'Astrophysique (EPFL), in collaboration with the AVS company in Spain and the Faulhaber group (MPS & FAULHABER-MINIMOTOR) in Switzerland.

Fahim, Nasib; Kneib, Jean Paul

2014-01-01T23:59:59.000Z

228

The CR 2.0mm (.079") insulation displacement connector features a mounting height as low as  

E-Print Network [OSTI]

7 The CR 2.0mm (.079") insulation displacement connector features a mounting height as low as 6.9mm") pitch insulation displacement connector allows automatic harness production for connection of UL1007 of misinsertion without being permanently distorted. · Twin U-slot insulation displacement section The insulation

Wedeward, Kevin

229

A 16 mm3 autonomous solar-powered sensor node with bi-directional optical communication for distributed sensor net-  

E-Print Network [OSTI]

Abstract A 16 mm3 autonomous solar-powered sensor node with bi- directional optical communication for distributed sensor net- works has been demonstrated. The device digitizes inte- grated sensor signals, a 2.6 mm2 SOI solar cell array, and a micromachined four-quadrant corner-cube retroreflector (CCR

Kahn, Joseph M.

230

SiO2 Fracture: Chemomechanics with a Machine-Learning Hybrid QM/MM Scheme |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Snapshot from a simulation of subcritical stress corrosion cracking in Snapshot from a simulation of subcritical stress corrosion cracking in silica in a wet environment, of the kind that will be carried out at the quantum mechanical level during this INCITE project. Silicon atoms are shown in grey, oxygen in red and hydrogen in white. The nanoscale mechanisms underlying stress corrosion cracking remain unclear and can only be elucidated with these kinds of non-uniform precision simulations, which will allow quantitative comparison with experiments for the first time. James Kermode, King's College London SiO2 Fracture: Chemomechanics with a Machine-Learning Hybrid QM/MM Scheme PI Name: James Kermode PI Email: King's College London Institution: james.kermode@kcl.ac.uk Allocation Program: INCITE Allocation Hours at ALCF: 125 Million

231

RECORD OF CATEGORICAL EXCLUSION DETERMINATION Project ID No. WH-MM-767A  

Broader source: Energy.gov (indexed) [DOE]

A A Title: Replace Brine Disposal System Header to WH Brine Tanks, GFE Description: Manufacturer shall provide the piping and fittings associated with the replacement of the brine disposal system header to the WH Brine Tanks as Government Furnished Equipment (GFE). The manufacturer shall load all materials onto transports supplied by others. Installation will be performed by others under BM-MM-767. Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021) 10 CFR 1021.410 (Application of Categorical Exclusions) (a) The actions listed in Appendices A and B of Subpart D are classes of actions that DOE has determined do not individually or cumulatively have a significant effect on the human environment (categorical exclusions).

232

Operating the LCLS Gas Attenuator and Gas Detector System with Apertures of 6mm Diameter  

SciTech Connect (OSTI)

The possibility of increasing the apertures of the LCLS gas attenuator/gas detector system is considered. It is shown that increase of the apertures from 3 to 6 mm, together with 4-fold reduction of the operation pressure does not adversely affect the vacuum conditions upstream or downstream. No change of the pump speed and the lengths of the differential pumping cells is required. One minor modification is the use of 1.5 cm long tubular apertures in the end cells of the differential pumping system. Reduction of the pressure does not affect performance of the gas attenuator/gas detector system at the FEL energies below, roughly, 2 keV. Some minor performance degradation occurs at higher energies.

Ryutov, D.D.; Bionta, R.M.; Hau-Riege, S.P.; Kishiyama, K.I.; Roeben, M.D.; Shen, S.; /LLNL, Livermore; Stefan, P.M.; /SLAC; ,

2010-11-17T23:59:59.000Z

233

Fluorescence of PRODAN in Water: a Computational QM/MM MD Study  

SciTech Connect (OSTI)

Fluorescent properties of PRODAN (6-propionyl-2-dimethylaminonaphthalene) in water were studied by means of excited state molecular dynamics simulations employing a combined quantum mechanical and molecular mechanical approach with the time-dependent density functional theory (TD-DFT QM/MM MD). The state of the art coupled cluster method was used to benchmark density functional theory calculations. The influence of the water environment on PRODAN emission was investigated by employing several computational schemes with varying description of the solvent. The issue of the molecular geometry of the excited state PRODAN molecule in water was addressed. The experimental emission spectrum was reproduced for the planar excited state conformer of PRODAN in the extended environment of 300 explicit water molecules. The planar conformer was shown to be predominantly responsible for fluorescence. The twisted isomer is strongly stabilized in water, but rapidly evolve towards a conical intersection, and hence the twisted conformer is fluorescently inactive.

Pederzoli, Marek; Sobek, Lukas; Brabec, Jiri; Kowalski, Karol; Cwiklik, Lukasz; Pittner, Jiri

2014-03-28T23:59:59.000Z

234

PROGRESS IN 2 mm GLOW DISCHARGE POLYMER MANDREL DEVELOPMENT FOR NIF  

SciTech Connect (OSTI)

OAK-B135 All planned National Ignition Facility (NIF) capsule targets except machined beryllium require a glow discharge polymer (GDP) mandrel upon which the albator is applied. This mandrel, {approx} 2 mm in diameter, must at least meet if not exceed the symmetry and surface finish requirements of the final capsule. Such mandrels are currently produced by the three-step depolymerizable mandrel technique. The quality of the final mandrel depends upon precise optimization and execution of each of the three steps. They had shown previously that fabrication of a mandrel which met the symmetry and surface finish requirements was feasible using this technique. In this paper they will discuss recent progress towards converting this process into a high yield, production scale process.

NIKROO,A; BOUSQUET,J; COOK,R; McQUILLAN,B.W; PAGUIO,R; TAKAGI,M

2003-06-01T23:59:59.000Z

235

TITLE: AUTHOR(S) SUBMITTED TO: Mm EVOLUTIO:l C: S!LICIC  

Office of Scientific and Technical Information (OSTI)

TITLE: TITLE: AUTHOR(S) SUBMITTED TO: Mm EVOLUTIO:l C: S!LICIC :s!:G:IIA CHAWERS AND THEIR RELATICNStiIP TO 9,1SJLTiC VOLCA~41!'O! John C. Eichelbercjer, R, Gooley "Syinposiuni on the Cr~st" sponsored by the Office of Naval ?esearch and Colorado Schoo' of Hines in Vail, CO, on fi/2-6/76. By occeplmc~ of this arricle for Wbliczrtion. the publisher recognizes tlw Gowxnmnt's (Iic+snsa} ri~htg in any copyright afid tha C+vernrmm and in authoriz% representatives IUIm unrestricted righr !oreprajum intiole or in pwt said article under any mpyrqhtw cured@ tlm publisher. The Los Alamos !kientifw L~boratot-y rsquems that rho publisher identify this article m work ~rformed undnrtha auspi?asof the U.S. Atomic EngWCommi~sion. of the university of California 105 AlAMOS, NEW MEXIC087544 /\ . . , ., UNITED GTATCS A't'5MlC ENE!fGY COM?-I15510N EVOLUTIOii CF SILICIC f!AGfMCiiA!WEF!S

236

The orifice expansion correction for a 50 mm line size at various diameter ratios  

SciTech Connect (OSTI)

The expansion coefficient or factor for a compressible flowmeter corrects for the change in pressure and density as the fluid is accelerated through the flowmeter. The expansion correction currently in use in the United States and also in other countries was developed over fifty years ago by Buckingham and Bean. More recent work reported by Kinghorn shows the equation currently in use to be in error. This paper describes the results of a test program to determine the expansion factors for flange-tapped sharp-edged orifices with diameter ratios between 0.242 and 0.726 in a nominal 50 mm (2 inch) line. Critical flow Venturis are used as the reference standards and dry air as the flowing fluid. The ratio of differential pressure to inlet static pressure is varied over a range of zero to about 0.2 at a constant Reynolds number. The expansion factor is determined form the apparent change in discharge coefficient at a constant Reynolds number.

Seidl, W. [Colorado Engineering Experiment Station, Inc., Nunn, CO (United States)

1995-12-31T23:59:59.000Z

237

Discrimination Report: A Multisensor system for detection andcharacterization of UXO, ESTCP Project MM-0437,  

SciTech Connect (OSTI)

The Berkeley UXO Discriminator (BUD) is an optimally designed active electromagnetic system that not only detects but also characterizes UXO. The performance of the system is governed by a target size-depth curve. BUD was designed to detect UXO in the 20 mm to 155 mm size range for depths between 0 and 1.5 m, and to characterize them in a depth range from 0 to 1.1 m. The system incorporates three orthogonal transmitters and eight pairs of differenced receivers. Eight receiver coils are placed horizontally along the two diagonals of the upper and lower planes of the two horizontal transmitter loops. These receiver coil pairs are located on symmetry lines through the center of the system and each pair sees identical fields during the on-time of the pulse in all of the transmitter coils. They are wired in opposition to produce zero output during the on-time of the pulses in three orthogonal transmitters. Moreover, this configuration dramatically reduces noise in the measurements by canceling the background electromagnetic fields (these fields are uniform over the scale of the receiver array and are consequently nulled by the differencing operation), and by canceling the noise contributed by the tilt motion of the receivers in the Earth's magnetic field, and greatly enhances receiver sensitivity to the gradients of the target response. BUD is mounted on a small cart to assure system mobility. System positioning is provided by a Real Time Kinematic (RTK) GPS receiver. The system has two modes of operation: (1) the search mode, in which BUD moves along a profile and exclusively detects targets in its vicinity providing target depth and horizontal location, and (2) the discrimination mode, in which BUD is stationary above a target, and determines three discriminating polarizability responses together with the object location and orientation from a single position of the system. The detection performance of the system is governed by a size-depth curve shown in Figure 2. This curve was calculated for BUD assuming that the receiver plane is 0.2 m above the ground. Figure 2 shows that, for example, BUD can detect an object with 0.1 m diameter down to the depth of 0.9 m with a depth uncertainty of 10%. Any objects buried at a depth of more than 1.3 m will have a low probability of detection. The discrimination performance of the system is governed by a size-depth curve shown in Figure 3. Again, this curve was calculated for BUD assuming that the receiver plane is 0.2 m above the ground. Figure 3 shows that, for example, BUD can determine the polarizability of an object with 0.1 m diameter down to the depth of 0.63 m with polarizability uncertainty of 10%. Any objects buried at the depth more than 0.9 m will have a low discrimination probability. Object orientation estimates and equivalent dipole polarizability estimates used for large and shallow UXO/scrap discrimination are more problematic as they are affected by higher order (non-dipole) terms induced in objects due to source field gradients along the length of the objects. For example, a vertical 0.4 m object directly below the system needs to be about 0.90 m deep for perturbations due to gradients along the length of the object to be of the order of 20% of the uniform field object response. Similarly, vertical objects 0.5 m, and 0.6 m long need to be 1.15 m, and 1.42 m, respectively, below the system. For horizontal objects the effect of gradients across the object diameter are much smaller. For example, 155 mm and 105 mm projectiles need to be only 0.30 m, and 0.19 m, respectively, below the system. A polarizability index (in cm{sup 3}), which is an average value of the product of time (in seconds) and polarizability rate (in m{sup 3}/s) over the 34 sample times logarithmically spaced from 143 to 1300 {micro}s, and three polarizabilities, can be calculated for any object. We used this polarizability index to decide when the object is in a uniform source field. Objects with the polarizability index smaller than 600 cm{sup 3} and deeper than 1.8 m below BUD, or smaller than 200

Gasperikova, Erika; Smith, J. Torquil; Morrison, H.Frank; Becker,Alex

2008-01-14T23:59:59.000Z

238

Structure for an LHC 90mm Nb3Sn Quadrupole Magnet  

SciTech Connect (OSTI)

A full-scale mechanical model of the LHC Nb{sub 3}Sn quadrupole magnet structure has been designed, built and tested. The structure will support a 90mm bore, 1m long magnet prototype as part of the US LHC Accelerator Research Program (LARP). The structure utilizes Bladder and Key Technology to control and transfer pre-stress from an outer aluminum shell to an inner coil. Axial aluminum rods take care of pre-stress at the ends--ensuring that the coil is fully constrained along all three axes. The outer aluminum shell and an inner ''dummy coil'' (aluminum tube) were extensively instrumented with strain gauges. The gauges were used to monitor and map the effectiveness of the stress relation between the loading structure and a ''dummy'' coil through varying mechanical load conditions --from bladder and key pre-stress at room temperature through cool-down. Test results of the stress distribution in the structure and the in dummy coil is reported and compared with expected results calculated with the structural analysis program ANSYS.

Hafalia, A.R.; Caspi, S.; Bartlett, S.E.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hannaford, C.R.; Higley, H.; Lietzke, A.F.; Lau, B.; Liggins, N.; Mattafirri, S.; McInturff, A.D.; Nyman, M.; Sabbi,G.L.; Scanlan, R.M.; Swanson, J.

2005-04-16T23:59:59.000Z

239

Unveiling the Nature of Coronae in Active Galactic Nuclei through Sub-mm Observations  

E-Print Network [OSTI]

The heating mechanism of a corona above an accretion disk in active galactic nuclei (AGNs) is still unknown. One possible mechanism is magnetic reconnection heating requiring energy equipartition between magnetic energy and gas energy in the disk. Here, we investigate the expected observed properties in radio band from such a magnetized corona. A magnetized corona can generate synchrotron radiation since a huge amount of electrons exists. Although most of radiation would be absorbed by synchrotron self-absorption, high-frequency end of synchrotron emission can escape from a corona and appears at the sub-mm range. If only thermal electrons exist in a corona, the expected flux from nearby Seyferts is below the Atacama Large Millimeter/ submillimeter Array (ALMA) sensitivity. However, if non-thermal electrons coexist in a corona, ALMA can measure the non-thermal tail of the synchrotron radiation from a corona. Such non-thermal population is naturally expected to exist if the corona is heated by magnetic reconnec...

Inoue, Yoshiyuki

2014-01-01T23:59:59.000Z

240

Coding the Beams: Improving Beamforming Training in mmWave Communication System  

E-Print Network [OSTI]

The mmWave communication system is operating at a regime with high number of antennas and very limited number of RF analog chains. Large number of antennas are used to extend the communication range for recovering the high path loss while fewer RF analog chains are designed to reduce transmit and processing power and hardware complexity. In this regime, typical MIMO algorithms are not applicable. Before any communication starts, devices are needed to align their beam pointing angles towards each other. An efficient searching protocol to obtain the best beam angle pair is therefore needed. It is called BeamForming (BF) training protocol. This paper presents a fast BF training protocol called beam coding. Each beam angle is assigned unique signature code. By coding multiple beam angles and steering at their angles simultaneously in a training packet, the best beam angle pair can be obtained in a few packets. This faster BF training protocol not only shows the robustness in non-line-of-sight, multi-user and movi...

Tsang, Y Ming; Addepalli, Sateesh

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1997-Jan 01/10 3.79 01/17 4.19 01/24 2.98 01/31 2.91 1997-Feb 02/07 2.53 02/14 2.30 02/21 1.91 02/28 1.82 1997-Mar 03/07 1.86 03/14 1.96 03/21 1.91 03/28 1.84 1997-Apr 04/04 1.88 04/11 1.98 04/18 2.04 04/25 2.14 1997-May 05/02 2.15 05/09 2.29 05/16 2.22 05/23 2.22 05/30 2.28 1997-Jun 06/06 2.17 06/13 2.16 06/20 2.22 06/27 2.27 1997-Jul 07/04 2.15 07/11 2.15 07/18 2.24 07/25 2.20 1997-Aug 08/01 2.22 08/08 2.37 08/15 2.53 08/22 2.54 08/29 2.58

242

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.194 2.268 1994 Jan-17 to Jan-21 2.360 2.318 2.252 2.250 2.305 1994 Jan-24 to Jan-28 2.470 2.246 2.359 2.417 2.528 1994 Jan-31 to Feb- 4 2.554 2.639 2.585 2.383 2.369 1994 Feb- 7 to Feb-11 2.347 2.411 2.358 2.374 2.356 1994 Feb-14 to Feb-18 2.252 2.253 2.345 2.385 2.418 1994 Feb-21 to Feb-25 2.296 2.232 2.248 2.292 1994 Feb-28 to Mar- 4 2.208 2.180 2.171 2.146 2.188 1994 Mar- 7 to Mar-11 2.167 2.196 2.156 2.116 2.096 1994 Mar-14 to Mar-18 2.050 2.104 2.163 2.124 2.103 1994 Mar-21 to Mar-25 2.055 2.107 2.077 1.981 2.072 1994 Mar-28 to Apr- 1 2.066 2.062 2.058 2.075 1994 Apr- 4 to Apr- 8 2.144 2.069 2.097 2.085 2.066 1994 Apr-11 to Apr-15 2.068 2.089 2.131 2.163 2.187

243

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.347 2.355 2.109 2.111 1.941 2.080 1.963 1.693 1.619 1.721 1.771 1.700 1995 1.426 1.439 1.534 1.660 1.707 1.634 1.494 1.557 1.674 1.790 1.961 2.459 1996 2.483 2.458 2.353 2.309 2.283 2.544 2.521 2.049 1.933 2.481 3.023 3.645 1997 3.067 2.065 1.899 2.005 2.253 2.161 2.134 2.462 2.873 3.243 3.092 2.406 1998 2.101 2.263 2.253 2.465 2.160 2.168 2.147 1.855 2.040 2.201 2.321 1.927 1999 1.831 1.761 1.801 2.153 2.272 2.346 2.307 2.802 2.636 2.883 2.549 2.423 2000 2.385 2.614 2.828 3.028 3.596 4.303 3.972 4.460 5.130 5.079 5.740 8.618 2001 7.825 5.675 5.189 5.189 4.244 3.782 3.167 2.935 2.213 2.618 2.786 2.686

