National Library of Energy BETA

Sample records for mixed-phase cloud properties

  1. FINAL REPORT: An Investigation of the Microphysical, Radiative, and Dynamical Properties of Mixed-Phase Clouds

    SciTech Connect (OSTI)

    Shupe, Matthew D

    2007-10-01

    This final report summarizes the major accomplishments and products resulting from a three-year grant funded by the DOE, Office of Science, Atmospheric Radiation Measurement Program titled: An Investigation of the Microphysical, Radiative, and Dynamical Properties of Mixed-Phase Clouds. Accomplishments are listed under the following subcategories: Mixed-phase cloud retrieval method development; Mixed-phase cloud characterization; ARM mixed-phase cloud retrieval review; and New ARM MICROBASE product. In addition, lists are provided of service to the Atmospheric Radiation Measurement Program, data products provided to the broader research community, and publications resulting from this grant.

  2. Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations D. D. Turner University of Wisconsin-Madison Madison, Wisconsin and Pacific Northwest National Laboratory Richland, Washington Abstract A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and the effective size of the water and ice particles from ground-based, high-resolution infrared radiance

  3. Arctic Mixed-Phase Cloud Properties from AERI Lidar Observations: Algorithm and Results from SHEBA

    SciTech Connect (OSTI)

    Turner, David D.

    2005-04-01

    A new approach to retrieve microphysical properties from mixed-phase Arctic clouds is presented. This mixed-phase cloud property retrieval algorithm (MIXCRA) retrieves cloud optical depth, ice fraction, and the effective radius of the water and ice particles from ground-based, high-resolution infrared radiance and lidar cloud boundary observations. The theoretical basis for this technique is that the absorption coefficient of ice is greater than that of liquid water from 10 to 13 ?m, whereas liquid water is more absorbing than ice from 16 to 25 ?m. MIXCRA retrievals are only valid for optically thin (?visible < 6) single-layer clouds when the precipitable water vapor is less than 1 cm. MIXCRA was applied to the Atmospheric Emitted Radiance Interferometer (AERI) data that were collected during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment from November 1997 to May 1998, where 63% of all of the cloudy scenes above the SHEBA site met this specification. The retrieval determined that approximately 48% of these clouds were mixed phase and that a significant number of clouds (during all 7 months) contained liquid water, even for cloud temperatures as low as 240 K. The retrieved distributions of effective radii for water and ice particles in single-phase clouds are shown to be different than the effective radii in mixed-phase clouds.

  4. Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations

    SciTech Connect (OSTI)

    Turner, David D.

    2003-06-01

    A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and the effective size of the water and ice particles from ground-based, high-resolution infrared radiance observations. The theoretical basis is that the absorption coefficient of ice is stronger than that of liquid water from 10-13 mm, whereas liquid water is more absorbing than ice from 16-25 um. However, due to strong absorption in the rotational water vapor absorption band, the 16-25 um spectral region becomes opaque for significant water vapor burdens (i.e., for precipitable water vapor amounts over approximately 1 cm). The Arctic is characterized by its dry and cold atmosphere, as well as a preponderance of mixed-phase clouds, and thus this approach is applicable to Arctic clouds. Since this approach uses infrared observations, cloud properties are retrieved at night and during the long polar wintertime period. The analysis of the cloud properties retrieved during a 7 month period during the Surface Heat Budget of the Arctic (SHEBA) experiment demonstrates many interesting features. These results show a dependence of the optical depth on cloud phase, differences in the mode radius of the water droplets in liquid-only and mid-phase clouds, a lack of temperature dependence in the ice fraction for temperatures above 240 K, seasonal trends in the optical depth with the clouds being thinner in winter and becoming more optically thick in the late spring, and a seasonal trend in the effective size of the water droplets in liquid-only and mixed-phase clouds that is most likely related to aerosol concentration.

  5. Intercomparison of model simulations of mixed-phase clouds observed...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single layer cloud Citation Details ...

  6. Mixed-Phase Cloud Retrievals Using Doppler Radar Spectra

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed-Phase Cloud Retrievals Using Doppler Radar Spectra M. D. Shupe, S. Y. Matrosov, and T. L. Schneider National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado P. Kollias Rosentiel School of Marine Atmospheric Sciences University of Miami Miami, Florida Introduction The radar Doppler spectrum contains a wealth of information on cloud microphysical properties. Typically, radar-based cloud retrievals use only the zeroth or first moments of the

  7. Towards a Characterization of Arctic Mixed-Phase Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manual classification of cloud phase. Using collocated cloud radar and depolarization lidar observations, it is shown that mixed-phase conditions have a high correlation with a...

  8. Intercomparison of model simulations of mixed-phase clouds observed...

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The ...

  9. Simulating Arctic mixed-phase clouds: Sensitivity to environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions and cloud microphysics processes Simulating Arctic mixed-phase clouds: Sensitivity to environmental conditions and cloud microphysics processes Sednev, Igor Lawrence Berkeley National Laboratory Menon, Surabi Lawrence Berkeley National Laboratory McFarquhar, Greg University of Illinois Category: Field Campaigns The importance of Arctic mixed-phase clouds on radiation and the Arctic climate are evaluated using the NASA GISS single column model (SCM) and cloud microphysics and radar

  10. ARM - Field Campaign - Mixed-Phase Arctic Cloud Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMixed-Phase Arctic Cloud Experiment Campaign Links Science Document M-PACE Website Final Summary Report ARM Data Discovery Browse Data Comments? We would love to hear...

  11. Intercomparison of model simulations of mixed-phase clouds observed during

    Office of Scientific and Technical Information (OSTI)

    the ARM Mixed-Phase Arctic Cloud Experiment. I: Single layer cloud (Journal Article) | SciTech Connect Journal Article: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single layer cloud Citation Details In-Document Search Title: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single layer cloud Results are presented from an intercomparison of

  12. Characterizing Arctic Mixed-phase Cloud Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have two distinguished cloud base heights (CBHs) that can be defined by both ceilometer (black dots) and micropulse lidar (MPL; pink dots) measurements (Figure 1). For a...

  13. Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds.

    SciTech Connect (OSTI)

    Rambukkange,M.; Verlinde, J.; Elorante, E.; Luke, E.; Kollias, P.; Shupe, M.

    2006-07-10

    Recent in situ observations in stratiform clouds suggest that mixed phase regimes, here defined as limited cloud volumes containing both liquid and solid water, are constrained to narrow layers (order 100 m) separating all-liquid and fully glaciated volumes (Hallett and Viddaurre, 2005). The Department of Energy Atmospheric Radiation Measurement Program's (DOE-ARM, Ackerman and Stokes, 2003) North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) recently started collecting routine measurement of radar Doppler velocity power spectra from the Millimeter Cloud Radar (MMCR). Shupe et al. (2004) showed that Doppler spectra has potential to separate the contributions to the total reflectivity of the liquid and solid water in the radar volume, and thus to investigate further Hallett and Viddaurre's findings. The Mixed-Phase Arctic Cloud Experiment (MPACE) was conducted along the NSA to investigate the properties of Arctic mixed phase clouds (Verlinde et al., 2006). We present surface based remote sensing data from MPACE to discuss the fine-scale structure of the mixed-phase clouds observed during this experiment.

  14. Intercomparison of model simulations of mixed-phase clouds observed during

    Office of Scientific and Technical Information (OSTI)

    the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud (Journal Article) | SciTech Connect Part I: Single layer cloud Citation Details In-Document Search Title: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during

  15. Final Technical Report for "Ice nuclei relation to aerosol properties: Data analysis and model parameterization for IN in mixed-phase clouds"? (DOE/SC00002354)

    SciTech Connect (OSTI)

    Paul J. DeMott, Anthony J. Prenni; Sonia M. Kreidenweis

    2012-09-28

    Clouds play an important role in weather and climate. In addition to their key role in the hydrologic cycle, clouds scatter incoming solar radiation and trap infrared radiation from the surface and lower atmosphere. Despite their importance, feedbacks involving clouds remain as one of the largest sources of uncertainty in climate models. To better simulate cloud processes requires better characterization of cloud microphysical processes, which can affect the spatial extent, optical depth and lifetime of clouds. To this end, we developed a new parameterization to be used in numerical models that describes the variation of ice nuclei (IN) number concentrations active to form ice crystals in mixed-phase (water droplets and ice crystals co-existing) cloud conditions as these depend on existing aerosol properties and temperature. The parameterization is based on data collected using the Colorado State University continuous flow diffusion chamber in aircraft and ground-based campaigns over a 14-year period, including data from the DOE-supported Mixed-Phase Arctic Cloud Experiment. The resulting relationship is shown to more accurately represent the variability of ice nuclei distributions in the atmosphere compared to currently used parameterizations based on temperature alone. When implemented in one global climate model, the new parameterization predicted more realistic annually averaged cloud water and ice distributions, and cloud radiative properties, especially for sensitive higher latitude mixed-phase cloud regions. As a test of the new global IN scheme, it was compared to independent data collected during the 2008 DOE-sponsored Indirect and Semi-Direct Aerosol Campaign (ISDAC). Good agreement with this new data set suggests the broad applicability of the new scheme for describing general (non-chemically specific) aerosol influences on IN number concentrations feeding mixed-phase Arctic stratus clouds. Finally, the parameterization was implemented into a regional cloud-resolving model to compare predictions of ice crystal concentrations and other cloud properties to those observed in two intensive case studies of Arctic stratus during ISDAC. Our implementation included development of a prognostic scheme of ice activation using the IN parameterization so that the most realistic treatment of ice nuclei, including their budget (gains and losses), was achieved. Many cloud microphysical properties and cloud persistence were faithfully reproduced, despite a tendency to under-predict (by a few to several times) ice crystal number concentrations and cloud ice mass, in agreement with some other studies. This work serves generally as the basis for improving predictive schemes for cloud ice crystal activation in cloud and climate models, and more specifically as the basis for such a scheme to be used in a Multi-scale Modeling Format (MMF) that utilizes a connected system of cloud-resolving models on a global grid in an effort to better resolve cloud processes and their influence on climate.

  16. Radiative Influences on Glaciation Time-Scales of Mixed-Phase Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Influences on Glaciation Time-Scales of Mixed-Phase Clouds Harrington, Jerry The Pennsylvania State University Category: Modeling Mixed-phase stratus clouds are dominant in the Arctic during much of the year. These clouds typically have liquid tops that precipitate ice. Time scales for the complete glaciation of such clouds (the Bergeron process) are typically computed using the classical mass growth equations for crystals and liquid drops. However, mixed phase arctic stratus have

  17. Microphysical Consequences of the Spatial Distribution of Ice Nucleation in Mixed-Phase Stratiform Clouds

    SciTech Connect (OSTI)

    Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.

    2014-07-28

    Mixed-phase stratiform clouds can persist even with steady ice precipitation fluxes, and the origin and microphysical properties of the ice crystals are of interest. Vapor deposition growth and sedimentation of ice particles along with a uniform volume source of ice nucleation, leads to a power law relation between ice water content wi and ice number concentration ni with exponent 2.5. The result is independent of assumptions about the vertical velocity structure of the cloud and is therefore more general than the related expression of Yang et al. [2013]. The sensitivity of the wi-ni relationship to the spatial distribution of ice nucleation is confirmed by Lagrangian tracking and ice growth with cloud-volume, cloud-top, and cloud-base sources of ice particles through a time-dependent cloud field. Based on observed wi and ni from ISDAC, a lower bound of 0.006 m^3/s is obtained for the ice crystal formation rate.

  18. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    SciTech Connect (OSTI)

    Klein, S A; McCoy, R B; Morrison, H; Ackerman, A; Avramov, A; deBoer, G; Chen, M; Cole, J; DelGenio, A; Golaz, J; Hashino, T; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; Luo, Y; McFarquhar, G; Menon, S; Neggers, R; Park, S; Poellot, M; von Salzen, K; Schmidt, J; Sednev, I; Shipway, B; Shupe, M; Spangenberg, D; Sud, Y; Turner, D; Veron, D; Falk, M; Foster, M; Fridlind, A; Walker, G; Wang, Z; Wolf, A; Xie, S; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is some evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be a benchmark for model simulations of mixed-phase clouds.

  19. DOE/SC-ARM-P-07-006 Evaluation of Mixed-Phase Cloud Microphysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations Second Quarter 2007 ARM Metric Report April 2007 Xiaohong Liu and Steven J. Ghan Pacific Northwest National Laboratory Richland, Washington Shaocheng Xie Lawrence Livermore National Laboratory Livermore, California Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research X. Lui, S.J. Ghan, and S. Xie,

  20. Parameterizing correlations between hydrometeor species in mixed-phase Arctic clouds

    SciTech Connect (OSTI)

    Larson, Vincent E.; Nielsen, Brandon J.; Fan, Jiwen; Ovchinnikov, Mikhail

    2011-08-16

    Mixed-phase Arctic clouds, like other clouds, contain small-scale variability in hydrometeor fields, such as cloud water or snow mixing ratio. This variability may be worth parameterizing in coarse-resolution numerical models. In particular, for modeling processes such as accretion and aggregation, it would be useful to parameterize subgrid correlations among hydrometeor species. However, one difficulty is that there exist many hydrometeor species and many microphysical processes, leading to complexity and computational expense.Existing lower and upper bounds (inequalities) on linear correlation coefficients provide useful guidance, but these bounds are too loose to serve directly as a method to predict subgrid correlations. Therefore, this paper proposes an alternative method that is based on a blend of theory and empiricism. The method begins with the spherical parameterization framework of Pinheiro and Bates (1996), which expresses the correlation matrix in terms of its Cholesky factorization. The values of the elements of the Cholesky matrix are parameterized here using a cosine row-wise formula that is inspired by the aforementioned bounds on correlations. The method has three advantages: 1) the computational expense is tolerable; 2) the correlations are, by construction, guaranteed to be consistent with each other; and 3) the methodology is fairly general and hence may be applicable to other problems. The method is tested non-interactively using simulations of three Arctic mixed-phase cloud cases from two different field experiments: the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE). Benchmark simulations are performed using a large-eddy simulation (LES) model that includes a bin microphysical scheme. The correlations estimated by the new method satisfactorily approximate the correlations produced by the LES.

  1. Using Doppler spectra to separate hydrometeor populations and analyze ice precipitation in multilayered mixed-phase clouds

    SciTech Connect (OSTI)

    Rambukkange, Mahlon P.; Verlinde, J.; Eloranta, E. W.; Flynn, Connor J.; Clothiaux, Eugene E.

    2011-01-31

    Multimodality of cloud radar Doppler spectra is used to partition cloud particle phases and to separate distinct ice populations in the radar sample volume, thereby facilitating analysis of individual ice showers in multilayered mixed-phase clouds. A 35-GHz cloud radar located at Barrow, Alaska, during the Mixed-Phase Arctic Cloud Experiment collected the Doppler spectra. Data from a pair of collocated depolarization lidars confirmed the presence of two liquid cloud layers reported in this study. Surprisingly, both of these cloud layers were embedded in ice precipitation yet maintained their liquid. Our spectral separation of the ice precipitation yielded two distinct ice populations: ice initiated within the two liquid cloud layers and ice precipitation formed in higher cloud layers. Comparisons of ice fall velocity versus radar reflectivity relationships derived for distinct showers reveal that a single relationship might not properly represent the ice showers during this period.

  2. Parameterization of the Extinction Coefficient in Ice and Mixed-Phase Arctic Clouds during the ISDAC Field Campaign

    SciTech Connect (OSTI)

    Korolev, A; Shashkov, A; Barker, H

    2012-03-06

    This report documents the history of attempts to directly measure cloud extinction, the current measurement device known as the Cloud Extinction Probe (CEP), specific problems with direct measurement of extinction coefficient, and the attempts made here to address these problems. Extinction coefficient is one of the fundamental microphysical parameters characterizing bulk properties of clouds. Knowledge of extinction coefficient is of crucial importance for radiative transfer calculations in weather prediction and climate models given that Earth's radiation budget (ERB) is modulated much by clouds. In order for a large-scale model to properly account for ERB and perturbations to it, it must ultimately be able to simulate cloud extinction coefficient well. In turn this requires adequate and simultaneous simulation of profiles of cloud water content and particle habit and size. Similarly, remote inference of cloud properties requires assumptions to be made about cloud phase and associated single-scattering properties, of which extinction coefficient is crucial. Hence, extinction coefficient plays an important role in both application and validation of methods for remote inference of cloud properties from data obtained from both satellite and surface sensors (e.g., Barker et al. 2008). While estimation of extinction coefficient within large-scale models is relatively straightforward for pure water droplets, thanks to Mie theory, mixed-phase and ice clouds still present problems. This is because of the myriad forms and sizes that crystals can achieve, each having their own unique extinction properties. For the foreseeable future, large-scale models will have to be content with diagnostic parametrization of crystal size and type. However, before they are able to provide satisfactory values needed for calculation of radiative transfer, they require the intermediate step of assigning single-scattering properties to particles. The most basic of these is extinction coefficient, yet it is rarely measured directly, and therefore verification of parametrizations is difficult. The obvious solution is to be able to measure microphysical properties and extinction at the same time and for the same volume. This is best done by in situ sampling by instruments mounted on either balloon or aircraft. The latter is the usual route and the one employed here. Yet the problem of actually measuring extinction coefficient directly for arbitrarily complicated particles still remains unsolved.

  3. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solomon, A.; Feingold, G.; Shupe, M. D.

    2015-04-21

    This study investigates the maintenance of cloud ice production in Arctic mixed phase stratocumulus in large-eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. The results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  4. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solomon, A.; Feingold, G.; Shupe, M. D.

    2015-09-25

    This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. The results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  5. Minimalist Model of Ice Microphysics in Mixed-phase Stratiform Clouds

    SciTech Connect (OSTI)

    Yang, F.; Ovchinnikov, Mikhail; Shaw, Raymond A.

    2013-07-28

    The question of whether persistent ice crystal precipitation from super cooled layer clouds can be explained by time-dependent, stochastic ice nucleation is explored using an approximate, analytical model, and a large-eddy simulation (LES) cloud model. The updraft velocity in the cloud defines an accumulation zone, where small ice particles cannot fall out until they are large enough, which will increase the residence time of ice particles in the cloud. Ice particles reach a quasi-steady state between growth by vapor deposition and fall speed at cloud base. The analytical model predicts that ice water content (wi) has a 2.5 power law relationship with ice number concentration ni. wi and ni from a LES cloud model with stochastic ice nucleation also confirm the 2.5 power law relationship. The prefactor of the power law is proportional to the ice nucleation rate, and therefore provides a quantitative link to observations of ice microphysical properties.

  6. Ice Concentration Retrieval in Stratiform Mixed-phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations

    SciTech Connect (OSTI)

    Zhang, Damao; Wang, Zhien; Heymsfield, Andrew J.; Fan, Jiwen; Luo, Tao

    2014-10-01

    Measurement of ice number concentration in clouds is important but still challenging. Stratiform mixed-phase clouds (SMCs) provide a simple scenario for retrieving ice number concentration from remote sensing measurements. The simple ice generation and growth pattern in SMCs offers opportunities to use cloud radar reflectivity (Ze) measurements and other cloud properties to infer ice number concentration quantitatively. To understand the strong temperature dependency of ice habit and growth rate quantitatively, we develop a 1-D ice growth model to calculate the ice diffusional growth along its falling trajectory in SMCs. The radar reflectivity and fall velocity profiles of ice crystals calculated from the 1-D ice growth model are evaluated with the Atmospheric Radiation Measurements (ARM) Climate Research Facility (ACRF) ground-based high vertical resolution radar measurements. Combining Ze measurements and 1-D ice growth model simulations, we develop a method to retrieve the ice number concentrations in SMCs at given cloud top temperature (CTT) and liquid water path (LWP). The retrieved ice concentrations in SMCs are evaluated with in situ measurements and with a three-dimensional cloud-resolving model simulation with a bin microphysical scheme. These comparisons show that the retrieved ice number concentrations are within an uncertainty of a factor of 2, statistically.

  7. Intercomparison of Large-eddy Simulations of Arctic Mixed-phase Clouds: Importance of Ice Size Distribution Assumptions

    SciTech Connect (OSTI)

    Ovchinnikov, Mikhail; Ackerman, Andrew; Avramov, Alex; Cheng, Anning; Fan, Jiwen; Fridlind, Ann; Ghan, Steven J.; Harrington, Jerry Y.; Hoose, Corinna; Korolev, Alexei; McFarquhar, Greg; Morrison, H.; Paukert, Marco; Savre, Julien; Shipway, Ben; Shupe, Matthew D.; Solomon, Amy; Sulia, Kara

    2014-03-14

    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP) and potential cloud dissipation, in agreement with earlier studies. By comparing simulations with the same microphysics coupled to different dynamical cores as well as the same dynamics coupled to different microphysics schemes, it is found that the ice water path (IWP) is mainly controlled by ice microphysics, while the inter-model differences in LWP are largely driven by physics and numerics of the dynamical cores. In contrast to previous intercomparisons, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSD) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case.

  8. Remote Sensing and In-Situ Observations of Arctic Mixed-Phase and Cirrus Clouds Acquired During Mixed-Phase Arctic Cloud Experiment: Atmospheric Radiation Measurement Uninhabited Aerospace Vehicle Participation

    SciTech Connect (OSTI)

    McFarquhar, G.M.; Freer, M.; Um, J.; McCoy, R.; Bolton, W.

    2005-03-18

    The Atmospheric Radiation Monitor (ARM) uninhabited aerospace vehicle (UAV) program aims to develop measurement techniques and instruments suitable for a new class of high altitude, long endurance UAVs while supporting the climate community with valuable data sets. Using the Scaled Composites Proteus aircraft, ARM UAV participated in Mixed-Phase Arctic Cloud Experiment (M-PACE), obtaining unique data to help understand the interaction of clouds with solar and infrared radiation. Many measurements obtained using the Proteus were coincident with in-situ observations made by the UND Citation. Data from M-PACE are needed to understand interactions between clouds, the atmosphere and ocean in the Arctic, critical interactions given large-scale models suggest enhanced warming compared to lower latitudes is occurring.

  9. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2010-06-29

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.

  10. Ice in Arctic Mixed-phase Stratocumulus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Nuclei Recycling in the Maintenance of Cloud Ice in Arctic Mixed-phase Stratocumulus For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

  11. Zenith Radiance Retrieval of Cloud Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    retrievals of cloud properties from the AMF/COPS campaign Preliminary retrievals of cloud properties from the AMF/COPS campaign Christine Chiu, UMBC/JCET Alexander Marshak, GSFC Yuri Knyazikhin, Boston University Warren Wiscombe, GSFC Christine Chiu, UMBC/JCET Alexander Marshak, GSFC Yuri Knyazikhin, Boston University Warren Wiscombe, GSFC The cloud optical properties of interest are: The cloud optical properties of interest are: * Cloud optical depth τ - the great unknown * Radiative cloud

  12. Atmospheric Radiation Measurement (ARM) Data from Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In October 2010, the initial deployment of the second ARM Mobile Facility (AMF2) took place at Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX). The objective of this field campaign was to obtain data about liquid and mixed-phase clouds using AMF2 instruments in conjunction with Storm Peak Laboratory (located at an elevation of 3220 meters on Mt. Werner), a cloud and aerosol research facility operated by the Desert Research Institute. STORMVEX datasets are freely available for viewing and download. Users are asked to register with the ARM Archive; the user's email address is used from that time forward as the login name.

  13. Cloud Properties Working Group Low Clouds Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiative fluxes, and Optical properties and radiative fluxes, and Associated aerosol prop. & atmospheric state Associated aerosol prop. & atmospheric state Long Long - - term...

  14. MBL Drizzle Properties and Their Impact on Cloud Property Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    layer drizzle properties and their impact on cloud property retrieval." Atmospheric Measurement Techniques, 8, doi:10.5194amt-8-3555-2015. Contributors Xiquan Dong,...

  15. A Potential Role for Immersion Freezing in Arctic Mixed-Phase Stratus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Role for Immersion Freezing in Arctic Mixed-Phase Stratus Gijs de Boer, Edwin W. Eloranta, Tempei Hashino, and Gregory J. Tripoli The University of Wisconsin - Madison (1) Introduction Ice formation appears to a dominant factor controlling the lifecycle of Arctic mixed-phase clouds. To date, our understanding of ice formation in these long-lasting cloud structures does not explain the formation of observed ice amounts. Particularly puzzling are observa- tions taken from the 2004

  16. ARM Cloud Properties Working Group: Meeting Logistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Properties WG Breakout Session 2008 ARM Science Team Meeting Mar. 10, 2008, Norfolk, VA Monday March 10, 2008 1500 to 1515: R. Hogan - A Proposal for ARM support of Cloudnet Activities 1515 to 1530: M. Jensen - Cloud Properties Value- Added Product Development 1530 to 1545: C. Long - Instrument Group Report 1545 to 1600: S. Matrosov - WSR-88D data for ARM science 1600 to 1615: Y. Zhao - A BimodalParticle Distribution Assumption in Cirrus: Comparison of retrieval results with in situ

  17. Radiosonde observations at Pt. Reyes and cloud properties retrieved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiosonde observations at Pt. Reyes and cloud properties retrieved from GOES-WEST Inoue, Toshiro MRIJMA Category: Field Campaigns Low-level cloud formed off the west coast of...

  18. ARM - PI Product - Tropical Cloud Properties and Radiative Heating Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsTropical Cloud Properties and Radiative Heating Profiles ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Tropical Cloud Properties and Radiative Heating Profiles We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al.,

  19. A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.

    SciTech Connect (OSTI)

    Luke,E.; Kollias, P.

    2007-08-06

    The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phase cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered by the highly reflecting ice-covered ground and persistent temperature inversions. From the ground, the retrieval of mixed-phase cloud properties has been the subject of extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 1996), and recently radar Doppler spectra (Shupe et al. 2004). Millimeter-wavelength radars have substantially improved our ability to observe non-precipitating clouds (Kollias et al., 2007) due to their excellent sensitivity that enables the detection of thin cloud layers and their ability to penetrate several non-precipitating cloud layers. However, in mixed-phase clouds conditions, the observed Doppler moments are dominated by the highly reflecting ice crystals and thus can not be used to identify the cloud phase. This limits our ability to identify the spatial distribution of cloud phase and our ability to identify the conditions under which mixed-phase clouds form.

  20. ARM - PI Product - Cloud Property Retrieval Products for Graciosa Island,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Azores ProductsCloud Property Retrieval Products for Graciosa Island, Azores ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud Property Retrieval Products for Graciosa Island, Azores [ research data - ASR funded ] The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets

  1. Cloud Property Retrieval Products for Graciosa Island, Azores

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dong, Xiquan

    2014-05-05

    The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.

  2. Cloud Property Retrieval Products for Graciosa Island, Azores

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dong, Xiquan

    The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.

  3. Cloud Properties Working Group Break Out Session

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    relation to fall speeds, implications for previous measurements. (Mitchell) Q8: Geoengineering of cirrus clouds (Mitchell) Q9: Cold cloud phase partitioning: Roles of...

  4. Posters Ship-Based Measurements of Cloud Optical Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the optical properties of MBL clouds using measurements taken on the NOAA research vessel Malcom Baldrige. We seek the relationship between optical depth and liquid water because...

  5. ARM - Field Campaign - Cirrus Clouds and Aerosol Properties Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsCirrus Clouds and Aerosol Properties Campaign ARM Data Discovery Browse Data Related Campaigns Vaisala Laser Ceilometer CL51 Demonstration 2013.11.14, Winston, SGP...

  6. ARM - Field Campaign - Colorado: The Storm Peak Lab Cloud Property...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Storm Peak Lab Cloud Property Validation Experiment (STORMVEX) Campaign Links STORMVEX Website ARM Data Discovery Browse Data Related Campaigns Colorado: CFHCMH Deployment to...

  7. MAGIC Cloud Properties from Zenith Radiance Data Final Campaign Summary

    SciTech Connect (OSTI)

    Chiu, J. -Y.C.; Gregory, L.; Wagener, R.

    2016-01-01

    Cloud droplet size and optical depth are the most fundamental properties for understanding cloud formation, dissipation and interactions with aerosol and drizzle. They are also a crucial determinant of Earth’s radiative and water-energy balances. However, these properties are poorly predicted in climate models. As a result, the response of clouds to climate change is one of the major sources of uncertainty in climate prediction.

  8. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Dana E. Veron

    2012-04-09

    This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

  9. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    2013-11-07

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  10. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  11. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    2008-01-15

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  12. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  13. ARM - Evaluation Product - Cloud Optical Properties from MFRSR Using Min

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algorithm ProductsCloud Optical Properties from MFRSR Using Min Algorithm ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Cloud Optical Properties from MFRSR Using Min Algorithm Like the operational VAP run at other sites, MFRSRCLDOD is based on the algorithm by Min and Harrison (1996). Users are

  14. Impact of Ice Crystal Roughness on Satellite Retrieved Cloud Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Crystal Roughness on Satellite Retrieved Cloud Properties P. Minnis 1 , P. W. Heck 2 , R. F. Arduini 3 , R. Palikonda 3 , J. K. Ayers 3 , M. M. Khaiyer 3 , P. Yang 4 , Y. Xie 4 3 Science Systems & Applications, Inc. Hampton, VA 1 NASA Langley Research Center Hampton, VA Current Cirrus Models Inadequate Cirrus cloud optical depths τ (heights z e ) are often over (under) estimated when derived from solar reflectances. In situ data suggest smaller asymmetry factors, g, than used in most

  15. Influence of Arctic cloud thermodynamic phase on surface shortwave flux

    SciTech Connect (OSTI)

    Lubin, D.; Vogelmann, A.

    2010-03-15

    As part of the Indirect and Semi-Direct Aerosol Campaign (ISDAC) an Analytical Spectral Devices (ASD, Inc.) spectroradiometer was deployed at the Barrow NSA site during April and May of 2008, and in April-October of 2009. This instrument recorded one-minute averages of surface downwelling spectral flux in the wavelength interval 350-2200 nm, thus sampling the two major near infrared windows (1.6 and 2.2 microns) in which the flux is influenced by cloud microphysical properties including thermodynamic phase and effective particle size. Aircraft in situ measurements of cloud properties show mostly mixed-phase clouds over Barrow during the campaign, but with wide variability in relative liquid versus ice water content. At fixed total optical depth, this variability in phase composition can yield of order 5-10 Watts per square meter in surface flux variability, with greater cloud attenuation of the surface flux usually occurring under higher ice water content. Thus our data show that changes in cloud phase properties, even within the 'mixed-phase' category, can affect the surface energy balance at the same order of magnitude as greenhouse gas increases. Analysis of this spectral radiometric data provides suggestions for testing new mixed-phase parameterizations in climate models.

  16. Intercomparison of the Cloud Water Phase among Global Climate Models

    SciTech Connect (OSTI)

    Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, U.; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, T.

    2014-03-27

    Mixed-phase clouds (clouds that consist of both cloud droplets and ice crystals) are frequently present in the Earths atmosphere and influence the Earths energy budget through their radiative properties, which are highly dependent on the cloud water phase. In this study, the phase partitioning of cloud water is compared among six global climate models (GCMs) and with Cloud and Aerosol Lidar with Orthogonal Polarization retrievals. It is found that the GCMs predict vastly different distributions of cloud phase for a given temperature, and none of them are capable of reproducing the spatial distribution or magnitude of the observed phase partitioning. While some GCMs produced liquid water paths comparable to satellite observations, they all failed to preserve sufficient liquid water at mixed-phase cloud temperatures. Our results suggest that validating GCMs using only the vertically integrated water contents could lead to amplified differences in cloud radiative feedback. The sensitivity of the simulated cloud phase in GCMs to the choice of heterogeneous ice nucleation parameterization is also investigated. The response to a change in ice nucleation is quite different for each GCM, and the implementation of the same ice nucleation parameterization in all models does not reduce the spread in simulated phase among GCMs. The results suggest that processes subsequent to ice nucleation are at least as important in determining phase and should be the focus of future studies aimed at understanding and reducing differences among the models.

  17. ARM - Publications: Science Team Meeting Documents: Cloud Property

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrievals using AIRS data during MPACE Cloud Property Retrievals using AIRS data during MPACE Huang, Allen University of Wisconsin Li, Jun University of Wisconsin-Madison Baggett, Kevin University of Wisconsin-Madison Wu, Xuebao University of Wisconsin-Madison Revercomb, Henry University Of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Knuteson, Robert University Of Wisconsin High spectral resolution infrared radiances collected by AIRS aboard the NASA Aqua satellite are

  18. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 m) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 m), known as the small mode. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 m wavelength relative to 11 m wavelength due to the process of wave resonance or photon tunneling more active at 12 m. This makes the 12/11 m absorption optical depth ratio (or equivalently the 12/11 m Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  19. ARM - PI Product - Cloud Properties and Radiative Heating Rates for TWP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsCloud Properties and Radiative Heating Rates for TWP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud Properties and Radiative Heating Rates for TWP A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites

  20. Non-stoichiometric mixed-phase titania photocatalyst

    DOE Patents [OSTI]

    Chen, Le (Lakewood, CO); Gray, Kimberly A. (Evanston, IL); Graham, Michael E. (Evanston, IL)

    2012-06-19

    A mixed anatase-rutile phase, non-stoichiometric titania photocatalyst material is a highly reactive and is a UV and visible light responsive photocastalyst in the as-deposited condition (i.e. without the need for a subsequent thermal treatment). The mixed phase, non-stoichiometric titania thin film material is non-stoichiometric in terms of its oxygen content such that the thin film material shows a marked red-shift in photoresponse.

  1. Testing AGCM-Predicted Cloud and Radiation Properties with ARM Data: The

    Office of Scientific and Technical Information (OSTI)

    Super-Parameterization Approach (Conference) | SciTech Connect Testing AGCM-Predicted Cloud and Radiation Properties with ARM Data: The Super-Parameterization Approach Citation Details In-Document Search Title: Testing AGCM-Predicted Cloud and Radiation Properties with ARM Data: The Super-Parameterization Approach The goal of our study is to directly evaluate treatment of clouds and radiation in an atmospheric global climate model (AGCM) using long-term observations from the Atmospheric

  2. Microsoft Word - Group3Cloud Properties(RS).docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... for (a) column clouds and (b) circle clouds. 2.0 References Clothiaux, EE, TP Ackerman, GG Mace, KP Moran, RT Marchand, MA Miller, and BE Martner. 2000. "Objective determination ...

