Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EA-0820: Construction of Mixed Waste Storage RCRA Facilities, Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Construction of Mixed Waste Storage RCRA Facilities, 0: Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669, Oak Ridge, Tennessee EA-0820: Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669, Oak Ridge, Tennessee SUMMARY This EA evaluates the environmental impacts of a proposal to construct and operate two mixed (both radioactive and hazardous) waste storage facilities (Buildings 7668 and 7669) in accordance with Resource Conservation and Recovery Act requirements. Site preparation and construction activities would take place at the U.S. Department of Energy's Oak Ridge National Laboratory in Oak Ridge, Tennessee. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 16, 1994 EA-0820: Finding of No Significant Impact

2

Integrated mixed waste storage program for spent solvent and laboratory waste  

SciTech Connect

A new tank project was initiated to provide a facility capable of providing the necessary storage capacity while meeting the South Carolina Hazardous Waste Management Regulations. The new project was initiated as a Category 11, General Plant Project. This project funding strategy would have allowed SRS access to project funding without Congressional approval as a Line Item, permitting the use of an expedited schedule for design and construction. The project team and Department of Energy -- Savannah River were successful in obtaining FY94 Line Item funding for the new tank project. However, the operational date for the new tank project was extended to October 1996. The revised facility operational date did not support the date submitted to South Carolina Department of Heath and Environmental Control as part of the existing facility closure plan. A plan to alleviate the South Carolina Department of Heath and Environmental Control concerns with the SRS existing tanks system had to be developed prior to notifying the state that the operational date was extended to October 1996. The remainder of this paper presents the plan that was developed and presented to the South Carolina Department of Heath and Environmental Control. The SRS integrated mixed waste storage program is divided into three separate phase: (1) interim waste storage for the period between facility closure and operation of the new tank facility, (2) closure of the existing facility and (3) the new solvent storage facility.

Walker, C.M.

1994-03-01T23:59:59.000Z

3

Settlement Agreement on TRU Mixed Waste Storage at Nevada Test Site Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Settlement Agreement for Transuranic (TRU) Mixed Settlement Agreement for Transuranic (TRU) Mixed Waste Storage Issues at the Nevada Test Site (NTS) State Nevada Agreement Type Settlement Agreement Legal Driver(s) RCRA Scope Summary Settle the Finding of Alleged Violation (FOAV) and Order of November 1, 1990, and the FOAV of June 24, 1991, related to the TRU waste storage pad at Area 5 of the NTS Parties DOE; Nevada Department of Environmental Protection Date 6/11/1992 SCOPE * Settle the Finding of Alleged Violation (FOAV) and Order of November 1, 1990, and the FOAV of June 24, 1991, related to the TRU waste storage pad at Area 5 of the NTS. ESTABLISHING MILESTONES * Within 90 days of the effective date of this Agreement, DOE will provide to NDEP documentation of why the current inventory of TRU mixed waste cannot be removed

4

Supplemental design requirements document enhanced radioactive and mixed waste storage Phase V Project W-112  

SciTech Connect

This document provides additional and supplemental information to WHC-SD-W112-FDC-001, Project W-112 for radioactive and mixed waste storage. It provides additional requirements for the design and summarizes Westinghouse Hanford Company key design guidance and establishes the technical baseline agreements to be used for definitive design of the Project W-112 facilities.

Ocampo, V.P.; Boothe, G.F.; Greager, T.M.; Johnson, K.D.; Kooiker, S.L.; Martin, J.D.

1994-11-01T23:59:59.000Z

5

DOE/EA-0820 ENVIRONMENTAL ASSESSMENT Construction of Mixed Waste Storage RCRA Facilities,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20 20 ENVIRONMENTAL ASSESSMENT Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669 u.s. Department of Energy Oak Ridge National Laboratory Oak Ridge, Tennessee April 1994 ER t>ISTRf8UT!Q~~ Or-~I-:r8 DOCUMENT IS UNLlMIT~ DISCLAIMER This report was .prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial

6

SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING  

SciTech Connect

This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

2011-01-12T23:59:59.000Z

7

Mixed Waste Working Group report  

SciTech Connect

The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

Not Available

1993-11-09T23:59:59.000Z

8

Mixed waste characterization reference document  

SciTech Connect

Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

NONE

1997-09-01T23:59:59.000Z

9

Shadow Review of the Advanced Mixed Waste Treatment Project Transuranic Storage Area Retrieval Enclosue Restrieval Restart DOE Readiness Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

ID-2011-09-22 ID-2011-09-22 Site: Idaho Site - Idaho Cleanup Project Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Shadow Review of the Advanced Mixed Waste Treatment Project (AMWTP) Transuranic Storage Area-Retrieval Enclosure (TSA-RE) Retrieval Restart Department of Energy Readiness Assessment Dates of Activity : 09/20/2011 - 09/22/2011 Report Preparer: Aleem Boatright Activity Description/Purpose: A review of nuclear safety implementation verification review (IVR) procedures and processes was conducted at the Idaho Site from September 12-22, 2011. The scope originally included shadowing of the Department of Energy (DOE) Idaho Operations Office (DOE-ID) Idaho Cleanup Project IVR for the Sodium Bearing Waste Treatment Project (SBWTP).

10

Shadow Review of the Advanced Mixed Waste Treatment Project Transuranic Storage Area Retrieval Enclosue Restrieval Restart DOE Readiness Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ID-2011-09-22 ID-2011-09-22 Site: Idaho Site - Idaho Cleanup Project Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Shadow Review of the Advanced Mixed Waste Treatment Project (AMWTP) Transuranic Storage Area-Retrieval Enclosure (TSA-RE) Retrieval Restart Department of Energy Readiness Assessment Dates of Activity : 09/20/2011 - 09/22/2011 Report Preparer: Aleem Boatright Activity Description/Purpose: A review of nuclear safety implementation verification review (IVR) procedures and processes was conducted at the Idaho Site from September 12-22, 2011. The scope originally included shadowing of the Department of Energy (DOE) Idaho Operations Office (DOE-ID) Idaho Cleanup Project IVR for the Sodium Bearing Waste Treatment Project (SBWTP).

11

Radioactive waste storage issues  

SciTech Connect

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

12

Robotics for mixed waste operations, demonstration description  

SciTech Connect

The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. This waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.

Ward, C.R.

1993-11-01T23:59:59.000Z

13

Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste  

SciTech Connect

Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units.

Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

1996-03-01T23:59:59.000Z

14

Supplemental design requirements document enhanced radioactive and mixed waste storage: Phase 5, Project W-113  

SciTech Connect

This Supplemental Design Requirements Document (SDRD) is used to communicate Project W-113 specific plant design information from Westinghouse Hanford Company (WHC) to the United States Department of Energy (DOE) and the cognizant Architect Engineer (A/E). The SDRD is prepared after the completion of the project Conceptual Design report (CDR) and prior to the initiation of definitive design. Information in the SDRD serves two purposes: to convey design requirements that are too detailed for inclusion in the Functional Design Criteria (FDC) report and to serve as a means of change control for design commitments in the Title I and Title II design. The Solid Waste Retrieval Project (W-113) SDRD has been restructured from the equipment based outline used in previous SDRDs to a functional systems outline. This was done to facilitate identification of deficiencies in the information provided in the initial draft SDRD and aid design confirmation. The format and content of this SDRD adhere as closely as practicable to the requirements of WHC-CM-6-1, Standard Engineering Practices for Functional Design Criteria.

Ocampo, V.P.

1994-11-01T23:59:59.000Z

15

Mixed Waste Focus Area program management plan  

SciTech Connect

This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal.

Beitel, G.A.

1996-10-01T23:59:59.000Z

16

EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46: Radioactive Waste Storage at Rocky Flats Environmental 46: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to convert buildings at the U.S. Department of Energy Rocky Flats Environmental Technology Site from their former uses to interim waste storage facilities in order to increase storage capacity for low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 9, 1996 EA-1146: Finding of No Significant Impact Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado

17

Record of Decision for the Solid Waste Program, Hanford Site, Richland, WA: Storage and Treatment of Low-Level Waste and Mixed Low-Level Waste; Disposal of Low-Level Waste and Mixed Low-Level Waste, and Storage, Processing, and Certification of Transuran  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 Federal Register / Vol. 69, No. 125 / Wednesday, June 30, 2004 / Notices mixed low-level waste, and TRU waste shipments using Year 2000 census data and an updated version of the RADTRAN computer code to calculate potential risks associated with shipping. This analysis included the route- specific impacts of transporting the West Jefferson TRU waste to Hanford and subsequent shipment of this waste to WIPP. Due to the additional TRU waste generated and identified at West Jefferson subsequent to DOE's September 6, 2002, decision, DOE's currently estimated total number of 18 shipments (3 completed RH-TRU waste shipments, 14 remaining RH-TRU waste shipments, and 1 remaining CH-TRU waste shipment) exceeds DOE's prior estimate of total shipments by 3. However, the currently estimated

18

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both radioactive materials  

E-Print Network (OSTI)

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both as noted on the list, you do not have a mixed waste and it may be managed as a normal radioactive waste radioactive waste after initially dating the container, the hold for decay time is extended, but you cannot

Straight, Aaron

19

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-01-01T23:59:59.000Z

20

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy`s (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency`s (EPA`s) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Mixed low-level waste form evaluation  

SciTech Connect

A scoping level evaluation of polyethylene encapsulation and vitreous waste forms for safe storage of mixed low-level waste was performed. Maximum permissible radionuclide concentrations were estimated for 15 indicator radionuclides disposed of at the Hanford and Savannah River sites with respect to protection of the groundwater and inadvertent intruder pathways. Nominal performance improvements of polyethylene and glass waste forms relative to grout are reported. These improvements in maximum permissible radionuclide concentrations depend strongly on the radionuclide of concern and pathway. Recommendations for future research include improving the current understanding of the performance of polymer waste forms, particularly macroencapsulation. To provide context to these estimates, the concentrations of radionuclides in treated DOE waste should be compared with the results of this study to determine required performance.

Pohl, P.I.; Cheng, Wu-Ching; Wheeler, T.; Waters, R.D.

1997-03-01T23:59:59.000Z

22

Nuclear waste storage bill passes Congress  

Science Journals Connector (OSTI)

Nuclear waste storage bill passes Congress ... The law sets up provisions to evaluate ways to store spent nuclear fuel and wastes. ...

1983-01-03T23:59:59.000Z

23

Method of preparing nuclear wastes for tansportation and interim storage  

DOE Patents (OSTI)

Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

Bandyopadhyay, Gautam (Naperville, IL); Galvin, Thomas M. (Darien, IL)

1984-01-01T23:59:59.000Z

24

Overcoming mixed waste management obstacles - A company wide approach  

SciTech Connect

The dual regulation of mixed waste by the Nuclear Regulatory Commission and the Environmental Protection Agency has significantly complicated the treatment, storage and disposal of this waste. Because of the limited treatment and disposal options available, facilities generating mixed waste are also being forced to acquire storage permits to meet requirements associated with the Resource Conservation and Recovery Act. Due to the burdens imposed by the regulatory climate, Entergy Operations has undertaken a proactive approach to managing its mixed waste. Their approach is company wide and simplistic in nature. Utilizing the peer groups to develop strategies and a company wide procedure for guidance on mixed waste activities, they have focused on areas where they have the most control and can achieve the greatest benefits from their efforts. A key aspect of the program includes training and employee awareness regarding mixed waste minimization practices. In addition, Entergy Operations is optimizing the implementation of regulatory provisions that facilitate more flexible management practices for mixed waste. This presentation focuses on the team approach to developing mixed waste managements programs and the utilization of innovative thinking and planning to minimize the regulatory burdens. It will also describe management practices and philosophies that have provided more flexibility in implementing a safe and effective company wide mixed waste management program.

Buckley, R.N. [Entergy Operations, Inc., Jackson, MS (United States)

1996-10-01T23:59:59.000Z

25

2401-W Waste storage building closure plan  

SciTech Connect

This plan describes the performance standards met and closure activities conducted to achieve clean closure of the 2401-W Waste Storage Building (2401-W) (Figure I). In August 1998, after the last waste container was removed from 2401-W, the U.S. Department of Energy, Richland Operations Office (DOE-RL) notified Washington State Department of Ecology (Ecology) in writing that the 2401-W would no longer receive waste and would be closed as a Resource Conservation and Recovery Act (RCRA) of 1976 treatment, storage, and/or disposal (TSD) unit (98-EAP-475). Pursuant to this notification, closure activities were conducted, as described in this plan, in accordance with Washington Administrative Code (WAC) 173-303-610 and completed on February 9, 1999. Ecology witnessed the closure activities. Consistent with clean closure, no postclosure activities will be necessary. Because 2401-W is a portion of the Central Waste Complex (CWC), these closure activities become the basis for removing this building from the CWC TSD unit boundary. The 2401-W is a pre-engineered steel building with a sealed concrete floor and a 15.2-centimeter concrete curb around the perimeter of the floor. This building operated from April 1988 until August 1998 storing non-liquid containerized mixed waste. All waste storage occurred indoors. No potential existed for 2401-W operations to have impacted soil. A review of operating records and interviews with cognizant operations personnel indicated that no waste spills occurred in this building (Appendix A). After all waste containers were removed, a radiation survey of the 2401-W floor for radiological release of the building was performed December 17, 1998, which identified no radiological contamination (Appendix B).

LUKE, S.M.

1999-07-15T23:59:59.000Z

26

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

Laycak, D T

2008-06-16T23:59:59.000Z

27

Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)  

SciTech Connect

This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cells 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas.

SIMMONS, F.M.

2000-03-29T23:59:59.000Z

28

The Mixed Waste Management Facility monthly report, March 1995  

SciTech Connect

This document presents details of the monthly activities of Lawrence Livermore National Laboratory in regards to the Mixed Waste Management Facility. Topics discussed include: quality assurance; regulations; program support; public participation; conceptual design; plant start-up; project management; feed preparation; molten salt, electrochemical, and wet oxidation; process transport and storage; and final waste forms.

Streit, R.D.

1995-04-01T23:59:59.000Z

29

Scanned Treatment of Mixed Incin. Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treatment of Mixed Incinerable Treatment of Mixed Incinerable Waste DOE/IG-0588 March 2003 Page 17 Page 18 Use of Treatment Resources Details of Finding ........................................................................1 Recommendations and Comments ............................................6 Appendices Prior Reports ...............................................................................8 Objective, Scope, and Methodology ...........................................9 Management Comments ...........................................................11 TREATMENT OF MIXED INCINERABLE WASTE TABLE OF CONTENTS Page 1 Waste Stored Rather Than Treated We found the Department of Energy (Department) was not treating its mixed incinerable solid waste expeditiously or cost-effectively.

30

Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste  

SciTech Connect

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

NONE

1994-12-31T23:59:59.000Z

31

Site Visit Report, Hanford Waste Encapsulation Storage Facility...  

Energy Savers (EERE)

Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 January 2011 Hanford...

32

Status Update: Extended Storage and Transportation Waste Confidence...  

Office of Environmental Management (EM)

Status Update: Extended Storage and Transportation Waste Confidence Status Update: Extended Storage and Transportation Waste Confidence Presentation made by David W. Pstrak for the...

33

Long-term nuclear waste storage urged  

Science Journals Connector (OSTI)

Long-term nuclear waste storage urged ... Nuclear waste should be stored for at least 100 years before being disposed of permanently, says a multinational committee from the International Council of Scientific Unions (ICSU). ... The recommendations of the ICSU Committee on Terrestrial Disposal of Nuclear Wastes, headed by geochemistry professor William S. Fyfe of the University of Western Ontario, were published in ... ...

1984-08-27T23:59:59.000Z

34

The Mixed Waste Management Facility monthly report August 1995  

SciTech Connect

The project is concerned with the design of a mixed waste facility to prepare solid and liquid wastes for processing by electrochemical oxidation, molten salt oxidation, wet oxidation, or UV photolysis. The facility will have a receiving and shipping unit, preparation and processing units, off-gas scrubbing, analytical services, water treatment, and transport and storage facilities. This monthly report give task summaries for 25 tasks which are part of the overall design effort.

Streit, R.D.

1995-09-01T23:59:59.000Z

35

Aluminum phosphate ceramics for waste storage  

SciTech Connect

The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

Wagh, Arun; Maloney, Martin D

2014-06-03T23:59:59.000Z

36

The mixed waste management facility  

SciTech Connect

During FY96, the Mixed Waste Management Facility (MWMF) Project has the following major objectives: (1) Complete Project Preliminary Design Review (PDR). (2) Complete final design (Title II) of MWMF major systems. (3) Coordinate all final interfaces with the Decontamination and Waste Treatment Facility (DWTF) for facility utilities and facility integration. (4) Begin long-lead procurements. (5) Issue Project Baseline Revision 2-Preliminary Design (PB2), modifying previous baselines per DOE-requested budget profiles and cost reduction. Delete Mediated Electrochemical Oxidation (MEO) as a treatment process for initial demonstration. (6) Complete submittal of, and ongoing support for, applications for air permit. (7) Begin detailed planning for start-up, activation, and operational interfaces with the Laboratory`s Hazardous Waste Management Division (HWM). In achieving these objectives during FY96, the Project will incorporate and implement recent DOE directives to maximize the cost savings associated with the DWTF/MWMF integration (initiated in PB1.2); to reduce FY96 new Budget Authority to {approximately}$10M (reduced from FY97 Validation of $15.3M); and to keep Project fiscal year funding requirements largely uniform at {approximately}$10M/yr. A revised Project Baseline (i.e., PB2), to be issued during the second quarter of FY96, will address the implementation and impact of this guidance from an overall Project viewpoint. For FY96, the impact of this guidance is that completion of final design has been delayed relative to previous baselines (resulting from the delay in the completion of preliminary design); ramp-up in staffing has been essentially eliminated; and procurements have been balanced through the Project to help balance budget needs to funding availability.

Streit, R.D.

1995-10-01T23:59:59.000Z

37

Experiences with treatment of mixed waste  

SciTech Connect

During its many years of research activities involving toxic chemicals and radioactive materials, Los Alamos National Laboratory (Los Alamos) has generated considerable amounts of waste. Much of this waste includes chemically hazardous components and radioisotopes. Los Alamos chose to use an electrochemical process for the treatment of many mixed waste components. The electro-chemical process, which the authors are developing, can treat a great variety of waste using one type of equipment built at a moderate expense. Such a process can extract heavy metals, destroy cyanides, dissolve contamination from surfaces, oxidize toxic organic compounds, separate salts into acids and bases, and reduce the nitrates. All this can be accomplished using the equipment and one crew of trained operating personnel. Results of a treatability study of chosen mixed wastes from Los Alamos Mixed Waste Inventory are presented. Using electrochemical methods cyanide and heavy metals bearing wastes were treated to below disposal limits.

Dziewinski, J.; Marczak, S.; Smith, W.H. [Los Alamos National Lab., NM (United States); Nuttall, E. [Univ. of New Mexico, Albuquerque, NM (United States). Chemical and Nuclear Engineering Dept.

1996-04-10T23:59:59.000Z

38

An Effective Waste Management Process for Segregation and Disposal of Legacy Mixed Waste at Sandia National Laboratories/New Mexico  

SciTech Connect

Sandia National Laboratories/New Mexico (SNL/NM) is a research and development facility that generates many highly diverse, low-volume mixed waste streams. Under the Federal Facility Compliance Act, SNL/NM must treat its mixed waste in storage to meet the Land Disposal Restrictions treatment standards. Since 1989, approximately 70 cubic meters (2500 cubic feet) of heterogeneous, poorly characterized and inventoried mixed waste was placed in storage that could not be treated as specified in the SNL/NM Site Treatment Plan. A process was created to sort the legacy waste into sixteen well- defined, properly characterized, and precisely inventoried mixed waste streams (Treatability Groups) and two low-level waste streams ready for treatment or disposal. From June 1995 through September 1996, the entire volume of this stored mixed waste was sorted and inventoried through this process. This process was planned to meet the technical requirements of the sorting operation and to identify and address the hazards this operation presented. The operations were routinely adapted to safely and efficiently handle a variety of waste matrices, hazards, and radiological conditions. This flexibility was accomplished through administrative and physical controls integrated into the sorting operations. Many Department of Energy facilities are currently facing the prospect of sorting, characterizing, and treating a large inventory of mixed waste. The process described in this paper is a proven method for preparing a diverse, heterogeneous mixed waste volume into segregated, characterized, inventoried, and documented waste streams ready for treatment or disposal.

Hallman, Anne K. [Sandia National Labs., Albuquerque, NM (United States); Meyer, Dann [IT Corporation, Albuquerque, NM (United States); Rellergert, Carla A. [Roy F. Weston, Inc., Albuquerque, NM (United States); Schriner, Joseph A. [Automated Solutions of Albuquerque, Albuquerque, NM (United States)

1998-06-01T23:59:59.000Z

39

An effective waste management process for segregation and disposal of legacy mixed waste at Sandia National Laboratories/New Mexico  

SciTech Connect

Sandia National Laboratories/New Mexico (SNL/NM) is a research and development facility that generates many highly diverse, low-volume mixed waste streams. Under the Federal Facility Compliance Act, SNL/NM must treat its mixed waste in storage to meet the Land Disposal Restrictions treatment standards. Since 1989, approximately 70 cubic meters (2,500 cubic feet) of heterogeneous, poorly characterized and inventoried mixed waste was placed in storage that could not be treated as specified in the SNL/NM Site Treatment Plan. A process was created to sort the legacy waste into sixteen well-defined, properly characterized, and accurately inventoried mixed waste streams (Treatability Groups) and two low-level waste streams ready for treatment or disposal. From June 1995 through September 1996, the entire volume of this stored mixed waste was sorted and inventoried. This process was planned to meet the technical requirements of the sorting operation and to identify and address the hazards this operation presented. The operations were routinely adapted to safely and efficiently handle a variety of waste matrices, hazards, and radiological conditions. This flexibility was accomplished through administrative and physical controls integrated into the sorting operations. Many Department of Energy facilities are currently facing the prospect of sorting, characterizing, and treating a large inventory of mixed waste. The process described in this report is a proven method for preparing a diverse, heterogeneous mixed waste volume into segregated, characterized, inventoried, and documented waste streams ready for treatment or disposal.

Hallman, A.K. [Sandia National Labs., Albuquerque, NM (United States); Meyer, D. [IT Corp., Albuquerque, NM (United States); Rellergert, C.A. [Roy F. Weston, Inc., Albuquerque, NM (United States); Schriner, J.A. [Automated Solutions of Albuquerque, Inc., NM (United States)

1998-04-01T23:59:59.000Z

40

The Mixed Waste Focus Area: Status and accomplishments  

SciTech Connect

The Mixed Waste Focus Area began operations in February of 1995. Its mission is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments, and regulators. The MWFA will develop, demonstrate, and deliver implementable technologies for treatment of mixed waste within the DOE complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation, and disposal. The MWFA`s mission arises from the Resources Conservation and Recovery Act (RCRA) as amended by the Federal Facility Compliance Act. Each DOE site facility that generates or stores mixed waste prepared a plan, the Site Treatment Plan, for developing treatment capacities and treating that waste. Agreements for each site were concluded with state regulators, resulting in Consent Orders providing enforceable milestones for achieving treatment of the waste. The paper discusses the implementation of the program, its status, accomplishments and goals for FY1996, and plans for 1997.

Conner, J.E. [Dept. of Energy, Idaho Falls, ID (United States). Idaho Operations Office; Williams, R.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Polyethylene macroencapsulation - mixed waste focus area. OST reference No. 30  

SciTech Connect

The lead waste inventory throughout the US Department of Energy (DOE) complex has been estimated between 17 million and 24 million kilograms. Decontamination of at least a portion of the lead is viable but at a substantial cost. Because of various problems with decontamination and its limited applicability and the lack of a treatment and disposal method, the current practice is indefinite storage, which is costly and often unacceptable to regulators. Macroencapsulation is an approved immobilization technology used to treat radioactively contaminated lead solids and mixed waste debris. (Mixed waste is waste materials containing both radioactive and hazardous components). DOE has funded development of a polyethylene extrusion macroencapsulation process at Brookhaven National Laboratory (BNL) that produces a durable, leach-resistant waste form. This innovative macroencapsulation technology uses commercially available single-crew extruders to melt, convey, and extrude molten polyethylene into a waste container in which mixed waste lead and debris are suspended or supported. After cooling to room temperature, the polyethylene forms a low-permeability barrier between the waste and the leaching media.

NONE

1998-02-01T23:59:59.000Z

42

SCFA lead lab technical assistance at Oak Ridge Y-12 national security complex: Evaluation of treatment and characterization alternatives of mixed waste soil and debris at disposal area remedial action DARA solids storage facility (SSF)  

E-Print Network (OSTI)

allowing the use of macroencapsulation technologies. SCFADemonstration of Macroencapsulation of Mixed Waste Debrisoff-site for treatment. Macroencapsulation will meet the LDR

Hazen, Terry

2002-01-01T23:59:59.000Z

43

Interim report: Waste management facilities cost information for mixed low-level waste  

SciTech Connect

This report contains preconceptual designs and planning level life-cycle cost estimates for treating alpha and nonalpha mixed low-level radioactive waste. This report contains information on twenty-seven treatment, storage, and disposal modules that can be integrated to develop total life cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of estimating data is also summarized in this report.

Feizollahi, F.; Shropshire, D.

1994-03-01T23:59:59.000Z

44

Waste Management Facilities cost information for mixed low-level waste. Revision 1  

SciTech Connect

This report contains preconceptual designs and planning level life-cycle cost estimates for managing mixed low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

Shropshire, D.; Sherick, M.; Biadgi, C.

1995-06-01T23:59:59.000Z

45

DOE intends to extend the Advanced Mixed Waste Treatment Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Mixed Waste Treatment Project contract for four months as competition for long-term contract continues. Scene from inside the Advanced Mixed Waste Treatment Facility....

46

Advanced Mixed Waste Treatment Project Achieves Impressive Safety...  

Office of Environmental Management (EM)

Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks June...

47

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

48

Hanford land disposal restrictions plan for mixed wastes  

SciTech Connect

Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

Not Available

1990-10-01T23:59:59.000Z

49

Hazardous Waste/Mixed Waste Treatment Building throughput study  

SciTech Connect

The hazardous waste/mixed waste HW/MW Treatment Building (TB) is the specified treatment location for solid hazardous waste/mixed waste at SRS. This report provides throughput information on the facility based on known and projected waste generation rates. The HW/MW TB will have an annual waste input for the first four years of approximately 38,000 ft{sup 3} and have an annual treated waste output of approximately 50,000 ft{sup 3}. After the first four years of operation it will have an annual waste input of approximately 16,000 ft{sup 3} and an annual waste output of approximately 18,000 ft. There are several waste streams that cannot be accurately predicted (e.g. environmental restoration, decommissioning, and decontamination). The equipment and process area sizing for the initial four years should allow excess processing capability for these poorly defined waste streams. A treatment process description and process flow of the waste is included to aid in understanding the computations of the throughput. A description of the treated wastes is also included.

England, J.L.; Kanzleiter, J.P.

1991-12-18T23:59:59.000Z

50

Thermal processing systems for TRU mixed waste  

SciTech Connect

This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

1992-01-01T23:59:59.000Z

51

Thermal processing systems for TRU mixed waste  

SciTech Connect

This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

1992-08-01T23:59:59.000Z

52

DOE mixed waste treatment capacity analysis  

SciTech Connect

This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

1994-06-01T23:59:59.000Z

53

1998 report on Hanford Site land disposal restrictions for mixed waste  

SciTech Connect

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities stored, generation rates, location and method of storage, an assessment of storage-unit compliance status, storage capacity, and the bases and assumptions used in making the estimates.

Black, D.G.

1998-04-10T23:59:59.000Z

54

Mixed Low-Level Radioactive Waste (MLLW) Primer  

SciTech Connect

This document presents a general overview of mixed low-level waste, including the regulatory definitions and drivers, the manner in which the various kinds of mixed waste are regulated, and a discussion of the waste treatment options.

W. E. Schwinkendorf

1999-04-01T23:59:59.000Z

55

States want say in nuclear waste storage  

Science Journals Connector (OSTI)

The states have put Congress and the executive branch on notice that they want a very active role in deciding where and how the nation's nuclear wastes will be stored. ... The 19-member State Planning Council on Radioactive Waste Management, appointed by President Carter in February 1980, in its interim report says that it is seeking a middle ground between giving states or Indian tribes a veto over the siting of long-term nuclear waste storage facilities and pre-emptive imposition of federal will. ...

1981-04-06T23:59:59.000Z

56

Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan  

SciTech Connect

This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the intention is to clean close WESF, postclosure activities are not applicable to this interim status closure plan. To clean close the storage unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or environmentally is impracticable, the interim status closure plan will be modified to address required postclosure activities. WESF stores cesium and strontium encapsulated salts. The encapsulated salts are stored in the pool cells or process cells located within 225B Facility. The dangerous waste is contained within a double containment system to preclude spills to the environment. In the unlikely event that a waste spill does occur outside the capsules, operating methods and administrative controls require that waste spills be cleaned up promptly and completely, and a notation made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

SIMMONS, F.M.

2000-12-01T23:59:59.000Z

57

Molten Salt Oxidation of mixed wastes  

SciTech Connect

Molten Salt Oxidation (MSO) can be characterized as a simple noncombustion process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous) wastes including chemical warfare agents, combustible solids, halogenated solvents, polychlorinated biphenyls, plutonium-contaminated solids, uranium-contaminated solvents and fission product-contaminated oil. The MSO destruction efficiency of the hazardous organic constituents in the wastes exceeds 99.9999%. Radioactive species, such as actinides and rare earth fission products, are retained in the salt bath. These elements can be recovered from the spent salt using conventional chemical processes, such as ion exchange, to render the salt as nonradioactive and nonhazardous. This paper reviews the principles and capabilities of MSO, previous mixed waste studies, and a new US Department of Energy program to demonstrate the process for the treatment of mixed wastes.

Gay, R.L.; Navratil, J.D.; Newman, C. [Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.

1993-12-31T23:59:59.000Z

58

Sulfur polymer cement for macroencapsulation of mixed waste debris  

SciTech Connect

In FY 1997, the US DOE Mixed Waste Focus Area (MWFA) sponsored a demonstration of the macroencapsulation of mixed waste debris using sulfur polymer cement (SPC). Two mixed wastes were tested--a D006 waste comprised of sheets of cadmium and a D008/D009 waste comprised of lead pipes and joints contaminated with mercury. The demonstration was successful in rendering these wastes compliant with Land Disposal Restrictions (LDR), thereby eliminating one Mixed Waste Inventory Report (MWIR) waste stream from the national inventory.

Mattus, C.H.

1998-06-01T23:59:59.000Z

59

Waste Encapsulation Storage Facility, January 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

February 11, 2011 February 11, 2011 Site Visit Report Waste Encapsulation Storage Facility, January 2011 INTRODUCTION This report documents the results of a review conducted by the Office of Health, Safety and Security (HSS) of the Waste Encapsulation Storage Facility (WESF) documented safety analysis (DSA) at the Hanford Site. During discussions with the U.S. Department of Energy Richland Operations Office (DOE- RL), the review of WESF was jointly selected by HSS and DOE-RL based on the high hazards of the facility and the need to periodically evaluate the facility and DSA by independent reviewers. SCOPE The scope of the review was to evaluate the WESF safety and support systems in detecting, preventing and mitigating analyzed events as described in the facility's DSA, PRC-EDC-10-45190, 2010, Executive

60

Waste Encapsulation Storage Facility, January 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 11, 2011 February 11, 2011 Site Visit Report Waste Encapsulation Storage Facility, January 2011 INTRODUCTION This report documents the results of a review conducted by the Office of Health, Safety and Security (HSS) of the Waste Encapsulation Storage Facility (WESF) documented safety analysis (DSA) at the Hanford Site. During discussions with the U.S. Department of Energy Richland Operations Office (DOE- RL), the review of WESF was jointly selected by HSS and DOE-RL based on the high hazards of the facility and the need to periodically evaluate the facility and DSA by independent reviewers. SCOPE The scope of the review was to evaluate the WESF safety and support systems in detecting, preventing and mitigating analyzed events as described in the facility's DSA, PRC-EDC-10-45190, 2010, Executive

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The mixed waste management facility. Monthly report  

SciTech Connect

This report presents a project summary for the Mixed Waste Management facility from the Lawrence Livermore National Laboratory for June, 1995. Key developments were the installation of the MSO Engineering Development Unit (EDU) which is on schedule for operation in July, and the first preliminary design review. This report also describes budgets and includes a milestone log of activities.

Streit, R.D.

1995-07-01T23:59:59.000Z

62

Hazardous and Radioactive Mixed Waste  

Directives, Delegations, and Requirements

To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

1982-12-31T23:59:59.000Z

63

Hydrogen storage systems from waste Mg alloys  

Science Journals Connector (OSTI)

Abstract The production cost of materials for hydrogen storage is one of the major issues to be addressed in order to consider them suitable for large scale applications. In the last decades several authors reported on the hydrogen sorption properties of Mg and Mg-based systems. In this work magnesium industrial wastes of AZ91 alloy and Mg-10 wt.% Gd alloy are used for the production of hydrogen storage materials. The hydrogen sorption properties of the alloys were investigated by means of volumetric technique, in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and calorimetric methods. The measured reversible hydrogen storage capacity for the alloys AZ91 and Mg-10 wt.% Gd are 4.2 and 5.8 wt.%, respectively. For the Mg-10 wt.% Gd alloy, the hydrogenated product was also successfully used as starting reactant for the synthesis of Mg(NH2)2 and as MgH2 substitute in the Reactive Hydride Composite (RHC) 2LiBH4 + MgH2. The results of this work demonstrate the concrete possibility to use Mg alloy wastes for hydrogen storage purposes.

C. Pistidda; N. Bergemann; J. Wurr; A. Rzeszutek; K.T. Møller; B.R.S. Hansen; S. Garroni; C. Horstmann; C. Milanese; A. Girella; O. Metz; K. Taube; T.R. Jensen; D. Thomas; H.P. Liermann; T. Klassen; M. Dornheim

2014-01-01T23:59:59.000Z

64

Remote waste handling and feed preparation for Mixed Waste Management  

SciTech Connect

The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory (LLNL) will serve as a national testbed to demonstrate mature mixed waste handling and treatment technologies in a complete front-end to back-end --facility (1). Remote operations, modular processing units and telerobotics for initial waste characterization, sorting and feed preparation have been demonstrated at the bench scale and have been selected for demonstration in MWMF. The goal of the Feed Preparation design team was to design and deploy a robust system that meets the initial waste preparation flexibility and productivity needs while providing a smooth upgrade path to incorporate technology advances as they occur. The selection of telerobotics for remote handling in MWMF was made based on a number of factors -- personnel protection, waste generation, maturity, cost, flexibility and extendibility. Modular processing units were selected to enable processing flexibility and facilitate reconfiguration as new treatment processes or waste streams are brought on line for demonstration. Modularity will be achieved through standard interfaces for mechanical attachment as well as process utilities, feeds and effluents. This will facilitate reconfiguration of contaminated systems without drilling, cutting or welding of contaminated materials and with a minimum of operator contact. Modular interfaces also provide a standard connection and disconnection method that can be engineered to allow convenient remote operation.