244

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-17 to Jan-21 2.019 2.043 2.103 1994 Jan-24 to Jan-28 2.162 2.071 2.119 2.128 2.185 1994 Jan-31 to Feb- 4 2.217 2.258 2.227 2.127 2.118 1994 Feb- 7 to Feb-11 2.137 2.175 2.162 2.160 2.165 1994 Feb-14 to Feb-18 2.140 2.145 2.205 2.190 2.190 1994 Feb-21 to Feb-25 2.180 2.140 2.148 2.186 1994 Feb-28 to Mar- 4 2.148 2.134 2.122 2.110 2.124 1994 Mar- 7 to Mar-11 2.129 2.148 2.143 2.135 2.125 1994 Mar-14 to Mar-18 2.111 2.137 2.177 2.152 2.130 1994 Mar-21 to Mar-25 2.112 2.131 2.117 2.068 2.087 1994 Mar-28 to Apr- 1 2.086 2.082 2.083 2.092 1994 Apr- 4 to Apr- 8 2.124 2.100 2.116 2.100 2.086 1994 Apr-11 to Apr-15 2.095 2.099 2.123 2.155 2.183 1994 Apr-18 to Apr-22 2.187 2.167 2.174 2.181 2.169

245

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

246

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

247

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12 1.72 1999 1.85 1.77 1.79 2.15 2.26 2.30 2.31 2.80 2.55 2.73 2.37 2.36 2000 2.42 2.66 2.79 3.04 3.59 4.29 3.99 4.43 5.06 5.02 5.52 8.90 2001 8.17 5.61 5.23 5.19 4.19 3.72 3.11 2.97 2.19 2.46 2.34 2.30 2002 2.32 2.32 3.03 3.43 3.50 3.26 2.99 3.09 3.55 4.13 4.04 4.74 2003 5.43 7.71 5.93 5.26 5.81 5.82 5.03 4.99 4.62 4.63 4.47 6.13 2004 6.14 5.37 5.39 5.71 6.33 6.27 5.93 5.41 5.15 6.35 6.17 6.58 2005 6.15 6.14 6.96 7.16 6.47 7.18 7.63 9.53 11.75 13.42 10.30 13.05

248

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/24 1.869 12/31 1.943 1994-Jan 01/07 1.935 01/14 1.992 01/21 2.006 01/28 2.088 1994-Feb 02/04 2.133 02/11 2.135 02/18 2.148 02/25 2.149 1994-Mar 03/04 2.118 03/11 2.125 03/18 2.139 03/25 2.113 1994-Apr 04/01 2.107 04/08 2.120 04/15 2.140 04/22 2.180 04/29 2.165 1994-May 05/06 2.103 05/13 2.081 05/20 2.076 05/27 2.061 1994-Jun 06/03 2.134 06/10 2.180 06/17 2.187 06/24 2.176 1994-Jul 07/01 2.256 07/08 2.221 07/15 2.172 07/22 2.137 07/29 2.207

249

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.116 2.168 2.118 2.139 2.038 2.150 2.083 2.031 2.066 2.037 1.873 1.694 1995 1.490 1.492 1.639 1.745 1.801 1.719 1.605 1.745 1.883 1.889 1.858 1.995 1996 1.964 2.056 2.100 2.277 2.307 2.572 2.485 2.222 2.272 2.572 2.571 2.817 1997 2.393 1.995 1.978 2.073 2.263 2.168 2.140 2.589 3.043 3.236 2.803 2.286 1998 2.110 2.312 2.312 2.524 2.249 2.234 2.220 2.168 2.479 2.548 2.380 1.954 1999 1.860 1.820 1.857 2.201 2.315 2.393 2.378 2.948 2.977 3.055 2.586 2.403 2000 2.396 2.591 2.868 3.058 3.612 4.258 3.981 4.526 5.335 5.151 5.455 7.337 2001 6.027 5.441 5.287 5.294 4.384 3.918 3.309 3.219 2.891 3.065 3.022 2.750

250

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177 2.175 2.205 2.297 2.317 2.582 2.506 2.120 2.134 2.601 2.862 3.260 1997 2.729 2.016 1.954 2.053 2.268 2.171 2.118 2.484 2.970 3.321 3.076 2.361 1998 2.104 2.293 2.288 2.500 2.199 2.205 2.164 1.913 2.277 2.451 2.438 1.953 1999 1.851 1.788 1.829 2.184 2.293 2.373 2.335 2.836 2.836 3.046 2.649 2.429 2000 2.392 2.596 2.852 3.045 3.604 4.279 3.974 4.467 5.246 5.179 5.754 8.267 2001 7.374 5.556 5.245 5.239 4.315 3.867 3.223 2.982 2.558 2.898 2.981 2.748

251

Fumigation of a diesel engine with low Btu gas  

SciTech Connect (OSTI)

A 0.5 liter single-cylinder, indirect-injection diesel engine has been fumigated with producer gas. Measurements of power, efficiency, cylinder pressure, and emissions were made. At each operating condition, engine load was held constant, and the gas-to-diesel fuel ratio was increased until abnormal combustion was encountered. This determined the maximum fraction of the input energy supplied by the gas, E/sub MAX/, which was found to be dependent upon injection timing and load. At light loads, E/sub MAX/ was limited by severe efficiency loss and missfire, while at heavy loads it was limited by knock or preignition. Fumigation generally increased ignition delay and heat release rates, but peak pressures were not strongly influenced. Efficiency was slightly decreased by fumigation as were NO/sub X/ and particle emissions while CO emissions were increased.

Ahmadi, M.; Kittelson, D.B.

1985-01-01T23:59:59.000Z

252

Electrical Generation Using Non-Salable Low BTU Natural Gas  

SciTech Connect (OSTI)

High operating costs are a significant problem for independent operators throughout the U.S. Often, decisions to temporarily idle or abandon a well or lease are dictated by these cost considerations, which are often seen as unavoidable. Options for continuing operations on a marginal basis are limited, but must include non-conventional approaches to problem solving, such as the use of alternative sources of lease power, and scrupulous reduction of non-productive operating techniques and costs. The loss of access to marginal oil and gas productive reservoirs is of major concern to the DOE. The twin difficulties of high operating costs and low or marginal hydrocarbon production often force independent operators to temporarily or permanently abandon existing lease facilities, including producing wells. Producing well preservation, through continued economical operation of marginal wells, must be maintained. Reduced well and lease operating costs are expected to improve oil recovery of the Schaben field, in Ness County, Kansas, by several hundred thousands of barrels of oil. Appropriate technology demonstrated by American Warrior, allows the extension of producing well life and has application for many operators throughout the area.

Scott Corsair

2005-12-01T23:59:59.000Z

253

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,025 1,023 2010's 1,028 1,025 1,026 1,024...

254

Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,033 1,023 1,024 2010's 1,015 1,021 1,022 1,016...

255

Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,010 1,010 1,007 2010's 1,006 1,009 1,014 1,029...

256

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,023 1,022 2010's 1,021 1,017 1,015 1,022...

257

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,024 1,024 1,025 1,027 1,026 1,024 1,025 1,024 1,025 1,024 1,025 2014 1,027 1,022 1,028 1,026 1,029 1,032 1,033...

258

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,050 1,049 1,047 1,048 1,048 1,046 1,041 1,044 1,043 1,045 1,044 2014 1,044 1,044 1,045 1,044 1,038 1,036 1,038...

259

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005...

260

Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043...

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,017 1,017 1,019 1,018 1,018 1,020 1,020 1,020 1,018 1,017 1,016 1,017 2014 1,017 1,017 1,019 1,023 1,022 1,023 1,025...

262

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,040 1,041 2010's 1,034 1,031 1,032 1,037...

263

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,034 1,033 1,033 1,035 1,035 1,038 1,037 1,044 1,045 1,044 1,043 1,044 2014 1,044 1,042 1,041 1,050 1,047 1,048 1,053...

264

Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,064 1,062 1,046 2010's 1,044 1,047 1,032 1,028...

265

Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,039 1,031 2010's 1,033 1,024 1,029 1,034...

266

Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,002 1,001 1,001 1,001 1,002 1,003 1,003 1,002 1,002 1,001 1,001 1,000 2014 1,002 1,004 1,001 1,002 1,001 1,001 1,001...

267

Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,032 1,027 1,032 1,028 1,031 1,033 1,030 1,031 1,037 1,032 1,029 2014 1,029 1,030 1,030 1,030 1,033 1,030 1,031...

268

Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,018...

269

Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012...

270

Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,039 1,037 1,034 1,031 1,032 1,031 1,033 1,039 1,032 1,029 1,034 2014 1,033 1,033 1,032 1,034 1,032 1,033 1,033...

271

Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,010 1,012 1,011 1,017 1,020 1,020 1,023 1,021 1,014 1,013 1,013 2014 1,013 1,012 1,010 1,034 1,041 1,044 1,029...

272

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,052 1,059 1,044 2010's 1,045 1,038 1,043 1,046...

273

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1993 Dec-20 to Dec-24 1.894 1.830 1.859 1.895 1993 Dec-27 to Dec-31 1.965 1.965 1.943 1.901 1994 Jan- 3 to Jan- 7 1.883 1.896 1.962 1.955 1.980 1994 Jan-10 to Jan-14 1.972 2.005 2.008 1.966 2.010 1994 Jan-17 to Jan-21 2.006 1.991 1.982 2.000 2.053 1994 Jan-24 to Jan-28 2.095 2.044 2.087 2.088 2.130 1994 Jan-31 to Feb- 4 2.157 2.185 2.157 2.075 2.095 1994 Feb- 7 to Feb-11 2.115 2.145 2.142 2.135 2.140 1994 Feb-14 to Feb-18 2.128 2.125 2.175 2.160 2.155 1994 Feb-21 to Feb-25 2.160 2.130 2.138 2.171 1994 Feb-28 to Mar- 4 2.140 2.128 2.112 2.103 2.111 1994 Mar- 7 to Mar-11 2.116 2.133 2.130 2.130 2.120 1994 Mar-14 to Mar-18 2.114 2.137 2.170 2.146 2.130 1994 Mar-21 to Mar-25 2.117 2.134 2.120 2.086 2.112

274

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.130 2.072 2.139 1994 Jan-17 to Jan-21 2.196 2.131 2.115 2.148 2.206 1994 Jan-24 to Jan-28 2.283 2.134 2.209 2.236 2.305 1994 Jan-31 to Feb- 4 2.329 2.388 2.352 2.252 2.198 1994 Feb- 7 to Feb-11 2.207 2.256 2.220 2.231 2.236 1994 Feb-14 to Feb-18 2.180 2.189 2.253 2.240 2.254 1994 Feb-21 to Feb-25 2.220 2.168 2.179 2.221 1994 Feb-28 to Mar- 4 2.165 2.146 2.139 2.126 2.144 1994 Mar- 7 to Mar-11 2.149 2.168 2.160 2.144 2.132 1994 Mar-14 to Mar-18 2.109 2.142 2.192 2.164 2.136 1994 Mar-21 to Mar-25 2.107 2.129 2.115 2.050 2.077 1994 Mar-28 to Apr- 1 2.076 2.072 2.070 2.087 1994 Apr- 4 to Apr- 8 2.134 2.090 2.109 2.093 2.081 1994 Apr-11 to Apr-15 2.090 2.099 2.128 2.175 2.196

275

Development of Gas Turbine Combustors for Low BTU Gas  

Science Journals Connector (OSTI)

Large-capacity combined cycles with high-temperature gas turbines burning petroleum fuel or LNG have already ... the other hand, as the power generation technology utilizing coal burning the coal gasification com...

I. Fukue; S. Mandai; M. Inada

1992-01-01T23:59:59.000Z

276

The effects of storage time, storage temperature, and concentration on percent recoveries of thermally desorbed diffusive dosimeter samples contaminated with chloroform  

E-Print Network [OSTI]

, the Analabs Thermal Desorber. 4. The Programmed Thermal Desorber on the left and linear chart recorder on the far right. 5. Gas Chromatograph Peak, Integrator Counting, and GC Conditions for Chloroform. 10 17 19 21 24 6. Photograph Illustrating.... A 2 x 3 x 3 Factorial Treatment Design . 13. Analysis of Variance Table for the Experimental Data 14. Mean Percent Recovery vs. Storage Temperature for 7 Days and 14 Days Storage Time At Concentration I (5 ppm - 8 hours). 26 27 28 29 30 31...

Gallucci, Joseph Matthew

2012-06-07T23:59:59.000Z

277

Detection of significant cm to sub-mm band radio and gamma-ray correlated variability in Fermi bright blazars  

E-Print Network [OSTI]

The exact location of the gamma-ray emitting region in blazars is still controversial. In order to attack this problem we present first results of a cross-correlation analysis between radio (11 cm to 0.8 mm wavelength, F-GAMMA program) and gamma-ray (0.1-300 GeV) ~ 3.5 year light curves of 54 Fermi-bright blazars. We perform a source stacking analysis and estimate significances and chance correlations using mixed source correlations. Our results reveal: (i) the first highly significant multi-band radio and gamma-ray correlations (radio lagging gamma rays) when averaging over the whole sample, (ii) average time delays (source frame: 76+/-23 to 7+/-9 days), systematically decreasing from cm to mm/sub-mm bands with a frequency dependence tau_r,gamma (nu) ~ nu^-1, in good agreement with jet opacity dominated by synchrotron self-absorption, (iii) a bulk gamma-ray production region typically located within/upstream of the 3 mm core region (tau_3mm,gamma=12+/-8 days), (iv) mean distances between the region of gamma-...

Fuhrmann, L; Chiang, J; Angelakis, E; Zensus, J A; Nestoras, I; Krichbaum, T P; Ungerechts, H; Sievers, A; Pavlidou, V; Readhead, A C S; Max-Moerbeck, W; Pearson, T J

2014-01-01T23:59:59.000Z

278

Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption  

Buildings Energy Data Book [EERE]

2 FY 2007 Federal Building Energy Use Shares, by Fuel Type and Agency Site Primary | Primary | FY 2007 Fuel Type Percent Percent | Agency Percent | (1015 Btu) Electricity 49.4%...

279

Large-scale cross-media retrieval of WikipediaMM images with textual and visual query expansion  

Science Journals Connector (OSTI)

In this paper, we present our approaches for the WikipediaMM task at ImageCLEF 2008. We first experimented with a text-based image retrieval approach with query expansion, where the extension terms were automatically selected from a knowledge base that ... Keywords: cross-media re-ranking, image retrieval, query-dependent visual concept detection, textual query expansion

Zhi Zhou; Yonghong Tian; Yuanning Li; Tiejun Huang; Wen Gao

2008-09-01T23:59:59.000Z

280

The south central Texas heavy rain event of October 1998: an MM5 simulation and diagnosis of convective initiation  

E-Print Network [OSTI]

During the weekend of 17-18 October 1998, extremely heavy rainfall over south central Texas resulted in widespread flash flooding and numerous river floods. Southern Hays County received 760 mm of rainfall, and an area of 18,000 km² recorded over...

Scott, Richard Kevin

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Interferometric Mapping of Magnetic Fields: The massive star forming region G34.4+0.23 MM  

E-Print Network [OSTI]

We report millimeter interferometric observations of polarized continuum and line emission from the massive star forming region G34.4. Polarized thermal dust emission at 3 mm wavelength and CO $J=1 \\to 0$ line emission were observed using the Berkeley-Illinois-Maryland Association (BIMA) array. Our results show a remarkably uniform polarization pattern in both dust and in CO J=$1 \\to 0$ emission. In addition, the line emission presents a consistent uniform polarization pattern over most of the velocity channel maps. These uniform polarization patterns are aligned with the north-south main axis of the filament between the main millimeter source (MM) and the ultra-compact H {\\scriptsize II} region, which are the central sources in G34.4, suggesting a magnetic field orthogonal to this axis. This morphology is consistent with a magnetically supported disk seen roughly edge-on.

P. C. Cortes; R. M. Crutcher; D. Shepherd; L. Bronfman

2008-01-28T23:59:59.000Z

282

Accelerator Quality HTS Dipole Magnet Demonstrator designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet  

E-Print Network [OSTI]

Future high-energy accelerators will need very high magnetic fields in the range of 20 T. The EuCARD-2 work-package-10 is a collaborative push to take HTS materials into an accelerator quality demonstrator magnet. The demonstrator will produce 5 T standalone and between 17 T and 20 T, when inserted into the 100 mm aperture of Fresca-2 high field out-sert magnet. The HTS magnet will demonstrate the field strength and field quality that can be achieved. An effective quench detection and protection system will have to be developed to operate with the HTS superconducting materials. This paper presents a ReBCO magnet design using multi strand Roebel cable that develops a stand-alone field of 5 T in a 40 mm clear aperture and discusses the challenges associated with good field quality using this type of material. A selection of magnet designs is presented as result of a first phase of development.

Kirby, G; Ballarino, A; Bottura, L; Chouika, N; Clement, S; Datskov, V; Fajardo, L; Fleiter, J; Gauthier, R; Lambert, L; Lopes, M; Perez, J; DeRijk, G; Rijllart, A; Rossi, L; Ten Kate, H; Durante, M; Fazilleau, P; Lorin, C; Haro, E; Stenvall, A; Caspi, S; Marchevsky, M; Goldacker, W; Kario, A

2014-01-01T23:59:59.000Z

283

Modeling Solvatochromism of a Quinolinium Betaine Dye in Water Solvent Using Sequential Hybrid QM/MM and Semicontinuum Approach  

Science Journals Connector (OSTI)

Modeling Solvatochromism of a Quinolinium Betaine Dye in Water Solvent Using Sequential Hybrid QM/MM and Semicontinuum Approach ... These charges are obtained by fitting procedure to reproduce molecular electrostatic potential at number of points in a grid around the molecule. ... This work was supported by a grant from the Swedish Infrastructure Committee (SNIC) for the project “Multiphysics Modeling of Molecular Materials”, SNIC 023/07-18. ...

N. Arul Murugan

2011-01-10T23:59:59.000Z

284

Magnetic Materials (MM)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beam Time Contacts Calendars Community Scientific Access Site Access Training Science & Education Science & Research Highlights Conferences Seminars Publications Annual Reports...