  3. ARM - Measurement - Cloud size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements as cloud thickness, cloud area, and cloud aspect ratio. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  4. Testing AGCM-Predicted Cloud and Radiation Properties with ARM...

    Office of Scientific and Technical Information (OSTI)

    evaluate treatment of clouds and radiation in an atmospheric global climate model (AGCM) using long-term observations from the Atmospheric Radiation Measurement (ARM) program. ...

  5. Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect (OSTI)

    Jensen, M; Jensen, K

    2006-06-01

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

  6. Sensitivity of CAM5-Simulated Arctic Clouds and Radiation to Ice Nucleation Parameterization

    SciTech Connect (OSTI)

    Xie, Shaocheng; Liu, Xiaohong; Zhao, Chuanfeng; Zhang, Yuying

    2013-08-01

    Sensitivity of Arctic clouds and radiation in the Community Atmospheric Model version 5 to the ice nucleation process is examined by testing a new physically based ice nucleation scheme that links the variation of ice nuclei (IN) number concentration to aerosol properties. The default scheme parameterizes the IN concentration simply as a function of ice supersaturation. The new scheme leads to a significant reduction in simulated IN number concentrations at all latitudes while changes in cloud amount and cloud properties are mainly seen in high latitudes and middle latitude storm tracks. In the Arctic, there is a considerable increase in mid-level clouds and a decrease in low clouds, which result from the complex interaction among the cloud macrophysics, microphysics, and the large-scale environment. The smaller IN concentrations result in an increase in liquid water path and a decrease in ice water path due to the slow-down of the Bergeron-Findeisen process in mixed-phase clouds. Overall, there is an increase in the optical depth of Arctic clouds, which leads to a stronger cloud radiative forcing (net cooling) at the top of the atmosphere. The comparison with satellite data shows that the new scheme slightly improves low cloud simulations over most of the Arctic, but produces too many mid-level clouds. Considerable improvements are seen in the simulated low clouds and their properties when compared to Arctic ground-based measurements. Issues with the observations and the model-observation comparison in the Arctic region are discussed.

  7. Observed and Simulated Cirrus Cloud Properties at the SGP CART...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site. Three-minute mean retrievals are available at 8-minute intervals for isolated cirrus (i.e., no...

  8. Coupling Between Oceanic Upwelling and Cloud-aerosol Properties at the AMF Point Reyes Site

    SciTech Connect (OSTI)

    Dunn, M.; Jensen, M.; Miller, M.; Kollias, P.; Bartholomew, M. J.; Turner, D.; Andrews, E.; Jefferson, A.; Daum, P.

    2008-03-10

    Cloud microphysical properties measured at the ARM Mobile Facility site located on the northern coast of California near Point Reyes, during the 2005 Marine Stratus Radiation, Aerosol and Drizzle experiment, were analyzed to determine their relationship to the coastal sea surface temperature (SST) which was characterized using measurements acquired from a National Oceanic and Atmospheric Administration offshore buoy. An increase in SST resulting from a relaxation of upwelling, occurring in the eastern Pacific Ocean off the coast of California in summer is observed to strongly correlate with nearby ground measured cloud microphysical properties and cloud condensation nuclei (CCN) concentrations. Correlations between these atmospheric and oceanic features provide insight into the interplay between the ocean and cloud radiative properties. We present evidence of this robust correlation and examine the factors controlling these features. The marine boundary layer is in direct contact with the sea surface and is strongly influenced by SST. Moisture and vertical motion are crucial ingredients for cloud development and so we examine the role of SST in providing these key components to the atmosphere. Although upwelling of cold subsurface waters is conventionally thought to increase aerosols in the region, thus increasing clouds, here we observed a relaxation of upwelling associated with changes in the structure of marine stratus clouds. As upwelling relaxes, the SST get warmer, thick clouds with high liquid water paths are observed and persist for a few days. This cycle is repeated throughout the summer upwelling season. A concomitant cyclic increase and decrease of CCN concentration is also observed. Forcing mechanisms and large-scale atmospheric features are discussed. Marine stratocumulus clouds are a critical component of the earth's radiation budget and this site provides an excellent opportunity to study the influence of SST on these clouds.

  9. Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations S. Kato Center for Atmospheric Sciences Hampton University Hampton, Virginia Introduction Recent development of remote sensing instruments by Atmospheric Radiation Measurement (ARM?) Program provides information of spatial and temporal variability of cloud structures. However it is not clear what cloud properties are required to express complicated cloud

  10. Cloud Optical Properties from the Multifilter Shadowband Radiometer (MFRSRCLDOD): An ARM Value-Added Product

    SciTech Connect (OSTI)

    Turner, DD; McFarlane, SA; Riihimaki, L; Shi, Y; Lo, C; Min, Q

    2014-02-01

    The microphysical properties of clouds play an important role in studies of global climate change. Observations from satellites and surface-based systems have been used to infer cloud optical depth and effective radius. Min and Harrison (1996) developed an inversion method to infer the optical depth of liquid water clouds from narrow band spectral Multifilter Rotating Shadowband Radiometer (MFRSR) measurements (Harrison et al. 1994). Their retrieval also uses the total liquid water path (LWP) measured by a microwave radiometer (MWR) to obtain the effective radius of the warm cloud droplets. Their results were compared with Geostationary Operational Environmental Satellite (GOES) retrieved values at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site (Min and Harrison 1996). Min et al. (2003) also validated the retrieved cloud optical properties against in situ observations, showing that the retrieved cloud effective radius agreed well with the in situ forward scattering spectrometer probe observations. The retrieved cloud optical properties from Min et al. (2003) were used also as inputs to an atmospheric shortwave model, and the computed fluxes were compared with surface pyranometer observations.

  11. A study of cloud and drizzle properties in the Azores using Doppler Radar spectra

    SciTech Connect (OSTI)

    Luke, E.; Remillard, J.; Kollias, P.

    2010-03-15

    Understanding the onset of coalescence in warm clouds is key in our effort to improve cloud representation in numerical models. Coalescence acts at small scales, and its study requires detailed high-resolution dynamical and microphysical measurements from a comprehensive suite of instruments over a wide range of environmental conditions (e.g., aerosol loading). The first AMF is currently in its second year of a two-year deployment at Graciosa Island in the Azores, offering the opportunity to collect a long data set from a stable land-based platform in a marine stratocumulus regime. In this study, recorded WACR Doppler spectra are used to characterize the properties of Doppler spectra from warm clouds with and without drizzle, and from drizzle only, in an effort to observe the transition (onset) to precipitation in clouds. A retrieval technique that decomposes observed Doppler spectra into their cloud and/or drizzle components is applied in order to quantify drizzle growth.

  12. ARM - Measurement - Cloud type

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Cloud type Cloud type such as cirrus, stratus, cumulus etc Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  13. Posters Diagnostic Analysis of Cloud Radiative Properties R.C.J. Somerville and S. F. Iacobellis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Posters Diagnostic Analysis of Cloud Radiative Properties R.C.J. Somerville and S. F. Iacobellis Scripps Institution of Oceanography University of California, San Diego La Jolla, California Introduction A current dilemma of climate modeling is that general circulation model (GCM) results are extremely sensitive to parameterizations of certain poorly understood physical processes, most notably cloud-radiation interactions. As a result, models with different plausible parameterizations give very

  14. Detecting Cirrus-Overlapping-Water Clouds and Retrieving their Optical Properties Using MODIS Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cirrus-Overlapping-Water Clouds and Retrieving their Optical Properties Using MODIS Data F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland Z. Li Department of Meteorology University of Maryland College Park, Maryland Introduction Different methods have been proposed to detect multilayer clouds using passive remote sensing data. Baum et al. (1995) used the CO 2 -slicing technique applied to the High Resolution Infrared Radiation

  15. Impact of aerosol on mixed-phase stratocumulus during MPACE in a mesoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model with two-moment microphysics Impact of aerosol on mixed-phase stratocumulus during MPACE in a mesoscale model with two-moment microphysics Morrison, Hugh MMM/ASP National Center for Atmospheric Research Pinto, James University of Colorado Curry, Judith Georgia Institute of Technology Category: Modeling The Penn State/NCAR mesoscale model MM5 is coupled to a new microphysics scheme to examine the impact of aerosol on mixed-phase stratocumulus during the Mixed-Phase Arctic Stratus

  16. Studying Mixed-Phased Clouds Using Ground-Based Active and Passive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    phase condition conditions. J. Appl. Meteor., 40, 1967-1983. Fleishauer, R. P., V. E. Larson, and T. H. Vonder Haar, 2002: Observed microphysical structure of midlevel,...

  17. Evaluating cloud retrieval algorithms with the ARM BBHRP framework

    SciTech Connect (OSTI)

    Mlawer,E.; Dunn,M.; Mlawer, E.; Shippert, T.; Troyan, D.; Johnson, K. L.; Miller, M. A.; Delamere, J.; Turner, D. D.; Jensen, M. P.; Flynn, C.; Shupe, M.; Comstock, J.; Long, C. N.; Clough, S. T.; Sivaraman, C.; Khaiyer, M.; Xie, S.; Rutan, D.; Minnis, P.

    2008-03-10

    Climate and weather prediction models require accurate calculations of vertical profiles of radiative heating. Although heating rate calculations cannot be directly validated due to the lack of corresponding observations, surface and top-of-atmosphere measurements can indirectly establish the quality of computed heating rates through validation of the calculated irradiances at the atmospheric boundaries. The ARM Broadband Heating Rate Profile (BBHRP) project, a collaboration of all the working groups in the program, was designed with these heating rate validations as a key objective. Given the large dependence of radiative heating rates on cloud properties, a critical component of BBHRP radiative closure analyses has been the evaluation of cloud microphysical retrieval algorithms. This evaluation is an important step in establishing the necessary confidence in the continuous profiles of computed radiative heating rates produced by BBHRP at the ARM Climate Research Facility (ACRF) sites that are needed for modeling studies. This poster details the continued effort to evaluate cloud property retrieval algorithms within the BBHRP framework, a key focus of the project this year. A requirement for the computation of accurate heating rate profiles is a robust cloud microphysical product that captures the occurrence, height, and phase of clouds above each ACRF site. Various approaches to retrieve the microphysical properties of liquid, ice, and mixed-phase clouds have been processed in BBHRP for the ACRF Southern Great Plains (SGP) and the North Slope of Alaska (NSA) sites. These retrieval methods span a range of assumptions concerning the parameterization of cloud location, particle density, size, shape, and involve different measurement sources. We will present the radiative closure results from several different retrieval approaches for the SGP site, including those from Microbase, the current 'reference' retrieval approach in BBHRP. At the NSA, mixed-phase clouds and cloud with a low optical depth are prevalent; the radiative closure studies using Microbase demonstrated significant residuals. As an alternative to Microbase at NSA, the Shupe-Turner cloud property retrieval algorithm, aimed at improving the partitioning of cloud phase and incorporating more constrained, conditional microphysics retrievals, also has been evaluated using the BBHRP data set.

  18. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  19. Derivation of Seasonal Cloud Properties at ARM-NSA from Multispectral MODIS Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Derivation of Seasonal Cloud Properties at ARM-NSA from Multispectral MODIS Data D. A. Spangenberg Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Langley Research Center Hampton, Virginia T. Uttal National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Q. Z. Trepte and S. S.-Mack Science Applications International Corporation Hampton, Virginia Introduction Improving climate model

  20. Cloud Properties Derived from Visible and Near-infrared Reflectance in the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presence of Aerosols Cloud Properties Derived from Visible and Near-infrared Reflectance in the Presence of Aerosols Hofmann, Odele University of Colorado at Boulder Pilewskie, Peter University of Colorado Gore, Warren NASA Ames Research Center Russell, Phil NASA Ames Research Center Livingston, John SRI International Redemann, Jens BAERI/NASA Ames Research Center Bergstrom, Robert Bay Area Environmental Research Institute Platnick, Steven NASA-GSFC Daniel, John NOAA Aeronomy Laboratory

  1. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    2013-05-22

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  2. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  3. Full Electroresistance Modulation in a Mixed-Phase Metallic Alloy (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Full Electroresistance Modulation in a Mixed-Phase Metallic Alloy Citation Details In-Document Search This content will become publicly available on March 3, 2017 Title: Full Electroresistance Modulation in a Mixed-Phase Metallic Alloy Authors: Liu, Z. Q. ; Li, L. ; Gai, Z. ; Clarkson, J. D. ; Hsu, S. L. ; Wong, A. T. ; Fan, L. S. ; Lin, M.-W. ; Rouleau, C. M. ; Ward, T. Z. ; Lee, H. N. ; Sefat, A. S. ; Christen, H. M. ; Ramesh, R. Publication Date: 2016-03-03 OSTI

  4. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    SciTech Connect (OSTI)

    Mace, J; Matrosov, S; Shupe, M; Lawson, P; Hallar, G; McCubbin, I; Marchand, R; Orr, B; Coulter, R; Sedlacek, A; Avallone, L; Long, C

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phase will begin nominally on 1 November 2010 and extend to approximately early April 2011.

  5. Roles of Wind Shear at Different Vertical Levels, Part I: Cloud System Organization and Properties

    SciTech Connect (OSTI)

    Chen, Qian; Fan, Jiwen; Hagos, Samson M.; Gustafson, William I.; Berg, Larry K.

    2015-07-16

    Understanding of critical processes that contribute to the organization of mesoscale convective systems is important for accurate weather forecast and climate prediction. In this study, we investigate the effects of wind shear at different vertical levels on the organization and properties of cloud systems using the Weather Research & Forecasting (WRF) model with a spectral-bin microphysical scheme. The sensitivity experiments are performed by increasing wind shear at the lower (0-5 km), middle (5-10 km), upper (> 10 km) and the entire troposphere, respectively, based on a control run for a mesoscale convective system (MCS) with weak wind shear. We find that increasing wind shear at the both lower and middle vertical levels reduces the domain-accumulated precipitation and the occurrence of heavy rain, while increasing wind shear at the upper levels changes little on precipitation. Although increasing wind shear at the lower-levels is favorable for a more organized quasi-line system which leads to enlarged updraft core area, and enhanced updraft velocities and vertical mass fluxes, the precipitation is still reduced by 18.6% compared with the control run due to stronger rain evaporation induced by the low-level wind shear. Strong wind shear in the middle levels only produces a strong super-cell over a narrow area, leading to 67.3% reduction of precipitation over the domain. By increasing wind shear at the upper levels only, the organization of the convection is not changed much, but the increased cloudiness at the upper-levels leads to stronger surface cooling and then stabilizes the atmosphere and weakens the convection. When strong wind shear exists over the entire vertical profile, a deep dry layer (2-9 km) is produced and convection is severely suppressed. There are fewer very-high (cloud top height (CTH) > 15 km) and very-deep (cloud thickness > 15 km) clouds, and the precipitation is only about 11.8% of the control run. The changes in cloud microphysical properties further explain the reduction of surface rain by strong wind shear especially at the lower- and middle-levels. The insights obtained from this study help us better understand the cloud system organization and provide foundation for better parameterizing organized MCS.

  6. ARM - Measurement - Cloud location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    point in space and time, typically expressed as a binary cloud mask. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  7. ARM - Measurement - Cloud extinction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an incident beam by the process of cloud absorption andor scattering. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  8. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  9. Validation of Cloud Properties Derived from GOES-9 Over the ARM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud phase, effective temperature, effective height, optical depth, effective particle size, and liquid or ice water path. Cloud-top height and thickness are also derived...

  10. TC_CLOUD_REGIME.cdr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    intensity (e.g. May and Ballinger, 2007) Resulting Cloud Properties Examine rain DSD using polarimetric radar Examine ice cloud properties using MMCR and MPL Expect...

  11. The Mass Distribution and Assembly of the Milky Way from the Properties of the Magellanic Clouds

    SciTech Connect (OSTI)

    Busha, Michael T.; Marshall, Philip J.; Wechsler, Risa H.; Klypin, Anatoly; Primack, Joel; /UC, Santa Cruz, Phys. Dept.

    2012-02-29

    We present a new measurement of the mass of the Milky Way (MW) based on observed properties of its largest satellite galaxies, the Magellanic Clouds (MCs), and an assumed prior of a {Lambda}CDM universe. The large, high-resolution Bolshoi cosmological simulation of this universe provides a means to statistically sample the dynamical properties of bright satellite galaxies in a large population of dark matter halos. The observed properties of the MCs, including their circular velocity, distance from the center of the MW, and velocity within the MW halo, are used to evaluate the likelihood that a given halo would have each or all of these properties; the posterior probability distribution function (PDF) for any property of the MW system can thus be constructed. This method provides a constraint on the MW virial mass, 1.2{sup +0.7} - {sub 0.4}(stat.){sup +0.3} - {sub 0.3}(sys.) x 10{sup 12} M {circle_dot} (68% confidence), which is consistent with recent determinations that involve very different assumptions. In addition, we calculate the posterior PDF for the density profile of the MW and its satellite accretion history. Although typical satellites of 10{sup 12} M {circle_dot} halos are accreted over a wide range of epochs over the last 10 Gyr, we find a {approx}72% probability that the MCs were accreted within the last Gyr, and a 50% probability that they were accreted together.

  12. ARM - Publications: Science Team Meeting Documents: Cirrus Cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements by the UAF Polarization Diversity Lidar during M-PACE Cirrus Cloud Measurements by the UAF Polarization Diversity Lidar during M-PACE Sassen, Kenneth University of Alaska Fairbanks Zhu, Jiang UAF During the final week of the September-October 2004 Mixed-Phase Cloud Experiment (M-PACE) conducted in and around the North Slope of Alaska (NSA) Atmospheric Radiation Measurement (ARM) site in Barrow, Alaska, cirrus clouds were unexpectedly prevalent. Overcoming earlier adversity, the

  13. ARM - Measurement - Cloud droplet size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    droplet size Linear size (e.g. radius or diameter) of a cloud particle Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  14. ARM - Measurement - Cloud effective radius

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the number size distribution of cloud particles, whether liquid or ice. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  15. ARM - Measurement - Cloud phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that involves property descriptors such as stratus, cumulus, and cirrus. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  16. The Radiative Properties of Small Clouds: Multi-Scale Observations and Modeling

    SciTech Connect (OSTI)

    Feingold, Graham; McComiskey, Allison

    2013-09-25

    Warm, liquid clouds and their representation in climate models continue to represent one of the most significant unknowns in climate sensitivity and climate change. Our project combines ARM observations, LES modeling, and satellite imagery to characterize shallow clouds and the role of aerosol in modifying their radiative effects.

  17. Process-model Simulations of Cloud Albedo Enhancement by Aerosols in the Arctic

    SciTech Connect (OSTI)

    Kravitz, Benjamin S.; Wang, Hailong; Rasch, Philip J.; Morrison, H.; Solomon, Amy

    2014-11-17

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN). An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Because nearly all of the albedo effects are in the liquid phase due to the removal of ice water by snowfall when ice processes are involved, albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation due to precipitation changes are small.

  18. Atomic oxygen flux determined by mixed-phase Ag/Ag2O deposition

    SciTech Connect (OSTI)

    Kaspar, Tiffany C.; Droubay, Timothy C.; Chambers, Scott A.

    2010-11-01

    The flux of atomic oxygen generated in a electron cyclotron resonance (ECR) microwave plasma source was quantified by two different methods. The commonly applied approach of monitoring the frequency change of a silver-coated quartz crystal microbalance (QCM) deposition rate monitor as the silver is oxidized was found to underestimate the atomic oxygen flux by an order of magnitude compared to a more direct deposition approach. In the mixed-phase Ag/Ag2O deposition method, silver films were deposited in the presence of the plasma such that the films were partially oxidized to Ag2O; x-ray photoelectron spectroscopy (XPS) was utilized for quantification of the oxidized fraction. The inaccuracy of the QCM oxidation method was tentatively attributed to efficient catalytic recombination of O atoms on the silver surface.

  19. The nature of interfaces and charge trapping sites in photocatalytic mixed-phase TiO{sub 2} from first principles modeling

    SciTech Connect (OSTI)

    Garcia, Juan C.; Deskins, N. Aaron; Nolan, Michael

    2015-01-14

    Mixed phase rutile/anatase catalysts show increased reactivity compared with the pure phases alone. However, the mechanism causing this effect is not fully understood. The electronic properties of the interface and the relative energy of the electron in each phase play a key role in lowering the rate of recombination of electron hole pairs. Using density functional theory and the +U correction, we calculated the bands offsets between the phases taking into account the effect of the interface. Our model included several thousands atoms, and thus is a good representation of an interface between actual nanoparticles. We found rutile to have both higher conduction and valence band offsets than rutile, leading to an accumulation of electrons in the anatase phase accompanied by hole accumulation in the rutile phase. We also probed the electronic structure of our heterostructure and found a gap state caused by electrons localized in undercoordinated Ti atoms which were present within the interfacial region. Interfaces between bulk materials and between exposed surfaces both showed electron trapping at undercoordinated sites. These undercoordinated (typically four) atoms present localized electrons that could enable reduction reactions in the interfacial region, and could explain the increased reactivity of mixed-phase TiO{sub 2} photocatalyst materials.

  20. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect (OSTI)

    Veron, Dana E

    2009-03-12

    This project had two primary goals: 1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and 2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed below.

  1. Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing

    SciTech Connect (OSTI)

    Gantt, Brett; Xu, Jun; Meskhidze, N.; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2012-07-25

    A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 Wm{sup -2} (7 %) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level incloud droplet number concentration and liquid water path of 1.3 cm{sup -3} (1.5 %) and 0.22 gm{sup -2} (0.5 %), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

  2. Additional development of remote sensing techniques for observing morphology, microphysics, and radiative properties of clouds and tests using a new, robust CO{sub 2} lidar. Annual progress report, August 15, 1994--August 30, 1995

    SciTech Connect (OSTI)

    Eberhard, W.L.; Intrieri, J.M.; Brewer, W.A.

    1996-04-01

    The bulk morphology and microphysical characteristics of a cloud are both important in determining the cloud`s effect on radiative transfer. A better understanding of all these properties, and the links among them, are needed for developing adequate parameterizations of these components in climate models. The objective of this project is to develop remote sensing techniques for observing key cloud properties, including the linkages. The research has technique development and instrument development prongs.

  3. Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, part 1: feature detection

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Newsom, Rob K.; Turner, David D.; Comstock, Jennifer M.

    2015-11-01

    A Feature detection and EXtinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement (ARM) program’s Raman lidar (RL) has been developed. Presented here is part 1 of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitro-gen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio— to identify features using range-dependent detection thresholds. FEX is designed to be context-sensitive with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use of multiple quantities pro-vides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically-thin features containing non-spherical particles such as cirrus clouds. Improve-ments over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia site. While we focus on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.

  4. Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations

    SciTech Connect (OSTI)

    Liu X.; Lin W.; Xie, S.; Boyle, J.; Klein, S. A.; Shi, X.; Wang, Z.; Ghan, S. J.; Earle, M.; Liu, P. S. K.; Zelenyuk, A.

    2011-12-24

    Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20-40 W m{sup -2}. Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from -5 C to -40 C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.

  5. Testing Cloud Microphysics Parameterizations in NCAR CAM5 with ISDAC and M-PACE Observations

    SciTech Connect (OSTI)

    Liu, Xiaohong; Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Shi, Xiangjun; Wang, Zhien; Lin, Wuyin; Ghan, Steven J.; Earle, Michael; Liu, Peter; Zelenyuk, Alla

    2011-12-24

    Arctic clouds simulated by the NCAR Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic Spring and Fall seasons performed under the Cloud- Associated Parameterizations Testbed (CAPT) framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary layer mixed-phase stratocumulus, and multilayer or deep frontal clouds. However, for low-level clouds, the model significantly underestimates the observed cloud liquid water content in both seasons and cloud fraction in the Spring season. As a result, CAM5 significantly underestimates the surface downward longwave (LW) radiative fluxes by 20-40 W m-2. The model with a new ice nucleation parameterization moderately improves the model simulations by increasing cloud liquid water content in mixed-phase clouds through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron- Findeisen (WBF) process. The CAM5 single column model testing shows that change in the homogeneous freezing temperature of rain to form snow from -5 C to -40 C has a substantial impact on the modeled liquid water content through the slowing-down of liquid and rain-related processes. In contrast, collections of cloud ice by snow and cloud liquid by rain are of minor importance for single-layer boundary layer mixed-phase clouds in the Arctic.

  6. ARM - Measurement - Cloud base height

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    base height ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud base height For a given cloud or cloud layer, the lowest level of the atmosphere where cloud properties are detectable. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  7. ARM - Measurement - Cloud top height

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    top height ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud top height For a given cloud or cloud layer, the highest level of the atmosphere where cloud properties are detectable. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  8. A Global Climatology of Single-Layer and Overlapped Clouds and their Optical Properties Developed Using a New Algorithm Applied to Terra/MODIS Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Climatology of Single-Layer and Overlapped Clouds and their Optical Properties Developed Using a New Algorithm Applied to Terra/MODIS Data F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland Z. Li Department of Meteorology University of Maryland College Park, Maryland Introduction To date, weather satellites are the only tool to measure cloud and climate variables on a global scale, an objective addressed by the International

  9. THE HERSCHEL EXPLOITATION OF LOCAL GALAXY ANDROMEDA (HELGA). VI. THE DISTRIBUTION AND PROPERTIES OF MOLECULAR CLOUD ASSOCIATIONS IN M31

    SciTech Connect (OSTI)

    Kirk, J. M. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gear, W. K.; Smith, M. W. L.; Ford, G.; Eales, S. A.; Gomez, H. L. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, Wales CF24 3AA (United Kingdom); Fritz, J.; Baes, M.; De Looze, I.; Gentile, G.; Gordon, K.; Verstappen, J.; Viaene, S. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Bendo, G. J. [UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); O'Halloran, B. [Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Madden, S. C.; Lebouteiller, V. [Laboratoire AIM, CEA/DSM-CNRS-Universit Paris Diderot, Irfu/Service, Paris, F-91190 Gif-sur-Yvette (France); Roman-Duval, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Boselli, A. [Laboratoire d'Astrophysique de Marseille, UMR 7326 CNRS, 38 rue F. Joliot-Curie, F-13388 Marseille (France); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); and others

    2015-01-01

    In this paper we present a catalog of giant molecular clouds (GMCs) in the Andromeda (M31) galaxy extracted from the Herschel Exploitation of Local Galaxy Andromeda (HELGA) data set. GMCs are identified from the Herschel maps using a hierarchical source extraction algorithm. We present the results of this new catalog and characterize the spatial distribution and spectral energy properties of its clouds based on the radial dust/gas properties found by Smith etal. A total of 326 GMCs in the mass range 10{sup 4}-10{sup 7} M {sub ?} are identified; their cumulative mass distribution is found to be proportional to M {sup 2.34}, in agreement with earlier studies. The GMCs appear to follow the same correlation of cloud mass to L {sub CO} observed in the Milky Way. However, comparison between this catalog and interferometry studies also shows that the GMCs are substructured below the Herschel resolution limit, suggesting that we are observing associations of GMCs. Following Gordon etal., we study the spatial structure of M31 by splitting the observed structure into a set of spiral arms and offset rings. We fit radii of 10.3 and 15.5 kpc to the two most prominent rings. We then fit a logarithmic spiral with a pitch angle of 8.9 to the GMCs not associated with either ring. Last, we comment on the effects of deprojection on our results and investigate the effect different models for M31's inclination will have on the projection of an unperturbed spiral arm system.

  10. SCM Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prediction The ARM NSA Mixed-Phase Arctic Cloud Experiment (M-PACE) October 5 to October 22, 2004 Measurements Clouds and Cloud Microphysical Properties Millimeter-wavelength...

  11. Testing a New Cirrus Cloud Parameterizaton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute of Oceanography La Jolla, California Introduction Cirrus cloud cover and ice water content (IWC) are the two most important properties of cirrus clouds. However, in...

  12. Analysis of In situ Observations of Cloud Microphysics from M-PACE Final Report, DOE Grant Agreement No. DE-FG02-06ER64168

    SciTech Connect (OSTI)

    Michael R. Poellot

    2009-01-09

    This report summarizes the findings and accomplishments of work performed under DOE Grant Agreement No. DE-FG02-06ER64168. The focus of the work was the analysis of in situ observations collected by the University of North Dakota Citation research aircraft during the Mixed-Phase Arctic Cloud Experiment (M-PACE). This project was conducted in 2004 along the North Slope of Alaska. The objectives of the research were: to characterize certain microphysical properties of clouds sampled during M-PACE, including spatial variability, precipitation formation, ice multiplication; to examine instrument performance and certain data processing algorithms; and to collaborate with other M-PACE investigators on case study analyses. A summary of the findings of the first two objectives is given here in parts 1 and 2; full results are contained in reports listed in part 3 of this report. The collaborative efforts are described in the publications listed in part 3.

  13. Final Report - Satellite Calibration and Verification of Remotely Sensed Cloud and Radiation Properties Using ARM UAV Data (February 28, 1995 - February 28, 1998)

    SciTech Connect (OSTI)

    Minnis, Patrick

    1998-02-28

    The work proposed under this agreement was designed to validate and improve remote sensing of cloud and radiation properties in the atmosphere for climate studies with special emphasis on the use of satellites for monitoring these parameters to further the goals of the Atmospheric Radiation Measurement (ARM) Program.

  14. ARM - Measurement - Cloud fraction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fraction ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud fraction Fraction of sky covered by clouds. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance

  15. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (first echo). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  16. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  17. The role of precipitation size distributions in km-scale NWP simulations of intense precipitation: Evaluation of cloud properties and surface precipitation

    SciTech Connect (OSTI)

    VanWeverberg K.; Vogelmann A.; vanLipzig, N. P. M.; Delobbec, L.

    2012-04-01

    We investigate the sensitivity of simulated cloud properties and surface precipitation to assumptions regarding the size distributions of the precipitating hydrometeors in a one-moment bulk microphysics scheme. Three sensitivity experiments were applied to two composites of 15 convective and 15 frontal stratiform intense precipitation events observed in a coastal midlatitude region (Belgium), which were evaluated against satellite-retrieved cloud properties and radar-rain-gauge derived surface precipitation. It is found that the cloud optical thickness distribution was well captured by all experiments, although a significant underestimation of cloudiness occurred in the convective composite. The cloud-top-pressure distribution was improved most by more realistic snow size distributions (including a temperature-dependent intercept parameter and non-spherical snow for the calculation of the slope parameter), due to increased snow depositional growth at high altitudes. Surface precipitation was far less sensitive to whether graupel or hail was chosen as the rimed ice species, as compared to previous idealized experiments. This smaller difference in sensitivity could be explained by the stronger updraught velocities and higher freezing levels in the idealized experiments compared to typical coastal midlatitude environmental conditions.

  18. Ice Nucleation of Bare and Sulfuric Acid-coated Mineral Dust Particles and Implication for Cloud Properties

    SciTech Connect (OSTI)

    Kulkarni, Gourihar R.; Sanders, Cassandra N.; Zhang, Kai; Liu, Xiaohong; Zhao, Chun

    2014-08-27

    Ice nucleation properties of different dust species coated with soluble material are not well understood. We determined the ice nucleation ability of bare and sulfuric acid coated mineral dust particles as a function of temperature (-25 to -35 deg C) and relative humidity with respect to water (RHw). Five different mineral dust species: Arizona test dust (ATD), illite, montmorillonite, quartz and kaolinite were dry dispersed and size-selected at 150 nm and exposed to sulfuric acid vapors in the coating apparatus. The condensed sulfuric acid soluble mass fraction per particle was estimated from the cloud condensation nuclei activated fraction measurements. The fraction of dust particles nucleating ice at various temperatures and RHw was determined using a compact ice chamber. In water-subsaturated conditions, compared to bare dust particles, we found that only coated ATD particles showed suppression of ice nucleation ability while other four dust species did not showed the effect of coating on the fraction of particles nucleating ice. The results suggest that interactions between the dust surface and sulfuric acid vapor are important, such that interactions may or may not modify the surface via chemical reactions with sulfuric acid. At water-supersaturated conditions we did not observed the effect of coating, i.e. the bare and coated dust particles had similar ice nucleation behavior.

  19. ARM - Measurement - Images of Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsImages of Clouds ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Images of Clouds Digital images of cloud scenes (various formats) from satellite, aircraft, and ground-based platforms. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  20. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  1. Dispersion of Cloud Droplet Size Distributions, Cloud Parameterizations and Indirect Aerosol Effects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dispersion of Cloud Droplet Size Distributions, Cloud Parameterizations, and Indirect Aerosol Effects P. H. Daum and Y. Liu Brookhaven National Laboratory Upton, New York Introduction Most studies of the effect of aerosols on cloud radiative properties have considered only changes in the cloud droplet concentration, neglecting changes in the spectral shape of the cloud droplet size distribution. However, it has been shown that that the spectral dispersion of the cloud droplet size distribution

  2. Final Technical Report ARM DOE Grant #DE-FG02-03ER63520 Parameterizations of Shortwave Radiactive Properties of Broken Clouds from Satellite and Ground-Based Measurements

    SciTech Connect (OSTI)

    Albrecht, Bruce, A.

    2006-06-19

    This study used DOE ARM data and facilities to: 1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, 2) develop a scientific basis for understanding the pocesses responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and 3) evaluate cumulus cloud characteristics retrieved retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: 1)develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, 2) evaluate the capability and limitation of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low-signal-to-noise conditions associated with weak non-precipitating clouds, 3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and 4) retrieve updraft and downdraft structures under precipitating conditions.