Couture, S.A.; Merrill, R.D. [Lawrence Livermore National Lab., CA (United States); Densley, P.J. [Science Applications International Corp., (United States)

1995-05-01T23:59:59.000Z

65

Independent Oversight Review, Advanced Mixed Waste Treatment Project- April 2013  

Energy.gov (U.S. Department of Energy (DOE))

Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of the Idaho Site

66

Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

SciTech Connect

DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

NONE

1994-06-01T23:59:59.000Z

67

Robotics for waste storage inspection: A user`s perspective  

SciTech Connect

Self-navigating robotic vehicles are now commercially available, and the technology supporting other important system components has also matured. Higher reliability and the obtainability of system support now make it practical to consider robotics as a way of addressing the growing operational requirement for the periodic inspection and maintenance of radioactive, hazardous, and mixed waste inventories. This paper describes preparations for the first field deployment of an autonomous container inspection robot at a Department of Energy (DOE) site. The Stored Waste Autonomous Mobile Inspector (SWAMI) is presently being completed by engineers at the Savannah River Technology Center (SRTC). It is a modified version of a commercially available robot. It has been outfitted with sensor suites and cognition that allow it to perform inspections of drum inventories and their storage facilities.

Hazen, F.B.

1994-06-23T23:59:59.000Z

68

Mixed Waste Management Facility Groundwater Monitoring Report  

SciTech Connect

During fourth quarter 1997, eleven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Chase, J.

1998-03-01T23:59:59.000Z

69

Nevada nuclear waste storage investigations: briefing book  

SciTech Connect

The Nevada Nuclear Waste Storage Investigations (NNWSI) are discussed briefly. The tuff in Yucca mountains being investigated as a possible repository host for radioactive wastes. The Spent Fuel Test-Climax began in the spring of 1980 in the northeastern Nevada Test Site about 1400 ft below the desert surface. The test has provided significant scientific and technical contributions in the following areas: heat impact on a large underground facility in a hard, brittle rock, impact of ventilation designs on repository heat removal, suitability and operational characteristics of instrumentation in a repository, impact of the mining procedures on underground openings and the surrounding rock, and heat and radiation effects on the physical, mechanical, and chemical properties of granite.

NONE

1983-03-01T23:59:59.000Z

70

The necessity for permanence : making a nuclear waste storage facility  

E-Print Network (OSTI)

The United States Department of Energy is proposing to build a nuclear waste storage facility in southern Nevada. This facility will be designed to last 10,000 years. It must prevent the waste from contaminating the ...

Stupay, Robert Irving

1991-01-01T23:59:59.000Z

71

Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program  

SciTech Connect

In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

1995-05-01T23:59:59.000Z

72

Idaho's Advanced Mixed Waste Treatment Project Details 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho's Advanced Mixed Waste Treatment Project Details 2013 Idaho's Advanced Mixed Waste Treatment Project Details 2013 Accomplishments Idaho's Advanced Mixed Waste Treatment Project Details 2013 Accomplishments December 24, 2013 - 12:00pm Addthis IDAHO FALLS, Idaho - EM and its contractor, Idaho Treatment Group (ITG), safely and compliantly met all of their production and shipping targets in the Advanced Mixed Waste Treatment Project (AMWTP) at the Idaho site in 2013. AMWTP's purpose is to safely process and dispose of transuranic (TRU) and mixed low-level waste (MLLW). The defense-related TRU waste is sent to the Waste Isolation Pilot Plant in New Mexico, and the MLLW is sent to other federal and commercial disposal sites. AMWTP is the largest shipper of contact-handled TRU waste to WIPP. In 2013, AMWTP sent 2,444.69 cubic

73

Idaho's Advanced Mixed Waste Treatment Project Details 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho's Advanced Mixed Waste Treatment Project Details 2013 Idaho's Advanced Mixed Waste Treatment Project Details 2013 Accomplishments Idaho's Advanced Mixed Waste Treatment Project Details 2013 Accomplishments December 24, 2013 - 12:00pm Addthis IDAHO FALLS, Idaho - EM and its contractor, Idaho Treatment Group (ITG), safely and compliantly met all of their production and shipping targets in the Advanced Mixed Waste Treatment Project (AMWTP) at the Idaho site in 2013. AMWTP's purpose is to safely process and dispose of transuranic (TRU) and mixed low-level waste (MLLW). The defense-related TRU waste is sent to the Waste Isolation Pilot Plant in New Mexico, and the MLLW is sent to other federal and commercial disposal sites. AMWTP is the largest shipper of contact-handled TRU waste to WIPP. In 2013, AMWTP sent 2,444.69 cubic

74

Advanced Mixed Waste Treatment Project Achieves Impressive Safety and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Mixed Waste Treatment Project Achieves Impressive Safety Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks June 26, 2013 - 12:00pm Addthis Only the 620 employees at EM’s Advanced Mixed Waste Treatment Project earned the right to this vanity plate after working more than 14 million hours without a lost-time injury and safely and compliantly shipping more than 50,000 cubic meters of transuranic and mixed low-level radioactive waste for disposal. Only the 620 employees at EM's Advanced Mixed Waste Treatment Project earned the right to this vanity plate after working more than 14 million hours without a lost-time injury and safely and compliantly shipping more than 50,000 cubic meters of transuranic and mixed low-level radioactive

75

Idaho's Advanced Mixed Waste Treatment Project Details 2013Accomplish...  

Energy Savers (EERE)

Articles A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Innovative Technique Accelerates Waste Disposal at Idaho Site Only the...

76

Preparing Class B and C Waste for Long Term Storage  

SciTech Connect

Commercial Nuclear Generating Stations outside of the Atlantic Compact will lose access to the Barnwell Disposal Facility in July of 2008. Many generators have constructed Interim On-Site Storage Buildings (IOSB) in which to store class B and C waste in the future as other permanent disposal options are developed. Until such time it is important for these generators to ensure class B and C waste generation is minimized and waste generated is packaged to facilitate long term storage. (authors)

Snyder, M.W. [Sacramento Municipal Utility District - Rancho Seco (United States)

2008-07-01T23:59:59.000Z

77

1996 Hanford site report on land disposal restrictions for mixed waste  

SciTech Connect

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

Black, D.G.

1996-04-01T23:59:59.000Z

78

1999 Report on Hanford Site land disposal restriction for mixed waste  

SciTech Connect

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

BLACK, D.G.

1999-03-25T23:59:59.000Z

79

The Mixed Waste Management Facility. Monthly report, January 1996  

SciTech Connect

This document presents information about the activities and costs of the Mixed Waste Management Facility for the month of January 1996.

Streit, R.D.

1996-02-01T23:59:59.000Z

80

Prospects for vitrification of mixed wastes at ANL-E  

SciTech Connect

This report summarizes a study evaluating the prospects for vitrification of some of the mixed wastes at ANL-E. This project can be justified on the following basis: Some of ANL-E`s mixed waste streams will be stabilized such that they can be treated as a low-level radioactive waste. The expected volume reduction that results during vitrification will significantly reduce the overall waste volume requiring disposal. Mixed-waste disposal options currently used by ANL-E may not be permissible in the near future without treatment technologies such as vitrification.

Mazer, J.; No, Hyo

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams  

SciTech Connect

This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)] [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States)] [Science Applications International Corp., Idaho Falls, ID (United States); Frazier, G. [Univ. of Tennessee, Knoxville, TN (United States)] [Univ. of Tennessee, Knoxville, TN (United States)

1994-01-01T23:59:59.000Z

82

RADIOACTIVE WASTE STORAGE IN MINED CAVERNS IN CRYSTALLINE ROCK-RESULTS OF FIELD INVESTIGATIONS AT STRIPA, SWEDEN  

E-Print Network (OSTI)

Waste Storage in Mined Caverns—Program Summary. LawrenceWASTE STORAGE IN MINED CAVERNS IN CRYSTALLINE ROCK- BESULTS

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

83

Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2A  

SciTech Connect

This permit application for the 616 Nonradioactive Dangerous Waste Storage Facility consists for 15 chapters. Topics of discussion include the following: facility description and general provisions; waste characteristics; process information; personnel training; reporting and record keeping; and certification.

Bowman, R.C.

1994-04-01T23:59:59.000Z

84

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-01-01T23:59:59.000Z

85

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE`s Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site`s waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-12-31T23:59:59.000Z

86

Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities  

SciTech Connect

In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

Sasser, K.

1994-06-01T23:59:59.000Z

87

Independent Oversight Review, Advanced Mixed Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review, Advanced Mixed Waste Treatment Review, Advanced Mixed Waste Treatment Project - April 2013 Independent Oversight Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of the Idaho Site This report documents an independent review of activity-level radiation protection program (RPP) implementation at the Advanced Mixed Waste Treatment Project (AMWTP) of the Idaho Site, as conducted by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight) within the Office of Health, Safety and Security (HSS). The review was performed by the HSS Office of Safety and Emergency Management Evaluations. The purpose of this Independent Oversight targeted review

88

Independent Oversight Review, Advanced Mixed Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Mixed Waste Treatment Advanced Mixed Waste Treatment Project - April 2013 Independent Oversight Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of the Idaho Site This report documents an independent review of activity-level radiation protection program (RPP) implementation at the Advanced Mixed Waste Treatment Project (AMWTP) of the Idaho Site, as conducted by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight) within the Office of Health, Safety and Security (HSS). The review was performed by the HSS Office of Safety and Emergency Management Evaluations. The purpose of this Independent Oversight targeted review

89

Mixed Waste Salt Encapsulation Using Polysiloxane - Final Report  

SciTech Connect

A proof-of-concept experimental study was performed to investigate the use of Orbit Technologies polysiloxane grouting material for encapsulation of U.S. Department of Energy mixed waste salts leading to a final waste form for disposal. Evaporator pond salt residues and other salt-like material contaminated with both radioactive isotopes and hazardous components are ubiquitous in the DOE complex and may exceed 250,000,000 kg of material. Current treatment involves mixing low waste percentages (less than 10% by mass salt) with cement or costly thermal treatment followed by cementation to the ash residue. The proposed technology involves simple mixing of the granular salt material (with relatively high waste loadings-greater than 50%) in a polysiloxane-based system that polymerizes to form a silicon-based polymer material. This study involved a mixing study to determine optimum waste loadings and compressive strengths of the resultant monoliths. Following the mixing study, durability testing was performed on promising waste forms. Leaching studies including the accelerated leach test and the toxicity characteristic leaching procedure were also performed on a high nitrate salt waste form. In addition to this testing, the waste form was examined by scanning electron microscope. Preliminary cost estimates for applying this technology to the DOE complex mixed waste salt problem is also given.

Miller, C.M.; Loomis, G.G.; Prewett, S.W.

1997-11-01T23:59:59.000Z

90

Monitoring of a RCRA Mixed Waste Management Facility  

SciTech Connect

Since startup of the Savannah River Site (SRS) in 1953, solid radioactive waste materials have been disposed of in a centrally located facility known as the Radioactive Waste Burial Grounds. These burial grounds comprise three distinct disposal sites which include the original set of burial trenches for solid low level radioactive wastes (643-G), the currently operating Low Level Radioactive Waste Disposal Facility (643-7G), and the Mixed Waste Management Facility (643-28G) located within 643-7G. The Mixed Waste Management Facility (MWMF) has been used to dispose of various low level radioactive waste materials just as the other portions of the Radioactive Waste Burial Grounds. Some of the waste materials in the MWMF have been classified as mixed waste under the Resource Conservation and Recovery Act (RCRA). Because the MWMF contains mixed wastes, a closure plan for the facility was developed and submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) to comply with RCRA requirements. This paper discusses the various aspects of the groundwater monitoring program developed to satisfy regulatory requirements for post-closure care and provides some initial results on groundwater quality.

Gordon, D.E.; Stevens, C.B.; Tuckfield, R.C.

1989-01-01T23:59:59.000Z

91

Monitoring of a RCRA Mixed Waste Management Facility  

SciTech Connect

Since startup of the Savannah River Site (SRS) in 1953, solid radioactive waste materials have been disposed of in a centrally located facility known as the Radioactive Waste Burial Grounds. These burial grounds comprise three distinct disposal sites which include the original set of burial trenches for solid low level radioactive wastes (643-G), the currently operating Low Level Radioactive Waste Disposal Facility (643-7G), and the Mixed Waste Management Facility (643-28G) located within 643-7G. The Mixed Waste Management Facility (MWMF) has been used to dispose of various low level radioactive waste materials just as the other portions of the Radioactive Waste Burial Grounds. Some of the waste materials in the MWMF have been classified as mixed waste under the Resource Conservation and Recovery Act (RCRA). Because the MWMF contains mixed wastes, a closure plan for the facility was developed and submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) to comply with RCRA requirements. This paper discusses the various aspects of the groundwater monitoring program developed to satisfy regulatory requirements for post-closure care and provides some initial results on groundwater quality.

Gordon, D.E.; Stevens, C.B.; Tuckfield, R.C.

1989-12-31T23:59:59.000Z

92

SWEDISH-AMERICAN COOPERATIVE PROGRAM ON RADIOACTIVE WASTE STORAGE IN MINED CAVERNS. PROGRAM SUMMARY  

E-Print Network (OSTI)

WASTE STORAGE IN MINED CAVERNS by P. A. Witherspoon LawrenceWASTE STORAGE IN MINED CAVERNS INTRODUCTION Final and safeon the possibility of using mined caverns in salt as waste

Witherspoon, P.A.

2011-01-01T23:59:59.000Z

93

The Mixed Waste Management Facility. Preliminary design review  

SciTech Connect

This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

NONE

1995-12-31T23:59:59.000Z

94

1997 Hanford site report on land disposal restrictions for mixed waste  

SciTech Connect

The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tn-Party Agreement) Milestone M-26-00 (Ecology et al, 1989). The text of this milestone is below. ''LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the U.S. Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration of other action plan milestones and will not become effective until approved by the U.S. Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: Waste characterization plan; Storage report; Treatment report; Treatment plan; Waste minimization plan; A schedule depicting the events necessary to achieve full compliance with LDR requirements; and A process for establishing interim milestones.

Black, D.G.

1997-04-07T23:59:59.000Z

95

Waste Panel Expected to Back Interim Storage  

Science Journals Connector (OSTI)

...a nuclear waste repository at Yucca Mountain, Nevada, last year, President...Then it would be shipped to Yucca Mountain, transferred into steel cylinders...licensed. One reason was that Yucca Mountain had to cool waste before permanently...

Eli Kintisch

2011-07-08T23:59:59.000Z

96

Waste Encapsulation and Storage Facility - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

of heat were removed from the high level waste tanks at Hanford. Called cesium and strontium, these elements had to be taken out of single shell waste tanks to reduce the...

97

Update on intrusive characterization of mixed contact-handled transuranic waste at Argonne-West  

SciTech Connect

Argonne National Laboratory and Lockheed Martin Idaho Technologies Company have jointly participated in the Department of Energy`s (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Program since 1990. Intrusive examinations have been conducted in the Waste Characterization Area, located at Argonne-West in Idaho Falls, Idaho, on over 200 drums of mixed contact-handled transuranic waste. This is double the number of drums characterized since the last update at the 1995 Waste Management Conference. These examinations have provided waste characterization information that supports performance assessment of WIPP and that supports Lockheed`s compliance with the Resource Conservation and Recovery Act. Operating philosophies and corresponding regulatory permits have been broadened to provide greater flexibility and capability for waste characterization, such as the provision for minor treatments like absorption, neutralization, stabilization, and amalgamation. This paper provides an update on Argonne`s intrusive characterization permits, procedures, results, and lessons learned. Other DOE sites that must deal with mixed contact-handled transuranic waste have initiated detailed planning for characterization of their own waste. The information presented herein could aid these other storage and generator sites in further development of their characterization efforts.

Dwight, C.C.; Jensen, B.A.; Bryngelson, C.D.; Duncan, D.S.

1997-02-03T23:59:59.000Z

98

Polymer solidification of mixed wastes at the Rocky Flats Plant  

SciTech Connect

The Rocky Flats Plant is pursuing polymer solidification as a viable treatment option for several mixed waste streams that are subject to land disposal restrictions within the Resource Conservation and Recovery Act provisions. Tests completed to date using both surrogate and actual wastes indicate that polyethylene microencapsulation is a viable treatment option for several mixed wastes at the Rocky Flats Plant, including nitrate salts, sludges, and secondary wastes such as ash. Treatability studies conducted on actual salt waste demonstrated that the process is capable of producing waste forms that comply with all applicable regulatory criteria, including the Toxicity Characteristic Leaching Procedure. Tests have also been conducted to evaluate the feasibility of macroencapsulating certain debris wastes in polymers. Several methods and plastics have been tested for macroencapsulation, including post-consumer recycle and regrind polyethylene.

Faucette, A.M.; Logsdon, B.W.; Lucerna, J.J.; Yudnich, R.J.

1994-02-01T23:59:59.000Z

99

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-01-01T23:59:59.000Z

100

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

andradionuclide mixed wastes: Topics by E-print Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Steam -> Electr. & Heat Av 50 Range 47-80 Landfill Gas MSW or Mixed residual waste LFG Biogas -> Electr. (and Heat) 100 Solid Recovered Fuel Sorted Biomass Energy Plants...

102

Permitting plan for the high-level waste interim storage  

SciTech Connect

This document addresses the environmental permitting requirements for the transportation and interim storage of solidified high-level waste (HLW) produced during Phase 1 of the Hanford Site privatization effort. Solidified HLW consists of canisters containing vitrified HLW (glass) and containers that hold cesium separated during low-level waste pretreatment. The glass canisters and cesium containers will be transported to the Canister Storage Building (CSB) in a U.S. Department of Energy (DOE)-provided transportation cask via diesel-powered tractor trailer. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage of Tank Waste Remediation Systems (TWRS) immobilized HLW (IHLW) and other canistered high-level waste forms; and (2) interim storage and disposal of TWRS immobilized low-activity tank waste (ILAW). An environmental requirements checklist and narrative was developed to identify the permitting path forward for the HLW interim storage (HLWIS) project (See Appendix B). This permitting plan will follow the permitting logic developed in that checklist.

Deffenbaugh, M.L.

1997-04-23T23:59:59.000Z

103

TRU waste certification compliance requirements for contact-handled wastes retrieved from storage for shipment to the WIPP  

SciTech Connect

Compliance requirements are presented for certifying that unclassified, contact-handled (CH) transuranic (TRU) solid wastes retrieved from storage at DOE sites meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). All applicable DOE Orders must continue to be met. The compliance requirements for certified waste retrieved from certified storage are addressed in another document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste.

Not Available

1982-09-01T23:59:59.000Z

104

Savannah River Site mixed waste Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and reference document: Revision 2  

SciTech Connect

The DOE is required by the Resource Conservation and Recovery Act to prepare site treatment plans describing the development of treatment capacities and technologies for treating mixed waste. This proposed plan contains Savannah River Site`s preferred options and schedules for constructing new facilities, and otherwise obtaining treatment for mixed wastes. The proposed plan consists of 2 volumes. Volume 1, Compliance Plan, identifies the capacity to be developed and the schedules as required. Volume 2, Background, provides a detailed discussion of the preferred options with technical basis, plus a description of the specific waste streams. Chapters are: Introduction; Methodology; Mixed low level waste streams; Mixed transuranic waste; High level waste; Future generation of mixed waste streams; Storage; Process for evaluation of disposal issues in support of the site treatment plans discussions; Treatment facilities and treatment technologies; Offsite waste streams for which SRS treatment is the Preferred Option (Naval reactor wastes); Summary information; and Acronyms and glossary. This revision does not contain the complete revised report, but only those pages that have been revised.

Helmich, E.; Noller, D.K.; Wierzbicki, K.S.; Bailey, L.L.

1995-07-13T23:59:59.000Z

105

United States National Waste Terminal Storage argillaceous rock studies  

SciTech Connect

The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock.

Brunton, G.D.

1981-01-01T23:59:59.000Z

106

Macroencapsulated and elemental lead mixed waste sites report  

SciTech Connect

The purpose of this study was to compile a list of the Macroencapsulated (MACRO) and Elemental Lead (EL) Mixed Wastes sites that will be treated and require disposal at the Nevada Test Site within the next five to ten years. The five sites selected were: Hanford Site, Richland, Washington; Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho; Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee; Rocky Flats Environmental Technology (RF), Golden, Colorado; and Savannah River (SRS), Charleston, South Carolina. A summary of total lead mixed waste forms at the five selected DOE sites is described in Table E-1. This table provides a summary of total waste and grand total of the current inventory and five-year projected generation of lead mixed waste for each site. This report provides conclusions and recommendations for further investigations. The major conclusions are: (1) the quantity of lead mixed current inventory waste is 500.1 m{sup 3} located at the INEL, and (2) the five sites contain several other waste types contaminated with mercury, organics, heavy metal solids, and mixed sludges.

Kalia, A.; Jacobson, R.

1996-09-01T23:59:59.000Z

107

Chemical treatment of mixed waste at the FEMP  

SciTech Connect

The Chemical Treatment Project is one in a series of projects implemented by the Fernald Environmental Management Project (FEMP) to treat mixed waste. The projects were initiated to address concerns regarding treatment capacity for mixed waste and to comply with requirements established by the Federal Facility Compliance Act. The Chemical Treatment Project is designed to utilize commercially available mobile technologies to perform treatment at the FEMP site. The waste in the Project consists of a variety of waste types with a wide range of hazards and physical characteristics. The treatment processes to be established for the waste types will be developed by a systematic approach including waste streams evaluation, projectization of the waste streams, and categorization of the stream. This information is utilized to determine the proper train of treatment which will be required to lead the waste to its final destination (i.e., disposal). This approach allows flexibility to manage a wide variety of waste in a cheaper, faster manner than designing a single treatment technology diverse enough to manage all the waste streams.

Honigford, L.; Sattler, J.; Dilday, D.; Cook, D.

1996-05-01T23:59:59.000Z

108

Chemical treatment of mixed waste can be done.....Today!  

SciTech Connect

The Chemical Treatment Project is one in a series of projects implemented by the FEMP to treat mixed waste. The projects were initiated to address concerns regarding treatment capacity for mixed waste and to comply with requirements established by the Federal Facility Compliance Act. The Chemical Treatment Project is designed to utilize commercially available mobile technologies to perform treatment at the FEMP site. The waste in the Project consists of a variety of waste types with a wide range of hazards and physical characteristics. The treatment processes to be established for the waste types will be developed by a systematic approach including waste streams evaluation, projectization of the waste streams, and categorization of the stream. This information is utilized to determine the proper train of treatment which will be required to lead the waste to its final destination (i.e., disposal). This approach allows flexibility to manage a wide variety of waste in a cheaper, faster manner than designing a single treatment technology diverse enough to manage all the waste streams.

Honigford, L.; Dilday, D.; Cook, D. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Sattler, J. [USDOE, Washington, DC (United States)

1996-02-01T23:59:59.000Z

109

Waste-heat recovery in batch processes using heat storage  

SciTech Connect

The waste-heat recovery in batch processes has been studied using the pinch-point method. The aim of the work has been to investigate theoretical and practical approaches to the design of heat-exchanger networks, including heat storage, for waste-heat recovery in batch processes. The study is limited to the incorporation of energy-storage systems based on fixed-temperature variable-mass stores. The background for preferring this to the alternatives (variable-temperature fixed-mass and constant-mass constant-temperature (latent-heat) stores) is given. It is shown that the maximum energy-saving targets as calculated by the pinch-point method (time average model, TAM) can be achieved by locating energy stores at either end of each process stream. This theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. A simple procedure for determining a number of heat-storage tanks sufficient to achieve the maximum energy-saving targets as calculated by the pinch-point method is described. This procedure relies on combinatorial considerations, and could therefore be labeled the combinatorial method for incorporation of heat storage in heat-exchanger networks. Qualitative arguments justifying the procedure are presented. For simple systems, waste-heat recovery systems with only three heat-storage temperatures (a hot storage, a cold storage, and a heat store at the pinch temperature) often can achieve the maximum energy-saving targets. Through case studies, six of which are presented, it is found that a theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. The description of these six cases is intended to be sufficiently detailed to serve as benchmark cases for development of alternative methods.

Stoltze, S.; Mikkelsen, J.; Lorentzen, B.; Petersen, P.M.; Qvale, B. [Technical Univ. of Denmark, Lyngby (Denmark). Lab. for Energetics

1995-06-01T23:59:59.000Z

110

1993 report on Hanford Site land disposal restrictions for mixed wastes  

SciTech Connect

Since the early 1940s, the contractors at the Hanford Site have been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste (RMW). This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976{sup 2}(RCRA) and Atomic Energy Act{sup 3}. This report covers mixed waste only. Hazardous waste that is not contaminated with radionuclides is not addressed in this report. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order{sup 1} (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for RMW. This report is the third update of the plan first issued in 1990. The Tri-Party Agreement requires, and the baseline plan and annual update reports provide, the information that follows: Waste characterization information; storage data; treatment information; waste reduction information; schedule; and progress.

Black, D.

1993-04-01T23:59:59.000Z

111

An Adaptive, Consent-Based Path to Nuclear Waste Storage and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Adaptive, Consent-Based Path to Nuclear Waste Storage and Disposal Solutions An Adaptive, Consent-Based Path to Nuclear Waste Storage and Disposal Solutions February 12, 2014 -...

112

Impact of earthen waste storage on nitrate concentration of surface water  

Science Journals Connector (OSTI)

One of the major sources of nitrogen is animal waste stored in earthen waste storage or unlined storage ponds. Quantifying seepage and mass transport of ... is the first critical step in estimating the long-term ...

Tasuku Kato; Motoko Shimura

2007-09-01T23:59:59.000Z

113

U.S. Department of Energy Awards Contracts for Waste Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contracts for Waste Storage Canisters for Yucca Mountain U.S. Department of Energy Awards Contracts for Waste Storage Canisters for Yucca Mountain May 21, 2008 - 12:00pm Addthis...

114

Demonstration of Mixed Waste Debris Macroencapsulation Using Sulfur Polymer Cement  

SciTech Connect

This report covers work performed during FY 1997 as part of the Evaluation of Sulfur Polymer Cement Fast-Track System Project. The project is in support of the ``Mercury Working Group/Mercury Treatment Demonstrations - Oak Ridge`` and is described in technical task plan (TTP) OR-16MW-61. Macroencapsulation is the treatment technology required for debris by the U.S. Environmental Protection Agency Land Disposal Restrictions (LDR) under the Resource Conservation and Recovery Act. Based upon the results of previous work performed at Oak Ridge, the concept of using sulfur polymer cement (SPC) for this purpose was submitted to the Mixed Waste Focus Area (MWFA). Because of the promising properties of the material, the MWFA accepted this Quick Win project, which was to demonstrate the feasibility of macroencapsulation of actual mixed waste debris stored on the Oak Ridge Reservation. The waste acceptance criteria from Envirocare, Utah, were chosen as a standard for the determination of the final waste form produced. During this demonstration, it was shown that SPC was a good candidate for macroencapsulation of mixed waste debris, especially when the debris pieces were dry. The matrix was found to be quite easy to use and, once the optimum operating conditions were identified, very straightforward to replicate for batch treatment. The demonstration was able to render LDR compliant more than 400 kg of mixed wastes stored at the Oak Ridge National Laboratory.

Mattus, C.H.

1998-07-01T23:59:59.000Z

115

Effects of simulant mixed waste on EPDM and butyl rubber  

SciTech Connect

The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F{trademark}), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste.

Nigrey, P.J.; Dickens, T.G.

1997-11-01T23:59:59.000Z

116

EVALUATION OF HDPE CONTAINERS FOR MACROENCAPSULATION OF MIXED WASTE DEBRIS  

SciTech Connect

Macroencapsulation is currently available at facilities permitted by the U.S. Environmental Protection agency for the treatment of radioactively contaminated hazardous waste. The U.S. Department of Energy is evaluating the use of high-density polyethylene containers to provide a simpler means of meeting macroencapsulation requirements. Macroencapsulation is used for the purpose of isolating waste from the disposal environment in order to meet the Land Disposal Restriction treatment standards for debris-like waste. The containers being evaluated have the potential of providing a long-term reduction in the leachability and subsequent mobility of both the hazardous and radioactive contaminants in this waste while at the same allowing treatment by the generator as the waste is being generated. While the testing discussed in this paper shows that further developmental work is necessary, these tests also indicate that these containers have the potential to reduce the cost, schedule, and complexity of meeting the treatment standard for mixed waste debris.

Eaton, David; Carlson, Tim; Gardner, Brad; Bushmaker, Robert; Battleson, Dan; Shaw, Mark; Bierce, Lawrence

2003-02-27T23:59:59.000Z

117

Review of private sector treatment, storage, and disposal capacity for radioactive waste. Revision 1  

SciTech Connect

This report is an update of a report that summarized the current and near-term commercial and disposal of radioactive and mixed waste. This report was capacity for the treatment, storage, dating and written for the Idaho National Engineering Laboratory (INEL) with the objective of updating and expanding the report entitled ``Review of Private Sector Treatment, Storage, and Disposal Capacity for Radioactive Waste``, (INEL-95/0020, January 1995). The capacity to process radioactively-contaminated protective clothing and/or respirators was added to the list of private sector capabilities to be assessed. Of the 20 companies surveyed in the previous report, 14 responded to the request for additional information, five did not respond, and one asked to be deleted from the survey. One additional company was identified as being capable of performing LLMW treatability studies and six were identified as providers of laundering services for radioactively-contaminated protective clothing and/or respirators.

Smith, M.; Harris, J.G.; Moore-Mayne, S.; Mayes, R.; Naretto, C.

1995-04-14T23:59:59.000Z

118

1995 Report on Hanford site land disposal restrictions for mixed waste  

SciTech Connect

This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.

Black, D.G.

1995-04-01T23:59:59.000Z

119

Seismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain, Nevada  

E-Print Network (OSTI)

was heated to replicate the effects of long-term storage of decaying nuclear waste and to study the effects for the long- term storage of high-level nuclear waste from reactors and decom- missioned atomic weaponsSeismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain

Snieder, Roel

120

Thermal and chemical remediation of mixed wastes  

DOE Patents (OSTI)

A process is described for treating organic waste materials without venting gaseous emissions to the atmosphere which includes oxidizing the organic waste materials at an elevated temperature not less than about 500 C with a gas having an oxygen content in the range of from about 20% to about 70% to produce an oxidation product containing CO{sub 2} gas. The gas is then filtered to remove particulates, and then contacted with an aqueous absorbent solution of alkali metal carbonates or alkanolamines to absorb a portion of the CO{sub 2} gas from the particulate-free oxidation product. The CO{sub 2} absorbent is thereafter separated for further processing. A process and system are also disclosed in which the waste materials are contacted with a reactive medium such as lime and product treatment as described. 8 figs.

Nelson, P.A.; Swift, W.M.

1997-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Thermal and chemical remediation of mixed wastes  

DOE Patents (OSTI)

A process for treating organic waste materials without venting gaseous emissions to the atmosphere which includes oxidizing the organic waste materials at an elevated temperature not less than about 500.degree. C. with a gas having an oxygen content in the range of from about 20% to about 70% to produce an oxidation product containing CO.sub.2 gas. The gas is then filtered to remove particulates, and then contacted with an aqueous absorbent solution of alkali metal carbonates or alkanolamines to absorb a portion of the CO.sub.2 gas from the particulate-free oxidation product. The CO.sub.2 absorbent is thereafter separated for further processing. A process and system are also disclosed in which the waste materials are contacted with a reactive medium such as lime and product treatment as described.

Nelson, Paul A. (Wheaton, IL); Swift, William M. (Downers Grove, IL)

1997-01-01T23:59:59.000Z

122

Process development for remote-handled mixed-waste treatment  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) is developing a treatment process for remote-handled (RH) liquid transuranic mixed waste governed by the concept of minimizing the volume of waste requiring disposal. This task is to be accomplished by decontaminating the bulk components so the process effluent can be disposed with less risk and expense. Practical processes have been demonstrated on the laboratory scale for removing cesium 137 and strontium 90 isotopes from the waste, generating a concentrated waste volume, and rendering the bulk of the waste nearly radiation free for downstream processing. The process is projected to give decontamination factors of 10{sup 4} for cesium and 10{sup 3} for strontium. Because of the extent of decontamination, downstream processing will be contact handled. The transuranic, radioactive fraction of the mixed waste stream will be solidified using a thin-film evaporator and/or microwave solidification system. Resultant solidified waste will be disposed at the Waste Isolation Pilot Plant (WIPP). 8 refs., 2 figs., 3 tabs.

Berry, J.B.; Campbell, D.O.; Lee, D.D.; White, T.L.

1990-01-01T23:59:59.000Z

123

Extended storage of low-level radioactive waste: an update  

SciTech Connect

If a state or regional compact does not have adequate disposal capacity for low-level radioactive waste (LLRW), then extended storage of certain LLRW may be necessary. The Nuclear Regulatory Commission (NRC) has contracted with Brookhaven National Laboratory to address the technical issues of extended storage. The dual objectives of this study are (1) to provide practical technical assessments for NRC to consider in evaluating specific proposals for extended storage and (2) to help ensure adequate consideration by NRC, Agreement States, and licensees of potential problems that may arise from existing or proposed extended storage practices. The circumstances under which extended storage of LLRW would most likely result in problems during or after the extended storage period are considered and possible mitigative measures to minimize these problems are discussed. These potential problem areas include: (1) the degradation of carbon steel and polyethylene containers during storage and the subsequent need for repackaging (resulting in increased occupational exposure), (2) the generation of hazardous gases during storage, and (3) biodegradative processes in LLRW.

Siskind, B.

1986-01-01T23:59:59.000Z

124

METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect

This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard.

FOWLER KD

2007-12-27T23:59:59.000Z

125

METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect

The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard. This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 8 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs.

WEBER RA

2009-01-16T23:59:59.000Z

126

Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes  

SciTech Connect

The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

Harmon, K.M.; Johnson, A.B. Jr.

1984-04-01T23:59:59.000Z

127

Benchmarking of MCNP for calculating dose rates at an interim storage facility for nuclear waste  

Science Journals Connector (OSTI)

......an interim storage facility for nuclear waste Burkhard Heuel-Fabianek Ralf...Research Centre Julich, Germany, nuclear waste is stored in drums and other vessels...Research Centre Julich (FZJ) nuclear waste is generated, which has to be......

Burkhard Heuel-Fabianek; Ralf Hille

2005-12-20T23:59:59.000Z

128

Evaluation of existing Hanford buildings for the storage of solid wastes  

SciTech Connect

Existing storage space at the Hanford Site for solid low-level mixed waste (LLMW) will be filled up by 1997. Westinghouse Hanford Company (WHC) has initiated the project funding cycle for additional storage space to assure that new facilities are available when needed. In the course of considering the funding request, the US Department of Energy (DOE) has asked WHC to identify and review any existing Hanford Site facilities that could be modified and used as an alternative to constructing the proposed W-112 Project. This report documents the results of that review. In summary, no buildings exist at the Hanford Site that can be utilized for storage of solid LLMW on a cost-effective basis when compared to new construction. The nearest approach to an economically sensible conversion would involve upgrade of 100,000 ft{sup 2} of space in the 2101-M Building in the 200 East Area. Here, modified storage space is estimated to cost about $106 per ft{sup 2} while new construction will cost about $50 per ft{sup 2}. Construction costs for the waste storage portion of the W-112 Project are comparable with W-016 Project actual costs, with escalation considered. Details of the cost evaluation for this building and for other selected candidate facilities are presented in this report. All comparisons presented address the potential decontamination and decommissioning (D&D) cost avoidances realized by using existing facilities.

