Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mixed Low-Level Radioactive Waste (MLLW) Primer  

SciTech Connect (OSTI)

This document presents a general overview of mixed low-level waste, including the regulatory definitions and drivers, the manner in which the various kinds of mixed waste are regulated, and a discussion of the waste treatment options.

W. E. Schwinkendorf

1999-04-01T23:59:59.000Z

2

Disposal of low-level and mixed low-level radioactive waste during 1990  

SciTech Connect (OSTI)

Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data.

Not Available

1993-08-01T23:59:59.000Z

3

Greater-than-Class C low-level radioactive waste characterization. Appendix E-2: Mixed GTCC LLW assessment  

SciTech Connect (OSTI)

Mixed greater-than-Class C low-level radioactive waste (mixed GTCC LLW) is waste that combines two characteristics: it is radioactive, and it is hazardous. This report uses information compiled from Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclide Activities, and Other Characteristics (DOE/LLW 1 14, Revision 1), and applies it to the question of how much and what types of mixed GTCC LLW are generated and are likely to require disposal in facilities jointly regulated by the DOE and the NRC. The report describes how to classify a RCRA hazardous waste, and then applies that classification process to the 41 GTCC LLW waste types identified in the DOE/LLW-114 (Revision 1). Of the 41 GTCC LLW categories identified, only six were identified in this study as potentially requiring regulation as hazardous waste under RCRA. These wastes can be combined into the following three groups: fuel-in decontamination resins, organic liquids, and process waste consisting of lead scrap/shielding from a sealed source manufacturer. For the base case, no mixed GTCC LLW is expected from nuclear utilities or sealed source licensees, whereas only 177 ml of mixed GTCC LLW are expected to be produced by other generators through the year 2035. This relatively small volume represents approximately 40% of the base case estimate for GTCC wastes from other generators. For these other generators, volume estimates for mixed GTCC LLW ranged from less than 1 m{sup 3} to 187 m{sup 3}, depending on assumptions and treatments applied to the wastes.

Kirner, N.P. [Ebasco Environmental, Idaho Falls, ID (United States)

1994-09-01T23:59:59.000Z

4

Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste  

SciTech Connect (OSTI)

This report evaluates the capabilities of the United States Department of Energy`s (DOE`s) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act.

NONE

1996-02-01T23:59:59.000Z

5

Feasibility study on the solidification of liquid low-level radioactive mixed waste in the inactive tank system at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

A literature survey was conducted to help determine the feasibility of solidifying a liquid low-level radioactive mixed waste in the inactive tank system at Oak Ridge National Laboratory (ORNL). The goal of this report is to facilitate a decision on the disposition of these wastes by identifying any waste constituents that might (1) compromise the strength or stability of the waste form or (2) be highly leachable. Furthermore, its goal is to identify ways to circumvent interferences and to decrease the leachability of the waste constituents. This study has sought to provide an understanding of inhibition of cement set by identifying the fundamental chemical mechanisms by which this inhibition takes place. From this fundamental information, it is possible to draw some conclusions about the potential effects of waste constituents, even in the absence of particular studies on specific compounds.

Trussell, S. (Texas A and M Univ., College Station, TX (United States). Dept. of Civil Engineering); Spence, R.D. (Oak Ridge National Lab., TN (United States))

1993-01-01T23:59:59.000Z

6

Finding of No Significant Impact for the Offsite Transportation of Certain Low-Level and Mixed Radioactive Waste from Savannah River Site for Treatment and Disposal at Commercial and Government Facilities, DOE/EA-1308 (02/15/01)  

Broader source: Energy.gov (indexed) [DOE]

Finding of No Significant Impact Finding of No Significant Impact for the Offsite Transportation of Certain Low-level and Mixed Radioactive Waste from the Savannah River Site for Treatment and Disposal at Commercial and Government Facilities Agency: U. S. Department of Energy Action: Finding of No Significant Impact Summary: The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1308) to analyze the potential environmental impacts associated with the proposed offsite transportation of certain low-level radioactive waste (LLW) and mixed (i.e., hazardous and radioactive) low-level radioactive waste (MLLW) from the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the action is not a major Federal action significantly affecting

7

Low-Level Radioactive Waste Disposal Act (Pennsylvania) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Program Info State Pennsylvania Program Type Environmental Regulations Provider Pennsylvania Department of Environmental Protection This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and storage of low-level radioactive waste. Commercial incineration of radioactive wastes is prohibited. Licenses are required for low-level radioactive waste disposal facilities not licensed to accept low-level radioactive waste. Disposal at

8

Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) |  

Broader source: Energy.gov (indexed) [DOE]

Southwestern Low-Level Radioactive Waste Disposal Compact (South Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Rural Electric Cooperative Fuel Distributor Program Info State South Dakota Program Type Siting and Permitting Provider Southwestern Low-Level Radioactive Waste Commission This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste. The Compact is administered by a commission, which can regulate and impose fees on in-state radioactive waste generators. The states of Arizona, California,

9

Low Level Radioactive Waste Authority (Michigan) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Low Level Radioactive Waste Authority (Michigan) Low Level Radioactive Waste Authority (Michigan) Low Level Radioactive Waste Authority (Michigan) < Back Eligibility Utility Fed. Government Investor-Owned Utility Municipal/Public Utility Program Info State Michigan Program Type Safety and Operational Guidelines Provider Department of Environmental Quality Federal laws passed in 1980 and 1985 made each state responsible for the low-level radioactive waste produced within its borders. Act 204 of 1987 created the Low-Level Radioactive Waste Authority (LLRWA) to fulfill state responsibilities under federal law for managing and assuring disposal capacity for the low-level radioactive waste produced in Michigan. The LLRWA began a facility siting process in 1989 under the statutory limits of Act 204. The LLRWA eventually determined that it was impossible to find a

10

Appalachian States Low-Level Radioactive Waste Compact (Maryland)  

Broader source: Energy.gov [DOE]

This legislation authorizes Maryland's entrance into the Appalachian States Low-Level Radioactive Waste Compact, which seeks to promote interstate cooperation for the proper management and disposal...

11

System for chemically digesting low level radioactive, solid waste material  

DOE Patents [OSTI]

An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

Cowan, Richard G. (Kennewick, WA); Blasewitz, Albert G. (Richland, WA)

1982-01-01T23:59:59.000Z

12

Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal  

SciTech Connect (OSTI)

This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders.

Not Available

1994-08-01T23:59:59.000Z

13

Atlantic Interstate Low-Level Radioactive Waste Management Compact (South  

Broader source: Energy.gov (indexed) [DOE]

Atlantic Interstate Low-Level Radioactive Waste Management Compact Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Program Info Start Date 1986 State South Carolina Program Type Environmental Regulations Siting and Permitting Provider Atlantic Compact Commission The Atlantic (Northeast) Interstate Low-Level Radioactive Waste Management Compact is a cooperative effort to plan, regulate, and administer the disposal of low-level radioactive waste in the region. The states of Connecticut, New Jersey, and South Carolina are party to this compact

14

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) |  

Broader source: Energy.gov (indexed) [DOE]

Low-Level Radioactive Waste Disposal Regional Facility Act Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Fees This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental Resources funds to be utilized for disposal facilities. This act ensures that nuclear facilities and the Department comply with the Low-Level Radioactive Disposal Act. The regional facility siting fund is used for reimbursement of expenses

15

Mixed low-level waste form evaluation  

SciTech Connect (OSTI)

A scoping level evaluation of polyethylene encapsulation and vitreous waste forms for safe storage of mixed low-level waste was performed. Maximum permissible radionuclide concentrations were estimated for 15 indicator radionuclides disposed of at the Hanford and Savannah River sites with respect to protection of the groundwater and inadvertent intruder pathways. Nominal performance improvements of polyethylene and glass waste forms relative to grout are reported. These improvements in maximum permissible radionuclide concentrations depend strongly on the radionuclide of concern and pathway. Recommendations for future research include improving the current understanding of the performance of polymer waste forms, particularly macroencapsulation. To provide context to these estimates, the concentrations of radionuclides in treated DOE waste should be compared with the results of this study to determine required performance.

Pohl, P.I.; Cheng, Wu-Ching; Wheeler, T.; Waters, R.D.

1997-03-01T23:59:59.000Z

16

Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal  

SciTech Connect (OSTI)

This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab.

Not Available

1990-10-01T23:59:59.000Z

17

Northwest Interstate Compact on Low-Level Radioactive Waste Management  

Broader source: Energy.gov (indexed) [DOE]

Northwest Interstate Compact on Low-Level Radioactive Waste Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Nonprofit Program Info Start Date 1981 State Alaska Program Type Siting and Permitting Provider Northwest Interstate Compact The Northwest Interstate Compact on Low-Level Radioactive Waste Management, enacted in 1981, was ratified by Congress in 1985. The Compact is a cooperative effort of the party states to protect their citizens, and maintain and enhance economic viability, while sharing the responsibilities

18

A robotic inspector for low-level radioactive waste  

SciTech Connect (OSTI)

The Department of Energy has low-level radioactive waste stored in warehouses at several facilities. Weekly visual inspections are required. A mobile robot inspection system, ARIES (Autonomous Robotic Inspection Experimental System), has been developed to survey and inspect the stored drums. The robot will travel through the three- foot wide aisles of drums stacked four high and perform a visual inspection, normally performed by a human operator, making decisions about the condition of the drums and maintaining a database of pertinent information about each drum. This mobile robot system will improve the quality of inspection, generate required reports, and relieve human operators from low-level radioactive exposure.

Byrd, J.S.; Pettus, R.O. [South Carolina Univ., Columbia, SC (United States). Dept. of Electrical and Computer Engineering

1996-06-01T23:59:59.000Z

19

Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal...  

Broader source: Energy.gov (indexed) [DOE]

Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Christine...

20

Low-level radioactive waste disposal facility closure  

SciTech Connect (OSTI)

Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The basics in transportation of low-level radioactive waste  

SciTech Connect (OSTI)

This bulletin gives a basic understanding about issues and safety standards that are built into the transportation system for radioactive material and waste in the US. An excellent safety record has been established for the transport of commercial low-level radioactive waste, or for that matter, all radioactive materials. This excellent safety record is primarily because of people adhering to strict regulations governing the transportation of radioactive materials. This bulletin discusses the regulatory framework as well as the regulations that set the standards for packaging, hazard communications (communicating the potential hazard to workers and the public), training, inspections, routing, and emergency response. The excellent safety record is discussed in the last section of the bulletin.

Allred, W.E.

1998-06-01T23:59:59.000Z

22

Commercial low-level radioactive waste disposal in the US  

SciTech Connect (OSTI)

Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

Smith, P.