  3. H I, CO, and Planck/IRAS dust properties in the high latitude cloud complex, MBM 53, 54, 55 and HLCG 92 – 35. Possible evidence for an optically thick H I envelope around the CO clouds

    SciTech Connect (OSTI)

    Fukui, Yasuo; Okamoto, Ryuji; Kaji, Ryohei; Yamamoto, Hiroaki; Torii, Kazufumi; Hayakawa, Takahiro; Tachihara, Kengo; Okuda, Takeshi; Ohama, Akio; Kuroda, Yutaka; Kuwahara, Toshihisa; Dickey, John M.

    2014-11-20

    We present an analysis of the H I and CO gas in conjunction with the Planck/IRAS submillimeter/far-infrared dust properties toward the most outstanding high latitude clouds MBM 53, 54, 55 and HLCG 92 – 35 at b = –30° to – 45°. The CO emission, dust opacity at 353 GHz (τ{sub 353}), and dust temperature (T {sub d}) show generally good spatial correspondence. On the other hand, the correspondence between the H I emission and the dust properties is less clear than in CO. The integrated H I intensity W{sub H} {sub I} and τ{sub 353} show a large scatter with a correlation coefficient of ∼0.6 for a T {sub d} range from 16 K to 22 K. We find, however, that W{sub H} {sub I} and τ{sub 353} show better correlation for smaller ranges of T {sub d} every 0.5 K, generally with a correlation coefficient of 0.7-0.9. We set up a hypothesis that the H I gas associated with the highest T {sub d} ≥ 21.5 K is optically thin, whereas the H I emission is generally optically thick for T {sub d} lower than 21.5 K. We have determined a relationship for the optically thin H I gas between atomic hydrogen column density and τ{sub 353}, N{sub H} {sub I} (cm{sup −2})=(1.5×10{sup 26})⋅τ{sub 353}, under the assumption that the dust properties are uniform and we have applied this to estimate N{sub H} {sub I} from τ{sub 353} for the whole cloud. N{sub H} {sub I} was then used to solve for T {sub s} and τ{sub H} {sub I} over the region. The result shows that the H I is dominated by optically thick gas having a low spin temperature of 20-40 K and a density of 40-160 cm{sup –3}. The H I envelope has a total mass of ∼1.2 × 10{sup 4} M {sub ☉}, an order of magnitude larger than that of the CO clouds. The H I envelope properties derived by this method do not rule out a mixture of H I and H{sub 2} in the dark gas, but we present indirect evidence that most of the gas mass is in the atomic state.

  4. The influence of mixed and phase clouds on surface shortwave irradiance during the Arctic spring

    SciTech Connect (OSTI)

    Lubin D.; Vogelmann A.

    2011-10-13

    The influence of mixed-phase stratiform clouds on the surface shortwave irradiance is examined using unique spectral shortwave irradiance measurements made during the Indirect and Semi-Direct Aerosol Campaign (ISDAC), supported by the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. An Analytical Spectral Devices (ASD, Inc.) spectroradiometer measured downwelling spectral irradiance from 350 to 2200 nm in one-minute averages throughout April-May 2008 from the ARM Climate Research Facility's North Slope of Alaska (NSA) site at Barrow. This study examines spectral irradiance measurements made under single-layer, overcast cloud decks having geometric thickness < 3000 m. Cloud optical depth is retrieved from irradiance in the interval 1022-1033 nm. The contrasting surface radiative influences of mixed-phase clouds and liquid-water clouds are discerned using irradiances in the 1.6-{micro}m window. Compared with liquid-water clouds, mixed-phase clouds during the Arctic spring cause a greater reduction of shortwave irradiance at the surface. At fixed conservative-scattering optical depth (constant optical depth for wavelengths {lambda} < 1100 nm), the presence of ice water in cloud reduces the near-IR surface irradiance by an additional several watts-per-meter-squared. This additional reduction, or supplemental ice absorption, is typically {approx}5 W m{sup -2} near solar noon over Barrow, and decreases with increasing solar zenith angle. However, for some cloud decks this additional absorption can be as large as 8-10 W m{sup -2}.

  5. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  6. ARM - Measurement - Cloud ice particle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ice particle ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud ice particle Particles made of ice found in clouds. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or

  7. ARM - Measurement - Cloud optical depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optical depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud optical depth Amount of light cloud droplets or ice particles prevent from passing through a column of atmosphere. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  8. Precipitating clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    processes, especially related ice. * Very large differences between observed IN number concentration and ice concentration in a given clouds. * Many ice nucleation modes are...

  9. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    SciTech Connect (OSTI)

    Tao, Wei-Kuo

    2014-05-19

    1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail. Each type is described by a special size distribution function containing 33 categories (bins). Atmospheric aerosols are also described using number density size-distribution functions (containing 33 bins). Droplet nucleation (activation) is derived from the analytical calculation of super-saturation, which is used to determine the sizes of aerosol particles to be activated and the corresponding sizes of nucleated droplets. Primary nucleation of each type of ice crystal takes place within certain temperature ranges. A detailed description of these explicitly parameterized processes can be found in Khain and Sednev (1996) and Khain et al. (1999, 2001). 2.3 Case Studies Three cases, a tropical oceanic squall system observed during TOGA COARE (Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment, which occurred over the Pacific Ocean warm pool from November 1992 to February 1993), a midlatitude continental squall system observed during PRESTORM (Preliminary Regional Experiment for STORM-Central, which occurred in Kansas and Oklahoma during May-June 1985), and mid-afternoon convection observed during CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cumulus Experiment, which occurred in Florida during July 2002), will be used to examine the impact of aerosols on deep, precipitating systems. 3. SUMMARY of RESULTS • For all three cases, higher CCN produces smaller cloud droplets and a narrower spectrum. Dirty conditions delay rain formation, increase latent heat release above the freezing level, and enhance vertical velocities at higher altitude for all cases. Stronger updrafts, deeper mixed-phase regions, and more ice particles are simulated with higher CCN in good agreement with observations. • In all cases, rain reaches the ground early with lower CCN. Rain suppression is also evident in all three cases with high CCN in good agreement with observations (Rosenfeld, 1999, 2000 and others). Rain suppression, however, only occurs during the first hour of simulation. This result suggests that microphysical processes dominate the impact of aerosols on precipitation in the early stage of precipitation development. • During the mature stage of the simulations, the effect of increasing aerosol concentration ranges from rain suppression in the PRESTORM case to little effect on surface rainfall in the CRYSTAL-FACE case to rain enhancement in the TOGA COARE case. • The model results suggest that evaporative cooling is a key process in determining whether higher CCN reduces or enhances precipitation. Cold pool strength can be enhanced by stronger evaporation. When cold pool interacts with the near surface wind shear, the low-level convergence can be stronger, facilitating secondary cloud formation and more vigorous precipitation processes. Evaporative cooling is more than two times stronger at low levels with higher CCN for the TOGA COARE case during the early stages of precipitation development. However, evaporative cooling is slightly stronger at lower levels with lower CCN for the PRESTORM case. The early formation of rain in the clean environment could allow for the formation of an earlier and stronger cold pool compared to a dirty environment. PRESTORM has a very dry environment and both large and small rain droplets can evaporate. Consequently, the cold pool is relatively weaker, and the system is relatively less intense with higher CCN. • Sensitivity tests are conducted to determine the impact of ice processes on aerosol-precipitation interaction. The results suggested that ice processes are crucial for suppressing precipitation due to high CCN for the PRESTORM case. More and smaller ice particles are generated in the dirty case and transported to the trailing stratiform region. This reduces the heavy convective rain and contributes to the weakening of the cold pool. Warm rain processes dominate the TOGA COARE case. Therefore, ice processes only play a secondary role in terms of aerosol-precipitation interaction. • Two of the three cloud systems presented in this paper formed a line structure (squall system). A 2D simulation, therefore, gives a good approximation to such a line of convective clouds. Since the real atmosphere is 3D, further 3D cloud-resolving simulations are needed to address aerosol-precipitation interactions. 4. REFERENCES Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophy. Res., 112, D24S18, doi:10.1029/2007JD008728. All other references can be found in above paper. 5. Acknowledgements The GCE model is mainly supported by the NASA Headquarters Atmospheric Dynamics and Thermodynamics Program and the NASA Tropical Rainfall Measuring Mission (TRMM). The research was also supported by the Office of Science (BER), U. S. Department of Energy/Atmospheric Radiation Measurement (DOE/ARM) Interagency. The authors acknowledge NASA Goddard Space Flight Center for computer time used in this research.

  10. ARM - Evaluation Product - Cloud Classification VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties includes cloud boundaries, thickness, phase, type, and precipitation information, and hence provides a useful tool for evaluation of model simulations and...

  11. Analysis of Cloud-resolving Simulations of a Tropical Mesoscale Convective System Observed during TWP-ICE: Vertical Fluxes and Draft Properties in Convective and Stratiform Regions

    SciTech Connect (OSTI)

    Mrowiec, Agnieszka A.; Rio, Catherine; Fridlind, Ann; Ackerman, Andrew; Del Genio, Anthony D.; Pauluis, Olivier; Varble, Adam; Fan, Jiwen

    2012-10-02

    We analyze three cloud-resolving model simulations of a strong convective event observed during the TWP-ICE campaign, differing in dynamical core, microphysical scheme or both. Based on simulated and observed radar reflectivity, simulations roughly reproduce observed convective and stratiform precipitating areas. To identify the characteristics of convective and stratiform drafts that are difficult to observe but relevant to climate model parameterization, independent vertical wind speed thresholds are calculated to capture 90% of total convective and stratiform updraft and downdraft mass fluxes. Convective updrafts are fairly consistent across simulations (likely owing to fixed large-scale forcings and surface conditions), except that hydrometeor loadings differ substantially. Convective downdraft and stratiform updraft and downdraft mass fluxes vary notably below the melting level, but share similar vertically uniform draft velocities despite differing hydrometeor loadings. All identified convective and stratiform downdrafts contain precipitation below ~10 km and nearly all updrafts are cloudy above the melting level. Cold pool properties diverge substantially in a manner that is consistent with convective downdraft mass flux differences below the melting level. Despite differences in hydrometeor loadings and cold pool properties, convective updraft and downdraft mass fluxes are linearly correlated with convective area, the ratio of ice in downdrafts to that in updrafts is ~0.5 independent of species, and the ratio of downdraft to updraft mass flux is ~0.5-0.6, which may represent a minimum evaporation efficiency under moist conditions. Hydrometeor loading in stratiform regions is found to be a fraction of hydrometeor loading in convective regions that ranges from ~10% (graupel) to ~90% (cloud ice). These findings may lead to improved convection parameterizations.

  12. Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic

    SciTech Connect (OSTI)

    Janet Intrieri; Mathhew Shupe

    2005-01-01

    Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cycles of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two regions.

  13. Nondegenerate parametric generation of 2.2-mJ, few-cycle 2.05-?m pulses using a mixed phase matching scheme

    SciTech Connect (OSTI)

    Xu, Guibao; Wandel, Scott F.; Jovanovic, Igor, E-mail: ijovanovic@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)] [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-02-15

    We describe the production of 2.2-mJ, ?6 optical-cycle-long mid-infrared laser pulses with a carrier wavelength of 2.05 ?m in a two-stage ?-BaB{sub 2}O{sub 4} nondegenerate optical parametric amplifier design with a mixed phase matching scheme, which is pumped by a standard Ti:sapphire chirped-pulse amplification system. It is demonstrated that relatively high pulse energies, short pulse durations, high stability, and excellent beam profiles can be obtained using this simple approach, even without the use of optical parametric chirped-pulse amplification.

  14. ARM - Field Campaign - Cloud Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsCloud Radar IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Cloud Radar IOP 1997.04.02 - 1997.04.22 Lead Scientist : Brooks Martner Data Availability MMCR Quick Look Data For data sets, see below. Abstract The objectives of the Cloud Radar IOP are to: support the calibration of the ARM millimeter cloud radar and evaluate the spatial versus temporal variability of cloud properties as seen

  15. PowerPoint Presentation - No Slide Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic mixed-phase clouds: Sensitivity to ice initiation mechanisms Igor Sednev (isednev@lbl.gov) and Surabi Menon (smenon@lbl.gov) Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Motivation The impacts of Arctic mixed-phase clouds on climate in terms of changes in surface radiative budgets remain uncertain due to the complexities in representation of mixed-phase clouds. The environmental conditions that determine Arctic cloud properties need to be thoroughly analyzed to fully

  16. Dispelling Clouds of Uncertainty

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Ernie; Teixeira, João

    2015-06-15

    How do you build a climate model that accounts for cloud physics and the transitions between cloud regimes? Use MAGIC.

  17. Cloud Microphysical and Radiative Properties Derived from MODIS, VIRS, AVHRR, and GMS Data Over the Tropical Western Pacific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microphysical and Radiative Properties Derived from MODIS, VIRS, AVHRR, and GMS Data Over the Tropical Western Pacific G. D. Nowicki, M. L. Nordeen, P. W. Heck, D. R. Doelling, and M. M. Khaiyer Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Atmospheric Sciences Division Langley Research Center Hampton, Virginia S. Sun-Mack Science Applications International Corporation Hampton, Virginia Introduction Utilization of the

  18. ARM - Measurement - Hydrometeor phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Hydrometeor phase Hydrometeor phase such as liquid ice or mixed phase Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  19. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Marine ARM GPCI Investigations of Clouds (MAGIC): Cloud Properties from Zenith...

  20. DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. I. DUST PROPERTIES AND INSIGHTS INTO THE ORIGIN OF THE SUBMILLIMETER EXCESS EMISSION

    SciTech Connect (OSTI)

    Gordon, Karl D.; Roman-Duval, Julia; Meixner, Margaret; Bot, Caroline; Babler, Brian; Bernard, Jean-Philippe; Bolatto, Alberto; Jameson, Katherine; Boyer, Martha L.; Clayton, Geoffrey C.; Engelbracht, Charles; Fukui, Yasuo; Galametz, Maud; Galliano, Frederic; Hony, Sacha; Lebouteiller, Vianney; Indebetouw, Remy; Israel, Frank P.; Kawamura, Akiko; and others

    2014-12-20

    The dust properties in the Large and Small Magellanic clouds (LMC/SMC) are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500?m. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a power-law emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models, we investigate the origin of the submillimeter excess, defined as the submillimeter emission above that expected from SMBB models fit to observations <200 ?m. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500?m submillimeter excesses of 27% and 43% for the LMC and SMC, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our fitting results show that the TTMBB fits require significantly more dust than are available even if all the metals present in the interstellar medium (ISM) were condensed into dust. This indicates that the submillimeter excess is more likely to be due to emissivity variations than a second population of colder dust. We derive integrated dust masses of (7.3 1.7) 10{sup 5} and (8.3 2.1) 10{sup 4} M {sub ?} for the LMC and SMC, respectively. We find significant correlations between the submillimeter excess and other dust properties; further work is needed to determine the relative contributions of fitting noise and ISM physics to the correlations.

  1. ARM - Measurement - Cloud particle number concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle number concentration The total number of cloud particles present in any given volume of air. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  2. ARM - Measurement - Cloud particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle size distribution The number of cloud particles present in any given volume of air within a specified size range, including liquid and ice. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  3. ARM - Field Campaign - Fall 1997 Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsFall 1997 Cloud IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1997 Cloud IOP 1997.09.15 - 1997.10.05 Lead Scientist : Gerald Mace For data sets, see below. Summary The primary objective of the Cloud IOP was to generate a multi-platform data set that can be used as validation for cloud property retrieval algorithms that are being implemented on the operational MMCR data stream.

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group(s): Cloud Properties Journal Reference: Greg M. McFarquhar and Stewart G. Cober. 2004: Single-Scattering Properties of Mixed-Phase Arctic Clouds at Solar...

  5. Dispelling Clouds of Uncertainty

    SciTech Connect (OSTI)

    Lewis, Ernie; Teixeira, João

    2015-06-15

    How do you build a climate model that accounts for cloud physics and the transitions between cloud regimes? Use MAGIC.

  6. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed-Phase Clouds: Simulation of Optical and Radiative Properties T. B. Zhuravleva Institute of Atmospheric Optics Tomsk, Russia A. G. Petrushin Institute of Experimental Meteorology Obninsk, Russia Introduction Generally, the radiative properties of ice-crystal and mixed-phase clouds are studied using a plane- parallel, horizontally homogeneous cloud model. However, this model neglects horizontal inhomogeneity, a characteristic of the real clouds arising due to stochastic cloud geometry. In

  7. Developing and Evaluating Ice Cloud Parameterizations by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by remote sensing is that the transfer functions which relate the observables (e. g., radar Doppler spectrum) to cloud properties (e. g., ice water content, or IWC) are not...

  8. Preliminary Studies on the Variational Assimilation of Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for both cloud properties and surface radiative fluxes have been used in our feasibility studies. The assimilation of those observations has shown the capability of the...

  9. ARM - Field Campaign - Cloud, Aerosol, and Complex Terrain Interaction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This range of environmental conditions and cloud properties coupled with a high frequency of events makes this an ideal location for improving our understanding of...

  10. arm_stm_2007_revercomb_poster_cloud.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AERI Derived Cloud Properties David Tobin, Lori Borg, David Turner, Robert Holz, Daniel DeSlover, Hank Revercomb, Bob Knuteson, Leslie Moy, Ed Eloranta, Jun Li Space Science...

  11. LES Modeling of High Resolution Satellite Cloud Spatial and Thermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure at ARM-SGP site: How well can we Simulate Clouds from Space? LES Modeling of High Resolution Satellite Cloud Spatial and Thermal Structure at ARM-SGP site: How well can we Simulate Clouds from Space? Dubey, Manvendra DOE/Los Alamos National Laboratory Chylek, Petr DOE/Los Alamos National Laboratory Reisner, Jon Los Alamos National Laboratory Porch, William Los Alamos National Laboratory Category: Cloud Properties We report high fidelity observations of the spatial and thermal

  12. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  13. Posters Sensitivity of Cirrus Cloud Radiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Posters Sensitivity of Cirrus Cloud Radiative Properties to Ice Crystal Size and Shape in General Circulation Model Simulations D. L. Mitchell Desert Research Institute Reno, Nevada J. E. Kristjánsson Department of Geophysics University of Oslo, Norway M. J. Newman Los Alamos National Laboratory Los Alamos, New Mexico Introduction Recent research (e.g., Mitchell and Arnott 1994) has shown that the radiative properties of cirrus clouds (i.e., optical depth, albedo, emissivity) depend on the

  14. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  15. Microsoft PowerPoint - ARMST2006_mp.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Characterization of Arctic Mixed-Phase Clouds Matthew D. Shupe a , Pavlos Kollias b , Ed Luke b a Cooperative Institute for Research in Environmental Sciences - University of Colorado and NOAA/ESRL/PSD and b Brookhaven National Laboratory, Atmospheric Science Division, Upton, NY Mixed-Phase Cloud Properties Cloud Occurrence. Mixed-phase clouds occur 45% +/- 10% of the time per year at the NSA site. There is a marked increase in mixed-phase cloudiness in the spring and fall transition seasons,

  16. ARM - Cloud Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Memory Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Cloud Memory Now you can make your own cloud memory game to practice recognizing clouds at home or share with your class. Example (not to scale) of cloud memory card available for download. Example (not to scale) of cloud memory card

  17. Continental Liquid-phase Stratus Clouds at SGP: Meteorological Influences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Relationship to Adiabacity Continental Liquid-phase Stratus Clouds at SGP: Meteorological Influences and Relationship to Adiabacity Kim, Byung-Gon Kangnung National University Schwartz, Stephen Brookhaven National Laboratory Miller, Mark Brookhaven National Laboratory Min, Qilong State University of New York at Albany Category: Cloud Properties The microphysical properties of continental stratus clouds observed over SGP appear to be substantially influenced by micrometeorological

  18. ARM - Evaluation Product - ARM Cloud Retrieval Ensemble Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsARM Cloud Retrieval Ensemble Data ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : ARM Cloud Retrieval Ensemble Data The ARM Cloud Retrieval Ensemble Data (ACRED) set is a multi-year cloud microphysical property ensemble data set created by assembling existing ARM cloud retrievals, which are based

  19. A Radar-based Observing System for Validation of Cloud Resolving Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radar System Designed for Validation of Cloud Resolving Models Pavlos Kollias Atmospheric Science Division Brookhaven National Laboratory Cloud REsolving MOdel Radar (CREMORA) Scientific Justification Why do we need to know 3-D structure of cloud systems? Slide provided by Tom Ackerman -Evaluation of *Cloud System Resolving Models (one pathway to parameterization development and to climate models) *Satellite retrievals of cloud system properties -Lifecycle of convective systems - all phases of

  20. Posters Monte Carlo Simulation of Longwave Fluxes Through Broken Scattering Cloud Fields

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Posters Monte Carlo Simulation of Longwave Fluxes Through Broken Scattering Cloud Fields E. E. Takara and R. G. Ellingson University of Maryland College Park, Maryland To simplify the analysis, we made several assumptions: the clouds were cuboidal; they were all identically sized and shaped; and they had constant optical properties. Results and Discussion The model was run for a set of cloud fields with clouds of varying optical thickness and scattering albedo. The predicted effective cloud

  1. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

    SciTech Connect (OSTI)

    Kollias, P.; Luke, E.; Rmillard, J.; Szyrmer, W.

    2011-07-02

    Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud-scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter-wavelength (cloud) radars can provide such observations. In particular, the first three moments of the recorded cloud radar Doppler spectra, the radar reflectivity, mean Doppler velocity, and spectrum width, are often used to retrieve cloud microphysical and dynamical properties. Such retrievals are subject to errors introduced by the assumptions made in the inversion process. Here, we introduce two additional morphological parameters of the radar Doppler spectrum, the skewness and kurtosis, in an effort to reduce the retrieval uncertainties. A forward model that emulates observed radar Doppler spectra is constructed and used to investigate these relationships. General, analytical relationships that relate the five radar observables to cloud and drizzle microphysical parameters and cloud turbulence are presented. The relationships are valid for cloud-only, cloud mixed with drizzle, and drizzle-only particles in the radar sampling volume and provide a seamless link between observations and cloud microphysics and dynamics. The sensitivity of the five observed parameters to the radar operational parameters such as signal-to-noise ratio and Doppler spectra velocity resolution are presented. The predicted values of the five observed radar parameters agree well with the output of the forward model. The novel use of the skewness of the radar Doppler spectrum as an early qualitative predictor of drizzle onset in clouds is introduced. It is found that skewness is a parameter very sensitive to early drizzle generation. In addition, the significance of the five parameters of the cloud radar Doppler spectrum for constraining drizzle microphysical retrievals is discussed.

  2. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect (OSTI)

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  3. Additional development of remote sensing techniques for observing morphology, microphysics, and radiative properties of clouds and tests using a new, robust CO{sub 2} lidar. Final report

    SciTech Connect (OSTI)

    Eberhard, W.L.; Brewer, W.A.; Intrieri, J.M.

    1998-09-28

    A three-year project with a goal of advancing CO{sub 2} lidar technology and measurement techniques for cloud studies was successfully completed. An eyesafe, infrared lidar with good sensitivity and improved Doppler accuracy was designed, constructed, and demonstrated. Dual-wavelength operation was achieved. A major leap forward in robustness was demonstrated. CO{sub 2} lidars were operated as part of two Intensive Operations Periods at the Southern Great Plains CART site. The first used an older lidar and was intended primarily for measurement technique development. The second used the new lidar and was primarily a demonstration and evaluation of its performance. Progress was demonstrated in the development, evaluation, and application of measurement techniques using CO{sub 2} lidar.

  4. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 1: Deep Convective Updraft Properties

    SciTech Connect (OSTI)

    Varble, A. C.; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Collis, Scott M.; Fan, Jiwen; Hill, Adrian; Shipway, Ben

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias. Snow reflectivity can exceed 40 dBZ in a two-moment scheme when a constant bulk density of 100 kg m-3 is used. Making snow mass more realistically proportional to area rather than volume should somewhat alleviate this problem. Graupel, unlike snow, produces high biased reflectivity in all simulations. This is associated with large amounts of liquid water above the freezing level in updraft cores. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of large rainwater contents lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. Strong simulated updraft cores are nearly undiluted, with some showing supercell characteristics. Decreasing horizontal grid spacing from 900 meters to 100 meters weakens strong updrafts, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may partly be a product of interactions between convective dynamics, parameterized microphysics, and large-scale environmental biases that promote different convective modes and strengths than observed.

  5. Comparison of Parameterized Cloud Variability to ARM Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Parameterized Cloud Variability to ARM Data S. A. Klein National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory Princeton, New Jersey J. R. Norris Scripps Institute of Oceanography University of California La Jolla, California Abstract Cloud parameterizations in large-scale models often try to predict the amount of sub-grid scale variability in cloud properties to address the significant non-linear effects of radiation and precipitation. Statistical

  6. ARM - PI Product - Atmospheric State, Cloud Microphysics & Radiative Flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsAtmospheric State, Cloud Microphysics & Radiative Flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Atmospheric State, Cloud Microphysics & Radiative Flux [ ARM Principal Investigator (PI) Data Product ] Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Mixed-Phase Clouds from the Ground: a Status Report Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD, JS Daniel, G De Boer, EW Eloranta, P Kollias, E Luke, CN Long, DD Turner, and J Verlinde. 2008. "A focus on mixed-phase clouds: The status of ground-ba sed observational methods." Bulletin of the American Meteorological Society,

  8. Evaluate the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland Z. Li Department of Meteorology University of Maryland College Park, Maryland Introduction The earth's radiation budget is sensitive to changes in the microphysical properties of low-level stratiform clouds. Their extensive coverage can significantly reduce the solar energy

  9. ARM - Evaluation Product - CMWG Data - SCM-Forcing Data, Cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microphysical Properties and Radiative Heating Profiles ProductsCMWG Data - SCM-Forcing Data, Cloud Microphysical Properties and Radiative Heating Profiles ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : CMWG Data - SCM-Forcing Data, Cloud Microphysical Properties and Radiative Heating Profiles

  10. Finance Idol Word Cloud

    Broader source: Energy.gov [DOE]

    This word cloud represents the topics discussed during the Big and Small Ideas: How to Lower Solar Financing Costs breakout session at the SunShot Grand Challenge.

  11. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  12. Tropical Warm Pool International Cloud Experiment TWP-ICE Cloud and rain characteristics in the Australian Monsoon

    SciTech Connect (OSTI)

    May, P.T., Jakob, C., and Mather, J.H.

    2004-05-31

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them.

  13. Boundary Layer Cloud Turbulence Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (10) Modeling Need (10) Cloud Boundaries 9 9 Cloud Fraction Variance Skewness UpDowndraft coverage Dominant Freq. signal Dissipation rate ??? Observation-Modeling Interface...

  14. Seasonal and optical characterisation of cirrus clouds over Indian sub-continent using LIDAR

    SciTech Connect (OSTI)

    Jayeshlal, G. S. Satyanarayana, Malladi Dhaman, Reji K. Motty, G. S.

    2014-10-15

    Light Detection and Ranging (LIDAR) is an important remote sensing technique to study about the cirrus clouds. The subject of cirrus clouds and related climate is challenging one. The received scattered signal from Lidar contains information on the physical and optical properties of cirrus clouds. The Lidar profile of the cirrus cloud provides information on the optical characteristics like depolarisation ratio, lidar ratio and optical depth, which give knowledge about possible phase, structure and orientation of cloud particle that affect the radiative budgeting of cirrus clouds. The findings from the study are subjected to generate inputs for better climatic modelling.

  15. Cloud computing security.

    SciTech Connect (OSTI)

    Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

    2010-10-01

    Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for both academia and government, including configuration options, hardware issues, challenges, and solutions.

  16. Posters Parameterization of Thin Mid-Level Stratiform Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thickness or its tendency within a GCM layer from the large-scale fields. 5. Develop and test a parameterization of altocumulus cloud layer optical properties (liquid water path...

  17. Macquarie Island Cloud and Radiation Experiment Science Objective

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current knowledge of cloud and aerosol properties for the Southern Ocean relies heavily on satellite data that is more uncertain because of a lack of in situ validation. Additional ...

  18. Comparison of Cloud Top Height and Optical Depth Histograms from ISCCP,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MISR, and MODIS Comparison of Cloud Top Height and Optical Depth Histograms from ISCCP, MISR, and MODIS Marchand, Roger Pacific Northwest National Laboratory Ackerman, Thomas Pacific Northwest National Laboratory Category: Cloud Properties Joint histograms of Cloud Top Height (CTH) and Optical Depth (OD) derived by the International Satellite Cloud Climatology Project (ISCCP) are being widely used by the climate modeling community in evaluating global climate models. Similar joint histograms

  19. ARM - Measurement - Hydrometeor optical properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scattering and absorption cross-sections, and backscatter fraction. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  20. INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE

    SciTech Connect (OSTI)

    Demory, Brice-Olivier; De Wit, Julien; Lewis, Nikole; Zsom, Andras; Seager, Sara; Fortney, Jonathan; Knutson, Heather; Desert, Jean-Michel; Heng, Kevin; Madhusudhan, Nikku; Gillon, Michael; Barclay, Thomas; Cowan, Nicolas B.

    2013-10-20

    We present new visible and infrared observations of the hot Jupiter Kepler-7b to determine its atmospheric properties. Our analysis allows us to (1) refine Kepler-7b's relatively large geometric albedo of Ag = 0.35 0.02, (2) place upper limits on Kepler-7b thermal emission that remains undetected in both Spitzer bandpasses and (3) report a westward shift in the Kepler optical phase curve. We argue that Kepler-7b's visible flux cannot be due to thermal emission or Rayleigh scattering from H{sub 2} molecules. We therefore conclude that high altitude, optically reflective clouds located west from the substellar point are present in its atmosphere. We find that a silicate-based cloud composition is a possible candidate. Kepler-7b exhibits several properties that may make it particularly amenable to cloud formation in its upper atmosphere. These include a hot deep atmosphere that avoids a cloud cold trap, very low surface gravity to suppress cloud sedimentation, and a planetary equilibrium temperature in a range that allows for silicate clouds to potentially form in the visible atmosphere probed by Kepler. Our analysis does not only present evidence of optically thick clouds on Kepler-7b but also yields the first map of clouds in an exoplanet atmosphere.

  1. ARM - Cloud and Rain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListCloud and Rain Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Cloud and Rain Water vapor is an invisible gas that is always present in the troposphere. However, the amount of water vapor which the air can hold depends directly on the air temperature. Warm air can hold much more water

  2. Magellan: A Cloud Computing Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magellan News & Announcements Archive Petascale Initiative Exascale Computing APEX Home » R & D » Archive » Magellan: A Cloud Computing Testbed Magellan: A Cloud Computing Testbed Cloud computing is gaining a foothold in the business world, but can clouds meet the specialized needs of scientists? That was one of the questions NERSC's Magellan cloud computing testbed explored between 2009 and 2011. The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Oce

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Aerosols Affect Cloud Properties in Arctic Mixed-Phase Stratocumulus Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Jackson RC, GM McFarquhar, AV Korolev, ME Earle, PS Liu, RP Lawson, S Brooks, M Wolde, A Laskin, and M Freer. 2012. "The dependence of ice microphysics on aerosol concentration in arctic mixed-phase

  4. Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan

    SciTech Connect (OSTI)

    Marchand, RT; Protat, A; Alexander, SP

    2015-12-01

    Clouds over the Southern Ocean are poorly represented in present day reanalysis products and global climate model simulations. Errors in top-of-atmosphere (TOA) broadband radiative fluxes in this region are among the largest globally, with large implications for modeling both regional and global scale climate responses (e.g., Trenberth and Fasullo 2010, Ceppi et al. 2012). Recent analyses of model simulations suggest that model radiative errors in the Southern Ocean are due to a lack of low-level postfrontal clouds (including clouds well behind the front) and perhaps a lack of supercooled liquid water that contribute most to the model biases (Bodas-Salcedo et al. 2013, Huang et al. 2014). These assessments of model performance, as well as our knowledge of cloud and aerosol properties over the Southern Ocean, rely heavily on satellite data sets. Satellite data sets are incomplete in that the observations are not continuous (i.e., they are acquired only when the satellite passes nearby), generally do not sample the diurnal cycle, and view primarily the tops of cloud systems (especially for the passive instruments). This is especially problematic for retrievals of aerosol, low-cloud properties, and layers of supercooled water embedded within (rather than at the top of) clouds, as well as estimates of surface shortwave and longwave fluxes based on these properties.

  5. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kazil, J.; Feingold, G.; Yamaguchi, T.

    2015-10-21

    Observed and projected trends in large scale wind speed over the oceans prompt the question: how might marine stratocumulus clouds and their radiative properties respond to future changes in large scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum, and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and stronger entrainment. The dynamicalmoredriver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m?2, long wave emissions are very insensitive to LWP. This leads to the more general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find furthermore that large scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment, and in part because circulation driven by shear from large scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large scale wind takes over from buoyancy-driven circulation in transporting moisture from the surface to cloud base, and thereby reduces decoupling and helps maintain LWP. The cloud radiative effect (CRE) responds to changes in LWP and cloud fraction, and higher wind speed translates to a stronger diurnally averaged CRE. However, the sensitivity of the diurnally averaged CRE to wind speed decreases with increasing wind speed.less

  6. Scanning ARM Cloud Radars Part I: Operational Sampling Strategies

    SciTech Connect (OSTI)

    Kollias, Pavlos; Bharadwaj, Nitin; Widener, Kevin B.; Jo, Ieng; Johnson, Karen

    2014-03-01

    Probing clouds in three-dimensions has never been done with scanning millimeter-wavelength (cloud) radars in a continuous operating environment. The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generate the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the Scanning ARM Cloud Radars (SACRs) is discussed. These scan strategies are designed to address the scientific objectives of the ARM program, however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACRs scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud properties that are vastly different for rain and snow shafts that are the primary target of precipitation radars. A cloud surveillance scan strategy is introduced (HS-RHI) based on a sequence of horizon-to-horizon Range Height Indicator (RHI) scans that sample the hemispherical sky (HS). The HS-RHI scan strategy is repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between HS-RHI scan strategies other scan strategies are introduced depending on the cloud conditions. The SACRs are pointing vertically in the case of measurable precipitation at the ground. The radar reflectivities are corrected for water vapor attenuation and non-meteorological detection are removed. A hydrometeor detection mask is introduced based on the difference of cloud and noise statistics is discussed.