Carlson, M.C.; Hodgson, R.D.; Sabin, J.C.

1993-05-01T23:59:59.000Z

129

1994 Report on Hanford Site land disposal restrictions for mixed waste  

SciTech Connect

The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) Milestone M-26-00 (Ecology et al. 1992). The text of this milestone is below. LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the US Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration at other action plan milestones and will not become effective until approved by the US Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: waste characterization plan; storage report; treatment report; treatment plan; waste minimization plan; a schedule depicting the events necessary to achieve full compliance with LDR requirements; a process for establishing interim milestones. The original plan was published in October 1990. This is the fourth of a series of annual updates required by Tri-Party Agreement Milestone M-26-01. A Tri-Party Agreement change request approved in March 1992 changed the annual due date from October to April and consolidated this report with a similar one prepared under Milestone M-25-00. The reporting period for this report is from April 1, 1993, to March 31, 1994.

Black, D.G.

1994-04-01T23:59:59.000Z

130

Treatment of Mixed Wastes via Fixed Bed Gasification  

SciTech Connect

This report outlines the details of research performed under USDOE Cooperative Agreement DE-FC21-96MC33258 to evaluate the ChemChar hazardous waste system for the destruction of mixed wastes, defined as those that contain both RCRA-regulated haz- ardous constituents and radionuclides. The ChemChar gasification system uses a granular carbonaceous char matrix to immobilize wastes and feed them into the gasifier. In the gasifier wastes are subjected to high temperature reducing conditions, which destroy the organic constituents and immobilize radionuclides on the regenerated char. Only about 10 percent of the char is consumed on each pass through the gasifier, and the regenerated char can be used to treat additional wastes. When tested on a 4-inch diameter scale with a continuous feed unit as part of this research, the ChemChar gasification system was found to be effective in destroying RCRA surrogate organic wastes (chlorobenzene, dichloroben- zene, and napht.halene) while retaining on the char RCRA heavy metals (chromium, nickel, lead, and cadmium) as well as a fission product surrogate (cesium) and a plutonium surrogate (cerium). No generation of harmful byproducts was observed. This report describes the design and testing of the ChemChar gasification system and gives the operating procedures to be followed in using the system safely and effectively for mixed waste treatment.

None

1998-10-28T23:59:59.000Z

131

Stabilization of a mixed waste sludge for land disposal  

SciTech Connect

A solidification and stabilization technique was developed for a chemically complex mixed waste sludge containing nitrate processing wastes, sewage sludge and electroplating wastewaters, among other wastes. The sludge is originally from a solar evaporation pond and has high concentrations of nitrate salts; cadmium, chromium, and nickel concentrations of concern; and low levels of organic constituents and alpha and beta emitters. Sulfide reduction of nitrate and precipitation of metallic species, followed by evaporation to dryness and solidification of the dry sludge in recycled high density polyethylene with added lime was determined to be a satisfactory preparation for land disposal in a mixed waste repository. The application of post-consumer polyethylene has the added benefit of utilizing another problem-causing waste product. A modified Toxicity Characteristic Leaching Procedure was used to determine required treatment chemical dosages and treatment effectiveness. The waste complexity prohibited use of standard chemical equilibrium methods for prediction of reaction products during treatment. Waste characterization followed by determination of thermodynamic feasibility of oxidation and reduction products. These calculations were shown to be accurate in laboratory testing. 13 refs., 3 figs., 2 tabs.

Powers, S.E.; Zander, A.K. [Clarkson Univ., Potsdam, NY (United States)

1996-12-31T23:59:59.000Z

132

Hanford facility dangerous waste permit application, PUREX storage tunnels  

SciTech Connect

The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the PUREX Storage Tunnels permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the PUREX Storage Tunnels permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this PUREX Storage Tunnels permit application documentation is current as of April 1997.

Price, S.M.

1997-09-08T23:59:59.000Z

133

Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL  

SciTech Connect

In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste.

Not Available

1991-09-01T23:59:59.000Z

134

The mixed waste management facility, FY95 plan  

SciTech Connect

This document contains the Fiscal Year 1995 Plan for the Mixed Waste Management Facility (MWMF) at Lawrence Livermore National Laboratory. Major objectives to be completed during FY 1995 for the MWMF project are listed and described. This report also contains a budget plan, project task summaries, a milestone control log, and a responsibility assignment matrix for the MWMF project.

Streit, R.

1994-12-01T23:59:59.000Z

135

Steam Reforming of Low-Level Mixed Waste  

SciTech Connect

Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

None

1998-01-01T23:59:59.000Z

136

Pipe overpack container for trasuranic waste storage and shipment  

DOE Patents (OSTI)

A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

Geinitz, Richard R. (Arvada, CO); Thorp, Donald T. (Broomfield, CO); Rivera, Michael A. (Boulder, CO)

1999-01-01T23:59:59.000Z

137

Mixed Waste Management Facility groundwater monitoring report, First quarter 1994  

SciTech Connect

During first quarter 1994, nine constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, the proposed Hazardous Waste/Mixed Waste Disposal Vaults, and the F-Area Sewage Sludge Application Site. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene (vinyl chloride), copper, 1,1-dichloroethylene, lead, mercury, nonvolatile beta, or tetrachloroethylene also exceeded standards in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells and in one Aquifer Unit IIA (Congaree) well. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Not Available

1994-06-01T23:59:59.000Z

138

Macroencapsulation of mixed waste debris at the Hanford Nuclear Reservation -- Final project report by AST Environmental Services, LLC  

SciTech Connect

This report summarizes the results of a full-scale demonstration of a high density polyethylene (HDPE) package, manufactured by Arrow Construction, Inc. of Montgomery, Alabama. The HDPE package, called ARROW-PAK, was designed and patented by Arrow as both a method to macroencapsulation of radioactively contaminated lead and as an improved form of waste package for treatment and interim and final storage and/or disposal of drums of mixed waste. Mixed waste is waste that is radioactive, and meets the criteria established by the United States Environmental Protection Agency (US EPA) for a hazardous material. Results from previous testing conducted for the Department of Energy (DOE) at the Idaho National Engineering Laboratory in 1994 found that the ARROW-PAK fabrication process produces an HDPE package that passes all helium leak tests and drop tests, and is fabricated with materials impervious to the types of environmental factors encountered during the lifetime of the ARROW-PAK, estimated to be from 100 to 300 years. Arrow Construction, Inc. has successfully completed full-scale demonstration of its ARROW-PAK mixed waste macroencapsulation treatment unit at the DOE Hanford Site. This testing was conducted in accordance with Radiological Work Permit No. T-860, applicable project plans and procedures, and in close consultation with Waste Management Federal Services of Hanford, Inc.`s project management, health and safety, and quality assurance representatives. The ARROW-PAK field demonstration successfully treated 880 drums of mixed waste debris feedstock which were compacted and placed in 149 70-gallon overpack drums prior to macroencapsulation in accordance with the US EPA Alternate Debris Treatment Standards, 40 CFR 268.45. Based on all of the results, the ARROW-PAK process provides an effective treatment, storage and/or disposal option that compares favorably with current mixed waste management practices.

Baker, T.L.

1998-02-25T23:59:59.000Z

139

Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations  

SciTech Connect

This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

1996-12-01T23:59:59.000Z

140

Designing an Optimal Urban Community Mix for an Aquifer Thermal Energy Storage System.  

E-Print Network (OSTI)

??This research examined what mix of building types result in the most efficient use of a technology known as Aquifer Thermal Energy Storage (ATES). Hourly… (more)

Zizzo, Ryan

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Steam reforming of low-level mixed waste  

SciTech Connect

The U.S. department of Energy (DOE) is responsible for the treatment and disposal of an inventory of approximately 160,000 tons of Low-Level Mixed Waste (LLMW). Most of this LLMW is stored in drums, barrels and steel boxes at 20 different sites throughout the DOE complex. The basic objective of low-level mixed waste treatment systems is to completely destroy the hazardous constituents and to simultaneously isolate and capture the radionuclides in a superior final waste form such as glass. The DOE is sponsoring the development of advanced technologies that meet this objective while achieving maximum volume reduction, low-life cycle costs and maximum operational safety. ThermoChem, Inc. is in the final stages of development of a steam-reforming system capable of treating a wide variety of DOE low-level mixed waste that meets these objectives. The design, construction, and testing of a nominal 1 ton/day Process Development Unit is described.

Voelker, G.E.; Steedman, W.G. [Thermochem, Inc., Columbia, MD (United States); Chandran, R.R. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States)

1996-12-31T23:59:59.000Z

142

Mixed Waste Focus Area: Department of Energy complex needs report  

SciTech Connect

The Assistant Secretary for the Office of Environmental Management (EM) at the US Department of Energy (DOE) initiated a new approach in August of 1993 to environmental research and technology development. A key feature of this new approach included establishment of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA). The mission of the MWFA is to identify, develop, and implement needed technologies such that the major environmental management problems related to meeting DOE`s commitments for treatment of mixed wastes under the Federal Facility Compliance Act (FFCA), and in accordance with the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA), can be addressed, while cost-effectively expending the funding resources. To define the deficiencies or needs of the EM customers, the MWFA analyzed Proposed Site Treatment Plans (PSTPs), as well as other applicable documents, and conducted site visits throughout the summer of 1995. Representatives from the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60) at each site visited were requested to consult with the Focus Area to collaboratively define their technology needs. This report documents the needs, deficiencies, technology gaps, and opportunities for expedited treatment activities that were identified during the site visit process. The defined deficiencies and needs are categorized by waste type, namely Wastewaters, Combustible Organics, Sludges/Soils, Debris/Solids, and Unique Wastes, and will be prioritized based on the relative affect the deficiency has on the DOE Complex.

Roach, J.A.

1995-11-16T23:59:59.000Z

143

Mixed low-level waste minimization at Los Alamos  

SciTech Connect

During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL.

Starke, T.P.

1998-12-01T23:59:59.000Z

144

Closure of a mixed waste landfill: Lessons learned  

SciTech Connect

Much experience has been gained during the closure of the Mixed Waste Management Facility (MWMF) at the Savannah River Site (SRS) and many lessons were learned. This knowledge was applied to other closures at SRS yielding decreased costs, schedule enhancement, and increased overall project efficiency. The next major area of experience to be gained at SRS in the field of waste site closures will be in the upkeep, maintenance, and monitoring of clay caps. Further test programs will be required to address these requirements.

Phifer, M.A.

1990-01-01T23:59:59.000Z

145

Closure of a mixed waste landfill: Lessons learned  

SciTech Connect

Much experience has been gained during the closure of the Mixed Waste Management Facility (MWMF) at the Savannah River Site (SRS) and many lessons were learned. This knowledge was applied to other closures at SRS yielding decreased costs, schedule enhancement, and increased overall project efficiency. The next major area of experience to be gained at SRS in the field of waste site closures will be in the upkeep, maintenance, and monitoring of clay caps. Further test programs will be required to address these requirements.

Phifer, M.A.

1990-12-31T23:59:59.000Z

146

Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico  

SciTech Connect

The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required.

Not Available

1993-06-01T23:59:59.000Z

147

Analysis of waste treatment requirements for DOE mixed wastes: Technical basis  

SciTech Connect

The risks and costs of managing DOE wastes are a direct function of the total quantities of 3wastes that are handled at each step of the management process. As part of the analysis of the management of DOE low-level mixed wastes (LLMW), a reference scheme has been developed for the treatment of these wastes to meet EPA criteria. The treatment analysis in a limited form was also applied to one option for treatment of transuranic wastes. The treatment requirements in all cases analyzed are based on a reference flowsheet which provides high level treatment trains for all LLMW. This report explains the background and basis for that treatment scheme. Reference waste stream chemical compositions and physical properties including densities were established for each stream in the data base. These compositions are used to define the expected behavior for wastes as they pass through the treatment train. Each EPA RCRA waste code was reviewed, the properties, chemical composition, or characteristics which are of importance to waste behavior in treatment were designated. Properties that dictate treatment requirements were then used to develop the treatment trains and identify the unit operations that would be included in these trains. A table was prepared showing a correlation of the waste physical matrix and the waste treatment requirements as a guide to the treatment analysis. The analysis of waste treatment loads is done by assigning wastes to treatment steps which would achieve RCRA compliant treatment. These correlation`s allow one to examine the treatment requirements in a condensed manner and to see that all wastes and contaminant sets are fully considered.

NONE

1995-02-01T23:59:59.000Z

148

Radioactive and mixed waste - risk as a basis for waste classification. Symposium proceedings No. 2  

SciTech Connect

The management of risks from radioactive and chemical materials has been a major environmental concern in the United states for the past two or three decades. Risk management of these materials encompasses the remediation of past disposal practices as well as development of appropriate strategies and controls for current and future operations. This symposium is concerned primarily with low-level radioactive wastes and mixed wastes. Individual reports were processed separately for the Department of Energy databases.

NONE

1995-06-21T23:59:59.000Z

149

Electromagnetic mixed waste processing system for asbestos decontamination  

SciTech Connect

DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the US nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCBs, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay, and fission products of DOE operations. To allow disposal, the asbestos must be converted chemically, followed by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives. An attempt was made to apply techniques that have already proved successful in the mining, oil, and metals processing industries to the development of a multi-stage process to remove and separate hazardous chemical radioactive materials from asbestos. This process uses three methods: ABCOV chemicals which converts the asbestos to a sanitary waste; dielectric heating to volatilize the organic materials; and electrochemical processing for the removal of heavy metals, RCRA wastes and radionuclides. This process will result in the destruction of over 99% of the asbestos; limit radioactive metal contamination to 0.2 Bq alpha per gram and 1 Bq beta and gamma per gram; reduce hazardous organics to levels compatible with current EPA policy for RCRA delisting; and achieve TCLP limits for all solidified waste.

Kasevich, R.S.; Nocito, T.; Vaux, W.G.; Snyder, T.

1994-12-31T23:59:59.000Z

150

Steam reforming of low-level mixed waste. Final report  

SciTech Connect

ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

NONE

1998-06-01T23:59:59.000Z

151

Fire protection guide for solid waste metal drum storage  

SciTech Connect

This guide provides a method to assess potential fire development in drum storage facilities. The mechanism of fire propagation/spread through stored drum arrays is a complex process. It involves flame heat transfer, transient conduction,convection, and radiation between drums (stored in an array configuration). There are several phenomena which may occur when drums are exposed to fire. The most dramatic is violent lid failure which results in total lid removal. When a drum loses its lid due to fire exposure, some or all of the contents may be ejected from the drum, and both the ejected combustible material and the combustible contents remaining within the container will burn. The scope of this guide is limited to storage arrays of steel drums containing combustible (primarily Class A) and noncombustible contents. Class B combustibles may be included in small amounts as free liquid within the solid waste contents.Storage arrays, which are anticipated in this guide, include single or multi-tier palletized (steel or wood pallets) drums,high rack storage of drums, and stacked arrays of drums where plywood sheets are used between tiers. The purpose of this guide is to describe a simple methodology that estimates the consequences of a fire in drum storage arrays. The extent of fire development and the resulting heat release rates can be estimated. Release fractions applicable to this type of storage are not addressed, and the transport of contaminants away from the source is not addressed. However, such assessments require the amount of combustible material consumed and the surface area of this burning material. The methods included in this guide do provide this information.

Bucci, H.M.

1996-09-16T23:59:59.000Z

152

Carbon Capture and Storage: Sustainability in the UK energy mix yryfasyfrtsayfsaytrsyfysa 1 UK Energy Research Centre  

E-Print Network (OSTI)

Carbon Capture and Storage: Sustainability in the UK energy mix yryfasyfrtsayfsaytrsyfysa 1 UK Energy Research Centre CARBON CAPTURE AND STORAGE: SUSTAI NABI LI TY I N THE UK ENERGY MI X WorkshopSciences, University of Edinburgh Event organised and sponsored by: #12;Carbon Capture and Storage: Sustainability

153

Mixed-layered bismuth-oxygen-iodine materials for capture and waste disposal of radioactive iodine  

DOE Patents (OSTI)

Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

Krumhansl, James L; Nenoff, Tina M

2013-02-26T23:59:59.000Z

154

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents (OSTI)

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12T23:59:59.000Z

155

Treatability study of Tank E-3-1 waste: mixed waste stream SR-W049  

SciTech Connect

Treatability studies were conducted for tank E-3-1 waste which was previously characterized in WSRC-RP-87-0078. The waste was determined to be mixed waste because it displayed the characteristic of metal toxicity for Hg and Cr and was also contaminated with low levels of radionuclides. Two types of treatments for qualifying this waste suitable for land disposal were evaluated: ion exchange and stabilization with hydraulic materials (portland cement, slag and magnesium phosphate cement). These treatments were selected for testing because: (1) Both treatments can be carried out as in-drum processes., (2) Cement stabilization is the RCRA/LDR best developed available technology (BDAT) for Hg (less than 280 mg/L) and for Cr., and (3) Ion exchange via Mag-Sep is a promising alternative technology for in drum treatment of liquid wastes displaying metal toxicity. Cement stabilization of the E-3-1 material ( supernate and settled solids) resulted in waste forms which passed the TCLP test for both Hg and Cr. However, the ion exchange resins tested were ineffective in removing the Hg from this waste stream. Consequently, cement stabilization is recommended for a treatment of the five drums of the actual waste.

Langton, C.A. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1997-08-21T23:59:59.000Z

156

Comparison of carbon dioxide and nuclear waste storage costs in Lithuania  

Science Journals Connector (OSTI)

Nuclear power and carbon capture and storage (CCS) are key greenhouse gas mitigation options under consideration across the world. Both technologies imply long-term waste management challenge. Geological storage of carbon dioxide (CO2) and nuclear waste has much in common, and valuable lessons can be learnt from a comparison. Seeking to compare these technologies economic, social and environmental criteria need to be selected and expressed in terms of indicators. Very important issue is costs and economics of geological storage of carbon dioxide and nuclear waste. The costs of storage are one of the main indicators for assessment of technologies in terms of economic criteria. The paper defines the costs of the geological storage of CO2 and nuclear waste in Lithuania, drawing also on insights from other parts of the world. The costs of carbon dioxide and nuclear waste storage are evaluated in UScnt/kWh and compared. The paper critically compares the characteristics and location of the both sources of and storage options for CO2 and nuclear waste in Lithuania. It discusses the main costs categories for carbon dioxide and nuclear waste storage. The full range of potential geological storage options is considered and the most reliable options for carbon dioxide and nuclear waste are selected for the comparative costs assessment.

Dalia Streimikiene

2012-01-01T23:59:59.000Z

157

SCFA lead lab technical assistance at Oak Ridge Y-12 nationalsecurity complex: Evaluation of treatment and characterizationalternatives of mixed waste soil and debris at disposal area remedialaction DARA solids storage facility (SSF)  

SciTech Connect

On July 17-18, 2002, a technical assistance team from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with the Bechtel Jacobs Company Disposal Area Remedial Action (DARA) environmental project leader to review treatment and characterization options for the baseline for the DARA Solids Storage Facility (SSF). The technical assistance request sought suggestions from SCFA's team of technical experts with experience and expertise in soil treatment and characterization to identify and evaluate (1) alternative treatment technologies for DARA soils and debris, and (2) options for analysis of organic constituents in soil with matrix interference. Based on the recommendations, the site may also require assistance in identifying and evaluating appropriate commercial vendors.

Hazen, Terry

2002-08-26T23:59:59.000Z

158

ENVIROCARE OF UTAH: EXPANDING WASTE ACCEPTANCE CRITERIA TO PROVIDE LOW-LEVEL AND MIXED WASTE DISPOSAL OPTIONS  

SciTech Connect

Envirocare of Utah operates a low-level radioactive waste disposal facility 80 miles west of Salt Lake City in Clive, Utah. Accepted waste types includes NORM, 11e2 byproduct material, Class A low-level waste, and mixed waste. Since 1988, Envirocare has offered disposal options for environmental restoration waste for both government and commercial remediation projects. Annual waste receipts exceed 12 million cubic feet. The waste acceptance criteria (WAC) for the Envirocare facility have significantly expanded to accommodate the changing needs of restoration projects and waste generators since its inception, including acceptable physical waste forms, radiological acceptance criteria, RCRA requirements and treatment capabilities, PCB acceptance, and liquids acceptance. Additionally, there are many packaging, transportation, and waste management options for waste streams acceptable at Envirocare. Many subcontracting vehicles are also available to waste generators for both government and commercial activities.

Rogers, B.; Loveland, K.

2003-02-27T23:59:59.000Z

159

Project management plan for low-level mixed waste and greater-than-category 3 waste per tri-party agreement M-91-10  

SciTech Connect

The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-thaw category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10, The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; (4) an acquisition plan was developed to establish the technical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are tabulated, along with the required treatment for disposal.

BOUNINI, L.

1999-05-20T23:59:59.000Z

160

Project management plan for low-level mixed wastes and greater-than category 3 waste per Tri-Party Agreement M-91-10  

SciTech Connect

The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-Than-Category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10. The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; and (4) an acquisition plan was developed to establish the techuical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are summarized in the table below, along with the required treatment for disposal.

BOUNINI, L.

1999-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Transportation and disposal configuration for DOE-managed low-level and mixed low-level waste  

SciTech Connect

This report briefly examines the current U.S. Department of Energy complex-wide configuration for transportation and disposal of low-level and mixed low-level waste, and also retraces the historical sequence of events and rationale that has guided its development. The study determined that Nevada Test Site and the Hanford Site are the only two sites that currently provide substantial disposal services for offsite low-level waste generators. It was also determined that mixed low-level waste shipments are infrequent and are generally limited to shipments to offsite commercial treatment facilities or other Department of Energy sites for storage. The current alignment of generator to disposal site for low-level waste shipments is generally consistent with the programmatic mission of the generator; that is, defense-generated waste is shipped to the Nevada Test Site and research-generated waste is transported to the Hanford Site. The historical development of the current configuration was resurrected by retrieving Department of Energy documentation and interviewing both current and former department and contractor personnel. According to several accounts, the basic framework of the system was developed during the late 1970s, and was reportedly based on the ability of the disposal site to manage a given waste form. Documented evidence to support this reasoning, however, could not be uncovered.

Johnsen, T.

1993-06-01T23:59:59.000Z

162

EA-0942: Return of Isotope Capsules to the Waste Encapsulation and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

42: Return of Isotope Capsules to the Waste Encapsulation and 42: Return of Isotope Capsules to the Waste Encapsulation and Storage Facility, Hanford Site, Richland, Washington EA-0942: Return of Isotope Capsules to the Waste Encapsulation and Storage Facility, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts of the proposal for the return of all leased cesium-137 and strontium-90 leased capsules to the U.S. Department of Energy's Waste Encapsulation and Storage Facility on the Hanford Site, to ensure safe management and storage, pending final disposition. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 11, 1994 EA-0942: Finding of No Significant Impact Return of Isotope Capsules to the Waste Encapsulation and Storage Facility, Hanford Site, Richland, Washington

163

Identification of permit and waste acceptance criteria provisions requiring modification for acceptance of commercial mixed waste. National Low-Level Waste Management Program  

SciTech Connect

In October 1990, representatives of States and compact regions requested that the US Department of Energy (DOE) explore an agreement with host States and compact regions under which DOE would accept commercial mixed low-level radioactive waste (LLW) at DOE`s own treatment and disposal facilities. A program for DOE management of commercial mixed waste is made potentially more attractive in light of the low commercial mixed waste volumes, high regulatory burdens, public opposition to new disposal sites, and relatively high cost of constructing commercial disposal facilities. Several studies were identified as essential in determining the feasibility of DOE accepting commercial mixed waste for disposal. The purpose of this report is to identify any current or proposed waste acceptance criteria (WAC) or Resource Conservation and Recovery Act (RCRA) provisions that would have to be modified for commercial mixed waste acceptance at specified DOE facilities. Following the introduction, Section 2 of this report (a) provides a background summary of existing and proposed mixed waste disposal facilities at each DOE site, and (b) summarizes the status of any RCRA Part B permit and WAC provisions relating to the disposal of mixed waste, including provisions relating to acceptance of offsite waste. Section 3 provides overall conclusions regarding the current status and permit modifications that must be implemented in order to grant DOE sites authority under their permits to accept commercial mixed waste for disposal. Section 4 contains a list of references.

Not Available

1994-03-01T23:59:59.000Z

164

Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20  

SciTech Connect

This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

Not Available

1994-09-01T23:59:59.000Z

165

DEVELOPMENT AND DEMONSTRATION OF POLYMER MICROENCAPSULATION OF MIXED WASTE USING KINETIC MIXER PROCESSING  

SciTech Connect

Thermokinetic mixing was investigated as an alternative processing method for polyethylene microencapsulation, a technology well demonstrated for treatment of hazardous, low-level radioactive and low-level mixed wastes. Polyethylene encapsulation by extrusion has been previously shown to be applicable to a wide range of waste types but often pretreatment of the wastes is necessary due to process limitations regarding the maximum waste moisture content and particle size distribution. Development testing was conducted with kinetic mixing in order to demonstrate technology viability and show improved process applicability in these areas. Testing to establish process capabilities and relevant operating parameters was performed with waste surrogates including an aqueous evaporator concentrate and soil. Using a pilot-scale kinetic mixer which was installed and modified for this program, the maximum waste moisture content and particle size was determined. Following process development with surrogate wastes, the technology was successfully demonstrated at BNL using actual mixed waste.

LAGERAAEN,P.R.; KALB,P.D.; MILIAN,L.W.; ADAMS,J.W.

1997-11-01T23:59:59.000Z

166

TRU waste certification compliance requirements for acceptance of contact-handled wastes retrieved from storage to be shipped to the WIPP. Revision 1  

SciTech Connect

Compliance requirements are presented for certifying that unclassified, contact-handled (CH) transuranic (TRU) solid defense wastes retrieved from storage at DOE sites meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). All applicable DOE orders must continue to be met. The compliance requirements for certified waste retrieved from certified storage are addressed in another document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 2 refs., 1 fig.

Not Available

1985-09-01T23:59:59.000Z

167

Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks  

SciTech Connect

This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

ROGERS, C.A.

2000-02-17T23:59:59.000Z

168

Soil load above Hanford waste storage tanks (2 volumes)  

SciTech Connect

This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs.

Pianka, E.W. [Advent Engineering Services, Inc., San Ramon, CA (United States)

1995-01-25T23:59:59.000Z

169

Voluntary Protection Program Onsite Review, Advanced Mixed Waste Treatment Project- May 2009  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation to determine whether Advanced Mixed Waste Treatment Project is continuing to perform at a level deserving DOE-VPP Star recognition.

170

CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT  

SciTech Connect

Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (both radioactive and hazardous according tohe Resource Conservation and Recovery Act) wastes. Depending on regulatory requirements, the mercury in the off-gas must be controlled with sometimes very high efficiencies. Compliance to the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Several test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include: (a) The depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests, (b) MERSORB® carbon can sorb Hg up to 19 wt% of the carbon mass, and (c) the spent carbon retained almost all (98 – 99.99%) of the Hg; but when even a small fraction of the total Hg dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high Hg concentrations. Localized areas in a carbon bed that become heated through heat of adsorption, to temperatures where oxidation occurs, are referred to as “bed hot spots.” Carbon bed hot spots must be avoided in processes that treat radioactive and mixed waste. Key to carbon bed hot spot mitigation are (a) designing for sufficient gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) monitoring and control of inlet gas flowrate, temperature, and composition, (c) monitoring and control of in-bed and bed outlet gas temperatures, and (d) most important, monitoring of bed outlet CO concentrations. An increase of CO levels in the off-gas downstream of the carbon bed to levels about 50-100 ppm higher than the inlet CO concentration indicate CO formation in the bed, caused by carbon bed hot spots. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from. Multiple high and high-high alarm levels should be used, with appropriate corrective actions for each level.

Nick Soelberg; Joe Enneking

2010-11-01T23:59:59.000Z

171

SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste Storage Facilities  

E-Print Network (OSTI)

SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste Storage Facilities Ron Fulbright Inspector (SWAMI) is a prototype mobile robot designed to perform autonomous inspection of nuclear waste user interface building tool called UIM/X. Introduction Safe disposal of nuclear waste is a difficult

Stephens, Larry M.

172

DOE SEEKS CONTRACTOR TO DISPOSITION WASTE AT THE ADVANCED MIXED...  

NLE Websites -- All DOE Office Websites (Extended Search)

facility. The waste includes DOE laboratory and processing wastes from the now closed Rocky Flats in Colorado, and various DOE facilities. The waste is stored in drums, boxes,...

173

High dose radiolysis of aqueous solutions of chloromethanes: Importance in the storage of radioactive organic wastes  

Science Journals Connector (OSTI)

The radiolysis of aqueous solutions of chloromethanes (dichloromethane, CH2Cl2; chloroform, CHCl3; and carbon tetrachloride, CCl4) was performed with ?-rays to doses sufficient to completely decompose the solute in order to estimate the effects of radiation on the long-term storage of mixed waste in enclosed containers. One of the main relevant products was the inorganic chloride anion, which increased in concentration with increasing radiation dose due to the reactions of radiolytic decomposition products of water with the chloromethane. The pH of the solutions was observed to decrease with irradiation due to the formation of H3O+ as the counter ion to Cl?, i.e. the main radiolytic decomposition product is hydrochloric acid. Polymer formation was observed in aerated solutions as a precipitate while deaerated solutions exhibited a slight turbidity.

P. Rajesh; J.A. LaVerne; S.M. Pimblott

2007-01-01T23:59:59.000Z

174

EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High Level Radioactive Waste Storage, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

175

EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Non-thermal Treatment of Hanford Site Low-level Mixed 9: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to demonstrate the feasibility of commercial treatment of contact-handled low-level mixed waste to meet existing Federal and State regulatory standards for eventual land disposal at the U.S. Department of Energy Richland Operations Office. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 29, 1998 EA-1189: Finding of No Significant Impact Non-thermal Treatment of Hanford Site Low-level Mixed Waste September 29, 1998 EA-1189: Final Environmental Assessment Non-thermal Treatment of Hanford Site Low-level Mixed Waste

176

Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

M. D. Staiger

1999-06-01T23:59:59.000Z

177

GRR/Section 18-HI-b - RCRA - Hazardous Waste Treatment, Storage, and  

Open Energy Info (EERE)

8-HI-b - RCRA - Hazardous Waste Treatment, Storage, and 8-HI-b - RCRA - Hazardous Waste Treatment, Storage, and Disposal Permit (TSD) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-HI-b - RCRA - Hazardous Waste Treatment, Storage, and Disposal Permit (TSD) 18HIB - RCRAHazardousWasteTreatmentStorageAndDisposalPermitTSD.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Solid and Hazardous Waste Branch United States Environmental Protection Agency Regulations & Policies Resource Conversation and Recovery Act (42 U.S.C. 6901, et seq.) 40 CFR 270 Hawaii Administrative Rules Title 11, Chapter 261 Hawaii Administrative Rules Title 11, Chapter 265 Triggers None specified Click "Edit With Form" above to add content

178

SORPTION OF URANIUM, PLUTONIUM AND NEPTUNIUM ONTO SOLIDS PRESENT IN HIGH CAUSTIC NUCLEAR WASTE STORAGE TANKS  

SciTech Connect

Solids such as granular activated carbon, hematite and sodium phosphates, if present as sludge components in nuclear waste storage tanks, have been found to be capable of precipitating/sorbing actinides like plutonium, neptunium and uranium from nuclear waste storage tank supernatant liqueur. Thus, the potential may exists for the accumulation of fissile materials in such nuclear waste storage tanks during lengthy nuclear waste storage and processing. To evaluate the nuclear criticality safety in a typical nuclear waste storage tank, a study was initiated to measure the affinity of granular activated carbon, hematite and anhydrous sodium phosphate to sorb plutonium, neptunium and uranium from alkaline salt solutions. Tests with simulated and actual nuclear waste solutions established the affinity of the solids for plutonium, neptunium and uranium upon contact of the solutions with each of the solids. The removal of plutonium and neptunium from the synthetic salt solution by nuclear waste storage tank solids may be due largely to the presence of the granular activated carbon and transition metal oxides in these storage tank solids or sludge. Granular activated carbon and hematite also showed measurable affinity for both plutonium and neptunium. Sodium phosphate, used here as a reference sorbent for uranium, as expected, exhibited high affinity for uranium and neptunium, but did not show any measurable affinity for plutonium.

Oji, L; Bill Wilmarth, B; David Hobbs, D

2008-05-30T23:59:59.000Z

179

TRU (transuranic) waste certification compliance requirements for acceptance of contact-handled wastes retrieved from storage to be shipped to the Waste Isolation Pilot Plant: Revision 2  

SciTech Connect

Compliance requirements are presented for certifying that unclassified, contact-handled (CH) transuranic (TRU) solid defense wastes retrieved from storage at DOE sites meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). All applicable Department of Energy (DOE) orders must continue to be met. The compliance requirements for acceptance of newly generated CH waste to be shipped to the WIPP are addressed in another document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 10 refs., 1 fig.

Not Available

1989-01-01T23:59:59.000Z

180

Soil washing results for mixed waste pond soils at Hanford  

SciTech Connect

Soil washing technology was assessed as a means for remediating soil contaminated with mixed wastes primarily composed of heavy metals and radionuclides. The soils at the US Department of Energy's Hanford Site are considered suitable for soil washing because of their relatively low quantities of silt and clay. However, in a limited number of soil washing experiments using soils from different locations in the north pond of the 300 Area, the degree of decontamination achieved for the coarse fraction of the soil varied considerably. Part of this variation appears to be due to the presence of a discrete layer of contaminated sediment found in some of the samples. 7 refs., 2 figs., 4 tabs.

Gerber, M.A.

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nuclear Waste Storage in Gel-Derived Materials  

Science Journals Connector (OSTI)

For long life nuclear wastes (essentially actinides) research is in progress ... a process to prepare silica glass embedding the nuclear waste. Porous silica (gel) is used as a host matrix for nuclear waste. Neod...

T. Woignier; J. Reynes; J. Phalippou…

2000-12-01T23:59:59.000Z

182

Task 1.6 - mixed waste. Topical report, April 1, 1994--September 30, 1995  

SciTech Connect

For fifty years, the United States was involved in a nuclear arms race of immense proportions. During the majority of this period, the push was always to design new weapons, produce more weapons, and increase the size of the arsenal, maintaining an advantage over the opposition in order to protect U.S. interests. Now that the {open_quotes}Cold War{close_quotes} is over, we are faced with the imposing tasks of dismantling, cleaning up, and remediating the wide variety of problems created by this arms race. An overview of the current status of the total remediation effort within the DOE is presented in the DOE publication {open_quotes}ENVIRONMENTAL MANAGEMENT 1995{close_quotes} (EM 1995). Not all radioactive waste is the same though; therefore, a system was devised to categorize the different types of radioactive waste. These categories are as follows: spent fuel; high-level waste; transuranic waste; low-level waste; mixed waste; and uranium-mill tailings. Mixed waste is defined to be material contaminated with any of these categories of radioactive material plus an organic or heavy metal component. However, for this discussion, {open_quotes}mixed waste{close_quote} will pertain only to low-level mixed waste which consists of low-level radioactive waste mixed with organic solvents and or heavy metals. The area of {open_quotes}mixed-waste characterization, treatment, and disposal{close_quotes} is listed on page 6 of the EM 1995 publication as one of five focus areas for technological development, and while no more important than the others, it has become an area of critical concern for DOE. Lacking adequate technologies for treatment and disposal, the DOE stockpiled large quantities of mixed waste during the 1970s and 1980s. Legislative changes and the need for regulatory compliance have now made it expedient to develop methods of achieving final disposition for this stockpiled mixed waste.