285

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption grows by 7 percent in the AEO2013 Reference case, from 98 quadrillion Btu in 2011 to 104 quadrillion Btu in 2035-2.5 quadrillion Btu less than in AEO2012-and continues to grow at a rate of 0.6 percent per year, reaching about 108 quadrillion Btu in 2040 (Figure 7). The fossil fuel share of energy consumption falls from 82 percent in 2011 to 78 percent in 2040, as consumption of petroleum-based liquid fuels falls, largely as a result of the incorporation of new fuel efficiency standards for LDVs. figure dataWhile total liquid fuels consumption falls, consumption of domestically produced biofuels increases significantly, from 1.3 quadrillion Btu in 2011 to 2.1 quadrillion Btu in 2040, and its share of

286

Proposal for the award of a contract for the supply of 5 mm depleted-uranium plates for the UA1 experiment  

E-Print Network [OSTI]

Proposal for the award of a contract for the supply of 5 mm depleted-uranium plates for the UA1 experiment

1986-01-01T23:59:59.000Z

287

Proposal for the award of a contract for the supply of 5 mm depleted-uranium plates for the UA1 calorimeter upgrading  

E-Print Network [OSTI]

Proposal for the award of a contract for the supply of 5 mm depleted-uranium plates for the UA1 calorimeter upgrading

1986-01-01T23:59:59.000Z

288

The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at the  

E-Print Network [OSTI]

to produce too much solid water (ice and snow) and not enough liquid water. 1. Introduction Ice clouds playThe Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured­NCAR Mesoscale Model (MM5) to simulate midlatitude ice clouds is evaluated. Model outputs are compared to long

Protat, Alain

289

Test Results of HD2, A High Field Nb3Sn Dipole with A 36 MM Bore  

SciTech Connect (OSTI)

The Superconducting Magnet Program at Lawrence Berkeley National Laboratory (LBNL) has developed the 1 m long Nb{sub 3}Sn dipole magnet HD2. With tilted (flared) ends to avoid obstructing a 36 mm clear bore, HD2 represents a step towards the use of block-type coils in high-field accelerator magnets. The coil design has been optimized to minimize geometric harmonics and reduce the conductor peak field in the end region, resulting in an expected short sample dipole field of 15 T. The support structure is composed by an external aluminum shell pre-tensioned with pressurized bladders and interference keys, and by two stainless steel end plates compressing the coil ends through four aluminum axial rods. We report on magnet design, assembly, and test results, including training performance, quench locations, and strain gauge measurements.

Ferracin, Paolo

2008-05-19T23:59:59.000Z

290

Simultaneous Radio to (Sub-) Mm-Monitoring of Variability and Spectral Shape Evolution of Potential GLAST Blazars  

SciTech Connect (OSTI)

The Large Area Telescope (LAT) instrument onboard GLAST offers a tremendous opportunity for future blazar studies. In order to fully benefit from its capabilities and to maximize the scientific return from the LAT, it is of great importance to conduct dedicated multi-frequency monitoring campaigns that will result comprehensive observations. Consequently, we initiated an effort to conduct a GLAST-dedicated, quasi-simultaneous, broad-band flux-density (and polarization) monitoring of potential GLAST blazars with the Effelsberg and OVRO radio telescopes (11 cm to 7mm wavelength). Here, we present a short overview of these activities which will complement the multi-wavelengths activities of the GLAST/LAT collaboration towards the 'low-energy' radio bands. Further we will give a brief outlook including the extension of this coordinated campaign towards higher frequencies and future scientific aims.

Fuhrmann, L.; Zensus, J.A.; Krichbaum, T.P.; Angelakis, E.; /Bonn, Max Planck Inst., Radioastron.; Readhead, A.C.S.; /Caltech

2011-11-29T23:59:59.000Z

291

ASSEMBLY AND TEST OF A 120 MM BORE 15 T NB3SN QUADRUPOLE FOR THE LHC UPGRADE  

SciTech Connect (OSTI)

In support of the Large Hadron Collider (LHC) luminosity upgrade, the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb{sub 3}Sn IR quadrupole magnet (HQ). With a design short sample gradient of 219 T/m at 1.9 K and a peak field approaching 15 T, one of the main challenges of this magnet is to provide appropriate mechanical support to the coils. Compared to the previous LARP Technology Quadrupole and Long Quadrupole magnets, the purpose of HQ is also to demonstrate accelerator quality features such as alignment and cooling. So far, 8 HQ coils have been fabricated and 4 of them have been assembled and tested in HQ01a. This paper presents the mechanical assembly and test results of HQ01a.

Felice, H.; Caspi, S.; Cheng, D.; Dietderich, D.; Ferracin, P.; Hafalia, R.; Joseph, J.; Lizarazo, J.; Sabbi, G. L.; Wang, X.; Anerella, M.; Ghosh, A. K.; Schmalzle, J.; Wanderer, P.; Ambrosio, G.; Bossert, R.; Zlobin, A. V.

2010-05-23T23:59:59.000Z

292

Electron dynamics in complex environments with real-time time dependent density functional theory in a QM-MM framework  

SciTech Connect (OSTI)

This article presents a time dependent density functional theory (TDDFT) implementation to propagate the Kohn-Sham equations in real time, including the effects of a molecular environment through a Quantum-Mechanics Molecular-Mechanics (QM-MM) hamiltonian. The code delivers an all-electron description employing Gaussian basis functions, and incorporates the Amber force-field in the QM-MM treatment. The most expensive parts of the computation, comprising the commutators between the hamiltonian and the density matrix—required to propagate the electron dynamics—, and the evaluation of the exchange-correlation energy, were migrated to the CUDA platform to run on graphics processing units, which remarkably accelerates the performance of the code. The method was validated by reproducing linear-response TDDFT results for the absorption spectra of several molecular species. Two different schemes were tested to propagate the quantum dynamics: (i) a leap-frog Verlet algorithm, and (ii) the Magnus expansion to first-order. These two approaches were confronted, to find that the Magnus scheme is more efficient by a factor of six in small molecules. Interestingly, the presence of iron was found to seriously limitate the length of the integration time step, due to the high frequencies associated with the core-electrons. This highlights the importance of pseudopotentials to alleviate the cost of the propagation of the inner states when heavy nuclei are present. Finally, the methodology was applied to investigate the shifts induced by the chemical environment on the most intense UV absorption bands of two model systems of general relevance: the formamide molecule in water solution, and the carboxy-heme group in Flavohemoglobin. In both cases, shifts of several nanometers are observed, consistently with the available experimental data.

Morzan, Uriel N.; Ramírez, Francisco F.; Scherlis, Damián A., E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires (C1428EHA) (Argentina); Oviedo, M. Belén; Sánchez, Cristián G. [Departamento de Matemática y Física, Facultad de Ciencias Químicas, INFIQC, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba (Argentina)] [Departamento de Matemática y Física, Facultad de Ciencias Químicas, INFIQC, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba (Argentina); Lebrero, Mariano C. González, E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Instituto de Química y Fisicoquímica Biológicas, IQUIFIB, CONICET (Argentina)] [Instituto de Química y Fisicoquímica Biológicas, IQUIFIB, CONICET (Argentina)

2014-04-28T23:59:59.000Z

293

The Environmental Protection Agency (EPA) has inventoried over 30000 major hazardous waste sites in the US of which about 80 percent present some threat to groundwater supplies. The remediation of each of these  

E-Print Network [OSTI]

in the US of which about 80 percent present some threat to groundwater supplies. The remediation of each new and innovative strategies are developed. Much of the problem and initial cost of subsurface remediation concerns site characterization. A three-dimensional picture of the heterogeneous subsurface

Rubin, Yoram

294

Monthly energy review, July 1990  

SciTech Connect (OSTI)

US total energy consumption in July 1990 was 6.7 quadrillion Btu Petroleum products accounted for 42 percent of the energy consumed in July 1990, while coal accounted for 26 percent and natural gas accounted for 19 percent. Residential and commercial sector consumption was 2.3 quadrillion Btu in July 1990, up 2 percent from the July 1989 level. The sector accounted for 35 percent of July 1990 total consumption, about the same share as in July 1989. Industrial sector consumption was 2.4 quadrillion Btu in July 1990, up 2 percent from the July 1989 level. The industrial sector accounted for 36 percent of July 1990 total consumption, about the same share as in July 1989. Transportation sector consumption of energy was 1.9 quadrillion Btu in July 1990, up 1 percent from the July 1989 level. The sector consumed 29 percent of July 1990 total consumption, about the same share as in July 1989. Electric utility consumption of energy totaled 2.8 quadrillion Btu in July 1990, up 2 percent from the July 1989 level. Coal contributed 53 percent of the energy consumed by electric utilities in July 1990, while nuclear electric power contributed 21 percent; natural gas, 12 percent; hydroelectric power, 9 percent; petroleum, 5 percent; and wood, waste, geothermal, wind, photovoltaic, and solar thermal energy, about 1 percent.

Not Available

1990-10-29T23:59:59.000Z

295

A 0.042 mm^2 programmable biphasic stimulator for cochlear implants suitable for a large number of channels  

E-Print Network [OSTI]

This paper presents a compact programmable biphasic stimulator for cochlear implants. By employing double-loop negative feedback, the output impedance of the current generator is increased, while maximizing the voltage compliance of the output transistor. To make the stimulator circuit compact, the stimulation current is set by scaling a reference current using a two stage binary-weighted transistor DAC (comprising a 3 bit high-voltage transistor DAC and a 4 bit low-voltage transistor DAC). With this structure the power consumption and the area of the circuit can be minimized. The proposed circuit has been implemented in AMS 0.18um high-voltage CMOS IC technology, using an active chip area of about 0.042mm^2. Measurement results show that proper charge balance of the anodic and cathodic stimulation phases is achieved and a dc blocking capacitor can be omitted. The resulting reduction in the required area makes the proposed system suitable for a large number of channels.

Ngamkham, W; Serdijn, W A; Bes, C J; Briaire, J J; Frijns, J H M

2015-01-01T23:59:59.000Z

296

Coupling between the University of California, Davis, Advanced Canopy–Atmosphere–Soil Algorithm (ACASA) and MM5: Preliminary Results for July 1998 for Western North America  

Science Journals Connector (OSTI)

The University of California, Davis, Advanced Canopy–Atmosphere–Soil Algorithm (ACASA) is coupled to the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5) as a land surface ...

R. David Pyles; Bryan C. Weare; Kyaw Tha Paw U; William Gustafson

2003-05-01T23:59:59.000Z

297

Of Horseshoes and Heliotropes: Dynamics of Dust in the Encke Gap M.M. Hedmana,, J.A. Burnsb, D.P. Hamiltonc, M.R. Showalterd  

E-Print Network [OSTI]

Of Horseshoes and Heliotropes: Dynamics of Dust in the Encke Gap M.M. Hedmana,, J.A. Burnsb, D demonstrates "heliotropic" behavior: its geometric center is displaced away from Saturn's center towards

Hamilton, Douglas P.

298

A Phase I Study of MM-302, a HER2-targeted Liposomal Doxorubicin, in Patients with Advanced, HER2- Positive Breast Cancer  

Science Journals Connector (OSTI)

...of MM-302, a HER2-targeted Liposomal Doxorubicin, in Patients with Advanced, HER- Positive Breast Cancer T Wickham K Futch Merrimack Pharmmaceuticals; Merrimack Pharmaceuticals Background: Anthracyclines have been an effective backbone of breast...

T Wickham and K Futch

2012-12-17T23:59:59.000Z

299

"Table A15. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption for" Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a Percent","as a Percent","RSE" " ","per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Economic Characteristics(a)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

300

"Table A45. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

5. Selected Energy Operating Ratios for Total Energy Consumption" 5. Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Value of Shipment Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

"Table A46. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption" Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Employment Size Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

302

"Table A8. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

A8. Selected Energy Operating Ratios for Total Energy Consumption for" A8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Industry Group, and" " Selected Industries, 1991" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumsption","Natural Gas","Row" "Code(a)","Industry Groups and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(PERCENT)","(percent)","Factors"

303

"Table A51. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Energy Operating Ratios for Total Energy Consumption for" 1. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991 " ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

304

"Table A47. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Selected Energy Operating Ratios for Total Energy Consumption for" 7. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumption","Natural Gas","Row" "Code(a)","Industry Group and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

305

"Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Selected Energy Operating Ratios for Total Energy Consumption for" 0. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Economic Characteristics of the" " Establishment, 1991 (Continued)" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent of","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(Percent)","(percent)","Factors"

306

Solvatochromism in a Pyridinium Cyclopentadienylide: Insights from a Sequential Car–Parrinello QM/MM and TD-DFT/Semicontinuum Approach  

Science Journals Connector (OSTI)

In particular, the structure modeling has been carried out using a Car–Parrinello hybrid QM/MM molecular dynamics approach, while the excitation energies were computed using time dependent density functional theory. ... We also aim to investigate the contribution from solvent-induced geometry (indirect solvent effect) and the direct solvent effect on the excitation energy and to characterize the nature of the solvatochromic band. ... This takes into account the polarization of the QM region due to the instantaneous electric field generated by the atomic charges of MM atoms. ...

N. Arul Murugan

2014-06-06T23:59:59.000Z

307

Complete one form for each person seeking Wisconsin COMMERCIAL Pesticide Applicator Certification. Last Name First Name Middle Initial Date of Birth (mm/dd/yyyy)  

E-Print Network [OSTI]

Complete one form for each person seeking Wisconsin COMMERCIAL Pesticide Applicator Certification. Last Name First Name Middle Initial Date of Birth (mm/dd/yyyy) Company Name Company Unit taking the pesticide applicator certification exam. A personalized training/reference manual

Mladenoff, David

308

Use of a Genetically Enhanced, Pediocin-Producing Starter Culture, Lactococcus lactis subsp. lactis MM217, To Control Listeria monocytogenes in Cheddar Cheese  

Science Journals Connector (OSTI)

...been used in Cheddar cheese manufacturing (). The electrotransformed...strain MM210 during cheese manufacturing, indicating that the presence...thus, was not considered an additive. The use of genetically...advice on Cheddar cheese manufacturing, Al Degnan and Gene Hehl...

Nurliza Buyong; Jan Kok; John B. Luchansky

1998-12-01T23:59:59.000Z

309

Characterization of hydrogen dissociation over aluminium-doped zinc oxide using an efficient massively parallel framework for QM/MM calculations  

Science Journals Connector (OSTI)

...evaluations, the new methods result in a two-level...dissociation of a hydrogen molecule over a...physisorbed atomic hydrogen. parallelization...catalysis|zinc oxide|hydrogen dissociation| 1...electronics, energy production, conversion and...user. The QM/MM method (Warshel Levitt...

2011-01-01T23:59:59.000Z

310

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 48, NO. 1, JANUARY 2013 229 A Modular 1 mm Die-Stacked Sensing Platform  

E-Print Network [OSTI]

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 48, NO. 1, JANUARY 2013 229 A Modular 1 mm Die with compatibility to commercial C protocols. A self-adapting power management unit is proposed for efficient battery voltage down conversion for wide range of battery voltages and load current. The power man- agement unit

Dutta, Prabal

311

570 2008 IEEE International Solid-State Circuits Conference ISSCC 2008 / SESSION 31 / RF & mm-WAVE POWER AMPLIFIERS / 31.7  

E-Print Network [OSTI]

570 · 2008 IEEE International Solid-State Circuits Conference ISSCC 2008 / SESSION 31 / RF & mm supply voltages that is very useful for a low-battery-voltage solution. However, it is not compatible with the higher voltages presented by the Li-ion batteries which under charging situations can present supply

Hajimiri, Ali

312

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 1.76mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 1.76 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-05T23:59:59.000Z

313

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.22mm/s, 155C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.22 mm/s at 155C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-04T23:59:59.000Z

314

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 1.76mm/s, 155C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 1.76 mm/s at 155C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-05T23:59:59.000Z

315

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 4.4mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 4.4 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions. The experiments...

Hassell, David

2008-09-05T23:59:59.000Z

316

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 1.32mm/s, 155C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 1.32 mm/s at 155C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-05T23:59:59.000Z

317

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.88mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.88 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-05T23:59:59.000Z

318

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 2.2mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 2.2 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions. The experiments...

Hassell, David

2008-09-05T23:59:59.000Z

319

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.088mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.088 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-04T23:59:59.000Z

320

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.44mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.44 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-04T23:59:59.000Z

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.088mm/s, 155C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.088 mm/s at 155C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-04T23:59:59.000Z

322

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.044mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.044 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-04T23:59:59.000Z

323

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 2.2mm/s, 155C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 2.2 mm/s at 155C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions. The experiments...

Hassell, David

2008-09-05T23:59:59.000Z

324

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 2.64mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 2.64 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-05T23:59:59.000Z

325

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 1.32mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 1.32 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-05T23:59:59.000Z

326

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.88mm/s, 155C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.88 mm/s at 155C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-05T23:59:59.000Z

327

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.044mm/s, 155C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.044 mm/s at 155C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-04T23:59:59.000Z

328

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.44mm/s, 155C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.44 mm/s at 155C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-04T23:59:59.000Z

329

HDPE (CM1) optical birefringence pattern in cross-slot flow, piston speed 0.22mm/s, 175C  

E-Print Network [OSTI]

Rheometer (MPR4) at a piston speed of 0.22 mm/s at 175C. The geometry generates a flow field with an extensional component at the centreline. If the no slip condition at a solid surface is satisfied, the side walls are high shear rate regions...