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Properties Journal Reference: Ou SS, KN Liou, XJ Wang, A Dybdahl, M Mussetto, LD Carey, J Niu, JA Kankiewicz, S Kidder, and TH Von der Haar. 2009. "Retrievals of mixed-phase...

  8. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Wisconsin - Madison 1225 W. Dayton St. Madison, WI 53706 email: dturner@ssec.wisc.edu Reference Turner, DD. 2005. "Arctic mixed-phase cloud properties from AERI-lidar...

  9. Opaque cloud detection

    DOE Patents [OSTI]

    Roskovensky, John K. (Albuquerque, NM)

    2009-01-20

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  10. Bringing Clouds into Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bringing Clouds into Focus Bringing Clouds into Focus A New Global Climate Model May Reduce the Uncertainty of Climate Forecasting May 11, 2010 Contact: John Hules, JAHules@lbl.gov , +1 510 486 6008 Randall-fig4.png The large data sets generated by the GCRM require new analysis and visualization capabilities. This 3D plot of vorticity isosurfaces was developed using VisIt, a 3D visualization tool with a parallel distributed architecture, which is being extended to support the geodesic grid used

  11. ARM - Cloud Twist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twist Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Cloud Twist Want to make your own version of Cloud Twist? Here are the files you will need. Floor Mat A low resolution image (7.3 MB) and high resolution image (53.2 MB) are available. Spinner Board A low resolution image (992.6 KB) and

  12. Cloud Based Applications and Platforms (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Latitude Cloud Microphysical Properties from FTIR Data Lubin, D., Scripps Institution of Oceanography Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM AERI instruments record downwelling radiance spectra with sufficient radiometric calibration to enable the retrieval of important cloud microphysical properties. This poster will describe how radiative transfer simulations that include cloud thermodynamic phase (liquid water, ice, mixed phase) can be utilized

  14. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MC3E Lamont X-band site (I6) Lamont X-band site (I6) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for MC3E Lamont X-band site (I6) [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared

  15. Property

    Energy Savers [EERE]

    ER-B-98-07 AUDIT REPORT PERSONAL PROPERTY AT THE OAK RIDGE OPERATIONS OFFICE AND THE OFFICE OF SCIENTIFIC AND TECHNICAL INFORMATION U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES APRIL 1998 Page 10 DEPARTMENT OF ENERGY Washington, DC 20585 April 6, 1998 MEMORANDUM FOR THE MANAGER, OAK RIDGE OPERATIONS OFFICE AND THE DIRECTOR, OFFICE OF SCIENTIFIC AND TECHNICAL INFORMATION FROM: Terry L. Brendlinger Eastern Regional Audit Office Office of Inspector General SUBJECT:

  16. Impact of cloud microphysics on squall line organization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Observations to Validate and Improve Cloud Micrfophysical Schemes Wojciech Grabowski (PI) Hugh Morrison, Sally McFarlane (Co-PIs) Hanna Pawlowska (Co-I) CMWG Breakout, ARM STM 2008 Two major efforts of project * Warm clouds. We will use microphysical retrievals from Nauru and SGP (including CLASIC), together with aircraft observations (RICO) to assess model simulations of shallow cumulus. * Focus is on treatment of turbulent- microphysical interactions and impact on optical properties. *

  17. Efficacy of Aerosol-Cloud Interactions Under Varying Meteorological Conditions: Southern Great Plains Vs. Pt. Reyes

    SciTech Connect (OSTI)

    Dunn, M.; Schwartz, S.; Kim, B.-G.; Miller, M.; Liu, Y.; Min, Q.

    2008-03-10

    Several studies have demonstrated that cloud dynamical processes such as entrainment mixing may be the primary modulator of cloud optical properties in certain situations. For example, entrainment of dry air alters the cloud drop size distribution by enhancing drop evaporation. However, the effect of entrainment mixing and other forms or turbulence is still quite uncertain. Although these factors and aerosol-cloud interactions should be considered together when evaluating the efficacy of aerosol indirect effects, the underlying mechanisms appear to be dependent upon each other. In addition, accounting for them is impossible with the current understanding of aerosol indirect effect. Therefore, careful objective screening and analysis of observations are needed to determine the extent to which mixing related properties affect cloud optical properties, apart from the aerosol first indirect effect. This study addresses the role of aerosol-cloud interactions in the context of varying meteorological conditions based on ARM data obtained at the Southern Great Plains (SGP) site in Oklahoma and at Pt. Reyes, California. Previous analyses of the continental stratiform clouds at the SGP site have shown that the thicker clouds of high liquid water path (LWP) tend to contain sub adiabatic LWPs. These sub adiabatic LWPs, which result from active mixing processes, correspond to a lower susceptibility of the clouds to aerosol-cloud interactions, and, hence, to reduced aerosol indirect effects. In contrast, the consistently steady and thin maritime stratus clouds observed at Pt. Reyes are much closer to adiabatic. These clouds provide an excellent benchmark for the study of the aerosol influence on modified marine clouds relative to continental clouds, since they form in a much more homogeneous meteorological environment than those at the continental site.

  18. ARM - Cloud Word Seek

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Word Seek Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Cloud Word Seek

  19. Posters Cloud Microphysical and Radiative Properties Measured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1993b). Our current investigations emphasize the backscatter intensity and vertical Doppler motions. One important technical characteristic of CO 2 lidar is coherent...

  20. Storm Peak Lab Cloud Property Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    s EROSOL BSERVING 3YSTEM s 3URFACE -ETEOROLOGY 3TATION DOESC-ARM-10-024 Data and Communication System Continuous measurements obtained by the sensors and instruments are...

  1. Effective Radius of Cloud Droplets Derived from Ground-based Remote Sensing at the ARM SGP site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficacy of Aerosol - Cloud Interactions under Varying Meteorological Conditions Byung-Gon Kim, @ Mark Miller, # Stephen Schwartz, $ Yangang Liu, $ Qilong Min % Kangnung National University, @ Rutgers University # Brookhaven National Laboratory, $ State Univ. of NY at Albany % (Courtesy Magritte) Cloud dynamical processes such as entrainment mixing may be the primary modulators of cloud optical properties in certain situations. Entrainment of dry air alters the cloud drop size distribution by

  2. The Tropical Warm Pool International Cloud Experiment

    SciTech Connect (OSTI)

    May, Peter T.; Mather, James H.; Vaughan, Geraint; Jakob, Christian; McFarquhar, Greg; Bower, Keith; Mace, Gerald G.

    2008-05-01

    One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the area around Darwin, Northern Australia in January and February 2006. The aims of the experiment, which will be operated in conjunction with the DOE Atmospheric Radiation Measurement (ARM) site in Darwin, will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment will include an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with low, mid and high altitude aircraft for in-situ and remote sensing measurements. A crucial outcome of the experiment will be a data set suitable to provide the forcing and evaluation data required by cloud resolving and single column models as well as global climate models (GCMs) with the aim to contribute to parameterization development. This data set will provide the necessary link between the observed cloud properties and the models that are attempting to simulate them. The experiment is a large multi-agency experiment including substantial contributions from the United States DOE ARM program, ARM-UAV program, NASA, the Australian Bureau of Meteorology, CSIRO, EU programs and many universities.

  3. Determination of 3-D Cloud Ice Water Contents by Combining Multiple Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources from Satellite, Ground Radar, and a Numerical Model Determination of 3-D Cloud Ice Water Contents by Combining Multiple Data Sources from Satellite, Ground Radar, and a Numerical Model Liu, Guosheng Florida State University Seo, Eun-Kyoung Florida State University Category: Cloud Properties This study aims at determining the 3-dimensional distribution of ice water content over a broad area near the Atmospheric Radiation Measurement Southern Great Plain site, where cloud radar and

  4. Microbase Cloud Products and Associated Heating Rates in the Tropical Western Pacific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microbase Cloud Products and Associated Heating Rates in the Tropical Western Pacific J. H. Mather and S. A. McFarlane Pacific Northwest National Laboratory Richland, Washington Introduction The microbase value added product (Miller et al. 2003) provides a standardized framework for calculating and storing continuous retrievals of cloud microphysical properties including liquid water content (LWC), ice water content (IWC), and cloud droplet size. Microbase is part of the larger broadband heating

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations of Microphysical Properties of Single Layer Stratocumulus During the Mixed-Phase Arctic Cloud Experiment Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Fridlind, A.M., A.S. Ackerman, G.M. McFarquhar, G. Zhang, M.R. Poellot, P.J. DeMott, A.J. Prenni and A.J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud

  6. MAGIC: Marine ARM GPCI Investigation of Clouds

    SciTech Connect (OSTI)

    Lewis, ER; Wiscombe, WJ; Albrecht, BA; Bland, GL; Flagg, CN; Klein, SA; Kollias, P; Mace, G; Reynolds, RM; Schwartz, SE; Siebesma, AP; Teixeira, J; Wood, R; Zhang, M

    2012-10-03

    The second Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) will be deployed aboard the Horizon Lines cargo container ship merchant vessel (M/V) Spirit for MAGIC, the Marine ARM GPCI1 Investigation of Clouds. The Spirit will traverse the route between Los Angeles, California, and Honolulu, Hawaii, from October 2012 through September 2013 (except for a few months in the middle of this time period when the ship will be in dry dock). During this field campaign, AMF2 will observe and characterize the properties of clouds and precipitation, aerosols, and atmospheric radiation; standard meteorological and oceanographic variables; and atmospheric structure. There will also be two intensive observational periods (IOPs), one in January 2013 and one in July 2013, during which more detailed measurements of the atmospheric structure will be made.

  7. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    SciTech Connect (OSTI)

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-02-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation.

  8. ISDAC poster 2008.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. How do properties of the A Mixed Phase Arctic Cloud E 2. To what extent do the diffe differences in the microphy energy balance? 3. How well can cloud model simulate the sensitivity of Ar aerosol between April and 4. How well can long-term sur retrievals of aerosol, cloud,

  9. Clouds' Role in Sunlight Stopping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds' Role in Sunlight Stopping For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Clouds are energy traffic cops, controlling how much sunlight reaches Earth. Pacific Northwest National Laboratory (PNNL) researchers used long-term observations to show that the sunlight stopping power of each type of typical tropical cloud, and how frequently they occur, must be accurately simulated in climate models. Otherwise,

  10. TWP Island Cloud Trail Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a key to understanding boundary layer cloud formation in the tropics. Except during El Nio periods, Nauru represents a divergent region of the ocean upwind from the...

  11. ARM - Measurement - Cloud condensation nuclei

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AOS : Aerosol Observing System CCN : Cloud Condensation Nuclei Particle Counter TDMA : Tandem Differential Mobility Analyzer Field Campaign Instruments AMT : Aerosol Modeling...

  12. Simulations of Clouds and Sensitivity Study by Weather Research and Forecast Model for Atmospheric Radiation Measurement Case 4

    SciTech Connect (OSTI)

    Wu, J.; Zhang, M.

    2005-03-18

    One of the large errors in general circulation models (GCMs) cloud simulations is from the mid-latitude, synoptic-scale frontal cloud systems. Now, with the availability of the cloud observations from Atmospheric Radiation Measurement (ARM) 2000 cloud Intensive Operational Period (IOP) and other observational datasets, the community is able to document the model biases in comparison with the observations and make progress in development of better cloud schemes in models. Xie et al. (2004) documented the errors in midlatitude frontal cloud simulations for ARM Case 4 by single-column models (SCMs) and cloud resolving models (CRMs). According to them, the errors in the model simulated cloud field might be caused by following reasons: (1) lacking of sub-grid scale variability; (2) lacking of organized mesoscale cyclonic advection of hydrometeors behind a moving cyclone which may play important role to generate the clouds there. Mesoscale model, however, can be used to better under stand these controls on the subgrid variability of clouds. Few studies have focused on applying mesoscale models to the forecasting of cloud properties. Weaver et al. (2004) used a mesoscale model RAMS to study the frontal clouds for ARM Case 4 and documented the dynamical controls on the sub-GCM-grid-scale cloud variability.

  13. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science Plan

    SciTech Connect (OSTI)

    Fast, JD; Berg, LK

    2015-12-01

    Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the Southern Great Plains and over many regions of the world, particularly during the summertime growing season when intense turbulence induced by surface radiation couples the land surface to clouds. Current convective cloud parameterizations contain uncertainties resulting in part from insufficient coincident data that couples cloud macrophysical and microphysical properties to inhomogeneities in boundary layer and aerosol properties. The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) campaign is designed to provide a detailed set of measurements that are needed to obtain a more complete understanding of the life cycle of shallow clouds by coupling cloud macrophysical and microphysical properties to land surface properties, ecosystems, and aerosols. HI-SCALE consists of 2, 4-week intensive observational periods, one in the spring and the other in the late summer, to take advantage of different stages and distribution of “greenness” for various types of vegetation in the vicinity of the Atmospheric Radiation and Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site as well as aerosol properties that vary during the growing season. Most of the proposed instrumentation will be deployed on the ARM Aerial Facility (AAF) Gulfstream 1 (G-1) aircraft, including those that measure atmospheric turbulence, cloud water content and drop size distributions, aerosol precursor gases, aerosol chemical composition and size distributions, and cloud condensation nuclei concentrations. Routine ARM aerosol measurements made at the surface will be supplemented with aerosol microphysical properties measurements. The G-1 aircraft will complete transects over the SGP Central Facility at multiple altitudes within the boundary layer, within clouds, and above clouds.

  14. ARM - Field Campaign - Ground-based Cloud Tomography Experiment at SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsGround-based Cloud Tomography Experiment at SGP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Ground-based Cloud Tomography Experiment at SGP 2009.05.26 - 2009.07.17 Lead Scientist : Dong Huang For data sets, see below. Abstract Knowledge of 3D cloud properties is pressingly needed in many research fields. One of the problems encountered when trying to represent 3D cloud fields in numerical

  15. Widget:LogoCloud | Open Energy Information

    Open Energy Info (EERE)

    LogoCloud Jump to: navigation, search This widget adds css selectors and javascript for the Template:LogoCloud. For example: Widget:LogoCloud Retrieved from "http:...

  16. Embracing the Cloud for Better Cyber Security

    SciTech Connect (OSTI)

    Shue, Craig A; Lagesse, Brent J

    2011-01-01

    The future of cyber security is inextricably tied to the future of computing. Organizational needs and economic factors will drive computing outcomes. Cyber security researchers and practitioners must recognize the path of computing evolution and position themselves to influence the process to incorporate security as an inherent property. The best way to predict future computing trends is to look at recent developments and their motivations. Organizations are moving towards outsourcing their data storage, computation, and even user desktop environments. This trend toward cloud computing has a direct impact on cyber security: rather than securing user machines, preventing malware access, and managing removable media, a cloud-based security scheme must focus on enabling secure communication with remote systems. This change in approach will have profound implications for cyber security research efforts. In this work, we highlight existing and emerging technologies and the limitations of cloud computing systems. We then discuss the cyber security efforts that would support these applications. Finally, we discuss the implications of these computing architecture changes, in particular with respect to malware and social engineering.

  17. Dynamics of Molecular Clouds: Observations, Simulations, and...

    Office of Scientific and Technical Information (OSTI)

    Conference: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations,...

  18. Clouds Environmental Ltd | Open Energy Information

    Open Energy Info (EERE)

    Clouds Environmental Ltd Jump to: navigation, search Name: Clouds Environmental Ltd Place: Portsmouth, United Kingdom Zip: PO3 5EG Product: Independent consultancy specialising in...

  19. Perturbed Physics Ensemble Simulations of Cirrus on the Cloud System-resolving Scale

    SciTech Connect (OSTI)

    Muhlbauer, Andreas; Berry, Elizabeth; Comstock, Jennifer M.; Mace, Gerald G.

    2014-04-16

    In this study, the effect of uncertainties in the parameterization of ice microphysical processes and initial conditions on the variability of cirrus microphysical and radiative properties are investigated in a series of cloud system-resolving perturbed physics ensemble (PPE) and initial condition ensemble (ICE) simulations. Three cirrus cases representative of mid-latitude, subtropical and tropical cirrus are examined. It is found that the variability in cirrus properties induced by perturbing uncertain parameters in ice microphysics parameterizations outweighs the variability induced by perturbing the initial conditions in midlatitude and subtropical cirrus. However, in tropical anvil cirrus the variability in the PPE and ICE simulations is about the same order of magnitude. The cirrus properties showing the largest sensitivity are ice water content (IWC) and cloud thickness whereas the averaged high cloud cover is only marginally affected. Changes in cirrus ice water path and outgoing longwave radiation are controlled primarily by changes in IWC and cloud thickness but not by changes is the averaged high cloud cover. The change in the vertical distribution of cloud fraction and cloud thickness is caused by changes in cirrus cloud base whereas cloud top is not sensitive to either perturbed physics or perturbed initial conditions. In all cirrus cases, the top three parameters controlling the microphysical variability and radiative impact of cirrus clouds are ice fall speeds, ice autoconversion size thresholds and heterogeneous ice nucleation. Changes in the ice deposition coefficient do not affect the ice water path and outgoing longwave radiation. Similarly, changes in the number concentration of aerosols available for homogeneous freezing have virtually no effect on the microphysical and radiative properties of midlatitude and subtropical cirrus but only little impact on tropical anvil cirrus. Overall, the sensitivity of cirrus microphysical and radiative properties to uncertainties in ice microphysics is largest for midlatitude cirrus and smallest for tropical anvil cirrus.

  20. Tropical Warm Pool International Cloud Experiment (TWP-ICE): Cloud and Rain Characteristics in the Australian Monsoon

    SciTech Connect (OSTI)

    PT May; C Jakob; JH Mather

    2004-05-30

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them. The experiment is a collaboration between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program, the Bureau of Meteorology (BoM), the National Aeronautics and Space Administration (NASA), the European Commission DG RTD-1.2, and several United States, Australian, Canadian, and European Universities. This experiment will be undertaken over a 4-week period in early 2006. January and February corresponds to the wet phase of the Australia monsoon. This season has been selected because, despite Darwins coastal location, the convection that occurs over and near Darwin at this time is largely of maritime origin with a large fetch over water. Based on previous experiments, the convection appears typical of maritime convection with widespread convection that has complex organization, but is not as deep or as intense as continental or coastal convection. Therefore, it is expected that the convection and cloud characteristics will be representative of conditions typical for wide areas of the tropics.

  1. Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report

    SciTech Connect (OSTI)

    2013-10-18

    This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition to the known indirect effects (glaciation, riming and thermodynamic), new indirect effects were discovered and quantified due to responses of sedimentation, aggregation and coalescence in glaciated clouds to changing aerosol conditions. In summary, the change in horizontal extent of the glaciated clouds ('lifetime indirect effects'), especially of ice-only clouds, was seen to be of higher importance in regulating aerosol indirect effects than changes in cloud properties ('cloud albedo indirect effects').

  2. Polluting of Winter Convective Clouds upon Transition from Ocean Inland Over Central California: Contrasting Case Studies

    SciTech Connect (OSTI)

    Rosenfeld, Daniel; Chemke, Rei; Prather, Kimberly; Suski, Kaitlyn; Comstock, Jennifer M.; Schmid, Beat; Tomlinson, Jason M.; Jonsson, Haf

    2014-01-01

    In-situ aircraft measurements of aerosol chemical and cloud microphysical properties were conducted during the CalWater campaign in February and March 2011 over the Sierra Nevada Mountains and the coastal waters of central California. The main objective was to elucidate the impacts of aerosol properties on clouds and precipitation forming processes. In order to accomplish this, we compared contrasting cases of clouds that ingested aerosols from different sources. The results showed that clouds containing pristine oceanic air had low cloud drop concentrations and started to develop rain 500 m above their base. This occurred both over the ocean and over the Sierra Nevada, mainly in the early morning when the radiatively cooled stable continental boundary layer was decoupled from the cloud base. Supercooled rain dominated the precipitation that formed in growing convective clouds in the pristine air, up to the -21C isotherm level. A contrasting situation was documented in the afternoon over the foothills of the Sierra Nevada, when the clouds ingested high pollution aerosol concentrations produced in the Central Valley. This led to slow growth of the cloud drop effective radius with height and suppressed and even prevented the initiation of warm rain while contributing to the development of ice hydrometeors in the form of graupel. Our results show that cloud condensation and ice nuclei were the limiting factors that controlled warm rain and ice processes, respectively, while the unpolluted clouds in the same air mass produced precipitation quite efficiently. These findings provide the motivation for deeper investigations into the nature of the aerosols seeding clouds.

  3. The Mechanism of First Raindrops Formation in Deep Convective Clouds

    SciTech Connect (OSTI)

    Khain, Alexander; Prabha, Thara; Benmoshe, Nir; Pandithurai, G.; Ovchinnikov, Mikhail

    2013-08-22

    The formation of first raindrops in deep convective clouds is investigated. A combination of observational data analysis and 2-D and 3-D numerical bin microphysical simulations of deep convective clouds suggests that the first raindrops form at the top of undiluted or slightly diluted cores. It is shown that droplet size distributions in these regions are wider and contain more large droplets than in diluted volumes. The results of the study indicate that the initial raindrop formation is determined by the basic microphysical processes within ascending adiabatic volumes. It allows one to predict the height of the formation of first raindrops considering the processes of nucleation, diffusion growth and collisions. The results obtained in the study explain observational results reported by Freud and Rosenfeld (2012) according to which the height of first raindrop formation depends linearly on the droplet number concentration at cloud base. The results also explain why a simple adiabatic parcel model can reproduce this dependence. The present study provides a physical basis for retrieval algorithms of cloud microphysical properties and aerosol properties using satellites proposed by Rosenfeld et al. ( 2012). The study indicates that the role of mixing and entrainment in the formation of the first raindrops is not of crucial importance. It is also shown that low variability of effective and mean volume radii along horizontal traverses, as regularly observed by in situ measurements, can be simulated by high-resolution cloud models, in which mixing is parameterized by a traditional 1.5 order turbulence closure scheme.

  4. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meskhidze, Nicholas; Nenes, Athanasios

    2010-01-01

    Using smore » atellite data for the surface ocean, aerosol optical depth (AOD), and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl- a ]) and liquid cloud effective radii over productive areas of the oceans varies between − 0.2 and − 0.6 . Special attention is given to identifying (and addressing) problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AOD diff ) is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN) in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AOD diff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN) correlates well with [Chl- a ] over the productive waters of the Southern Ocean. Since [Chl- a ] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.« less

  5. Testing Cloud Microphysics Parameterizations in NCAR CAM5 with...

    Office of Scientific and Technical Information (OSTI)

    are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase ...

  6. An ARSCL-based cloud type climatology from retrievals and it...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data at the ARM SGP site. The primary goal of the derived climatology is to be used in tandem with satellite observations for model cloud layering and property evaluation....

  7. UNDERSTANDING TRENDS ASSOCIATED WITH CLOUDS IN IRRADIATED EXOPLANETS

    SciTech Connect (OSTI)

    Heng, Kevin; Demory, Brice-Olivier E-mail: demory@mit.edu

    2013-11-10

    Unlike previously explored relationships between the properties of hot Jovian atmospheres, the geometric albedo and the incident stellar flux do not exhibit a clear correlation, as revealed by our re-analysis of Q0-Q14 Kepler data. If the albedo is primarily associated with the presence of clouds in these irradiated atmospheres, a holistic modeling approach needs to relate the following properties: the strength of stellar irradiation (and hence the strength and depth of atmospheric circulation), the geometric albedo (which controls both the fraction of starlight absorbed and the pressure level at which it is predominantly absorbed), and the properties of the embedded cloud particles (which determine the albedo). The anticipated diversity in cloud properties renders any correlation between the geometric albedo and the stellar flux weak and characterized by considerable scatter. In the limit of vertically uniform populations of scatterers and absorbers, we use an analytical model and scaling relations to relate the temperature-pressure profile of an irradiated atmosphere and the photon deposition layer and to estimate whether a cloud particle will be lofted by atmospheric circulation. We derive an analytical formula for computing the albedo spectrum in terms of the cloud properties, which we compare to the measured albedo spectrum of HD 189733b by Evans et al. Furthermore, we show that whether an optical phase curve is flat or sinusoidal depends on whether the particles are small or large as defined by the Knudsen number. This may be an explanation for why Kepler-7b exhibits evidence for the longitudinal variation in abundance of condensates, while Kepler-12b shows no evidence for the presence of condensates despite the incident stellar flux being similar for both exoplanets. We include an 'observer's cookbook' for deciphering various scenarios associated with the optical phase curve, the peak offset of the infrared phase curve, and the geometric albedo.

  8. Evaluation of high‐level clouds in cloud resolving model...

    Office of Scientific and Technical Information (OSTI)

    ... Res., 104, 24,527-24,545. Rasmussen, R. M., I. Geresdi, G. Thompson, K. Manning, and E. Karplus (2002), Freezing drizzle formation in stably stratified layer clouds: The role of ...

  9. ARM - Field Campaign - Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsCloud IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Cloud IOP 1998.04.27 - 1998.05.17 Lead Scientist : Gerald Mace For data sets, see below. Summary Monday, April 27, 1998 IOP Opening Activities: Heavy rain (nearly 2.5" since 12Z 4/26/98) at the central facility (CF) dominated the first day of the Cloud Physics/Single Column Model IOP and limited the daily activities. A 1430 GMT

  10. cloud | OpenEI Community

    Open Energy Info (EERE)

    - 13:42 How cleantech-as-a-service will drive renewable energy adoption 2015 adoption Big Data clean tech clean-tech cleantech cleantech forum cleantech-as-a-service cloud...

  11. RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds

    SciTech Connect (OSTI)

    Vogelmann, A. M.; McFarquhar, Greg; Ogren, John A.; Turner, David D.; Comstock, Jennifer M.; Feingold, G.; Long, Charles N.; Jonsson, Haf; Bucholtz, Anthony; Collins, Donald R.; Diskin, G. S.; Gerber, H.; Lawson, Paul; Woods, Roy; Andrews, Elizabeth; Yang, Hee-Jung; Chiu, Christine J.; Hartsock, Daniel; Hubbe, John M.; Lo, Chaomei; Marshak, A.; Monroe, Justin; McFarlane, Sally A.; Schmid, Beat; Tomlinson, Jason M.; Toto, Tami

    2012-06-30

    A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in-situ statistical characterization of boundary-layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that supports modeling studies and enables evaluating a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about two-thirds of the cloud flights occurred in May and June, boundary-layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 75% of the flights occurring in cumulus and stratocumulus. Preliminary analyses show how these data are being used to analyze cloud-aerosol relationships, determine the aerosol sizes that are responsible for nucleating cloud drops, characterize the horizontal variability of the cloud radiative impacts, and evaluate air-borne and surface-based cloud property retrievals. We discuss how conducting an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.

  12. Millimeter Wave Cloud Radar (MMCR) Handbook

    SciTech Connect (OSTI)

    KB Widener; K Johnson

    2005-01-30

    The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

  13. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; et al

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulusmore » and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.« less

  14. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    SciTech Connect (OSTI)

    Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, Christine; Mann, Julia; O Connor, Ewan; Hogan, Robin; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palinkonda, Rabindra; Albrecht, Bruce; Hannay, Cecile; Lin, Yanluan

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.

  15. Evaluation of high-level clouds in cloud resolving model simulations...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations: HIGH CLOUD IN CRM Citation Details In-Document Search This content will ...

  16. RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Endo, Satoshi; Fridlind, Ann M.; Lin, Wuyin; Vogelmann, Andrew M.; Toto, Tami; Ackerman, Andrew S.; McFarquhar, Greg M.; Jackson, Robert C.; Jonsson, Haflidi H.; Liu, Yangang

    2015-06-19

    A 60-hour case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement [ARM] Aerial Facility [AAF] Clouds with Low Optical Water Depths [CLOWD] Optical Radiative Observations) at the ARM Climate Research Facility's Southern Great Plains site. The LES models are driven by continuous large-scale and surface forcings, and are constrained by multi-modal and temporally varying aerosol number size distribution profiles derived from aircraft observations. We compare simulated cloud macrophysical and microphysical properties with ground-based remote sensing and aircraft observations.more » The LES simulations capture the observed transitions of the evolving cumulus-topped boundary layers during the three daytime periods, and generally reproduce variations of droplet number concentration with liquid water content (LWC), corresponding to the gradient between the cloud centers and cloud edges at given heights. The observed LWC values fall within the range of simulated values; the observed droplet number concentrations are commonly higher than simulated, but differences remain on par with potential estimation errors in the aircraft measurements. Sensitivity studies examine the influences of bin microphysics versus bulk microphysics, aerosol advection, supersaturation treatment, and aerosol hygroscopicity. Simulated macrophysical cloud properties are found to be insensitive in this non-precipitating case, but microphysical properties are especially sensitive to bulk microphysics supersaturation treatment and aerosol hygroscopicity.« less

  17. RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations

    SciTech Connect (OSTI)

    Endo, Satoshi; Fridlind, Ann M.; Lin, Wuyin; Vogelmann, Andrew M.; Toto, Tami; Ackerman, Andrew S.; McFarquhar, Greg M.; Jackson, Robert C.; Jonsson, Haflidi H.; Liu, Yangang

    2015-06-19

    A 60-hour case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement [ARM] Aerial Facility [AAF] Clouds with Low Optical Water Depths [CLOWD] Optical Radiative Observations) at the ARM Climate Research Facility's Southern Great Plains site. The LES models are driven by continuous large-scale and surface forcings, and are constrained by multi-modal and temporally varying aerosol number size distribution profiles derived from aircraft observations. We compare simulated cloud macrophysical and microphysical properties with ground-based remote sensing and aircraft observations. The LES simulations capture the observed transitions of the evolving cumulus-topped boundary layers during the three daytime periods, and generally reproduce variations of droplet number concentration with liquid water content (LWC), corresponding to the gradient between the cloud centers and cloud edges at given heights. The observed LWC values fall within the range of simulated values; the observed droplet number concentrations are commonly higher than simulated, but differences remain on par with potential estimation errors in the aircraft measurements. Sensitivity studies examine the influences of bin microphysics versus bulk microphysics, aerosol advection, supersaturation treatment, and aerosol hygroscopicity. Simulated macrophysical cloud properties are found to be insensitive in this non-precipitating case, but microphysical properties are especially sensitive to bulk microphysics supersaturation treatment and aerosol hygroscopicity.

  18. Model analysis of the anthropogenic aerosol effect on clouds over East Asia

    SciTech Connect (OSTI)

    Gao, Yi; Zhang, Meigen; Liu, Xiaohong; Zhao, Chun

    2012-01-16

    A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (PI) emissions over East Asia to examine the aerosol indirect effect on clouds. As a result of an increase in aerosols in January, the cloud droplet number increased by 650 cm{sup -3} over the ocean and East China, 400 cm{sup -3} over Central and Southwest China, and less than 200 cm{sup -3} over North China. The cloud liquid water path (LWP) increased by 40-60 g m{sup -2} over the ocean and Southeast China and 30 g m{sup -2} over Central China; the LWP increased less than 5 g m{sup -2} or decreased by 5 g m{sup -2} over North China. The effective radius (Re) decreased by more than 4 {mu}m over Southwest, Central, and Southeast China and 2 {mu}m over North China. In July, variations in cloud properties were more uniform; the cloud droplet number increased by approximately 250-400 cm{sup -3}, the LWP increased by approximately 30-50 g m{sup -2}, and Re decreased by approximately 3 {mu}m over most regions of China. In response to cloud property changes from PI to PD, shortwave (SW) cloud radiative forcing strengthened by 30 W m{sup -2} over the ocean and 10 W m{sup -2} over Southeast China, and it weakened slightly by approximately 2-10 W m{sup -2} over Central and Southwest China in January. In July, SW cloud radiative forcing strengthened by 15 W m{sup -2} over Southeast and North China and weakened by 10 W m{sup -2} over Central China. The different responses of SW cloud radiative forcing in different regions was related to cloud feedbacks and natural variability.

  19. Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations

    SciTech Connect (OSTI)

    Wu, Xiaoqing

    2014-02-25

    The works supported by this ASR project lay the solid foundation for improving the parameterization of convection and clouds in the NCAR CCSM and the climate simulations. We have made a significant use of CRM simulations and ARM observations to produce thermodynamically and dynamically consistent multi-year cloud and radiative properties; improve the GCM simulations of convection, clouds and radiative heating rate and fluxes using the ARM observations and CRM simulations; and understand the seasonal and annual variation of cloud systems and their impacts on climate mean state and variability. We conducted multi-year simulations over the ARM SGP site using the CRM with multi-year ARM forcing data. The statistics of cloud and radiative properties from the long-term CRM simulations were compared and validated with the ARM measurements and value added products (VAP). We evaluated the multi-year climate simulations produced by the GCM with the modified convection scheme. We used multi-year ARM observations and CRM simulations to validate and further improve the trigger condition and revised closure assumption in NCAR GCM simulations that demonstrate the improvement of climate mean state and variability. We combined the improved convection scheme with the mosaic treatment of subgrid cloud distributions in the radiation scheme of the GCM. The mosaic treatment of cloud distributions has been implemented in the GCM with the original convection scheme and enables the use of more realistic cloud amounts as well as cloud water contents in producing net radiative fluxes closer to observations. A physics-based latent heat (LH) retrieval algorithm was developed by parameterizing the physical linkages of observed hydrometeor profiles of cloud and precipitation to the major processes related to the phase change of atmospheric water.

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed-Phase Cloud Vertical Velocities and Dynamical-Microphysical Interactions Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD, P Kollias, M Poellot, and E Eloranta. 2008. "On deriving vertical air motions from cloud radar Doppler spectra." Journal of Atmospheric and Oceanic Technology 25: 547-557. Shupe, MD, P Kollias, POG Persson, and GM

  1. Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations

    SciTech Connect (OSTI)

    S, Motty G Satyanarayana, M. Krishnakumar, V. Dhaman, Reji k.