1995-10-01T23:59:59.000Z

23

Low-level radioactive waste technology: a selected, annotated bibliography  

SciTech Connect (OSTI)

This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

1980-10-01T23:59:59.000Z

24

DOE/EA-1308; Environmental Assessment for the Offsite Transportation of Certain Low-Level and Mixed Radioactive Waste from the Savannah River Site for Treatment and Disposal at Commercial and Government Facilities (February 2001)  

Broader source: Energy.gov (indexed) [DOE]

08 08 ENVIRONMENTAL ASSESSMENT FOR THE OFFSITE TRANSPORTATION OF CERTAIN LOW-LEVEL AND MIXED RADIOACTIVE WASTE FROM THE SAVANNAH RIVER SITE FOR TREATMENT AND DISPOSAL AT COMMERCIAL AND GOVERNMENT FACILITIES FEBRUARY 2001 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE i ii This page is intentionally left blank iii TABLE OF CONTENTS Page 1.0 INTRODUCTION 1 1.1 Background 1 1.2 Purpose and Need for Action 6 2.0 PROPOSED ACTION AND ALTERNATIVES 6 2.1 Proposed Action 6 2.2 Alternatives to the Proposed Action 11 2.2.1 No Action, Continue to Store These Waste Forms at SRS 11 2.2.2 Construct and Operate Onsite Treatment and Disposal Facilities 11 3.0 ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ACTION AND ALTERNATIVES 12 3.1 Onsite Loading Operations 12 3.2 Transportation Impacts

25

Feasibility study on the solidification of liquid low-level radioactive mixed waste in the inactive tank system at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

A literature survey was conducted to help determine the feasibility of solidifying a liquid low-level radioactive mixed waste in the inactive tank system at Oak Ridge National Laboratory (ORNL). The goal of this report is to facilitate a decision on the disposition of these wastes by identifying any waste constituents that might (1) compromise the strength or stability of the waste form or (2) be highly leachable. Furthermore, its goal is to identify ways to circumvent interferences and to decrease the leachability of the waste constituents. This study has sought to provide an understanding of inhibition of cement set by identifying the fundamental chemical mechanisms by which this inhibition takes place. From this fundamental information, it is possible to draw some conclusions about the potential effects of waste constituents, even in the absence of particular studies on specific compounds.

Trussell, S. [Texas A and M Univ., College Station, TX (United States). Dept. of Civil Engineering; Spence, R.D. [Oak Ridge National Lab., TN (United States)

1993-01-01T23:59:59.000Z

26

Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state)  

Broader source: Energy.gov [DOE]

The Southeast Interstate Low-Level Radioactive Waste Management Compact is administered by the Compact Commission. The Compact provides for rotating responsibility for the region's low-level...

27

Directions in low-level radioactive waste management. Low-level radioactive waste disposal: commercial facilities no longer operating  

SciTech Connect (OSTI)

This publication discusses three commercial facilities-no longer operating-that have received and now contain low-level radioactive waste. The facilities are located at West Valley, New York; Maxey Flats, Kentucky; and Sheffield, Illinois. All three of the facilities were selected and developed in the 1960s. The onset of water management problems caused the closure of the sites at West Valley and Maxey Flats in 1975 and 1977, respectively. Closure of the Sheffield site occurred in 1978, after the operator experienced site problems and consequent lengthy delays in its license renewal procedures. The document provides detailed explanation of the history, basis for closure, and current status of each facility. This information is intended, primarily, to assist state officials-executive, legislative, and agency-in planning for, establishing, and managing low-level waste disposal facilities.

Berlin, R.E.; Tuite, P.T.

1982-10-01T23:59:59.000Z

28

Management of low-level radioactive wastes around the world  

SciTech Connect (OSTI)

This paper reviews the status of various practices used throughout the world for managing low-level radioactive wastes. Most of the information in this review was obtained through the DOE-sponsored International Program Support Office (IPSO) activities at Pacific Northwest Laboratory (PNL) at Richland, Washington. The objective of IPSO is to collect, evaluate, and disseminate information on international waste management and nuclear fuel cycle activities. The center's sources of information vary widely and include the proceedings of international symposia, papers presented at technical society meetings, published topical reports, foreign trip reports, and the news media. Periodically, the information is published in topical reports. Much of the information contained in this report was presented at the Fifth Annual Participants' Information Meeting sponsored by DOE's Low-Level Waste Management Program Office at Denver, Colorado, in September of 1983. Subsequent to that presentation, the information has been updated, particularly with information provided by Dr. P. Colombo of Brookhaven National Laboratory who corresponded with low-level waste management specialists in many countries. The practices reviewed in this paper generally represent actual operations. However, major R and D activities, along with future plans, are also discussed. 98 refs., 6 tabls.

Lakey, L.T.; Harmon, K.M.; Colombo, P.

1985-04-01T23:59:59.000Z

29

Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) ...  

Broader source: Energy.gov (indexed) [DOE]

Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) A transuranic (TRU) waste shipment makes its way to the...

30

Commercial low-level radioactive waste transportation liability and radiological risk  

SciTech Connect (OSTI)

This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

1992-08-01T23:59:59.000Z

31

Biogenesis of tritiated and carbon-14 methane from low-level radioactive waste  

SciTech Connect (OSTI)

Methane bacteria were detected in leachate samples collected from commercial low-level radioactive waste disposal sites. Significant amounts of tritiated and carbon-14 methane were generated by a mixed methanogenic culture from a leachate sample collected from the low-level radioactive waste disposal site, Maxey Flats, KY. Tritiated methane was produced by methane bacteria from synthetic media containing 2 mCi of tritium as tritiated water or tritiated acetate, and the level of tritium added to the medium had no effect on methanogenesis. Under anaerobic conditions the organic compounds containing /sup 14/C and /sup 3/H activity and tritiated water in the waste are metabolized by microorganisms and they produce radioactive gases which escape into the environment from the disposal sites. 4 figures, 3 tables.

Francis, A.J.; Dobbs, S.; Doering, R.F.

1980-01-01T23:59:59.000Z

32

Biogenesis of tritiated and carbon-14 methane from low-level radioactive waste  

Science Journals Connector (OSTI)

Methane bacteria were detected in leachate samples collected from commercial low-level radioactive waste disposal sites. Significant amounts of tritiated and carbon-14 methane were generated by a mixed methanogenic culture from a leachate sample collected from the low-level radioactive waste disposal site, Maxey Flats, KY. Tritiated methane was produced by methane bacteria from synthetic media containing 2 mCi of tritium as tritiated water or tritiated acetate, and the level of tritium added to the medium had no effect on methanogenesis. Under anaerobic conditions the organic compounds containing 14C and 3H activity and tritiated water in the waste are metabolized by microorganisms and they produce radioactive gases which escape into the environment from the disposal sites.

A.J Francis; S Dobbs; R.F Doering

1980-01-01T23:59:59.000Z

33

Steam reforming of low-level mixed waste  

SciTech Connect (OSTI)

The U.S. department of Energy (DOE) is responsible for the treatment and disposal of an inventory of approximately 160,000 tons of Low-Level Mixed Waste (LLMW). Most of this LLMW is stored in drums, barrels and steel boxes at 20 different sites throughout the DOE complex. The basic objective of low-level mixed waste treatment systems is to completely destroy the hazardous constituents and to simultaneously isolate and capture the radionuclides in a superior final waste form such as glass. The DOE is sponsoring the development of advanced technologies that meet this objective while achieving maximum volume reduction, low-life cycle costs and maximum operational safety. ThermoChem, Inc. is in the final stages of development of a steam-reforming system capable of treating a wide variety of DOE low-level mixed waste that meets these objectives. The design, construction, and testing of a nominal 1 ton/day Process Development Unit is described.

Voelker, G.E.; Steedman, W.G. [Thermochem, Inc., Columbia, MD (United States); Chandran, R.R. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States)

1996-12-31T23:59:59.000Z

34

Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas  

SciTech Connect (OSTI)

This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation.

B. C. Rogers; P. L. Walter (Rogers and Associates Engineering Corporation); R. D. Baird

1999-08-01T23:59:59.000Z

35

Selected radionuclides important to low-level radioactive waste management  

SciTech Connect (OSTI)

The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.

NONE

1996-11-01T23:59:59.000Z

36

Extended storage of low-level radioactive waste: an update  

SciTech Connect (OSTI)

If a state or regional compact does not have adequate disposal capacity for low-level radioactive waste (LLRW), then extended storage of certain LLRW may be necessary. The Nuclear Regulatory Commission (NRC) has contracted with Brookhaven National Laboratory to address the technical issues of extended storage. The dual objectives of this study are (1) to provide practical technical assessments for NRC to consider in evaluating specific proposals for extended storage and (2) to help ensure adequate consideration by NRC, Agreement States, and licensees of potential problems that may arise from existing or proposed extended storage practices. The circumstances under which extended storage of LLRW would most likely result in problems during or after the extended storage period are considered and possible mitigative measures to minimize these problems are discussed. These potential problem areas include: (1) the degradation of carbon steel and polyethylene containers during storage and the subsequent need for repackaging (resulting in increased occupational exposure), (2) the generation of hazardous gases during storage, and (3) biodegradative processes in LLRW.

Siskind, B.

1986-01-01T23:59:59.000Z

37

Steam Reforming of Low-Level Mixed Waste  

SciTech Connect (OSTI)

Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

None

1998-01-01T23:59:59.000Z

38

1989 Annual report on low-level radioactive waste management progress  

SciTech Connect (OSTI)

This report summarizes the progress during 1989 of states and compacts in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level waste received for disposal in 1989 by commercially operated low-level waste disposal facilities. This report is in response to Section 7(b) of Title I of Public Law 99--240, the Low-Level Radioactive Waste Policy Amendments Act of 1985. 2 figs., 5 tabs.

Not Available

1990-10-01T23:59:59.000Z

39

Microbial degradation of low-level radioactive waste. Final report  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Information has been presented by a number of researchers, which indicated that those tests may be inappropriate for examining microbial degradation of cement-solidified LLW. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program was to develop modified microbial degradation test procedures that would be more appropriate than the existing procedures for evaluation of the effects of microbiologically influenced chemical attack on cement-solidified LLW. The procedures that have been developed in this work are presented and discussed. Groups of microorganisms indigenous to LLW disposal sites were employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this final report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides developed during this study are presented.

Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr

1996-06-01T23:59:59.000Z

40

EA-1061: The Off-site Volume Reduction of Low-level Radioactive Waste From  

Broader source: Energy.gov (indexed) [DOE]

1: The Off-site Volume Reduction of Low-level Radioactive 1: The Off-site Volume Reduction of Low-level Radioactive Waste From the Savannah River Site, Aiken, South Carolina EA-1061: The Off-site Volume Reduction of Low-level Radioactive Waste From the Savannah River Site, Aiken, South Carolina SUMMARY This EA evaluates the environmental impacts of the proposal for off-site volume reduction of low-level radioactive wastes generated at the U.S. Department of Energy's Savannah River Site located near Aiken, South Carolina. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 28, 1995 EA-1061: Finding of No Significant Impact The Off-site Volume Reduction of Low-level Radioactive Waste From the Savannah River Site July 28, 1995 EA-1061: Final Environmental Assessment The Off-site Volume Reduction of Low-level Radioactive Waste From the

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Interim report: Waste management facilities cost information for mixed low-level waste  

SciTech Connect (OSTI)

This report contains preconceptual designs and planning level life-cycle cost estimates for treating alpha and nonalpha mixed low-level radioactive waste. This report contains information on twenty-seven treatment, storage, and disposal modules that can be integrated to develop total life cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of estimating data is also summarized in this report.

Feizollahi, F.; Shropshire, D.

1994-03-01T23:59:59.000Z

42

Rules and Regulations for the Disposal of Low-Level Radioactive Waste (Nebraska)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to the disposal of low-level radioactive waste, disposal facilities, and applicable fees.

43

Report to Congress: 1995 Annual report on low-level radioactive waste management progress  

SciTech Connect (OSTI)

This report is prepared in response to the Low-Level Radioactive Waste Policy Act, Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the progress of states and compact regions during calendar year 1995 in establishing new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress, and also includes an introduction that provides background information and perspective on United States policy for low-level radioactive waste disposal.

NONE

1996-06-01T23:59:59.000Z

44

1996 annual report on low-level radioactive waste management progress. Report to Congress  

SciTech Connect (OSTI)

This report is prepared in response to the Low-Level Radioactive Waste Policy Act (the Act), Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the activities during calendar year 1996 related to the establishment of new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress in developing new disposal facilities, and also includes an introduction that provides background information and perspective on US policy for low-level radioactive waste disposal.

NONE

1997-11-01T23:59:59.000Z

45

18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program  

SciTech Connect (OSTI)

This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories.

None

1997-05-20T23:59:59.000Z

46

EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and  

Broader source: Energy.gov (indexed) [DOE]

5: Disposal of Greater-than-Class-C Low-Level Radioactive 5: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste Summary This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C (GTCC) low-level radioactive waste and GTCC-like waste. The Environmental Protection Agency is a cooperating agency in the preparation of this EIS. The EIS evaluates potential impacts from the construction and operation of

47

Steam reforming of low-level mixed waste. Final report  

SciTech Connect (OSTI)

ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

NONE

1998-06-01T23:59:59.000Z

48

Mixed low-level waste minimization at Los Alamos  

SciTech Connect (OSTI)

During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL.

Starke, T.P.

1998-12-01T23:59:59.000Z

49

Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program  

SciTech Connect (OSTI)

In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

1995-05-01T23:59:59.000Z

50

A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste  

SciTech Connect (OSTI)

The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action`` to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program.

Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

1993-07-01T23:59:59.000Z

51

Maine State Briefing Book on low-level radioactive waste management  

SciTech Connect (OSTI)

The Maine State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Maine. The profile is the result of a survey of radioactive material licensees in Maine. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested partices including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant goverment agencies and activities, all of which may impact management practices in Maine.

Not Available

1981-08-01T23:59:59.000Z

52

Transportation and disposal configuration for DOE-managed low-level and mixed low-level waste  

SciTech Connect (OSTI)

This report briefly examines the current U.S. Department of Energy complex-wide configuration for transportation and disposal of low-level and mixed low-level waste, and also retraces the historical sequence of events and rationale that has guided its development. The study determined that Nevada Test Site and the Hanford Site are the only two sites that currently provide substantial disposal services for offsite low-level waste generators. It was also determined that mixed low-level waste shipments are infrequent and are generally limited to shipments to offsite commercial treatment facilities or other Department of Energy sites for storage. The current alignment of generator to disposal site for low-level waste shipments is generally consistent with the programmatic mission of the generator; that is, defense-generated waste is shipped to the Nevada Test Site and research-generated waste is transported to the Hanford Site. The historical development of the current configuration was resurrected by retrieving Department of Energy documentation and interviewing both current and former department and contractor personnel. According to several accounts, the basic framework of the system was developed during the late 1970s, and was reportedly based on the ability of the disposal site to manage a given waste form. Documented evidence to support this reasoning, however, could not be uncovered.

Johnsen, T.

1993-06-01T23:59:59.000Z

53

Determination of Iodine-129 in Low Level Radioactive Wastes - 13334  

SciTech Connect (OSTI)

For the radioactivity determination of {sup 129}I in the radioactive wastes, alkali fusion and anion-exchange resin separation methods, which are sample pretreatment methods, have been investigated in this study. To separate and quantify the {sup 129}I radionuclide in an evaporator bottom and spent resin, the radionuclide was chemically leached from the wastes and adsorbed on an anion exchange resin at pH 4, 7, 9. In the case of dry active waste and another solid type, the alkali fusion method was applied. KNO{sub 3} was added as a KOH and oxidizer to the wastes. It was then fused at 450 deg. C for 1 hour. The radioactivity of the separated iodine was measured with a low energy gamma spectrometer after the sample pretreatment. Finally, it was confirmed that the recovery rate of the iodine for the alkali fusion method was 83.6Ī3.8%, and 86.4Ī1.6% for the anionic exchange separation method. (authors)

Choi, K.C.; Ahn, J.H.; Park, Y.J.; Song, K.S. [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of)] [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of)

2013-07-01T23:59:59.000Z

54

Waste minimization for commercial radioactive materials users generating low-level radioactive waste  

SciTech Connect (OSTI)

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. (Science Applications International Corp., Idaho Falls, ID (United States))

1991-07-01T23:59:59.000Z

55

Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1  

SciTech Connect (OSTI)

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

1991-07-01T23:59:59.000Z

56

Disposal of Greater-than-Class C Low-Level Radioactive Waste  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposal of Low-Level Radioactive Waste Disposal of Low-Level Radioactive Waste EVS prepared a draft environmental impact statement (EIS) for disposal of greater-than-Class C low-level radioactive waste (GTCC LLRW). The EVS Division prepared a draft environmental impact statement (EIS) for disposal of greater-than-Class C low-level radioactive waste (GTCC LLRW) for the DOE Office of Environmental Management. DOE is now finalizing this EIS and is including a preferred alternative. DOE intends that the final EIS will provide information to support the selection of disposal method(s) and site(s) for GTCC LLRW and GTCC-like waste. In general, GTCC LLRW is not acceptable for near-surface disposal. Typically, the waste form and disposal methods must be different from and more stringent than those specified for Class C LLRW. For GTCC LLRW, the

57

Florida State Briefing Book for low-level radioactive-waste management  

SciTech Connect (OSTI)

The Florida State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida.

none,

1981-06-01T23:59:59.000Z

58

1994 annual report on low-level radioactive waste management progress  

SciTech Connect (OSTI)

This report for calendar year 1994 summarizes the progress that states and compact regions made during the year in establishing new low-level radioactive waste disposal facilities. Although events that have occurred in 1995 greatly alter the perspective in terms of storage versus disposal, the purpose of this report is to convey the concerns as evidenced during calendar year 1994. Significant developments occurring in 1995 are briefly outlined in the transmittal letter and will be detailed in the report for calendar year 1995. The report also provides summary information on the volume of low-level radioactive waste received for disposal in 1994 by commercially operated low-level radioactive waste disposal facilities, and is prepared is in response to Section 7(b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985.

NONE

1995-04-01T23:59:59.000Z

59

Vermont State Briefing Book on low-level radioactive waste management  

SciTech Connect (OSTI)

The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont.

Not Available

1981-07-01T23:59:59.000Z

60

Washington State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Washington State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Washington. The profile is the result of a survey of NRC licensees in Washington. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Washington.

Not Available

1980-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Mississippi State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Mississippi State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state an federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Mississippi. The profile is the result of a survey of NRC licensees in Mississippi. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Mississippi.

none,

1981-08-01T23:59:59.000Z

62

Wyoming State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

Not Available

1981-10-01T23:59:59.000Z

63

North Carolina State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina.

Not Available

1981-08-01T23:59:59.000Z

64

Midwest Interstate Compact on Low-Level Radioactive Waste (Multiple States)  

Broader source: Energy.gov [DOE]

The Midwest Interstate Low-Level Radioactive Waste Compact is an agreement between the states of Indiana, Iowa, Minnesota, Missouri, Ohio, and Wisconsin that provides for the cooperative and safe...

65

Kentucky State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Kentucky State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kentucky. The profile is the result of a survey of NRC licensees in Kentucky. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Kentucky.

Not Available

1981-08-01T23:59:59.000Z

66

New Jersey State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey.

Not Available

1981-04-01T23:59:59.000Z

67

Massachusetts State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.

Not Available

1981-03-12T23:59:59.000Z

68

Utah State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.

Not Available

1981-10-01T23:59:59.000Z

69

Microbial transformation of low-level radioactive waste  

SciTech Connect (OSTI)

Microorganisms play a significant role in the transformation of the radioactive waste and waste forms disposed of at shallow-land burial sites. Microbial degradation products of organic wastes may influence the transport of buried radionuclides by leaching, solubilization, and formation of organoradionuclide complexes. The ability of indigenous microflora of the radioactive waste to degrade the organic compounds under aerobic and anaerobic conditions was examined. Leachate samples were extracted with methylene chloried and analyzed for organic compounds by gas chromatography and mass spectrometry. In general, several of the organic compounds in the leachates were degraded under aerobic conditions. Under anaerobic conditions, the degradation of the organics was very slow, and changes in concentrations of several acidic compounds were observed. Several low-molecular-weight organic acids are formed by breakdown of complex organic materials and are further metabolized by microorganisms; hence these compounds are in a dynamic state, being both synthesized and destroyed. Tributyl phosphate, a compound used in the extraction of metal ions from solutions of reactor products, was not degraded under anaerobic conditions.

Francis, A.J.

1980-06-01T23:59:59.000Z

70

EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste,  

Broader source: Energy.gov (indexed) [DOE]

9: Non-thermal Treatment of Hanford Site Low-level Mixed 9: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to demonstrate the feasibility of commercial treatment of contact-handled low-level mixed waste to meet existing Federal and State regulatory standards for eventual land disposal at the U.S. Department of Energy Richland Operations Office. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 29, 1998 EA-1189: Finding of No Significant Impact Non-thermal Treatment of Hanford Site Low-level Mixed Waste September 29, 1998 EA-1189: Final Environmental Assessment Non-thermal Treatment of Hanford Site Low-level Mixed Waste

71

A data base for low-level radioactive waste disposal sites  

SciTech Connect (OSTI)

A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

Daum, M.L.; Moskowitz, P.D.