Hassell, David

2008-09-04T23:59:59.000Z

330

July 1, 1997 / Vol. 22, No. 13 / OPTICS LETTERS 991 Passively Q-switched 1.34-mm Nd:YVO4 microchip laser with  

E-Print Network [OSTI]

-pumped 1.34-mm Nd:YVO4 microchip laser. We achieved single- frequency, 230-ps pulses by using an InGaAsP Nd:YVO4 microchip laser that uses InGaAsP semiconductor saturable- absorber mirrors (SESAM's).1 ­ 3 mode spacing exceeds the gain bandwidth. In addition, a short absorption length is needed for efficient

Keller, Ursula

331

Kernel density in the use of the strong stability method to evaluate the proximity of G/M/1 and M/M/1 systems  

Science Journals Connector (OSTI)

Bouallouche [3] has applied the strong stability method to study the proximity of the G/M/1 and M/M/1 systems when the general distribution of arrivals G is assumed to be hyper-exponantial. In this paper, we show the applicability of the strong stability ... Keywords: approximation, bandwidth, boundary effects, kernel density, queueing systems, strnog stability

Aïcha Bareche; Djamil Aïssani

2007-10-01T23:59:59.000Z

332

Friction Factor Measurement, Analysis, and Modeling for Flat-Plates with 12.15 mm Diameter Hole-Pattern, Tested with Air at Different Clearances, Inlet Pressures, and Pressure Ratios  

E-Print Network [OSTI]

and 2 (hd = 2.9 mm, Cpl = 0.254 mm, Pin = 84 bar, Re= 32500 (maximum)) .................................................................. 76 Figure 50. Dynamic pressure at locations 3 and 4 (hd = 2.9 mm, Cpl = 0.254 mm, Pin = 84 bar, Re= 32500...)) .................................................................................................... 79 Figure 52. Dynamic pressure looked separately at location 1 and 2 ................................ 80 Figure 53. Dynamic pressure looked separately at location 3 and 4 ................................ 81 Figure 54. Dynamic pressure data (hd = 0...

Deva Asirvatham, Thanesh

2011-02-22T23:59:59.000Z

333

Small (5 million Btu/h) and large (300 million Btu/h) thermal test rigs for coal and coal slurry burner development  

SciTech Connect (OSTI)

NEI International Combustion Ltd. of Derby, England, now operates two thermal test rigs for the development of burners capable of handling coal-water slurries (CWS). A general description of the large rig and its capacity was given. Also, the necessary conversions of the equipment to handle CWS were described. Information on the properties of the CWS was included. This consisted of chemical analysis of the parent coal and the slurry, sieve analysis of a dry sample, and viscosity versus temperature data of the CWS. The process of design development of the burner was outlined. Ten illustrations were presented, including schematic diagrams of equipment and graphs of data.

Allen, J.W.; Beal, P.R.; Hufton, P.F.

1983-01-01T23:59:59.000Z

334

ACHIEVING CALIFORNIA'S 33 PERCENT RENEWABLE PORTFOLIO  

E-Print Network [OSTI]

. To remedy this limitation, the report presents a new feed-in tariff approach that is modelled on successful as the basis for feed-in tariff rates that do not achieve the renewable goal, or do so at a higher cost than and risks because of their diversification effects. KEYWORDS Feed-in tariffs, portfolio analysis, generation

335

Measurement of Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Exp  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boundary-Layer Temperature Profiles by Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Experiment and WVIOP 2000 V. Y. Leuski and E. R. Westwater Cooperative Institute for Research in the Environmental Sciences National Oceanic and Atmospheric Administration Environmental Technology Laboratory University of Colorado Boulder, Colorado Introduction A scanning 5-mm-wavelength radiometer was deployed during two Intensive Operational Periods (IOPs) at the Atmospheric Radiation Measurement (ARM) Program's Cloud and Radiation Testbed (CART) facilities. The first was conducted at the North Slope of Alaska (NSA) and Adjacent arctic Ocean (AAO) site near Barrow, Alaska, during March 1999. One goal was to evaluate the ability of an

336

Verification of the Astrometric Performance of the Korean VLBI Network, using comparative SFPR studies with the VLBA at 14/7 mm  

E-Print Network [OSTI]

The Korean VLBI Network (KVN) is a new mm-VLBI dedicated array with capability for simultaneous observations at multiple frequencies, up to 129 GHz. The innovative multi-channel receivers present significant benefits for astrometric measurements in the frequency domain. The aim of this work is to verify the astrometric performance of the KVN using a comparative study with the VLBA, a well established instrument. For that purpose, we carried out nearly contemporaneous observations with the KVN and the VLBA, at 14/7 mm, in April 2013. The KVN observations consisted of simultaneous dual frequency observations, while the VLBA used fast frequency switching observations. We used the Source Frequency Phase Referencing technique for the observational and analysis strategy. We find that having simultaneous observations results in a superior performance for compensation of all atmospheric terms in the observables, in addition to offering other significant benefits for astrometric analysis. We have compared the KVN astr...

Rioja, Mar\\'\\ia J; Jung, TaeHyun; Sohn, Bong Won; Byun, Do-Young; Agudo, Iván; Cho, Se-Hyung; Lee, Sang-Sung; Kim, Jongsoo; Kim, Kee-Tae; Oh, Chung Sik; Han, Seog-Tae; Je, Do-Heung; Chung, Moon-Hee; Wi, Seog-Oh; Kang, Jiman; Lee, Jung-Won; Chung, Hyunsoo; Kim, Hyo Ryoung; Kim, Hyun-Goo; Lee, Chang-Hoon; Roh, Duk-Gyoo; Oh, Se-Jin; Yeom, Jae-Hwan; Song, Min-Gyu; Kang, Yong-Woo

2014-01-01T23:59:59.000Z

337

Comparación entre cirugía retrógrada intrarrenal y litotricia extracorpórea para el tratamiento de la litiasis de polo inferior renal de hasta 15 mm. Estudio prospectivo aleatorizado  

Science Journals Connector (OSTI)

ResumenIntroducción La litrotricia extracorpórea (LEC) es el tratamiento más recomendado para la litiasis renal menor de 2 cm. Sin embargo, las bajas tasas libre de cálculos (SFR) en litiasis de polo renal inferior hace plantear nuevas técnicas que ofrezcan mejores resultados, como la cirugía intrarrenal retrógrada (CRIR). Objetivo Comparar la eficacia del tratamiento con LEC vs la CRIR en términos de SFR postratamiento en pacientes con litiasis renal de polo inferior de menos de 15 mm. Material y métodos Se realizó un estudio prospectivo aleatorizado para evaluar los resultados de LEC y CRIR en pacientes portadores de litiasis renal de polo inferior menor a 15 mm. De un total de 55 pacientes en 31 se realizaron LEC (grupo 1) y 24 CRIR (grupo 2). Se evaluó el tamaño de la litiasis, lateralidad, tiempo operatorio, complicaciones de las técnicas según escala de Clavien, SFR y litiasis residuales a los 2 meses evaluado por tomografía computarizada de abdomen y pelvis sin contraste. Se realizó análisis estadístico para comparar las variables utilizando el programa Stata 11. Resultados Los grupos no mostraron diferencias significativas en sus características generales, a excepción del tiempo operatorio (mayor para CRIR). CRIR mostró tener mayor proporción de SFR y de litiasis menor de 3 mm. Además CRIR mostró menor tasa de litiasis clínicamente significativa, siendo esta asociación estadísticamente significativa (0% vs 42,3%; p  3 mm (0% vs. 58.8%), being statistically significant (P < .05). Clavien III or higher complications were not reported in any of the groups. Conclusions In the treatment of lower pole stone RIRS has the same results than ESWL in terms of SFR. Regard

R.M. Vilches; A. Aliaga; D. Reyes; F. Sepulveda; A. Mercado; F. Moya; R. Ledezma; J.P. Hidalgo; T. Olmedo; F. Marchant

2014-01-01T23:59:59.000Z

338

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

8 PM)" 8 PM)" "Alaska" "Fuel, Quality",1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",203,141,148 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",8698,8520,8278 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",0.33,0.5,0.71

339

Coupling MM5 with ISOLSM:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

16 to 64 GB memory per node 375 MHz per CPU 10 Tflopsec peak speed 44 TB disk space in GPFS Revise MPP library and MPP object files for ISOLSM. Investigate...

340

Deposition of TiN and HfO{sub 2} in a commercial 200 mm remote plasma atomic layer deposition reactor  

SciTech Connect (OSTI)

The authors describe a remote plasma atomic layer deposition reactor (Oxford Instruments FlexAL trade mark sign ) that includes an inductively coupled plasma source and a load lock capable of handling substrates up to 200 mm in diameter. The deposition of titanium nitride (TiN) and hafnium oxide (HfO{sub 2}) is described for the combination of the metal-halide precursor TiCl{sub 4} and H{sub 2}-N{sub 2} plasma and the combination of the metallorganic precursor Hf[N(CH{sub 3})(C{sub 2}H{sub 5})]{sub 4} and O{sub 2} plasma, respectively. The influence of the plasma exposure time and substrate temperature has been studied and compositional, structural, and electrical properties are reported. TiN films with a low Cl impurity content were obtained at 350 deg. C at a growth rate of 0.35 A /cycle with an electrical resistivity as low as 150 {mu}{omega} cm. Carbon-free (detection limit <2 at. %) HfO{sub 2} films were obtained at a growth rate of 1.0 A /cycle at 290 deg. C. The thickness and resisitivity nonuniformity was <5% for the TiN and the thickness uniformality was <2% for the HfO{sub 2} films as determined over 200 mm wafers.

Heil, S. B. S.; Hemmen, J. L. van; Hodson, C. J.; Singh, N.; Klootwijk, J. H.; Roozeboom, F.; Sanden, M. C. M. van de; Kessels, W. M. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Oxford Instruments Plasma Technology, North End, Yatton BS49 4AP (United Kingdom); Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); NXP Semiconductors Research, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

2007-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Scanning slit for HIE-ISOLDE: vibrational test (linear motion actuator from UHV design, speed = 2.5 mm/s)  

E-Print Network [OSTI]

This report summarizes the results of a series of tests performed on the prototype HIE-ISOLDE diagnostic box (HIE-DB) regarding the vibrations and drifts in the transverse position of the scanning blade while moving inside or outside the box. To monitor the transverse position of the blade, a series of 0.1 mm diameter holes were drilled on it and their positions were tracked with an optical system. The linear motion actuator was acquired from UHV design (model LSM38-150-SS), is driven by a stepper motor and has all the guiding mechanisms outside vacuum. The maximum speed of the scanning blade during the tests was 2.5 mm/s. The transverse movement of the slit in the direction perpendicular to the movement was lower than 50 m, and is dominated by the displacement of the contact point of the applied force on the lead-screw. An offset on the slit position was observed while changing the direction of movement of the blade, its amplitude being of the order of 30 m. The amplitudes of the displacements of the transve...

Bravin, E; Sosa, A

2014-01-01T23:59:59.000Z

342

EIA - 2010 International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Analyses> International Energy Outlook 2010 - Highlights Analyses> International Energy Outlook 2010 - Highlights International Energy Outlook 2010 - Highlights print version PDF Logo World marketed energy consumption increases by 49 percent from 2007 to 2035 in the Reference case. Total energy demand in non-OECD countries increases by 84 percent, compared with an increase of 14 percent in OECD countries. In the IEO2010 Reference case, which does not include prospective legislation or policies, world marketed energy consumption grows by 49 percent from 2007 to 2035. Total world energy use rises from 495 quadrillion British thermal units (Btu) in 2007 to 590 quadrillion Btu in 2020 and 739 quadrillion Btu in 2035 (Figure 1). Figure 1. World marketed energy consumption, 2007-2035 (quadrillion Btu) Chart data

343

Addressing the problem with natural ventilation : producing a guide for designers to integrate natural ventilation into the early stages of building design  

E-Print Network [OSTI]

Currently, the United States alone is responsible for approximately twenty percent of the world's total energy consumption. This consumption is equivalent to roughly 100 quadrillion Btu of energy, or in plainer terms, over ...

Fennessy, Kristian (Kristian M.)

2014-01-01T23:59:59.000Z

344

USA Energy Demand and World Markets  

Science Journals Connector (OSTI)

In the AEO95 model reference case scenario, the United States is projected to consume 104 quadrillion Btu of primary energy resources in 2010, 19 percent more than in 1993. Primary energy consumption includes ...

Charles E. Brown Ph.D.

2002-01-01T23:59:59.000Z

345

Production of Medium BTU Gas by In Situ Gasification of Texas Lignite  

E-Print Network [OSTI]

The necessity of providing clean, combustible fuels for use in Gulf Coast industries is well established; one possible source of such a fuel is to perform in situ gasification of Texas lignite which lies below stripping depths. If oxygen (rather...

Edgar, T. F.

1979-01-01T23:59:59.000Z

346

Microfabricated BTU monitoring device for system-wide natural gas monitoring.  

SciTech Connect (OSTI)

The natural gas industry seeks inexpensive sensors and instrumentation to rapidly measure gas heating value in widely distributed locations. For gas pipelines, this will improve gas quality during transfer and blending, and will expedite accurate financial accounting. Industrial endusers will benefit through continuous feedback of physical gas properties to improve combustion efficiency during use. To meet this need, Sandia has developed a natural gas heating value monitoring instrument using existing and modified microfabricated components. The instrument consists of a silicon micro-fabricated gas chromatography column in conjunction with a catalytic micro-calorimeter sensor. A reference thermal conductivity sensor provides diagnostics and surety. This combination allows for continuous calorimetric determination with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This system will find application at remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. Microfabrication techniques will allow the analytical components to be manufactured in production quantities at a low per-unit cost.

Einfeld, Wayne; Manginell, Ronald Paul; Robinson, Alex Lockwood; Moorman, Matthew Wallace

2005-11-01T23:59:59.000Z

347

Sulfidation-oxidation of advanced metallic materials in simulated low-Btu coal-gasifier environments  

Science Journals Connector (OSTI)

The corrosion behavior of structural alloys in complex multicomponent gas environments is of considerable interest for their effective utilization in coal conversion schemes. Little understanding...

T. C. Tiearney Jr.; K. Natesan

1982-02-01T23:59:59.000Z

348

Energy Policy: Independence by 1985 My Be Unreachable Without Btu Tax  

Science Journals Connector (OSTI)

...domestic oil production and the diffi-culties...Countries (OPEC). The decontrol...the Earth Day move-ment...indeed-high enough per-haps to...about by OPEC in late 1973 and early...of oil a day less than...18 miles per gallon by...of oil a day (mbd...consumption in 1973. The added...domestic production of energy...

LUTHER J. CARTER

1976-02-13T23:59:59.000Z

349

Understanding Utility Rates or How to Operate at the Lowest $/BTU  

E-Print Network [OSTI]

:F.~:brP'RQJ~:Cr::::::::: ::: :::] by LONE STAR GAS COMPANY JIM PHILLIPS, P.E., CEM IEQUIPMENT D A T Ai IENERGY DAT Ai KW Gas Rate: $4.86 per MCFGenerator Size: 5"00 Coqen Rate: $3.00 Iper MCF Recoverable Heat: 4.3' MMBH I _ Fuel Consumption: 8.0 MCFH Electric Rate $6.80 per...:F.~:brP'RQJ~:Cr::::::::: ::: :::] by LONE STAR GAS COMPANY JIM PHILLIPS, P.E., CEM IEQUIPMENT D A T Ai IENERGY DAT Ai KW Gas Rate: $4.86 per MCFGenerator Size: 5"00 Coqen Rate: $3.00 Iper MCF Recoverable Heat: 4.3' MMBH I _ Fuel Consumption: 8.0 MCFH Electric Rate $6.80 per...

Phillips, J. N.

350

Helium ion distributions in a 4 kJ plasma focus device by 1 mm-thick large-size polycarbonate detectors  

Science Journals Connector (OSTI)

Abstract Helium ion beam profile, angular and iso-ion beam distributions in 4 kJ Amirkabir plasma focus (APF) device were effectively observed by the unaided eyes and studied in single 1 mm-thick large-diameter (20 cm) polycarbonate track detectors (PCTD). The \\{PCTDs\\} were processed by 50 Hz–HV electrochemical etching using a large-size ECE chamber. The results show that helium ions produced in the APF device have a ring-shaped angular distribution peaked at an angle of ? ± 60 ° with respect to the top of the anode. Some information on the helium ion energy and distributions is also provided. The method is highly effective for ion beam studies.

M. Sohrabi; M. Habibi; V. Ramezani

2014-01-01T23:59:59.000Z

351

Commercial Buildings Energy Consumption and Expenditures 1992 - Executive  

U.S. Energy Information Administration (EIA) Indexed Site

& Expenditures > Executive Summary & Expenditures > Executive Summary 1992 Consumption & Expenditures Executive Summary Commercial Buildings Energy Consumption and Expenditures 1992 presents statistics about the amount of energy consumed in commercial buildings and the corresponding expenditures for that energy. These data are based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), a national energy survey of buildings in the commercial sector, conducted by the Energy Information Administration (EIA) of the U.S. Department of Energy. Figure ES1. Energy Consumption is Commercial Buidings by Energy Source, 1992 Energy Consumption: In 1992, the 4.8 million commercial buildings in the United States consumed 5.5 quadrillion Btu of electricity, natural gas, fuel oil, and district heat. Of those 5.5 quadrillion Btu, consumption of site electricity accounted for 2.6 quadrillion Btu, or 48.0 percent, and consumption of natural gas accounted for 2.2 quadrillion Btu, or 39.6 percent. Fuel oil consumption made up 0.3 quadrillion Btu, or 4.0 percent of the total, while consumption of district heat made up 0.4 quadrillion Btu, or 7.9 percent of energy consumption in that sector. When the energy losses that occur at the electricity generating plants are included, the overall energy consumed by commercial buildings increases to about 10.8 quadrillion Btu (Figure ES1).