NONE

1998-12-31T23:59:59.000Z

183

RSP-MW UNIVERSITY OF HAWAII RADIOACTIVE MIXED WASTE PICKUP REQUEST FORM Revision, 4/04 (WASTE CONTAINING BOTH RADIOISOTOPES AND HAZARDOUS CHEMICALS)  

E-Print Network (OSTI)

RSP-MW UNIVERSITY OF HAWAII RADIOACTIVE MIXED WASTE PICKUP REQUEST FORM Revision, 4/04 (WASTE AND UNDERSTAND ALL CONDITIONS ON THIS FORM. GENERATOR CERTIFICATION: I certify the above waste contains

Browder, Tom

184

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents (OSTI)

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

1998-03-24T23:59:59.000Z

185

Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes  

DOE Patents (OSTI)

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

Kalb, P.D.; Colombo, P.

1997-07-15T23:59:59.000Z

186

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents (OSTI)

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

Kalb, P.D.; Colombo, P.

1998-03-24T23:59:59.000Z

187

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents (OSTI)

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

Kalb, P.D.; Colombo, P.

1999-07-20T23:59:59.000Z

188

Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes  

DOE Patents (OSTI)

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

Kalb, Paul D. (21 Barnes Road, Wading River, NY 11792); Colombo, Peter (44 N. Pinelake Dr., Patchogue, NY 11772)

1997-01-01T23:59:59.000Z

189

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents (OSTI)

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

1999-07-20T23:59:59.000Z

190

Mixed Waste Management Facility FSS Well Data Groundwater Monitoring Report. Fourth Quarter 1994 and 1994 summary  

SciTech Connect

During fourth quarter 1994, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, the proposed Hazardous Waste/Mixed Waste Disposal Vaults, and the F-Area Sewage Sludge Application Site. No constituent exceeded final PDWS in samples from the upgradient monitoring wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Chase, J.A.

1995-03-01T23:59:59.000Z

191

Chemically bonded phosphate ceramics for low-level mixed waste stabilization  

SciTech Connect

Novel chemically bonded phosphate ceramics (CBPCs) are being developed and fabricated for low-temperature stabilization and solidification of mixed waste streams which are amenable to conventional high-temperature stabilization processes due to presence of volatiles such as heavy metal chloride and fluorides and/or pyrophorics in the wastes. Phosphates of Mg, Mg-Na and Zr are being developed as candidate matrix materials. In this paper, we present the fabrication procedures of phosphate waste forms using surrogates compositions of three typical mixed wastes streams -- ash, cement sludges, and salts. The performance of the final waste forms such as compression strength, leachability of the contaminants, durability in aqueous environment were conducted. In addition, parameteric studies have been conducted to establish the optimal waste loading in a particular binder system. Based on the results, we present potential applications in the treatment of various mixed waste streams.

Singh, D.; Wagh, A.S.; Cunnane, J.C. [Argonne National Lab., IL (United States); Mayberry, J.L. [Science Applications International Corp., Idaho Falls, ID (United States)

1994-12-31T23:59:59.000Z

192

Method for stabilizing low-level mixed wastes at room temperature  

DOE Patents (OSTI)

A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

Wagh, A.S.; Singh, D.

1997-07-08T23:59:59.000Z

193

Method for stabilizing low-level mixed wastes at room temperature  

DOE Patents (OSTI)

A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.

Wagh, Arun S. (Joliet, IL); Singh, Dileep (Westmont, IL)

1997-01-01T23:59:59.000Z

194

Results of Hazardous and Mixed Waste Excavation from the Chemical Waste Landfill  

SciTech Connect

This paper describes the results of the excavation of a 1.9-acre hazardous and mixed waste landfill operated for 23 years at Sandia National Laboratories, Albuquerque, New Mexico. Excavation of the landfill was completed in 2 1/2 years without a single serious accident or injury. Approximately 50,000 cubic yards of soil contaminated with volatile and semi-volatile organics, metals, polychlorinated biphenyl compounds, and radioactive constituents was removed. In addition, over 400 cubic yards of buried debris was removed, including bulk debris, unknown chemicals, compressed gas cylinders, thermal and chemical batteries, explosive and ordnance debris, pyrophoric materials and biohazardous waste. Removal of these wastes included negotiation of multiple regulations and guidances encompassed in the Resource Conservation and Recovery Act (RCRA), the Toxic Substances Control Act (TSCA), and risk assessment methodology. RCRA concepts that were addressed include the area of contamination, permit modification, emergency treatment provision, and listed waste designation. These regulatory decisions enabled the project to overcome logistical and programmatic needs such as increased operational area, the ability to implement process improvements while maintaining a record of decisions and approvals.

Young, S. G.; Schofield, D. P.; Kwiecinski, D.; Edgmon, C. L.; Methvin, R.

2002-02-27T23:59:59.000Z

195

Composite analysis for solid waste storage area 6  

SciTech Connect

The composite analysis (CA) provides an estimate of the potential cumulative impacts to a hypothetical future member of the public from the Solid Waste Storage Area 6 (SWSA 6) disposal operations and all of the other sources of radioactive material in the ground on the ORR that may interact with contamination originating in SWSA 6.The projected annual dose to hypothetical future member of the public from all contributing sources is compared to the primary dose limit of 100 mrem per year and a dose constraint of 30 mrem per year. Consistent with the CA guidance, dose estimates for the first 1000 years after disposal are emphasized for comparison with the primary dose limit and dose constraint.The current land use plan for the ORR is being revised, and may include a reduction in the land currently controlled by DOE on the ORR. The possibility of changes in the land use boundary is considered in the CA as part of the sensitivity and uncertainty analysis of the results, the interpretation of results, and the conclusions.

Lee, D.W.

1997-09-01T23:59:59.000Z

196

Use of Thermal Energy Storage to Enhance the Recovery and Utilization of Industrial Waste Heat  

E-Print Network (OSTI)

evaluation involving process data from 12 industrial plants to determine if thermal energy storage (TES) systems can be used with commercially available energy management equipment to enhance the recovery and utilization of industrial waste heat. Results...

McChesney, H. R.; Bass, R. W.; Landerman, A. M.; Obee, T. N.; Sgamboti, C. T.

1982-01-01T23:59:59.000Z

197

Radiation Damage of Glasses for Nuclear Waste Storage: Optical and Microstructural Aspects  

Science Journals Connector (OSTI)

A possible way to achieve a stable nuclear waste form consists of incorporating the different radionuclides ... actinides, radiation damage is produced in the storage matrix, which may potentially affect its long-term

M. Antonini; P. Camagni; A. Manara; M. Sacchi

1985-01-01T23:59:59.000Z

198

Rutherford backscattering for measuring corrosion layers on glasses for long-term storage of radioactive waste  

Science Journals Connector (OSTI)

The method considered safest for isolation of nuclear waste is vitrification (solidification in a glass or glassceramic matrix) with long-term storage in stable geological repositories. Borosilicate glasses are ....

Hj. Matzke

1984-01-01T23:59:59.000Z

199

Chemical compatibility screening results of plastic packaging to mixed waste simulants  

SciTech Connect

We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.

Nigrey, P.J.; Dickens, T.G.

1995-12-01T23:59:59.000Z

200

Alternate airborne release fraction determination for hazardous waste management storage repository hazard categorization at the Lawrence Livermore National Laboratory  

SciTech Connect

Hazardous Waste Management (HWM) facilities are used in the handling and processing of solid and liquid radioactive, hazardous, mixed, and medical wastes generated at Lawrence Livermore National Laboratory (LLNL). Waste may be treated or stored in one of the HWM facility units prior to shipment off site for treatment or disposal. Planned facilities such as the Decontamination and Waste Treatment Facility (DWTF) and the Building 280 Container Storage Unit are expected to handle similar waste streams. A hazard classification was preformed in each facility safety analysis report (SAR) according to the DOE Standard 1027-92 `Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports.` The general methodology practiced by HWM to determine alternate airborne release fractions (ARFs) in those SARs was based upon a beyond evaluation basis earthquake accident scenario characterized by the release of the largest amount of respirable, airborne radioactive material. The alternate ARF was calculated using a three-factor formula consisting of the fraction of failed waste containers, fraction of material released from failed waste containers,and the fraction of material entrained to the environment. Recently, in deliberation with DOE-Oakland representatives, HWM decided to modify this methodology. In place of the current detailed analysis, a more straightforward process was proposed based upon material form, credible accident environments, and empirical data. This paper will discuss the methodology and derivation of ARFs specific to HWM treatment and storage facilities that are alternative to those presented in DOE-STD-1027-92.

Brumburgh, G.P.

1998-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Test plan for immobilization of salt-containing surrogate mixed wastes using polyester resins  

SciTech Connect

Past operations at many Department of Energy (DOE) sites have resulted in the generation of several waste streams with high salt content. These wastes contain listed and characteristic hazardous constituents and are radioactive. The salts contained in the wastes are primarily chloride, sulfate, nitrate, metal oxides, and hydroxides. DOE has placed these types of wastes under the purview of the Mixed Waste Focus Area (MWFA). The MWFA has been tasked with developing and facilitating the implementation of technologies to treat these wastes in support of customer needs and requirements. The MWFA has developed a Technology Development Requirements Document (TDRD), which specifies performance requirements for technology owners and developers to use as a framework in developing effective waste treatment solutions. This project will demonstrate the use of polyester resins in encapsulating and solidifying DOE`s mixed wastes containing salts, as an alternative to conventional and other emerging immobilization technologies.

Biyani, R.K.; Douglas, J.C.; Hendrickson, D.W.

1997-07-07T23:59:59.000Z

202

A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste  

SciTech Connect

The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action`` to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program.

Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

1993-07-01T23:59:59.000Z

203

Recommendations for future low-level and mixed waste management practices at Los Alamos National Laboratory  

SciTech Connect

This report describes recommendations concerning the management of low-level radioactive wastes and mixtures at Los Alamos National Laboratory. Performance assessments, characterization, site disposal design, shipment, and storage are discussed.

Jennrich, E.A.; Klein, R.B.; Murphy, E.S.; Shuman, R. (Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)); Hickman, W.W.; Rutz, A.C.; Uhl, D.L. (Wastren, Inc., Idaho Falls, ID (United States))

1989-04-27T23:59:59.000Z

204

Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)  

SciTech Connect

The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

Burgard, K.C.

1998-04-09T23:59:59.000Z

205

ivestock and poultry operations frequently use anaerobic lagoons as liquid waste storage and  

E-Print Network (OSTI)

, The Texas A&M University System. #12;Pumping Pumping from the lagoon should be conducted annually, at least the designed life of sludge storage, frequent agitation and pumping may be necessary. In addition, solidsL ivestock and poultry operations frequently use anaerobic lagoons as liquid waste storage

Mukhtar, Saqib

206

Migration barrier covers for radioactive and mixed waste landfills  

SciTech Connect

Migration barrier cover technology will likely serve as the remediation alternative of choice for most of DOE's radioactive and mixed waste landfills simply because human and ecological risks can be effectively managed without the use of more expensive alternatives. However, very little testing and evaluation has been done, either before or after installation, to monitor how effective they are in isolating waste or to develop data that can be used to evaluate model predictions of long term performance. Los Alamos National Laboratory has investigated the performance of a variety of landfill capping alternatives since 1981 using large field lysimeters to monitor the fate of precipitation falling on the cap surface. The objective of these studies is to provide the risk manager with a variety of field tested capping designs, of various complexities and costs, so that design alternatives can be matched to the need for hydrologic control at the site. Four different landfill cap designs, representing different complexities and costs, were constructed at Hill Air Force Base (AFB) in October and November, 1989. The designs were constructed in large lysimeters and instrumented to provide estimates of all components of water balance including precipitation, runoff (and soil erosion), infiltration, leachate production, evapotranspiration, and capillary/hydraulic barrier flow. The designs consisted of a typical soil cover to serve as a baseline, a modified EPA RCRA cover, and two versions of a Los Alamos design that contained erosion control measures, an improved vegetation cover to enhance evapotranspiration, and a capillary barrier to divert downward flow of soil water. A comprehensive summary of the Hill AFB demonstration will be available in October 1993, when the project is scheduled to terminate.

Hakonson, T.E.; Manies, K.L.; Warren, R.W.; Bostick, K.V.; Trujillo, G. (Los Alamos National Lab., NM (United States)); Kent, J.S. (Air Force Academy, CO (United States). Dept. of Biology); Lane, L.J. (Department of Agriculture, Tucson, AZ (United States))

1993-01-01T23:59:59.000Z

207

Migration barrier covers for radioactive and mixed waste landfills  

SciTech Connect

Migration barrier cover technology will likely serve as the remediation alternative of choice for most of DOE`s radioactive and mixed waste landfills simply because human and ecological risks can be effectively managed without the use of more expensive alternatives. However, very little testing and evaluation has been done, either before or after installation, to monitor how effective they are in isolating waste or to develop data that can be used to evaluate model predictions of long term performance. Los Alamos National Laboratory has investigated the performance of a variety of landfill capping alternatives since 1981 using large field lysimeters to monitor the fate of precipitation falling on the cap surface. The objective of these studies is to provide the risk manager with a variety of field tested capping designs, of various complexities and costs, so that design alternatives can be matched to the need for hydrologic control at the site. Four different landfill cap designs, representing different complexities and costs, were constructed at Hill Air Force Base (AFB) in October and November, 1989. The designs were constructed in large lysimeters and instrumented to provide estimates of all components of water balance including precipitation, runoff (and soil erosion), infiltration, leachate production, evapotranspiration, and capillary/hydraulic barrier flow. The designs consisted of a typical soil cover to serve as a baseline, a modified EPA RCRA cover, and two versions of a Los Alamos design that contained erosion control measures, an improved vegetation cover to enhance evapotranspiration, and a capillary barrier to divert downward flow of soil water. A comprehensive summary of the Hill AFB demonstration will be available in October 1993, when the project is scheduled to terminate.

Hakonson, T.E.; Manies, K.L.; Warren, R.W.; Bostick, K.V.; Trujillo, G. [Los Alamos National Lab., NM (United States); Kent, J.S. [Air Force Academy, CO (United States). Dept. of Biology; Lane, L.J. [Department of Agriculture, Tucson, AZ (United States)

1993-03-01T23:59:59.000Z

208

EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

43: Idaho National Engineering Laboratory Low-Level and Mixed 43: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho SUMMARY This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW) through sizing, compaction, and stabilization at Waste Experimental Reduction Facility (WERF); and (2) use commercial offsite facilities for supplemental LLW volume reduction (incineration). PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD June 3, 1994 EA-0843: Finding of No Significant Impact Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing

209

Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 1: Sections 1-9  

SciTech Connect

This report documents the methodology, computational framework, and results of facility accident analyses performed for the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. The methodology is in compliance with the most recent guidance from DOE. It considers the spectrum of accident sequences that could occur in activities covered by the WM PEIS and uses a graded approach emphasizing the risk-dominant scenarios to facilitate discrimination among the various WM PEIS alternatives. Although it allows reasonable estimates of the risk impacts associated with each alternative, the main goal of the accident analysis methodology is to allow reliable estimates of the relative risks among the alternatives. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

1995-04-01T23:59:59.000Z

210

Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

M. D. Staiger

2007-06-01T23:59:59.000Z

211

Vermont Yankee experience with interim storage of low level radioactive waste in concrete modules  

SciTech Connect

This paper discusses the implementation of interim storage of low level radioactive waste using concrete modules at the Vermont Yankee Nuclear Power Station in Vernon, Vermont. Under the threat of possible loss of disposal capability in 1986, Vermont Yankee first considered the on-site storage option in 1985. prior to settling on a design, an investigation and economic analysis was performed of several designs. Modular concrete storage on a gravel pad was chosen as the most economical and the one providing the greatest flexibility. The engineering work, safety analysis, and pad construction were completed in 1985. Because of the passage of the Low Level Radioactive Waste Policy amendments Act in 1985, the loss of disposal capability did not occur in 1986. However, because the State of Vermont failed to meet the milestones of the Amendments Act, Vermont Yankee was restricted from the existing disposal sites on January 31, 1989. As a result, modules were purchased and waste was stored on site from 1989 until 1991. In 1991, the State of Vermont came back into compliance with the Amendments Act, and all waste stored on-site was shipped for burial. During the storage period 2 types of modules (1 box type and 1 cylinder type) were used. Lessons were learned, and changes were made to better control the off-site dose contribution of the waste. Recommendations are made to enhance the usability of the facility, such s lighting power, phones, etc. A shortcoming of the module storage concept is the inability to move waste during inclement weather. Despite this, the modules have provided an economical, technically sound, method of waste storage. The storage pad has not been used since 1991, but work is under way to review, and update as necessary, the safety analysis and procedures in preparation for reuse of the on-site storage facility after June 30, 1994.

Berger, S.; Weyman, D. [Vermont Yankee Nuclear Power Corporation, Vernon, VT (United States)

1995-05-01T23:59:59.000Z

212

Final Environmental Impact Statement Safe Interim Storage Of Hanford Tank Wastes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1995/01eis0212_cl.html[6/27/2011 1:02:59 PM] 1995/01eis0212_cl.html[6/27/2011 1:02:59 PM] Final Environmental Impact Statement Safe Interim Storage Of Hanford Tank Wastes DOE/EIS-0212 VOLUME 1 OF 2 VOLUME 1 FINAL ENVIRONMENTAL IMPACT STATEMENT SAFE INTERIM STORAGE OF HANFORD TANK WASTES Hanford Site Richland, Washington October, 1995 WASHINGTON STATE DEPARTMENT OF ECOLOGY NUCLEAR WASTE PROGRAM LACEY, WASHINGTON 98503 U.S. DEPARTMENT OF ENERGY RICHLAND OPERATIONS OFFICE

213

EIS-0212: Safe Interim Storage of Hanford Tank Wastes, Hanford Site, Richland, WA  

Energy.gov (U.S. Department of Energy (DOE))

This environmental impact statement asseses Department of Energy and Washington State Department of Ecology maintanence of safe storage of high-level radioactive wastes currently stored in the older single-shell tanks, the Watchlist Tank 101-SY, and future waste volumes associated with tank farm and other Hanford facility operations, including a need to provide a modern safe, reliable, and regulatory-compliant replacement cross-site transfer capability. The purpose of this action is to prevent uncontrolled releases to the environment by maintaining safe storage of high-level tank wastes.

214

Electromagnetic mixed-waste processing system for asbestos decontamination  

SciTech Connect

The first phase of a program to develop and demonstrate a cost-effective, integrated process for remediation of asbestos-containing material that is contaminated with organics, heavy metals, and radioactive compounds was successfully completed. Laboratory scale tests were performed to demonstrate initial process viability for asbestos conversion, organics removal, and radionuclide and heavy metal removal. All success criteria for the laboratory tests were met. (1) Ohio DSI demonstrated greater than 99% asbestos conversion to amorphous solids using their commercial process. (2) KAI demonstrated 90% removal of organics from the asbestos suspension. (3) Westinghouse STC achieved the required metals removal criteria on a laboratory scale (e.g., 92% removal of uranium from solution, resin loadings of 0.6 equivalents per liter, and greater than 50% regeneration of resin in a batch test.) Using the information gained in the laboratory tests, the process was reconfigured to provide the basis for the mixed waste remediation system. An integrated process is conceptually developed, and a Phase 2 program plan is proposed to provide the bench-scale development needed in order to refine the design basis for a pilot processing system.

NONE

1995-04-01T23:59:59.000Z

215

Mixed Waste Management Facility groundwater monitoring report: Third quarter 1994  

SciTech Connect

Currently, 125 wells monitor groundwater quality in the uppermost aquifer beneath the Mixed Waste Management Facility (MWMF) at the Savannah River Site. Samples from the wells are analyzed for selected heavy metals, herbicides/pesticides, indicator parameters, radionuclides, volatile organic compounds, and other constituents. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents during third quarter 1994. Sixty-four (51%) of the 125 monitoring wells contained elevated tritium activities. Trichloroethylene concentrations exceeded the final PDWS in 22 (18%) wells. Chloroethene, 1,1-dichloroethylene, and tetrachloroethylene, elevated in one or more wells during third quarter 1994, also occurred in elevated levels during second quarter 1994. These constituents generally were elevated in the same wells during both quarters. Gross alpha, which was elevated in only one well during second quarter 1994, was elevated again during third quarter. Mercury, which was elevated during first quarter 1994, was elevated again in one well. Dichloromethane was elevated in two wells for the first time in several quarters.

Not Available

1994-12-01T23:59:59.000Z

216

Mixed Waste Management Facility groundwater monitoring report. Second quarter 1994  

SciTech Connect

Currently, 125 wells monitor groundwater quality in the uppermost aquifer beneath the Mixed Waste Management Facility (MWMF) at the Savannah River Site. Samples from the wells are analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. During second quarter 1994, chloroethene (vinyl chloride), 1,1-dichloroethylene, gross alpha, lead, tetrachloroethylene, trichloroethylene, or tritium exceeded final Primary Drinking Water Standards (PDWS) in approximately half of the downgradient wells at the MWMF. Consistent with historical trends, elevated constituent levels were found primarily in Aquifer Zone. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents during second quarter 1994. Sixty-two of the 125 monitoring wells contained elevated tritium activities. Trichloroethylene concentrations exceeded the final PDWS in 23 wells. Chloroethene, 1,1-dichloroethylene, lead, and tetrachloroethylene, elevated in one or more wells during second quarter 1994, also occurred in elevated levels during first quarter 1994. These constituents generally were elevated in the same wells during both quarters. Gross alpha, which was not elevated in any well during first quarter 1994, was elevated in one well during second quarter. Copper, mercury, and nonvolatile beta were elevated during first quarter 1994 but not during second quarter.

Chase, J.A.

1994-09-01T23:59:59.000Z

217

Fire hazard analysis of the radioactive mixed waste trenchs  

SciTech Connect

This Fire Hazards Analysis (FHA) is intended to assess comprehensively the risk from fire associated with the disposal of low level radioactive mixed waste in trenches within the lined landfills, provided by Project W-025, designated Trench 31 and 34 of the Burial Ground 218-W-5. Elements within the FHA make recommendations for minimizing risk to workers, the public, and the environment from fire during the course of the operation`s activity. Transient flammables and combustibles present that support the operation`s activity are considered and included in the analysis. The graded FHA contains the following elements: description of construction, protection of essential safety class equipment, fire protection features, description of fire hazards, life safety considerations, critical process equipment, high value property, damage potential--maximum credible fire loss (MCFL) and maximum possible fire loss (MPFL), fire department/brigade response, recovery potential, potential for a toxic, biological and/or radiation incident due to a fire, emergency planning, security considerations related to fire protection, natural hazards (earthquake, flood, wind) impact on fire safety, and exposure fire potential, including the potential for fire spread between fire areas. Recommendations for limiting risk are made in the text of this report and printed in bold type. All recommendations are repeated in a list in Section 18.0.

McDonald, K.M. [Westinghouse Hanford Co., Richland, WA (United States)

1995-04-27T23:59:59.000Z

218

FY94 Office of Technology Development Mixed Waste Operations Robotics Demonstration  

SciTech Connect

The Department of Energy (DOE) Office of Technology Development (OTD) develops technologies to help solve waste management and environmental problems at DOE sites. The OTD includes the Robotics Technology Development Program (RTDP) and the Mixed Waste Integrated Program (MWIP). Together these programs will provide technologies for DOE mixed waste cleanup projects. Mixed waste contains both radioactive and hazardous constituents. DOE sites currently store over 240,000 cubic meters of low level mixed waste and cleanup activities will generate several hundred thousand more cubic meters. Federal and state regulations require that this waste must be processed before final disposal. The OTD RTDP Mixed Waste Operations (MWO) team held several robotic demonstrations at the Savannah River Site (SRS) during November of 1993. Over 330 representatives from DOE, Government Contractors, industry, and universities attended. The MWO team includes: Fernald Environmental Management Project (FEMP), Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Engineering Laboratory (ORNL), Sandia National Laboratory (SNL), and Savannah River Technology Center (SRTC). SRTC is the lead site for MWO and provides the technical coordinator. The primary demonstration objective was to show that robotic technologies can make DOE waste facilities run better, faster, more cost effective, and safer. To meet the primary objective, the demonstrations successfully showed the following remote waste drum processing activities: non-destructive drum examination, drum transportation, drum opening, removing waste from a drum, characterize and sort waste items, scarify metal waste, and inspect stored drums. To further meet the primary objective, the demonstrations successfully showed the following remote waste box processing activities: swing free crane control, workcell modeling, and torch standoff control.

Kriikku, E.M.

1994-08-30T23:59:59.000Z

219

Proposed research and development plan for mixed low-level waste forms  

SciTech Connect

The objective of this report is to recommend a waste form program plan that addresses waste form issues for mixed low-level waste (MLLW). The report compares the suitability of proposed waste forms for immobilizing MLLW in preparation for permanent near-surface disposal and relates them to their impact on the U.S. Department of Energy`s mixed waste mission. Waste forms are classified into four categories: high-temperature waste forms, hydraulic cements, encapsulants, and specialty waste forms. Waste forms are evaluated concerning their ability to immobilize MLLW under certain test conditions established by regulatory agencies and research institutions. The tests focused mainly on leach rate and compressive strength. Results indicate that all of the waste forms considered can be tailored to give satisfactory performance immobilizing large fractions of the Department`s MLLW inventory. Final waste form selection will ultimately be determined by the interaction of other, often nontechnical factors, such as economics and politics. As a result of this report, three top-level programmatic needs have been identified: (1) a basic set of requirements for waste package performance and disposal; (2) standardized tests for determining waste form performance and suitability for disposal; and (3) engineering experience operating production-scale treatment and disposal systems for MLLW.

O`Holleran, T.O.; Feng, X.; Kalb, P. [and others

1996-12-01T23:59:59.000Z

220

THE RETRIEVAL KNOWLEDGE CENTER EVALUATION OF LOW TANK LEVEL MIXING TECHNOLOGIES FOR DOE HIGH LEVEL WASTE TANK RETRIEVAL 10516  

SciTech Connect

The Department of Energy (DOE) Complex has over two-hundred underground storage tanks containing over 80-million gallons of legacy waste from the production of nuclear weapons. The majority of the waste is located at four major sites across the nation and is planned for treatment over a period of almost forty years. The DOE Office of Technology Innovation & Development within the Office of Environmental Management (DOE-EM) sponsors technology research and development programs to support processing advancements and technology maturation designed to improve the costs and schedule for disposal of the waste and closure of the tanks. Within the waste processing focus area are numerous technical initiatives which included the development of a suite of waste removal technologies to address the need for proven equipment and techniques to remove high level radioactive wastes from the waste tanks that are now over fifty years old. In an effort to enhance the efficiency of waste retrieval operations, the DOE-EM Office of Technology Innovation & Development funded an effort to improve communications and information sharing between the DOE's major waste tank locations as it relates to retrieval. The task, dubbed the Retrieval Knowledge Center (RKC) was co-lead by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) with core team members representing the Oak Ridge and Idaho sites, as well as, site contractors responsible for waste tank operations. One of the greatest challenges to the processing and closure of many of the tanks is complete removal of all tank contents. Sizeable challenges exist for retrieving waste from High Level Waste (HLW) tanks; with complications that are not normally found with tank retrieval in commercial applications. Technologies currently in use for waste retrieval are generally adequate for bulk removal; however, removal of tank heels, the materials settled in the bottom of the tank, using the same technology have proven to be difficult. Through the RKC, DOE-EM funded an evaluation of adaptable commercial technologies that could assist with the removal of the tank heels. This paper will discuss the efforts and results of developing the RKC to improve communications and discussion of tank waste retrieval through a series of meetings designed to identify technical gaps in retrieval technologies at the DOE Hanford and Savannah River Sites. This paper will also describe the results of an evaluation of commercially available technologies for low level mixing as they might apply to HLW tank heel retrievals.

Fellinger, A.

2009-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EA-1292: On-site Treatment of Low Level Mixed Waste, Golden, Colorado  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposal to evaluate the proposed treatment of low level mixed waste at the U.S. Department of Energy's Rocky Flats Environmental Technology Site.

222

Mixed Waste Management Facility Groundwater Monitoring Report, Fourth Quarter 1998 and 1998 Summary  

SciTech Connect

During fourth quarter 1998, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells.

Chase, J.

1999-04-29T23:59:59.000Z

223

EA-1135: Offsite Thermal Treatment of Low-level Mixed Waste, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of the proposal to treat contact-handled low-level mixed waste, containing polychlorinated biphenyls and other organics, to meet existing regulatory...

224

Hazardous Waste Treatment, Storage and Disposal Facilities (TSDF...  

Open Energy Info (EERE)

Treatment, Storage and Disposal Facilities (TSDF) Guidance Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

225

Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California  

SciTech Connect

During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1993-10-01T23:59:59.000Z

226

Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams  

SciTech Connect

The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE`s waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE`s mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters.

NONE

1996-07-01T23:59:59.000Z

227

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN  

E-Print Network (OSTI)

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 1 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity

Cañizares, Claudio A.

228

Integrated chemical/biological treatment of paint stripper mixed waste: Metals toxicity and separation  

SciTech Connect

The DOE complex has generated vast quantities of complex heterogeneous mixed wastes. Paint stripper waste (PSW) is a complex waste that arose from decontamination and decommissioning activities. It contains paint stripper, cheesecloth, cellulose-based paints with Pb and Cr, and suspect Pu. Los Alamos National Laboratory has 150--200 barrels of PSW and other national laboratories such as Rocky Flats Plant have many more barrels of heterogeneous waste. Few technologies exist that can treat this complex waste. Our approach to solving this problem is the integration of two established technologies: biodegradation and metals chelation.

Vanderberg-Twary, L.; Grumbine, R.K.; Foreman, T.; Hanners, J.L.; Brainard, J.R.; Sauer, N.N.; Unkefer, P.J.

1995-05-01T23:59:59.000Z

229

Containment and stabilization technologies for mixed hazardous and radioactive wastes  

SciTech Connect

A prevalent approach to the cleanup of waste sites contaminated with hazardous chemicals and radionuclides is to contain and/or stabilize wastes within the site. Stabilization involves treating the wastes in some fashion, either in situ or above ground after retrieval, to reduce the leachability and release rate of waste constituents to the environment. This approach is generally reserved for radionuclide contaminants, inorganic hazardous contaminants such as heavy metals, and nonvolatile organic contaminants. This paper describes the recent developments in the technical options available for containing and stabilizing wastes. A brief description of each technology is given along with a discussion of the most recent developments and examples of useful applications.

Buelt, J.L.

1993-05-01T23:59:59.000Z

230

The Mixed Waste Management Facility, monthly report, February 1995  

SciTech Connect

Technical progress continued in general accordance with the Mixed Waste Management Facility (MWMF) FY95 Plan. Engineering development and design continued in support of preliminary design of MWMF major subsystems. Peer reviews have begun in preparation for system preliminary design reviews. Procurements in support of engineering design/development have continued to increase. Significant effort to provide technical and cost trade-off information for the Project Baseline Revision 1.2 (PB1.2) and FY97 Validation was completed. Management focus during February centered upon addressing the rebaseline for MWMF for the FY97 Validation in March, and upon completing the permitting strategy. We completed a consistent baseline plan for Validation that satisfied the DOE constraints of integration with DWTF, schedule stretchout, overall Project cost, and FY cost profiles. The revised permitting strategy was completed and reviewed by a number of stakeholders (LLNL, DOE, State). The proposed strategy involves no RCRA RD&D permit, since all technology demonstrations can be done with surrogates and using limited treatability studies. The expenses for February continue to run somewhat below the plan due to the limited new hiring. This is a result of uncertain DOE funding and guidance to keep personnel to a minimum. However, the spending rate is picking up due to initiation of procurements for engineering development and a minimum of essential new hires. A significant imbalance in the OPEX/CENRTC funding split for FY95 exists (about $2.1M); DOE/OAK began to seek resolution this month. Critical-path items are DWTF construction, NEPA, and permitting (for both MWMF and DWTF). Contractual issues have delayed award of the A&E contract for DWTF, but work-arounds are in progress to avoid schedule impact. NEPA and permitting issues are discussed below. Progress on preliminary design for MWMF is close to schedule.

Streit, R.D.

1995-03-01T23:59:59.000Z

231

Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations  

SciTech Connect

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

2009-03-01T23:59:59.000Z

232

A Survey of Mixed-Waste HEPA Filters in the DOE Complex  

SciTech Connect

A brief investigation was made to determine the quantities of spent, mixed-waste HEPA filters within the DOE Complex. The quantities of both the mixed-waste filters that are currently being generated, as well as the legacy mixed-waste filters being stored and awaiting disposition were evaluated. Seven DOE sites representing over 89% of the recent HEPA filter usage were identified. These sites were then contacted to determine the number of these filters that were likely destined to become mixed waste and to survey the legacy-filter quantities. Inquiries into the disposition plans for the filters were also made. It was determined that the seven sites surveyed possess approximately 500 m3 of legacy mixed-waste HEPA filters that will require processing, with an annual generation rate of approximately 25 m3. No attempt was made to extrapolate the results of this survey to the entire DOE Complex. These results were simply considered to be the lower bound of the totality of mixed-waste HEPA filters throughout the Complex. The quantities determined encourage the development of new treatment technologies for these filters, and provide initial data on which an appropriate capacity for a treatment process may be based.

Felicione, F. S.; Barber, D. B.; Carney, K. P.

2002-02-28T23:59:59.000Z

233

Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout  

SciTech Connect

Grouting and vitrification are currently the most likely stabilization/solidification technologies for mixed wastes. Grouting has been used to stabilize and solidify hazardous and low-level waste for decades. Vitrification has long been developed as a high-level-waste alternative and has been under development recently as an alternative treatment technology for low-level mixed waste. Laboratory testing has been performed to develop grout and vitrification formulas for mixed-waste sludges currently stored in underground tanks at Oak Ridge National Laboratory (ORNL) and to compare these waste forms. Envelopes, or operating windows, for both grout and soda-lime-silica glass formulations for a surrogate sludge were developed. One formulation within each envelope was selected for testing the sensitivity of performance to variations ({+-}10 wt%) in the waste form composition and variations in the surrogate sludge composition over the range previously characterized in the sludges. In addition, one sludge sample of an actual mixed-waste tank was obtained, a surrogate was developed for this sludge sample, and grout and glass samples were prepared and tested in the laboratory using both surrogate and the actual sludge. The sensitivity testing of a surrogate tank sludge in selected glass and grout formulations is discussed in this paper, along with the hot-cell testing of an actual tank sludge sample.

Spence, R.D.; Gilliam, T.M.; Mattus, C.H.; Mattus, A.J.