1989-07-01T23:59:59.000Z

72

Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513  

SciTech Connect (OSTI)

The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

Mohamed, Yasser T. [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

2013-07-01T23:59:59.000Z

73

Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) A transuranic (TRU) waste shipment makes its way to the Waste Isolation Pilot Plant in Carlsbad, N.M. A transuranic (TRU) waste shipment makes its way to the Waste Isolation Pilot Plant in Carlsbad, N.M. On February 17, 2011, DOE issued the Draft Environmental Impact Statement (EIS) for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste (LLRW) and GTCC-Like Waste (Draft EIS, DOE/EIS-0375D) for public review and comment. DOE is inviting public comments on this Draft EIS during a 120-day public comment period, from the date of publication of the EIS's Notice of Availability in the Federal Register. During the comment

74

Some aspects of low-level radioactive-waste disposal in the US  

SciTech Connect (OSTI)

This report summarizes the NRC supported Shallow Land Burial research program at Brookhaven National Laboraotry and its relationship to the proposed revised ruling on disposal of low level radioactive waste, 10 CFR Part 61. Section of the proposed regulation, which establish the new low level waste classification system and the performance objective placed on waste form, are described briefly. The report also summarizes the preliminary results obtained from the EPA program in which low level waste drums were retrieved from the Atlantic and Pacific Oceans.

Schweitzer, D.G.; Davis, R.E.

1982-01-01T23:59:59.000Z

75

Recommendations for future low-level and mixed waste management practices at Los Alamos National Laboratory  

SciTech Connect (OSTI)

This report describes recommendations concerning the management of low-level radioactive wastes and mixtures at Los Alamos National Laboratory. Performance assessments, characterization, site disposal design, shipment, and storage are discussed.

Jennrich, E.A.; Klein, R.B.; Murphy, E.S.; Shuman, R. (Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)); Hickman, W.W.; Rutz, A.C.; Uhl, D.L. (Wastren, Inc., Idaho Falls, ID (United States))

1989-04-27T23:59:59.000Z

76

Development of low-level radioactive waste disposal capacity in the United States - progress or stalemate?  

SciTech Connect (OSTI)

It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The U.S. nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW - industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW - face the same storage and cost uncertainties. This paper will summarize the current status of U.S. low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change.

Devgun, J.S. [Argonne National Lab., IL (United States); Larson, G.S. [Midwest Low-Level Radioactive Waste Commission, St. Paul, MN (United States)

1995-12-31T23:59:59.000Z

77

Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste  

SciTech Connect (OSTI)

Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units.

Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

1996-03-01T23:59:59.000Z

78

Siting of low-level radioactive waste disposal facilities in Texas  

E-Print Network [OSTI]

in the proper geologic environment. The object of disposal is to prevent exposure of the public to radioactive waste in potentially harmful concentrations. The most likely route for buried wastes to reach the public is through the ground- water system... disposal site for low- level radioactive waste is predictability, A disposal site should "be capable of being characterized, modeled, analyzed and monitored" ISiefken, et al. , 1982). Simplicity and homogeneity with respect to hydrogeologic conditions...

Isenhower, Daniel Bruce

2012-06-07T23:59:59.000Z

79

EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste  

Broader source: Energy.gov (indexed) [DOE]

43: Idaho National Engineering Laboratory Low-Level and Mixed 43: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho SUMMARY This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW) through sizing, compaction, and stabilization at Waste Experimental Reduction Facility (WERF); and (2) use commercial offsite facilities for supplemental LLW volume reduction (incineration). PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD June 3, 1994 EA-0843: Finding of No Significant Impact Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing

80

Time of Compliance for Disposal of Low-Level Radioactive Waste  

Broader source: Energy.gov [DOE]

Time of Compliance for Disposal of Low-Level Radioactive Waste Roger Seitz*, Savannah River National Laboratory ; Andrew Wallo, U.S. Department of Energy Abstract: The United States Department of Energy (DOE) has more than 25 years of experience conducting and overseeing performance assessments (PAs) for low-level waste (LLW) and mixed LLW from on-going operations, decommissioning and environmental restoration activities. DOE considers performance assessments (PAs) as one contributor to defense-in-depth arguments for safe disposal of LLW. In a risk-informed, performance-based approach to PA, it is necessary to address the time frames over which PA results are sufficiently meaningful to be used for a strict determination of compliance (i.e., a time of compliance). DOE has taken the position that, for near-surface disposal, 1,000 years is an appropriate time of compliance, but the potential for peak impacts after that time need to also be addressed. From an implementation perspective, 1,000 years is considered as a transition in the interpretation of results from use as a quantitative, decision-maker (ďyes or noĒ compliance) to an increasingly qualitative role informing decisions in conjunction with all of the other contributors to the safety basis. This position is based on a number of technical and policy considerations with a major factor being the decreasing quantitative meaningfulness of PA results in the context of the increasing speculation and uncertainties as time frames on the order of hundreds and thousands of years are considered. The technical and policy considerations for the DOE position and considerations for implementation will be discussed.

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Low-Level Radioactive Waste Disposal: An Exercise in Dealing with Pollution  

Science Journals Connector (OSTI)

A problem-based learning exercise based upon the need for society to dispose of low-level radioactive waste is presented. The exercise is structured as a classroom-centered group problem-based learning module, whose exploration will occupy at least two-...

Grant R. Krow; Jessica B. Krow

1998-12-01T23:59:59.000Z

82

A team effort: Reducing the volume of low-level radioactive waste  

SciTech Connect (OSTI)

This article describes the team effort at Entergy Operation`s River Bend Station in Louisiana to reduce the volume of low-level radioactive waste. Topic areas covered include the following: Assessment - waste composition analysis using EPRI guidelines; grassroots effort; release facility - managing the waste; emerging technologies; spreading the success. 4 fig.

Zimmermann, K.

1996-09-01T23:59:59.000Z

83

Microbial activity of trench leachates from shallow-land, low-level radioactive waste disposal sites.  

Science Journals Connector (OSTI)

...samples collected from disposal sites at Maxey Flats, Ky., and West...trenches at the disposal sites of Maxey Flats, Ky., West Valley...trench water at the Maxey Flats low-level radioactive waste disposal site, p. 747-761...

A J Francis; S Dobbs; B J Nine

1980-07-01T23:59:59.000Z

84

Letter report: Minor component study for low-level radioactive waste glasses  

SciTech Connect (OSTI)

During the waste vitrification process, troublesome minor components in low-level radioactive waste streams could adversely affect either waste vitrification rate or melter life-time. Knowing the solubility limits for these minor components is important to determine pretreatment options for waste streams and glass formulation to prevent or to minimize these problems during the waste vitrification. A joint study between Pacific Northwest Laboratory and Rensselaer Polytechnic Institute has been conducted to determine minor component impacts in low-level nuclear waste glass.

Li, H.

1996-03-01T23:59:59.000Z

85

EA-1292: On-site Treatment of Low Level Mixed Waste, Golden, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to evaluate the proposed treatment of low level mixed waste at the U.S. Department of Energy's Rocky Flats Environmental Technology Site.

86

EA-1135: Offsite Thermal Treatment of Low-level Mixed Waste, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to treat contact-handled low-level mixed waste, containing polychlorinated biphenyls and other organics, to meet existing regulatory...

87

US and Russian innovative technologies to process low-level liquid radioactive wastes: The Murmansk initiative  

SciTech Connect (OSTI)

This paper documents the status of the technical design for the upgrade and expansion to the existing Low-level Liquid Radioactive Waste (LLLRW) treatment facility in Murmansk, the Russian Federation. This facility, owned by the Ministry of Transportation and operated by the Russian company RTP Atomflot in Murmansk, Russia, has been used by the Murmansk Shipping Company (MSCo) to process low-level liquid radioactive waste generated by the operation of its civilian icebreaker fleet. The purpose of the new design is to enable Russia to permanently cease the disposal at sea of LLLRW in the Arctic, and to treat liquid waste and high saline solutions from both the Civil and North Navy Fleet operations and decommissioning activities. Innovative treatments are to be used in the plant which are discussed in this paper.

Dyer, R.S. [Environmental Protection Agency, Washington, DC (United States); Penzin, R. [Association for Advanced Technologies, Moscow (Russian Federation); Duffey, R.B. [Brookhaven National Lab., Upton, NY (United States); Sorlie, A. [Norwegian Radiation Protection Authority, Osteras (Norway)

1996-12-31T23:59:59.000Z

88

Comprehensive low-level radioactive waste management plan for the Commonwealth of Kentucky  

SciTech Connect (OSTI)

Part I of the Comprehensive Low-Level Radioactive Waste Management Plan for the Commonwealth of Kentucky discusses the alternatives that have been examined to manage the low-level radioactive waste currently generated in the state. Part II includes a history of the commercial operation of the Maxey Flats Nuclear Waste Disposal Site in Fleming County, Kentucky. The reasons for closure of the facility by the Human Resources Cabinet, the licensing agency, are identified. The site stabilization program managed by the Natural Resources and Environmental Protection Cabinet is described in Chapter VI. Future activities to be conducted at the Maxey Flats Disposal Site will include site stabilization activities, routine operations and maintenance, and environmental monitoring programs as described in Chapter VII.

Carr, R.M.; Mills, D.; Perkins, C.; Riddle, R.

1984-03-01T23:59:59.000Z

89

Treatment of low-level mixed waste using an expedited demonstration concept  

SciTech Connect (OSTI)

The majority of the Department of Energy`s inventory of low-level mixed waste is Land Disposal Restricted under the Resource Conservation and Recovery Act, and therefore must be treated prior to disposal. Treatment may include removal of a hazardous characteristic, destruction of a hazardous component, immobilization to meet the Universal Treatment Standards or Debris Rule, or treatment by a technology specified by the regulations. As part of a concerted effort to make wastes compliant under the Land Disposal Restrictions, the Department of Energy is supporting the Expedited Technology Demonstration program at the Rocky Flats Environmental Technology Site. The intent of the expedited program is to demonstrate treatment processes on actual hazardous or radioactive mixed waste streams on an accelerated schedule. Six successful treatability studies at Rocky Flats have proven the viability of the expedited concept. The technologies demonstrated include electrochemical chlorination for cyanide and sulfide destruction, ultraviolet oxidation for organic chemical destruction, mercury separation by vacuum retort, thermoplastic and thermosetting polymer macroencapsulation, and silver nitrate destruction by metal recovery and neutralization.