    2014-10-15

    The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5{sup 0} N, 79.2{sup 0} E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology.

  2. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CF during LABLE-2012 2 ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for SGP CF during LABLE-2012 [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared radiance spectrum. The method is a

  3. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CF during LABLE-2013 3 ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for SGP CF during LABLE-2013 [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared radiance spectrum. The method is a

  4. DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING OF CLOUDS AND RADIATION USING ARM DATA, FINAL REPORT

    SciTech Connect (OSTI)

    Minnis, Patrick

    2013-06-28

    During the period, March 1997 February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products and raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.

  5. What Makes Clouds Form, Grow and Die?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Makes Clouds Form, Grow and Die? What Makes Clouds Form, Grow and Die? Simulations Show Raindrops Physics May Affect Climate Model Accuracy February 19, 2015 thunderstorm Brazil shuttle NASA 1984 540 PNNL scientists used real-world observations to simulate how small clouds are likely to stay shallow, while larger clouds grow deeper because they mix with less dry air. Pictured are small and large thunderstorms growing over southern Brazil, taken from the space shuttle. Image: NASA Johnson Space

  6. Radiative Effects of Cloud Inhomogeneity and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Effects of Cloud Inhomogeneity and Geometric Association Over the Tropical Western Pacific Warm Pool X. Wu National Center for Atmospheric Research (a) Boulder, Colorado X. -Z. Liang Illinois State Water Survey Champaign, Illinois Introduction The representation of cloud systems and cloud-radiation interaction is considered to be one of major uncertainties in general circulation models (GCMs). This arises because (1) complete observations of cloud systems are impossible and available

  7. Layered Atlantic Smoke Interactions with Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Layered Atlantic Smoke Interactions with Clouds Island in the South Atlantic Ocean. Warm African winds combine with the cool sea surface temperatures and form a large stratocumulus deck, transitioning to year-round trade-wind shallow cumulus at the location of Ascension Island. These clouds and myriad aerosol-cloud-radiation interactions will be studied. Using a portable observatory, or ARM Mobile Facility (AMF), that contains some of most advanced atmospheric research instrumentation for cloud,

  8. ARM Data for Cloud Parameterization

    SciTech Connect (OSTI)

    Xu, Kuan-Man

    2006-10-02

    The PI's ARM investigation (DE-IA02-02ER633 18) developed a physically-based subgrid-scale saturation representation that fully considers the direct interactions of the parameterized subgrid-scale motions with subgrid-scale cloud microphysical and radiative processes. Major accomplishments under the support of that interagency agreement are summarized in this paper.

  9. Unlocking the Secrets of Clouds

    Office of Energy Efficiency and Renewable Energy (EERE)

    Clouds may look soft, fluffy and harmless to the untrained eye, but to an expert climate model scientist they represent great challenges. Fortunately the Atmospheric Radiation Measurement (ARM) Climate and Research Facility is kicking off a five-month study which should significantly clear the air.

  10. THE TRANSIT LIGHT CURVE OF AN EXOZODIACAL DUST CLOUD

    SciTech Connect (OSTI)

    Stark, Christopher C.

    2011-10-15

    Planets embedded within debris disks gravitationally perturb nearby dust and can create clumpy, azimuthally asymmetric circumstellar ring structures that rotate in lock with the planet. The Earth creates one such structure in the solar zodiacal dust cloud. In an edge-on system, the dust 'clumps' periodically pass in front of the star as the planet orbits, occulting and forward-scattering starlight. In this paper, we predict the shape and magnitude of the corresponding transit signal. To do so, we model the dust distributions of collisional, steady-state exozodiacal clouds perturbed by planetary companions. We examine disks with dusty ring structures formed by the planet's resonant trapping of in-spiraling dust for a range of planet masses and semi-major axes, dust properties, and disk masses. We synthesize edge-on images of these models and calculate the transit signatures of the resonant ring structures. The transit light curves created by dusty resonant ring structures typically exhibit two broad transit minima that lead and trail the planetary transit. We find that Jupiter-mass planets embedded within disks hundreds of times denser than our zodiacal cloud can create resonant ring structures with transit depths up to {approx}10{sup -4}, possibly detectable with Kepler. Resonant rings produced by planets more or less massive than Jupiter produce smaller transit depths. Observations of these transit signals may provide upper limits on the degree of asymmetry in exozodiacal clouds.

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed-Phase Cloud Radiative Properties from M-PACE Microphysical Retrievals Download a printable PDF Submitter: de Boer, G., University of Colorado, Boulder/CIRES Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: de Boer G, WD Collins, S Menon, and CN Long. 2011. "Using surface remote sensors to derive radiative characteristics of mixed-phase clouds: An example from M-PACE." Atmospheric Chemistry and Physics, 11, doi: 10.5194/acp-11-11937-2011.

  12. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    SciTech Connect (OSTI)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

  13. Active probing of cloud thickness and optical depth using wide-angle imaging LIDAR.

    SciTech Connect (OSTI)

    Love, Steven P.; Davis, A. B.; Rohde, C. A.; Tellier, L. L.; Ho, Cheng,

    2002-01-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60{sup o} full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Section 2 covers the up-to-date evolution of the nighttime WAIL instrument at LANL. Section 3 reports our progress towards daytime capability for WAIL, an important extension to full diurnal cycle monitoring by means of an ultra-narrow magneto-optic atomic line filter. Section 4 describes briefly how the important cloud properties can be inferred from WAIL signals.

  14. New Mexico cloud super cooled liquid water survey final report 2009.

    SciTech Connect (OSTI)

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  15. ARM Cloud Aerosol Precipitation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Precipitation Experiment a NOAA ship in the Pacific Ocean and on a DOE- sponsored plane over land and sea. These researchers will study: (1) water sources, evolution and structure of atmospheric rivers over the Pacific Ocean (2) long range transport of aerosols over the Pacific Ocean between Hawaii and the U.S. West Coast, and how aerosols interact with atmospheric rivers (3) the point where atmospheric rivers make landfall on the U.S. West Coast, especially how clouds form where

  16. Clouds, Aerosols and Precipitation in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Marine Boundary Layer (CAP-MBL) Graciosa Island, Azores, NE Atlantic Ocean Graciosa Island, Azores, NE Atlantic Ocean May 2009-December 2010 May 2009-December 2010 Rob Wood, University of Washington Rob Wood, University of Washington AMF Deployment Team Thanks to Mark Miller: AMF Site Scientist Mark Miller: AMF Site Scientist Kim Nitschke: AMF Site Manager CAP-MBL Proposal Team Importance of Low-Clouds for Climate Imperative that we understand the processes controlling the formation,

  17. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; Endo, Satoshi

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasingmore » scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.« less

  18. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    SciTech Connect (OSTI)

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; Endo, Satoshi

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasing scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.

  19. Multiwavelength observations of a devleoping cloud system: The FIRE II 26 November 1991 case study

    SciTech Connect (OSTI)

    Intrieri, J.M.; Eberhard, W.L.; Uttal, T.

    1995-12-01

    Simultaneous multiwavelength measurements of a developing cloud system were obtained by NOAA Doppler lidar, Doppler radar, Fourier transform infrared interferometer, and microwave and infrared radiometers on 26 November 1991. The evolution of the cloud system is described in terms of lidar backscatter, radar reflectivity and velocity, interferometer atmospheric spectra, and radiometer brightness temperature, integrated liquid water, and water vapor paths. Utilizing the difference in wavelength between the radar and lidar, and therefore their independent sensitivity to different regions of the same cloud, the cloud top, base, depth, and multiple layer heights can be determined with better accuracy than with either instrument alone. Combining the radar, lidar, and radiometer measurements using two different techniques allows an estimation of the vertical profile of cloud microphysical properties such as particle sizes. Enhancement of lidar backscatter near zenith revealed when highly oriented ice crystals were present. The authors demonstrate that no single instrument is sufficient to accurately describe cirrus clouds and that measurements in combination can provide important details on their geometric, radiative, and microphysical properties.

  20. Accounting for Unresolved Spatial Variability in Large Scale Models: Development and Evaluation of a Statistical Cloud Parameterization with Prognostic Higher Order Moments

    SciTech Connect (OSTI)

    Robert Pincus

    2011-05-17

    This project focused on the variability of clouds that is present across a wide range of scales ranging from the synoptic to the millimeter. In particular, there is substantial variability in cloud properties at scales smaller than the grid spacing of models used to make climate projections (GCMs) and weather forecasts. These models represent clouds and other small-scale processes with parameterizations that describe how those processes respond to and feed back on the largescale state of the atmosphere.

  1. Evaluation of Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Sa...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Satellite and Cloud Radar Y. Luo and S. K. Krueger University of Utah Salt Lake City, Utah Introduction Because of both the various effects clouds exert on the earth-atmospheric system and the cloud feedback, correct representations of clouds in numerical models are critical for accurate climate modeling and weather forecast. Unfortunately, determination of clouds and their radiative

  2. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    SciTech Connect (OSTI)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of this contract, we participated in another ARM-sponsored experiment at the NSA during February-March 2007. This experiment is called the Radiative Heating in Underexplored Bands Campaign (RHUBC) and the GSR was operated successfully for the duration of the campaign. One of the principal goals of the experiment was to provide retrievals of water vapor during PWV amounts less than 2 mm and to compare GSR data with ARM radiometers and radiosondes. A secondary goal was to compare the radiometric response of the microwave and millimeter wavelength radiometers to water and ice clouds. In this final report, we will include the separate progress reports for each of the three years of the project and follow with a section on major accomplishments of the project.

  3. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds

    SciTech Connect (OSTI)

    McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Mengistu; Brooks, Sarah D.; Cziczo, Daniel J.; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor J.; Gultepe, Ismail; Hubbe, John M.; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. R.; Liu, Peter S.; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, A. M.; Moffet, Ryan C.; Morrison, H.; Ovchinnikov, Mikhail; Shupe, Matthew D.; Turner, David D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matthew; Glen, Andrew

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmospheric emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.

  4. Storm Clouds Take Rain on Rollercoaster Ride

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds Take Rain on Rollercoaster Ride For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Most of us think that when rain forms in a cloud, it will instantly fall down. That's what climate models typically assume, too. But in reality, rising plumes that form turbulent storm clouds can often carry raindrops, snowflakes, and even hailstones upward before they fall out. This lengthened journey prolongs their growth stage and

  5. A Global Cloud Resolving Model Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Cloud Resolving Model Goals Uniform global horizontal grid spacing of 4 km or better ("cloud permitting") 100 or more layers up to at least the stratopause Parameterizations of microphysics, turbulence (including small clouds), and radiation Execution speed of at least several simulated days per wall-clock day on immediately available systems Annual cycle simulation by end of 2011. Motivations Parameterizations are still problematic. There are no spectral gaps. The equations

  6. Exploring Stratocumulus Cloud-Top Entrainment Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stratocumulus Cloud-Top Entrainment Processes and Parameterizations by Using Doppler For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Stratocumulus clouds are a particularly important component of the Earth's climate system due to their large impact on the radiation budget. But the parameterization of entrainment in these clouds is yet to be fully resolved, which leads to uncertainties in numerical model forecasts ranging

  7. Midlatitude Continental Convective Clouds Experiment Science Objective

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Midlatitude Continental Convective Clouds Experiment Science Objective Despite improvements in computing power, current weather and climate models are unable to accurately reproduce the formation, growth, and decay of clouds and precipitation associated with storm systems. Not only is this due to a lack of data about precipitation, but also about the 3-dimensional environment of the surrounding clouds, winds, and moisture, and how that affects the transfer of energy between the sun and Earth. To

  8. Ground-based Microwave Cloud Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microwave Cloud Tomography Experiment, SGP, May 15-June 15, 2009 Lead Scientist Dong Huang, BNL Co-Investigators Al Gasiewski, UC Boulder Maria Cadeddu, ANL Warren Wiscombe, BNL Radiation Processes Working Group March 30, 2009 multiple radiometers All good cloud radiation modelers should close their airplane window shades so as not to be corrupted by the spectacle of real 3D clouds. - Roger Davies In case you forget to do this, you see 3/30/2009 ARM RPWG 2 Effects of cloud structure on radiation

  9. RACORO continental boundary layer cloud investigations. Part...

    Office of Scientific and Technical Information (OSTI)

    RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings Citation Details In-Document Search This content will ...

  10. ARM - Field Campaign - Spring Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    respectively. From these measurements, cloud condensed water content (CVIcwc) and number concentration (CVInum) are determined. CVInum may be artificially enhanced due to breakup...

  11. What Makes Clouds Form, Grow and Die?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were born and grew. Those formulas did not always reflect reality. With more advanced computers came the ability to explicitly simulate large-cloud systems instead of approximating...

  12. Mountain-induced Dynamics Influence Cloud Phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010-2011 via coordinated projects targeting clouds, precipitation, and dynamics in the Park Range of Colorado. The National Science Foundation sponsored aircraft measurements as...

  13. Fragmentation in rotating isothermal protostellar clouds

    SciTech Connect (OSTI)

    Bodenheimer, P.; Tohline, J.E.; Black, D.C.

    1980-01-01

    Results of an extensive set of 3-D hydrodynamic calculations that have been performed to investigate the susceptibility of rotating clouds to gravitational fragmentation are presented. (GHT)

  14. DOE Research and Development Accomplishments Tag Cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Database Tag Cloud This tag cloud is a specific type of weighted list that provides a quick look at the content of the DOE R&D Accomplishments database. It can be easily browsed because terms are in alphabetical order. With this tag cloud, there is a direct correlation between font size and quantity. The more times a term appears in the bibliographic citations, the larger the font size. This tag cloud is also interactive. Clicking on a term will activate a search for that term. Search

  15. CHARACTERIZATION OF CLOUDS IN TITAN'S TROPICAL ATMOSPHERE

    SciTech Connect (OSTI)

    Griffith, Caitlin A.; Penteado, Paulo; Rodriguez, Sebastien; Baines, Kevin H.; Buratti, Bonnie; Sotin, Christophe; Clark, Roger; Nicholson, Phil; Jaumann, Ralf

    2009-09-10

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 {mu}m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8 deg. - 20 deg. S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.

  16. ARM - Field Campaign - Midlatitude Continental Convective Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment (MC3E) Campaign Links Science Plan MC3E Website Field Campaign Report ARM Data Discovery Browse Data Related Campaigns Midlatitude Continental Convective Clouds...

  17. The LANL Cloud-Aerosol Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that incorporates two unique aspects in its formulation. First, the model employs a nonlinear solver that requires cloud-aerosol parameterizations be smooth or contain reasonable...

  18. An Analysis of Cloud Absorption During

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Cloud Absorption During ARESE II (Spring 2000) D. M. Powell, R. T. Marchand, and T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington Introduction...

  19. Dynamics of Molecular Clouds: Observations, Simulations, and...

    Office of Scientific and Technical Information (OSTI)

    Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments Authors: Kane, J ...

  20. Understanding Ice Supersaturation, Particle Growth, and Number Concentration in Cirrus Clouds

    SciTech Connect (OSTI)

    Comstock, Jennifer M.; Lin, Ruei-Fong; Starr, David O.; Yang, P.

    2008-12-10

    Many factors control the ice supersaturation and microphysical properties in cirrus clouds. We explore the effects of dynamic forcing, ice nucleation mechanisms, and ice crystal growth rate on the evolution and distribution of water vapor and cloud properties in cirrus clouds using a detailed microphysical model and remote sensing measurements obtained at the Department of Energys Atmospheric Radiation Measurement (ARM) Climate Research Facility located near Lamont, OK. To help understand dynamic scales important in cirrus formation, we force the model using both large-scale forcing derived using ARM variational analysis, and mean mesoscale velocity derived from radar Doppler velocity measurements. Both heterogeneous and homogeneous nucleation processes are explored, where we have implemented a rigorous classical theory heterogeneous nucleation scheme to compare with empirical representations. We evaluate model simulations by examining both bulk cloud properties and distributions of measured radar reflectivity, lidar extinction, and water vapor profiles, as well as retrieved cloud microphysical properties. This approach allows for independent verification of both the large and small particle modes of the particle size distribution. Our results suggest that mesoscale variability is the primary mechanism needed to reproduce observed quantities, while nucleation mechanism is secondary. Slow ice crystal growth tends to overestimate the number of small ice crystals, but does not seem to influence bulk properties such as ice water path and cloud thickness. The most realistic simulations as compared with observations are forced using mesoscale waves, include fast ice crystal growth, and initiate ice by either homogeneous or heterogeneous nucleation. Ice crystal number concentrations on the order of 10-100 L-1 produce results consistent with both lidar and radar observations during a cirrus event observed on 7 December 1999, which has an optical depth range typical of midlatitude cirrus.

  1. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  2. ARM - Field Campaign - Measuring Clouds at SGP with Stereo Photogramme...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the form of the Point Cloud of Cloud Points Product (PCCPP). The PCCPP will: provide context on life-cycle stage and cloud position for vertically pointing radars, lidars, and...

  3. Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics

    SciTech Connect (OSTI)

    Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

    2013-10-01

    Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

  4. The Sensitivity of Radiative Fluxes to Parameterized Cloud Microphysic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these fields include cloud altitude, cloud amount, liquid and ice content, particle size spectra, and radiative fluxes at the surface and the TOA. Comparisons with Atmospheric...

  5. An Improved Cloud Classification Algorithm Based on the SGP CART...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the world. The millimeter wave cloud radar (MMCR) provides radar reflectivity and mean Doppler velocity profiles for most of clouds in the troposphere. Raman lidar provide not...

  6. ARM - Field Campaign - Azores: Clouds, Aerosol and Precipitation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaigns Azores: Above-Cloud Radiation Budget near Graciosa Island 2010.04.15, Miller, AMF Azores: Extension to Clouds, Aerosol and Precipitation in the Marine Boundary...

  7. Stratus Cloud Structure from MM-Radar Transects and Satellite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling: * cloud-radiation interaction where correlations can trigger three-dimensional (3D) radiative transfer effects; and * dynamical cloud modeling where the goal is to...

  8. City of Red Cloud, Nebraska (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Red Cloud, Nebraska (Utility Company) Jump to: navigation, search Name: Red Cloud Municipal Power Place: Nebraska Phone Number: 402-746-2215 Website: www.redcloudnebraska.comgover...

  9. BALTEX BRIDGE cloud liquid water network project: CLIWA-NET

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud types 432008 ARM-08 (Simplified) Working Strategy of GCSS Large Eddy Simulation (LES) Models Cloud Resolving Models (CRM) Single Column Model Versions of Climate Models...

  10. Direct Numerical Simulations and Robust Predictions of Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud. Credit: Computational Science and Engineering Laboratory, ETH Zurich, Switzerland Direct Numerical Simulations and Robust Predictions of Cloud Cavitation Collapse PI Name:...

  11. ARM - Field Campaign - Marine ARM GPCI Investigation of Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMarine ARM GPCI Investigation of Clouds (MAGIC) Campaign Links MAGIC Website ARM Data Discovery Browse Data Related Campaigns Marine ARM GPCI Investigation of Clouds...

  12. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    relevant to DOE's goals in understanding the impact of clouds and aerosols on climate change. TWST contributes significantly to the body of data used for extracting cloud...

  13. Can Cloud Computing Address the Scientific Computing Requirements...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    achieve energy efficiency levels comparable to commercial cloud centers. Cloud is a business model and can be applied at DOE supercomputing centers. The progress of the...

  14. Assessing Cloud Spatial and Vertical Distribution with Infrared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on assessing cloud spatial and vertical distribution with a recently developed infrared (IR) cloud analyzer, named Nephelo. The experiment took place at the ARM's central facility,...

  15. Summary of workshop session F on electron-cloud instabilities...

    Office of Scientific and Technical Information (OSTI)

    Conference: Summary of workshop session F on electron-cloud instabilities Citation Details In-Document Search Title: Summary of workshop session F on electron-cloud instabilities ...

  16. QUANTITATIVELY ASSESSING THE ROLE OF CLOUDS IN THE TRANSMISSION SPECTRUM OF GJ 1214b

    SciTech Connect (OSTI)

    Morley, Caroline V.; Fortney, Jonathan J.; Kempton, Eliza M.-R.; Marley, Mark S.; Zahnle, Kevin; Vissher, Channon

    2013-09-20

    Recent observations of the super-Earth GJ 1214b show that it has a relatively featureless transmission spectrum. One suggestion is that these observations indicate that the planet's atmosphere is vertically compact, perhaps due to a water-rich composition that yields a large mean molecular weight. Another suggestion is that the atmosphere is hydrogen/helium-rich with clouds that obscure predicted absorption features. Previous models that incorporate clouds have included their effect without a strong physical motivation for their existence. Here, we present model atmospheres of GJ 1214b that include physically motivated clouds of two types. We model the clouds that are present in chemical equilibrium, as has been suggested to occur on brown dwarfs, which include KCl and ZnS for this planet. We also include clouds that form as a result of photochemistry, forming a hydrocarbon haze layer. We use a photochemical kinetics model to understand the vertical distribution and available mass of haze-forming molecules. We model both solar and enhanced-metallicity cloudy models and determine the cloud properties necessary to match observations. In enhanced-metallicity atmospheres, we find that the equilibrium clouds can match the observations of GJ 1214b if they are lofted high into the atmosphere and have a low sedimentation efficiency (f{sub sed} = 0.1). We find that models with a variety of hydrocarbon haze properties can match the observations. Particle sizes from 0.01 to 0.25 ?m can match the transmission spectrum with haze-forming efficiencies as low as 1%-5%.

  17. Humidity trends imply increased sensitivity to clouds in a warming Arctic

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cox, Christopher J.; Walden, Von P.; Rowe, Penny M.; Shupe, Matthew D.

    2015-12-10

    Infrared radiative processes are implicated in Arctic warming and sea-ice decline. The infrared cloud radiative effect (CRE) at the surface is modulated by cloud properties; however, CRE also depends on humidity because clouds emit at wavelengths that are semi-transparent to greenhouse gases, most notably water vapour. Here we show how temperature and humidity control CRE through competing influences between the mid- and far-infrared. At constant relative humidity, CRE does not decrease with increasing temperature/absolute humidity as expected, but rather is found to be approximately constant for temperatures characteristic of the Arctic. This stability is disrupted if relative humidity varies. Ourmore » findings explain observed seasonal and regional variability in Arctic CRE of order 10Wm 2. With the physical properties of Arctic clouds held constant, we calculate recent increases in CRE of 1–5Wm 2 in autumn and winter, which are projected to reach 5–15Wm 2 by 2050, implying increased sensitivity of the surface to clouds.« less

  18. Humidity trends imply increased sensitivity to clouds in a warming Arctic

    SciTech Connect (OSTI)

    Cox, Christopher J.; Walden, Von P.; Rowe, Penny M.; Shupe, Matthew D.

    2015-12-10

    Infrared radiative processes are implicated in Arctic warming and sea-ice decline. The infrared cloud radiative effect (CRE) at the surface is modulated by cloud properties; however, CRE also depends on humidity because clouds emit at wavelengths that are semi-transparent to greenhouse gases, most notably water vapour. Here we show how temperature and humidity control CRE through competing influences between the mid- and far-infrared. At constant relative humidity, CRE does not decrease with increasing temperature/absolute humidity as expected, but rather is found to be approximately constant for temperatures characteristic of the Arctic. This stability is disrupted if relative humidity varies. Our findings explain observed seasonal and regional variability in Arctic CRE of order 10Wm 2. With the physical properties of Arctic clouds held constant, we calculate recent increases in CRE of 1–5Wm 2 in autumn and winter, which are projected to reach 5–15Wm 2 by 2050, implying increased sensitivity of the surface to clouds.

  19. Scanning ARM Cloud Radar Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  20. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-19

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  1. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  2. Modeling Incoherent Electron Cloud Effects

    SciTech Connect (OSTI)

    Vay, Jean-Luc; Benedetto, E.; Fischer, W.; Franchetti, G.; Ohmi, K.; Schulte, D.; Sonnad, K.; Tomas, R.; Vay, J.-L.; Zimmermann, F.; Rumolo, G.; Pivi, M.; Raubenheimer, T.

    2007-06-18

    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e+e- scattering processes is also estimated. Options for future code development are reviewed.

  3. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prather, M. J.

    2015-05-27

    A new approach for modeling photolysis rates (J values) in atmospheres with fractional cloud cover has been developed and implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observed statistics for the vertical correlation of cloud layers, Cloud-J 7.3 provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations represented by four quadrature atmospheres produces mean J values in an atmospheric column with root-mean-square errors of 4% or less compared with 10–20% errors using simpler approximations. Cloud-Jmore » is practical for chemistry-climate models, requiring only an average of 2.8 Fast-J calls per atmosphere, vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections is also incorporated into Cloud-J.« less

  4. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prather, M. J.

    2015-08-14

    A new approach for modeling photolysis rates (J values) in atmospheres with fractional cloud cover has been developed and is implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observations of the vertical correlation of cloud layers, Cloud-J 7.3c provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations by four quadrature atmospheres produces mean J values in an atmospheric column with root mean square (rms) errors of 4 % or less compared with 10–20 % errorsmore » using simpler approximations. Cloud-J is practical for chemistry–climate models, requiring only an average of 2.8 Fast-J calls per atmosphere vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections, is also incorporated into Cloud-J.« less

  5. Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Zheng; Muhlbauer, Andreas; Ackerman, Thomas

    2015-11-05

    In this paper, we evaluate high-level clouds in a cloud resolving model during two convective cases, ARM9707 and KWAJEX. The simulated joint histograms of cloud occurrence and radar reflectivity compare well with cloud radar and satellite observations when using a two-moment microphysics scheme. However, simulations performed with a single moment microphysical scheme exhibit low biases of approximately 20 dB. During convective events, two-moment microphysical overestimate the amount of high-level cloud and one-moment microphysics precipitate too readily and underestimate the amount and height of high-level cloud. For ARM9707, persistent large positive biases in high-level cloud are found, which are not sensitivemore » to changes in ice particle fall velocity and ice nuclei number concentration in the two-moment microphysics. These biases are caused by biases in large-scale forcing and maintained by the periodic lateral boundary conditions. The combined effects include significant biases in high-level cloud amount, radiation, and high sensitivity of cloud amount to nudging time scale in both convective cases. The high sensitivity of high-level cloud amount to the thermodynamic nudging time scale suggests that thermodynamic nudging can be a powerful ‘‘tuning’’ parameter for the simulated cloud and radiation but should be applied with caution. The role of the periodic lateral boundary conditions in reinforcing the biases in cloud and radiation suggests that reducing the uncertainty in the large-scale forcing in high levels is important for similar convective cases and has far reaching implications for simulating high-level clouds in super-parameterized global climate models such as the multiscale modeling framework.« less

  6. ARM - Instrument Datastreams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DatastreamsCloud Properties

  7. Cloud properties derived from the High Spectral Resolution Lidar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    depth. These results will be compared to similar results observed during the first 8-months of our current deployment at Eureka, Canada (80N, 86.2W). http:lidar.ssec.wisc.edu...

  8. Evaluation of Tropical Cirrus Cloud Properties and Dynamical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the dynamic processes that are responsible for their formation. We then present a case study that illustrates the ability of the model to predict thin cirrus. ECMWF Model...

  9. A 3-Year Climatology of Cloud and Radiative Properties Derived...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hampton, Virginia P. Minnis, W. L. Smith, Jr., and L. Nguyen Atmospheric Sciences Division ... to broadband correlations (Minnis and Smith 1998) between GOES-6 and data from the ...

  10. Comparison of Cirrus Cloud Radiative Properties and Dynamical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamical Processes at Two Atmospheric Radiation Measurement Sites in the Tropical ... U. S. Department of Energy, Atmospheric Radiation Measurement (ARM) sites located on Manus ...

  11. An Observed Signature of Aerosol Effect on Cloud Droplet Radii from a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decade of Observations at a Mid-Continental Site An Observed Signature of Aerosol Effect on Cloud Droplet Radii from a Decade of Observations at a Mid-Continental Site Min, Qilong State University of New York at Albany Duan, Minzheng State University of New York at Albany Harrison, Lee State University of New York Joseph, Everette Howard University Category: Aerosols Continuing observations of aerosol and cloud optical property have been made using MFRSR and MWR at the ARM SGP site since

  12. Full Electroresistance Modulation in a Mixed-Phase Metallic Alloy...

    Office of Scientific and Technical Information (OSTI)

    GrantContract Number: SC0002136 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume: 116; Journal Issue: 9; ...

  13. HPC CLOUD APPLIED TO LATTICE OPTIMIZATION

    SciTech Connect (OSTI)

    Sun, Changchun; Nishimura, Hiroshi; James, Susan; Song, Kai; Muriki, Krishna; Qin, Yong

    2011-03-18

    As Cloud services gain in popularity for enterprise use, vendors are now turning their focus towards providing cloud services suitable for scientific computing. Recently, Amazon Elastic Compute Cloud (EC2) introduced the new Cluster Compute Instances (CCI), a new instance type specifically designed for High Performance Computing (HPC) applications. At Berkeley Lab, the physicists at the Advanced Light Source (ALS) have been running Lattice Optimization on a local cluster, but the queue wait time and the flexibility to request compute resources when needed are not ideal for rapid development work. To explore alternatives, for the first time we investigate running the Lattice Optimization application on Amazon's new CCI to demonstrate the feasibility and trade-offs of using public cloud services for science.

  14. QER- Comment of Cloud Peak Energy Inc

    Broader source: Energy.gov [DOE]

    Dear Ms Pickett Please find attached comments from Cloud Peak Energy as input to the Department of Energy’s Quadrennial Energy Review. If possible I would appreciate a confirmation that this email has been received Thank you.

  15. Building a private cloud with Open Nebula

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Short Ryan Glenn Ross Nordeen Mentors: Andree Jacobson ISTI-OFF David Kennel DCS-1 LA-UR 10-05197 Why use Virtualized Cloud Computing for HPC? * Support Legacy Software Stacks *...

  16. Evaluating the MMF Using CloudSat

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its cloud simulations simulations Borrowed from Dave Randall, CSU The big picture The big picture ... ... . . Data ARM A-Train, MISR etc. MMF 4 km runs (CAM) Compare Run CRM...

  17. ARM - Field Campaign - Midlatitude Continental Convective Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency...

  18. ARM - Field Campaign - Boundary Layer Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBoundary Layer Cloud IOP Campaign Links Campaign Images ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at...

  19. ARM - Field Campaign - Arctic Cloud Infrared Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Arctic Cloud Infrared Imaging 2012.07.16 - 2014.07.31 Lead Scientist : Joseph Shaw...

  20. ARM Cloud Retrieval Ensemble Data Set (ACRED)

    SciTech Connect (OSTI)

    Zhao, C; Xie, S; Klein, SA; McCoy, R; Comstock, JM; Delanoë, J; Deng, M; Dunn, M; Hogan, RJ; Jensen, MP; Mace, GG; McFarlane, SA; O’Connor, EJ; Protat, A; Shupe, MD; Turner, D; Wang, Z

    2011-09-12

    This document describes a new Atmospheric Radiation Measurement (ARM) data set, the ARM Cloud Retrieval Ensemble Data Set (ACRED), which is created by assembling nine existing ground-based cloud retrievals of ARM measurements from different cloud retrieval algorithms. The current version of ACRED includes an hourly average of nine ground-based retrievals with vertical resolution of 45 m for 512 layers. The techniques used for the nine cloud retrievals are briefly described in this document. This document also outlines the ACRED data availability, variables, and the nine retrieval products. Technical details about the generation of ACRED, such as the methods used for time average and vertical re-grid, are also provided.

  1. Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave Radiation Measurements: A Comparison of 16 Year Measurements

    SciTech Connect (OSTI)

    Xie, Yu; Liu, Yangang; Long, Charles N.; Min, Qilong

    2014-07-27

    Ground-based radiation measurements have been widely conducted to gain information on clouds and the surface radiation budget; here several different techniques for retrieving cloud fraction (Long2006, Min2008 and XL2013) and cloud albedo (Min2008, Liu2011 and XL2013) from ground-based shortwave broadband and spectral radiation measurements are examined, and sixteen years of retrievals collected at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared. The comparison shows overall good agreement between the retrievals of both cloud fraction and cloud albedo, with noted differences however. The Long2006 and Min2008 cloud fractions are greater on average than the XL2013 values. Compared to Min2008 and Liu2011, the XL2013 retrieval of cloud albedo tends to be greater for thin clouds but smaller for thick clouds, with the differences decreasing with increasing cloud fraction. Further analysis reveals that the approaches that retrieve cloud fraction and cloud albedo separately may suffer from mutual contamination of errors in retrieved cloud fraction and cloud albedo. Potential influences of cloud absorption, land-surface albedo, cloud structure, and measurement instruments are explored.

  2. Electron-Cloud Build-Up: Summary

    SciTech Connect (OSTI)

    Furman, M.A.

    2007-06-18

    I present a summary of topics relevant to the electron-cloud build-up and dissipation that were presented at the International Workshop on Electron-Cloud Effects 'ECLOUD 07' (Daegu, S. Korea, April 9-12, 2007). This summary is not meant to be a comprehensive review of the talks. Rather, I focus on those developments that I found, in my personal opinion, especially interesting. The contributions, all excellent, are posted in http://chep.knu.ac.kr/ecloud07/.