352

DOE-EIA-0484(2010)  

Gasoline and Diesel Fuel Update (EIA)

World World marketed energy consumption increases by 49 percent from 2007 to 2035 in the Reference case. Total energy demand in the non-OECD countries increases by 84 percent, compared with an increase of 14 percent in the OECD countries. In the IEO2010 Reference case-which reflects a scenario assuming that current laws and policies remain unchanged throughout the projection period-world marketed energy consumption grows by 49 percent from 2007 to 2035. Total world energy use rises from 495 quadrillion British thermal units (Btu) in 2007 to 590 quadrillion Btu in 2020 and 739 quadrillion Btu in 2035 (Figure 1). The global economic recession that began in 2007 and continued into 2009 has had a profound impact on world energy demand in the near term. Total world marketed energy consumption contracted by 1.2 percent in 2008 and by an estimated 2.2 percent in 2009, as manufactur- ing and consumer

353

Two-dimensional free-energy surface on the exchange reaction of alkyl chloride/chloride using the QM/MM-MC method  

SciTech Connect (OSTI)

Two-dimensional free-energy surfaces are calculated for alkyl chloride/chloride exchange/inversion reactions: Cl- + RCl (R = Me and t-Bu) surrounded by one hundred H2O molecules as a model of solvent. The methodology of free-energy calculation by perturbation theory based on a mixed-Hamiltonian model (QM/MM) combined with Monte Carlo sampling of the solvent configurations was used to obtain the changes in solvation free energy. We devised a special procedure to analyze the two-dimensional free-energy surfaces to gain unique insight into the differences in the reaction mechanisms between the two systems. The inversion reaction path for R = t-Bu on the free-energy surface is found to proceed in an asynchronous way within a concerted framework via the ion-pair region. This is in contrast to the R = Me system that proceeds as a typical SN2 reaction. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

Ohisa, M.; Yamataka, H.; Dupuis, Michel; Aida, Misako

2007-12-05T23:59:59.000Z

354

EIA - Annual Energy Outlook 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption, which was 101.4 quadrillion Btu in 2007, grows by 10 percent in the AEO2012 Reference case, from 98.2 quadrillion Btu in 2010 to 108.0 quadrillion Btu in 2035-6 quadrillion Btu less than the AEO2011 projection for 2035. The fossil fuel share of energy consumption falls from 83 percent of total U.S. energy demand in 2010 to 77 percent in 2035. Biofuel consumption has been growing and is expected to continue to grow over the projection period. However, the projected increase would present challenges, particularly for volumes of ethanol beyond the saturation level of the E10 gasoline pool. Those additional volumes are likely to be slower in reaching the market, as infrastructure and consumer demand adjust. In

355

cession Numb Main Entry Title Description Restrictions Material type Extent in container Location Slides Map Case M/A Date MM/DD/YY Accession date Notes Folder List 81-002 Froman, Lenore Photographs, 1959  

E-Print Network [OSTI]

Slides Map Case M/A Date MM/DD/YY Accession date Notes Folder List 81-002 Froman, Lenore Photographs, 1959 Five color 35mm slides depicting the departure of R/V Stranger on Naga Expedition, 15 June 1959. Photographs 5 items Slides 1A 1A 7/21/1981 1981 Not Needed 81-003 SIO Ship Operations and Marine Technical

Russell, Lynn

356

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

marketed energy consumption is projected to increase by 57 percent marketed energy consumption is projected to increase by 57 percent from 2004 to 2030. Total energy demand in the non-OECD countries increases by 95 percent, compared with an increase of 24 percent in the OECD countries. In the IEO2007 reference case-which reflects a scenario where current laws and policies remain unchanged throughout the projection period-world marketed energy consumption is projected to grow by 57 percent over the 2004 to 2030 period. Total world energy use rises from 447 quadrillion British thermal units (Btu) in 2004 to 559 quadrillion Btu in 2015 and then to 702 qua- drillion Btu in 2030 (Figure 1). Global energy demand grows despite the relatively high world oil and natural gas prices that are projected to persist into the mid-term outlook. The most rapid growth in energy demand from 2004 to 2030 is projected for nations outside

357

Monthly energy review, July 1994  

SciTech Connect (OSTI)

Energy production during April 1994 totaled 5.5 quadrillion Btu, a 2.2-percent increase from the level of production during April 1993. Coal production increased 11.8 percent, petroleum production fell 4.0 percent, and natural gas production decreased 0.3 percent. All other forms of energy production combined were down 2.9 percent from the level of production during April 1993. Energy consumption during April 1994 totaled 6.7 quadrillion Btu, 1.4 percent above the level of consumption during April 1993. Petroleum consumption increased 3.9 percent, coal consumption rose 1.1 percent, and natural gas consumption decreased 1.5 percent. Consumption of all other forms of energy combined decreased 0.4 percent from the level 1 year earlier. Net imports of energy during April 1994 totaled 1.5 quadrillion Btu, 8.7 percent above the level of net imports 1 year earlier. Net imports of petroleum increased 4.5 percent, and net imports of natural gas were up 18.5 percent. Net exports of coal fell 9.2 percent from the level in April 1993.

Not Available

1994-07-26T23:59:59.000Z

358

Cost-effectiveness of bupropion, nortriptyline, and psychological intervention in smoking cessation.  

E-Print Network [OSTI]

+ Placebo + Nortrip + Bup + MM MM/PI MM MM Table 2 Cost andincremental cost-effectiveness of smoking cessationestimates) Subjects Cost per person treated Percent Mean

Hall, Sharon M; Lightwood, James M; Humfleet, Gary L; Bostrom, Alan; Reus, Victor I; Muñoz, Ricardo

2005-01-01T23:59:59.000Z

359

Economics of Plant Energy Savings Projects in a Changing Market  

E-Print Network [OSTI]

Energy prices have exhibited significant volatility in recent years. For example, natural gas prices ranged from $4 to $15 per MM BTU's in calendar years 2005 through 2011. Future prices are uncertain but are likely to retain a high level...

White, D. C.

2011-01-01T23:59:59.000Z

360

Computation of the free energy due to electron density fluctuation of a solute in solution: A QM/MM method with perturbation approach combined with a theory of solutions  

SciTech Connect (OSTI)

We developed a perturbation approach to compute solvation free energy ?? within the framework of QM (quantum mechanical)/MM (molecular mechanical) method combined with a theory of energy representation (QM/MM-ER). The energy shift ? of the whole system due to the electronic polarization of the solute is evaluated using the second-order perturbation theory (PT2), where the electric field formed by surrounding solvent molecules is treated as the perturbation to the electronic Hamiltonian of the isolated solute. The point of our approach is that the energy shift ?, thus obtained, is to be adopted for a novel energy coordinate of the distribution functions which serve as fundamental variables in the free energy functional developed in our previous work. The most time-consuming part in the QM/MM-ER simulation can be, thus, avoided without serious loss of accuracy. For our benchmark set of molecules, it is demonstrated that the PT2 approach coupled with QM/MM-ER gives hydration free energies in excellent agreements with those given by the conventional method utilizing the Kohn-Sham SCF procedure except for a few molecules in the benchmark set. A variant of the approach is also proposed to deal with such difficulties associated with the problematic systems. The present approach is also advantageous to parallel implementations. We examined the parallel efficiency of our PT2 code on multi-core processors and found that the speedup increases almost linearly with respect to the number of cores. Thus, it was demonstrated that QM/MM-ER coupled with PT2 deserves practical applications to systems of interest.

Suzuoka, Daiki; Takahashi, Hideaki, E-mail: hideaki@m.tohoku.ac.jp; Morita, Akihiro [Department of Chemistry, Graduate School of Science, Tohoku University, Sendai Miyagi 980-8578 (Japan)] [Department of Chemistry, Graduate School of Science, Tohoku University, Sendai Miyagi 980-8578 (Japan)

2014-04-07T23:59:59.000Z

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

"NAICS",,"per Employee","of Value Added","of Shipments"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 6.1;" 1 Relative Standard Errors for Table 6.1;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" 311,"Food",3.8,4.3,4.1 3112," Grain and Oilseed Milling",8.2,5.8,5.6 311221," Wet Corn Milling",0,0,0 31131," Sugar Manufacturing",0,0,0 3114," Fruit and Vegetable Preserving and Specialty Foods ",7.3,6.7,6.2

362

Coal surface control for advanced fine coal flotation  

SciTech Connect (OSTI)

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

1992-03-01T23:59:59.000Z

363

Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992  

SciTech Connect (OSTI)

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. [California Univ., Berkeley, CA (United States); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. [Columbia Univ., New York, NY (United States); Hu, W.; Zou, Y.; Chen, W. [Utah Univ., Salt Lake City, UT (United States); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. [Praxis Engineers, Inc., Milpitas, CA (United States)

1992-03-01T23:59:59.000Z

364

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Maine" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-",241,237,262,266,327,319,367,506,619 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-",13138,13124,12854,12823,12784,13171,12979,12779,13011 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-",0.71,0.69,0.77,0.78,0.7,0.65,0.72,0.82,0.72

365

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Table 1.14 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011 Fiscal Year 7 Crude Oil and Lease Condensate Natural Gas Plant Liquids 1 Natural Gas 2 Coal 3 Total Fossil Fuels 4 Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Million Barrels Quadrillion Btu Percent Million Barrels Quadrillion Btu Percent Trillion Cubic Feet Quadrillion Btu Percent Million Short Tons Quadrillion Btu Percent Quadrillion Btu Percent 2003 R 689 R 4.00 R 33.3 R 94 R 0.35 R 14.9 R 7.08 R 7.81 R 35.5 R 466 R 9.58 R 43.3 R 21.74 R 37.2 2004 R 680 R 3.94 R 33.8 R 105 R .39 R 16.0 R 6.68 R 7.38 R 34.0 R 484 R 9.89 R 43.9 R 21.60 R 37.0

366

Acid Washed Glass Beads 1. Weigh 50 g of 0.5 mm glass beads (Sigma G-9268, 425-600 m) into a 100 ml-orange cap Pyrex  

E-Print Network [OSTI]

Acid Washed Glass Beads 1. Weigh 50 g of 0.5 mm glass beads (Sigma G-9268, 425-600 µm) into a 100 ml-orange cap Pyrex bottle. The volume of glass beads should be no more than 1/5 of the volume of the bottle used for washes. To scale up, use 100 g of glass beads and a 250 ml orange cap Pyrex bottle. 2

Aris, John P.

367

RNA Extraction and Labeling 1. To IP pellet (~ 25 l vol), add 175 l of: 10 mM HEPES-NaOH, pH 7.5  

E-Print Network [OSTI]

mg/ml stock) 2. Incubate 15 minutes at 37°C. Vortex every 2-3 minutes. 3. Extract twice with an equal (ultrapure) 0.1 mg/ml BSA (NEB) 10 units RNase inhibitor (0.25 µl RNasin) 10 units NEB RNA Ligase (0.5 µl) 5 µl of DEPC-treated ddH2O. Keep samples on ice. 13. Add 5 µl of: 96 µl Formamide 1 µl 500 mM EDTA, p

Aris, John P.

368

District of Columbia Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 76.0 76.2 75.3 73.4 81.1 82.2 72.9 80.3 74.6 72.2 72.3 71.0 2003 70.4 71.0 69.3 63.9 64.8 75.9 55.6 69.6 77.6 71.8 73.7 74.8 2004 76.1 74.9 74.1 72.9 71.1 70.5 74.3 74.9 74.5 72.5 77.7 78.4 2005 81.0 79.1 78.9 74.5 76.2 85.2 80.8 74.1 80.3 78.0 81.0 81.0 2006 78.2 77.9 77.1 70.3 69.8 67.8 70.1 76.8 73.8 78.1 78.2 78.7 2007 77.0 80.1 73.9 74.4 62.5 77.4 68.0 77.1 67.8 74.0 75.2 78.5 2008 78.0 78.1 78.2 67.8 69.9 70.3 72.2 71.4 73.2 68.0 79.2 78.9 2009 78.8 78.7 76.5 71.7 70.4 67.9 64.8 77.2 68.5 72.4 72.6 78.2 2010 77.6 78.6 75.3 64.5 61.1 68.0 66.9 66.1 72.7 69.1 77.7 77.3 2011 79.4 75.3 74.8 72.3 54.3 60.9 70.6 78.8 70.9 77.6 78.7 71.5

369

Colorado Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

370

Connecticut Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 99.3 99.3 99.2 99.3 99.1 99.2 99.0 99.0 86.9 99.5 99.1 99.2 2003 100.0 98.7 98.7 98.4 98.2 98.4 98.2 98.0 97.6 97.9 98.2 98.5 2004 98.7 98.7 98.7 98.5 97.8 98.7 98.0 98.8 98.7 97.8 98.8 98.9 2005 99.0 99.0 98.9 98.7 98.6 98.5 98.5 98.5 98.5 98.3 98.3 98.6 2006 98.7 98.6 98.7 98.4 98.3 98.4 98.4 98.5 98.3 97.9 98.2 98.3 2007 98.4 98.6 98.6 98.3 98.3 97.3 98.4 97.6 95.5 97.9 97.5 98.2 2008 98.2 98.0 98.1 97.9 97.3 95.8 97.8 97.4 97.4 96.8 97.2 97.8 2009 97.8 98.0 97.9 97.4 97.3 97.2 97.3 97.4 97.1 96.5 96.9 97.3 2010 97.8 97.7 97.6 97.0 96.9 97.3 97.1 97.1 96.8 95.9 96.7 97.0 2011 97.0 97.4 97.0 96.3 96.6 96.5 96.4 96.6 97.0 95.6 96.3 96.5

371

Percent of Commercial Natural Gas Deliveries in Massachusetts Represented  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.8 99.8 99.7 99.7 1991 99.8 99.8 99.9 99.9 99.9 99.8 99.7 99.6 99.6 99.8 99.9 99.9 1992 99.9 99.9 99.8 99.8 99.7 99.8 99.7 99.6 99.6 99.6 99.7 99.8 1993 98.9 98.7 98.5 97.7 96.5 97.7 96.8 89.2 97.5 96.7 96.9 97.8 1994 75.2 78.4 72.5 69.8 69.8 61.2 67.0 86.0 79.7 90.6 81.2 87.1 1995 87.9 89.4 92.0 88.3 88.0 82.7 74.6 77.3 77.5 81.0 81.6 79.5 1996 84.7 83.5 82.4 80.2 79.2 71.3 68.1 61.3 55.4 69.5 62.5 68.9 1997 68.0 69.0 72.9 74.1 69.9 48.5 46.0 41.3 43.8 48.7 62.9 68.6

372

Massachusetts Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 99.9 99.9 99.9 99.9 99.8 99.9 99.8 99.8 99.9 99.8 99.8 99.8 2006 100.0 100.0 100.0 100.0 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 2007 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 2008 89.7 89.7 89.3 86.2 78.4 70.7 68.4 68.3 68.1 77.4 83.6 89.3 2009 90.8 93.1 87.5 86.3 84.5 64.9 72.9 66.1 67.2 78.4 83.0 87.7 2010 91.5 89.7 88.6 82.6 77.8 68.7 65.0 61.5 67.4 75.8 84.1 93.4

373

Missouri Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

374

Mississippi Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

375

Pennsylvania Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

376

Vermont Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

377

Maryland Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

378

Hawaii Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

379

Louisiana Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

380

Percent of Commercial Natural Gas Deliveries in Wisconsin Represented by  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 94.1 94.2 94.5 94.0 92.6 87.7 86.1 84.2 84.2 84.3 91.1 95.0 1990 91.6 91.5 91.9 91.9 90.3 86.5 83.1 82.4 82.6 87.5 90.1 93.3 1991 93.8 92.3 92.9 91.2 88.8 83.8 80.7 84.7 83.6 86.7 91.5 92.1 1992 92.7 92.1 91.6 90.0 85.8 82.3 83.3 84.1 85.2 90.7 93.4 95.1 1993 95.2 96.0 95.3 93.5 92.1 90.8 89.2 88.5 90.0 92.6 95.2 96.0 1994 97.1 97.6 97.4 96.6 91.8 89.9 83.5 87.1 87.8 90.8 94.4 84.4 1995 93.5 94.0 93.2 92.4 90.0 81.8 82.3 84.8 87.3 88.9 93.4 93.6 1996 93.9 94.8 94.0 92.0 89.9 86.1 82.1 83.8 82.4 87.1 90.9 91.8 1997 89.7 88.2 88.5 83.3 77.4 60.6 67.8 55.4 62.9 69.3 85.9 83.2 1998 87.0 81.6 79.8 75.5 55.6 55.5 47.6 48.5 45.5 71.1 74.9 79.2

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Arkansas Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

382

Kentucky Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 92.9 92.8 93.1 92.8 91.4 93.2 94.3 94.4 95.3 91.9 93.4 94.2 2003 93.8 94.2 93.1 93.4 96.9 95.2 94.6 94.5 95.7 92.2 93.9 94.0 2004 94.0 93.9 92.9 92.7 96.0 94.9 95.0 95.3 95.6 93.7 93.7 95.1 2005 94.5 94.5 94.6 94.0 95.7 95.3 95.9 95.8 96.1 93.8 95.3 95.7 2006 96.2 95.5 95.8 98.0 95.5 97.7 96.8 97.3 97.2 95.6 96.4 96.2 2007 96.2 95.9 96.2 95.8 96.4 96.6 96.7 96.9 97.0 95.7 95.8 96.3 2008 96.4 95.9 96.1 96.1 96.0 96.8 97.0 96.5 96.4 95.4 95.7 95.8 2009 95.8 95.3 95.2 94.9 95.3 95.6 95.1 95.6 95.5 94.8 94.9 95.6 2010 95.4 95.7 95.9 95.7 96.0 96.7 96.5 96.3 96.1 94.8 95.3 95.8 2011 95.1 95.0 95.2 95.4 94.9 94.5 95.9 96.5 96.1 97.2 96.3 96.1

383

Alabama Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

384

Indiana Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 98.9 98.5 98.7 99.1 92.8 99.4 98.8 98.8 99.1 99.0 98.8 97.8 2003 97.0 97.0 97.0 96.3 96.6 97.7 96.1 100.0 97.2 96.4 97.1 96.9 2004 97.0 96.7 96.7 96.3 97.3 96.3 97.8 96.5 96.0 96.1 96.7 96.7 2005 96.8 96.7 96.2 95.7 96.4 96.0 96.3 96.3 96.2 96.1 96.4 96.5 2006 96.2 96.3 96.2 96.3 95.8 96.4 95.5 96.1 96.5 97.0 96.2 96.3 2007 96.4 97.0 95.9 96.6 96.1 95.2 95.0 95.6 95.0 94.8 95.9 95.9 2008 95.9 95.8 95.8 94.2 94.1 94.1 93.9 93.9 93.4 93.1 94.4 94.3 2009 94.0 94.9 93.2 92.8 91.7 93.2 92.8 92.1 91.7 93.1 93.3 93.7 2010 94.1 94.5 94.2 93.1 94.1 92.8 93.0 92.9 92.6 93.1 94.0 94.8 2011 95.2 94.7 94.6 94.4 94.4 94.5 93.9 94.7 93.8 94.2 94.2 94.6