Lucerna, J.J.; Riendeau, M.P. [Kaiser-Hill Company, Golden, CO (United States)

1996-12-31T23:59:59.000Z

90

Low-level radioactive-waste compacts. Status report as of July 1982  

SciTech Connect (OSTI)

The Low-Level Radioactive Waste Policy Act (P.L. 96-573), enacted in December 1980, established as federal policy that states take responsibility for providing disposal capacity for low-level radioactive waste (LLW) generated within their borders, except for defense waste and Federal R and D. At the request of Senator James A. McClure, Chairman of the Senate Committee on Energy and Natural Resources, DOE has documented the progress of states individually and collectively in fulfilling their responsibilities under the Public Law. Regionalization through formation of low-level waste compacts has been the primary vehicle by which many states are assuming this responsibility. To date seven low-level waste compacts have been drafted and six have been enacted by state legislatures or ratified by a governor. As indicated by national progress to date, DOE considers the task of compacting achievable by the January 1, 1986, exclusionary date set in law, although several states and NRC questioned this.

Not Available

1982-07-01T23:59:59.000Z

91

Removal of Historic Low-Level Radioactive Sediment from the Port Hope Harbour - 13314  

SciTech Connect (OSTI)

At the Port Hope Harbour, located on the north shore of Lake Ontario, the presence of low-level radioactive sediment, resulting from a former radium and uranium refinery that operated alongside the Harbour, currently limits redevelopment and revitalization opportunities. These waste materials contain radium-226, uranium, arsenic and other contaminants. Several other on-land locations within the community of Port Hope are also affected by the low-level radioactive waste management practices of the past. The Port Hope Project is a community initiated undertaking that will result in the consolidation of an estimated 1.2 million cubic metres of the low-level radioactive waste from the various sites in Port Hope into a new engineered above ground long-term waste management facility. The remediation of the estimated 120,000 m{sup 3} of contaminated sediments from the Port Hope Harbour is one of the more challenging components of the Port Hope Project. Following a thorough review of various options, the proposed method of contaminated sediment removal is by dredging. The sediment from the dredge will then be pumped as a sediment-water slurry mixture into geo-synthetic containment tubes for dewatering. Due to the hard substrate below the contaminated sediment, the challenge has been to set performance standards in terms of low residual surface concentrations that are attainable in an operationally efficient manner. (authors)

Kolberg, Mark [Baird and Associates, 1267 Cornwall Rd., Suite 100, Oakville ON, L6J7T5 (Canada)] [Baird and Associates, 1267 Cornwall Rd., Suite 100, Oakville ON, L6J7T5 (Canada); Case, Glenn [Atomic Energy of Canada Limited, Port Hope, ON (Canada)] [Atomic Energy of Canada Limited, Port Hope, ON (Canada); Ferguson Jones, Andrea [MMM Group Limited, Thornhill, ON (Canada)] [MMM Group Limited, Thornhill, ON (Canada)

2013-07-01T23:59:59.000Z

92

Survey of agents and techniques applicable to the solidification of low-level radioactive wastes  

SciTech Connect (OSTI)

A review of the various solidification agents and techniques that are currently available or potentially applicable for the solidification of low-level radioactive wastes is presented. An overview of the types and quantities of low-level wastes produced is presented. Descriptions of waste form matrix materials, the wastes types for which they have been or may be applied and available information concerning relevant waste form properties and characteristics follow. Also included are descriptions of the processing techniques themselves with an emphasis on those operating parameters which impact upon waste form properties. The solidification agents considered in this survey include: hydraulic cements, thermoplastic materials, thermosetting polymers, glasses, synthetic minerals and composite materials. This survey is part of a program supported by the United States Department of Energy's Low-Level Waste Management Program (LLWMP). This work provides input into LLWMP efforts to develop and compile information relevant to the treatment and processing of low-level wastes and their disposal by shallow land burial.

Fuhrmann, M.; Neilson, R.M. Jr.; Colombo, P.

1981-12-01T23:59:59.000Z

93

Performance assessment handbook for low-level radioactive waste disposal facilities  

SciTech Connect (OSTI)

Performance assessments of proposed low-level radioactive waste disposal facilities must be conducted to support licensing. This handbook provides a reference document that can be used as a resource by management and staff responsible for performance assessments. Brief discussions describe the performance assessment process and emphasize selected critical aspects of the process. References are also provided for additional information on many aspects of the performance assessment process. The user's manual for the National Low-Level Waste Management Program's Performance Assessment Center (PAC) on the Idaho National Engineering Laboratory Cray computer is included as Appendix A. The PAC provides users an opportunity to experiment with a number of performance assessment computer codes on a Cray computer. Appendix B describes input data required for 22 performance assessment codes.

Seitz, R.R.; Garcia, R.S.; Kostelnik, K.M.; Starmer, R.J.

1992-02-01T23:59:59.000Z

94

Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements  

Broader source: Energy.gov [DOE]

Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Christine Gelles*, U.S. Department of Energy ; Edward Regnier, U.S. Department of Energy; Andrew Wallo, U.S. Department of Energy Abstract: The Atomic Energy Act gives the U.S. Department of Energy (US DOE), the authority to regulate the management of radioactive waste generated by US DOE. This session will discuss DOE Order 435.1, which is protective of workers, public, and environment through specific requirements for the generation, treatment, storage, and disposal of US DOE radioactive waste. The Order is divided into four chapters: General Requirements, High-Level Waste, Transuranic Waste and Low-Level Waste. The requirements are consistent with existing promulgated Federal requirements but are specific to waste generated and disposed at US DOE facilities. A technical standard with requirements for documentation supporting the Disposal Authorization for a facility is also being prepared as well as a guide to accompany the Order. US DOE is in the process of updating the Order to maintain consistency with current practices and to increase efficiency in waste management. The draft Order will be available for public comment prior to being finalized.

95

Current Regulations and Guidance - New Approaches for Risk-Informed Low-Level Radioactive Waste Management  

SciTech Connect (OSTI)

This paper presents the historical foundations and future challenges for commercial low-level radioactive waste (LLRW) management in the United States. LLRW has been managed at government facilities since the beginning of the nuclear age and in the commercial sector since the early 1960's. Over the intervening years many technical, management and regulatory changes have occurred. Significant progress has been made in waste form, waste packaging and in recognizing radionuclides important to performance of disposal technologies and disposal facilities. This presentation will examine approaches using existing regulations and risk-informed approaches to improve guidance, licensing and management of LLRW. (authors)

Ryan, M.T. Ph.D.; CHP [Advisory Committee on Nuclear Waste and Materials, U.S. Nuclear Regulatory Commission, Washington, D.C. (United States)

2008-07-01T23:59:59.000Z

96

Low-level radioactive waste disposal operations at Los Alamos National Laboratory  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) generates Low-Level Radioactive Waste (LLW) from various activities: research and development, sampling and storage of TRU wastes, decommissioning and decontamination of facilities, and from LANL`s major role in stockpile stewardship. The Laboratory has its own active LLW disposal facility located at Technical Area 54, Area G. This paper will identify the current operations of the facility and the issues pertaining to operating a disposal facility in today`s compliance and cost-effective environment.

Stanford, A.R.

1997-02-01T23:59:59.000Z

97

Corrosion mechanisms of low level vitrified radioactive waste in a loamy soil M.I. Ojovan1  

E-Print Network [OSTI]

Corrosion mechanisms of low level vitrified radioactive waste in a loamy soil M.I. Ojovan1 , W-sodium content radioactive waste borosilicate glass buried in a loamy soil (glass K-26) and in an open testing. INTRODUCTION Vitrification of low and intermediate level radioactive waste (LILW) is attracting great interest

Sheffield, University of

98

The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site  

SciTech Connect (OSTI)

After a 15-year hiatus, the United States Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO) began accepting DOE off-site generated mixed low-level radioactive waste (MLLW) for disposal at the Nevada Test Site (NTS) in December 2005. This action was predicated on the acceptance by the Nevada Division of Environmental Protection (NDEP) of a waste analysis plan (WAP). The NNSA/NSO agreed to limit mixed waste disposal to 20,000 cubic meters (approximately 706,000 cubic feet) and close the facility by December 2010 or sooner, if the volume limit is reached. The WAP and implementing procedures were developed based on Hanfordís system of verification to the extent possible so the two regional disposal sites could have similar processes. Since the NNSA/NSO does not have a breaching facility to allow the opening of boxes at the site, verification of the waste occurs by visual inspection at the generator/treatment facility or by Real-Time-Radiography (RTR) at the NTS. This system allows the NTS to effectively, efficiently, and compliantly accept MLLW for disposal. The WAP, NTS Waste Acceptance Criteria, and procedures have been revised based on learning experiences. These changes include: RTR expectations; visual inspection techniques; tamper-indicating device selection; void space requirements; and chemical screening concerns. The NNSA/NSO, NDEP, and the generators have been working together throughout the debugging of the verification processes. Additionally, the NNSA/NSO will continue to refine the MLLW acceptance processes and strive for continual improvement of the program.

DOE /Navarro/NSTec

2007-02-01T23:59:59.000Z

99

ENVIROCARE OF UTAH: EXPANDING WASTE ACCEPTANCE CRITERIA TO PROVIDE LOW-LEVEL AND MIXED WASTE DISPOSAL OPTIONS  

SciTech Connect (OSTI)

Envirocare of Utah operates a low-level radioactive waste disposal facility 80 miles west of Salt Lake City in Clive, Utah. Accepted waste types includes NORM, 11e2 byproduct material, Class A low-level waste, and mixed waste. Since 1988, Envirocare has offered disposal options for environmental restoration waste for both government and commercial remediation projects. Annual waste receipts exceed 12 million cubic feet. The waste acceptance criteria (WAC) for the Envirocare facility have significantly expanded to accommodate the changing needs of restoration projects and waste generators since its inception, including acceptable physical waste forms, radiological acceptance criteria, RCRA requirements and treatment capabilities, PCB acceptance, and liquids acceptance. Additionally, there are many packaging, transportation, and waste management options for waste streams acceptable at Envirocare. Many subcontracting vehicles are also available to waste generators for both government and commercial activities.

Rogers, B.; Loveland, K.

2003-02-27T23:59:59.000Z

100

Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste  

SciTech Connect (OSTI)

The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities.

Porter, C.L.; Widmayer, D.A.

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The siting dilemma: Low-level radioactive waste disposal in the United States  

SciTech Connect (OSTI)

The 1980 Low-Level Radioactive Waste Policy Act ushered in a new era in low-level waste disposal; one with vastly increased state responsibilities. By a 1985 amendment, states were given until January 1993 to fulfill their mandate. In this dissertation, their progress is reviewed. The focus then turns to one particularly intractable problem: that of finding technically and socially acceptable sites for new disposal facilities. Many lament the difficulty of siting facilities that are intended to benefit the public at large but are often locally unwanted. Many label local opposition as purely self-interested; as simply a function of the NIMBY (Not In My Backyard) syndrome. Here, it is argued that epithets such as NIMBY are unhelpful. Instead, to lay the groundwork for widely acceptable solutions to siting conflicts, deeper understanding is needed of differing values on issues concerning authority, trust, risk, and justice. This dissertation provides a theoretical and practical analysis of those issues as they pertain to siting low-level waste disposal facilities and, by extension, other locally unwanted facilities.