1998-03-03T23:59:59.000Z

234

Statement of position of the United States Department of Energy in the matter of proposed rulemaking on the storage and disposal of nuclear waste (waste confidence rulemaking)  

SciTech Connect

Purpose of this proceeding is to assess generically the degree of assurance that the radioactive waste can be safely disposed of, to determine when such disposal or off-site storage will be available, and to determine whether wastes can be safely stored on-site past license expiration until off-site disposal/storage is available. (DLC)

None

1980-04-15T23:59:59.000Z

235

U.S. Department of Energy Awards Contracts for Waste Storage Canisters for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Awards Contracts for Waste Storage U.S. Department of Energy Awards Contracts for Waste Storage Canisters for Yucca Mountain U.S. Department of Energy Awards Contracts for Waste Storage Canisters for Yucca Mountain May 21, 2008 - 12:00pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Areva Federal Services and NAC International have been awarded contracts for the design, licensing, and demonstration of the Transportation, Aging, and Disposal (TAD) canister system. The two contracts have a total value of up to $13.8 million if all options are exercised by DOE and are each for a term of up to five years. The TAD canister will be the primary means for packaging spent nuclear fuel for transportation to and disposal in the proposed repository at Yucca Mountain, about 90 miles northwest of Las

236

U.S. Department of Energy Awards Contracts for Waste Storage Canisters for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Awards Contracts for Waste Storage U.S. Department of Energy Awards Contracts for Waste Storage Canisters for Yucca Mountain U.S. Department of Energy Awards Contracts for Waste Storage Canisters for Yucca Mountain May 21, 2008 - 12:00pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Areva Federal Services and NAC International have been awarded contracts for the design, licensing, and demonstration of the Transportation, Aging, and Disposal (TAD) canister system. The two contracts have a total value of up to $13.8 million if all options are exercised by DOE and are each for a term of up to five years. The TAD canister will be the primary means for packaging spent nuclear fuel for transportation to and disposal in the proposed repository at Yucca Mountain, about 90 miles northwest of Las

237

Mixed Waste Management Facility (MWMF) groundwater monitoring report. Second quarter 1993  

SciTech Connect

Groundwater monitoring continued at the Savannah River Plant. During second quarter 1993, nine constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Chloroethene (vinyl chloride), dichloromethane (methylene chloride), 1,1-dichloroethylene, gross alpha, lead, nonvolatile beta, or tetrachloroethylene also exceeded standards in one or more wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Not Available

1993-09-01T23:59:59.000Z

238

Carbon Sequestration Kinetic and Storage Capacity of Ultramafic Mining Waste  

Science Journals Connector (OSTI)

Mineral carbonation of ultramafic rocks provides an environmentally safe and permanent solution for CO2 sequestration. In order to assess the carbonation potential of ultramafic waste material produced by industrial processing, we designed a laboratory-...

Julie Pronost; Georges Beaudoin; Joniel Tremblay; Faïçal Larachi; Josée Duchesne; Réjean Hébert; Marc Constantin

2011-09-15T23:59:59.000Z

239

Record of Decision for the Department of Energy's Waste Management Program; Treatment and Storage of Transuranic Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3630 3630 Federal Register / Vol. 63, No. 15 / Friday, January 23, 1998 / Notices to agreements DOE has entered into, such as those with States, relating to the treatment and storage of TRU waste. Future NEPA review could include, but would not necessarily be limited to, analysis of the need to supplement existing environmental reviews. DOE would conduct all such TRU waste shipments between sites in accordance with applicable transportation requirements and would coordinate these shipments with appropriate State, Tribal and local authorities. This Record of Decision was prepared in coordination with the Record of Decision issued on January 16, 1998, on disposal of DOE's TRU waste, which is based on the Waste Isolation Pilot Plant Disposal Phase Final Supplemental Environmental Impact Statement (WIPP

240

The Treatment of Mixed Waste with GeoMelt In-Container Vitrification  

SciTech Connect

AMEC's GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} has been used to treat diverse types of mixed low-level radioactive waste. ICV is effective in the treatment of mixed wastes containing polychlorinated biphenyls (PCBs) and other semi-volatile organic compounds, volatile organic compounds (VOCs) and heavy metals. The GeoMelt vitrification process destroys organic compounds and immobilizes metals and radionuclides in an extremely durable glass waste form. The process is flexible allowing for treatment of aqueous, oily, and solid mixed waste, including contaminated soil. In 2004, ICV was used to treat mixed radioactive waste sludge containing PCBs generated from a commercial cleanup project regulated by the Toxic Substances Control Act (TSCA), and to treat contaminated soil from Rocky Flats Environmental Technology Site. The Rocky Flats soil contained cadmium, PCBs, and depleted uranium. In 2005, AMEC completed a treatability demonstration of the ICV technology on Mock High Explosive from Sandia National Laboratories. This paper summarizes results from these mixed waste treatment projects. (authors)

Finucane, K.G.; Campbell, B.E. [AMEC Earth and Environmental, Inc., 1135 Jadwin Avenue, Richland, Washington 99352 (United States)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Survey of commercial firms with mixed-waste treatability study capability  

SciTech Connect

According to the data developed for the Proposed Site Treatment Plans, the US Department of Energy (DOE) mixed low-level and mixed transuranic waste inventory was estimated at 230,000 m{sup 3} and embodied in approximately 2,000 waste streams. Many of these streams are unique and may require new technologies to facilitate compliance with Resource Conservation and Recovery Act disposal requirements. Because most waste streams are unique, a demonstration of the selected technologies is justified. Evaluation of commercially available or innovative technologies in a treatability study is a cost-effective method of providing a demonstration of the technology and supporting decisions on technology selection. This paper summarizes a document being prepared by the Mixed Waste Focus Area of the DOE Office of Science and Technology (EM-50). The document will provide DOE waste managers with a list of commercial firms (and universities) that have mixed-waste treatability study capabilities and with the specifics regarding the technologies available at those facilities. In addition, the document will provide a short summary of key points of the relevant regulations affecting treatability studies and will compile recommendations for successfully conducting an off-site treatability study. Interim results of the supplier survey are tabulated in this paper. The tabulation demonstrates that treatment technologies in 17 of the US Environmental Protection Agency`s technology categories are available at commercial facilities. These technologies include straightforward application of standard technologies, such as pyrolysis, as well as proprietary technologies developed specifically for mixed waste. The paper also discusses the key points of the management of commercial mixed-waste treatability studies.

McFee, J.; McNeel, K.; Eaton, D. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Kimmel, R. [Dept. of Energy, Idaho Falls, ID (United States). Idaho Operations Office

1996-04-01T23:59:59.000Z

242

Comparative life-cycle cost analysis for low-level mixed waste remediation alternatives  

SciTech Connect

The purpose of this study is two-fold: (1) to develop a generic, life-cycle cost model for evaluating low-level, mixed waste remediation alternatives, and (2) to apply the model specifically, to estimate remediation costs for a site similar to the Fernald Environmental Management Project near Cincinnati, OH. Life-cycle costs for vitrification, cementation, and dry removal process technologies are estimated. Since vitrification is in a conceptual phase, computer simulation is used to help characterize the support infrastructure of a large scale vitrification plant. Cost estimating relationships obtained from the simulation data, previous cost estimates, available process data, engineering judgment, and expert opinion all provide input to an Excel based spreadsheet for generating cash flow streams. Crystal Ball, an Excel add-on, was used for discounting cash flows for net present value analysis. The resulting LCC data was then analyzed using multi-attribute decision analysis techniques with cost and remediation time as criteria. The analytical framework presented allows alternatives to be evaluated in the context of budgetary, social, and political considerations. In general, the longer the remediation takes, the lower the net present value of the process. This is true because of the time value of money and large percentage of the costs attributed to storage or disposal.

Jackson, J.A.; White, T.P.; Kloeber, J.M.; Toland, R.J.; Cain, J.P.; Buitrago, D.Y.

1995-03-01T23:59:59.000Z

243

Energy storage for desalination processes powered by renewable energy and waste heat sources  

Science Journals Connector (OSTI)

Abstract Desalination has become imperative as a drinking water source for many parts of the world. Due to the large quantities of thermal energy and high quality electricity requirements for water purification, the desalination industry depends on waste heat resources and renewable energy sources such as solar collectors, photovoltaic arrays, geothermal and wind and tidal energy sources. Considering the mismatch between the source supply and demand and intermittent nature of these energy resources, energy storage is a must for reliable and continuous operation of desalination facilities. Thermal energy storage (TES) requires a suitable medium for storage and circulation while the photovoltaic/wind generated electricity needs to be stored in batteries for later use. Desalination technologies that utilize thermal energy and thus require storage for uninterrupted process operation are multi-stage flash distillation (MSF), multi-effect evaporation (MED), low temperature desalination (LTD) and humidification–dehumidification (HD) and membrane distillation (MD). Energy accumulation, storage and supply are the key components of energy storage concept which improve process performance along with better resource economics, and minimum environmental impact. Similarly, the battery energy storage (BES) is essential to store electrical energy for electrodialysis (ED), reverse osmosis (RO) and mechanical vapor compression (MVC) technologies. This research-review paper provides a critical review on current energy storage options for different desalination processes powered by various renewable energy and waste heat sources with focus on thermal energy storage and battery energy storage systems. Principles of energy storage (thermal and electrical energy) are discussed with details on the design, sizing, and economics for desalination process applications.

Veera Gnaneswar Gude

2014-01-01T23:59:59.000Z

244

10/2/2006 SLAC-I-760-2A08Z-001-R002 Mixed Waste Generation Checklist  

E-Print Network (OSTI)

a radioactive waste (i.e., activation or radioactive contamination of a material/substance)? Yes No Is the work if a work operation will generate a radioactive waste, contact RPFO Group). If the work operation does not have the potential for generating a radioactive waste, then STOP. A mixed waste will not be generated

Wechsler, Risa H.

245

Thermoeconomic optimization of sensible heat thermal storage for cogenerated waste-to-energy recovery  

SciTech Connect

This paper investigates the feasibility of employing thermal storage for cogenerated waste-to-energy recovery such as using mass-burning water-wall incinerators and topping steam turbines. Sensible thermal storage is considered in rectangular cross-sectioned channels through which is passed unused process steam at 1,307 kPa/250 C (175 psig/482 F) during the storage period and feedwater at 1,307 kPa/102 C (175 psig/216 F) during the recovery period. In determining the optimum storage configuration, it is found that the economic feasibility is a function of mass and specific heat of the material and surface area of the channel as well as cost of material and fabrication. Economic considerations included typical cash flows of capital charges, energy revenues, operation and maintenance, and income taxes. Cast concrete is determined to be a potentially attractive storage medium.

Abdul-Razzak, H.A. [Texas A and M Univ., Kingsville, TX (United States). Dept. of Mechanical and Industrial Engineering; Porter, R.W. [Illinois Inst. of Tech., chicago, IL (United States). Dept. of Mechanical and Aerospace Engineering

1995-10-01T23:59:59.000Z

246

Microbial Transformations of TRU and Mixed Wastes: Actinide Speciation and Waste Volume Reduction  

SciTech Connect

Cellosic samples were prepared 1/29/92 at BNL from various sources, including white and brown paper towel, and Kimwipes. The mixed cellulosics were cut into 1 cm x 1 cm squares and transferred to glass serum bottles and various treatments were conducted: unamended (U) samples were filled with nitrogen-purged brine from G-Seep (4.1 M Na+ and 5.1 Cl- with minor amounts of Mg, K, and Ca and 0.3 M sulfate (Brush, 1990)); unamended/inoculated (UI) samples were filled with bacteria-containing surface lake water, sediment, and halite from the underground at the WIPP site; amended/inoculated (AI) samples were inoculated in this fashion and amended with nutrients; and amended/inoculated/excess nitrate (AINO3) samples were inoculated with excess nitrate in the form of KNO3 (5 g L-1 (49.5 mM)). Further information on sample preparation is available. All samples were analyzed by Fourier transform infrared spectroscopy (FTIR) at SBU to identify any transformations in cellulosic material which may have occurred during treatment and storage.

Halada, Gary P.

2005-06-01T23:59:59.000Z

247

Cryograb: A Novel Approach to the Retrieval of Waste from Underground Storage Tanks - 13501  

SciTech Connect

The UK's National Nuclear Laboratory (NNL) is investigating the use of cryogenic technology for the recovery of nuclear waste. Cryograb, freezing the waste on a 'cryo-head' and then retrieves it as a single mass which can then be treated or stabilized as necessary. The technology has a number of benefits over other retrieval approaches in that it minimizes sludge disturbance thereby reducing effluent arising and it can be used to de-water, and thereby reduce the volume of waste. The technology has been successfully deployed for a variety of nuclear and non-nuclear waste recovery operations. The application of Cryograb for the recovery of waste from US underground storage tanks is being explored through a US DOE International Technology Transfer and Demonstration programme. A sample deployment being considered involves the recovery of residual mounds of sludge material from waste storage tanks at Savannah River. Operational constraints and success criteria were agreed prior to the completion of a process down selection exercise which specified the preferred configuration of the cryo-head and supporting plant. Subsequent process modeling identified retrieval rates and temperature gradients through the waste and tank infrastructure. The work, which has been delivered in partnership with US DOE, SRNL, NuVision Engineering and Frigeo AB has demonstrated the technical feasibility of the approach (to TRL 2) and has resulted in the allocation of additional funding from DOE to take the programme to bench and cold pilot-scale trials. (authors)

O'Brien, Luke; Baker, Stephen; Bowen, Bob [UK National Nuclear Laboratory, Chadwick House, Warrington (United Kingdom)] [UK National Nuclear Laboratory, Chadwick House, Warrington (United Kingdom); Mallick, Pramod; Smith, Gary [US Department of Energy (United States)] [US Department of Energy (United States); King, Bill [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Judd, Laurie [NuVision Engineering (United States)] [NuVision Engineering (United States)

2013-07-01T23:59:59.000Z

248

SEPARATION AND EXTRACTION OF PLUTONIUM IN MIXED WASTE  

SciTech Connect

The Sonatol process uses ultrasonic agitation in fluorinated surfactant solutions to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to be reused indefinitely. The current work applies the Sonatol process to the decontamination of heterogeneous legacy Pu-238 waste that exhibits excessive hydrogen gas generation, which prevents transportation of the waste to the Waste Isolation Pilot Plant. Bartlett Services, Inc. (BSI) designed and fabricated a prototype decontamination system within a replica of a Savannah River Site glovebox. In Phase I, BSI conducted cold testing with surrogate waste material to verify that the equipment, operating procedures, and test protocols would support testing with Pu-238 in Phase II. The surrogate waste material is representative of known constituents of legacy job control waste. Two sub-micron sized Pu-238 simulants were added to the surrogate waste so that decontamination could be tested. The first simulant was an Osram Sylvania Phosphor 2284C powder that fluoresces under ultraviolet light. The use of the fluorescent simulant allows rapid, inexpensive system startup testing because residuals can be assayed using a digital camera. The results of digital pixel analysis (DPA) are available immediately and do not require use of licensed material. The second simulant, which was used for integrated cold testing, was a cerium oxide powder that was activated in a research reactor neutron flux and assayed by photon spectroscopy. The surrogate transuranic (TRU) waste material was contaminated with Pu-238 simulants and loaded into the cleaning chamber, where the surrogates were ultrasonically agitated and rinsed. The decontaminated materials were then assayed for surface contamination by DPA to establish optimum operating parameters and provide process quality control. Selected samples were sent to the Massachusetts Institute of Technology for neutron activation analysis (NAA). NAA testing resulted in weighted average decontamination factors (DFs) in the range of 125 to 157 for the surrogate waste mixtures. The weighted DFs for the organic portion of the surrogate waste mixtures ranged from 66 to 140. The NAA DF for inorganic material was 370. Other than the removal of particulate contamination, the processed samples were unchanged by decontamination. Most NAA samples were irradiated after decontamination. However, several samples were irradiated in the reactor core prior to decontamination in order to investigate the possible interference of radiation induced imbedding of particles in organic materials. The radiation dose was in excess of 110 Mrad. The NAA DF for samples irradiated before decontamination was six.

Arthur E. Desrosiers, ScD, CHP; Robert Kaiser, ScD; Jason Antkowiak; Justin Desrosiers; Josh Jondro; Adam Kulczyk

2002-12-13T23:59:59.000Z

249

2727-S Nonradioactive Dangerous Waste Storage Facility Closure Plan. Revision 3A  

SciTech Connect

This report contains Sections 4 and 5 of the Nonradioactive Dangerous Waste Storage Facility Closure Plan, which summarizes closure activities for the site. Sampling procedures for the building, concrete and soils are given. Plans for building disposal, equipment decontamination, site restoration, and providing cost estimates are outlined. Section 5 discusses plans to develop a health and safety contingency plan before initiation of sampling activities.

Not Available

1992-10-01T23:59:59.000Z

250

Thermal Energy Storage/Waste Heat Recovery Applications in the Cement Industry  

E-Print Network (OSTI)

, and the Portland Cement Association have studied the potential benefits of using waste heat recovery methods and thermal energy storage systems in the cement manufacturing process. This work was performed under DOE Contract No. EC-77-C-01-50S4. The study has been...

Beshore, D. G.; Jaeger, F. A.; Gartner, E. M.

1979-01-01T23:59:59.000Z

251

Modeling and analysis of ORNL horizontal storage tank mobilization and mixing  

SciTech Connect

The retrieval and treatment of radioactive sludges that are stored in tanks constitute a prevalent problem at several US Department of Energy sites. The tanks typically contain a settled sludge layer with non-Newtonian rheological characteristics covered by a layer of supernatant. The first step in retrieval is the mobilization and mixing of the supernatant and sludge in the storage tanks. Submerged jets have been proposed to achieve sludge mobilization in tanks, including the 189 m{sup 3} (50,000 gallon) Melton Valley Storage tanks (MVST) at Oak Ridge National Laboratory (ORNL) and the planned 378 m{sup 3} (100,000 gallon) tanks being designed as part of the MVST Capacity Increase Project (MVST-CIP). This report focuses on the modeling of mixing and mobilization in horizontal cylindrical tanks like those of the MVST design using submerged, recirculating liquid jets. The computer modeling of the mobilization and mixing processes uses the TEMPEST computational fluid dynamics program (Trend and Eyler 1992). The goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents.

Mahoney, L.A.; Terrones, G.; Eyler, L.L.

1994-06-01T23:59:59.000Z

252

Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes  

SciTech Connect

The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem'' wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above it's melting point (120{degree}C), combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991. 12 refs., 8 figs., 3 tabs.

Kalb, P.D.; Heiser, J.H. III; Colombo, P.

1990-01-01T23:59:59.000Z

253

High-level waste canister storage final design, installation, and testing. Topical report  

SciTech Connect

This report is a description of the West Valley Demonstration Project`s radioactive waste storage facility, the Chemical Process Cell (CPC). This facility is currently being used to temporarily store vitrified waste in stainless steel canisters. These canisters are stacked two-high in a seismically designed rack system within the cell. Approximately 300 canisters will be produced during the Project`s vitrification campaign which began in June 1996. Following the completion of waste vitrification and solidification, these canisters will be transferred via rail or truck to a federal repository (when available) for permanent storage. All operations in the CPC are conducted remotely using various handling systems and equipment. Areas adjacent to or surrounding the cell provide capabilities for viewing, ventilation, and equipment/component access.

Connors, B.J.; Meigs, R.A.; Pezzimenti, D.M.; Vlad, P.M.

1998-04-01T23:59:59.000Z

254

Task 1.6 -- Mixed waste treatment. Semi-annual report, January 1--June 30, 1995  

SciTech Connect

Mixed-waste sites make up the majority of contaminated sites, yet remediation techniques used at such sites often target only the most prevalent contaminant. A better understanding of site situation (i.e., most common types of contamination), current remediation techniques, and combinations of techniques would provide insight into areas in which further research should be performed. The first half of this task program year consisted of a survey of common types of mixed-wastes sites and a detailed literature search of the remediation techniques and combinations of techniques that were currently available. From this information, an assessment of each of the techniques was made and combined into various ways appropriate to mixed-waste protocol. This activity provided insight into areas in which further research should be performed.

Rindt, J.R.

1997-08-01T23:59:59.000Z

255

In-situ stabilization of TRU/mixed waste project at the INEEL  

SciTech Connect

Throughout the DOE complex, buried waste poses a threat to the environment by means of contaminant transport. Many of the sites contain buried waste that is untreated, prior to disposal, or insufficiently treated, by today`s standards. One option to remedy these disposal problems is to stabilize the waste in situ. This project was in support of the Transuranic/Mixed Buried Waste - Arid Soils product line of the Landfill Focus Area, which is managed currently by the Idaho National Engineering Laboratory (BNL) provided the analytical laboratory and technical support for the various stabilization activities that will be performed as part of the In Situ Stabilization of TRU/Mixed Waste project at the INEL. More specifically, BNL was involved in laboratory testing that included the evaluation of several grouting materials and their compatibility, interaction, and long-term durability/performance, following the encapsulation of various waste materials. The four grouting materials chosen by INEL were: TECT 1, a two component, high density cementious grout, WAXFIX, a two component, molten wax product, Carbray 100, a two component elastomeric epoxy, and phosphate cement, a two component ceramic. A simulated waste stream comprised of sodium nitrate, Canola oil, and INEL soil was used in this study. Seven performance and durability tests were conducted on grout/waste specimens: compressive strength, wet-dry cycling, thermal analysis, base immersion, solvent immersion, hydraulic conductivity, and accelerated leach testing.

Milian, L.W.; Heiser, J.H.; Adams, J.W.; Rutenkroeger, S.P.

1997-08-01T23:59:59.000Z

256

DNFSB Recommendation 2010-2, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant WTP  

NLE Websites -- All DOE Office Websites (Extended Search)

DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 i Department of Energy Plan to Address Waste Treatment and Immobilization Plant Vessel Mixing Issues Revision 0 Implementation Plan for Defense Nuclear Safety Board Recommendation 2010-2 November 10, 2011 DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 ii EXECUTIVE SUMMARY On December 17, 2010, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 2010-2, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant. The recommendation addressed the need for the U.S. Department of Energy (DOE) to ensure that the Hanford Waste Treatment and Immobilization Plant (WTP), in conjunction with the Hanford tank farm waste feed delivery system, will operate safely and effectively during a

257

A visual assessment of the concrete vaults which surround underground waste storage tanks  

SciTech Connect

Radioactive waste produced at the Savannah River Site (SRS) is stored in underground tanks. There are four different waste tank designs. For each waste tank design the outermost containment shield between the waste and the soil is a concrete vault surrounding the carbon steel liner(s). Should the primary and/or secondary liner be breached, the concrete vault would slow transport of the waste so that contamination of the soil is minimized. The type 3 waste tanks have a stated design life of 40--60 years. With the uncertainty of the schedule for transfer of the waste to the Defense Waste Processing Facility, it is conceivable that the tanks will be required to function past their design life. The Department of Energy formed a Waste Tank Structural Integrity Panel to investigate the potential for aging and degradation of underground radioactive waste storage tanks employed in the weapons complex. The panel is focusing on how each site in the complex: (1) inspects the waste tanks for degradation, (2) understands the potential degradation mechanisms which may occur at their sites, and (3) mitigates the known potential degradation mechanisms. In addition to the carbon steel liners, the degradation of the concrete vault has also been addressed by the panel. High Level Waste Engineering (HLWE) at SRS has formed a task team to identify key issues that determine and/or effect the condition of the concrete. In June 1993, slides were reviewed which showed the inside of the concrete vault in Type 1, 2, and 4 tanks. The authors subsequently visited the tank farm and assessed the visible portions of the outer concrete vault. Later a team of engineers knowledgeable in concrete degradation performed a walk-down. Photographs showing the concrete condition were taken at this time. This report summarizes the findings of these walk-downs and reinforces previous recommendations.

Wiersma, B.J.; Shurrab, M.S.

1993-12-01T23:59:59.000Z

258

List of Publications A Numerical Study of Transient Mixed Convection Flows in a Thermal Storage Tank, J. Solar  

E-Print Network (OSTI)

List of Publications A Numerical Study of Transient Mixed Convection Flows in a Thermal Storage Tank, J. Solar Energy Eng. 105, 246­253 (1983) (with A.M.C. Chan & D. Giusti) An Approximate Analytical

Smereka, Peter

259

Technical considerations and problems associated with long-term storage of low-level waste  

SciTech Connect

If a state or regional compact does not have adequate disposal capacity for low-level radioactive waste (LLRW), then extended storage of certain LLRW may be necessary. The Nuclear Regulatory Commission (NRC) contracted with Brookhaven National Laboratory (BNL) several years ago (1984--86) to address the technical issues of extended storage. The dual objectives of this study were (1) to provide practical technical assessments for NRC to consider in evaluating specific proposals for extended storage and (2) to help ensure adequate consideration by NRC, Agreement States, and licensees of potential problems that may arise from existing or proposed extended storage practices. In this summary of that study, the circumstances under which extended storage of LLRW would most likely result in problems during or after the extended storage period are considered and possible mitigative measures to minimize these problems are discussed. These potential problem areas include: (1) the degradation of carbon steel and polyethylene containers during storage and the subsequent need for repackaging (resulting in increased occupational exposure), (2) the generation of hazardous gases during storage, and (3) biodegradative processes in LLRW.

Siskind, B.

1991-01-01T23:59:59.000Z

260

Technical considerations and problems associated with long-term storage of low-level waste  

SciTech Connect

If a state or regional compact does not have adequate disposal capacity for low-level radioactive waste (LLRW), then extended storage of certain LLRW may be necessary. The Nuclear Regulatory Commission (NRC) contracted with Brookhaven National Laboratory (BNL) several years ago (1984--86) to address the technical issues of extended storage. The dual objectives of this study were (1) to provide practical technical assessments for NRC to consider in evaluating specific proposals for extended storage and (2) to help ensure adequate consideration by NRC, Agreement States, and licensees of potential problems that may arise from existing or proposed extended storage practices. In this summary of that study, the circumstances under which extended storage of LLRW would most likely result in problems during or after the extended storage period are considered and possible mitigative measures to minimize these problems are discussed. These potential problem areas include: (1) the degradation of carbon steel and polyethylene containers during storage and the subsequent need for repackaging (resulting in increased occupational exposure), (2) the generation of hazardous gases during storage, and (3) biodegradative processes in LLRW.

Siskind, B.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents (OSTI)

The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

Colombo, Peter (Patchogue, NY); Kalb, Paul D. (Wading River, NY); Heiser, III, John H. (Bayport, NY)

1997-11-14T23:59:59.000Z

262

Selection of analytical methods for mixed waste analysis at the Hanford Site  

SciTech Connect

This document describes the process that the US Department of Energy (DOE), Richland Operations Office (RL) and contractor laboratories use to select appropriate or develop new or modified analytical methods. These methods are needed to provide reliable mixed waste characterization data that meet project-specific quality assurance (QA) requirements while also meeting health and safety standards for handling radioactive materials. This process will provide the technical basis for DOE`s analysis of mixed waste and support requests for regulatory approval of these new methods when they are used to satisfy the regulatory requirements of the Hanford Federal Facility Agreement and Consent Order (Tri-party Agreement) (Ecology et al. 1992).

Morant, P.M.

1994-09-01T23:59:59.000Z

263

CSER 94-004: Criticality safety of double-shell waste storage tanks  

SciTech Connect

This criticality safety evaluation covers double-shell waste storage tanks (DSTs), double-contained receiver tanks (DCRTs), vault tanks, and the 242-A Evaporator located in the High Level Waste (HLW) Tank Farms on the Hanford Site. Limits and controls are specified and the basis for ensuring criticality safety is discussed. A minimum limit of 1,000 is placed upon the solids/plutonium mass ratio in incoming waste. The average solids/Pu mass ratio over all waste in tank farms is estimated to be about 74,500, about 150 times larger than required to assure subcriticality in homogeneous waste. PFP waste in Tank-102-SY has an estimated solids/Pu mass ratio of 10,000. Subcriticality is assured whenever the plutonium concentration is less than 2.6 g. The median reported plutonium concentration for 200 samples of waste solids is about 0.01 g (0.038 g/gal). A surveillance program is proposed to increase the knowledge of the waste and provide added assurance of the high degree of subcriticality.

Rogers, C.A.

1994-09-22T23:59:59.000Z

264

Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL. Revision 1  

SciTech Connect

In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL`s Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL`s acceptance criteria for radioactive and mixed waste.

Not Available

1991-09-01T23:59:59.000Z

265

Modification and expansion of X-7725A Waste Accountability Facility for storage of polychlorinated biphenyl wastes at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio  

SciTech Connect

The US Department of Energy (DOE) must manage wastes containing polychlorinated biphenyls (PCBs) in accordance with Toxic Substances Control Act (TSCA) requirements and as prescribed in a Federal Facilities Compliance Agreement (FFCA) between DOE and the U.S. Environmental Protection Agency (EPA). PCB-containing wastes are currently stored in the PORTS process buildings where they are generated. DOE proposes to modify and expand the Waste Accountability facility (X-7725A) at the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio, to provide a central storage location for these wastes. The proposed action is needed to eliminate the fire and safety hazards presented by the wastes. In this EA, DOE considers four alternatives: (1) no action, which requires storing wastes in limited storage areas in existing facilities; (2) modifying and expanding the X-7725A waste accountability facility; (3) constructing a new PCB waste storage building; and (4) shipping PCB wastes to the K-25 TSCA incinerator. If no action is taken, PCB-contaminated would continue to be stored in Bldgs X-326, X-330, and X-333. As TSCA cleanup activities continue, the quantity of stored waste would increase, which would subsequently cause congestion in the three process buildings and increase fire and safety hazards. The preferred alternative is to modify and expand Bldg. X-7725A to store wastes generated by TSCA compliance activities. Construction, which could begin as early as April 1996, would last approximately five to seven months, with a total peak work force of 70.

NONE

1995-11-01T23:59:59.000Z

266

CHARACTERIZATION THROUGH DATA QUALITY OBJECTIVES AND CERTIFICATION OF REMOTE-HANDLED TRANSURANIC WASTE GENERATOR/STORAGE SITES FOR SHIPMENT TO THE WIPP  

SciTech Connect

The Waste Isolation Pilot Plant (WIPP) is operating to receive and dispose of contact-handled (CH) transuranic (TRU) waste. The Department of Energy (DOE) Carlsbad Field Office (CBFO) is seeking approval from the Environmental Protection Agency (EPA) and the New Mexico Environment Department (NMED) of the remote-handled (RH) TRU characterization plan to allow disposal of RH TRU waste in the WIPP repository. In addition, the DOE-CBFO has received approval from the Nuclear Regulatory Commission (NRC) to use two shipping casks for transporting RH TRU waste. Each regulatory agency (i.e., EPA, NMED, and NRC) has different requirements that will have to be met through the use of information collected by characterizing the RH TRU waste. Therefore, the DOE-CBFO has developed a proposed characterization program for obtaining the RH TRU waste information necessary to demonstrate that the waste meets the applicable regulatory requirements. This process involved the development of a comprehensive set of Data Quality Objectives (DQOs) comprising the various regulatory requirements. The DOE-CBFO has identified seven DQOs for use in the RH TRU waste characterization program. These DQOs are defense waste determination, TRU waste determination, RH TRU determination, activity determination, RCRA physical and chemical properties, prohibited item determination, and EPA physical and chemical properties. The selection of the DQOs were based on technical, legal and regulatory drivers that assure the health and safety of the workers, the public, to protect the environment, and to comply with the requirements of the regulatory agencies. The DOE-CBFO also has the responsibility for the certification of generator/storage sites to ship RH TRU mixed waste to the WIPP for disposal. Currently, thirteen sites across the DOE complex are generators of RH TRU waste or store the waste at their location for other generators. Generator/storage site certification involves review and approval of site-specific programmatic documents that demonstrate compliance with the WIPP waste characterization and transportation requirements. Additionally, procedures must be developed to implement programmatic requirements and adequacy of those procedures determined. Finally, on-site audits evaluate the technical and administrative implementation and effectiveness of the operating procedures.

Spangler, L.R.; Most, Wm.A.; Kehrman, R.F.; Gist, C.S.

2003-02-27T23:59:59.000Z

267

Microsoft PowerPoint - S08-01_Thien_Handford Mixing Demonstration.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Scale Mixing Small Scale Mixing Demonstration Program EM Waste Processing Technical Exchange November 17, 2010 Mike Thien Print Close Agenda * Hanford Tank Waste Mission * Feed Challenge and Solution * Program Description * Program Component Discussion * Deployed Technology Discussion * Program Path Forward * Questions Mixing Demonstration Program 11/17/10 2 Print Close Simplified Tank Waste Mission Mixing Demonstration Program Other Hanford Facilities and IMUSTS Evaporator Liquid Effluent Retention Facility/ETF 28 Double-Shell Tanks 149 Single- Shell Tanks STORAGE TREATMENT Integrated Disposal Facility LONG-TERM STORAGE (ON-SITE) DISPOSAL (ON-SITE) WASTE TREATMENT PLANT High Level Waste Low Activity Waste Pretreatment Legend Existing Facilities Design or Construction

268

Hanford/Rocky Flats collaboration on development of supercritical carbon dioxide extraction to treat mixed waste  

SciTech Connect

Proposals for demonstration work under the Department of Energy`s Mixed Waste Focus Area, during the 1996 through 1997 fiscal years included two applications of supercritical carbon dioxide to mixed waste pretreatment. These proposals included task RF15MW58 of Rocky Flats and task RL46MW59 of Hanford. Analysis of compatibilities in wastes and work scopes yielded an expectation of substantial collaboration between sites whereby Hanford waste streams may undergo demonstration testing at Rocky Flats, thereby eliminating the need for test facilities at Hanford. This form of collaboration is premised the continued deployment at Rocky Flats and the capability for Hanford samples to be treated at Rocky Flats. The recent creation of a thermal treatment contract for a facility near Hanford may alleviate the need to conduct organic extraction upon Rocky Flats wastes by providing a cost effective thermal treatment alternative, however, some waste streams at Hanford will continue to require organic extraction. Final site waste stream treatment locations are not within the scope of this document.

Hendrickson, D.W.; Biyani, R.K. [Westinghouse Hanford Co., Richland, WA (United States); Brown, C.M.; Teter, W.L. [Kaiser-Hill Co., Golden, CO (United States)

1995-11-01T23:59:59.000Z

269

Phosphate glasses for radioactive, hazardous and mixed waste immobilization  

DOE Patents (OSTI)

Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

1999-03-09T23:59:59.000Z

270

Phosphate glasses for radioactive, hazardous and mixed waste immobilization  

DOE Patents (OSTI)

Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

1998-11-24T23:59:59.000Z

271

Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes  

DOE Patents (OSTI)

The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

Lewis, Michele A. (Naperville, IL); Johnson, Terry R. (Wheaton, IL)

1993-01-01T23:59:59.000Z

272

Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington  

SciTech Connect

This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

Not Available

1994-07-01T23:59:59.000Z

273

A Short History of Hanford Waste Generation, Storage, and Release  

SciTech Connect

Nine nuclear reactors and four reprocessing plants at Hanford produced nearly two-thirds of the plutonium used in the United States for government purposes . These site operations also created large volumes of radioactive and chemical waste. Some contaminants were released into the environment, exposing people who lived downwind and downstream. Other contaminants were stored. The last reactor was shut down in 1987, and the last reprocessing plant closed in 1990. Most of the human-made radioactivity and about half of the chemicals remaining onsite are kept in underground tanks and surface facilities. The rest exists in the soil, groundwater, and burial grounds. Hanford contains about 40% of all the radioactivity that exists across the nuclear weapons complex. Today, environmental restoration activities are under way.

Gephart, Roy E.