385

North Dakota Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

386

West Virginia Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

387

Utah Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

388

New Hampshire Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

389

Wisconsin Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

390

South Carolina Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

391

Arizona Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

392

Rhode Island Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

393

Nebraska Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 71.4 90.5 87.4 84.8 95.4 86.8 82.7 90.4 81.3 75.5 79.7 78.6 2003 80.3 93.4 87.6 91.1 95.3 94.9 87.9 80.0 95.4 69.4 78.6 80.7 2004 81.5 91.9 86.8 94.5 88.7 84.8 89.1 89.1 88.2 83.7 83.7 88.7 2005 86.1 87.2 86.3 83.0 84.5 86.5 85.0 84.4 85.5 83.9 84.3 84.1 2006 87.1 85.9 86.7 85.8 85.0 86.2 87.0 86.2 85.9 83.3 84.2 85.1 2007 84.9 87.4 89.4 86.1 87.5 86.9 88.7 85.5 83.3 77.5 76.6 83.9 2008 86.6 89.0 90.3 89.6 90.1 89.0 87.7 87.3 85.6 75.2 77.2 85.0 2009 90.2 89.1 89.1 86.8 85.8 88.1 86.7 88.8 86.4 83.6 84.6 85.4 2010 87.0 88.8 89.5 86.2 82.5 87.3 86.5 87.8 87.6 87.1 84.0 86.8 2011 87.2 88.9 89.2 86.3 86.1 86.1 87.8 89.1 86.7 86.3 83.3 86.1

394

Virginia Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 88.0 91.4 90.8 89.2 91.0 91.3 88.4 91.6 88.4 88.0 89.0 89.1 2003 88.6 88.6 87.7 87.7 85.5 91.4 80.6 86.1 83.9 86.4 88.3 89.1 2004 88.5 88.5 88.0 87.2 84.7 86.1 87.7 85.7 87.7 88.3 88.4 89.3 2005 90.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 91.2 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

395

Nevada Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

396

Montana Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 99.8 99.8 99.8 99.8 99.8 99.9 99.9 99.9 2007 99.9 99.9 99.8 99.8 99.7 100.0 99.8 99.8 99.8 99.8 99.9 99.9 2008 99.9 99.9 99.9 99.9 99.8 99.8 99.8 99.8 99.8 99.9 99.9 99.9 2009 99.8 99.9 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.9 99.9 99.9 2010 99.8 99.9 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.9 99.9 99.9

397

Ohio Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

398

Delaware Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

399

Oklahoma Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 99.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

400

Maine Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.8 99.8

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

New Jersey Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 98.0 97.8 97.7 97.9 92.7 97.0 98.1 97.2 97.2 95.4 96.1 95.6 2003 94.9 95.0 95.5 95.0 95.1 95.2 95.3 95.1 96.7 94.4 94.9 94.7 2004 94.5 95.4 95.0 95.4 95.8 95.2 95.2 94.4 95.0 94.2 94.4 94.7 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

402

Iowa Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

403

Alaska Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

404

Oregon Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

405

Kansas Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 2005 99.5 99.5 99.5 99.2 99.5 99.5 99.6 99.6 99.6 99.7 99.7 99.9 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

406

Percent of Commercial Natural Gas Deliveries in South Carolina Represented  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.5 98.5 98.6 98.3 98.1 98.2 98.1 97.7 97.7 97.8 98.0 97.3 1990 98.6 98.4 98.3 98.1 92.2 97.6 97.6 97.5 97.9 97.3 98.0 98.6 1991 98.7 98.9 98.7 96.9 97.4 97.5 97.3 97.7 97.7 97.4 98.9 98.9 1992 99.1 99.1 98.9 98.6 98.5 95.8 95.5 95.8 97.0 99.7 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 95.1 94.6 100.0 95.3 100.0 100.0 1994 100.0 100.0 100.0 99.7 97.8 98.3 97.0 95.7 95.2 95.6 96.2 99.9 1995 97.8 97.5 96.7 95.0 95.6 88.4 95.0 95.1 95.3 95.3 95.9 100.0 1996 100.0 100.0 100.0 100.0 97.5 96.9 100.0 97.3 97.3 96.4 97.4 100.0 1997 100.0 98.3 97.8 96.0 100.0 100.0 99.9 97.1 98.8 99.9 100.0 98.0

407

New York Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

408

Washington Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

409

Texas Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 99.9 100.0 100.0 99.9 100.0 100.0 100.0 99.9 100.0 100.0 100.0

410

Georgia Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

411

NNSA hits 21 percent of CFC goal | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

represent such diverse fields as medical research, education, environment, recreation and sports, civil rights and science and technology. By working collectively, the...

412

Colorado Natural Gas % of Total Residential - Sales (Percent...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 99.8 99.6 100.0 100.0 100.0 100.0 100.0 100.0 1.0 100.0 2000's 100.0 100.0 100.0...

413

Number Percent Official Lawrence HC 26,934 100%  

E-Print Network [OSTI]

Lawrence Free State 134 Blue Valley Northwest 117 Blue Valley North 109 Lawrence 94 Saint Thomas Aquinas 90 Olathe East 80 Shawnee Mission Northwest 78 Shawnee Mission South 75 Shawnee Mission West 71 Total 990

414

Sandia National Laboratories: Voltage Increases Up to 25 Percent...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

415

Conditions for collection efficiencies greater than one hundred percent  

SciTech Connect (OSTI)

An account is given for the conditions under which the collection efficiency is hydrogenated amorphous silicon pin-diodes increases to values larger than 100%. By specific bias illumination through the p-side bias generated photocarriers are collected under certain probe beam conditions of the collection efficiency measurement, leading to apparent large collection efficiencies. By numerical modeling they investigated the influence of the diode thickness, bias photon flux and probe absorption coefficient as well as applied voltage for possible sensor applications which may utilize this optical amplifying principle. The alternative with bias light through the n-side and probe light through the p-side is also explored. Collection efficiency values determined by the photogating of bias generated holes become only slightly larger than 100% in contrast to the electron case where values in excess of 3,000% are presented.

Brueggemann, R.; Zollondz, J.H.; Main, C.; Gao, W.

1997-07-01T23:59:59.000Z

416

State and National Wind Resource Potential 30 Percent Capacity...  

Wind Powering America (EERE)

Note - 50% exclusions are not cumulative. If an area is non-ridgecrest forest on FS land, it is just excluded at the 50% level one time. 1) Exclude areas of slope > 20% Derived...

417

Transcending Portland Cement with 100 percent fly ash concrete  

SciTech Connect (OSTI)

The use of concrete, made with 100% fly ash and no Portland cement, in buildings at the Transportation Institute in Bozeman, MT, USA, is described. 3 refs., 7 figs.

Cross, D.; Akin, M.; Stephens, J.; Cuelh, E. [Montana State University, MT (United States)

2009-07-01T23:59:59.000Z

418

PERCENT FEDERAL LAND FOR OIL/GAS FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

Federalland as your second layer. Copy the code into a VBA module in ArcMap. Inputs: Data frame in ArcMap named "Task 2" Layer (0) is a reference layer of your choice Layer...

419

RESEARCH ARTICLE Forty percent revenue increase by combining organic  

E-Print Network [OSTI]

Uganda. Cabbage was grown on eight replicate farms in close association with a farmer field school-Saharan Africa indicate the need for effective strategies to restore soils, while improving smallholder incomes an eco- nomic perspective and none have explored its potential in intensively managed, market vegetable

Paris-Sud XI, Université de

420

Percent of Industrial Natural Gas Deliveries in Connecticut Represente...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 66.4 55.8 55.8 2000's 47.3 54.0 48.9 45.3 44.0 46.4 48.5 50.0 47.3 37.5 2010's 31.1 31.0 32.3...

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Percent of Commercial Natural Gas Deliveries in Connecticut Represente...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 96.0 93.0 96.5 98.1 80.9 82.0 87.0 81.9 68.7 62.8 2000's 78.3 77.6 72.4 68.1 69.0 70.3 71.0 71.5...

422

Percent of Commercial Natural Gas Deliveries in Connecticut Represente...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 100.0 100.0 98.4 90.0 81.6 76.5 74.5 80.4 74.8 85.5 90.8 99.5 1990 100.0 100.0 98.7 95.9 92.3 89.9 87.5 86.9 87.2 91.3...

423

Connecticut Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1.0 100.0 2000's 100.0 99.0 99.0...

424

Percent of Industrial Natural Gas Deliveries in Connecticut Represente...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 66.1 48.5 50.9 50.2 58.7 44.3 34.1 58.5 55.7 73.8 58.9 51.8 2002 45.0 47.4 53.0 41.3 52.5 50.1 38.1 49.3 53.9 52.2 49.1...

425

Table 2. Percent of Households with Vehicles, Selected Survey...  

U.S. Energy Information Administration (EIA) Indexed Site

or More","NA","NA",93.75,96.42857143,91.27516779,97.46835443 "Race of Householder1" " White",88.61111111,"NA",91.54929577,91.68704156,90.27093596,92.77845777 " Black...

426

Federal Government Increases Renewable Energy Use Over 1000 Percent...  

Office of Environmental Management (EM)

to power 225,000 homes or a city the size of El Paso, Texas, for a year. "Particularly in light of tight oil and gas supplies caused by Hurricanes Katrina and Rita, it is important...

427

Minnesota Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

428

Michigan Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 97.9 97.7 97.9 97.7 95.5 94.0 95.6 94.1 91.2 91.7 92.6 92.9 2003 93.8 93.4 92.3 96.3 95.8 95.0 95.8 95.5 94.0 93.6 95.9 94.7 2004 95.1 95.6 95.3 95.7 90.9 95.6 95.7 95.6 95.1 95.0 95.3 95.7 2005 95.9 96.1 96.0 95.9 95.9 95.6 95.1 95.1 94.4 93.3 94.2 95.1 2006 94.6 94.4 94.6 95.4 94.6 95.0 94.2 93.8 92.6 92.1 93.4 93.6 2007 94.6 95.1 95.5 95.3 95.5 95.5 94.8 94.5 93.8 92.7 92.1 93.5 2008 93.6 93.5 94.1 95.5 94.2 95.6 95.1 94.3 94.2 91.9 93.1 94.0 2009 93.9 94.6 94.4 94.5 94.3 94.5 93.2 93.8 92.3 91.6 92.7 92.2 2010 93.6 93.5 93.8 80.9 93.6 93.1 93.1 92.7 91.5 90.4 91.6 92.1 2011 92.3 92.7 92.1 93.0 93.1 92.7 91.9 91.5 90.2 89.8 91.0 91.7

429

New Mexico Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

430

Percent of Industrial Natural Gas Deliveries in New Hampshire Represented  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 13.5 16.2 17.9 15.4 9.9 5.0 3.7 8.5 13.7 14.1 17.5 16.5 2002 16.4 11.2 14.6 9.0 8.3 9.0 5.2 10.1 7.7 29.4 32.3 17.4 2003 6.7 7.2 19.4 17.0 10.6 13.5 13.0 12.3 13.4 15.5 21.1 26.3 2004 30.3 9.1 10.7 10.4 7.1 5.5 3.9 4.3 5.6 8.7 9.7 17.0 2005 17.6 17.5 12.0 6.5 6.9 6.6 3.3 10.0 5.5 6.4 13.7 13.0 2006 16.3 24.3 18.2 18.2 17.7 12.9 4.8 9.1 8.0 12.8 8.8 15.6 2007 11.7 16.6 12.0 8.4 15.3 8.9 5.4 7.0 6.0 8.5 10.7 45.8 2008 23.0 22.9 22.0 15.0 16.4 16.2 14.6 12.3 11.2 13.6 16.1 20.0 2009 30.5 28.1 25.0 16.7 15.5 16.3 14.5 13.7 13.3 16.5 18.7 23.1 2010 18.0 16.4 15.4 12.2 10.3 8.8 8.6 10.9 8.0 10.7 13.6 14.1

431

Fresh Way to Cut Combustion, Crop and Air Heating Costs Avoids Million BTU Purchases: Inventions and Innovation Combustion Success Story  

SciTech Connect (OSTI)

Success story written for the Inventions and Innovation Program about a new space heating method that uses solar energy to heat incoming combustion, crop, and ventilation air.

Wogsland, J.

2001-01-17T23:59:59.000Z

432

Biological removal of organic constituents in quench waters from high-Btu coal-gasification pilot plants  

SciTech Connect (OSTI)

Studies were initiated to assess the efficiency of bench-scale, activated-sludge treatment for removal of organic constituents from coal-gasification process effluents. Samples of pilot-plant, raw-gas quench waters were obtained from the HYGAS process of the Institute of Gas Technology and from the slagging, fixed-bed (SFB) process of the Grand Forks Energy Technology Center. The types of coal employed were Bituminous Illinois No. 6 for the HYGAS and Indian Head lignite for the SFB process. These pilot-plant quench waters, while not strictly representative of commercial condensates, were considered useful to evaluate the efficiency of biological oxidation for the removal of organics. Biological-reactor influent and effluent samples were extracted using a methylene chloride pH-fractionation method into acid, base, and neutral fractions, which were analyzed by capillary-column gas-chromatography/mass-spectrometry. Influent acid fractions of both HYGAS and SFB condensates showed that nearly 99% of extractable and chromatographable organic material comprised phenol and alkylated phenols. Activated-sludge treatment removed these compounds almost completely. Removal efficiency of base-fraction organics was generally good, except for certain alkylated pyridines. Removal of neutral-fraction organics was also good, except for certain alkylated benzenes, certain polycyclic aromatic hydrocarbons, and certain cycloalkanes and cycloalkenes, especially at low influent concentrations.

Stamoudis, V C; Luthy, R G

1980-02-01T23:59:59.000Z

433

Classes of compounds responsible for mutagenic and cytotoxic activity in tars and oils formed during low BTU gasification of coal  

SciTech Connect (OSTI)

The Lovelace Inhalation Toxicology Research Institute (ITRI), in cooperation with the Morgantown Energy Technology Center (METC), has completed toxicity screening of vapors, liquids and solids formed during operation of an experimental pressurized, stirred-bed, coal gasifier at METC. Vapors collected from the cooled process stream on Tenax resins had no mutagenic activity in the Ames Salmonella assay. Dichloromethane extracts of liquids and solids collected from the effluent or process streams were fractionated by gel chromatography into fractions containing mostly aliphatic compounds; neutral polycyclic aromatic hydrocarbons (PAH); polar (PAH) and heterocyclic compounds; and salts. The polar fraction was partitioned into acids, bases, water soluble compounds and phenols. Bacterial mutagenic activity was highest in the basic fraction with additional activity in the neutral PAHs. Highest cytotoxicity toward both the bacteria and canine alveolar macrophages was in the phenolic fraction. Treatment of the gasifier tars by nitrosation or by acetylation to remove primary aromatic amines (PAA) reduced the bacterial mutagenicity by 50-60%, indicating that some, but not all, of the mutagenicity was due to PAA.

Henderson, R.F.; Bechtold, W.F.; Benson, J.M.; Newton, G.J.; Hanson, R.L.; Brooks, A.L.; Dutcher, J.S.; Royer, R.E.; Hobbs, C.H.

1986-04-01T23:59:59.000Z

434

Determination of performance characteristics of a one-cylinder diesel engine modified to burn low-Btu (lignite) gas  

E-Print Network [OSTI]

d = standard deviation INTRODUCTION The United States' vast lignite reserves' energy po- tential, while not commanding the public interest as much as the more "exotic" forms of energy conversion (solar, geothermal, wave energy, etc. ), has been... viewed with in- creasing interest by the technical community. Although a tremendous amount of energy is totalled in this country' s lignite coal reserves (Texas deposits alone are estimated at 100 billion tons [1] ), the energy is low-grade; i. e...

Blacksmith, James Richard

2012-06-07T23:59:59.000Z

435

Yang Keller and Brown MM 2012.pdf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Genomics Genomics on Pretreatment Inhibitor Tolerance of Zymomonas mobilis Shihui Yang, Martin Keller, and Steven D. Brown Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 2 Genome Annotation of ZM4 Using Systems Biology Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 3 Identification of Genes Tolerant to Acetate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 3.1 nhaA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 3.2 hfq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 3.3 nhaA and hfq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 3.4 himA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 4 Heterologous

436

Microsoft Word - BM-MM-755.docx  

Broader source: Energy.gov (indexed) [DOE]

55 55 Title: Repair and Line BM Brine Tank, BMT-1 Description: Subcontractor shall provide all transportation, materials, equipment, supplies, tools, facilities, utilities, labor and supervision required to repair and line the BM brine tank, BMT-1. The tank will be cleaned by others before turning it over to the Subcontractor for repairs. Tasks include welding repair work (if required), welding inspection, tank surface preparation, and lining. Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021) 10 CFR 1021.410 (Application of Categorical Exclusions) (a) The actions listed in Appendices A and B of Subpart D are classes of actions that DOE has determined do not individually or cumulatively have a significant effect on the human environment

437

Study on the hydrogen storage and electrochemical properties of Mm0.75Mg0.25Ni3.5Co0.2Alx (x = 0.0–0.4) alloys  

Science Journals Connector (OSTI)

Abstract Mm0.75Mg0.25Ni3.5Co0.2Alx (x = 0.0–0.4) alloys were prepared by the magnetic induction melting method. The influence of Al content on the hydrogen storage and electrochemical properties of the alloy was investigated. The results show that the hydrogen storage capacity is gradually reduced as the Al content increases. The (La,Pr,Nd)Ni5 cell volume and the change of enthalpy also decrease as Al is added. Although the discharge capacity decreases with increasing Al content, the addition of Al can reduce the stability of Mm0.75Mg0.25Ni3.5Co0.2Alx (x = 0.0–0.4) hydride and improve the performance of hydrogen desorption thermodynamics. For the alloy electrode without Al, the maximum discharge capacity (Cmax) and retention discharge capacity after 100 charge–discharge cycles (C100) is 385 mA h g?1 and 202 mA h g?1, respectively. For the alloy electrode with x = 0.4, while Cmax is only 323 mA h g?1, C100 is 273 mA h g?1, which is much higher than that of the alloy without Al. The addition of Al can improve the charge–discharge cycle lifetime effectively and can increase the limiting current IL. The kinetic performance of the Mm0.75Mg0.25Ni3.5Co0.2Alx (x = 0.0–0.4) alloy electrode can also be improved by increasing the Al content.