English, M.R.

1991-01-01T23:59:59.000Z

102

Identification of technical problems encountered in the shallow land burial of low-level radioactive wastes  

SciTech Connect (OSTI)

A review of problems encountered in the shallow land burial of low-level radioactive wastes has been made in support of the technical aspects of the National Low-Level Waste (LLW) Management Research and Development Program being administered by the Low-Level Waste Management Program Office, Oak Ridge National Laboratory. The operating histories of burial sites at six major DOE and five commercial facilities in the US have been examined and several major problems identified. The problems experienced st the sites have been grouped into general categories dealing with site development, waste characterization, operation, and performance evaluation. Based on this grouping of the problem, a number of major technical issues have been identified which should be incorporated into program plans for further research and development. For each technical issue a discussion is presented relating the issue to a particular problem, identifying some recent or current related research, and suggesting further work necessary for resolving the issue. Major technical issues which have been identified include the need for improved water management, further understanding of the effect of chemical and physical parameters on radionuclide migration, more comprehensive waste records, improved programs for performance monitoring and evaluation, development of better predictive capabilities, evaluation of space utilization, and improved management control.

Jacobs, D.G.; Epler, J.S.; Rose, R.R.

1980-03-01T23:59:59.000Z

103

Environmental Assessment Offsite Thermal Treatment of Low-Level Mixed Waste  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Richland Operations Office (RL) needs to demonstrate the economics and feasibility of offsite commercial treatment of contact-handled low-level mixed waste (LLMW), containing polychlorinated biphenyls (PCBS) and other organics, to meet existing regulatory standards for eventual disposal.

N /A

1999-05-06T23:59:59.000Z

104

Greater-Than-Class C low-level radioactive waste treatment technology evaluation  

SciTech Connect (OSTI)

This report was developed to provide the Greater-Than-Class C Low-Level Radioactive Waste Management Program with criteria and a methodology to select candidate treatment technologies for Greater-Than-Class C low-level radioactive waste (GTCC LLW) destined for dedicated storage and ultimately disposal. The technology selection criteria are provided in a Lotus spreadsheet format to allow the methodology to evolve as the GTCC LLW Program evolves. It is recognized that the final disposal facility is not yet defined; thus, the waste acceptance criteria and other facility-specific features are subject to change. The spreadsheet format will allow for these changes a they occur. As additional treatment information becomes available, it can be factored into the analysis. The technology selection criteria were established from program goals, draft waste acceptance criteria for dedicated storage (including applicable regulations), and accepted remedial investigation methods utilized under the Comprehensive Environmental Response, Compensation, and Liability Act. Kepner-Tregoe decisionmaking techniques are used to compare and rank technologies against the criteria.

Garrison, T W; Fischer, D K

1993-01-01T23:59:59.000Z

105

Assessment of microbial processes on gas production at radioactive low-level waste disposal sites  

SciTech Connect (OSTI)

Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

Weiss, A.J.; Tate, R.L. III; Colombo, P.

1982-05-01T23:59:59.000Z

106

Comparison of alternative treatment systems for DOE mixed low-level waste  

SciTech Connect (OSTI)

From 1993 to 1996, the Department of Energy, Environmental Management, Office of Science and Technology (OST), has sponsored a series of systems analyses to guide its future research and development (R&D) programs for the treatment of mixed low-level waste (MLLW) stored in the DOE complex. The two original studies were of 20 mature and innovative thermal systems. As a result of a technical review of these thermal system studies, a similar study of five innovative nonthermal systems was conducted in which unit operations are limited to temperatures less than 350{degrees}C to minimize volatilization of heavy metals and radionuclides, and de novo production of dioxins and furans in the offgas. Public involvement in the INTS study was established through a working group of 20 tribal and stakeholder representatives to provide input to the INTS studies and identify principles against which the systems should be designed and evaluated. Pre-conceptual designs were developed for all systems to treat the same waste input (2927 lbs/hr) in a single centralized facility operating 4032 hours per year for 20 years. This inventory consisted of a wide range of combustible and non-combustible materials such as paper, plastics, metals, concrete, soils, sludges, liquids, etc., contaminated with trace quantities of radioactive materials and RCRA regulated wastes. From this inventory, an average waste profile was developed for simulated treatment using ASPEN PLUS{copyright} for mass balance calculations. Seven representative thermal systems were selected for comparison with the five nonthermal systems. This report presents the comparisons against the TSWG principles, of total life cycle cost (TLCC), and of other system performance indicators such as energy requirements, reagent requirements, land use, final waste volume, aqueous and gaseous effluents, etc.

Schwinkendorf, W.E.

1997-03-01T23:59:59.000Z

107

1992 annual report on low-level radioactive waste management progress; Report to Congress in response to Public Law 99-240  

SciTech Connect (OSTI)

This report summarizes the progress States and compact regions made during 1992 in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level radioactive waste received for disposal in 1992 by commercially operated low-level radioactive waste disposal facilities. This report is in response to section 7 (b) of the Low-Level Radioactive Waste Policy Act.

NONE

1993-11-01T23:59:59.000Z

108

Treatment of low-level radioactive waste liquid by reverse osmosis  

SciTech Connect (OSTI)

The processing of low-level radioactive waste (LLRW) liquids that result from operation of nuclear power plants with reverse osmosis systems is not common practice. A demonstration facility is operating at Chalk River Laboratories (of Atomic Energy of Canada Limited), processing much of the LLRW liquids generated at the site from a multitude of radioactive facilities, ranging from isotope production through decontamination operations and including chemical laboratory drains. The reverse osmosis system comprises two treatment steps--spiral wound reverse osmosis followed by tubular reverse osmosis--to achieve an average volume reduction factor of 30:1 and a removal efficiency in excess of 99% for most radioactive and chemical species. The separation allows the clean effluent to be discharged without further treatment. The concentrated waste stream of 3 wt% total solids is further processed to generate a solid product. The typical lifetimes of the membranes have been nearly 4000 hours, and replacement was required based on increased pressure drops and irreversible loss of permeate flux. Four years of operating experience with the reverse osmosis system, to demonstrate its practicality and to observe and record its efficiency, maintenance requirements and effectiveness, have proven it to be viable for volume reduction and concentration of LLRW liquids generated from nuclear-power-plant operations.

Buckley, L.P.; Sen Gupta, S.K.; Slade, J.A. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada). Chalk River Labs.

1995-12-31T23:59:59.000Z

109

Results of a Strategic Assessment of NRC's Low-Level Radioactive Waste Program  

SciTech Connect (OSTI)

NRC recently completed a strategic assessment of its low-level radioactive waste (LLW) regulatory program. In this paper, we provide the results of this assessment - a prioritized list of activities for our LLW program in the next several years - along with a description of the circumstances that required us to undertake this assessment and the process we used. We obtained ideas from a wide variety of stakeholders on activities we could undertake, and we evaluated them in light of our overall strategic objectives for ensuring safety and security, as well as a number of other factors. We ranked 7 of the 20 activities evaluated as high priority. Their completion in the next several years will help to ensure that LLW will continue to be managed and disposed of safely and securely. (authors)

Bradford, A.W.; Camper, L.W.; Flanders, S.C.; Kennedy, J.E.; Shaffner, J.A.; Tokar, M.; Whited, A.R. [NRC LLW Branch, Mail Stop T-8-F-5, U.S. Nuclear Regulatory Commission, Washington DC (United States)

2008-07-01T23:59:59.000Z

110

An experimental survey of the factors that affect leaching from low-level radioactive waste forms  

SciTech Connect (OSTI)

This report represents the results of an experimental survey of the factors that affect leaching from several types of solidified low-level radioactive waste forms. The goal of these investigations was to determine those factors that accelerate leaching without changing its mechanism(s). Typically, although not in every case,the accelerating factors include: increased temperature, increased waste loading (i.e., increased waste to binder ratio), and decreased size (i.e., decreased waste form volume to surface area ratio). Additional factors that were studied were: increased leachant volume to waste form surface area ratio, pH, leachant composition (groundwaters, natural and synthetic chelating agents), leachant flow rate or replacement frequency and waste form porosity and surface condition. Other potential factors, including the radiation environment and pressure, were omitted based on a survey of the literature. 82 refs., 236 figs., 13 tabs.

Dougherty, D.R.; Pietrzak, R.F.; Fuhrmann, M.; Colombo, P.

1988-09-01T23:59:59.000Z

111

Geochemistry of trench leachates at low-level radioactive waste burial sites  

SciTech Connect (OSTI)

Trench leachates from the low-level radioactive waste burial sites at Maxey Flats, Kentucky and Barnwell, South Carolina were sampled and analyzed for dissolved inorganic, organic, and radionuclide constituents. Relative to local groundwaters, the trench leachates exhibit significant modifications in major ion and radionuclide compositions. The formation and composition of the leachates can be attributed to site-specific hydrological and geochemical factors. Leaching and microbial degradation of waste materials are considered to be the important geochemical processes controlling the leachate compositions. Elevated concentrations of Na, K, Ca, Mg, Cl, dissolved organic and inorganic carbon, and various anthropogenic radionuclides reflect leaching of waste materials. Anoxic conditions as characterized by depletion of dissolved oxygen and sulphate, and high contents of alkalinity and ammonia reflect microbial decomposition of organic waste materials. Because of relatively stagnant water accumulations, the extent of modification is much greater in the Maxey Flats leachates as compared with those from Barnwell. 8 references, 2 figures, 2 tables.

Dayal, R.; Pietrzak, R.F.; Clinton, J.

1984-01-01T23:59:59.000Z

112

Low-level radioactive waste technology: a selected, annotated bibliography. [416 references  

SciTech Connect (OSTI)

This annotated bibliography of 416 references represents the third in a series to be published by the Hazardous Materials Information Center containing scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on disposal site, environmental transport, and waste treatment studies as well as general reviews on the subject. The publication covers both domestic and foreign literature for the period 1951 to 1981. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology, and Site Resources; Regulatory and Economic Aspects; Social Aspects; Transportation Technology; Waste Production; and Waste Treatment. Entries in each of the chapters are further classified as a field study, laboratory study, theoretical study, or general overview involving one or more of these research areas.

Fore, C.S.; Carrier, R.F.; Brewster, R.H.; Hyder, L.K.; Barnes, K.A.