  3. Ignition of Aluminum Particles and Clouds

    SciTech Connect (OSTI)

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  4. ARM - Publications: Science Team Meeting Documents: Day and Night cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fraction - Cloud Inter-Compariosn IOP results Day and Night cloud fraction - Cloud Inter-Compariosn IOP results Genkova, Iliana University of Illinois-Champaign Long, Chuck Pacific Northwest National Laboratory Turner, David Pacific Northwest National Laboratory We present results from the CIC IOP from March-may, 2003. Day time and night time cloud fraction retrieval algorithms have been presented and intercompared. Amount of low, middle and high cloud have been estimated and compared to

  5. Icy Cirrus Clouds to Be Studied This Spring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Icy Cirrus Clouds to Be Studied This Spring Mid-latitude cirrus clouds, which are composed solely of ice crystals, will be the focus of an intensive operational period (IOP) in April and May 2004 at the ARM Climate Research Facility (ACRF) SGP site. Researchers will be probing the clouds with aircraft-based instruments to gather detailed information about the clouds' physical characteristics. To make measurements in cirrus clouds, which generally form in the atmosphere at and above 20,000 feet

  6. Evaluating Clouds, Aerosols, and their Interactions in Three Global Climate Models using COSP and Satellite Observations

    SciTech Connect (OSTI)

    Ban-Weiss, George; Jin, Ling; Bauer, S.; Bennartz, Ralph; Liu, Xiaohong; Zhang, Kai; Ming, Yi; Guo, Huan; Jiang, Jonathan

    2014-09-23

    Accurately representing aerosol-cloud interactions in global climate models is challenging. As parameterizations evolve, it is important to evaluate their performance with appropriate use of observations. In this work we compare aerosols, clouds, and their interactions in three climate models (AM3, CAM5, ModelE) to MODIS satellite observations. Modeled cloud properties were diagnosed using the CFMIP Observations Simulator Package (COSP). Cloud droplet number concentrations (N) were derived using the same algorithm for both satellite-simulated model values and observations. We find that aerosol optical depth tau simulated by models is similar to observations. For N, AM3 and CAM5 capture the observed spatial pattern of higher values in near-coast versus remote ocean regions, though modeled values in general are higher than observed. In contrast, ModelE simulates lower N in most near-coast versus remote regions. Aerosol- cloud interactions were computed as the sensitivity of N to tau for marine liquid clouds off the coasts of South Africa and Eastern Asia where aerosol pollution varies in time. AM3 and CAM5 are in most cases more sensitive than observations, while the sensitivity for ModelE is statistically insignificant. This widely used sensitivity could be subject to misinterpretation due to the confounding influence of meteorology on both aerosols and clouds. A simple framework for assessing the N tau sensitivity at constant meteorology illustrates that observed sensitivity can change from positive to statistically insignificant when including the confounding influence of relative humidity. Satellite simulated values of N were compared to standard model output and found to be higher with a bias of 83 cm-3.

  7. Star formation relations in nearby molecular clouds

    SciTech Connect (OSTI)

    Evans, Neal J. II; Heiderman, Amanda; Vutisalchavakul, Nalin

    2014-02-20

    We test some ideas for star formation relations against data on local molecular clouds. On a cloud by cloud basis, the relation between the surface density of star formation rate and surface density of gas divided by a free-fall time, calculated from the mean cloud density, shows no significant correlation. If a crossing time is substituted for the free-fall time, there is even less correlation. Within a cloud, the star formation rate volume and surface densities increase rapidly with the corresponding gas densities, faster than predicted by models using the free-fall time defined from the local density. A model in which the star formation rate depends linearly on the mass of gas above a visual extinction of 8 mag describes the data on these clouds, with very low dispersion. The data on regions of very massive star formation, with improved star formation rates based on free-free emission from ionized gas, also agree with this linear relation.

  8. Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP X. Wu Department of Geological and Atmospheric Sciences Iowa State University Ames, Iowa X.-Z. Liang Illinois State Water Survey University of Illinois Urbana-Champaign, Illinois Introduction The cloud-resolving model (CRM) has recently emerged as a useful tool to develop improved representations of convections, clouds, and cloud-radiation interactions in general circulation models (GCMs).

  9. Mechanisms of Convective Cloud Organization by Cold Pools over Tropical Warm Ocean during the AMIE/DYNAMO Field Campaign

    SciTech Connect (OSTI)

    Feng, Zhe; Hagos, Samson M.; Rowe, Angela; Burleyson, Casey D.; Martini, Matus; de Szoeke, S.

    2015-06-01

    This paper investigates the mechanisms of convective cloud organization by precipitation-driven cold pools over the warm tropical Indian Ocean during the 2011 Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment / Dynamics of the MJO (AMIE/DYNAMO) field campaign. A high-resolution regional model simulation is performed using the Weather Research and Forecasting model during the transition from suppressed to active phases of the November 2011 MJO. The simulated cold pool lifetimes, spatial extent and thermodynamic properties agree well with the radar and ship-borne observations from the field campaign. The thermodynamic and dynamic structures of the outflow boundaries of isolated and intersecting cold pools in the simulation and the associated secondary cloud populations are examined. Intersecting cold pools last more than twice as long, are twice as large, 41% more intense (measured by buoyancy), and 62% deeper than isolated cold pools. Consequently, intersecting cold pools trigger 73% more convective clouds than isolated ones. This is possibly due to stronger outflows that enhance secondary updraft velocities by up to 45%. However, cold pool-triggered convective clouds grow into deep convection not because of the stronger secondary updrafts at cloud base, but rather due to closer spacing (aggregation) between clouds and larger cloud clusters that formed along the cold pool boundaries when they intersect. The close spacing of large clouds moistens the local environment and reduces entrainment drying, allowing the clouds to further develop into deep convection. Implications to the design of future convective parameterization with cold pool-modulated entrainment rates are discussed.

  10. Properties of tropical convection observed by ARM millimeter-radars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Properties of tropical convection observed by ARM millimeter-radars Haynes, John Colorado State University Stephens, Graeme Colorado State University Category: Cloud Properties The results of an analysis of tropical cloud systems observed from a variety of vertically pointing radar systems are described. In particular, observations taken during five years of operation of the ARM millimeter wavelength radar system (MMCR) at Manus Island in the Tropical West Pacific region are characterized into

  11. Posters Climate Zones for Maritime Clouds A. B. White and D....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power (15-m resolution) is analyzed to detect cloud layers using a specified cloud detection limit. In addition to measurements of cloud base, the ceilometer can also provide...

  12. Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. III. Rotating three-dimensional cloud cores

    SciTech Connect (OSTI)

    Boss, Alan P.; Keiser, Sandra A.

    2014-06-10

    A key test of the supernova triggering and injection hypothesis for the origin of the solar system's short-lived radioisotopes is to reproduce the inferred initial abundances of these isotopes. We present here the most detailed models to date of the shock wave triggering and injection process, where shock waves with varied properties strike fully three-dimensional, rotating, dense cloud cores. The models are calculated with the FLASH adaptive mesh hydrodynamics code. Three different outcomes can result: triggered collapse leading to fragmentation into a multiple protostar system; triggered collapse leading to a single protostar embedded in a protostellar disk; or failure to undergo dynamic collapse. Shock wave material is injected into the collapsing clouds through Rayleigh-Taylor fingers, resulting in initially inhomogeneous distributions in the protostars and protostellar disks. Cloud rotation about an axis aligned with the shock propagation direction does not increase the injection efficiency appreciably, as the shock parameters were chosen to be optimal for injection even in the absence of rotation. For a shock wave from a core-collapse supernova, the dilution factors for supernova material are in the range of ?10{sup 4} to ?3 10{sup 4}, in agreement with recent laboratory estimates of the required amount of dilution for {sup 60}Fe and {sup 26}Al. We conclude that a type II supernova remains as a promising candidate for synthesizing the solar system's short-lived radioisotopes shortly before their injection into the presolar cloud core by the supernova's remnant shock wave.

  13. Magellan: experiences from a Science Cloud

    SciTech Connect (OSTI)

    Ramakrishnan, Lavanya; Zbiegel, Piotr; Campbell, Scott; Bradshaw, Rick; Canon, Richard; Coghlan, Susan; Sakrejda, Iwona; Desai, Narayan; Declerck, Tina; Liu, Anping

    2011-02-02

    Cloud resources promise to be an avenue to address new categories of scientific applications including data-intensive science applications, on-demand/surge computing, and applications that require customized software environments. However, there is a limited understanding on how to operate and use clouds for scientific applications. Magellan, a project funded through the Department of Energy?s (DOE) Advanced Scientific Computing Research (ASCR) program, is investigating the use of cloud computing for science at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Facility (NERSC). In this paper, we detail the experiences to date at both sites and identify the gaps and open challenges from both a resource provider as well as application perspective.

  14. Cloud-based Architecture Capabilities Summary Report

    SciTech Connect (OSTI)

    Vang, Leng; Prescott, Steven R; Smith, Curtis

    2014-09-01

    In collaborating scientific research arena it is important to have an environment where analysts have access to a shared of information documents, software tools and be able to accurately maintain and track historical changes in models. A new cloud-based environment would be accessible remotely from anywhere regardless of computing platforms given that the platform has available of Internet access and proper browser capabilities. Information stored at this environment would be restricted based on user assigned credentials. This report reviews development of a Cloud-based Architecture Capabilities (CAC) as a web portal for PRA tools.

  15. Final Technical Report for "Radiative Heating Associated with Tropical Convective Cloud Systems: Its Importance at Meso and Global Scales"

    SciTech Connect (OSTI)

    Schumacher, Courtney

    2012-12-13

    Heating associated with tropical cloud systems drive the global circulation. The overall research objectives of this project were to i) further quantify and understand the importance of heating in tropical convective cloud systems with innovative observational techniques, and ii) use global models to determine the large-scale circulation response to variability in tropical heating profiles, including anvil and cirrus cloud radiative forcing. The innovative observational techniques used a diversity of radar systems to create a climatology of vertical velocities associated with the full tropical convective cloud spectrum along with a dissection of the of the total heating profile of tropical cloud systems into separate components (i.e., the latent, radiative, and eddy sensible heating). These properties were used to validate storm-scale and global climate models (GCMs) and were further used to force two different types of GCMs (one with and one without interactive physics). While radiative heating was shown to account for about 20% of the total heating and did not have a strong direct response on the global circulation, the indirect response was important via its impact on convection, esp. in how radiative heating impacts the tilt of heating associated with the Madden-Julian Oscillation (MJO), a phenomenon that accounts for most tropical intraseasonal variability. This work shows strong promise in determining the sensitivity of climate models and climate processes to heating variations associated with cloud systems.

  16. ARM - Field Campaign - Thin Cloud Rotating Shadowband Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Cloud Rotating Shadowband Radiometer 2008.01.08 - 2008.07.18 Lead Scientist : Mary Jane Bartholomew For data sets, see below. Abstract The Thin-Cloud Rotating Shadowband...

  17. E-Cloud Build-up in Grooved Chambers

    SciTech Connect (OSTI)

    Venturini, Marco

    2007-05-01

    We simulate electron cloud build-up in a grooved vacuumchamber including the effect of space charge from the electrons. Weidentify conditions for e-cloud suppression and make contact withprevious estimates of an effective secondary electron yield for groovedsurfaces.

  18. Treatments of Inhomogeneous Clouds in a GCM Column Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of fractal stratocumulus clouds. J. Atmos. Sci., 51, 2434 -2455. Chou, M.-D., M. J. Suarez, C.-H. Ho, M. M.-H. Yan, and K.-T. Lee, 1998: Parameterizations for cloud...

  19. Simulation of E-Cloud Driven Instability And Its Attenuation...

    Office of Scientific and Technical Information (OSTI)

    of E-Cloud Driven Instability And Its Attenuation Using a Feedback System in the CERN SPS Citation Details In-Document Search Title: Simulation of E-Cloud Driven Instability...

  20. Observations of the Madden Julian Oscillation for Cloud Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dyn.) Manus MJO signal in downwelling SW cloud radiative forcing GRL paper submitted Y. Wang, C. Long, and J. Mather Manus MJO signal in retrieved cloud amount GRL paper...

  1. ARM - Field Campaign - DC-8 Cloud Radar Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsDC-8 Cloud Radar Campaign Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : DC-8 Cloud Radar Campaign...

  2. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Campaign Links BAECC Website ARM Data Discovery Browse Data Related Campaigns Biogenic Aerosols - Effects on Clouds and Climate: Cloud OD Sensor TWST 2014.06.15, Scott, AMF...

  3. A TWP-ICE High-Level Cloud Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A TWP-ICE High-Level Cloud Case Study Mace, Gerald University of Utah Category: Field Campaigns The Tropical Warm Pool International Cloud Experiment (TWP ICE) was conducted near...

  4. The dependence of cloud particle size and precipitation probability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effect Hongfei Shao and Guosheng Liu Meteorology Department, Florida State University INTRODUCTION INTRODUCTION Anthropogenic aerosols enhance cloud reflectance of solar...

  5. ARM - Publications: Science Team Meeting Documents: Cloud Radiative Forcing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the ARM Climate Research Facility: Part 2. The Vertical Redistribution of Radiant Energy by Clouds. Cloud Radiative Forcing at the ARM Climate Research Facility: Part 2. The Vertical Redistribution of Radiant Energy by Clouds. Mace, Gerald University of Utah Benson, Sally University of Utah Kato, Seiji Hampton University/NASA Langley Research Center Documentation with data of the effects of clouds on the radiant energy balance of the surface and atmosphere represent a critical shortcoming

  6. ARSCL Cloud Statistics - A Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARSCL Cloud Statistics - A Value-Added Product Y. Shi Pacific Northwest National Laboratory Richland, Washington M. A. Miller Brookhaven National Laboratory Upton, New York Introduction The active remote sensing of cloud layers (ARSCLs) value-added product (VAP) combines data from active remote sensors to produce an objective determination of cloud location, radar reflectivity, vertical velocity, and Doppler spectral width. Information about the liquid water path (LWP) in these clouds and the

  7. Direct Numerical Simulations and Robust Predictions of Cloud Cavitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collapse | Argonne Leadership Computing Facility Initiation of cloud cavitation collapse for 50,000 bubbles Initiation of cloud cavitation collapse for 50,000 bubbles. Jonas Sukys, ETH Zurich Direct Numerical Simulations and Robust Predictions of Cloud Cavitation Collapse PI Name: Petros Koumoutsakos PI Email: petros@ethz.ch Institution: ETH Zurich Allocation Program: INCITE Allocation Hours at ALCF: 72 Million Year: 2016 Research Domain: Engineering Cloud cavitation collapse-the evolution

  8. Limiting Factors for Convective Cloud Top Height in the Tropics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Limiting Factors for Convective Cloud Top Height in the Tropics M. P. Jensen and A. D. Del Genio National Aeronautics and Space Administration Goddard Institute for Space Studies Columbia University New York, New York Introduction Populations of tropical convective clouds are mainly comprised of three types: shallow trade cumulus, mid-level cumulus congestus and deep convective clouds (Johnson et al. 1999). Each of these cloud types has different impacts on the local radiation and water budgets.

  9. To the Cloud! Apidae Helps Modelers Turn Information into Knowledge |

    Energy Savers [EERE]

    Department of Energy To the Cloud! Apidae Helps Modelers Turn Information into Knowledge To the Cloud! Apidae Helps Modelers Turn Information into Knowledge October 26, 2015 - 2:41pm Addthis Apidae is a collection of cloud-based simulation and data analysis tools that help modelers better understand their models. Image credit: BUILDlab. Apidae is a collection of cloud-based simulation and data analysis tools that help modelers better understand their models. Image credit: BUILDlab. Apidae

  10. The influence of ice nucleation mode and ice vapor growth on simulation of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arctic mixed-phase clouds The influence of ice nucleation mode and ice vapor growth on simulation of arctic mixed-phase clouds Avramov, Alexander The Pennsylvania State University Category: Modeling Mixed-phase arctic stratus clouds are the predominant cloud type in the Arctic . Perhaps one of the most intriguing of their features is that they tend to have liquid tops that precipitate ice. Despite the fact that this situation is colloidally unstable, these cloud systems are quite long lived

  11. The effect of acidity variations in cloud droplet populations on aqueous-phase sulfate production

    SciTech Connect (OSTI)

    Gurciullo, C.S.; Pandis, S.N.

    1995-12-31

    The majority of global atmospheric sulfate production occurs in clouds. Experimental evidence suggests that significant chemical heterogeneities exist in cloud droplet populations. Both theoretical and field studies suggest that the acidity of a cloud droplet population can differ by 1 pH unit or more between the smallest and largest droplets. Traditionally, cloud chemistry has been studied using bulk models that assume that the aqueous- phase chemistry can be accurately modeled using {open_quotes}mean droplet{close_quotes} properties. The average droplet population pH is then used as the basis for calculating reaction rates. Using this bulk chemistry approach in cloud or fog models may lead to significant errors in the predicted aqueous-phase reaction rates. We prove analytically that the use of a droplet Population`s average pH always results in the underestimation of the rate of sulfate production. In order to examine the magnitude of this error, we have developed two aqueous-phase chemistry models: a droplet size-resolved model and a bulk chemistry model. The discrepancy between the results of these two models indicates the degree of error introduced by assuming bulk aqueous-phase properties. The magnitude of this error depends on the availability of SO{sub 2}, H{sub 2}O{sub 2}, NH{sub 3}, and acidity, and can range from zero to a factor of three for reasonable ambient conditions. A modeling approach that combines the accuracy of the size-resolved model and the low computing requirements of the bulk model is developed.

  12. Microsoft PowerPoint - arm_poster_luo2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results § Vertical Profiles of Microphysical Properties § Vertically Integrated Water Contents § Surface Downward Radiative Fluxes Mixed-phase Arctic Clouds Simulated by a Cloud-resolving Model: Comparison with Aircraft Observations and Sensitivity to Microphysics Parameterization Yali Luo 1,2 , Kuan-Man Xu 2 , Hugh Morrison 3 , Greg McFarquhar 4 1 National Institute of Aerospace; 2 NASA Langley Research Center; 3 National Center for Atmospheric Research; 4 University of Illinois at

  13. Argonne's Magellan Cloud Computing Research Project

    ScienceCinema (OSTI)

    Beckman, Pete

    2013-04-19

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF), discusses the Department of Energy's new $32-million Magellan project, which designed to test how cloud computing can be used for scientific research. More information: http://www.anl.gov/Media_Center/News/2009/news091014a.html

  14. The Magellan Final Report on Cloud Computing

    SciTech Connect (OSTI)

    ,; Coghlan, Susan; Yelick, Katherine

    2011-12-21

    The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid- range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost. To address these questions, a distributed testbed infrastructure was deployed at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Center (NERSC). The testbed was designed to be flexible and capable enough to explore a variety of computing models and hardware design points in order to understand the impact for various scientific applications. During the project, the testbed also served as a valuable resource to application scientists. Applications from a diverse set of projects such as MG-RAST (a metagenomics analysis server), the Joint Genome Institute, the STAR experiment at the Relativistic Heavy Ion Collider, and the Laser Interferometer Gravitational Wave Observatory (LIGO), were used by the Magellan project for benchmarking within the cloud, but the project teams were also able to accomplish important production science utilizing the Magellan cloud resources.

  15. Detecting and Evaluating the Effect of Overlaying Thin Cirrus Cloud on MODIS Retrieved Water-Cloud Droplet Effective Radius

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detecting and Evaluating the Effect of Overlaying Thin Cirrus Cloud on MODIS Retrieved Water-Cloud Droplet Effective Radius F.-L Chang and Z. Li Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland Z. Li Department of Meteorology University of Maryland College Park, Maryland Introduction Cirrus clouds can largely modify the solar reflected and terrestrial emitted radiances. The ubiquitous presence of cirrus clouds has a global coverage of about 20% to30%

  16. Radiative Heating of the ISCCP Upper Level Cloud Regimes and its Impact on the Large-scale Tropical Circulation

    SciTech Connect (OSTI)

    Li, Wei; Schumacher, Courtney; McFarlane, Sally A.

    2013-01-31

    Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% to 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day?km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by the cloud radiative heating profiles. However, the height of the radiative heating maxima and gradient of the heating profiles are important to determine the sign and patterns of the horizontal circulation anomaly driven by radiative heating at upper levels.

  17. Infrared Cloud Imager Measurements of Cloud Statistics from the 2003 Cloudiness Intercomparison Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Cloud Imager Measurements of Cloud Statistics from the 2003 Cloudiness Intercomparison Campaign B. Thurairajah and J. A. Shaw Department of Electrical and Computer Engineering Montana State University Bozeman, Montana Introduction The Cloudiness Inter-Comparison Intensive Operational Period (CIC IOP) occurred at the Atmospheric Radiation Measurement (ARM), Southern Great Plains (SGP) central facility site in Lamont, Oklahoma from mid-February to mid-April 2003 (Kassianov et al. 2004).

  18. Water clouds in Y dwarfs and exoplanets

    SciTech Connect (OSTI)

    Morley, Caroline V.; Fortney, Jonathan J.; Marley, Mark S.; Lupu, Roxana; Greene, Tom; Saumon, Didier; Lodders, Katharina

    2014-05-20

    The formation of clouds affects brown dwarf and planetary atmospheres of nearly all effective temperatures. Iron and silicate condense in L dwarf atmospheres and dissipate at the L/T transition. Minor species such as sulfides and salts condense in mid- to late T dwarfs. For brown dwarfs below T {sub eff} ? 450 K, water condenses in the upper atmosphere to form ice clouds. Currently, over a dozen objects in this temperature range have been discovered, and few previous theoretical studies have addressed the effect of water clouds on brown dwarf or exoplanetary spectra. Here we present a new grid of models that include the effect of water cloud opacity. We find that they become optically thick in objects below T {sub eff} ? 350-375 K. Unlike refractory cloud materials, water-ice particles are significantly nongray absorbers; they predominantly scatter at optical wavelengths through the J band and absorb in the infrared with prominent features, the strongest of which is at 2.8 ?m. H{sub 2}O, NH{sub 3}, CH{sub 4}, and H{sub 2} CIA are dominant opacity sources; less abundant species may also be detectable, including the alkalis, H{sub 2}S, and PH{sub 3}. PH{sub 3}, which has been detected in Jupiter, is expected to have a strong signature in the mid-infrared at 4.3 ?m in Y dwarfs around T {sub eff} = 450 K; if disequilibrium chemistry increases the abundance of PH{sub 3}, it may be detectable over a wider effective temperature range than models predict. We show results incorporating disequilibrium nitrogen and carbon chemistry and predict signatures of low gravity in planetary mass objects. Finally, we make predictions for the observability of Y dwarfs and planets with existing and future instruments, including the James Webb Space Telescope and Gemini Planet Imager.

  19. CloudSat as a Global Radar Calibrator

    SciTech Connect (OSTI)

    Protat, Alain; Bouniol, Dominique; O'Connor, E. J.; Baltink, Henk K.; Verlinde, J.; Widener, Kevin B.

    2011-03-01

    The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5 to 1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and / or detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a Global Radar Calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, The Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the RASTA (Radar SysTem Airborne) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses due to the change in configuration which required verification of the RASTA calibration.

  20. Simulations of the Electron Cloud Builld Up and Instabilities for Various ILC Damping Ring Configurations

    SciTech Connect (OSTI)

    Pivi, Mauro; Raubenheimer, Tor O.; Wang, Lanfa; Ohmi, Kazuhito; Wanzenberg, Rainer; Wolski, Andrzej; /Liverpool U. /Cockcroft Inst. Accel. Sci. Tech.

    2007-03-12

    In the beam pipe of the positron damping ring of the International Linear Collider (ILC), an electron cloud may be first produced by photoelectrons and ionization of residual gases and then increased by the secondary emission process. This paper reports the assessment of electron cloud effects in a number of configuration options for the ILC baseline configuration. Careful estimates were made of the secondary electron yield (sometimes in the literature also referred as secondary emission yield SEY or {delta}, with a peak value {delta}{sub max}) threshold for electron cloud build-up, and the related single- and coupled-bunch instabilities, as a function of beam current and surface properties for a variety of optics designs. When the configuration for the ILC damping rings was chosen at the end of 2005, the results from these studies were important considerations. On the basis of the joint theoretical and experimental work, the baseline configuration currently specifies a pair of 6 km damping rings for the positron beam, to mitigate the effects of the electron cloud that could present difficulties in a single 6 km ring. However, since mitigation techniques are now estimated to be sufficiently mature, a reduced single 6-km circumference is presently under consideration so as to reduce costs.

  1. HIGH-VELOCITY CLOUDS IN THE GALACTIC ALL SKY SURVEY. I. CATALOG

    SciTech Connect (OSTI)

    Moss, V. A.; Kummerfeld, J. K.; McClure-Griffiths, N. M.; Murphy, T.; Pisano, D. J.; Curran, J. R.

    2013-11-01

    We present a catalog of high-velocity clouds (HVCs) from the Galactic All Sky Survey (GASS) of southern sky neutral hydrogen, which has 57 mK sensitivity and 1 km s{sup 1} velocity resolution and was obtained with the Parkes Telescope. Our catalog has been derived from the stray-radiation-corrected second release of GASS. We describe the data and our method of identifying HVCs and analyze the overall properties of the GASS population. We catalog a total of 1693 HVCs at declinations <0, including 1111 positive velocity HVCs and 582 negative velocity HVCs. Our catalog also includes 295 anomalous velocity clouds (AVCs). The cloud line-widths of our HVC population have a median FWHM of ?19 km s{sup 1}, which is lower than that found in previous surveys. The completeness of our catalog is above 95% based on comparison with the HIPASS catalog of HVCs upon which we improve by an order of magnitude in spectral resolution. We find 758 new HVCs and AVCs with no HIPASS counterpart. The GASS catalog will shed unprecedented light on the distribution and kinematic structure of southern sky HVCs, as well as delve further into the cloud populations that make up the anomalous velocity gas of the Milky Way.

  2. Transforming the representation of the boundary layer and low clouds for high-resolution regional climate modeling: Final report

    SciTech Connect (OSTI)

    Huang, Hsin-Yuan; Hall, Alex

    2013-07-24

    Stratocumulus and shallow cumulus clouds in subtropical oceanic regions (e.g., Southeast Pacific) cover thousands of square kilometers and play a key role in regulating global climate (e.g., Klein and Hartmann, 1993). Numerical modeling is an essential tool to study these clouds in regional and global systems, but the current generation of climate and weather models has difficulties in representing them in a realistic way (e.g., Siebesma et al., 2004; Stevens et al., 2007; Teixeira et al., 2011). While numerical models resolve the large-scale flow, subgrid-scale parameterizations are needed to estimate small-scale properties (e.g. boundary layer turbulence and convection, clouds, radiation), which have significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. To represent the contribution of these fine-scale processes to the resolved scale, climate models use various parameterizations, which are the main pieces in the model that contribute to the low clouds dynamics and therefore are the major sources of errors or approximations in their representation. In this project, we aim to 1) improve our understanding of the physical processes in thermal circulation and cloud formation, 2) examine the performance and sensitivity of various parameterizations in the regional weather model (Weather Research and Forecasting model; WRF), and 3) develop, implement, and evaluate the advanced boundary layer parameterization in the regional model to better represent stratocumulus, shallow cumulus, and their transition. Thus, this project includes three major corresponding studies. We find that the mean diurnal cycle is sensitive to model domain in ways that reveal the existence of different contributions originating from the Southeast Pacific land-masses. The experiments suggest that diurnal variations in circulations and thermal structures over this region are influenced by convection over the Peruvian sector of the Andes cordillera, while the mostly dry mountain-breeze circulations force an additional component that results in semi-diurnal variations near the coast. A series of numerical tests, however, reveal sensitivity of the simulations to the choice of vertical grid, limiting the possibility of solid quantitative statements on the amplitudes and phases of the diurnal and semidiurnal components across the domain. According to our experiments, the Mellor-Yamada-Nakanishi-Niino (MYNN) boundary layer scheme and the WSM6 microphysics scheme is the combination of schemes that performs best. For that combination, mean cloud cover, liquid water path, and cloud depth are fairly wellsimulated, while mean cloud top height remains too low in comparison to observations. Both microphysics and boundary layer schemes contribute to the spread in liquid water path and cloud depth, although the microphysics contribution is slightly more prominent. Boundary layer schemes are the primary contributors to cloud top height, degree of adiabaticity, and cloud cover. Cloud top height is closely related to surface fluxes and boundary layer structure. Thus, our study infers that an appropriate tuning of cloud top height would likely improve the low-cloud representation in the model. Finally, we show that entrainment governs the degree of adiabaticity, while boundary layer decoupling is a control on cloud cover. In the intercomparison study using WRF single-column model experiments, most parameterizations show a poor agreement of the vertical boundary layer structure when compared with large-eddy simulation models. We also implement a new Total-Energy/Mass- Flux boundary layer scheme into the WRF model and evaluate its ability to simulate both stratocumulus and shallow cumulus clouds. Result comparisons against large-eddy simulation show that this advanced parameterization based on the new Eddy-Diffusivity/Mass-Flux approach provides a better performance than other boundary layer parameterizations.

  3. pCloud: A Cloud-based Power Market Simulation Environment

    SciTech Connect (OSTI)

    Rudkevich, Aleksandr; Goldis, Evgeniy

    2012-12-02

    This research conducted by the Newton Energy Group, LLC (NEG) is dedicated to the development of pCloud: a Cloud-based Power Market Simulation Environment. pCloud is offering power industry stakeholders the capability to model electricity markets and is organized around the Software as a Service (SaaS) concept -- a software application delivery model in which software is centrally hosted and provided to many users via the internet. During the Phase I of this project NEG developed a prototype design for pCloud as a SaaS-based commercial service offering, system architecture supporting that design, ensured feasibility of key architecture's elements, formed technological partnerships and negotiated commercial agreements with partners, conducted market research and other related activities and secured funding for continue development of pCloud between the end of Phase I and beginning of Phase II, if awarded. Based on the results of Phase I activities, NEG has established that the development of a cloud-based power market simulation environment within the Windows Azure platform is technologically feasible, can be accomplished within the budget and timeframe available through the Phase II SBIR award with additional external funding. NEG believes that pCloud has the potential to become a game-changing technology for the modeling and analysis of electricity markets. This potential is due to the following critical advantages of pCloud over its competition: - Standardized access to advanced and proven power market simulators offered by third parties. - Automated parallelization of simulations and dynamic provisioning of computing resources on the cloud. This combination of automation and scalability dramatically reduces turn-around time while offering the capability to increase the number of analyzed scenarios by a factor of 10, 100 or even 1000. - Access to ready-to-use data and to cloud-based resources leading to a reduction in software, hardware, and IT costs. - Competitive pricing structure, which will make high-volume usage of simulation services affordable. - Availability and affordability of high quality power simulators, which presently only large corporate clients can afford, will level the playing field in developing regional energy policies, determining prudent cost recovery mechanisms and assuring just and reasonable rates to consumers. - Users that presently do not have the resources to internally maintain modeling capabilities will now be able to run simulations. This will invite more players into the industry, ultimately leading to more transparent and liquid power markets.

  4. Operation Greenhouse. Scientific Director's report of atomic-weapon tests at Eniwetok, 1951. Annex 4. 1. Cloud studies. Part 1. Cloud physics. Part 2. Development of the atomic cloud. Part 3. Cloud-tracking photography

    SciTech Connect (OSTI)

    Anderson, C.E.; Gustafson, P.E.; Kellogg, W.W.; McKown, R.E.; McPherson, D.E.

    1985-09-01

    The cloud-physics project was primarily intended to fulfill a requirements for detailed information on the meteorological microstructure of atomic clouds. By means of a tracking and photographic network extending halfway around Eniwetok Atoll, the behavior of the first three clouds of Operation Greenhouse were observed and recorded. The rise of the fourth cloud was observed visually from only one site. The analysis of these observations, combined with information about the local weather conditions, gives a fairly complete picture of the development of each of the clouds. Particular emphasis was placed on the earlier phases of development, and the heights and sizes of the cloud parts have been determined as functions of time. A summary of important features of some previous atomic clouds are included for comparison.

  5. Cirrus clouds in a global climate model with a statistical cirrus cloud scheme

    SciTech Connect (OSTI)

    Wang, Minghuai; Penner, Joyce E.

    2010-06-21

    A statistical cirrus cloud scheme that accounts for mesoscale temperature perturbations is implemented in a coupled aerosol and atmospheric circulation model to better represent both subgrid-scale supersaturation and cloud formation. This new scheme treats the effects of aerosol on cloud formation and ice freezing in an improved manner, and both homogeneous freezing and heterogeneous freezing are included. The scheme is able to better simulate the observed probability distribution of relative humidity compared to the scheme that was implemented in an older version of the model. Heterogeneous ice nuclei (IN) are shown to decrease the frequency of occurrence of supersaturation, and improve the comparison with observations at 192 hPa. Homogeneous freezing alone can not reproduce observed ice crystal number concentrations at low temperatures (<205 K), but the addition of heterogeneous IN improves the comparison somewhat. Increases in heterogeneous IN affect both high level cirrus clouds and low level liquid clouds. Increases in cirrus clouds lead to a more cloudy and moist lower troposphere with less precipitation, effects which we associate with the decreased convective activity. The change in the net cloud forcing is not very sensitive to the change in ice crystal concentrations, but the change in the net radiative flux at the top of the atmosphere is still large because of changes in water vapor. Changes in the magnitude of the assumed mesoscale temperature perturbations by 25% alter the ice crystal number concentrations and the net radiative fluxes by an amount that is comparable to that from a factor of 10 change in the heterogeneous IN number concentrations. Further improvements on the representation of mesoscale temperature perturbations, heterogeneous IN and the competition between homogeneous freezing and heterogeneous freezing are needed.

  6. Experiment to Characterize Tropical Cloud Systems

    SciTech Connect (OSTI)

    May, Peter T.; Mather, Jim H.; Jakob, Christian

    2005-08-02

    A major experiment to study tropical convective cloud systems and their impacts will take place around Darwin, Northern Australia in early 2006. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) is a collaboration including the DOE ARM (Atmospheric Radiation Measurement) and ARM-UAV programs, NASA centers, the Australian Bureau of Meteorology, CSIRO, and universities in the USA, Australia, Japan, the UK, and Canada. TWP-ICE will be preceded in November/December 2004 by a collaborating European aircraft campaign involving the EU SCOUT-O3 and UK NERC ACTIVE projects. Detailed atmospheric measurements will be made in the Darwin area through the whole Austral summer, giving unprecedented coverage through the pre-monsoon and monsoon periods.

  7. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

    SciTech Connect (OSTI)

    Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

    2010-03-15

    The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required for the development of 3D cloud products from all new SACRs that the program will deploy at all fixed and mobile sites by the end of 2010.