Lan Zhiqiang; Peng Wenqi; Fu Shuying; Wei Wenlou; Wei Ningyan; Guo Jin

2015-01-01T23:59:59.000Z

438

Physical Consequences of a Momenta-Transfering Particle Theory of Induced Gravity and New Measurements Indicating Variation from Inverse Square Law at Length Scale of .1 mm: Statistical Time Properties of Gravitational Interaction and Analysis Thereof  

E-Print Network [OSTI]

This work presents physical consequences of our theory of induced gravity (Ref.1) regarding: 1) the requirement to consider shape and materials properties when calculating graviton cross section collision area; 2) use of Special Relativity; 3) implications regarding the shape of cosmos; 4) comparison to explanations using General Relativity; 5) properties of black holes; 6) relationship to the strong force and the theorized Higgs boson; 7) the possible origin of magnetic attraction; 8) new measurements showing variation from gravitational inverse square behavior at length scales of 0.1 mm and relationship to the Cosmological constant, and proof of the statistical time properties of the gravitational interaction.

Gary Christopher Vezzoli

2001-04-04T23:59:59.000Z

439

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights Overview Figure 1. World energy consumption, 1990-2035. figure data In the IEO2011 Reference case, which does not incorporate prospective legislation or policies that might affect energy markets, world marketed energy consumption grows by 53 percent from 2008 to 2035. Total world energy use rises from 505 quadrillion British thermal units (Btu) in 2008 to 619 quadrillion Btu in 2020 and 770 quadrillion Btu in 2035 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for Economic Cooperation and Development (non-OECD nations),2 where demand is driven by strong long-term economic growth. Energy use in non-OECD nations increases by 85 percent in the Reference case, as compared with an increase of 18 percent for the OECD economies.

440

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights Overview Figure 1. World energy consumption, 1990-2035. figure data In the IEO2011 Reference case, which does not incorporate prospective legislation or policies that might affect energy markets, world marketed energy consumption grows by 53 percent from 2008 to 2035. Total world energy use rises from 505 quadrillion British thermal units (Btu) in 2008 to 619 quadrillion Btu in 2020 and 770 quadrillion Btu in 2035 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for Economic Cooperation and Development (non-OECD nations),2 where demand is driven by strong long-term economic growth. Energy use in non-OECD nations increases by 85 percent in the Reference case, as compared with an increase of 18 percent for the OECD economies.

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

The IEO2006 projections indicate continued growth in world energy use, despite The IEO2006 projections indicate continued growth in world energy use, despite world oil prices that are 35 percent higher in 2025 than projected in last year's outlook. Energy resources are thought to be adequate to support the growth expected through 2030. The International Energy Outlook 2006 (IEO2006) projects strong growth for worldwide energy demand over the 27-year projection period from 2003 to 2030. Despite world oil prices that are 35 percent higher in 2025 than projected in last year's outlook, world economic growth continues to increase at an average annual rate of 3.8 percent over the projection period, driving the robust increase in world energy use. Total world consumption of marketed energy expands from 421 quadrillion Brit- ish thermal units (Btu) in 2003 to 563 quadrillion Btu in 2015 and then to 722 quadrillion Btu in

442

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

energy consumption is projected to increase by 71 percent from 2003 to 2030. energy consumption is projected to increase by 71 percent from 2003 to 2030. Fossil fuels continue to supply much of the energy used worldwide, and oil remains the dominant energy source. In the International Energy Outlook 2006 (IEO2006) ref- erence case, world marketed energy consumption increases on average by 2.0 percent per year from 2003 to 2030. Although world oil prices in the reference case, which remain between $47 and $59 per barrel (in real 2004 dollars), dampen the growth in demand for oil, total world energy use continues to increase as a result of robust economic growth. Worldwide, total energy use grows from 421 quadrillion British thermal units (Btu) in 2003 to 563 quadrillion Btu in 2015 and 722 quadrillion Btu in 2030 (Figure 1). The most rapid growth in energy demand from 2003 to 2030 is projected for nations outside the Organization

443

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption, which was 101.7 quadrillion Btu in 2007, grows by 21 percent in the AEO2011 Reference case, from 94.8 quadrillion Btu in 2009 to 114.3 quadrillion Btu in 2035, to about the same level as in the AEO2010 projection in 2035. The fossil fuel share of energy consumption falls from 84 percent of total U.S. energy demand in 2009 to 78 percent in 2035, reflecting the impacts of CAFE standards and provisions in the American Recovery and Reinvestment Act of 2009 (ARRA), Energy Improvement and Extension Act of 2008 (EIEA2008), Energy Independence and Security Act of 2007 (EISA2007), and State legislation. Although the situation is uncertain, EIA's present view of the projected rates of technology development and market penetration of cellulosic

444

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal In the IEO2007 reference case, world coal consumption increases by 74 percent from 2004 to 2030, international coal trade increases by 44 percent from 2005 to 2030, and coal's share of world energy consumption increases from 26 percent in 2004 to 28 percent in 2030. In the IEO2007 reference case, world coal consumption increases by 74 percent over the projection period, from 114.4 quadrillion Btu in 2004 to 199.0 quadrillion Btu in 2030 (Figure 54). Coal consumption increases by 2.6 per- cent per year on average from 2004 to 2015, then slows to an average increase of 1.8 percent annually from 2015 to 2030. World GDP and primary energy consumption also grow more rapidly in the first half than in the second half of the projections, reflecting a gradual slowdown of economic growth in non-OECD Asia. Regionally, increased use of coal in non-OECD

445

EIA - International Energy Outlook 2007 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2007 Chapter 5 - Coal In the IEO2007 reference case, world coal consumption increases by 74 percent from 2004 to 2030, international coal trade increases by 44 percent from 2005 to 2030, and coalÂ’s share of world energy consumption increases from 26 percent in 2004 to 28 percent in 2030. Figure 54. World Coal Consumption by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy at 202-586-8800. Figure Data Figure 55. Coal Share of World Energy Consumption by Sector, 2004, 2015, and 2030 (Percent). Need help, contact the National Energy at 202-586-8800. Figure Data In the IEO2007 reference case, world coal consumption increases by 74 percent over the projection period, from 114.4 quadrillion Btu in 2004 to

446

Advanced coal-fueled gas turbine systems. Final report  

SciTech Connect (OSTI)

The configuration of the subscale combustor has evolved during the six years of this program from a system using only an impact separator to remove particulates to a system which also included a slagging cyclone separator before the lean-quench combustor. The system also now includes active slag tapping after the impact separator rather than a bucket to collect the slag. The subscale 12 MM Btu/hr (higher heating value, HHV) slagging combustor has demonstrated excellent coal-fired operation at 6 atm. The combustor has fired both coal-water mixtures (CWM) and pulverized coal (PC). Three Wyoming subbituminous coals and two bituminous coals have been successfully fired in the TVC. As a result of this active testing, the following conclusions may be drawn: (1) it was possible to achieve the full design thermal capacity of 12 MM Btu/hr with the subscale slagging combustor, while burning 100% pulverized coal and operating at the design pressure of 6 atm; (2) because of the separate-chamber, rich-lean design of the subscale slagging combustor, NO{sub x} emissions that easily meet the New Source Performance Standards (NSPS) limits were achieved; (3) carbon burnout efficiency was in excess of 99% when 100% coal-fired; (4) ninety percent of the ash can be separated as slag in the impact separator, and a total 98 to 99% removed with the addition of the slagging cyclone separator; (5) Objectives for third-stage exit temperature (1850{degrees}F), and exit temperature pattern factor (14%) were readily achieved; (6) overall pressure loss is currently an acceptable 5 to 6% without cyclone separator and 7 to 9% with the cyclone; and (7) feeding pulverized coal or sorbent into the combustor against 6 atm pressure is achievable.

Not Available

1993-08-01T23:59:59.000Z

447

EIA - Annual Energy Outlook 2008 (Early Release)-Energy-Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Annual Energy Outlook 2008 (Early Release) Energy Consumption Total primary energy consumption in the AEO2008 reference case increases at an average rate of 0.9 percent per year, from 100.0 quadrillion Btu in 2006 to 123.8 quadrillion Btu in 2030—7.4 quadrillion Btu less than in the AEO2007 reference case. In 2030, the levels of consumption projected for liquid fuels, natural gas, and coal are all lower in the AEO2008 reference case than in the AEO2007 reference case. Among the most important factors resulting in lower total energy demand in the AEO2008 reference case are lower economic growth, higher energy prices, greater use of more efficient appliances, and slower growth in energy-intensive industries. Figure 2. Delivered energy consumption by sector, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

448

EIA - International Energy Outlook 2008-Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2008 Chapter 4 - Coal In the IEO2008 reference case, world coal consumption increases by 65 percent and international coal trade increases by 53 percent from 2005 to 2030, and coalÂ’s share of world energy consumption increases from 27 percent in 2005 to 29 percent in 2030. Figure 46. World Coal Consumption by Country Grouping, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 47. Coal Share of World Energy Consumption by Sector, 2005, 2015, and 2030 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 48. OECD Coal Consumption by Region, 1980, 2005, 2015, and 2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

449

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect (OSTI)

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

450

International Energy Outlook 2006 - World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

1: World Energy and Economic Outlook 1: World Energy and Economic Outlook The IEO2006 projections indicate continued growth in world energy use, despite world oil prices that are 35 percent higher in 2025 than projected in last yearÂ’s outlook. Energy resources are thought to be adequate to support the growth expected through 2030. Figure 7. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 8. World Marketed Energy Use: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Table 1. World Marketed Energy Consumption by Country Grouping, 2003-2030 (Quadrillion Btu) Printer friendly version Region 2003 2010 2015 2020 2025 2030 Average Annual Percent Change, 2003-2030

451

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Table 1.5 Energy Consumption, Expenditures, and Emissions Indicators Estimates, Selected Years, 1949-2011 Year Energy Consumption Energy Consumption per Capita Energy Expenditures 1 Energy Expenditures 1 per Capita Gross Output 3 Energy Expenditures 1 as Share of Gross Output 3 Gross Domestic Product (GDP) Energy Expenditures 1 as Share of GDP Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP Carbon Dioxide Emissions 2 per Real Dollar of GDP Quadrillion Btu Million Btu Million Nominal Dollars 4 Nominal Dollars 4 Billion Nominal Dollars 4 Percent Billion Nominal Dollars 4 Percent Billion Real (2005) Dollars 5 Thousand Btu per Real (2005) Dollar 5 Metric Tons Carbon Dioxide per Million Real (2005) Dollars 5 1949 31.982 214 NA NA NA NA 267.2 NA R 1,843.1 R 17.35 R 1,197 1950 34.616 227 NA NA NA NA

452

Overview of Federal Energy Management Policy and Mandates  

Broader source: Energy.gov (indexed) [DOE]

Overview of Federal Energy Management Policy and Mandates Overview of Federal Energy Management Policy and Mandates Energy Intensity Reduction Goal The National Energy Conservation Policy Act (NECPA), as amended, requires Federal agencies to improve energy management in their facilities and operations. (42 U.S.C. 8253) Amendments to NECPA made by the Federal Energy Management Improvement Act of 1988 (P.L. 100-615), required each agency to achieve a 10 percent reduction in energy consumption in its Federal buildings by FY 1995, when measured against a FY 1985 baseline on a Btu-per-gross-square-foot (Btu/GSF) basis. It also directed DOE to establish life-cycle costing methods and coordinate Federal conservation activities through the Interagency Energy Management Task Force. Section 543 of NECPA contained provisions requiring a reduction in Btu/GSF of 20 percent by 2000,

453

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

World energy demand and economic outlook World energy demand and economic outlook Overview In the IEO2013 Reference case, world energy consumption increases from 524 quadrillion Btu in 2010 to 630 quadrillion Btu in 2020 and 820 quadrillion Btu in 2040, a 30-year increase of 56 percent (Figure 12 and Table 1). More than 85 percent of the increase in global energy demand from 2010 to 2040 occurs among the developing nations outside the Organization for Economic Cooperation and Development (non-OECD), driven by strong economic growth and expanding populations. In contrast, OECD member countries are, for the most part, already more mature energy consumers, with slower anticipated economic growth and little or no anticipated population growth.7 Figure 12. World total energy consumption, 1990-2040.

454

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Transportation sector energy demand Transportation sector energy demand Growth in transportation energy consumption flat across projection figure data The transportation sector consumes 27.1 quadrillion Btu of energy in 2040, the same as the level of energy demand in 2011 (Figure 70). The projection of no growth in transportation energy demand differs markedly from the historical trend, which saw 1.1-percent average annual growth from 1975 to 2011 [126]. No growth in transportation energy demand is the result of declining energy use for LDVs, which offsets increased energy use for heavy-duty vehicles (HDVs), aircraft, marine, rail, and pipelines. Energy demand for LDVs declines from 16.1 quadrillion Btu in 2011 to 13.0 quadrillion Btu in 2040, in contrast to 0.9-percent average annual growth

455

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

In the IEO2007 reference case, total world consumption of marketed energy is projected In the IEO2007 reference case, total world consumption of marketed energy is projected to increase by 57 percent from 2004 to 2030. The largest projected increase in energy demand is for the non-OECD region. The IEO2007 reference case-which reflects a scenario where current laws and policies remain unchanged throughout the projection period-projects strong growth for worldwide energy demand from 2004 to 2030. Total world consumption of marketed energy is projected to increase from 447 quadrillion Btu in 2004 to 559 quadrillion Btu in 2015 and then to 702 quadrillion Btu in 2030-a 57-percent increase over the projection period (Table 1 and Figure 8). The largest projected increase in energy demand is for the non-OECD region. Generally, countries outside the OECD 3 have higher projected economic growth rates and more rapid population growth

456

Overview of Federal Energy Management Policy and Mandates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview of Federal Energy Management Policy and Mandates Overview of Federal Energy Management Policy and Mandates Energy Intensity Reduction Goal The National Energy Conservation Policy Act (NECPA), as amended, requires Federal agencies to improve energy management in their facilities and operations. (42 U.S.C. 8253) Amendments to NECPA made by the Federal Energy Management Improvement Act of 1988 (P.L. 100-615), required each agency to achieve a 10 percent reduction in energy consumption in its Federal buildings by FY 1995, when measured against a FY 1985 baseline on a Btu-per-gross-square-foot (Btu/GSF) basis. It also directed DOE to establish life-cycle costing methods and coordinate Federal conservation activities through the Interagency Energy Management Task Force. Section 543 of NECPA contained provisions requiring a reduction in Btu/GSF of 20 percent by 2000,

457

International Energy Outlook 2013 - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

International Energy Outlook 2013 International Energy Outlook 2013 Release Date: July 25, 2013 | Next Release Date: July 2014 (See release cycle changes) | correction | Report Number: DOE/EIA-0484(2013) Highlights International Energy Outlook 2011 cover. The International Energy Outlook 2013 (IEO2013) projects that world energy consumption will grow by 56 percent between 2010 and 2040. Total world energy use rises from 524 quadrillion British thermal units (Btu) in 2010 to 630 quadrillion Btu in 2020 and to 820 quadrillion Btu in 2040 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for Economic Cooperation and Development (OECD),2 known as non-OECD, where demand is driven by strong, long-term economic growth. Energy use in non-OECD countries increases by 90 percent; in OECD countries, the increase

458

DuPont Energy Innovations  

E-Print Network [OSTI]

21 1 6 2 9 9 U. S. Primary Energy Consumption by Source and Sector, 2007 (Quadrillion BTU) Source energy flat with 1990 levels. Progress: · Consumption down 7 percent overall as compared to 1990. · SinceDuPont Energy Innovations University of Delaware Energy Institute Inauguration September 19, 2008

Firestone, Jeremy

459

Britain Rises to Japan's Computer Challenge  

Science Journals Connector (OSTI)

...natural gas production to be released...1-million-barrel-a-day increase in oil...following: * Per capita energy...Btu's-was reached in 1973, just before...2 percent. OPEC production was at its lowest...million barrels a day. * The use of...

DAVID DICKSON

1983-05-20T23:59:59.000Z

460

Effects of Federal Residential Energy Conservation Programs  

Science Journals Connector (OSTI)

...Table 5 i6 about $500 (3). This figure...the reduction in an-1. Increase jacket insulation...energy use is cut from 1.2 to 0.2 percent...consumers through tax rebates, there will be no...References and Notes 1. Quantities are given...ofprimary energy (11,500 Btu's per kilowatt-hour...

Eric Hirst; Janet Carney

1978-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

EIA - International Energy Outlook 2007 - Highlights Section  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2007 Highlights World marketed energy consumption is projected to increase by 57 percent from 2004 to 2030. Total energy demand in the non-OECD countries increases by 95 percent, compared with an increase of 24 percent in the OECD countries. Figure 1. World Marketed Energy Consumption by Region, 2004-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 2. Average Annual Growth in Delivered Energy Consumption by Region and End-use Sector, 2004-2030 (Percent per Year). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 3. Industrial Sector Delivered Energy Consumption by Region, 2004-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

462

EIA - International Energy Outlook 2009-Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2009 Chapter 4 - Coal In the IEO2009 reference case, world coal consumption increases by 49 percent from 2006 to 2030, and coalÂ’s share of world energy consumption increases from 27 percent in 2006 to 28 percent in 2030. Figure 42. World Coal Consumption by Country Grouping, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 43. Coal Share of World Energy Consumption by Sector, 2006, 2015, and 2030 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 44. OECD Coal Consumption by Region, 1980, 2006, 2015, and 2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

463

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Overview Figure 65. World coal consumption by region, 1980-2035 figure dataIn the IEO2011 Reference case, which does not include prospective greenhouse gas reduction policies, world coal consumption increases by 50 percent, from 139 quadrillion Btu in 2008 to 209 quadrillion Btu in 2035 (Figure 65). Although world coal consumption increases at an average rate of 1.5 percent per year from 2008 to 2035, the growth rates by region are uneven, with total coal consumption for OECD countries remaining near 2008 levels and coal consumption in non-OECD countries increasing at a pace of 2.1 percent per year. As a result, increased use of coal in non-OECD countries accounts for nearly all the growth in world coal consumption over the period. In 2008, coal accounted for 28 percent of world energy consumption (Figure

464

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

465

Monthly energy review, January 1994  

SciTech Connect (OSTI)

This publication contains statistical information and data analysis of energy production and consumption within the major energy industries of petroleum, natural gas, coal, electricity, nuclear energy and oil and gas resource development. Energy production during October 1993 totaled 5.5-quadrillion Btu, a 3.0 percent decrease from the level of production during October 1992. Coal production decreased 5.6 percent, petroleum production decreased 3.4 percent, and natural gas production increased 1.9 percent. All other forms of energy production combined were down 6.0 percent from the level of production during October 1992. Energy consumption during October 1993 totaled 6.7 quadrillion Btu, 0.9 percent above the level of consumption during October 1992. Natural gas consumption increased 6.5 percent, coal consumption rose 2.9 percent, and petroleum consumption was down 1.3 percent. Consumption of all other forms of energy combined decreased 5.5 percent from the level of 1 year earlier.