1981-10-01T23:59:59.000Z

113

US Army facility for the consolidation of low-level radioactive waste  

SciTech Connect (OSTI)

A preliminary study of a waste consolidation facility for the Department of the Army's low-level radioactive waste was carried out to determine a possible site and perform a cost-benefit analysis. Four sites were assessed as possible locations for such a facility, using predetermined site selection criteria. To assist in the selection of a site, an evaluation of environmental issues was included as part of each site review. In addition, a preliminary design for a waste consolidation facility was developed, and facilities at each site were reviewed for their availability and suitability for this purpose. Currently available processes for volume reduction, as well as processes still under development, were then investigated, and the support and handling equipment and the staff needed for the safe operation of a waste consolidation facility were studied. Using current costs for the transportation and burial of low-level waste, a cost comparison was then made between waste disposal with and without the utilization of volume reduction. Finally, regulations that could affect the operation of a waste consolidation facility were identified and their impact was assessed. 11 references, 5 figures, 16 tables.

Stein, S.L.; Tanner, J.E.; Murphy, B.L.; Gillings, J.C.; Hadley, R.T.; Lyso, O.M.; Gilchrist, R.L.; Murphy, D.W.

1983-12-01T23:59:59.000Z

114

Vermont Yankee experience with interim storage of low level radioactive waste in concrete modules  

SciTech Connect (OSTI)

This paper discusses the implementation of interim storage of low level radioactive waste using concrete modules at the Vermont Yankee Nuclear Power Station in Vernon, Vermont. Under the threat of possible loss of disposal capability in 1986, Vermont Yankee first considered the on-site storage option in 1985. prior to settling on a design, an investigation and economic analysis was performed of several designs. Modular concrete storage on a gravel pad was chosen as the most economical and the one providing the greatest flexibility. The engineering work, safety analysis, and pad construction were completed in 1985. Because of the passage of the Low Level Radioactive Waste Policy amendments Act in 1985, the loss of disposal capability did not occur in 1986. However, because the State of Vermont failed to meet the milestones of the Amendments Act, Vermont Yankee was restricted from the existing disposal sites on January 31, 1989. As a result, modules were purchased and waste was stored on site from 1989 until 1991. In 1991, the State of Vermont came back into compliance with the Amendments Act, and all waste stored on-site was shipped for burial. During the storage period 2 types of modules (1 box type and 1 cylinder type) were used. Lessons were learned, and changes were made to better control the off-site dose contribution of the waste. Recommendations are made to enhance the usability of the facility, such s lighting power, phones, etc. A shortcoming of the module storage concept is the inability to move waste during inclement weather. Despite this, the modules have provided an economical, technically sound, method of waste storage. The storage pad has not been used since 1991, but work is under way to review, and update as necessary, the safety analysis and procedures in preparation for reuse of the on-site storage facility after June 30, 1994.

Berger, S.; Weyman, D. [Vermont Yankee Nuclear Power Corporation, Vernon, VT (United States)

1995-05-01T23:59:59.000Z

115

Low-level radioactive waste source terms for the 1992 integrated data base  

SciTech Connect (OSTI)

This technical manual presents updated generic source terms (i.e., unitized amounts and radionuclide compositions) which have been developed for use in the Integrated Data Base (IDB) Program of the U.S. Department of Energy (DOE). These source terms were used in the IDB annual report, Integrated Data Base for 1992: Spent Fuel and Radioactive Waste Inventories, Projections, and Characteristics, DOE/RW-0006, Rev. 8, October 1992. They are useful as a basis for projecting future amounts (volume and radioactivity) of low-level radioactive waste (LLW) shipped for disposal at commercial burial grounds or sent for storage at DOE solid-waste sites. Commercial fuel cycle LLW categories include boiling-water reactor, pressurized-water reactor, fuel fabrication, and uranium hexafluoride (UF{sub 6}) conversion. Commercial nonfuel cycle LLW includes institutional/industrial (I/I) waste. The LLW from DOE operations is category as uranium/thorium fission product, induced activity, tritium, alpha, and {open_quotes}other{close_quotes}. Fuel cycle commercial LLW source terms are normalized on the basis of net electrical output [MW(e)-year], except for UF{sub 6} conversion, which is normalized on the basis of heavy metal requirement [metric tons of initial heavy metal ]. The nonfuel cycle commercial LLW source term is normalized on the basis of volume (cubic meters) and radioactivity (curies) for each subclass within the I/I category. The DOE LLW is normalized in a manner similar to that for commercial I/I waste. The revised source terms are based on the best available historical data through 1992.

Loghry, S L; Kibbey, A H; Godbee, H W; Icenhour, A S; DePaoli, S M

1995-01-01T23:59:59.000Z

116

Waste Management Facilities cost information for mixed low-level waste. Revision 1  

SciTech Connect (OSTI)

This report contains preconceptual designs and planning level life-cycle cost estimates for managing mixed low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

Shropshire, D.; Sherick, M.; Biadgi, C.

1995-06-01T23:59:59.000Z

117

State-of-the-art report on low-level radioactive waste treatment  

SciTech Connect (OSTI)

An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out.

Kibbey, A.H.; Godbee, H.W.

1980-09-01T23:59:59.000Z

118

Source term characterization for the Maxey Flats low-level radioactive waste disposal site  

SciTech Connect (OSTI)

The results of source term characterization studies for the Maxey Flats low-level radioactive waste disposal site show that because of the long residence time of water accumulations in the trenches, prolonged leaching and microbial degradation of waste materials occur continuously, leading to leachate formation. As a result of such interactions for extended time periods, the resultant trench leachates exhibit significant modifications in terms of inorganic, organic, and radionuclide constituents and acquire geochemical properties that are unique, compared to ambient groundwater. The leachates generally exhibit varying degrees of anoxia characterized by negative redox potentials, low dissolved oxygen and sulfate concentrations, high alkalinity, and high ammonia concentrations. The enrichments, to varying degrees, of inorganic, organic, and radionuclide constituents associated with fuel cycle and non-fuel cycle low-level wastes reflect the nature of the leaching process itself and of the waste materials. Elevated concentrations of Na/sup +/, K/sup +/, Fe/sub TOTAL/, Mn/sub TOTAL/, Cl/sup -/, dissolved organic and inorganic carbon, and several organic compounds as well as radionuclides, such as /sup 3/H, /sup 241/Am, /sup 60/Co, /sup 134/Cs, /sup 137/Cs, /sup 90/Sr, /sup 238/Pu, and /sup 239//sup,/sup 240/Pu are a consequence of waste leaching. Some of the waste-derived organic compounds present in the trenches, such as chelating agents and several carboxylic acids, are strong complexing agents and have the potential to form stable radionuclide complexes and thus enhance nuclide mobility. The consequences of past disposal practices as reflected in the problems associated with the burial of unsegregated, poorly packaged, and unstabilized wastes at the Maxey Flats disposal site indicate the significance of waste segregation, improved stabilization, and proper packaging.

Dayal, R.; Pietrzak, R.F.; Clinton, J.H.

1986-02-01T23:59:59.000Z

119

Comparison of selected DOE and non-DOE requirements, standards, and practices for Low-Level Radioactive Waste Disposal  

SciTech Connect (OSTI)

This document results from the Secretary of Energy`s response to Defense Nuclear Facilities Safety Board Recommendation 94--2. The Secretary stated that the US Department of Energy (DOE) would ``address such issues as...the need for additional requirements, standards, and guidance on low-level radioactive waste management. `` The authors gathered information and compared DOE requirements and standards for the safety aspects Of low-level disposal with similar requirements and standards of non-DOE entities.

Cole, L. [Cole and Associates (United States); Kudera, D.; Newberry, W. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-12-01T23:59:59.000Z

120

Framework for DOE mixed low-level waste disposal: Site fact sheets  

SciTech Connect (OSTI)

The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

1995 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites  

SciTech Connect (OSTI)

Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in US. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included are tables showing the distribution of waste by state for 1995 and a comparison of waste volumes and radioactivity by state for 1991 through 1995; also included is a list of all commercial nuclear power reactors in US as of Dec. 31, 1994. This report distinguishes low-level radioactive waste shipped directly for disposal by generators and waste handled by an intermediary.

Fuchs, R.L.

1996-09-01T23:59:59.000Z

122

Management of Low-Level Radioactive Waste from Research, Hospitals and Nuclear Medical Centers in Egypt - 13469  

SciTech Connect (OSTI)

The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Center (HLWMC) for storage and monitoring. (authors)

Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F. [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

2013-07-01T23:59:59.000Z

123

Protecting Lake Ontario - Treating Wastewater from the Remediated Low-Level Radioactive Waste Management Facility - 13227  

SciTech Connect (OSTI)

The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be located inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for various flow and load scenarios. (authors)

Freihammer, Till; Chaput, Barb [AECOM, 99 Commerce Drive, Winnipeg, Manitoba, R3P 0Y7 (Canada)] [AECOM, 99 Commerce Drive, Winnipeg, Manitoba, R3P 0Y7 (Canada); Vandergaast, Gary [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada)] [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada); Arey, Jimi [Public Works and Government Services Canada, Ontario (Canada)] [Public Works and Government Services Canada, Ontario (Canada)

2013-07-01T23:59:59.000Z

124

Microbial degradation of low-level radioactive waste. Volume 2, Annual report for FY 1994  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program is to develop modified microbial degradation test procedures that will be more appropriate than the existing procedures for evaluating the effects of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms indigenous to LLW disposal sites are being employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results over the past year on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of the annual report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides has been developed during this study.

Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-08-01T23:59:59.000Z

125

Source team evaluation for radioactive low-level waste disposal performance assessment  

SciTech Connect (OSTI)

Information compiled on the low-level radioactive waste disposed at the three currently operating commercial disposal sites during the period 1987--1989 have been reviewed and processed in order to determine the total activity distribution in terms of waste stream, waste classification and waste form. The review identified deficiencies in the information currently being recorded on shipping manifests and the development of a uniform manifest is recommended (the NRC is currently developing a rule to establish a uniform manifest). The data from waste disposed during 1989 at one of the sites (Richland, WA) were more detailed than the data available during other years and at other sites, and thus were amenable to a more in-depth treatment. This included determination of the distribution of activity for each radionuclide by waste form, and thus enabled these data to be evaluated in terms of the specific needs for improved modeling of releases from waste packages. From the results, preliminary lists have been prepared of the isotopes which might be the most significant from the aspect of the development of a source term model.

Cowgill, M.G.; Sullivan, T.M. [Brookhaven National Lab., Upton, NY (United States)

1993-01-01T23:59:59.000Z

126

Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.  