  8. The Dark Side of Cold Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dark Side of Cold Clouds For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight In research led by Pacific Northwest National Laboratory (PNNL), scientists sought to understand the atmospheric implications of tiny, highly irregular and chemically complex soot particles. The laboratory investigation, called the Soot Aerosol Aging Study (SAAS), examined the interactions of soot and a mix of other atmospheric particles using a

  9. Pollution Changes Clouds' Ice Crystal Genesis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Changes Clouds' Ice Crystal Genesis For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Suspended high in the atmosphere, plentiful dust particles are fertile turf for growing ice. But, what are the optimal conditions for this crop? Researchers at Pacific Northwest National Laboratory (PNNL) found that miniscule particles of airborne dust, thought to be a perfect landing site for water vapor, are altered by the

  10. Filaments in simulations of molecular cloud formation

    SciTech Connect (OSTI)

    Gmez, Gilberto C.; Vzquez-Semadeni, Enrique

    2014-08-20

    We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much larger than the average Jeans mass. Thus, the collapse soon becomes nearly pressureless, proceeding along its shortest dimension first. This naturally produces filaments in the cloud and clumps within the filaments. The filaments are not in equilibrium at any time, but instead are long-lived flow features through which the gas flows from the cloud to the clumps. The filaments are long-lived because they accrete from their environment while simultaneously accreting onto the clumps within them; they are essentially the locus where the flow changes from accreting in two dimensions to accreting in one dimension. Moreover, the clumps also exhibit a hierarchical nature: the gas in a filament flows onto a main, central clump but other, smaller-scale clumps form along the infalling gas. Correspondingly, the velocity along the filament exhibits a hierarchy of jumps at the locations of the clumps. Two prominent filaments in the simulation have lengths ?15 pc and masses ?600 M {sub ?} above density n ? 10{sup 3} cm{sup 3} (?2 10{sup 3} M {sub ?} at n > 50 cm{sup 3}). The density profile exhibits a central flattened core of size ?0.3 pc and an envelope that decays as r {sup 2.5} in reasonable agreement with observations. Accretion onto the filament reaches a maximum linear density rate of ?30 M {sub ?} Myr{sup 1} pc{sup 1}.

  11. Clouds Re-gathered by Wind Shear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Re-gathered by Wind Shear For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight When Pacific Northwest National Laboratory (PNNL) scientists looked for the culprit responsible for organizing storm clouds into strong weather systems, they pinned it on a fickle force. It turns out that wind shear at different vertical levels of the troposphere, well known for batting planes off their course, has strong and erratic effects on

  12. HIGH-RESOLUTION OBSERVATIONS AND THE PHYSICS OF HIGH-VELOCITY CLOUD A0

    SciTech Connect (OSTI)

    Verschuur, Gerrit L.

    2013-04-01

    The neutral hydrogen structure of high-velocity cloud A0 (at about -180 km s{sup -1}) has been mapped with a 9.'1 resolution. Gaussian decomposition of the profiles is used to separately map families of components defined by similarities in center velocities and line widths. About 70% of the H I gas is in the form of a narrow, twisted filament whose typical line widths are of the order of 24 km s{sup -1}. Many bright features with narrow line widths of the order of 6 km s{sup -1}, clouds, are located in and near the filament. A third category with properties between those of the filament and clouds appears in the data. The clouds are not always co-located with the broader line width filament emission as seen projected on the sky. Under the assumption that magnetic fields underlie the presence of the filament, a theorem is developed for its stability in terms of a toroidal magnetic field generated by the flow of gas along field lines. It is suggested that the axial magnetic field strength may be derived from the excess line width of the H I emission over and above that due to kinetic temperature by invoking the role of Alfven waves that create what is in essence a form of magnetic turbulence. At a distance of 200 pc the axial and the derived toroidal magnetic field strengths in the filament are then about 6 {mu}G while for the clouds they are about 4 {mu}G. The dependence of the derived field strength on distance is discussed.

  13. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    SciTech Connect (OSTI)

    Rosenfeld, Daniel

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  14. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    SciTech Connect (OSTI)

    Kollias, P.; Luke, E.; Szyrmer, W.; Rmillard, J.

    2011-07-02

    In part I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended to include skewness and kurtosis as additional descriptors of the Doppler spectrum. Here, a short climatology of observed Doppler spectra moments as a function of the radar reflectivity at continental and maritime ARM sites is presented. The evolution of the Doppler spectra moments is consistent with the onset and growth of drizzle particles and can be used to assist modeling studies of drizzle onset and growth. Time-height radar observations are used to exhibit the coherency of the Doppler spectra shape parameters and demonstrate their potential to improve the interpretation and use of radar observations. In addition, a simplified microphysical approach to modeling the vertical evolution of the drizzle particle size distribution in warm stratiform clouds is described and used to analyze the observations. The formation rate of embryonic drizzle droplets due to the autoconversion process is not calculated explicitly; however, accretion and evaporation processes are explicitly modeled. The microphysical model is used as input to a radar Doppler spectrum forward model, and synthetic radar Doppler spectra moments are generated. Three areas of interest are studied in detail: early drizzle growth near the cloud top, growth by accretion of the well-developed drizzle, and drizzle depletion below the cloud base due to evaporation. The modeling results are in good agreement with the continental and maritime observations. This demonstrates that steady state one-dimensional explicit microphysical models coupled with a forward model and comprehensive radar Doppler spectra observations offer a powerful method to explore the vertical evolution of the drizzle particle size distribution.

  15. Microsoft PowerPoint - ARMST2007_mp.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Arctic Mixed-Phase Stratus Matthew D. Shupe a , Pavlos Kollias b , Ola Persson a , Ed Luke b Greg McFarquhar c , Michael Poellot d , Edwin Eloranta e a CIRES - University of Colorado and NOAA/ESRL/PSD, b Brookhaven National Laboratory, c University of Illinois, d University of North Dakota, e University of Wisonsin Mixed-Phase Cloud Properties Air Motions from Doppler Spectra Funded by: ARM Grant DE-FG02-05ER63965 Summary A Conceptual Model relating air motions and microphysics A Doppler

  16. Evaluation of tropical cloud and precipitation statistics of CAM3 using CloudSat and CALIPSO data

    SciTech Connect (OSTI)

    Zhang, Y; Klein, S; Boyle, J; Mace, G G

    2008-11-20

    The combined CloudSat and CALIPSO satellite observations provide the first simultaneous measurements of cloud and precipitation vertical structure, and are used to examine the representation of tropical clouds and precipitation in the Community Atmosphere Model Version 3 (CAM3). A simulator package utilizing a model-to-satellite approach facilitates comparison of model simulations to observations, and a revised clustering method is used to sort the subgrid-scale patterns of clouds and precipitation into principal cloud regimes. Results from weather forecasts performed with CAM3 suggest that the model underestimates the horizontal extent of low and mid-level clouds in subsidence regions, but overestimates that of high clouds in ascending regions. CAM3 strongly overestimates the frequency of occurrence of the deep convection with heavy precipitation regime, but underestimates the horizontal extent of clouds and precipitation at low and middle levels when this regime occurs. This suggests that the model overestimates convective precipitation and underestimates stratiform precipitation consistent with a previous study that used only precipitation observations. Tropical cloud regimes are also evaluated in a different version of the model, CAM3.5, which uses a highly entraining plume in the parameterization of deep convection. While the frequency of occurrence of the deep convection with heavy precipitation regime from CAM3.5 forecasts decreases, the incidence of the low clouds with precipitation and congestus regimes increases. As a result, the parameterization change does not reduce the frequency of precipitating convection that is far too high relative to observations. For both versions of CAM, clouds and precipitation are overly reflective at the frequency of the CloudSat radar and thin clouds that could be detected by the lidar only are underestimated.

  17. Clearing up concerns about cloud computing and genomics research | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Clearing up concerns about cloud computing and genomics research November 5, 2013 Tweet EmailPrint Cloud computing has become a popular option for scientists wanting on-demand access to increased capacity and capabilities, without having to invest in costly new hardware, storage, or other infrastructure. Genomics researchers, who produce enormous amounts of data thanks to new DNA sequencing technology, have begun to recognize the potential benefits of moving to the cloud.

  18. Can Cloud Computing Address the Scientific Computing Requirements for DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers? Well, Yes, No and Maybe Can Cloud Computing Address the Scientific Computing Requirements for DOE Researchers? Well, Yes, No and Maybe Can Cloud Computing Address the Scientific Computing Requirements for DOE Researchers? Well, Yes, No and Maybe January 30, 2012 Jon Bashor, Jbashor@lbl.gov, +1 510-486-5849 Magellan1.jpg Magellan at NERSC After a two-year study of the feasibility of cloud computing systems for meeting the ever-increasing computational needs of scientists,

  19. ARM - Evaluation Product - Scanning ARM Cloud Radar Corrections (SACRCOR)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsScanning ARM Cloud Radar Corrections (SACRCOR) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Scanning ARM Cloud Radar Corrections (SACRCOR) [ ARM research - evaluation data product ] This dataset contains moments from the Scanning ARM Cloud Radars (SACRs) which have been filtered and corrected

  20. ARM - Field Campaign - Macquarie Island Cloud and Radiation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (MICRE) govCampaignsMacquarie Island Cloud and Radiation Experiment (MICRE) Campaign Links Science Plan Backgrounder Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Macquarie Island Cloud and Radiation Experiment (MICRE) 2016.03.01 - 2018.03.31 Lead Scientist : Roger Marchand Abstract Clouds over the Southern Ocean are poorly represented in present day reanalysis products and global climate model simulations. Errors in

  1. Cloud-Based Transportation Management System Delivers Savings | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Cloud-Based Transportation Management System Delivers Savings Cloud-Based Transportation Management System Delivers Savings October 21, 2014 - 1:53pm Addthis DOE's cloud based transportation management system (ATLAS) offers dramatically enhanced capabilities and modernization. ATLAS provides a powerful user-friendly system built to allow access to information to meet transportation needs. Its processes promote regulatory compliance, while providing access to qualified carriers and

  2. The Mid-Latitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect (OSTI)

    Petersen,W.; Jensen,M.; Genio, A. D.; Giangrande, S.; Heymsfield, A.; Heymsfield, G.; Hou, A.; Kollias, P.; Orr, B.; Rutledge, S.; Schwaller, M.; Zipser, E.

    2010-03-15

    The Midlatitude Continental Convective Cloud Experiment (MC3E) will take place in central Oklahoma during the April-May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy Atmospheric Radition Measurement Program and the National Aeronautics and Space Administration's (NASA) Global Precipitation Measurement (GPM) mission Ground Validation program. The Intensive Observation Period leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall observations over land that have never before been available. Several different components of convective processes tangible to the convective parameterization problem are targeted such as, pre-convective environment and convective initiation, updraft / downdraft dynamics, condensate transport and detrainment, precipitation and cloud microphysics, influence on the environment and radiation and a detailed description of the large-scale forcing. MC3E will use a new multi-scale observing strategy with the participation of a network of distributed sensors (both passive and active). The approach is to document in 3-D not only the full spectrum of precipitation rates, but also clouds, winds and moisture in an attempt to provide a holistic view of convective clouds and their feedback with the environment. A goal is to measure cloud and precipitation transitions and environmental quantities that are important for satellite retrieval algorithms, convective parameterization in large-scale models and cloud-resolving model simulations. This will be accomplished through the deployment of several different elements that complement the existing (and soon to become available) ARM facilities: a network of radiosonde stations, NASA scanning multi-frequency/parameter radar systems at three different frequencies (Ka/Ku/S), high-altitude remote sensing and in situ aircraft, wind profilers and a network of surface disdrometers. In addition to these special MC3E instruments, there will be important new instrumentation deployed by DOE at the ARM site including: 3 networked scanning X-band radar systems, a C-band scanning radar, a dual wavelength (Ka/W) scanning cloud radar, a Doppler lidar and upgraded vertically pointing millimeter cloud radar (MMCR) and micropulse lidar (MPL).To fully describe the properties of precipitating cloud systems, both in situ and remote sensing airborne observations are necessary. The NASA GPM-funded University of North Dakota (UND) Citation will provide in situ observations of precipitation-sized particles, ice freezing nuclei and aerosol concentrations. As a complement to the UND Citation's in situ observations, the NASA ER-2 will provide a high altitude satellite simulator platform that carrying a Ka/Ku band radar and passive microwave radiometers (10-183 GHZ).

  3. ARM - Field Campaign - Aerosol and Cloud Experiments in the Eastern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol,...

  4. Chameleon: A Computer Science Testbed as Application of Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chameleon: A Computer Science Testbed as Application of Cloud Computing Event Sponsor: Mathematics and Computing Science Brownbag Lunch Start Date: Dec 15 2015 - 12:00pm Building...

  5. Liquid Water the Key to Arctic Cloud Radiative Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water the Key to Arctic Cloud Radiative Closure For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight...

  6. Stereo Photogrammetry Reveals Substantial Drag on Cloud Thermals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sciencehighlights Research Highlight Fast updrafts within clouds can generate hail, lightning, and tornadoes at the surface, as well as clear-air turbulence that pose...

  7. ARM - Publications: Science Team Meeting Documents: Interpretation of cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure anomalies over the tropical Pacific during the 1997/98 El Nino Interpretation of cloud structure anomalies over the tropical Pacific during the 1997/98 El Nino Cess, Robert State University of New York at Stony Brook Sun, Moguo State University of New York at Stony Brook The CERES/TRMM single satellite footprint (SSF) dataset, available for January 1998 to August 1998, provides not only radiometric data, but also data for cloud fraction, cloud top pressure and cloud optical depth.

  8. ARM - Field Campaign - Remote Cloud Sensing (RCS) Field Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsRemote Cloud Sensing (RCS) Field Evaluation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Remote Cloud Sensing (RCS) Field Evaluation 1994.04.01 - 1994.05.31 Lead Scientist : Robert Kropfli Data Availability CPRS Cloud Data (from the University of Massachusetts Cloud Profiling Radar System (CPRS)) For data sets, see below. Abstract The primary purpose of the field evaluation and calibration

  9. ARM - Field Campaign - Remote Cloud Sensing (RCS) Field Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsRemote Cloud Sensing (RCS) Field Evaluation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Remote Cloud Sensing (RCS) Field Evaluation 1995.04.01 - 1995.05.31 Lead Scientist : Robert Kropfli Data Availability CPRS Cloud Data (from the University of Massachusetts Cloud Profiling Radar System (CPRS)) For data sets, see below. Abstract The primary purpose of the field evaluation and calibration

  10. ARM - Field Campaign - FIRE-Arctic Cloud Experiment/SHEBA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the Arctic, to measure the BRDF and albedos of various surfaces (ice, snow and tundra) and various cloud types, and to obtain these measurements whenever possible either...

  11. ARM - Publications: Science Team Meeting Documents: Clouds in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds in the Darwin area and their relation to large-scale conditions Jakob, Christian BMRC Hoeglund, Sofia Lulea University of Technology This poster shows a climatological...

  12. The relationship between interannual and long-term cloud feedbacks...

    Office of Scientific and Technical Information (OSTI)

    The relationship between interannual and long-term cloud feedbacks Citation Details In-Document Search This content will become publicly available on December 11, 2016 Title: The ...

  13. RACORO continental boundary layer cloud investigations. 2. Large-eddy

    Office of Scientific and Technical Information (OSTI)

    simulations of cumulus clouds and evaluation with in-situ and ground-based observations (Journal Article) | SciTech Connect 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations Citation Details In-Document Search This content will become publicly available on June 19, 2016 Title: RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations A

  14. Single-Column Modeling A Stratiform Cloud Parameterization for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parameterization originally developed for mesoscale cloud models (Tripoli and Cotton 1980, Cotton et al. 1982 and 1986, Meyers et al. 1992). These approximations are...

  15. Surface based remote sensing of aerosol-cloud interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a range of proxies for cloud condensation nuclei, ranging from surface measurements of light scattering and accumulation mode number concentration, to lidar-measured extinction...

  16. The Tropical Warm Pool International Cloud Experiment: Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Tropical Warm Pool International Cloud Experiment: Overview May, Peter Bureau or Meteorology Research Centre Mather, James Pacific Northwest National Laboratory Jakob,...

  17. Sensitivity of Boundary-layer and Deep Convective Cloud Simulations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Simulations to Vertical Resolution Cheng, Anning Langley Research Center Xu, Kuan-Man NASA Langley Research Center Category: Modeling This study investigates the effects of...

  18. Testing Statistical Cloud Scheme Ideas in the GFDL Climate Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Statistical Cloud Scheme Ideas in the GFDL Climate Model Klein, Stephen Lawrence Livermore National Laboratory Pincus, Robert NOAA-CIRES Climate Diagnostics Center...

  19. Atmospheric Rivers Coming to a Cloud Near You

    SciTech Connect (OSTI)

    Leung, Ruby

    2014-03-29

    Learn about the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign in this short video. Ruby Leung, PNNL's lead scientist on this campaign's observational strategy to monitor precipitation.

  20. Fundamental to the Cloud Land Surface Interaction Campaign (CLASIC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in agriculture ranging from more accurate weather forecasting to improved water management decisions and crop yield estimation. CLASIC CLASIC - - LAND LAND Cloud and Land...

  1. A Comparison of Cirrus Cloud Visible Optical Depth Derived from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Cirrus Cloud Visible Optical Depth Derived from Lidar Lo, Chaomei Pacific Northwest National Laboratory Comstock, Jennifer Pacific Northwest National Laboratory...

  2. Layered Atlantic Smoke Interactions with Clouds (LASIC) Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Colocated smoke and clouds over the remote ocean represent a regime of significant ... that will be helpful in resolving current uncertainties in the aging and transport ...

  3. Simulations of Midlatitude Frontal Clouds by Single-Column and...

    Office of Scientific and Technical Information (OSTI)

    condensates due to differences in parameterizations, however, the differences among inter-compared models are smaller in the CRMs than the SCMs. While the CRM-produced clouds...

  4. Examining How Radiative Fluxes Are Affected by Cloud and Particle...

    Office of Science (SC) Website

    the Earth will change as emissions from fossil fuel combustion change, climate models calculate a complex and changing mix of clouds and emissions that interact with solar energy. ...

  5. Cluster Analysis of Cloud Regimes and Characteristic Dynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cluster Analysis of Cloud Regimes and Characteristic Dynamics of Mid-Latitude Synoptic Systems N. D. Gordon and J. R. Norris Scripps Institution of Oceanography University of...

  6. Clouds, Aerosols and Precipitation in the Marine Boundary Layer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Framework, extend to investigation of aerosol-cloud interactions in models - Ensemble Kalman Filter (DART) Satellite activities with CAP-MBL Minnis: CAP-MBL subset MBL depth,...

  7. Intersecting Cold Pools: Convective Cloud Organization by Cold...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intersecting Cold Pools: Convective Cloud Organization by Cold Pools over Tropical Ocean For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

  8. ARM - Field Campaign - MASRAD: Cloud Condensate Nuclei Chemistry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Condensate Nuclei Chemistry Measurements Campaign Links AMF Point Reyes Website ARM Data Discovery Browse Data Related Campaigns MArine Stratus Radiation Aerosol and Drizzle...

  9. ARM - Field Campaign - MASRAD: Pt. Reyes Stratus Cloud and Drizzle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMASRAD: Pt. Reyes Stratus Cloud and Drizzle Study Campaign Links AMF Point Reyes Website ARM Data Discovery Browse Data Related Campaigns MArine Stratus Radiation...

  10. Remote Spectroscopic Sounding of Liquid Water Path in Thick Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, the original methodology of sounding of dense clouds has been under development 1-3. The methodology...

  11. Testing a Cloud Condensation Nuclei Remote Sensing Method

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Cloud Condensation Nuclei Remote Sensing Method S. J. Ghan Climate Physics Pacific Northwest National Laboratory Richland, Washington D. R. Collin Department of Atmospheric...

  12. A Lidar View of Clouds in Southeastern China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lidar View of Clouds in Southeastern China For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight From May 2008...

  13. Sensitivity of Radiative Fluxes and Heating Rates to Cloud Microphysic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensitivity of Radiative Fluxes and Heating Rates to Cloud Microphysics S. F. Iacobellis and R. C. J. Somerville Scripps Institution of Oceanography University of California, San...

  14. The Radiative Role of Free Tropospheric Aerosols and Marine Clouds...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic Citation Details In-Document Search Title: The Radiative Role...

  15. Cloud Lake, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cloud Lake, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.6761772, -80.0739308 Show Map Loading map... "minzoom":false,"mappingse...

  16. ARM - Publications: Science Team Meeting Documents: Clouds and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds and radiation in the Arctic coastal system - effects of local heterogeneity Key, Erica University of Miami, RSMAS Minnett, Peter University of Miami Improving our...

  17. Cloud-Resolving Model Simulation and Mosaic Treatment of Subgrid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The development of cloud-resolving models (CRMs) and the extensive Atmospheric Radiation Measurements (ARMs) provide a unique opportunity for shading some lights on this problem. ...

  18. RACORO continental boundary layer cloud investigations. 2. Large...

    Office of Scientific and Technical Information (OSTI)

    The case is based on observations obtained during the RACORO Campaign (Routine AtmosphericRadiation Measurement ARM Aerial Facility AAF Clouds with Low Optical Water Depths ...

  19. Atmospheric Rivers Coming to a Cloud Near You

    ScienceCinema (OSTI)

    Leung, Ruby

    2014-06-12

    Learn about the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign in this short video. Ruby Leung, PNNL's lead scientist on this campaign's observational strategy to monitor precipitation.

  20. SUPERGIANT SHELLS AND MOLECULAR CLOUD FORMATION IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect (OSTI)

    Dawson, J. R.; Dickey, John M.; McClure-Griffiths, N. M.; Wong, T.; Hughes, A.; Fukui, Y.; Kawamura, A.

    2013-01-20

    We investigate the influence of large-scale stellar feedback on the formation of molecular clouds in the Large Magellanic Cloud (LMC). Examining the relationship between H I and {sup 12}CO(J = 1-0) in supergiant shells (SGSs), we find that the molecular fraction in the total volume occupied by SGSs is not enhanced with respect to the rest of the LMC disk. However, the majority of objects ({approx}70% by mass) are more molecular than their local surroundings, implying that the presence of a supergiant shell does on average have a positive effect on the molecular gas fraction. Averaged over the full SGS sample, our results suggest that {approx}12%-25% of the molecular mass in supergiant shell systems was formed as a direct result of the stellar feedback that created the shells. This corresponds to {approx}4%-11% of the total molecular mass of the galaxy. These figures are an approximate lower limit to the total contribution of stellar feedback to molecular cloud formation in the LMC, and constitute one of the first quantitative measurements of feedback-triggered molecular cloud formation in a galactic system.

  1. Short-Term Arctic Cloud Statistics at NSA from the Infrared Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100% Figure 4. Monthly cloud statistics. (March data limited to the last two weeks) Acknowledgment The ICI system was...

  2. Cloud feedback studies with a physics grid

    SciTech Connect (OSTI)

    Dipankar, Anurag; Stevens, Bjorn

    2013-02-07

    During this project the investigators implemented a fully parallel version of dual-grid approach in main frame code ICON, implemented a fully conservative first-order interpolation scheme for horizontal remapping, integrated UCLA-LES micro-scale model into ICON to run parallely in selected columns, and did cloud feedback studies on aqua-planet setup to evaluate the classical parameterization on a small domain. The micro-scale model may be run in parallel with the classical parameterization, or it may be run on a "physics grid" independent of the dynamics grid.

  3. Integrated Cloud Based Environmental Data Management System

    Office of Environmental Management (EM)

    NNSA U N C L A S S I F I E D Integrated Cloud Based Environmental Data Management System Penny Gomez (pgomez@lanl.gov) Los Alamos National Laboratory Data System Integration Project Leader LA-UR-12-21030 Chris EchoHawk (echohawk@lanl.gov) Los Alamos National Laboratory Environmental Data and Analysis Group Leader Karen Schultz Paige (ksp@lanl.gov) Los Alamos National Laboratory Intellus Project Leader Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA U N C L

  4. Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yum, Seong Soo; Wang, Jian; Liu, Yangang; Senum, Gunnar; Springston, Stephen; McGraw, Robert; Yeom, Jae Min

    2015-05-27

    Cloud microphysical data obtained from G-1 aircraft flights over the southeastern pacific during the VOCALS-Rex field campaign were analyzed for evidence of entrainment mixing of dry air from above cloud top. Mixing diagram analysis was made for the horizontal flight data recorded at 1 Hz and 40 Hz. The dominant observed feature, a positive relationship between cloud droplet mean volume (V) and liquid water content (L), suggested occurrence of homogeneous mixing. On the other hand, estimation of the relevant scale parameters (i.e., transition length scale and transition scale number) consistently indicated inhomogeneous mixing. Importantly, the flight altitudes of the measurementsmore » were significantly below cloud top. We speculate that mixing of the entrained air near the cloud top may have indeed been inhomogeneous; but due to vertical circulation mixing, the correlation between V and L became positive at the measurement altitudes in mid-level of clouds, because during their descent, cloud droplets evaporate, faster in more diluted cloud parcels, leading to a positive correlation between V and L regardless of the mixing mechanism near the cloud top.« less

  5. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-02-16

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.« less

  6. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-07-02

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore » using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m-2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m-2.« less

  7. Posters Cloud Parameterizations in Global Climate Models: The Role of Aerosols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Posters Cloud Parameterizations in Global Climate Models: The Role of Aerosols J. E. Penner and C. C. Chuang Lawrence Livermore National Laboratory Livermore, California Introduction Aerosols influence warm clouds in two ways. First, they determine initial drop size distributions, thereby influencing the albedo of clouds. Second, they determine the lifetime of clouds, thereby possibly changing global cloud cover statistics. At the present time, neither effect of aerosols on clouds is included

  8. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; et al

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functionsmore » for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.« less

  9. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    SciTech Connect (OSTI)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  10. Scanning ARM Cloud Radars. Part II: Data Quality Control and Processing

    SciTech Connect (OSTI)

    Kollias, Pavlos; Jo, Ieng; Borque, Paloma; Tatarevic, Aleksandra; Lamer, Katia; Bharadwaj, Nitin; Widener, Kevin B.; Johnson, Karen L.; Clothiaux, Eugene E.

    2014-03-01

    The Scanning ARM Cloud Radars (SACRs) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30 km radius from the ARM fixed and mobile sites. Here, the post-processing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the HS-RHI SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step towards the utilization of SACR measurements for cloud research.

  11. Multi Spectral Pushbroom Imaging Radiometer (MPIR) for remote sensing cloud studies

    SciTech Connect (OSTI)

    Phipps, G.S.; Grotbeck, C.L.

    1995-10-01

    A Multi Spectral Pushbroom Imaging Radiometer (MPIR) has been developed as are relatively inexpensive ({approximately}$IM/copy), well-calibrated,imaging radiometer for aircraft studies of cloud properties. The instrument is designed to fly on an Unmanned Aerospace Vehicle (UAV) platform at altitudes from the surface up to 20 km. MPIR is being developed to support the Unmanned Aerospace Vehicle portion of the Department of Energy`s Atmospheric Radiation Measurements program (ARM/UAV). Radiation-cloud interactions are the dominant uncertainty in the current General Circulation Models used for atmospheric climate studies. Reduction of this uncertainty is a top scientific priority of the US Global Change Research Program and the ARM program. While the DOE`s ARM program measures a num-ber of parameters from the ground-based Clouds and Radiation Testbed sites, it was recognized from the outset that other key parameters are best measured by sustained airborne data taking. These measurements are critical in our understanding of global change issues as well as for improved atmospheric and near space weather forecasting applications.

  12. The relationship between interannual and long-term cloud feedbacks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Chen; Zelinka, Mark D.; Dessler, Andrew E.; Klein, Stephen A.

    2015-12-11

    The analyses of Coupled Model Intercomparison Project phase 5 simulations suggest that climate models with more positive cloud feedback in response to interannual climate fluctuations also have more positive cloud feedback in response to long-term global warming. Ensemble mean vertical profiles of cloud change in response to interannual and long-term surface warming are similar, and the ensemble mean cloud feedback is positive on both timescales. However, the average long-term cloud feedback is smaller than the interannual cloud feedback, likely due to differences in surface warming pattern on the two timescales. Low cloud cover (LCC) change in response to interannual andmore » long-term global surface warming is found to be well correlated across models and explains over half of the covariance between interannual and long-term cloud feedback. In conclusion, the intermodel correlation of LCC across timescales likely results from model-specific sensitivities of LCC to sea surface warming.« less

  13. Comparison of the Vertical Velocity Used to Calculate the Cloud Droplet Number Concentration in a Cloud Resolving and a Global Climate Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric, Oceanic and Space Sciences University of Michigan Ann Arbor, Michigan Introduction Anthropogenic aerosols are effective cloud condensation nuclei (CCN). The availability of CCN affects the initial cloud droplet number concentration (CDNC) and droplet size; therefore, cloud optical

  14. First detection of a noctilucent cloud by lidar

    SciTech Connect (OSTI)

    Hansen, G.; Serwazi, M.; von Zahn, U. )

    1989-12-01

    During the night of August 5/6, 1989 for the first time a noctilucent cloud (NLC) was detected and measured by a lidar instrument. The observations were made with ground-based narrow-band Na lidar located at Andenes, Norway (69{degree}N, 16{degree}E geographic coordinates). In wavelength the lidar was operated both at the Na D{sub 2} resonance line of 589 nm as well as 5 Doppler widths shifted away. The altitude resolution was 200 m. The NLC developed at about 22:20 UT, reached its maximum backscatter cross section at 23:05 UT and became unobservable at around 00:10 UT. During this period the NLC exhibited the following properties: (a) its altitude ranged between 83.4 and 82.2 km; (b) its full width at half maximum ranged between 1.4 and 0.3 km; (c) the ratio of measured backscatter intensity from the NLC to the calculated Rayleigh signal from 82.6 km reached 450; (d) its volume backscatter cross section maximized at 6.5 {times} 10{sup {minus}9} m{sup {minus}1} sr{sup {minus}1}.

  15. Microsoft PowerPoint - 0326_jensen.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Property Working Group Activities Current Chairs Michael Jensen, Eugene Clothiaux Current Emphases - There are two Retrieving microphysical and radiative properties of liquid, ice, mixed phase and precipitating clouds Maintenance of Core Instruments and VAPS for this process has been identified as the highest priority p g p y But we have yet to eliminate constant surprises in the data that we ought to identify and eliminate much more quickly than we currently do New Approach within Existing

  16. Satellite and Surface Data Synergy for Developing a 3D Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are computed at 4 km spatial resolution and for daytime only (Minnis 2001). The error in the cloud amount and cloud OD retrievals from GOES is estimated through...

  17. Department of Energy National Laboratories and Plants: Leadership in Cloud Computing (Book)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    A status report on the cloud computing strategy for each Department of Energy laboratory and plant, showing the movement toward a cloud first IT strategy.

  18. The Role of Shallow Cloud Moistening in MJO and Non-MJO Convective...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to quantify bulk shallow cloud moistening through evaporation of condensed water using a simple method based on observations of liquid water path, cloud depth and temporal...

  19. W-band ARM Cloud Radar (WACR) Handbook

    SciTech Connect (OSTI)

    Widener, KB; Johnson, K

    2005-01-05

    The W-band Atmospheric Radiation Measurement (ARM) Program Cloud Radar (WACR) systems are zenith pointing Doppler radars that probe the extent and composition of clouds at 95.04 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar reports estimates for the first three spectra moments for each range gate up to 15 km. The 0th moment is reflectivity, the 1st moment is radial velocity, and the 2nd moment is spectral width. Also available are the raw spectra files. Unlike the millimeter wavelength cloud radar (MMCR), the WACR does not use pulse coding and operates in only copolarization and cross-polarization modes.

  20. Mixing between high velocity clouds and the galactic halo

    SciTech Connect (OSTI)

    Gritton, Jeffrey A.; Shelton, Robin L.; Kwak, Kyujin E-mail: rls@physast.uga.edu

    2014-11-01

    In the Galactic halo, metal-bearing Galactic halo material mixes into high velocity clouds (HVCs) as they hydrodynamically interact. This interaction begins long before the clouds completely dissipate and long before they slow to the velocity of the Galactic material. In order to make quantitative estimates of the mixing efficiency and resulting metal enrichment of HVCs, we made detailed two- and three-dimensional simulations of cloud-interstellar medium interactions. Our simulations track the hydrodynamics and time-dependent ionization levels. They assume that the cloud originally has a warm temperature and extremely low metallicity while the surrounding medium has a high temperature, low density, and substantial metallicity, but our simulations can be generalized to other choices of initial metallicities. In our simulations, mixing between cloud and halo gas noticeably raises the metallicity of the high velocity material. We present plots of the mixing efficiency and metal enrichment as a function of time.

  1. Aerosol Impacts on California Winter Clouds and Precipitation during CalWater 2011: Local Pollution versus Long-Range Transported Dust

    SciTech Connect (OSTI)

    Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.; Comstock, Jennifer M.; Singh, Balwinder; Rosenfeld, Daniel; Tomlinson, Jason M.; White, Allen B.; Prather, Kimberly; Minnis, Patrick; Ayers, J. K.; Min, Qilong

    2014-01-03

    Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations are carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on February 16 (FEB16) and March 02 (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust and biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust and biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a ~40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental conditions for assessing aerosol effects on cold season precipitation in California.

  2. Molecular clouds toward the super star cluster NGC 3603; possible evidence for a cloud-cloud collision in triggering the cluster formation

    SciTech Connect (OSTI)

    Fukui, Y.; Ohama, A.; Hanaoka, N.; Furukawa, N.; Torii, K.; Hasegawa, K.; Fukuda, T.; Soga, S.; Moribe, N.; Kuroda, Y.; Hayakawa, T.; Kuwahara, T.; Yamamoto, H.; Okuda, T.; Dawson, J. R.; Mizuno, N.; Kawamura, A.; Onishi, T.; Maezawa, H.; Mizuno, A.