2003-10-01T23:59:59.000Z

274

Processing results of 1,800 gallons of mercury and radioactively contaminated mixed waste rinse solution  

SciTech Connect

The mercury-contaminated rinse solution (INEL waste ID{number_sign} 123; File 8 waste) was successfully treated at the Idaho National Engineering Laboratory (INEL). This waste was generated during the decontamination of the Heat Transfer Reactor Experiment 3 (HTRE-3) reactor shield tank. Approximately 1,800 gal of waste was generated and was placed into 33 drums. Each drum contained precipitated sludge material ranging from 1--10 in. in depth, with the average depth of about 2.5 in. The pH of each drum varied from 3--11. The bulk liquid waste had a mercury level of 7.0 mg/l, which exceeded the Resource Conservation and Recovery Act (RCRA) limit of 0.2 mg/l. The average liquid bulk radioactivity was about 2.1 pCi/ml, while the average sludge contamination was about 13,800 pci/g. Treatment of the waste required separation of the liquid from the sludge, filtration, pH adjustment, and ion exchange. Because of difficulties in processing, three trials were required to reduce the mercury levels to below the RCRA limit. In the first trial, insufficient filtration of the waste allowed solid particulate produced during pH adjustment to enter into the ion exchange columns and ultimately the waste storage tank. In the second trial, the waste was filtered down to 0.1 {mu} to remove all solid mercury compounds. However, before filtration could take place, a solid mercury complex dissolved and mercury levels exceeded the RCRA limit after filtration. In the third trial, the waste was filtered through 0.3-A filters and then passed through the S-920 resin to remove the dissolved mercury. The resulting solution had mercury levels at 0.0186 mg/l and radioactivity of 0.282 pCi/ml. This solution was disposed of at the TAN warm waste pond, TAN782, TSF-10.

Thiesen, B.P.

1993-01-01T23:59:59.000Z

275

Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report  

SciTech Connect

This report contains appendices 3 through 6 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, lab. permeability, in-situ permeability, and compaction characteristics, representative of kaolin clays from the Aiken, South Carolina vicinity. (KJD)

Not Available

1988-02-26T23:59:59.000Z

276

Mixed Waste Focus Area integrated technical baseline report, Phase 1: Volume 1  

SciTech Connect

The Department of Energy (DOE) established the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop and facilitate implementation of technologies required to meet the Department`s commitments for treatment of mixed low-level and transuranic wastes. The mission of the MWFA is to provide acceptable treatment systems, developed in partnership with users and with participation of stakeholders, tribal governments, and regulators, that are capable of treating DOE`s mixed waste. These treatment systems include all necessary steps such as characterization, pretreatment, and disposal. To accomplish this mission, a technical baseline is being established that forms the basis for determining which technology development activities will be supported by the MWFA. The technical baseline is the prioritized list of deficiencies, and the resulting technology development activities needed to overcome these deficiencies. This document presents Phase I of the technical baseline development process, which resulted in the prioritized list of deficiencies that the MWFA will address. A summary of the data and the assumptions upon which this work was based is included, as well as information concerning the DOE Office of Environmental Management (EM) mixed waste technology development needs. The next phase in the technical baseline development process, Phase II, will result in the identification of technology development activities that will be conducted through the MWFA to resolve the identified deficiencies.

NONE

1996-01-16T23:59:59.000Z

277

Environmental Assessment Offsite Thermal Treatment of Low-Level Mixed Waste  

SciTech Connect

The U.S. Department of Energy (DOE), Richland Operations Office (RL) needs to demonstrate the economics and feasibility of offsite commercial treatment of contact-handled low-level mixed waste (LLMW), containing polychlorinated biphenyls (PCBS) and other organics, to meet existing regulatory standards for eventual disposal.

N /A

1999-05-06T23:59:59.000Z

278

Central Waste Complex (CWC) Waste Analysis Plan  

SciTech Connect

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

ELLEFSON, M.D.

1999-12-01T23:59:59.000Z

279

Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary  

SciTech Connect

This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

Not Available

1990-06-01T23:59:59.000Z

280

Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1993 and 1993 summary  

SciTech Connect

During fourth quarter 1993, 10 constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Carbon tetrachloride, chloroform, chloroethane (vinyl chloride), 1,1-dichloroethylene, dichloromethane (methylene chloride), lead, mercury, or tetrachloroethylene also exceeded standards in one or more wells. Elevated constituents were found in numerous Aquifer Zone 2B{sub 2} (Water Table) and Aquifer Zone 2B{sub 1}, (Barnwell/McBean) wells and in two Aquifer Unit 2A (Congaree) wells. The groundwater flow direction and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Butler, C.T.

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Mixed Waste Management Facility (MWMF) groundwater monitoring report: Third quarter 1993  

SciTech Connect

During third quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread constituents Chloroethene (vinyl chloride), 1,1-dichloroethylene, dichloromethane (methylene chloride), lead, mercury, or tetrachloroethylene also exceeded standards in one or more wells. The elevated constituents were found in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1} (Barnwell/McBean) wells. No elevated constituents were exhibited in Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Not Available

1993-12-01T23:59:59.000Z

282

Mixed Waste Management Facility (MWMF) groundwater monitoring report. First quarter 1993  

SciTech Connect

During first quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste anagement Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults (HWMWDV). As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Tetrachloroethylene, chloroethene, 1,1-dichloroethylene, gross alpha, lead, or nonvolatile beta levels also exceeded standards in one or more wells. The elevated constituents were found primarily in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contained elevated constituent levels. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to previous quarters.

Not Available

1993-06-01T23:59:59.000Z

283

A ground-coupled storage heat pump system with waste heat recovery  

SciTech Connect

This paper reports on an experimental single-family residence that was constructed to demonstrate integration of waste heat recovery and seasonal energy storage using both a ventilating and a ground-coupled heat pump. Called the Idaho energy Conservation Technology House, it combines superinsulated home construction with a ventilating hot water heater and a ground coupled water-to-water heat pump system. The ground heat exchangers are designed to economically promote seasonal and waste heat storage. Construction of the house was completed in the spring of 1989. Located in Moscow, Idaho, the house is occupied by a family of three. The 3,500 ft{sup 2} (325 m{sup 2}) two-story house combines several unique sub-systems that all interact to minimize energy consumption for space heating and cooling, and domestic hot water.

Drown, D.C.; Braven, K.R.D. (Univ. of Idaho, ID (US)); Kast, T.P. (Thermal Dynamic Towers, Boulder, CO (US))

1992-02-01T23:59:59.000Z

284

Long-term changes in nitrogen loads of a stream in the vicinity of an earthen waste storage pond  

Science Journals Connector (OSTI)

It is not sufficiently known for how long earthen waste storage ponds that are no more in use continue to affect surface water quality. In 2006, we carried out an investigation on the water quality and hydrolo...

T. Kato; H. Kuroda; H. Nakasone

2008-09-01T23:59:59.000Z

285

US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina  

SciTech Connect

The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company.

Not Available

1993-04-01T23:59:59.000Z

286

Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2  

SciTech Connect

This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2.

Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P. [and others

1997-09-01T23:59:59.000Z

287

A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices  

SciTech Connect

The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties.

Mattus, C.H.; Gilliam, T.M.

1994-03-01T23:59:59.000Z

288

Testing of low-temperature stabilization alternatives for salt containing mixed wastes -- Approach and results to date  

SciTech Connect

Through its annual process of identifying technology deficiencies associated with waste treatment, the Department of Energy`s (DOE) Mixed Waste Focus Area (MWFA) determined that the former DOE weapons complex lacks efficient mixed waste stabilization technologies for salt containing wastes. These wastes were generated as sludge and solid effluents from various primary nuclear processes involving acids and metal finishing; and well over 10,000 cubic meters exist at 6 sites. In addition, future volumes of these problematic wastes will be produced as other mixed waste treatment methods such as incineration and melting are deployed. The current method used to stabilize salt waste for compliant disposal is grouting with Portland cement. This method is inefficient since the highly soluble and reactive chloride, nitrate, and sulfate salts interfere with the hydration and setting processes associated with grouting. The inefficiency results from having to use low waste loadings to ensure a durable and leach resistant final waste form. The following five alternatives were selected for MWFA development funding in FY97 and FY98: phosphate bonded ceramics; sol-gel process; polysiloxane; polyester resin; and enhanced concrete. Comparable evaluations were planned for the stabilization development efforts. Under these evaluations each technology stabilized the same type of salt waste surrogates. Final waste form performance data such as compressive strength, waste loading, and leachability could then be equally compared. Selected preliminary test results are provided in this paper.

Maio, V.; Loomis, G. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Spence, R.D. [Oak Ridge National Lab., TN (United States); Smith, G. [Pacific Northwest National Lab., Richland, WA (United States); Biyani, R.K. [SGN Eurisys Services Corp., Richland, WA (United States); Wagh, A. [Argonne National Lab., IL (United States)

1998-05-01T23:59:59.000Z

289

Development of radiological profiles for U.S. Department of Energy low-level mixed wastes  

SciTech Connect

Radiological profiles have been developed by Argonne National Laboratory for low-level mixed wastes (LLMWs) that are under the management of the US Department of Energy (DOE). These profiles have been used in the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS) to support the analysis of environmental and health risks associated with the various waste management strategies. The radiological characterization of DOE LLMWs is generally inadequate and has made it difficult to develop a site- and waste-stream-dependent radiological profile for LLMWs. On the basis of the operational history of the DOE sites, a simple model was developed to generate site-dependent and waste-stream-independent radiological profiles for LLMWs. This paper briefly discusses the assumptions used in this model and the uncertainties in the results.

Wilkins, B.D.; Meshkov, N.K.; Dolak, D.A.; Wang, Y.Y.

1995-03-01T23:59:59.000Z

290

Hydrogen storage for mixed wind–nuclear power plants in the context of a Hydrogen Economy  

Science Journals Connector (OSTI)

A novel methodology for the economic evaluation of hydrogen production and storage for a mixed wind–nuclear power plant considering some new aspects such as residual heat and oxygen utilization is applied in this work. This analysis is completed in the context of a Hydrogen Economy and competitive electricity markets. The simulation of the operation of a combined nuclear–wind–hydrogen system is discussed first, where the selling and buying of electricity, the selling of excess hydrogen and oxygen, and the selling of heat are optimized to maximize profit to the energy producer. The simulation is performed in two phases: in a pre-dispatch phase, the system model is optimized to obtain optimal hydrogen charge levels for the given operational horizons. In the second phase, a real-time dispatch is carried out on an hourly basis to optimize the operation of the system as to maximize profits, following the hydrogen storage levels of the pre-dispatch phase. Based on the operation planning and dispatch results, an economic evaluation is performed to determine the feasibility of the proposed scheme for investment purposes; this evaluation is based on calculations of modified internal rates of return and net present values for a realistic scenario. The results of the present studies demonstrate the feasibility of a hydrogen storage and production system with oxygen and heat utilization for existent nuclear and wind power generation facilities.

Gregor Taljan; Michael Fowler; Claudio Cañizares; Gregor Verbi?

2008-01-01T23:59:59.000Z

291

Hanford`s remote-handled transuranic and transuranic mixed waste volume assessment  

SciTech Connect

This study documents the results of an assessment of each Hanford program`s potential RH-TRU(M) waste forecast volumes. Of this 3,470 m{sup 3} of remote-handled transuranic and transuranic mixed (RH-TRU[M]) forecast waste, the Environmental Restoration program is the only program generating waste (360 m{sup 3}) after the closure of the WIPP in FY 2033. Previous forecast assessments have estimated Hanford`s RH-TRU(M) waste volumes to range from 4,000 m{sup 3} to 45,000 m{sup 3}. In FY 1995, the RH-TRU(M) waste forecast was approximately 22,200 m{sup 3} (BIR), which exceeds the WIPP remote-handled capacity. The FY-1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary (WHC-EP-0900) published in February 1996 stated that the baseline RH-TRU(M) waste volume was 13,350 m{sup 3}. The primary reason for the three different estimates results from two programmatic baseline revisions: Tank Waste Remediation Systems (TWRS) and Environmental Restoration (EM-40). The difference in the TWRS programmatic baseline is due to a revised programmatic baseline for the disposition of the long-length equipment currently present in the tanks. The difference in the Environmental Restoration programmatic baseline is due to an assessment based on recent experience that many of the facilities at Hanford will not contain RH-TRU(M) waste during decontamination and decommissioning and that for many other facilities, the RH-TRU(M) waste volumes will not be as great as previously estimated.

Templeton, K.J.; DeForest, T.J.; Hladek, K.L.

1996-03-01T23:59:59.000Z

292

The Mixed Waste Management Facility. Design basis integrated operations plan (Title I design)  

SciTech Connect

The Mixed Waste Management Facility (MWMF) will be a fully integrated, pilotscale facility for the demonstration of low-level, organic-matrix mixed waste treatment technologies. It will provide the bridge from bench-scale demonstrated technologies to the deployment and operation of full-scale treatment facilities. The MWMF is a key element in reducing the risk in deployment of effective and environmentally acceptable treatment processes for organic mixed-waste streams. The MWMF will provide the engineering test data, formal evaluation, and operating experience that will be required for these demonstration systems to become accepted by EPA and deployable in waste treatment facilities. The deployment will also demonstrate how to approach the permitting process with the regulatory agencies and how to operate and maintain the processes in a safe manner. This document describes, at a high level, how the facility will be designed and operated to achieve this mission. It frequently refers the reader to additional documentation that provides more detail in specific areas. Effective evaluation of a technology consists of a variety of informal and formal demonstrations involving individual technology systems or subsystems, integrated technology system combinations, or complete integrated treatment trains. Informal demonstrations will typically be used to gather general operating information and to establish a basis for development of formal demonstration plans. Formal demonstrations consist of a specific series of tests that are used to rigorously demonstrate the operation or performance of a specific system configuration.

NONE

1994-12-01T23:59:59.000Z

293

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies  

SciTech Connect

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

294

EIS-0109: Long-Term Management of the Existing Radioactive Wastes and Residues at the Niagara Falls Storage Site  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy developed this statement to evaluate the environmental impacts of several alternatives for management and control of the radioactive wastes and residues at the Niagara Falls Storage Site, including a no action alternative, an alternative to manage wastes on-site, and two off-site management alternatives.

295

High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6  

SciTech Connect

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

Not Available

1994-04-01T23:59:59.000Z

296

Final Environmental Impact Statement (Supplement to ERDA-1537, September 1977) Waste Management Operations Double-Shell Tanks for Defense High-Level Radioactive Waste Storage Savannah River Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do Do E/EIS-0062 FINAL ENVIRONMENTAL IMPACT mATEIUIENT (Supplement to ERDA-1537, September 1977) Waste ~ Management Operations Savannah River Plant ! Aiken, South Carolina Double-Shell Tanks for Defense High-Level Radioactive Waste Storage April 1980 U.S. DEPARTMENT OF ENERGY WASHINGTON. D.C.20545 1980 WL 94273 (F.R.) NOTICES DEPARTMENT OF ENERGY Office of Deputy Assistant Secretary for Nuclear Waste Management Double-Shell Tanks for Defense High-Level Radioactive Waste Storage, Savannah River Plant, Aiken, S.C. Wednesday, July 9, 1980 *46154 Record of Decision Decision. The decision has been made to complete the construction of the 14 double-shell tanks and use them to store defense high-level radioactive waste at the Savannah River Plant (SRP). Background. The SRP, located near Aiken, South Carolina, is a major installation of the

297

EIS-0062: Double-Shell Tanks for Defense High Level Waste Storage, Savannah River Site, Aiken, SC  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes the impacts of the various design alternatives for the construction of fourteen 1.3 million gallon high-activity radioactive waste tanks. The EIS further evaluates the effects of these alternative designs on tank durability, on the ease of waste retrieval from such tanks, and the choice of technology and timing for long-term storage or disposal of the wastes.

298

US Department of Energy Storage of Spent Fuel and High Level Waste  

SciTech Connect

ABSTRACT This paper provides an overview of the Department of Energy's (DOE) spent nuclear fuel (SNF) and high level waste (HLW) storage management. Like commercial reactor fuel, DOE's SNF and HLW were destined for the Yucca Mountain repository. In March 2010, the DOE filed a motion with the Nuclear Regulatory Commission (NRC) to withdraw the license application for the repository at Yucca Mountain. A new repository is now decades away. The default for the commercial and DOE research reactor fuel and HLW is on-site storage for the foreseeable future. Though the motion to withdraw the license application and delay opening of a repository signals extended storage, DOE's immediate plans for management of its SNF and HLW remain the same as before Yucca Mountain was designated as the repository, though it has expanded its research and development efforts to ensure safe extended storage. This paper outlines some of the proposed research that DOE is conducting and will use to enhance its storage systems and facilities.

Sandra M Birk

2010-10-01T23:59:59.000Z

299

Technical area status report for low-level mixed waste final waste forms. Volume 1  

SciTech Connect

The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

Mayberry, J.L.; DeWitt, L.M. [Science Applications International Corp., Idaho Falls, ID (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

1993-08-01T23:59:59.000Z

300

ESTIMATING HIGH LEVEL WASTE MIXING PERFORMANCE IN HANFORD DOUBLE SHELL TANKS  

SciTech Connect

The ability to effectively mix, sample, certify, and deliver consistent batches of high level waste (HLW) feed from the Hanford double shell tanks (DSTs) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. The Department of Energy's (DOE's) Tank Operations Contractor (TOC), Washington River Protection Solutions (WRPS) is currently demonstrating mixing, sampling, and batch transfer performance in two different sizes of small-scale DSTs. The results of these demonstrations will be used to estimate full-scale DST mixing performance and provide the key input to a programmatic decision on the need to build a dedicated feed certification facility. This paper discusses the results from initial mixing demonstration activities and presents data evaluation techniques that allow insight into the performance relationships of the two small tanks. The next steps, sampling and batch transfers, of the small scale demonstration activities are introduced. A discussion of the integration of results from the mixing, sampling, and batch transfer tests to allow estimating full-scale DST performance is presented.

THIEN MG; GREER DA; TOWNSON P

2011-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Waste immobilization demonstration program for the Hanford Site`s Mixed Waste Facility  

SciTech Connect

This paper presents an overview of the Waste Receiving and Processing facility, Module 2A> waste immobilization demonstration program, focusing on the cooperation between Hanford Site, commercial, and international participants. Important highlights of the development and demonstration activities is discussed from the standpoint of findings that have had significant from the standpoint of findings that have had significant impact on the evolution of the facility design. A brief description of the future direction of the program is presented, with emphasis on the key aspects of the technologies that call for further detailed investigation.

Burbank, D.A.; Weingardt, K.M.

1994-05-01T23:59:59.000Z

302

Development and status of the AL Mixed Waste Treatment Plan or I love that mobile unit of mine  

SciTech Connect

Nine Department of Energy (DOE) sites reporting to the Albuquerque Office (AL) have mixed waste that is chemically hazardous and radioactive. The hazardous waste regulations require the chemical portion of mixed waste to be to be treated to certain standards. The total volume of low-level mixed waste at the nine sites is equivalent to 7,000 drums, with individual site volumes ranging from 1 gallon of waste at the Pinellas Plant to 4,500 drums at Los Alamos National Laboratory. Nearly all the sites have a diversity of wastes requiring a diversity of treatment processes. Treatment capacity does not exist for much of this waste, and it would be expensive for each site to build the diversity of treatment processes needed to treat its own wastes. DOE-AL assembled a team that developed the AL Mixed Waste Treatment Plan that uses the resources of the nine sites to treat the waste at the sites. Work on the plan started in October 1993, and the plan was finalized in March 1994. The plan uses commercial treatment, treatability studies, and mobile treatment units. The plan specifies treatment technologies that will be built as mobile treatment units to be moved from site to site. Mobile units include bench-top units for very small volumes and treatability studies, drum-size units that treat one drum per day, and skid-size units that handle multiple drum volumes. After the tools needed to treat the wastes were determined, the sites were assigned to provide part of the treatment capacity using their own resources and expertise. The sites are making progress on treatability studies, commercial treatment, and mobile treatment design and fabrication. To date, this is the only plan for treating waste that brings the resources of several DOE sites together to treat mixed waste. It is the only program actively planning to use mobile treatment coordinated between DOE sites.

Bounini, L. [USDOE Grand Junction Project Office, CO (United States); Williams, M. [USDOE Albuquerque Operations Office, NM (United States); Zygmunt, S. [Los Alamos National Lab., NM (United States)

1995-02-01T23:59:59.000Z

303

Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment  

SciTech Connect

Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

Hsu, P.C.

1997-11-01T23:59:59.000Z

304

Ion implantation effects in insulators and the long-term stability of radioactive waste storage materials  

Science Journals Connector (OSTI)

Most insulator materials so far proposed for storing high-level radioactive wastes, such as glass and and the constituent minerals of ceramics are nuclear track detectors. Lead ion implantation experiments show that such materials should be transformed into “giant” nuclear tracks, when the internal fluence of heavy recoils emitted during the ?-decay of actinide elements stored in them exceeds a critical value, which corresponds to an equivalent storage period of a few thousand years for the wastes expected from a pressurized water reactor. In contrast, actinide bearing minerals are much more stable against ?-recoil damage. As nuclear tracks are extremely chemical reactive, ?-recoil damage is expected to shorten the lifetime of storage materials such as glass and ceramics against dissolution in ground waters. Fortunately new nuclear track concepts are already yielding guidelines for predicting and improving the long-term stability of storage materials. The results of the present studies also bear on the physics of ion implantation phenomena an insulator targets exposed to high fluences of low energy ions.

J.C. Dran; Y. Langevin; M. Maurette; J.C. Petit; B. Vassent

1981-01-01T23:59:59.000Z

305

Equipment design guidance document for flammable gas waste storage tank new equipment  

SciTech Connect

This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas.

Smet, D.B.

1996-04-11T23:59:59.000Z

306

DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary  

SciTech Connect

This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis.

DeMuth, S.F.

1996-10-01T23:59:59.000Z

307

Final closure cover for a Hanford radioactive mixed waste disposal facility  

SciTech Connect

This study provides a preliminary design for a RCRA mixed waste landfill final closure cover. The cover design was developed by a senior class design team from Seattle University. The design incorporates a layered design of indigenous soils and geosynthetics in a layered system to meet final closure cover requirements for a landfill as imposed by the Washington Administrative Code WAC-173-303 implementation of the Resource Conservation and Recovery Act.

Johnson, K.D.

1996-02-06T23:59:59.000Z

308

The Mixed Waste Management Facility monthly report and revised FY95 plan, May 1995  

SciTech Connect

This report contains the project summary, as well as the financial summary for the Mixed Waste Management Facility at Lawrence Livermore National Laboratory. Detailed accomplishments and milestone status are reported in the Task Summaries. The major accomplishments during this reporting period are included the following areas: preliminary design; systems integration; briefings for the Environmental Programs Scientific Advisory Committee; integrated cost/scheduling estimating system; feed preparation; mediated electrochemical oxidation; and molten salt oxidation.

Streit, R.D.

1995-06-01T23:59:59.000Z

309

DOE/EIS-0290 Advanced Mixed Waste Treatment Project (January 1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-1999/AppxA.HTML[6/24/2011 1:16:37 PM] 2-1999/AppxA.HTML[6/24/2011 1:16:37 PM] APPENDIX A CONSULTATION LETTERS This appendix will include consultation/approval letters between the U.S. Department of Energy (DOE) and the U.S. Fish and Wildlife Service regarding threatened and endangered species, and between other State and Federal agencies as needed. Letters currently supplied are from the U.S. Fish and Wildlife Service to DOE. DOE/EIS-0290 Advanced Mixed Waste Treatment Project (January 1999) file:///I|/Data%20Migration%20Task/EIS-0290-FEIS-02-1999/AppxA.HTML[6/24/2011 1:16:37 PM] DOE/EIS-0290 Advanced Mixed Waste Treatment Project (January 1999) file:///I|/Data%20Migration%20Task/EIS-0290-FEIS-02-1999/AppxA.HTML[6/24/2011 1:16:37 PM] DOE/EIS-0290 Advanced Mixed Waste Treatment Project (January 1999)

310

Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste  

SciTech Connect

DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

NONE

1998-09-01T23:59:59.000Z

311

Microbial Transformation of TRU and Mixed Wastes: Actinide Speciation and Waste Volume Reduction  

SciTech Connect

I. To characterize the biodegradation of cellulosic materials using Fourier Transform Infrared (FTIR) Spectroscopy. II. To develop an electrochemical/spectroscopic methodology to characterize TRU waste microbial transformation III. To develop molecular models of TRU complexes in order to understand microbial transformation In all cases, objectives are designed to compliment the efforts from other team members, and will be periodically coordinated through the lead P.I. at Brookhaven National Laboratory (BNL), A.J. Francis.

Halada, Gary P.

2004-12-01T23:59:59.000Z

312

Vitrification of M-Area Mixed (Hazardous and Radioactive) F006 Wastes: I. Sludge and Supernate Characterization  

SciTech Connect

Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert low-level and mixed (hazardous and radioactive) wastes to a solid stabilized waste form for permanent disposal. One of the alternative technologies is vitrification into a borosilicate glass waste form. The Environmental Protection Agency (EPA) has declared vitrification the Best Demonstrated Available Technology (BDAT) for high-level radioactive mixed waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The DOE Office of Technology Development (OTD) has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both current and future regulatory specifications. Stabilization of low level and hazardous wastes in glass are in accord with the 1988 Savannah River Technology Center (SRTC), then the Savannah River Laboratory (SRL), Professional Planning Committee (PPC) recommendation that high nitrate containing (low-level) wastes be incorporated into a low temperature glass (via a sol-gel technology). The investigation into this new technology was considered timely because of the potential for large waste volume reduction compared to solidification into cement.

Jantzen, C.M.

2001-10-05T23:59:59.000Z

313

Title: An Advanced Solution for the Storage, Transportation and Disposal of Vitrified High Level Waste  

NLE Websites -- All DOE Office Websites (Extended Search)

Presented at Global 99, Jackson, Wyoming, August 29 - September 2, 1999 Presented at Global 99, Jackson, Wyoming, August 29 - September 2, 1999 1 AN ADVANCED SOLUTION FOR THE STORAGE, TRANSPORTATION AND DISPOSAL OF SPENT FUEL AND VITRIFIED HIGH LEVEL WASTE William J. Quapp Teton Technologies, Inc. 860 W. Riverview Dr. Idaho Falls, ID 83401 208-535-9001 ABSTRACT For future nuclear power deployment in the US, certain changes in the back end of the fuel cycle, i.e., disposal of high level waste and spent fuel, must become a real options. However, there exists another problem from the front end of the fuel cycle which has until recently, received less attention. Depleted uranium hexafluoride is a by-product of the enrichment process and has accumulated for over 50 years. It now represents a potential environmental problem. This paper describes a

314

Assessing the Feasibility of Interrogating Nuclear Waste Storage Silos using Cosmic-ray Muons  

E-Print Network (OSTI)

Muon radiography is a fast growing field in applied scientific research. In recent years, many detector technologies and imaging techniques using the Coulomb scattering and absorption properties of cosmic-ray muons have been developed for the non-destructive assay of various structures across a wide range of applications. This work presents the first results that assess the feasibility of using muons to interrogate waste silos within the UK Nuclear Industry. Two such approaches, using different techniques that exploit each of these properties, have previously been published, and show promising results from both simulation and experimental data for the detection of shielded high-Z materials and density variations from volcanic assay. Both detector systems are based on scintillator and photomultiplier technologies. Results from dedicated simulation studies using both these technologies and image reconstruction techniques are presented for an intermediate-sized nuclear waste storage facility filled with concrete...

Ambrosino, F; Cimmino, L; D'Alessandro, R; Ireland, D G; Kaiser, R; Mahon, D F; Mori, N; Noli, P; Saracino, G; Shearer, C; Viliani, L; Yang, G

2014-01-01T23:59:59.000Z

315

Radiolytic effects on ion exchangers during the storage of radioactive wastes  

SciTech Connect

Radiolytic effects on ion exchangers are being recognized as a significant problem in the processing and storage of high-specific-activity radioactive waste forms. Two major literature surveys and a series of scoping experiments conducted during this investigation indicate that radiation decomposition of ion exchange materials has the potential for a variety of undesirable consequences. These include the ready dispersion of adsorbed radionuclides to the environment, corrosion and pressurization of waste canisters, and generation of flammable and explosive gases, as well as agglomeration of ion exchangers to a rigid monolith with the partitioning of a liquid phase. Some of the highlights of the literature surveys and the major findings of the experimental studies are reported here.

Pillay, K.K.S.; Palau, G.L.

1982-01-01T23:59:59.000Z

316

ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS  

SciTech Connect

Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

Wiersma, B.; Hansen, A.

2013-11-13T23:59:59.000Z

317

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

318

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

319

Greater-than-Class C low-level radioactive waste characterization. Appendix E-2: Mixed GTCC LLW assessment  

SciTech Connect

Mixed greater-than-Class C low-level radioactive waste (mixed GTCC LLW) is waste that combines two characteristics: it is radioactive, and it is hazardous. This report uses information compiled from Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclide Activities, and Other Characteristics (DOE/LLW 1 14, Revision 1), and applies it to the question of how much and what types of mixed GTCC LLW are generated and are likely to require disposal in facilities jointly regulated by the DOE and the NRC. The report describes how to classify a RCRA hazardous waste, and then applies that classification process to the 41 GTCC LLW waste types identified in the DOE/LLW-114 (Revision 1). Of the 41 GTCC LLW categories identified, only six were identified in this study as potentially requiring regulation as hazardous waste under RCRA. These wastes can be combined into the following three groups: fuel-in decontamination resins, organic liquids, and process waste consisting of lead scrap/shielding from a sealed source manufacturer. For the base case, no mixed GTCC LLW is expected from nuclear utilities or sealed source licensees, whereas only 177 ml of mixed GTCC LLW are expected to be produced by other generators through the year 2035. This relatively small volume represents approximately 40% of the base case estimate for GTCC wastes from other generators. For these other generators, volume estimates for mixed GTCC LLW ranged from less than 1 m{sup 3} to 187 m{sup 3}, depending on assumptions and treatments applied to the wastes.

Kirner, N.P. [Ebasco Environmental, Idaho Falls, ID (United States)

1994-09-01T23:59:59.000Z

320

Assessment of degradation concerns for spent fuel, high-level wastes, and transuranic wastes in monitored retrievalbe storage  

SciTech Connect

It has been concluded that there are no significant degradation mechanisms that could prevent the design, construction, and safe operation of monitored retrievable storage (MRS) facilities. However, there are some long-term degradation mechanisms that could affect the ability to maintain or readily retrieve spent fuel (SF), high-level wastes (HLW), and transuranic wastes (TRUW) several decades after emplacement. Although catastrophic failures are not anticipated, long-term degradation mechanisms have been identified that could, under certain conditions, cause failure of the SF cladding and/or failure of TRUW storage containers. Stress rupture limits for Zircaloy-clad SF in MRS range from 300 to 440/sup 0/C, based on limited data. Additional tests on irradiated Zircaloy (3- to 5-year duration) are needed to narrow this uncertainty. Cladding defect sizes could increase in air as a result of fuel density decreases due to oxidation. Oxidation tests (3- to 5-year duration) on SF are also needed to verify oxidation rates in air and to determine temperatures below which monitoring of an inert cover gas would not be required. Few, if any, changes in the physical state of HLW glass or canisters or their performance would occur under projected MRS conditions. The major uncertainty for HLW is in the heat transfer through cracked glass and glass devitrification above 500/sup 0/C. Additional study of TRUW is required. Some fraction of present TRUW containers would probably fail within the first 100 years of MRS, and some TRUW would be highly degraded upon retrieval, even in unfailed containers. One possible solution is the design of a 100-year container. 93 references, 28 figures, 17 tables.

Guenther, R.J.; Gilbert, E.R.; Slate, S.C.; Partain, W.L.; Divine, J.R.; Kreid, D.K.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage  

SciTech Connect

Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. The first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.

Eide, J.; Baillieul, T. A.; Biedscheid, J.; Forrester, T,; McMillan, B.; Shrader, T.; Richterich, L.

2003-02-26T23:59:59.000Z

322

The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site  

SciTech Connect

After a 15-year hiatus, the United States Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO) began accepting DOE off-site generated mixed low-level radioactive waste (MLLW) for disposal at the Nevada Test Site (NTS) in December 2005. This action was predicated on the acceptance by the Nevada Division of Environmental Protection (NDEP) of a waste analysis plan (WAP). The NNSA/NSO agreed to limit mixed waste disposal to 20,000 cubic meters (approximately 706,000 cubic feet) and close the facility by December 2010 or sooner, if the volume limit is reached. The WAP and implementing procedures were developed based on Hanford’s system of verification to the extent possible so the two regional disposal sites could have similar processes. Since the NNSA/NSO does not have a breaching facility to allow the opening of boxes at the site, verification of the waste occurs by visual inspection at the generator/treatment facility or by Real-Time-Radiography (RTR) at the NTS. This system allows the NTS to effectively, efficiently, and compliantly accept MLLW for disposal. The WAP, NTS Waste Acceptance Criteria, and procedures have been revised based on learning experiences. These changes include: RTR expectations; visual inspection techniques; tamper-indicating device selection; void space requirements; and chemical screening concerns. The NNSA/NSO, NDEP, and the generators have been working together throughout the debugging of the verification processes. Additionally, the NNSA/NSO will continue to refine the MLLW acceptance processes and strive for continual improvement of the program.

DOE /Navarro/NSTec

2007-02-01T23:59:59.000Z

323

Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)  

SciTech Connect

The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, {sup 90}Sr and {sup 137}Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the {sup 137}Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF.

COVEY, L.I.

2000-11-28T23:59:59.000Z

324

Degradation of transuranic waste drums in underground storage at the Hanford Site  

SciTech Connect

In situ inspections were performed on tarp-covered 55-gallon drums of transuranic (TRU) waste stored underground at the Hanford Site. These inspections were part of a task to characterize TRU drums for extent of corrosion degradation and uncertainty in TRU designation (inaccuracy in earlier assay determinations may have led to drums that actually were low-level waste to be termed TRU), and to attempt to correlate accuracy of existing records with actual drum contents. Two separate storage trench sites were investigated; a total of 90 drums were inspected with ultrasonic techniques and 104 additional drums were visually inspected. A high-humidity environment in the underground storage trenches had been reported in earlier investigations and was expected to result in substantial corrosion degradation. However, corrosion was much less than expected. Only a small percentage of drums had significant corrosion (with one breach) and the maximum rate was estimated at 0.051 mm/yr (2 mils/yr). The corrosion time of underground exposure was 14 to 15 years. These inspection results should be applicable to other similar environments (this applicability should be restricted to arid climates such as the Hanford Site) where drums are stored underground but shielded from direct soil contact by a tarp or other means. Soil contact would lead to more rapid corrosion.

Duncan, D.R.

1996-05-07T23:59:59.000Z

325

Iron-Phosphate Ceramics for Solidification of Mixed Low-Level Waste  

SciTech Connect

A method of immobilizing mixed low-level waste is provided which uses low cost materials and has a relatively long hardening period. The method includes: forming a mixture of iron oxide powders having ratios, in mass %, of FeO: Fe{sub 2}O{sub 3}: Fe{sub 3}O{sub 4} equal to 25-40: 40-10: 35-50, or weighing a definite amount of magnitite powder. Metallurgical cinder can also be used as the source of iron oxides. A solution of the orthophosphoric acid, or a solution of the orthophosphoric acid and ferric oxide, is formed and a powder phase of low-level waste and the mixture of iron oxide powders or cinder (or magnetite powder) is also formed. The acid solution is mixed with the powder phase to form a slurry with the ratio of components (mass %) of waste: iron oxide powders or magnitite: acid solution = 30-60: 15-10: 55-30. The slurry is blended to form a homogeneous mixture which is cured at room temperature to form the final product.