Not Available

1994-01-01T23:59:59.000Z

466

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

6 Relative Standard Errors for Table 7.6;" 6 Relative Standard Errors for Table 7.6;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

467

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Hawaii" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-","-","-",303,296,188,175,281,309,358,297,279 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-","-","-",11536,11422,11097,10975,10943,10871,10669,10640,10562 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-","-","-",0.32,0.44,0.49,0.55,0.51,0.47,0.66,0.65,0.62

468

Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 4.1, 2006;" 1 Relative Standard Errors for Table 4.1, 2006;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

469

Released: March 2010  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 5.5;" 5 Relative Standard Errors for Table 5.5;" " Unit: Percents." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)" "End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu

470

An Energy Analysis Of A Large, Multipurpose Educational Building In A Hot Climate  

E-Print Network [OSTI]

building The number of occupants for each zone has been calculated using the following equation: Number of occupants g3404 g4670Area of interior zoneg4666ft^2g4667/ maximum occupantsg4666ft^2/persong4667 g4671 g3400 percent of occupants during... occupied period Sensible load for each zone has been calculated by using the following equation: Sensible Loadg4666Btu/hrg4667 g3404 Sensible load per persong4666Btu/hr persong4667 g3400 Interior zone occupants during occupied period g4666persong4667...

Kamranzadeh, Vahideh

2012-02-14T23:59:59.000Z

471

Efficient Energy Utilization in the Industrial Sector - Case Studies  

E-Print Network [OSTI]

require. Recent figures for the distribution of energy indi cate that the industrial sector consumes about 44% of the total with about 2/3 of that for combustion and the remainder for raw materials. This repre sents about 24 quadrillion BTU's per year... 16 years to a possible 70 quqd rillion BTU's. The total energy consumption wi~l continue to grow over the next 16 years as shown in Figure 2. Again, under moderate economic growth, energy gnowth will average about 3 percent per year. For exa...

Davis, S. R.

1984-01-01T23:59:59.000Z

472

Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 3.1, 2006;" 1 Relative Standard Errors for Table 3.1, 2006;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

473

Microsoft PowerPoint - Allemon_Ford.PPT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Change in Energy Use Change in Energy Use at Ford Motor Company George Andraos, William Allemon 2005 Energy Star Leadership Conference Overview * 40 North American Manufacturing Facilities. * 52 bilBTU load. * Efficiency & Supply Side Management Teams. * Energy coordinators located at each plant. * Onsite support from DTE Energy Partnership. 2005 Energy Star Leadership Conference Measurement mmBTU/Unit Reduction * Goal: 18% reduction by end of 2005 vs. year 2000 baseline. * Monthly performance monitoring and reporting. * Normalized for weather and vehicle production variances. * Automating data collection. * Currently on track to accomplish goal. North American Energy Reduction (mmBTU/Unit) 70 75 80 85 90 95 100 Jan-01 Mar-01 May-01 Jul-01 Sep-01 Nov-01 Jan-02 Mar-02 May-02 Jul-02 Sep-02 Nov-02 Jan-03

474

 

Gasoline and Diesel Fuel Update (EIA)

Hydroelectricity and Other Renewable Resources Hydroelectricity and Other Renewable Resources The renewable energy share of total world energy consumption is expected to remain unchanged at 8 percent through 2025, despite a projected 56-percent increase in consumption of hydroelectricity and other renewable resources. In the International Energy Outlook 2003 (IEO2003) reference case, moderate growth in the worldÂ’s consumption of hydroelectricity and other renewable energy resources is projected over the next 24 years. Renewable energy sources are not expected to compete economically with fossil fuels in the mid-term forecast. In the absence of significant government policies aimed at reducing the impacts of carbon-emitting energy sources on the environment, it will be difficult to extend the use of renewables on a large scale. IEO2003 projects that consumption of renewable energy worldwide will grow by 56 percent, from 32 quadrillion Btu in 2001 to 50 quadrillion Btu in 2025 (Figure 69).

475

EIA - International Energy Outlook 2009 - Highlights Section  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2009 Highlights World marketed energy consumption is projected to increase by 44 percent from 2006 to 2030. Total energy demand in the non-OECD countries increases by 73 percent, compared with an increase of 15 percent in the OECD countries. Figure 1. World Marketed Energy Consumption, 2006-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 2. World Marketed Energy Use by Fuel Type, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 3. World Oil Prices in the IEO2009 and IEO2008 Reference Cases, 1980-2030 (2007 dollars per barrel). Need help, contact the National Energy Information Center at 202-586-8800.

476

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights World energy consumption is projected to increase by 57 percent from 2002 to 2025. Much of the growth in worldwide energy use in the IEO2005 reference case forecast is expected in the countries with emerging economies. Figure 1. World Marketed Energy Consumptiion by Region, 1970-2025. Need help, contact the National Energy Information Center at 202-586-8800. Figure Data In the International Energy Outlook 2005 (IEO2005) reference case, world marketed energy consumption is projected to increase on average by 2.0 percent per year over the 23-year forecast horizon from 2002 to 2025—slightly lower than the 2.2-percent average annual growth rate from 1970 to 2002. Worldwide, total energy use is projected to grow from 412 quadrillion British thermal units (Btu) in 2002 to 553 quadrillion Btu in

477

EIA - International Energy Outlook 2008 - Highlights Section  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2008 Highlights World marketed energy consumption is projected to increase by 50 percent from 2005 to 2030.Total energy demand in the non-OECD countries increases by 85 percent,compared with an increase of 19 percent in the OECD countries. Figure 1. World Marketed Energy Consumption, 2005-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 2. World Marketed Energy Use by Fuel Type, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 3. World Oil Prices in Two Cases, 1980-2030 (nominal dollars per barrel). Need help, contact the National Energy Information Center at 202-586-8800.

478

International Energy Outlook 1999 - Highlights  

Gasoline and Diesel Fuel Update (EIA)

highlights.gif (3388 bytes) highlights.gif (3388 bytes) World energy consumption is projected to increase by 65 percent from 1996 to 2020. The current economic problems in Asia and Russia have lowered projections relative to last year’s report. In the reference case projections for this International Energy Outlook 1999 (IEO99), world energy consumption reaches 612 quadrillion British thermal units (Btu) by 2020 (Figure 2 and Table 1)—an increase of 65 percent over the 24-year projection period. The IEO99 projection for the world’s energy demand in 2020 is about 4 percent (almost 30 quadrillion Btu) lower than last year’s projection. The downward revision is based on events in two parts of the world: Asia and Russia. In Asia, the economic crisis that began in early 1997 persisted throughout 1998, as economic

479

EIA - International Energy Outlook 2009-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2009 Chapter 1 - World Energy Demand and Economic Outlook In the IEO2009 projections, total world consumption of marketed energy is projected to increase by 44 percent from 2006 to 2030. The largest projected increase in energy demand is for the non-OECD economies. Figure 10. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 11. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 12. Marketed Energy Use by Region, 1990-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

480

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Commercial from Market Trends Commercial from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

Note: This page contains sample records for the topic "mm btu percent" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

EIA - Annual Energy Outlook 2008 - Coal Production  

Gasoline and Diesel Fuel Update (EIA)

Coal Production Coal Production Annual Energy Outlook 2008 with Projections to 2030 Coal Production Figure 93. Coal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 94. U.S. coal production, 2006, 2015, and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Western Coal Production Continues To Increase Through 2030 In the AEO2008 reference case, increasing coal use for electricity generation at existing plants and construction of a few new coal-fired plants lead to annual production increases that average 0.3 percent per year from 2006 to 2015, when total production is 24.5 quadrillion Btu. In the absence of restrictions on CO2 emissions, the growth in coal production

482

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Overview In the IEO2013 Reference case, which does not include prospective greenhouse gas reduction policies, coal remains the second largest energy source worldwide. World coal consumption rises at an average rate of 1.3 percent per year, from 147 quadrillion Btu in 2010 to 180 quadrillion Btu in 2020 and 220 quadrillion Btu in 2040 (Figure 70). The near-term increase reflects significant increases in coal consumption by China, India, and other non-OECD countries. In the longer term, growth of coal consumption decelerates as policies and regulations encourage the use of cleaner energy sources, natural gas becomes more economically competitive as a result of shale gas development, and growth of industrial use of coal slows largely as a result of China's industrial activities. Consumption is dominated by

483

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

2 PM)" 2 PM)" "Rhode Island" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Petroleum (cents per million Btu)1",359,241,195,320,254,413,479,"-","-","-",730,802,1407,"-",1931,1649,934,1561 " Average heat value (Btu per gallon)",152445,151507,152617,150388,151314,139562,140390,"-","-","-",140564,140562,135160,"-",138571,141786,145243,140864 " Average sulfur Content (percent)",0.93,0.91,1,0.97,0.97,0.03,0.14,"-","-","-",0.14,0.09,0.03,"-",0.15,0.3,0.46,0.25 "Natural Gas (cents per million Btu)",217,198,213,239,222,185,223,326,329,455,650,680,951,734,781,1028,488,538

484

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Commercial from Market Trends Commercial from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

485

EIA - International Energy Outlook 2007 - World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2007 Chapter 1 - World Energy and Economic Outlook In the IEO2007 reference case, total world consumption of marketed energy is projected to increase by 57 percent from 2004 to 2030. The largest projected increase in energy demand is for the non-OECD region. Figure 8. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 9. World Marketed Energy Use; OECD and Non-OECD, 2004-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 10. Marketed Energy Use in the NON-OECD Economies by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

486

Manufacturing Energy Consumption Survey (MECS) - Residential - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

About the MECS About the MECS Survey forms Maps MECS Terminology Archives Features First 2010 Data Press Release 2010 Data Brief Other End Use Surveys Commercial Buildings - CBECS Residential - RECS Transportation DOE Uses MECS Data Manufacturing Energy and Carbon Footprints Associated Analysis Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, based on preliminary estimates released from the 2010 Manufacturing Energy Consumption Survey (MECS). This decline continues the downward trend in manufacturing energy use since the 1998 MECS report.

487

EIA - International Energy Outlook 2008-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2008 Chapter 1 - World Energy Demand and Economic Outlook In the IEO2008 projections, total world consumption of marketed energy is projected to increase by 50 percent from 2005 to 2030. The largest projected increase in energy demand is for the non-OECD economies. Figure 9. World Marketed EnergyConsumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 10. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 11. Marketed Energy Use in the Non-OECD Economies by Region, 1990-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

488

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Residential from Market Trends Residential from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

489

International Energy Outlook 2011 - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2011 International Energy Outlook 2011 Release Date: September 19, 2011 | Next Scheduled Release Date: June 10, 2013 | Report Number: DOE/EIA-0484(2011) No International Energy Outlook will be released in 2012. The next edition of the report is scheduled for release in Spring 2013 Highlights International Energy Outlook 2011 cover. In the IEO2011 Reference case, which does not incorporate prospective legislation or policies that might affect energy markets, world marketed energy consumption grows by 53 percent from 2008 to 2035. Total world energy use rises from 505 quadrillion British thermal units (Btu) in 2008 to 619 quadrillion Btu in 2020 and 770 quadrillion Btu in 2035 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for

490

U.S. Energy Information Administration (EIA) - Residential  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Glossary › FAQS › Overview Industrial Commercial Industrial Transportation Manufacturing Energy Consumption Survey Data 2006 Analysis & Reports Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, based on preliminary estimates released from the 2010 Manufacturing Energy Consumption Survey (MECS). This decline continues the downward trend in manufacturing energy use since the 1998 MECS report. figure data The decrease in energy consumption in the manufacturing sector was also

491

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

4 4 Ownership (1) Owned 54.9 104.5 40.3 78% Rented 77.4 71.7 28.4 22% Public Housing 75.7 62.7 28.7 2% Not Public Housing 77.7 73.0 28.4 19% 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008 2005 Residential Delivered Energy Consumption Intensities, by Ownership of Unit Per Square Per Household Per Household Percent of Foot (thousand Btu) (million Btu) Members (million Btu) Total Consumption

492

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Demand U.S. Energy Demand Mkt trends Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and appliances take effect (Figure 55). See more figure data Reference Case Tables

493

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "South Dakota" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",115,113,113,110,108,103,94,92,93,94,99,103,130,134,139,142,151,156,174,176,195 " Average heat value (Btu per pound)",6096,6025,6034,6057,6049,6972,9034,8687,8728,8630,8464,8540,8550,8560,8523,8711,8534,8530,8391,8386,8327 " Average sulfur Content (percent)",0.9,0.87,0.92,0.9,0.91,0.87,0.52,0.63,0.72,0.6,0.31,0.33,0.37,0.33,0.34,0.31,0.32,0.3,0.31,0.31,0.33 "Petroleum (cents per million Btu)1",565,488,"-",467,"-","-",598,"-","-","-","-","-","-",804,822,1245,1546,"-",1985,1248,1808

494

U.S. Energy Information Administration (EIA) - Topics  

Gasoline and Diesel Fuel Update (EIA)

Efficiency Efficiency mkt trends Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and appliances take effect (Figure 55). See more figure data Reference Case Tables

495

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2004 Highlights World energy consumption is projected to increase by 54 percent from 2001 to 2025. Much of the growth in worldwide energy use is expected in the developing world in the IEO2004 reference case forecast. Figure 2. World Marketed Energy Consumption, 1970-2025 (Quadrillion Btu). Having Problems, call the National Energy Information Center at 202-586-8600. Figure Data Figure 3. World Marketed Energy Consumption by Region, 1970-2025 (Quadrillion Btu). Having problems, call the National Energy Information Center at 202-586-8600. Figure Data Figure 4. Comparison of 2003 and 2004 World Oil Price Projections, 1970-2025 (2002 Dollars per Barrel). Figure Data Figure 5. World Marketed Energy Consumption by Energy Source, 1970-2025 (Quadrilliion Btu). Need help, call the National Energy Information Center at 202-596-8600.

496

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Quality of Coal Received at Commercial and Institutional Users by Census Division and State" 4. Average Quality of Coal Received at Commercial and Institutional Users by Census Division and State" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State1",2013,2013,2012,,,"Change" "Middle Atlantic" " Btu",12906,12815,11709,12844,12440,3.2 " Sulfur",1.03,0.92,0.99,0.96,0.97,-1 " Ash",8.94,8.62,10,8.72,9.11,-4.3 "Pennsylvania" " Btu",12906,12815,11709,12844,12440,3.2 " Sulfur",1.03,0.92,0.99,0.96,0.97,-1 " Ash",8.94,8.62,10,8.72,9.11,-4.3 "East North Central" " Btu",11928,12228,11682,12112,11933,1.5

497

Energy Demand | Open Energy Information  

Open Energy Info (EERE)

Energy Demand Energy Demand Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data Figure 55 From AEO2011 report . Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and

498

Sxx-xxx : ZZ Exclusive Agreement mm/dd/yyyy Printed on mm/dd/yyyy at hh:mm Page: 1 of 20  

E-Print Network [OSTI]

"), an institution of higher education having powers under the laws of the State of California is not considered a Sublicense. 2.9 "Technology" means the Licensed Patents and that additional information ___________________________________________________________________ ________________________________________________. 2.3 "Licensed Patent" means Stanford's U.S. Patent Application, Serial Number ____________, filed

Puglisi, Joseph

499

METC ceramic corrosion/erosion studies: turbine-material screening tests in high-temperature, low-Btu, coal-derived-gas combustion products  

SciTech Connect (OSTI)

The Morgantown Energy Technology Center, through its Ceramics Corrosion/Erosion Studies, has participated in the United States Department of Energy's High-Temperature Turbine Technology Program, Ceramic Technology Readiness. The program's overall objective is to advance the turbine firing temperature to a range of 2600/sup 0/ to 3000/sup 0/F (1700 to 1922K) with a reasonable service life using coal or coal-derived fuel. The Ceramics Corrosion/Erosion Studies' major objective was to conduct a screening test for several ceramic materials to assess their probability of survival in turbine applications. The materials were exposed to combustion products from low heating value coal-derived gas and air at several high temperatures and velocities. The combustion product composition and temperatures simulated actual environment that may be found in stationary power generating gas turbines except for the pressure levels. The results of approximately 1000 hours of accumulative exposure time of material at the specific test conditions are presented in this report.

Nakaishi, C.V.; Waltermire, D.M.; Hawkins, L.W.; Jarrett, T.L.

1982-05-01T23:59:59.000Z

500

~A four carbon alcohol. It has double the amount of carbon of ethanol, which equates to a substantial increase in harvestable energy (Btu's).  

E-Print Network [OSTI]

.0 psi. ~Butanol is an alcohol that can be but does not have to be blended with fossil fuels. ~Butanol existing pipelines and filling stations. ~Hydrogen generated during the butanol fermentation process is expected to increase dramatically if green butanol can be produced economically from low cost biomass

Toohey, Darin W.