    2014-01-01

    We present new large field observations of molecular clouds with NANTEN2 toward the super star cluster NGC 3603 in the transitions {sup 12}CO(J = 2-1, J = 1-0) and {sup 13}CO(J = 2-1, J = 1-0). We suggest that two molecular clouds at 13 km s{sup 1} and 28 km s{sup 1} are associated with NGC 3603 as evidenced by higher temperatures toward the H II region, as well as morphological correspondence. The mass of the clouds is too small to gravitationally bind them, given their relative motion of ?20 km s{sup 1}. We suggest that the two clouds collided with each other 1 Myr ago to trigger the formation of the super star cluster. This scenario is able to explain the origin of the highest mass stellar population in the cluster, which is as young as 1 Myr and is segregated within the central sub-pc of the cluster. This is the second super star cluster along with Westerlund 2 where formation may have been triggered by a cloud-cloud collision.

  3. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    SciTech Connect (OSTI)

    Huang, Dong; Liu, Yangang

    2014-12-18

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.

  4. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Dong; Liu, Yangang

    2014-12-18

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost,moreallowing for more realistic representation of cloud radiation interactions in large-scale models.less

  5. Parameterization and analysis of 3-D radiative transfer in clouds

    SciTech Connect (OSTI)

    Varnai, Tamas

    2012-03-16

    This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models donâ??t consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and found that local effects were often much larger than the overall values mentioned above, and were especially large for high sun and near convective clouds such as cumulus. The study also found that statistical methods such as neural networks appear promising for enabling cloud models to consider radiative interactions between nearby atmospheric columns. Finally, through collaboration with German scientists, the project found that new methods (especially one called â??stepwise krigingâ?) show great promise in filling gaps between cloud radar scans. If applied to data from the new DOE scanning cloud radars, these methods can yield large, continuous three-dimensional cloud structures for future radiative simulations.

  6. EA-1852: Cloud County Community College Wind Energy Project, Cloud County, Kansas

    Broader source: Energy.gov [DOE]

    This EA was to evaluate the environmental impacts of a proposal to authorize the expenditure of federal funds by Cloud County Community College (CCCC) for a wind energy project. CCCC has installed three wind turbines and proposed to install a fourth turbine on their campus in Concordia, Kansas, for use in their wind energy training curriculum and to provide electricity for their campus. This EA has been canceled.

  7. Cyber in the Cloud -- Lessons Learned from INL's Cloud E-Mail Acquisition

    SciTech Connect (OSTI)

    Troy Hiltbrand; Daniel Jones

    2012-12-01

    As we look at the cyber security ecosystem, are we planning to fight the battle as we did yesterday, with firewalls and intrusion detection systems (IDS), or are we sensing a change in how security is evolving and planning accordingly? With the technology enablement and possible financial benefits of cloud computing, the traditional tools for establishing and maintaining our cyber security ecosystems are being dramatically altered.

  8. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    Chiu, Jui-Yuan Christine

    2014-04-10

    This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS’ high sampling resolution to study the “twilight zone” around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARM’s 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARM’s operational data processing.

  9. ARM - Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsCloud Properties

  10. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsCloud Properties

  11. ARM - Evaluation Product - KAZR Active Remotely-Sensed Cloud Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (KAZRARSCL) Active Remotely-Sensed Cloud Locations (KAZRARSCL) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : KAZR Active Remotely-Sensed Cloud Locations (KAZRARSCL) [ ARM research - evaluation data product ] The KAZR-ARSCL VAP provides cloud boundaries and best-estimate time-height fields of radar

  12. The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic

    SciTech Connect (OSTI)

    Mazzoleni, Claudio; Kumar, Sumit; Wright, Kendra; Kramer, Louisa; Mazzoleni, Lynn; Owen, Robert; Helmig, Detlev

    2014-12-09

    The scientific scope of the project was to exploit the unique location of the Pico Mountain Observatory (PMO) located in the summit caldera of the Pico Volcano in Pico Island in the Azores, for atmospheric studies. The observatory, located at 2225m a.s.l., typically samples free tropospheric aerosols laying above the marine low-level clouds and long-range transported from North America. The broad purpose of this research was to provide the scientific community with a better understanding of fundamental physical processes governing the effects of aerosols on radiative forcing and climate; with the ultimate goal of improving our abilities to understand past climate and to predict future changes through numerical models. The project was 'exploratory' in nature, with the plan to demonstrate the feasibility of deploying for the first time, an extensive aerosol research package at PMO. One of the primary activities was to test the deployment of these instruments at the site, to collect data during the 2012 summer season, and to further develop the infrastructure and the knowledge for performing novel research at PMO in follow-up longer-term aerosol-cloud studies. In the future, PMO could provide an elevated research outpost to support the renewed DOE effort in the Azores that was intensified in 2013 with the opening of the new sea-level ARM-DOE Eastern North Atlantic permanent facility at Graciosa Island. During the project period, extensive new data sets were collected for the planned 2012 season. Thanks to other synergistic activities and opportunities, data collection was then successfully extended to 2013 and 2014. Highlights of the scientific findings during this project include: a) biomass burning contribute significantly to the aerosol loading in the North Atlantic free troposphere; however, long-range transported black carbon concentrations decreased substantially in the last decade. b) Single black carbon particles analyzed off-line at the electron microscope were often very compacted, suggesting cloud processing and exhibiting different optical properties from fresh emissions. In addition, black carbon was found to be sometimes mixed with mineral dust, affecting its optical properties and potential forcing. c) Some aerosols collected at PMO acted as ice nuclei, potentially contributing to cirrus cloud formation during their transport in the upper free troposphere. Identified good ice nuclei were often mineral dust particles. d) The free tropospheric aerosols studied at PMO have relevance to low level marine clouds due, for example, to synoptic subsidence entraining free tropospheric aerosols into the marine boundary layer. This has potentially large consequences on cloud condensation nuclei concentrations and compositions in the marine boundary layer; therefore, having an effect on the marine stratus clouds, with potentially important repercussions on the radiative forcing. The scientific products of this project currently include contributions to two papers published in the Nature Publishing group (Nature Communications and Scientific Reports), one paper under revision for Atmospheric Chemistry and Physics, one in review in Geophysical Research Letters and one recently submitted to Atmospheric Chemistry and Physics Discussion. In addition, four manuscripts are in advanced state of preparation. Finally, twenty-eight presentations were given at international conferences, workshops and seminars.

  13. Historic Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of its historic properties. The National Park Service would provide interpretation, education, and technical preservation assistance for properties at LANL. Potential Los...

  14. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    2004-02-19

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  15. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  16. Emerging Technology for Measuring Atmospheric Aerosol Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology for Measuring Atmospheric Aerosol Properties Bruce Gandrud Greg Kok Droplet Measurement Technologies Darrel Baumgardner Centro de Ciencias de la Atmósfera Universidad Nacional Autónoma de México Acknowledgements * The DMT staff * Bob Bluth and Haflidi Jonsson * Pat Arnott * Greg Roberts and Thanos Nenes * Dave Fahey, Shuka Schwarz and Ru-Shan Gao * NSF, NASA, ONR, NOAA and DOE Introducing Droplet Measurement Technologies * Founded in 1987 * Specializing in aerosol and cloud

  17. Automated detection of cloud and cloud-shadow in single-date Landsat imagery using neural networks and spatial post-processing

    SciTech Connect (OSTI)

    Hughes, Michael J. [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Hayes, Daniel J [ORNL] [ORNL

    2014-01-01

    Use of Landsat data to answer ecological questions is contingent on the effective removal of cloud and cloud shadow from satellite images. We develop a novel algorithm to identify and classify clouds and cloud shadow, \\textsc{sparcs}: Spacial Procedures for Automated Removal of Cloud and Shadow. The method uses neural networks to determine cloud, cloud-shadow, water, snow/ice, and clear-sky membership of each pixel in a Landsat scene, and then applies a set of procedures to enforce spatial rules. In a comparison to FMask, a high-quality cloud and cloud-shadow classification algorithm currently available, \\textsc{sparcs} performs favorably, with similar omission errors for clouds (0.8% and 0.9%, respectively), substantially lower omission error for cloud-shadow (8.3% and 1.1%), and fewer errors of commission (7.8% and 5.0%). Additionally, textsc{sparcs} provides a measure of uncertainty in its classification that can be exploited by other processes that use the cloud and cloud-shadow detection. To illustrate this, we present an application that constructs obstruction-free composites of images acquired on different dates in support of algorithms detecting vegetation change.

  18. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    site scientist for the North Slope of Alaska, Johannes Verlinde from Pennsylvania State University presents results from an investigation into multi-layered, mixed-phase cloud...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud-Top Humidity Inversions and the Maintenance of Arctic Mixed-Phase Stratocumulus Submitter: Solomon, A., NOAAESRLPhysical Sciences Division Shupe, M., University of Colorado...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Masters the Misunderstood Mixed-Phase Cloud Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research:...

  1. ARM TR-008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Wisconsin - Madison, Madison, Wisconsin, 167 pp. Available from http:www.ssec.wisc.edulibraryturnerdissertation.pdf. Turner, D.D., 2004: Arctic mixed-phase cloud...

  2. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with a Single Column Model, CAPT Forecasts and M-PACE Observations Motivations Summary * CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction...

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed-Phase Arctic Cloud Experiment, and the ARM Mobile Facility's deployments at Point Reyes National Seashore and Niamey, Niger, West Africa. ARM researchers, including ARM's...

  4. A Novel Approach for Introducing 3D Cloud Spatial Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel Approach for Introducing 3D Cloud Spatial Structure Into 1D Radiative Transfer For original submission and image(s), see ARM Research Highlights http:www.arm.govscience...

  5. ARM Value-Added Cloud Products: Description and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Value-Added Cloud Products: Description and Status M. A. Miller, K. L. Johnson, and D. T. Troyan Brookhaven National Laboratory Upton, New York E. E. Clothiaux Pennsylvania State...

  6. Simulation of E-Cloud Driven Instability And Its Attenuation...

    Office of Scientific and Technical Information (OSTI)

    Instability And Its Attenuation Using a Feedback System in the CERN SPS Citation Details In-Document Search Title: Simulation of E-Cloud Driven Instability And Its Attenuation ...

  7. ARM - Field Campaign - IR Cloud Camera Feasibility Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsIR Cloud Camera Feasibility Study ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send...

  8. ARM - Tropical Warm Pool - International Cloud Experiment (TWP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    width"16"> Tropical Warm Pool - International Cloud Experiment (TWP-ICE) twp-ice-big One of the most complete data sets of tropical cirrus and convection observations ever...

  9. METHANE GAS STABILIZES SUPERCOOLED ETHANE DROPLETS IN TITAN'S CLOUDS

    SciTech Connect (OSTI)

    Wang, Chia C.; Lang, E. Kathrin; Signorell, Ruth

    2010-03-20

    Strong evidence for ethane clouds in various regions of Titan's atmosphere has recently been found. Ethane is usually assumed to exist as ice particles in these clouds, although the possible role of liquid and supercooled liquid ethane droplets has been recognized. Here, we report on infrared spectroscopic measurements of ethane aerosols performed in the laboratory under conditions mimicking Titan's lower atmosphere. The results clearly show that liquid ethane droplets are significantly stabilized by methane gas which is ubiquitous in Titan's nitrogen atmosphere-a phenomenon that does not have a counterpart for water droplets in Earth's atmosphere. Our data imply that supercooled ethane droplets are much more abundant in Titan's clouds than previously anticipated. Possibly, these liquid droplets are even more important for cloud processes and the formation of lakes than ethane ice particles.

  10. Posters Treatment of Cloud Radiative Effects in General Circulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Posters Treatment of Cloud Radiative Effects in General Circulation Models W.-C. Wang, M. P. Dudek, X.-Z. Liang, M. Ding, L. Zhu, E. Joseph, and S. Cox Atmospheric Sciences...

  11. Enhanced toxic cloud knockdown spray system for decontamination applications

    DOE Patents [OSTI]

    Betty, Rita G. (Rio Rancho, NM); Tucker, Mark D. (Albuquerque, NM); Brockmann, John E. (Albuquerque, NM); Lucero, Daniel A. (Albuquerque, NM); Levin, Bruce L. (Tijeras, NM); Leonard, Jonathan (Albuquerque, NM)

    2011-09-06

    Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

  12. ARM - Field Campaign - Deep Convective Clouds and Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsDeep Convective Clouds and Chemistry Campaign Links DC3 Experiment Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send...

  13. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX) 2015.01.14 - 2015.02.12 Lead...

  14. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Marine ARM GPCI Investigations of Clouds (MAGIC): Parsivel Disdrometer support for...

  15. ARM - Field Campaign - Tropical Warm Pool - International Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsTropical Warm Pool - International Cloud Experiment (TWP-ICE) Campaign Links TWP-ICE Website ARM Data Discovery Browse Data Comments? We would love to hear from you...

  16. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX): Aerial Observations 2015.01.14...

  17. ARM - Field Campaign - Azores: Above-Cloud Radiation Budget near...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaigns Azores: Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP-MBL) 2009.05.01, Wood, AMF Comments? We would love to hear from you Send us a note...

  18. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Browse Data Related Campaigns Marine ARM GPCI Investigation of Clouds (MAGIC) 2012.10.01, Lewis, AMF Comments? We would love to hear from you Send us a note below or call us at...

  19. Anisotropy in Broken Cloud Fields Over Oklahoma from Ladsat Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anisotropy in Broken Cloud Fields Over Oklahoma from Landsat Data L. M. Hinkelman National Institute of Aerospace Hampton, Virginia K. F. Evans University of Colorado Boulder, Colorado Introduction Previously, it was shown (Hinkelman et al. 2002) that anisotropy, or the existence of a preferred direction, in cumulus fields significantly affects solar radiative transfer through these fields. In this poster, we investigate the occurrence of anisotropy in broken cloud fields near the Atmospheric

  20. Posters Radar/Radiometer Retrievals of Cloud Liquid Water and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Posters Radar/Radiometer Retrievals of Cloud Liquid Water and Drizzle: Analysis Using Data from a Three-Dimensional Large Eddy Simulation of Marine Stratocumulus Clouds G. Feingold Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder, Colorado A. S. Frisch National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado B. Stevens and W. R. Cotton Colorado State University Fort Collins, Colorado Introduction Marine

  1. RACORO continental boundary layer cloud investigations. Part I: Case study

    Office of Scientific and Technical Information (OSTI)

    development and ensemble large-scale forcings (Journal Article) | SciTech Connect RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings Citation Details In-Document Search This content will become publicly available on June 19, 2016 Title: RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings Observation-based modeling case studies of continental boundary

  2. Dynamics of Molecular Clouds: Observations, Simulations, and NIF

    Office of Scientific and Technical Information (OSTI)

    Experiments (Conference) | SciTech Connect Conference: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments Authors: Kane, J O ; Martinez, D A ; Pound, M W ; Heeter, R F ; Casner, A ; Mancini, R C Publication Date: 2015-01-16 OSTI Identifier: 1179389 Report Number(s): LLNL-CONF-666498 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Conference

  3. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Midlatitude Continental Convective Clouds Experiment (MC3E) Thanks

  4. Marine ARM GPCI Investigation of Clouds (MAGIC) Science Objectives and Significance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM GPCI Investigation of Clouds (MAGIC) Science Objectives and Significance Every cloud in the sky begins as a tiny droplet, which forms around an even smaller particle called an aerosol particle. Some clouds produce precipitation, and some don't. The relationship between clouds, precipitation, and aerosols is very complex and very important. Scientists use data about clouds, precipitation, and aerosols to develop computer codes, or models, that simulate what's happening in the atmosphere and

  5. In-Situ Characterization of Cloud Condensation Nuclei, Interstitial, and background Particles using Single Particle Mass Spectrometer, SPLAT II

    SciTech Connect (OSTI)

    Zelenyuk, Alla; Imre, D.; Earle, Michael; Easter, Richard C.; Korolev, Alexei; Leaitch, W. R.; Liu, Peter; Macdonald, A. M.; Ovchinnikov, Mikhail; Strapp, Walter

    2010-10-01

    Aerosol indirect effect remains the most uncertain aspect of climate change modeling because proper test requires knowledge of individual particles sizes and compositions with high spatial and temporal resolution. We present the first deployment of a single particle mass spectrometer (SPLAT II) that is operated in a dual data acquisition mode to measure all the required individual particle properties with sufficient temporal resolution to definitively resolve the aerosol-cloud interaction in this exemplary case. We measured particle number concentrations, asphericity, and individual particle size, composition, and density with better than 60 seconds resolution. SPLAT II measured particle number concentrations between 70 particles cm-3and 300 particles cm-3, an average particle density of 1.4 g cm-3. Found that most particles are composed of oxygenated organics, many of which are mixed with sulfates. Biomass burn particles some with sulfates were prevalent, particularly at higher altitudes, and processed sea-salt was observed over the ocean. Analysis of cloud residuals shows that with time cloud droplets acquire sulfate by the reaction of peroxide with SO2. Based on the particle mass spectra and densities we find that the compositions of cloud condensation nuclei are similar to those of background aerosol but, contain on average ~7% more sulfate, and do not include dust and metallic particles. A comparison between the size distributions of background, activated, and interstitial particles shows that while nearly none of the activated particles is smaller than 115 nm, more than 80% of interstitial particles are smaller than 115 nm. We conclude that for this cloud the most important difference between CCN and background aerosol is particle size although having more sulfate also helps.

  6. A New Approach to Modeling Aerosol Effects on East Asian Climate: Parametric Uncertainties Associated with Emissions, Cloud Microphysics and their Interactions

    SciTech Connect (OSTI)

    Yan, Huiping; Qian, Yun; Zhao, Chun; Wang, Hailong; Wang, Minghuai; Yang, Ben; Liu, Xiaohong; Fu, Qiang

    2015-09-16

    In this study, we adopt a parametric sensitivity analysis framework that integrates the quasi-Monte Carlo parameter sampling approach and a surrogate model to examine aerosol effects on the East Asian Monsoon climate simulated in the Community Atmosphere Model (CAM5). A total number of 256 CAM5 simulations are conducted to quantify the model responses to the uncertain parameters associated with cloud microphysics parameterizations and aerosol (e.g., sulfate, black carbon (BC), and dust) emission factors and their interactions. Results show that the interaction terms among parameters are important for quantifying the sensitivity of fields of interest, especially precipitation, to the parameters. The relative importance of cloud-microphysics parameters and emission factors (strength) depends on evaluation metrics or the model fields we focused on, and the presence of uncertainty in cloud microphysics imposes an additional challenge in quantifying the impact of aerosols on cloud and climate. Due to their different optical and microphysical properties and spatial distributions, sulfate, BC, and dust aerosols have very different impacts on East Asian Monsoon through aerosol-cloud-radiation interactions. The climatic effects of aerosol do not always have a monotonic response to the change of emission factors. The spatial patterns of both sign and magnitude of aerosol-induced changes in radiative fluxes, cloud, and precipitation could be different, depending on the aerosol types, when parameters are sampled in different ranges of values. We also identify the different cloud microphysical parameters that show the most significant impact on climatic effect induced by sulfate, BC and dust, respectively, in East Asia.

  7. Electron cloud experiments at Fermilab: Formation and mitigation

    SciTech Connect (OSTI)

    Zwaska, R.; /Fermilab

    2011-06-01

    We have performed a series of experiments at Fermilab to explore the electron cloud phenomenon. The Main Injector will have its beam intensity increased four-fold in the Project X upgrade, and would be subject to instabilities from the electron cloud. We present measurements of the cloud formation in the Main Injector and experiments with materials for the mitigation of the Cloud. An experimental installation of Titanium-Nitride (TiN) coated beam pipes has been under study in the Main Injector since 2009; this material was directly compared to an adjacent stainless chamber through electron cloud measurement with Retarding Field Analyzers (RFAs). Over the long period of running we were able to observe the secondary electron yield (SEY) change and correlate it with electron fluence, establishing a conditioning history. Additionally, the installation has allowed measurement of the electron energy spectrum, comparison of instrumentation techniques, and energydependent behavior of the electron cloud. Finally, a new installation, developed in conjunction with Cornell and SLAC, will allow direct SEY measurement of material samples irradiated in the accelerator.

  8. A SEARCH FOR EXOZODIACAL CLOUDS WITH KEPLER

    SciTech Connect (OSTI)

    Stark, Christopher C.; Boss, Alan P.; Weinberger, Alycia J.; Jackson, Brian K.; Endl, Michael; Cochran, William D.; Johnson, Marshall; Caldwell, Caroline; Agol, Eric; Ford, Eric B.; Hall, Jennifer R.; Ibrahim, Khadeejah A.

    2013-02-20

    Planets embedded within dust disks may drive the formation of large scale clumpy dust structures by trapping dust into resonant orbits. Detection and subsequent modeling of the dust structures would help constrain the mass and orbit of the planet and the disk architecture, give clues to the history of the planetary system, and provide a statistical estimate of disk asymmetry for future exoEarth-imaging missions. Here, we present the first search for these resonant structures in the inner regions of planetary systems by analyzing the light curves of hot Jupiter planetary candidates identified by the Kepler mission. We detect only one candidate disk structure associated with KOI 838.01 at the 3{sigma} confidence level, but subsequent radial velocity measurements reveal that KOI 838.01 is a grazing eclipsing binary and the candidate disk structure is a false positive. Using our null result, we place an upper limit on the frequency of dense exozodi structures created by hot Jupiters. We find that at the 90% confidence level, less than 21% of Kepler hot Jupiters create resonant dust clumps that lead and trail the planet by {approx}90 Degree-Sign with optical depths {approx}> 5 Multiplication-Sign 10{sup -6}, which corresponds to the resonant structure expected for a lone hot Jupiter perturbing a dynamically cold dust disk 50 times as dense as the zodiacal cloud.

  9. Analysis of global radiation budgets and cloud forcing using three-dimensional cloud nephanalysis data base. Master's thesis

    SciTech Connect (OSTI)

    Mitchell, B.

    1990-12-01

    A one-dimensional radiative transfer model was used to compute the global radiative budget at the top of the atmosphere (TOA) and the surface for January and July. 1979. The model was also used to determine the global cloud radiative forcing for all clouds and for high and low cloud layers. In the computations. the authors used the monthly cloud data derived from the Air Force Three-Dimensional Cloud Nephanalysis (3DNEPH). These data were used in conjunction with conventional temperature and humidity profiles analyzed during the 1979 First GARP (Global Atmospheric Research Program) Global Experiment (FGGE) year. Global surface albedos were computed from available data and were included in the radiative transfer analysis. Comparisons of the model-produced outgoing solar and infrared fluxes with those derived from Nimbus 7 Earth Radiation Budget (ERS) data were made to validate the radiative model and cloud cover. For reflected solar and emitted infrared (IR) flux, differences within 20 w/sq m meters were shown.

  10. ARM - Publications: Science Team Meeting Documents: Cirrus properties and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air mean vertical motion retrieval using mm-wavelength Doppler radar moments Cirrus properties and air mean vertical motion retrieval using mm-wavelength Doppler radar moments Deng, Min University of Utah Mace, Gerald University of Utah Vertically pointing millimeter wavelength Doppler radar provides valuable information on upper tropospheric cloud properties and dynamics. We are developing an innovative algorithm to simultaneously retrieve cirrus microphysical parameters and air mean

  11. CHEMICAL EVOLUTION OF THE LARGE MAGELLANIC CLOUD

    SciTech Connect (OSTI)

    Bekki, Kenji [ICRAR, M468, University of Western Australia, 35 Stirling Highway, Crawley Western Australia 6009 (Australia); Tsujimoto, Takuji [National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588 (Japan)

    2012-12-20

    We adopt a new chemical evolution model for the Large Magellanic Cloud (LMC) and thereby investigate its past star formation and chemical enrichment histories. The delay time distribution of Type Ia supernovae recently revealed by Type Ia supernova surveys is incorporated self-consistently into the new model. The principle results are summarized as follows. The present gas mass fraction and stellar metallicity as well as the higher [Ba/Fe] in metal-poor stars at [Fe/H] < -1.5 can be more self-consistently explained by models with steeper initial mass functions. The observed higher [Mg/Fe] ({>=}0.3) at [Fe/H] {approx} -0.6 and higher [Ba/Fe] (>0.5) at [Fe/H] {approx} -0.3 could be due to significantly enhanced star formation about 2 Gyr ago. The observed overall [Ca/Fe]-[Fe/H] relation and remarkably low [Ca/Fe] (< - 0.2) at [Fe/H] > -0.6 are consistent with models with short-delay supernova Ia and with the more efficient loss of Ca possibly caused by an explosion mechanism of Type II supernovae. Although the metallicity distribution functions do not show double peaks in the models with a starburst about 2 Gyr ago, they show characteristic double peaks in the models with double starbursts {approx}200 Myr and {approx}2 Gyr ago. The observed apparent dip of [Fe/H] around {approx}1.5 Gyr ago in the age-metallicity relation can be reproduced by models in which a large amount ({approx}10{sup 9} M{sub Sun }) of metal-poor ([Fe/H] < -1) gas can be accreted onto the LMC.

  12. Scanning ARM Cloud Radars Part II: Data Quality Control and Processing

    SciTech Connect (OSTI)

    Kollias, Pavlos; Jo, Ieng; Borque, Paloma; Tatarevic, Aleksandra; Lamer, Katia; Bharadwaj, Nitin; Widener, Kevin B.; Johnson, Karen; Clothiaux, Eugene E.

    2014-03-01

    The Scanning ARM Cloud Radars (SACRs) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30 km radius from the ARM fixed and mobile sites. Here, the post-processing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the Hemispherical Sky Range Height Indicator SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step towards the utilization of SACR measurements for cloud research.

  13. Interaction between Cassiopeia A and nearby molecular clouds

    SciTech Connect (OSTI)

    Kilpatrick, C. D.; Bieging, J. H.; Rieke, G. H.

    2014-12-01

    We present spectroscopy of the supernova remnant Cassiopeia A (Cas A) observed at infrared wavelengths from 10 to 40 ?m with the Spitzer Space Telescope and at millimeter wavelengths in {sup 12}CO and {sup 13}CO J =2-1 (230 and 220 GHz) with the Heinrich Hertz Submillimeter Telescope. The IR spectra demonstrate high-velocity features toward a molecular cloud coincident with a region of bright radio continuum emission along the northern shock front of Cas A. The millimeter observations indicate that CO emission is broadened by a factor of two in some clouds toward Cas A, particularly to the south and west. We believe that these features trace interactions between the Cas A shock front and nearby molecular clouds. In addition, some of the molecular clouds that exhibit broadening in CO lie 1'-2' away from the furthest extent of the supernova remnant shock front. We propose that this material may be accelerated by ejecta with velocity significantly larger than the observed free-expansion velocity of the Cas A shock front. These observations may trace cloud interactions with fast-moving outflows such as the bipolar outflow along the southwest to northeast axis of the Cas A supernova remnant, as well as fast-moving knots seen emerging in other directions.

  14. Cloud Feedbacks on Climate: A Challenging Scientific Problem

    SciTech Connect (OSTI)

    Norris, Joel

    2010-05-10

    One reason it has been difficult to develop suitable social and economic policies to address global climate change is that projected global warming during the coming century has a large uncertainty range. The primary physical cause of this large uncertainty range is lack of understanding of the magnitude and even sign of cloud feedbacks on the climate system. If Earth's cloudiness responded to global warming by reflecting more solar radiation back to space or allowing more terrestrial radiation to be emitted to space, this would mitigate the warming produced by increased anthropogenic greenhouse gases. Contrastingly, a cloud response that reduced solar reflection or terrestrial emission would exacerbate anthropogenic greenhouse warming. It is likely that a mixture of responses will occur depending on cloud type and meteorological regime, and at present, we do not know what the net effect will be. This presentation will explain why cloud feedbacks have been a challenging scientific problem from the perspective of theory, modeling, and observations. Recent research results on observed multidecadal cloud-atmosphere-ocean variability over the Pacific Ocean will also be shown, along with suggestions for future research.

  15. Cloud Feedbacks on Climate: A Challenging Scientific Problem

    SciTech Connect (OSTI)

    Norris, Joe

    2010-05-12

    One reason it has been difficult to develop suitable social and economic policies to address global climate change is that projected global warming during the coming century has a large uncertainty range. The primary physical cause of this large uncertainty range is lack of understanding of the magnitude and even sign of cloud feedbacks on the climate system. If Earth's cloudiness responded to global warming by reflecting more solar radiation back to space or allowing more terrestrial radiation to be emitted to space, this would mitigate the warming produced by increased anthropogenic greenhouse gases. Contrastingly, a cloud response that reduced solar reflection or terrestrial emission would exacerbate anthropogenic greenhouse warming. It is likely that a mixture of responses will occur depending on cloud type and meteorological regime, and at present, we do not know what the net effect will be. This presentation will explain why cloud feedbacks have been a challenging scientific problem from the perspective of theory, modeling, and observations. Recent research results on observed multidecadal cloud-atmosphere-ocean variability over the Pacific Ocean will also be shown, along with suggestions for future research.

  16. Cloud Feedbacks on Climate: A Challenging Scientific Problem

    ScienceCinema (OSTI)

    Norris, Joe [Scripps Institution of Oceanography, University of California, San Diego, California, USA

    2010-09-01

    One reason it has been difficult to develop suitable social and economic policies to address global climate change is that projected global warming during the coming century has a large uncertainty range. The primary physical cause of this large uncertainty range is lack of understanding of the magnitude and even sign of cloud feedbacks on the climate system. If Earth's cloudiness responded to global warming by reflecting more solar radiation back to space or allowing more terrestrial radiation to be emitted to space, this would mitigate the warming produced by increased anthropogenic greenhouse gases. Contrastingly, a cloud response that reduced solar reflection or terrestrial emission would exacerbate anthropogenic greenhouse warming. It is likely that a mixture of responses will occur depending on cloud type and meteorological regime, and at present, we do not know what the net effect will be. This presentation will explain why cloud feedbacks have been a challenging scientific problem from the perspective of theory, modeling, and observations. Recent research results on observed multidecadal cloud-atmosphere-ocean variability over the Pacific Ocean will also be shown, along with suggestions for future research.

  17. BAECC Biogenic Aerosols - Effects on Clouds and Climate

    SciTech Connect (OSTI)

    Petäjä, Tuukka; Moisseev, Dmitri; Sinclair, Victoria; O'Connor, Ewan J.; Manninen, Antti J.; Levula, Janne; Väänänen, Riikka; Heikkinen, Liine; Äijälä, Mikko; Aalto, Juho; Bäck, Jaana

    2015-11-01

    “Biogenic Aerosols - Effects on Clouds and Climate (BAECC)”, featured the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program’s 2nd Mobile Facility (AMF2) in Hyytiälä, Finland. It operated for an 8-month intensive measurement campaign from February to September 2014. The main research goal was to understand the role of biogenic aerosols in cloud formation. One of the reasons to perform BAECC study in Hyytiälä was the fact that it hosts SMEAR-II (Station for Measuring Forest Ecosystem-Atmosphere Relations), which is one of the world’s most comprehensive surface in-situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions and an extensive suite of parameters relevant to atmosphere-biosphere interactions continuously since 1996. The BAECC enables combining vertical profiles from AMF2 with surface-based in-situ SMEAR-II observations and allows the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. With the inclusion of extensive surface precipitation measurements, and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations of AMF2 and SMEAR-II provide a unique opportunity for investigating aerosol-cloud interactions, and cloud-to-precipitation processes. The BAECC dataset will initiate new opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary-layer structures.

  18. V-033: ownCloud Cross-Site Scripting and File Upload Vulnerabilities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3: ownCloud Cross-Site Scripting and File Upload Vulnerabilities V-033: ownCloud Cross-Site Scripting and File Upload Vulnerabilities November 26, 2012 - 2:00am Addthis PROBLEM: ownCloud Cross-Site Scripting and File Upload Vulnerabilities PLATFORM: ownCloud 4.5.2, 4.5.1, 4.0.9 ABSTRACT: Multiple vulnerabilities have been reported in ownCloud REFERENCE LINKS: ownCloud Server Advisories Secunia Advisory SA51357 IMPACT ASSESSMENT: Medium DISCUSSION: 1) Input passed via the

  19. Emergent Constraints for Cloud Feedbacks and Climate Sensitivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klein, Stephen A.; Hall, Alex

    2015-10-26

    Emergent constraints are physically explainable empirical relationships between characteristics of the current climate and long-term climate prediction that emerge in collections of climate model simulations. With the prospect of constraining long-term climate prediction, scientists have recently uncovered several emergent constraints related to long-term cloud feedbacks. We review these proposed emergent constraints, many of which involve the behavior of low-level clouds, and discuss criteria to assess their credibility. With further research, some of the cases we review may eventually become confirmed emergent constraints, provided they are accompanied by credible physical explanations. Because confirmed emergent constraints identify a source of model errormore » that projects onto climate predictions, they deserve extra attention from those developing climate models and climate observations. While a systematic bias cannot be ruled out, it is noteworthy that the promising emergent constraints suggest larger cloud feedback and hence climate sensitivity.« less

  20. Emergent Constraints for Cloud Feedbacks and Climate Sensitivity

    SciTech Connect (OSTI)

    Klein, Stephen A.; Hall, Alex

    2015-10-26

    Emergent constraints are physically explainable empirical relationships between characteristics of the current climate and long-term climate prediction that emerge in collections of climate model simulations. With the prospect of constraining long-term climate prediction, scientists have recently uncovered several emergent constraints related to long-term cloud feedbacks. We review these proposed emergent constraints, many of which involve the behavior of low-level clouds, and discuss criteria to assess their credibility. With further research, some of the cases we review may eventually become confirmed emergent constraints, provided they are accompanied by credible physical explanations. Because confirmed emergent constraints identify a source of model error that projects onto climate predictions, they deserve extra attention from those developing climate models and climate observations. While a systematic bias cannot be ruled out, it is noteworthy that the promising emergent constraints suggest larger cloud feedback and hence climate sensitivity.