Aloy, Albert S.; Kovarskaya, Elena N.; Koltsova, Tatiana I.; Macheret, Yevgeny; Medvedev, Pavel G.; Todd, Terry

1998-08-07T23:59:59.000Z

326

Iron-phosphate ceramics for solidification of mixed low-level waste  

DOE Patents (OSTI)

A method of immobilizing mixed low-level waste is provided which uses low cost materials and has a relatively long hardening period. The method includes: forming a mixture of iron oxide powders having ratios, in mass %, of FeO:Fe.sub.2 O.sub.3 :Fe.sub.3 O.sub.4 equal to 25-40:40-10:35-50, or weighing a definite amount of magnetite powder. Metallurgical cinder can also be used as the source of iron oxides. A solution of the orthophosphoric acid, or a solution of the orthophosphoric acid and ferric oxide, is formed and a powder phase of low-level waste and the mixture of iron oxide powders or cinder (or magnetite powder) is also formed. The acid solution is mixed with the powder phase to form a slurry with the ratio of components (mass %) of waste:iron oxide powders or magnetite:acid solution=30-60:15-10:55-30. The slurry is blended to form a homogeneous mixture which is cured at room temperature to form the final product.

Aloy, Albert S. (St. Petersburg, RU); Kovarskaya, Elena N. (St. Petersburg, RU); Koltsova, Tatiana I. (St. Petersburg, RU); Macheret, Yevgeny (Idaho Falls, ID); Medvedev, Pavel G. (Ozersk, RU); Todd, Terry (Aberdeen, ID)

2000-01-01T23:59:59.000Z

327

Framework for DOE mixed low-level waste disposal: Site fact sheets  

SciTech Connect

The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

1994-11-01T23:59:59.000Z

328

Treatment of low-level mixed waste using an expedited demonstration concept  

SciTech Connect

The majority of the Department of Energy`s inventory of low-level mixed waste is Land Disposal Restricted under the Resource Conservation and Recovery Act, and therefore must be treated prior to disposal. Treatment may include removal of a hazardous characteristic, destruction of a hazardous component, immobilization to meet the Universal Treatment Standards or Debris Rule, or treatment by a technology specified by the regulations. As part of a concerted effort to make wastes compliant under the Land Disposal Restrictions, the Department of Energy is supporting the Expedited Technology Demonstration program at the Rocky Flats Environmental Technology Site. The intent of the expedited program is to demonstrate treatment processes on actual hazardous or radioactive mixed waste streams on an accelerated schedule. Six successful treatability studies at Rocky Flats have proven the viability of the expedited concept. The technologies demonstrated include electrochemical chlorination for cyanide and sulfide destruction, ultraviolet oxidation for organic chemical destruction, mercury separation by vacuum retort, thermoplastic and thermosetting polymer macroencapsulation, and silver nitrate destruction by metal recovery and neutralization.

Lucerna, J.J.; Riendeau, M.P. [Kaiser-Hill Company, Golden, CO (United States)

1996-12-31T23:59:59.000Z

329

Radionuclides in shallow groundwater at Solid Waste Storage Area 5 North, Oak Ridge National Laboratory  

SciTech Connect

This report presents a compilation of groundwater monitoring data from Solid Waste Storage Area (SWSA) 5 North at Oak Ridge National Laboratory (ORNL) between November 1989 and September 1993. Monitoring data were collected as part of the Active Sites Environmental Monitoring Program that was implemented in 1989 in response to DOE Order 5820.2A. SWSA 5 North was established for the retrievable storage of transuranic (TRU) wastes in 1970. Four types of storage have been used within SWSA 5 North: bunkers, vaults, wells, and trenches. The fenced portion of SWSA 5 North covers about 3.7 ha (9 acres) in the White Oak Creek watershed south of ORNL. The area is bounded by White Oak Creek and two ephemeral tributaries of White Oak Creek. Since 1989, groundwater has been monitored in wells around SWSA 5 North. During that time, elevated gross alpha contamination (reaching as high as 210 Bq/L) has consistently been detected in well 516. This well is adjacent to burial trenches in the southwest corner of the area. Water level measurements in wells 516 and 518 suggest that water periodically inundates the bottom of some of those trenches. Virtually all of the gross alpha contamination is generated by Curium 244 and Americium 241. A special geochemical investigation of well 516 suggests that nearly all of the Curium 44 and Americium 241 is dissolved or associated with dissolved organic matter. These are being transported at the rate of about 2 m/year from the burial trenches, through well 516, to White Oak Creek, where Curium 244 has been detected in a few bank seeps. Concentrations at these seeps are near detection levels (<1 Bq/L).

Ashwood, T.L.; Marsh, J.D. Jr.

1994-04-01T23:59:59.000Z

330

Criticality Safety Analysis on the Mixed Be, Nat-U, and C (Graphite) Reflectors in 55-Gallon Waste Drums and Their Equivalents for HWM Applications  

SciTech Connect

The objective of this analysis is to develop and establish the technical basis on the criticality safety controls for the storage of mixed beryllium (Be), natural uranium (Nat-U), and carbon (C)/graphite reflectors in 55-gallon waste containers and/or their equivalents in Hazardous Waste Management (HWM) facilities. Based on the criticality safety limits and controls outlined in Section 3.0, the operations involving the use of mixed-reflector drums satisfy the double-contingency principle as required by DOE Order 420.1 and are therefore criticality safe. The mixed-reflector mass limit is 120 grams for each 55-gallon drum or its equivalent. a reflector waiver of 50 grams is allowed for Be, Nat-U, or C/graphite combined. The waived reflectors may be excluded from the reflector mass calculations when determining if a drum is compliant. The mixed-reflector drums are allowed to mix with the typical 55-gallon one-reflector drums with a Pu mass limit of 120 grams. The fissile mass limit for the mixed-reflector container is 65 grams of Pu equivalent each. The corresponding reflector mass limits are 300 grams of Be, and/or 100 kilograms of Nat-U, and/or 110 kilograms of C/graphite for each container. All other unaffected control parameters for the one-reflector containers remain in effect for the mixed-reflector drums. For instance, Superior moderators, such as TrimSol, Superla white mineral oil No. 9, paraffin, and polyethylene, are allowed in unlimited quantities. Hydrogenous materials with a hydrogen density greater than 0.133 gram/cc are not allowed. Also, an isolation separation of no less than 76.2 cm (30-inch) is required between a mixed array and any other array. Waste containers in the action of being transported are exempted from this 76.2-cm (30-inch) separation requirement. All deviations from the CS controls and mass limits listed in Section 3.0 will require individual criticality safety analyses on a case-by-case basis for each of them to confirm their criticality safety prior to their deployment and implementation.

Chou, P

2011-12-14T23:59:59.000Z

331

Environmental Assessment and Finding of No Significant Impact: On-Site Treatment of Low Level Mixed Waste  

SciTech Connect

The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1292) to evaluate the proposed treatment of low level mixed waste (LLMW) at the Rocky Flats Environmental Technology Site (Site). The purpose of the action is to treat LLMW in order to meet the Land Disposal Restrictions specified by the Resource Conservation and Recovery Act and the waste acceptance criteria of the planned disposal site(s). Approximately 17,000 cubic meters (m{sup 3}) of LLMW are currently stored at the Site. Another 65,000 m{sup 3}of LLMW are likely to be generated by Site closure activities (a total of 82,000 m{sup 3} of LLMW). About 35,000 m{sup 3} can be directly disposed of off-site without treatment, and most of the remaining 47,000 m{sup 3} of LLMW can be treated at off-site treatment, storage, and disposal facilities. However, some LLMW will require treatment on-site, either because it does not meet shipping requirements or because off-site treatment is not available for these particular types of LLMW. Currently, this LLMW is stored at the Site pending the development and implementation of effective treatment processes. The Site needs to treat this LLMW on-site prior to shipment to off-site disposal facilities, in order to meet the DOE long-term objective of clean up and closure of the Site. All on-site treatment of LLMW would comply with applicable Federal and State laws designed to protect public health and safety and to enhance protection of the environment. The EA describes and analyzes the environmental effects of the proposed action (using ten mobile treatment processes to treat waste on-site), and the alternatives of treating waste onsite (using two fixed treatment processes), and of taking no action. The EA was the subject of a public comment period from February 3 to 24, 1999. No written or other comments regarding the EA were received.

N /A

1999-03-22T23:59:59.000Z

332

Evaluating In Situ Treatment Technologies for Buried Mixed Waste Remediation at the INEEL  

SciTech Connect

Mixed radioactive and hazardous wastes were buried at the Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL) Subsurface Disposal Area from 1952 to 1969. To begin the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remediation process for the Subsurface Disposal Area, the Environmental Protection Agency (EPA) added the INEEL to its National Priorities List in 1989. DOE's Office of Environmental Restoration is planning several CERCLA treatability studies of remedial technologies that will be evaluated for potential remediation of the buried waste in the Subsurface Disposal Area. This paper discusses the in situ treatability studies that will be performed, including in situ vitrification, in situ grouting, and in situ thermal desorption. The in situ treatability studies will be conducted on simulated and actual buried wastes at the INEEL in 1999 and 2000. Results from the treatability studies will provide substantial information on the feasibility, implementability, and cost of applying these technologies to the INEEL Subsurface Disposal Area. In addition, much of the treatability study data will be applicable to buried waste site remediation efforts across the DOE complex.

D.F. Nickelson; D.K. Jorgensen; J.J. Jessmore; R.A. Hyde; R.K. Farnsworth

1999-02-01T23:59:59.000Z

333

Evaluating In Situ Treatment Technologies for Buried Mixed Waste Remediation at the INEEL  

SciTech Connect

Mixed radioactive and hazardous wastes were buried at the Department of Energy’s Idaho National Engineering and Environmental Laboratory (INEEL) Subsurface Disposal Area from 1952 to 1969. To begin the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remediation process for the Subsurface Disposal Area, the Environmental Protection Agency (EPA) added the INEEL to its National Priorities List in 1989. DOE’s Office of Environmental Restoration is planning several CERCLA treatability studies of remedial technologies that will be evaluated for potential remediation of the buried waste in the Subsurface Disposal Area. This paper discusses the in situ treatability studies that will be performed, including in situ vitrification, in situ grouting, and in situ thermal desorption. The in situ treatability studies will be conducted on simulated and actual buried wastes at the INEEL in 1999 and 2000. Results from the treatability studies will provide substantial information on the feasibility, implementability, and cost of applying these technologies to the INEEL Subsurface Disposal Area. In addition, much of the treatability study data will be applicable to buried waste site remediation efforts across the DOE complex.

Jorgensen, Douglas Kay; Nickelson, David Frank; Nickelson, Reva Anne; Farnsworth, Richard Kent; Jessmore, James Joseph

1999-03-01T23:59:59.000Z

334

Simulant Development for Hanford Double-Shell Tank Mixing and Waste Feed Delivery Testing  

SciTech Connect

The U.S. Department of Energy Office of River Projection manages the River Protection Project, which has the mission to retrieve and treat the Hanford tank waste for disposal and close the tank farms (Certa et al. 2011). Washington River Protection Solutions, LLC (WRPS) is responsible for a primary objective of this mission which is to retrieve and transfer tank waste to the Hanford Waste Treatment and Immobilization Plant (WTP). A mixing and sampling program with four separate demonstrations is currently being conducted to support this objective and also to support activities in a plan for addressing safety concerns identified by the Defense Nuclear Facilities Safety Board related to the ability of the WTP to mix, sample, and transfer fast settling particles. Previous studies have documented the objectives, criteria, and selection of non-radioactive simulants for these four demonstrations. The identified simulants include Newtonian suspending liquids with densities and viscosities that span the range expected in waste feed tanks. The identified simulants also include non-Newtonian slurries with Bingham yield stress values that span a range that is expected to bound the Bingham yield stress in the feed delivery tanks. The previous studies identified candidate materials for the Newtonian and non-Newtonian suspending fluids, but did not provide specific recipes for obtaining the target properties and information was not available to evaluate the compatibility of the fluids and particles or the potential for salt precipitation at lower temperatures. The purpose of this study is to prepare small batches of simulants in advance of the demonstrations to determine specific simulant recipes, to evaluate the compatibility of the liquids and particles, and to determine if the simulants are stable for the potential range of test temperatures. The objective of the testing, which is focused primarily on the Newtonian and non-Newtonian fluids, is to determine the composition of simulant materials that give the desired density and viscosity or rheological parameters.

Gauglitz, Phillip A.; Tran, Diana N.; Buchmiller, William C.

2012-09-24T23:59:59.000Z

335

Environmental impacts of different food waste resource technologies and the effects of energy mix  

Science Journals Connector (OSTI)

Abstract The environmental impacts of food waste management strategies and the effects of energy mix were evaluated using a life cycle assessment model, EASEWASTE. Three different strategies involving landfill, composting and combined digestion and composting as core technologies were investigated. The results indicate that the landfilling of food waste has an obvious impact on global warming, although the power recovery from landfill gas counteracts some of this. Food waste composting causes serious acidification (68.0 PE) and nutrient enrichment (76.9 PE) because of NH3 and SO2 emissions during decomposition. Using compost on farmland, which can marginally reduce global warming (?1.7 PE), acidification (?0.8 PE), and ecotoxicity and human toxicity through fertilizer substitution, also leads to nutrient enrichment as neutralization of emissions from N loss (27.6 PE) and substitution (?12.8 PE). A combined digestion and composting technology lessens the effects of acidification (?12.2 PE), nutrient enrichment (?5.7 PE), and global warming (?7.9 PE) mainly because energy is recovered efficiently, which decreases emissions including SO2, Hg, NOx, and fossil CO2 during normal energy production. The change of energy mix by introducing more clean energy, which has marginal effects on the performance of composting strategy, results in apparently more loading to acidification and nutrient enrichment in the other two strategies. These are mainly because the recovered energy can avoid fewer emissions than before due to the lower background values in power generation. These results provide quantitative evidence for technical selection and pollution control in food waste management.

Yan Zhao; Wenjing Deng

2014-01-01T23:59:59.000Z

336

Application to ship nonmixed transuranic waste to the Nevada Test Site for interim storage. Waste Cerification Program  

SciTech Connect

This report documents various regulations on radioactive waste processing and discusses how the Waste Isolation Pilot Plant will comply with and meet these requirements. Specific procedures are discussed concerning transuranic, metal scrap, salt block, solid, and glove box wastes.

Not Available

1993-12-01T23:59:59.000Z

337

Novel procurement concepts utilized to award contract for vitrification of an F006 mixed waste sludge  

SciTech Connect

A number of novel concepts were utilized in a procurement bid process to award a contract for the stabilization of a mixed wastewater treatment plating line sludge from the Reactor Materials department (M-Area) at the Savannah River site (SRS). The contract award was based on a combination of technical and cost considerations. The technical aspects included an evaluation of the technical validity of the proposed process(es) (i.e., would the process work?), the physical resources of the proposer and the expertise of the personnel proposed to work on the program, and prior experience of the firm wit treatment and stabilization of mixed (radioactive and hazardous) wastes. This paper will concentrate on the cost and the bid award considerations, rather than the technical aspects.

Pickett, J.B.; Musall, J.C.; Hayes, A.F.; Campbell, E.E.

1994-06-01T23:59:59.000Z

338

Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence: Supplement LLNL Subcontract #B568621 Lightning Protection at the Yucca Mountain Waste Storage Facility  

SciTech Connect

The University of Florida has surveyed all relevant publications reporting lightning damage to metals, metals which could be used as components of storage containers for nuclear waste materials. We show that even the most severe lightning could not penetrate the stainless steel thicknesses proposed for nuclear waste storage casks.

Uman, M A

2008-10-09T23:59:59.000Z

339

Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes  

SciTech Connect

The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables.

Not Available

1984-01-01T23:59:59.000Z

340

The Design and Construction of the Advanced Mixed Waste Treatment Facility  

SciTech Connect

The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site integration of functional components or glove boxes, with the attendant integrated control system and undertaking continuous, non-stop, operational effectiveness proof tests. This paper describes the process, plant and technology used within the AMWTP and provides an outline of the associated design, procurement, fabrication, testing and construction.

Harrop, G.

2003-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Testing of low temperature stabilization alternatives for salt-containing mixed wastes -- approach and results to date  

SciTech Connect

Through its annual process of identifying technology deficiencies associated with waste treatment, the Department of Energy`s (DOE) Mixed Waste Focus Area (MWFA) determined that the former DOE weapons complex lacks efficient mixed waste stabilization technologies for salt containing wastes. The current method used to stabilize salt waste for compliant disposal is grouting with Portland cement. This method is inefficient since the highly soluble and reactive chloride, nitrate, and sulfate salts interfere with the hydration and setting processes associated with grouting. The following five alternative salt waste stabilization technologies were selected for MWFA development funding in FY97 and FY98: (1) Phosphate Bonded Ceramics, (2) Sol-gel, (3) Polysiloxane, (4) Polyester Resin, and (5) Enhanced Concrete. Comparable evaluations were planned for the stabilization development efforts. Under these evaluations each technology stabilized the same type of salt waste surrogates as specified by the MWFA. Final waste form performance data such as compressive strength, waste loading, and leachability can then be equally compared to the requirements originally specified. In addition to the selected test results provided in this paper, the performance of each alternative stabilization technology, will be documented in formal MWFA Innovative Technology Summary Reports (ITSRs).

Maio, V.; Loomis, G. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)] [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Biyani, R.K. [SGN Eurisys Services Corp., Richland, WA (United States)] [SGN Eurisys Services Corp., Richland, WA (United States); Smith, G. [Pacific Northwest National Lab., Richland, WA (United States)] [Pacific Northwest National Lab., Richland, WA (United States); Spence, R. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States); Wagh, A. [Argonne National Lab., IL (United States)] [Argonne National Lab., IL (United States)

1998-07-01T23:59:59.000Z

342

Comparison of alternative treatment systems for DOE mixed low-level waste  

SciTech Connect

From 1993 to 1996, the Department of Energy, Environmental Management, Office of Science and Technology (OST), has sponsored a series of systems analyses to guide its future research and development (R&D) programs for the treatment of mixed low-level waste (MLLW) stored in the DOE complex. The two original studies were of 20 mature and innovative thermal systems. As a result of a technical review of these thermal system studies, a similar study of five innovative nonthermal systems was conducted in which unit operations are limited to temperatures less than 350{degrees}C to minimize volatilization of heavy metals and radionuclides, and de novo production of dioxins and furans in the offgas. Public involvement in the INTS study was established through a working group of 20 tribal and stakeholder representatives to provide input to the INTS studies and identify principles against which the systems should be designed and evaluated. Pre-conceptual designs were developed for all systems to treat the same waste input (2927 lbs/hr) in a single centralized facility operating 4032 hours per year for 20 years. This inventory consisted of a wide range of combustible and non-combustible materials such as paper, plastics, metals, concrete, soils, sludges, liquids, etc., contaminated with trace quantities of radioactive materials and RCRA regulated wastes. From this inventory, an average waste profile was developed for simulated treatment using ASPEN PLUS{copyright} for mass balance calculations. Seven representative thermal systems were selected for comparison with the five nonthermal systems. This report presents the comparisons against the TSWG principles, of total life cycle cost (TLCC), and of other system performance indicators such as energy requirements, reagent requirements, land use, final waste volume, aqueous and gaseous effluents, etc.

Schwinkendorf, W.E.

1997-03-01T23:59:59.000Z

343

Quantities and characteristics of the contact-handled low-level mixed waste streams for the DOE complex  

SciTech Connect

This report supports the Integrated Thermal Treatment System (ITTS) Study initiated by the Department of Energy (DOE) Office of Technology Development (EM-50), which is a system engineering assessment of a variety of mixed waste treatment process. The DOE generates and stores large quantities of mixed wastes that are contaminated with both chemically hazardous and radioactive species. The treatment of these mixed wastes requires meeting the standards established by the Environmental Protection Agency for the specific hazardous contaminants regulated under the Resource Conservation and Recovery Act while also providing adequate control of the radionuclides. The thrust of the study is to develop preconceptual designs and life-cycle cost estimates for integrated thermal treatment systems ranging from conventional incinerators, such as rotary kiln and controlled air systems, to more innovative but not yet established technologies, such as molten salt and molten metal waste destruction systems. Prior to this engineering activity, the physical and chemical characteristics of the DOE low-level mixed waste streams to be treated must be defined or estimated. This report describes efforts to estimate the DOE waste stream characteristics.

Huebner, T.L.; Wilson, J.M.; Ruhter, A.H.; Bonney, S.J. [SAIC, Idaho Falls, ID (United States). Waste Management Technology Div.

1994-08-01T23:59:59.000Z

344

Vitrification of surrogate mixed wastes in a graphite electrode arc melter  

SciTech Connect

Demonstration tests for vitrifying mixed wastes and contaminated soils have been conducted using a small (800 kVA), industrial-scale, three-phase AC, graphite electrode furnace located at the Albany Research Center of the United States Bureau of Mines (USBM). The feed mixtures were non-radioactive surrogates of various types of mixed (radioactive and hazardous), transuranic-contaminated wastes stored and buried at the Idaho National Engineering Laboratory (INEL). The feed mixtures were processed with added soil from the INEL. Objectives being evaluated include (1) equipment capability to achieve desired process conditions and vitrification products for different feed compositions, (2) slag and metals tapping capability, (3) partitioning of transuranic elements and toxic metals among the furnace products, (4) slag, fume, and metal products characteristics, and (5) performance of the feed, furnace and air pollution control systems. The tests were successfully completed in mid-April 1995. A very comprehensive process monitoring, sampling and analysis program was included in the test program. Sample analysis, data reduction, and results evaluation are currently underway. Initial results indicate that the furnace readily processed around 20,000 lb of widely ranging feed mixtures at feedrates of up to 1,100 lb/hr. Continuous feeding and slag tapping was achieved. Molten metal was also tapped twice during the test program. Offgas emissions were efficiently controlled as expected by a modified air pollution control system.

Soelberg, N.R.; Chambers, A.G.; Ball, L. [and others

1995-11-01T23:59:59.000Z

345

Comparison of TCLP and long-term PCT performance on low-level mixed waste glasses  

SciTech Connect

The Mixed Waste Integrated Program (MWIP) of the US Department of Energy (DOE) is currently investigating technologies for conversion of low-level mixed waste (LLMW) into a form suitable for permanent disposal. Vitrification is one of the preferred technologies since it is capable of consistently producing a durable, leach resistant wasteform, while simultaneously minimizing disposal volumes. Since vitrification of LLMW is a relatively new concept, final wasteform specifications have not been developed. The Savannah River Technology Center (SRTC) of the Westinghouse Savannah River Company (WSRC) has developed the Product Consistency Test (PCI), which is a 7-day leaching procedure for glass. Comparison indicates that both tests have merit where LLMW glasses are concerned. The TCLP is an important test for determining the release of metals and for allowing the wasteform to be delisted while the PCT is more useful for determining consistent production of durable glass. It is a better indicator of the behavior of glass in disposal site conditions. Most aggressive leaching of common oxide glasses occurs under caustic rather than acidic conditions, therefore it is necessary to perform both tests. Further tests will be conducted using additional glass compositions and variations in the TCLP and the PCT.

Cicero, C.A.; Andrews, M.K.; Bickford, D.F.

1994-06-01T23:59:59.000Z

346

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4  

SciTech Connect

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

Not Available

1994-04-01T23:59:59.000Z

347

Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only".  

E-Print Network (OSTI)

Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only". Maintain a written log to document all amounts and types of oil added to the container. No solvents, oil contaminated with solvents, PCBs, non-petroleum based oils, or any other

Maroncelli, Mark

348

Generation, storage, collection and transportation of municipal solid waste - A case study in the city of Kathmandu, capital of Nepal  

SciTech Connect

Solid waste management (SWM) services have consistently failed to keep up with the vast amount of solid waste produced in urban areas. There is not currently an efficient system in place for the management, storage, collection, and transportation of solid waste. Kathmandu City, an important urban center of South Asia, is no exception. In Kathmandu Metropolitan City, solid waste generation is predicted to be 1091 m{sup 3}/d (245 tons/day) and 1155 m{sup 3}/d (260 tons/day) for the years 2005 and 2006, respectively. The majority (89%) of households in Kathmandu Metropolitan City are willing to segregate the organic and non-organic portions of their waste. Overall collection efficiency was 94% in 2003. An increase in waste collection occurred due to private sector involvement, the shutdown of the second transfer station near the airport due to local protest, a lack of funding to maintain trucks/equipment, a huge increase in plastic waste, and the willingness of people to separate their waste into separate bins. Despite a substantial increase in total expenditure, no additional investments were made to the existing development plan to introduce a modern disposal system due to insufficient funding. Due to the lack of a proper lining, raw solid waste from the existing dumping site comes in contact with river water directly, causing severe river contamination and deteriorating the quality of the water.

Alam, R. [Shahjalal University of Science and Technology, Department of Civil and Environmental Engineering, Sylhet 3114 (Bangladesh)], E-mail: rakib_env@yahoo.com; Chowdhury, M.A.I.; Hasan, G.M.J.; Karanjit, B.; Shrestha, L.R. [Shahjalal University of Science and Technology, Department of Civil and Environmental Engineering, Sylhet 3114 (Bangladesh)

2008-07-01T23:59:59.000Z

349

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

F. J. Molz. Subsurface Waste Heat Storage, Experimentalfor land disposal of waste heat and waste water. Inst. forfor land disposal of waste heat and waste water. Inst. for

Authors, Various

2011-01-01T23:59:59.000Z

350

Successful Opening and Disposal to-Date of Mixed CERCLA Waste at the ORR-EMWMF  

SciTech Connect

On May 28, 2002, the Environmental Management Waste Management Facility (EMWMF) opened for operations on the Department of Energy's Oak Ridge Reservation (ORR). The EMWMF is the centerpiece in the DOE's strategy for ORR environmental cleanup. The 8+ year planned project is an on-site engineered landfill, which is accepting for disposal radioactive, hazardous, toxic and mixed wastes generated by remedial action subcontractors. The opening of the EMWMF on May 28, 2002 marked the culmination of a long development process that began in mid-1980. In late 1999 the Record of Decision was signed and a full year of design for the initial 400, 000-yd3 disposal cell began. In early 2000 Duratek Federal Services, Inc. (Federal Services) began construction. Since then, Federal Services and Bechtel Jacobs Company, LLC (BJC) have worked cooperatively to complete a required DOE readiness evaluation, develop all the Safety Authorization Basis Documentation (ASA's, SER, and UCD's) and prepare procedures and work controlling documents required to safely accept waste. This paper explains the intricacies and economics of designing and constructing the facility.

Corpstein, P.; Hopper, P.; McNutt, R.

2003-02-25T23:59:59.000Z

351

Mixed Waste Focus Area alternative oxidation technologies development and demonstration program  

SciTech Connect

The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. The impetus for this support derives from regulatory and political hurdles frequently encountered by traditional thermal techniques, primarily incinerators. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. Whether thermal or nonthermal, the processes have the potential advantages of relatively low-volume gaseous emissions, generation of few or no dioxin/furan compounds, and operation at low enough temperatures that metals (except mercury) and most radionuclides are not volatilized. Technology development and demonstration are needed to confirm and realize the potential of AOTs and to compare them on an equal basis with their fully demonstrated thermal counterparts. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site, and direct chemical oxidation at Lawrence Livermore National Laboratory. All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory, and team reforming, a commercial process being supported by Department of Energy. Related technologies include two low-flow, secondary oxidation processes (Phoenix and Thermatrix units) that have been tested at MSE, Inc., in Butte, Montana. Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.

Borduin, L.C. [Los Alamos National Lab., NM (United States); Fewell, T.; Gombert, D.; Priebe, S. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

1998-07-01T23:59:59.000Z

352

Final disposal options for mercury/uranium mixed wastes from the Oak Ridge Reservation  

SciTech Connect

Laboratory testing was completed on chemical stabilization and physical encapsulation methods that are applicable (to comply with federal and state regulations) to the final disposal of both hazardous and mixed hazardous elemental mercury waste that is in either of the following categories: (1) waste generated during decontamination and decommissioning (D and D) activities on mercury-contaminated buildings, such as Building 9201-4 at the Oak Ridge Y-12 Plant, or (2) waste stored and regulated under either the Federal Facilities Compliance Agreement or the Federal Facilities Compliance Act. Methods were used that produced copper-mercury, zinc-mercury, and sulfur-mercury materials at room temperature by dry mixing techniques. Toxicity Characteristic Leaching Procedure (TCLP) results for mercury on batches of both the copper-mercury and the sulfur-mercury amalgams consistently produced leachates with less than the 0.2-mg/L Resource Conservation and Recovery Act (RCRA) regulatory limit for mercury. The results clearly showed that the reaction of mercury with sulfur at room temperature produces black mercuric sulfide, a material that is well suited for land disposal. The results also showed that the copper-mercury and zinc-mercury amalgams had major adverse properties that make them undesirable for land disposal. In particular, they reacted readily in air to form oxides and liberate elemental mercury. Another major finding of this study is that sulfur polymer cement is potentially useful as a physical encapsulating agent for mercuric sulfide. This material provides a barrier in addition to the chemical stabilization that further prevents mercury, in the form of mercuric sulfide, from migrating into the environment.

Gorin, A.H.; Leckey, J.H.; Nulf, L.E.

1994-08-29T23:59:59.000Z

353

Submergible barge retrievable storage and permanent disposal system for radioactive waste  

DOE Patents (OSTI)

A submergible barge and process for submerging and storing radioactive waste material along a seabed. A submergible barge receives individual packages of radwaste within segregated cells. The cells are formed integrally within the barge, preferably surrounded by reinforced concrete. The cells are individually sealed by a concrete decking and by concrete hatch covers. Seawater may be vented into the cells for cooling, through an integral vent arrangement. The vent ducts may be attached to pumps when the barge is bouyant. The ducts are also arranged to promote passive ventilation of the cells when the barge is submerged. Packages of the radwaste are loaded into individual cells within the barge. The cells are then sealed and the barge is towed to the designated disposal-storage site. There, the individual cells are flooded and the barge will begin descent controlled by a powered submarine control device to the seabed storage site. The submerged barge will rest on the seabed permanently or until recovered by a submarine control device.

Goldsberry, Fred L. (Spring, TX); Cawley, William E. (Richland, WA)

1981-01-01T23:59:59.000Z

354

The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland  

Science Journals Connector (OSTI)

Abstract For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50–60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose.

M. Horttanainen; N. Teirasvuo; V. Kapustina; M. Hupponen; M. Luoranen

2013-01-01T23:59:59.000Z

355

TWRS retrieval and disposal mission, immobilized high-level waste storage plan  

SciTech Connect

This project plan has a two fold purpose. First, it provides a plan specific to the Hanford Tank Waste Remediation System (TWRS) Immobilized High-Level Waste (EMW) Storage Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestone M-90-01 (Ecology et al. 1996) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan. Second, it provides an upper tier document that can be used as the basis for future subproject line item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 (DOE 1992a) and 430.1 (DOE 1995)). The format and content of this project plan are designed to accommodate the plan`s dual purpose. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.

Calmus, R.B.

1998-01-07T23:59:59.000Z

356

Imaging and Characterizing the Waste Materials Inside an Underground Storage Tank Using Seismic Normal Modes  

SciTech Connect

It is necessary to know something about the nature of the wastes in a Hanford underground storage tank (UST) so that the correct hardware can be inserted into a tank for sampling, sluicing, or pumping operations. It is also important to know if a layer of gas exists beneath solid and liquid layers of waste. Given that the tank will have only one liquid observation well (LOW), the authors examined the information that could be obtained from the natural seismic vibrations of a tank as a whole; that is, the normal modes of that tank. As in the case of a bell, the natural vibration, or normal modes, of a tank depend on many things, including the construction of the tank, the kinds of waste materials in the tank, the amount of each material in the tank, and where the energy is placed that excites the vibrations (i.e., where you will ''hit'' the tank). The nature of a normal mode of vibration can be given by its frequency and amplitude. For any given frequency, the amplitude of vibration can be given as a function of position in and around the tank. Since they assumed that one would be ''listening'' to a tank from locations along a LOW, they show their computed amplitudes as a function of position inside and around the tank, and in the case of the physical models they display the observations along various lines inside the tank model. This allowed us to see the complex geometry of each mode of oscillation as a function of increasing frequency.

M. N. Toksoz; R. M. Turpening

1999-09-14T23:59:59.000Z

357

1999 Annual Mixed Waste Management Facility Groundwater Correction - Action Report (Volumes I, II, and III)  

SciTech Connect

This Corrective Action Report (CAR) for the Mixed Waste Management Facility (MWMF) is being prepared to comply with the Resource Conservation and Recovery Act (RCRA) Permit Number SC1 890 008 989, dated October 31, 1999. This CAR compiles and presents all groundwater sampling and monitoring activities that are conducted at the MWMF. As set forth in previous agreements with South Carolina Department of Health and Environmental Control (SCDHEC), all groundwater associated with the Burial Ground Complex (BGC) (comprised of the MWMF, Low-Level Radioactive Waste Disposal Facility, and Old Radioactive Waste Burial Ground) will be addressed under this RCRA Permit. This CAR is the first to be written for the MWMF and presents monitoring activities and results as an outcome of Interim Status and limited Permitted Status activities. All 1999 groundwater monitoring activities were conducted while the MWMF was operated during Interim Status. Changes to the groundwater monitoring program were made upon receipt of the RCRA Permit, where feasible. During 1999, 152 single-screened and six multi-screened groundwater monitoring wells at the BGC monitored groundwater quality in the uppermost aquifer as required by the South Carolina Hazardous Waste Management Regulations (SCHWMR), settlement agreements 87-52-SW and 91-51-SW, and RCRA Permit SC1 890 008 989. However, overall compliance with the recently issued RCRA Permit could not be implemented until the year 2000 due to the effective date of the RCRA Permit and scheduling of groundwater monitoring activities. Changes have been made to the groundwater monitoring network to meet Permit requirements for all 2000 sampling events.

Chase, J.

2000-06-14T23:59:59.000Z

358

The National Nuclear Laboratory's Approach to Processing Mixed Wastes and Residues - 13080  

SciTech Connect

The National Nuclear Laboratory (NNL) treats a wide variety of materials produced as by-products of the nuclear fuel cycle, mostly from uranium purification and fuel manufacture but also including materials from uranium enrichment and from the decommissioning of obsolete plants. In the context of this paper, treatment is defined as recovery of uranium or other activity from residues, the recycle of uranium to the fuel cycle or preparation for long term storage and the final disposal or discharge to the environment of the remainder of the material. NNL's systematic but flexible approach to residue assessment and treatment is described in this paper. The approach typically comprises up to five main phases. The benefits of a systematic approach to waste and residue assessments and processing are described in this paper with examples used to illustrate each phase of work. Benefits include early identification of processing routes or processing issues and the avoidance of investment in inappropriate and costly plant or processes. (authors)

Greenwood, Howard; Docrat, Tahera; Allinson, Sarah J.; Coppersthwaite, Duncan P.; Sultan, Ruqayyah; May, Sarah [National Nuclear Laboratory, Springfields, Preston, UK, PR4 0XJ (United Kingdom)] [National Nuclear Laboratory, Springfields, Preston, UK, PR4 0XJ (United Kingdom)

2013-07-01T23:59:59.000Z

359

Central Waste Complex (CWC) Waste Analysis Plan  

SciTech Connect

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly.

ELLEFSON, M.D.

2000-01-06T23:59:59.000Z

360

Prediction of the effects of compositional mixing in a reservoir on conversion to natural gas storage.  

E-Print Network (OSTI)

??The increased interest in the development of new Gas Storage Fields over the lastseveral decades has created some interesting challenges for the industry. Most existinggas… (more)

Brannon, Alan W.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Impact of reservoir properties on mixing of inert cushion and natural gas in storage reservoirs.  

E-Print Network (OSTI)

??Underground natural gas storage is a process which effectively balances a variable demand market with a nearly constant supply of energy provided by the pipeline… (more)

Srinivasan, Balaji S.

2006-01-01T23:59:59.000Z

362

Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste  

SciTech Connect

This report evaluates the capabilities of the United States Department of Energy`s (DOE`s) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act.

NONE

1996-02-01T23:59:59.000Z

363

Criticality Safety Evaluations on the Use of 200-gram Pu Mass Limit for RHWM Waste Storage Operations  

SciTech Connect

This work establishes the criticality safety technical basis to increase the fissile mass limit from 120 grams to 200 grams for Type A 55-gallon drums and their equivalents. Current RHWM fissile mass limit is 120 grams Pu for Type A 55-gallon containers and their equivalent. In order to increase the Type A 55-gallon drum limit to 200 grams, a few additional criticality safety control requirements are needed on moderators, reflectors, and array controls to ensure that the 200-gram Pu drums remain criticality safe with inadvertent criticality remains incredible. The purpose of this work is to analyze the use of 200-gram Pu drum mass limit for waste storage operations in Radioactive and Hazardous Waste Management (RHWM) Facilities. In this evaluation, the criticality safety controls associated with the 200-gram Pu drums are established for the RHWM waste storage operations. With the implementation of these criticality safety controls, the 200-gram Pu waste drum storage operations are demonstrated to be criticality safe and meet the double-contingency-principle requirement per DOE O 420.1.

Chou, P

2011-12-14T23:59:59.000Z

364

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

SciTech Connect

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

365

DOE/EIS-0290 Advanced Mixed Waste Treatment Project (January 1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-1999/cover.HTML[6/24/2011 1:11:59 PM] 1-1999/cover.HTML[6/24/2011 1:11:59 PM] COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Advanced Mixed Waste Treatment Project (AMWTP) Final Environmental Impact Statement (EIS) (DOE/EIS- 0290) Location: Idaho National Engineering and Environmental Laboratory (INEEL) Contacts: For further information on this environmental impact statement (EIS), call: 1-800-708-2680 or contact: Mr. John E. Medema AMWTP EIS Document Manager DOE Idaho Operations Office 850 Energy Drive, MS 1117 Idaho Falls, ID 83403 (208) 526-1407 For further information on the DOE National Environmental Policy Act (NEPA) process, leave a message at: 1-800-472-2756 or contact: Ms. Carol Borgstrom Director Office of NEPA Policy and Assistance (EH-42) Office of Environment, Safety and Health

366

DOE/EIS-0290 Advanced Mixed Waste Treatment Project (January 1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary-1999/Summary.HTML[6/24/2011 1:21:11 PM] Summary-1999/Summary.HTML[6/24/2011 1:21:11 PM] SUMMARY The U.S. Department of Energy (DOE) prepared this environmental impact statement (EIS) on the proposed Advanced Mixed Waste Treatment Project (AMWTP) at the Idaho National Environmental and Engineering Laboratory (INEEL) in compliance with the National Environmental Policy Act (NEPA). The National Environmental Policy Act Process NEPA is a Federal law that serves as the basic national charter for protection of the environment. For major Federal actions that may significantly affect the quality of the human environment, NEPA requires Federal agencies to prepare a detailed statement that includes the potential environmental impacts of the proposed action and other specified information. A fundamental objective of NEPA is to foster better decision making by ensuring that high quality

367

Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report  

SciTech Connect

This report summarizes the information gathered in constructing the clay cap test section. The purpose of the test section was to determine compaction characteristics of four representative kaolin clays and demonstrate in-situ permeability for these clays of 1 {times} 10 {sup {minus}7} cm/sec or less. The final technical specifications with regard to maximum clod size, acceptable ranges of placement water content, lift thickness, and degree of compaction will be based on experience gained from the test section. The data derived from this study will also be used in the development of Quality Assurance (QA) and Quality Control (QC) methods to be used during actual cap construction of the Mixed Waste Management Facility (MWMF) Closure project. 7 tabs.

Not Available

1988-02-26T23:59:59.000Z

368

Mixed waste management facility groundwater monitoring report. Fourth quarter 1995 and 1995 summary  

SciTech Connect

During fourth quarter 1995, seven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene, gross alpha, lead, mercury, and tetrachloroethylene also exceeded final PDWS in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1} (Barnwell/McBean) wells and in three Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

NONE

1996-03-01T23:59:59.000Z

369

Disposal of low-level and mixed low-level radioactive waste during 1990  

SciTech Connect

Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data.

Not Available

1993-08-01T23:59:59.000Z

370

Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering  

DOE Patents (OSTI)

In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

Vijayan, S.; Wong, C.F.; Buckley, L.P.

1994-11-22T23:59:59.000Z

371

Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering  

DOE Patents (OSTI)

In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

Vijayan, Sivaraman (Deep River, CA); Wong, Chi F. (Pembroke, CA); Buckley, Leo P. (Deep River, CA)

1994-01-01T23:59:59.000Z

372

Two stage, low temperature, catalyzed fluidized bed incineration with in situ neutralization for radioactive mixed wastes  

SciTech Connect

A two stage, low temperature, catalyzed fluidized bed incineration process is proving successful at incinerating hazardous wastes containing nuclear material. The process operates at 550{degrees}C and 650{degrees}C in its two stages. Acid gas neutralization takes place in situ using sodium carbonate as a sorbent in the first stage bed. The feed material to the incinerator is hazardous waste-as defined by the Resource Conservation and Recovery Act-mixed with radioactive materials. The radioactive materials are plutonium, uranium, and americium that are byproducts of nuclear weapons production. Despite its low temperature operation, this system successfully destroyed poly-chlorinated biphenyls at a 99.99992% destruction and removal efficiency. Radionuclides and volatile heavy metals leave the fluidized beds and enter the air pollution control system in minimal amounts. Recently collected modeling and experimental data show the process minimizes dioxin and furan production. The report also discusses air pollution, ash solidification, and other data collected from pilot- and demonstration-scale testing. The testing took place at Rocky Flats Environmental Technology Site, a US Department of Energy facility, in the 1970s, 1980s, and 1990s.

Wade, J.F.; Williams, P.M.

1995-05-17T23:59:59.000Z

373

Pyrolysis and hydrolysis of mixed polymer waste comprising polyethyleneterephthalate and polyethylene to sequentially recover  

DOE Patents (OSTI)

A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

1998-01-01T23:59:59.000Z

374

Guideline for benchmarking thermal treatment systems for low-level mixed waste  

SciTech Connect

A process for benchmarking low-level mixed waste (LLMW) treatment technologies has been developed. When used in conjunction with the identification and preparation of surrogate waste mixtures, and with defined quality assurance and quality control procedures, the benchmarking process will effectively streamline the selection of treatment technologies being considered by the US Department of Energy (DOE) for LLMW cleanup and management. Following the quantitative template provided in the benchmarking process will greatly increase the technical information available for the decision-making process. The additional technical information will remove a large part of the uncertainty in the selection of treatment technologies. It is anticipated that the use of the benchmarking process will minimize technology development costs and overall treatment costs. In addition, the benchmarking process will enhance development of the most promising LLMW treatment processes and aid in transferring the technology to the private sector. To instill inherent quality, the benchmarking process is based on defined criteria and a structured evaluation format, which are independent of any specific conventional treatment or emerging process technology. Five categories of benchmarking criteria have been developed for the evaluation: operation/design; personnel health and safety; economics; product quality; and environmental quality. This benchmarking document gives specific guidance on what information should be included and how it should be presented. A standard format for reporting is included in Appendix A and B of this document. Special considerations for LLMW are presented and included in each of the benchmarking categories.

Hoffman, D.P.; Gibson, L.V. Jr.; Hermes, W.H. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Bastian, R.E. [Focus Environmental, Inc., Knoxville, TN (United States); Davis, W.T. [Tennessee Univ., Knoxville, TN (United States)

1994-01-01T23:59:59.000Z

375

The mixed waste management facility. Project baseline revision 1.2  

SciTech Connect

Revision 1.2 to the Project Baseline (PB) for the Mixed Waste Management Facility (MWMF) is in response to DOE directives and verbal guidance to (1) Collocate the Decontamination and Waste Treatment Facility (DWTF) and MWMF into a single complex, integrate certain and overlapping functions as a cost-saving measure; (2) Meet certain fiscal year (FY) new-BA funding objectives ($15.3M in FY95) with lower and roughly balanced funding for out years; (3) Reduce Total Project Cost (TPC) for the MWMF Project; (4) Include costs for all appropriate permitting activities in the project TPC. This baseline revision also incorporates revisions in the technical baseline design for Molten Salt Oxidation (MSO) and Mediated Electrochemical Oxidation (MEO). Changes in the WBS dictionary that are necessary as a result of this rebaseline, as well as minor title changes, at WBS Level 3 or above (DOE control level) are approved as a separate document. For completeness, the WBS dictionary that reflects these changes is contained in Appendix B. The PB, with revisions as described in this document, were also the basis for the FY97 Validation Process, presented to DOE and their reviewers on March 21-22, 1995. Appendix C lists information related to prior revisions to the PB. Several key changes relate to the integration of functions and sharing of facilities between the portion of the DWTF that will house the MWMF and those portions that are used by the Hazardous Waste Management (HWM) Division at LLNL. This collocation has been directed by DOE as a cost-saving measure and has been implemented in a manner that maintains separate operational elements from a safety and permitting viewpoint. Appendix D provides background information on the decision and implications of collocating the two facilities.

Streit, R.D.; Throop, A.L.

1995-04-01T23:59:59.000Z

376

REGIONAL BINNING FOR CONTINUED STORAGE OF SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTES  

SciTech Connect

In the Continued Storage Analysis Report (CSAR) (Reference 1), DOE decided to analyze the environmental consequences of continuing to store the commercial spent nuclear fuel (SNF) at 72 commercial nuclear power sites and DOE-owned spent nuclear fuel and high-level waste at five Department of Energy sites by region rather than by individual site. This analysis assumes that three commercial facilities pairs--Salem and Hope Creek, Fitzpatrick and Nine-Mile Point, and Dresden and Moms--share common storage due to their proximity to each other. The five regions selected for this analysis are shown on Figure 1. Regions 1, 2, and 3 are the same as those used by the Nuclear Regulatory Commission in their regulatory oversight of commercial power reactors. NRC Region 4 was subdivided into two regions to more appropriately define the two different climates that exist in NRC Region 4. A single hypothetical site in each region was assumed to store all the SNF and HLW in that region. Such a site does not exist and has no geographic location but is a mathematical construct for analytical purposes. To ensure that the calculated results for the regional analyses reflect appropriate inventory, facility and material degradation, and radionuclide transport, the waste inventories, engineered barriers, and environmental conditions for the hypothetical sites were developed from data for each of the existing sites within the given region. Weighting criteria to account for the amount and types of SNF and HLW at each site were used in the development of the environmental data for the regional site, such that the results of the analyses for the hypothetical site were representative of the sum of the results of each actual site if they had been modeled independently. This report defines the actual site data used in development of this hypothetical site, shows how the individual site data was weighted to develop the regional site, and provides the weighted data used in the CSAR analysis. It is divided into Part 1 that defines time-dependent releases from each regional site, Part 2 that defines transport conditions through the groundwater, and Part 3 that defines transport through surface water and populations using the surface waters for drinking.

W. Lee Poe, Jr

1998-10-01T23:59:59.000Z

377

Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen  

Science Journals Connector (OSTI)

Mechanical recycling of waste plastics is limited by the low quality of the recycled plastic mixture. ... More importantly, from the sustainable view, converting mixed plastics into CNS not only shows advantages with cheap and abundant sources, and environmentally friendly and cost-effective methods, but also provides a novel sustainable approach to recycle waste plastics and relieves the ever-increasing serious energy crisis. ...

Jiang Gong; Beata Michalkiewicz; Xuecheng Chen; Ewa Mijowska; Jie Liu; Zhiwei Jiang; Xin Wen; Tao Tang

2014-10-20T23:59:59.000Z

378

THERMAL DESTRUCTION OF HIGHLY CHLORINATED MIXED WASTES WITHOUT GENERATING CORROSIVE OFF-GASES USING MOLTEN SALT OXIDATION (1,2)  

SciTech Connect

A pilot-scale MSO (Molten Salt Oxidation) system was used to process 45-gallons of a halogenated mixed waste that is difficult to treat with other thermal systems. The mixed waste was a halogenated solvent that consisted mostly of methylchloroform. The 80 weight percent of waste consisting of highly corrosive chlorine was captured in the first process vessel as sodium chloride. The sodium chloride leached chrome from that process vessel and the solidified salt exhibited the toxicity characteristic for chrome as measured by TCLP (Toxicity Characteristic Leaching Procedure) testing. The operating ranges for parameters such as salt bed temperature, off-gas temperature, and feed rate that enable sustained operation were identified. At feed rates below the sustainable limit, both processing capacity and maintenance requirements increased with feed rate. Design and operational modifications to increase the sustainable feed rate limit and reduce maintenance requirements reduced both salt carryover and volumetric gas flows.

Smith, W.; Feizollahi, F.

2002-02-25T23:59:59.000Z

379

CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL  

SciTech Connect

RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

Farfan, E.; Coleman, R.

2011-03-31T23:59:59.000Z

380

Record of Technical Change for Corrective Action Plan for Corrective Action Unit 140: Waste Dumps, burn Pits, and Storage Area, Nevada Test Site, Nevada  

SciTech Connect

Record of Technical Change for Corrective Action Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada (DOE/NV--963-Rev 2, dated November 2004).

U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office; Bechtel Nevada

2005-01-05T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Targeted Health Assessment for Wastes Contained at the Niagara Falls Storage Site to Guide Planning for Remedial Action Alternatives - 13428  

SciTech Connect

The U.S. Army Corps of Engineers (USACE) is evaluating potential remedial alternatives at the 191-acre Niagara Falls Storage Site (NFSS) in Lewiston, New York, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The Manhattan Engineer District (MED) and Atomic Energy Commission (AEC) brought radioactive wastes to the site during the 1940's and 1950's, and the U.S. Department of Energy (US DOE) consolidated these wastes into a 10-acre interim waste containment structure (IWCS) in the southwest portion of the site during the 1980's. The USACE is evaluating remedial alternatives for radioactive waste contained within the IWCS at the NFSS under the Feasibility Study phase of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process. A preliminary evaluation of the IWCS has been conducted to assess potential airborne releases associated with uncovered wastes, particularly during waste excavation, as well as direct exposures to uncovered wastes. Key technical issues for this assessment include: (1) limitations in waste characterization data; (2) representative receptors and exposure routes; (3) estimates of contaminant emissions at an early stage of the evaluation process; (4) consideration of candidate meteorological data and air dispersion modeling approaches; and (5) estimates of health effects from potential exposures to both radionuclides and chemicals that account for recent updates of exposure and toxicity factors. Results of this preliminary health risk assessment indicate if the wastes were uncovered and someone stayed at the IWCS for a number of days to weeks, substantial doses and serious health effects could be incurred. Current controls prevent such exposures, and the controls that would be applied to protect onsite workers during remedial action at the IWCS would also effectively protect the public nearby. This evaluation provides framing context for the upcoming development and detailed evaluation of remedial alternatives for the IWCS. (authors)

Busse, John; Keil, Karen; Staten, Jane; Miller, Neil; Barker, Michelle [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara Street, Buffalo, NY (United States)] [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara Street, Buffalo, NY (United States); MacDonell, Margaret; Peterson, John; Chang, Young-Soo; Durham, Lisa [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)] [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

2013-07-01T23:59:59.000Z

382

E-Print Network 3.0 - alpha-mixed low-level waste Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

DISPOSAL 12;Volume 5: Waste 3.2 2006 IPCC Guidelines for National Greenhouse Gas... (Germany) 12;Chapter 3: Solid Waste Disposal 2006 IPCC Guidelines for National Greenhouse...

383

E-Print Network 3.0 - annual mixed waste Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

annually to the Kentucky Division of Waste Management... the Chemical Waste Management Procedures ... Source: Corbitt, Cynthia - Department of Biology, University of Louisville...

384

E-Print Network 3.0 - advanced mixed waste Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

unskapssammanstllning om dioxiner"(Waste-to-energy, an inventory and review about... dioxins) Continuous efforts are being made to further improve waste incineration as a means...

385

Waste Disposal (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

386

Sampling and analysis of radioactive liquid wastes and sludges in the Melton Valley and evaporator facility storage tanks at ORNL  

SciTech Connect

The sampling and analysis of the radioactive liquid wastes and sludges in the Melton Valley Storage Tanks (MVSTs), as well as two of the evaporator service facility storage tanks at ORNL, are described. Aqueous samples of the supernatant liquid and composite samples of the sludges were analyzed for major constituents, radionuclides, total organic carbon, and metals listed as hazardous under the Resource Conservation and Recovery Act (RCRA). Liquid samples from five tanks and sludge samples from three tanks were analyzed for organic compounds on the Environmental Protection Agency (EPA) Target Compound List. Estimates were made of the inventory of liquid and sludge phases in the tanks. Descriptions of the sampling and analytical activities and tabulations of the results are included. The report provides data in support of the design of the proposed Waste Handling and Packaging Plant, the Liquid Low-Level Waste Solidification Project, and research and development activities (R D) activities in developing waste management alternatives. 7 refs., 8 figs., 16 tabs.

Sears, M.B.; Botts, J.L.; Ceo, R.N.; Ferrada, J.J.; Griest, W.H.; Keller, J.M.; Schenley, R.L.

1990-09-01T23:59:59.000Z

387

A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests  

SciTech Connect

The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described.

Thien, Mike G. [Washington River Protection Solutions, LLC, Richland, WA (United States); Barnes, Steve M. [URS, Richland, WA (United States)

2013-01-17T23:59:59.000Z

388

A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests - 13342  

SciTech Connect

The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described. (authors)

Thien, Mike G. [Washington River Protection Solutions, LLC, P.O Box 850, Richland WA, 99352 (United States)] [Washington River Protection Solutions, LLC, P.O Box 850, Richland WA, 99352 (United States); Barnes, Steve M. [Waste Treatment Plant, 2435 Stevens Center Place, Richland WA 99354 (United States)] [Waste Treatment Plant, 2435 Stevens Center Place, Richland WA 99354 (United States)

2013-07-01T23:59:59.000Z

389

Results from NNWSI [Nevada Nuclear Waste Storage Investigations] Series 2 bare fuel dissolution tests  

SciTech Connect

The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Two bare spent fuel specimens plus the empty cladding hulls were tested in NNWSI J-13 well water in unsealed fused silica vessels under ambient hot cell air conditions (25{degree}C) in the currently reported tests. One of the specimens was prepared from a rod irradiated in the H. B. Robinson Unit 2 reactor and the other from a rod irradiated in the Turkey Point Unit 3 reactor. Results indicate that most radionuclides of interest fall into three groups for release modeling. The first group principally includes the actinides (U, Np, Pu, Am, and Cm), all of which reached solubility-limited concentrations that were orders of magnitude below those necessary to meet the NRC 10 CFR 60.113 release limits for any realistic water flux predicted for the Yucca Mountain repository site. The second group is nuclides of soluble elements such as Cs, Tc, and I, for which release rates do not appear to be solubility-limited and may depend on the dissolution rate of fuel. In later test cycles, {sup 137}Cs, {sup 90}Sr, {sup 99}Tc, and {sup 129}I were continuously released at rates between about 5 {times} 10{sup {minus}5} and 1 {times} 10{sup {minus}4} of inventory per year. The third group is radionuclides that may be transported in the vapor phase, of which {sup 14}C is of primary concern. Detailed test results are presented and discussed. 17 refs., 15 figs., 21 tabs.

Wilson, C.N.

1990-09-01T23:59:59.000Z

390

Application of Quantitative NDE Techniques to High Level Waste Storage Tanks  

SciTech Connect

As various issues make the continued usage of high-level waste storage tanks attractive, there is an increasing need to sharpen the assessment of their structural integrity. One aspect of a structural integrity program, nondestructive evaluation, is the focus of this paper. In September 2000, a program to support the sites was initiated jointly by Tanks Focus Area and Characterization, Monitoring, and Sensor Technologies Crosscutting Program of the Office of Environmental Management, Department of Energy (DOE). The vehicle was the Center for Nondestructive Evaluation, one of the National Science Foundation's Industry/University Cooperative Research Centers that is operated in close collaboration with the Ames Laboratory, USDOE. The support activities that have been provided by the center will be reviewed. Included are the organization of a series of annual workshops to allow the sites to share experiences and develop coordinated approaches to common problems, the development of an electronic source of relevant information, and assistance of the sites on particular technical problems. Directions and early results on some of these technical assistance projects are emphasized. Included are the discussion of theoretical analysis of ultrasonic wave propagation in curved plates to support the interpretation of tandem synthetic aperture focusing data to detect flaws in the knuckle region of double shell tanks; the evaluation of guided ultrasonic waves, excited by couplant free, electromagnetic acoustic transducers, to rapidly screen for inner wall corrosion in tanks; the use of spread spectrum techniques to gain information about the structural integrity of concrete domes; and the use of magnetic techniques to identify the alloys used in the construction of tanks.

Thompson, R. B.; Rehbein, D. K.; Bastiaans, G.; Terry, M.; Alers, R.

2002-02-25T23:59:59.000Z

391

Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1992 and 1992 summary  

SciTech Connect

During fourth quarter 1992, nine constituents exceeded final Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Fifty-seven (48%) of the 120 monitoring wells, contained elevated tritium activities, and 23 (19%) contained elevated trichloroethylene concentrations. Total alpha-emitting radium, tetrachloroethylene, chloroethene, cadmium, 1,1-dichloroethylene, lead, or nonvolatile beta levels exceeded standards in one or more wells. During 1992, elevated levels of 13 constituents were found in one or more of 80 of the 120 groundwater monitoring wells (67%) at the MWMF and adjacent facilities. Tritium and trichloroethylene exceeded their final PDWS more frequently and more consistently than did other constituents. Tritium activity exceeded its final PDWS m 67 wells and trichloroethylene was. elevated in 28 wells. Lead, tetrachloroethylene, total alpha-emitting radium, gross alpha, cadmium, chloroethene, 1,1-dichloroethylene 1,2-dichloroethane, mercury, or nitrate exceeded standards in one or more wells during the year. Nonvolatile beta exceeded its drinking water screening level in 3 wells during the year.

Not Available

1993-03-01T23:59:59.000Z

392

Verification survey report of the south waste tank farm training/test tower and hazardous waste storage lockers at the West Valley demonstration project, West Valley, New York  

SciTech Connect

A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

Weaver, Phyllis C.

2012-08-29T23:59:59.000Z

393

Ferrocyanide tank waste stability  

SciTech Connect

Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove [sup 137]CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

Fowler, K.D.

1993-01-01T23:59:59.000Z

394

An Underground Storage Tank Integrated Demonstration report. Volume 1, Waste Characterization Data and Technology Development Needs Assessment  

SciTech Connect

The Waste Characterization Data and Technology Development Needs Assessment provides direct support to the Underground Storage Tank Integrated Demonstration (UST-ID). Key users of the study`s products may also include individuals and programs within the US Department of Energy (DOE) Office of Technology Development (EM-50), the Office of Waste Operations (EM-30), and the Office of Environmental Restoration (EM-40). The goal of this work is to provide the UST-ID with a procedure for allocating funds across competing characterization technologies in a timely and defensible manner. It resulted in three primary products: 1. It organizes and summarizes information on underground storage tank characterization data needs. 2. It describes current technology development activity related to each need and flags areas where technology development may be beneficial. 3. It presents a decision process, with supporting software, for evaluating, prioritizing, and integrating possible technology development funding packages. The data presented in this document can be readily updated as the needs of the Waste Operations and Environmental Restoration programs mature and as new and promising technology development options emerge.

Quadrel, M.J.; Hunter, V.L.; Young, J.K. [Pacific Northwest Lab., Richland, WA (United States); Lini, D.C.; Goldberg, C. [Westinghouse Hanford Co., Richland, WA (United States)

1993-04-01T23:59:59.000Z

395

Determining the biomass fraction of mixed waste fuels: A comparison of existing industry and 14C-based methodologies  

Science Journals Connector (OSTI)

Abstract 14C analysis of flue gas by accelerator mass spectrometry (AMS) and liquid scintillation counting (LSC) were used to determine the biomass fraction of mixed waste at an operational energy-from-waste (EfW) plant. Results were converted to bioenergy (% total) using mathematical algorithms and assessed against existing industry methodologies which involve manual sorting and selective dissolution (SD) of feedstock. Simultaneous determinations using flue gas showed excellent agreement: 44.8 ± 2.7% for AMS and 44.6 ± 12.3% for LSC. Comparable bioenergy results were obtained using a feedstock manual sort procedure (41.4%), whilst a procedure based on selective dissolution of representative waste material is reported as 75.5% (no errors quoted). 14C techniques present significant advantages in data acquisition, precision and reliability for both electricity generator and industry regulator.

G.K.P. Muir; S. Hayward; B.G. Tripney; G.T. Cook; P. Naysmith; B.M.J. Herbert; M.H Garnett; M. Wilkinson

2014-01-01T23:59:59.000Z

396

Waste Management Facilities Cost Information Report  

SciTech Connect

The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

Feizollahi, F.; Shropshire, D.

1992-10-01T23:59:59.000Z

397

E-Print Network 3.0 - al mixed waste Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

is relatively unexplored... 2000, Waste minimisation, ... Source: Hill, Gary - School of Applied Sciences, University of Northampton Collection: Environmental Management and...

398

Acceptable Knowledge Summary Report for Mixed TRU Waste Streams: SR-W026-221F-HET-A through D  

SciTech Connect

This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for the heterogeneous debris mixed transuranic waste streams generated in the FB-Line after January 25, 1990 and before March 20, 1997.

Lunsford, G.F.

2001-10-02T23:59:59.000Z

399

Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility  

SciTech Connect

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

TRINER, G.C.

1999-11-01T23:59:59.000Z

400

Remote-controlled NDA (nondestructive assay) systems for feed and product storage at an automated MOX (mixed oxide) facility  

SciTech Connect

Nondestructive assay (NDA) systems have been developed for use in an automated mixed oxide (MOX) fabrication facility. Unique features have been developed for the NDA systems to accommodate robotic sample handling and remote operation. In addition, the systems have been designed to obtain International Atomic Energy Agency inspection data without the need for an inspector at the facility at the time of the measurements. The equipment is being designed to operate continuously in an unattended mode with data storage for periods of up to one month. The two systems described in this paper include a canister counter for the assay of MOX powder at the input to the facility and a capsule counter for the assay of complete liquid-metal fast breeder reactor fuel assemblies at the output of the plant. The design, performance characteristics, and authentication of the two systems will be described. The data related to reliability, precision, and stability will be presented. 5 refs., 10 figs., 4 tabs.

Menlove, H.O.; Augustson, R.H.; Ohtani, T.; Seya, M.; Takahashi, S.; Abedin-Zadeh, R.; Hassan, B.; Napoli, S.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed waste storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A Comparative Review of Hydrologic Issues Involved in Geologic Storage of CO2 and Injection Disposal of Liquid Waste  

SciTech Connect

The paper presents a comparison of hydrologic issues and technical approaches used in deep-well injection and disposal of liquid wastes, and those issues and approaches associated with injection and storage of CO{sub 2} in deep brine formations. These comparisons have been discussed in nine areas: (1) Injection well integrity; (2) Abandoned well problems; (3) Buoyancy effects; (4) Multiphase flow effects; (5) Heterogeneity and flow channeling; (6) Multilayer isolation effects; (7) Caprock effectiveness and hydrogeomechanics; (8) Site characterization and monitoring; and (9) Effects of CO{sub 2} storage on groundwater resources There are considerable similarities, as well as significant differences. Scientifically and technically, these two fields can learn much from each other. The discussions presented in this paper should help to focus on the key scientific issues facing deep injection of fluids. A substantial but by no means exhaustive reference list has been provided for further studies into the subject.

Tsang, C.-F.; Birkholzer, J.; Rutqvist, J.

2008-04-15T23:59:59.000Z

402

Design report for the interim waste containment facility at the Niagara Falls Storage Site. [Surplus Facilities Management Program  

SciTech Connect

Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection.

Not Available

1986-05-01T23:59:59.000Z

403

The removal of mercury from solid mixed waste using chemical leaching processes  

SciTech Connect

The focus of this research was to evaluate chemical leaching as a technique to treat soils, sediments, and glass contaminated with either elemental mercury or a combination of several mercury species. Potassium iodide/iodine solutions were investigated as chemical leaching agents for contaminated soils and sediments. Clean, synthetic soil material and surrogate storm sewer sediments contaminated with mercury were treated with KI/I{sub 2} solutions. It was observed that these leaching solutions could reduce the mercury concentration in soil and sediments by 99.8%. Evaluation of selected posttreatment sediment samples revealed that leachable mercury levels in the treated solids exceeded RCRA requirements. The results of these studies suggest that KI/I{sub 2} leaching is a treatment process that can be used to remove large quantities of mercury from contaminated soils and sediments and may be the only treatment required if treatment goals are established on Hg residual concentrations in solid matrices. Fluorescent bulbs were used to simulate mercury contaminated glass mixed waste. To achieve mercury contamination levels similar to those found in larger bulbs such as those used in DOE facilities a small amount of Hg was added to the crushed bulbs. The most effective agents for leaching mercury from the crushed fluorescent bulbs were KI/I{sub 2}, NaOCl, and NaBr + acid. Radionuclide surrogates were added to both the EPA synthetic soil material and the crushed fluorescent bulbs to determine the fate of radionuclides following chemical leaching with the leaching agents determined to be the most promising. These experiments revealed that although over 98% of the dosed mercury solubilized and was found in the leaching solution, no Cerium was measured in the posttreatment leaching solution. This finding suggest that Uranium, for which Ce was used as a surrogate, would not solubilize during leaching of mercury contaminated soil or glass.

Gates, D.D.; Chao, K.K.; Cameron, P.A.

1995-07-01T23:59:59.000Z

404

Practical guidelines for small-volume additions of uninhibited water to waste storage tanks  

SciTech Connect

Allowable volumes of uninhibited water additions to waste tanks are limited to volumes in which hydroxide and nitrite inhibitors reach required concentrations by diffusion from the bulk waste within five days. This diffusion process was modeled conservatively by Fick`s second law of diffusion. The solution to the model was applied to all applicable conditions which exist in the waste tanks. Plant engineers adapted and incorporated the results into a practical working procedure for controlling and monitoring the addition of uninhibited water. Research, technical support, and field engineers worked together to produce an effective solution to a potential waste tank corrosion problem.

Hsu, T.C.; Wiersma, B.J.; Zapp, P.E.; Pike, J.A.

1994-12-01T23:59:59.000Z

405

Practical guidelines for small volume additions of uninhibited water to waste storage tanks  

SciTech Connect

Allowable volumes of uninhibited water additions to waste tanks are limited to volumes in which hydroxide and nitrite inhibitors reach required concentrations by diffusion from the bulk waste within five days. This diffusion process was modeled conservatively by Fick`s second law of diffusion. The solution to the model was applied to all applicable conditions which exist in the waste tanks. Plant engineers adapted and incorporated the results into a practical working procedure for controlling and monitoring the addition of uninhibited water. Research, technical support, and field engineers worked together to produce an effective solution to a potential waste tank corrosion problem.

Hsu, T.C.; Wiersma, B.J.; Zapp, P.E.; Pike, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States)

1995-11-01T23:59:59.000Z

406

U.S. Department of Energy Idaho National Engineering and Environmental Laboratory Advanced Mixed Waste Treatment Project Draft Environmental Impact Statement DOE/EIS-0290-D  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F-1 F-1 APPENDIX F PROJECT HISTORY Waste History/Description From 1970 through the early 1980's the Idaho National Engineering and Environmental Laboratory (INEEL) accepted over 65,000 cubic meters of transuranic (TRU) and alpha- contaminated waste from other U.S. Department of Energy (DOE) sites. These wastes were placed in above ground storage at the Radioactive Waste Management Complex (RWMC) on the INEEL. The wastes are primarily laboratory and processing wastes of various solid materials, including paper, cloth, plastics, rubber, glass, graphite, bricks, concrete, metals, nitrate salts, and absorbed liquids. Over 95 percent of the waste was generated at DOE's Rocky Flats Plant in Colorado and transported to the INEEL by rail in bins, boxes, and drums. All 65,000 cubic meters was

407

Biohazardous Waste Disposal GuidelinesDescriptionStorage& LabelingTreatmentDisposal  

E-Print Network (OSTI)

. Biohazard symbol on lid and sides of container. Identify waste, name of waste producer, date of culture. Off-site treatment by VEHS. Address: U-0211 MCN 1161 21st Ave S Nashville, TN 37232-2665 615-322-2057 Off-site

Wikswo, John

408

Transuranic waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement  

SciTech Connect

Transuranic waste (TRUW) loads and potential contaminant releases at and en route to treatment, storage, and disposal sites in the US Department of Energy (DOE) complex are important considerations in DOE`s Waste Management Programmatic Environmental Impact Statement (WM PEIS). Waste loads are determined in part by the level of treatment the waste has undergone and the complex-wide configuration of origination, treatment, storage, and disposal sites selected for TRUW management. Other elements that impact waste loads are treatment volumes, waste characteristics, and the unit operation parameters of the treatment technologies. Treatment levels and site configurations have been combined into six TRUW management alternatives for study in the WM PEIS. This supplemental report to the WM PEIS gives the projected waste loads and contaminant release profiles for DOE treatment sites under each of the six TRUW management alternatives. It gives TRUW characteristics and inventories for current DOE generation and storage sites, describes the treatment technologies for three proposed levels of TRUW treatment, and presents the representative unit operation parameters of the treatment technologies. The data presented are primary inputs to developing the costs, health risks, and socioeconomic and environmental impacts of treating, packaging, and shipping TRUW for disposal.

Hong, K.; Kotek, T.; Folga, S.; Koebnick, B.; Wang, Y.; Kaicher, C.

1996-12-01T23:59:59.000Z

409

Permitted Mercury Storage Facility Notifications | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Waste Management Waste Disposition Long-Term Management and Storage of Elemental Mercury is in the Planning Stages Permitted Mercury Storage Facility...

410

Environmental permits and approvals plan for high-level waste interim storage, Project W-464  

SciTech Connect

This report discusses the Permitting Plan regarding NEPA, SEPA, RCRA, and other regulatory standards and alternatives, for planning the environmental permitting of the Canister Storage Building, Project W-464.

Deffenbaugh, M.L.

1998-05-28T23:59:59.000Z

411

Modelling of the shielding capabilities of the existing solid radioactive waste storages at ignalina NPP  

Science Journals Connector (OSTI)

......primary circuit, gas circuit and turbines. Furthermore, it...waste conditioning technology was changed. Before...However, during the SAR development INPP started introducing...Starting from the SAR development time compartment no......