SciTech Connect (OSTI)

Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

2007-01-01T23:59:59.000Z

127

Quantities and characteristics of the contact-handled low-level mixed waste streams for the DOE complex  

SciTech Connect (OSTI)

This report supports the Integrated Thermal Treatment System (ITTS) Study initiated by the Department of Energy (DOE) Office of Technology Development (EM-50), which is a system engineering assessment of a variety of mixed waste treatment process. The DOE generates and stores large quantities of mixed wastes that are contaminated with both chemically hazardous and radioactive species. The treatment of these mixed wastes requires meeting the standards established by the Environmental Protection Agency for the specific hazardous contaminants regulated under the Resource Conservation and Recovery Act while also providing adequate control of the radionuclides. The thrust of the study is to develop preconceptual designs and life-cycle cost estimates for integrated thermal treatment systems ranging from conventional incinerators, such as rotary kiln and controlled air systems, to more innovative but not yet established technologies, such as molten salt and molten metal waste destruction systems. Prior to this engineering activity, the physical and chemical characteristics of the DOE low-level mixed waste streams to be treated must be defined or estimated. This report describes efforts to estimate the DOE waste stream characteristics.

Huebner, T.L.; Wilson, J.M.; Ruhter, A.H.; Bonney, S.J. [SAIC, Idaho Falls, ID (United States). Waste Management Technology Div.

1994-08-01T23:59:59.000Z

128

Iron-Phosphate Ceramics for Solidification of Mixed Low-Level Waste  

SciTech Connect (OSTI)

A method of immobilizing mixed low-level waste is provided which uses low cost materials and has a relatively long hardening period. The method includes: forming a mixture of iron oxide powders having ratios, in mass %, of FeO: Fe{sub 2}O{sub 3}: Fe{sub 3}O{sub 4} equal to 25-40: 40-10: 35-50, or weighing a definite amount of magnitite powder. Metallurgical cinder can also be used as the source of iron oxides. A solution of the orthophosphoric acid, or a solution of the orthophosphoric acid and ferric oxide, is formed and a powder phase of low-level waste and the mixture of iron oxide powders or cinder (or magnetite powder) is also formed. The acid solution is mixed with the powder phase to form a slurry with the ratio of components (mass %) of waste: iron oxide powders or magnitite: acid solution = 30-60: 15-10: 55-30. The slurry is blended to form a homogeneous mixture which is cured at room temperature to form the final product.

Aloy, Albert S.; Kovarskaya, Elena N.; Koltsova, Tatiana I.; Macheret, Yevgeny; Medvedev, Pavel G.; Todd, Terry

1998-08-07T23:59:59.000Z

129

Iron-phosphate ceramics for solidification of mixed low-level waste  

DOE Patents [OSTI]

A method of immobilizing mixed low-level waste is provided which uses low cost materials and has a relatively long hardening period. The method includes: forming a mixture of iron oxide powders having ratios, in mass %, of FeO:Fe.sub.2 O.sub.3 :Fe.sub.3 O.sub.4 equal to 25-40:40-10:35-50, or weighing a definite amount of magnetite powder. Metallurgical cinder can also be used as the source of iron oxides. A solution of the orthophosphoric acid, or a solution of the orthophosphoric acid and ferric oxide, is formed and a powder phase of low-level waste and the mixture of iron oxide powders or cinder (or magnetite powder) is also formed. The acid solution is mixed with the powder phase to form a slurry with the ratio of components (mass %) of waste:iron oxide powders or magnetite:acid solution=30-60:15-10:55-30. The slurry is blended to form a homogeneous mixture which is cured at room temperature to form the final product.

Aloy, Albert S. (St. Petersburg, RU); Kovarskaya, Elena N. (St. Petersburg, RU); Koltsova, Tatiana I. (St. Petersburg, RU); Macheret, Yevgeny (Idaho Falls, ID); Medvedev, Pavel G. (Ozersk, RU); Todd, Terry (Aberdeen, ID)

2000-01-01T23:59:59.000Z

130

Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement  

SciTech Connect (OSTI)

Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.

Kruger, A.A. [Westinghouse Hanford Co., Richland, WA (United States); Olson, R.A.; Tennis, P.D. [Northwestern Univ., Evanston, IL (United States). Center for Advanced Cement-Based Materials] [and others

1995-04-01T23:59:59.000Z

131

Performance assessment methodology and preliminary results for low-level radioactive waste disposal in Taiwan.  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) and Taiwan's Institute for Nuclear Energy Research (INER) have teamed together to evaluate several candidate sites for Low-Level Radioactive Waste (LLW) disposal in Taiwan. Taiwan currently has three nuclear power plants, with another under construction. Taiwan also has a research reactor, as well as medical and industrial wastes to contend with. Eventually the reactors will be decomissioned. Operational and decommissioning wastes will need to be disposed in a licensed disposal facility starting in 2014. Taiwan has adopted regulations similar to the US Nuclear Regulatory Commission's (NRC's) low-level radioactive waste rules (10 CFR 61) to govern the disposal of LLW. Taiwan has proposed several potential sites for the final disposal of LLW that is now in temporary storage on Lanyu Island and on-site at operating nuclear power plants, and for waste generated in the future through 2045. The planned final disposal facility will have a capacity of approximately 966,000 55-gallon drums. Taiwan is in the process of evaluating the best candidate site to pursue for licensing. Among these proposed sites there are basically two disposal concepts: shallow land burial and cavern disposal. A representative potential site for shallow land burial is located on a small island in the Taiwan Strait with basalt bedrock and interbedded sedimentary rocks. An engineered cover system would be constructed to limit infiltration for shallow land burial. A representative potential site for cavern disposal is located along the southeastern coast of Taiwan in a tunnel system that would be about 500 to 800 m below the surface. Bedrock at this site consists of argillite and meta-sedimentary rocks. Performance assessment analyses will be performed to evaluate future performance of the facility and the potential dose/risk to exposed populations. Preliminary performance assessment analyses will be used in the site-selection process and to aid in design of the disposal system. Final performance assessment analyses will be used in the regulatory process of licensing a site. The SNL/INER team has developed a performance assessment methodology that is used to simulate processes associated with the potential release of radionuclides to evaluate these sites. The following software codes are utilized in the performance assessment methodology: GoldSim (to implement a probabilistic analysis that will explicitly address uncertainties); the NRC's Breach, Leach, and Transport - Multiple Species (BLT-MS) code (to simulate waste-container degradation, waste-form leaching, and transport through the host rock); the Finite Element Heat and Mass Transfer code (FEHM) (to simulate groundwater flow and estimate flow velocities); the Hydrologic Evaluation of Landfill performance Model (HELP) code (to evaluate infiltration through the disposal cover); the AMBER code (to evaluate human health exposures); and the NRC's Disposal Unit Source Term -- Multiple Species (DUST-MS) code (to screen applicable radionuclides). Preliminary results of the evaluations of the two disposal concept sites are presented.

Arnold, Bill Walter; Chang, Fu-lin (Institute of Nuclear Energy Research, Taiwan); Mattie, Patrick D.; Knowlton, Robert G.; Chuang, W-S (Institute of Nuclear Energy Research, Taiwan); Chi, L-M (Institute of Nuclear Energy Research, Taiwan); Jow, Hong-Nian; Tien, Norman C. (Institute of Nuclear Energy Research, Taiwan); Ho, Clifford Kuofei

2006-02-01T23:59:59.000Z

132

Estimating Radiological Doses to Predators Foraging in a Low-Level Radioactive Waste Management Area  

SciTech Connect (OSTI)

Since 1957, Los Alamos National Laboratory has operated Area G as its low-level, solid radioactive waste management and disposal area. Although the waste management area is developed, plants, small mammals, and avian and mammalian predators still occupy the less disturbed and revegetated portions of the land. For almost a decade, we have monitored the concentrations of selected radionuclides in soils, plants, and small mammals at Area G. The radionuclides tritium, plutonium-238, and plutonium-239 are regularly found at levels above regional background in all three media. Based on radionuclide concentrations in mice collected from 1994 to 1999, we calculated doses to higher trophic levels (owl, hawk, kestrel, and coyote) that forage on the waste management area. These predators play important functions in the regional ecosystems and are an important part of local Native American traditional tales that identify the uniqueness of their culture. The estimated doses are compared to Department of Energy's interim limit of 0.1 rad/day for the protection of terrestrial wildlife. We used exposure parameters that were derived from the literature for each receptor, including Environmental Protection Agency's exposure factors handbook. Estimated doses to predators ranged from 9E-06 to 2E-04 rad/day, assuming that they forage entirely on the waste management area. These doses are greater than those calculated for predators foraging exclusively in reference areas, but are still well below the interim dose limit. We believe that these calculated doses represent upper-bound estimates of exposure for local predators because the larger predators forage over areas that are much greater than the 63-acre waste management area. Based on these results, we concluded that predators foraging on this area do not face a hazard from radiological exposure under current site conditions.

L.Soholt; G.Gonzales; P.Fresquez; K.Bennett; E.Lopez

2003-03-01T23:59:59.000Z

133

Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1  

SciTech Connect (OSTI)

The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect that packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.

Not Available

1994-09-01T23:59:59.000Z

134

Greater-than-Class C low-level radioactive waste transportation regulations and requirements study. National Low-Level Waste Management Program  

SciTech Connect (OSTI)

The purpose of this report is to identify the regulations and requirements for transporting greater-than-Class C (GTCC) low-level radioactive waste (LLW) and to identify planning activities that need to be accomplished in preparation for transporting GTCC LLW. The regulations and requirements for transporting hazardous materials, of which GTCC LLW is included, are complex and include several Federal agencies, state and local governments, and Indian tribes. This report is divided into five sections and three appendices. Section 1 introduces the report. Section 2 identifies and discusses the transportation regulations and requirements. The regulations and requirements are divided into Federal, state, local government, and Indian tribes subsections. This report does not identify the regulations or requirements of specific state, local government, and Indian tribes, since the storage, treatment, and disposal facility locations and transportation routes have not been specifically identified. Section 3 identifies the planning needed to ensure that all transportation activities are in compliance with the regulations and requirements. It is divided into (a) transportation packaging; (b) transportation operations; (c) system safety and risk analysis, (d) route selection; (e) emergency preparedness and response; and (f) safeguards and security. This section does not provide actual planning since the details of the Department of Energy (DOE) GTCC LLW Program have not been finalized, e.g., waste characterization and quantity, storage, treatment and disposal facility locations, and acceptance criteria. Sections 4 and 5 provide conclusions and referenced documents, respectively.

Tyacke, M.; Schmitt, R.

1993-07-01T23:59:59.000Z

135

LOW LEVEL LIQUID RADIOACTIVE WASTE TREATMENT AT MURMANSK, RUSSIA: FACILITY UPGRADE AND EXPANSION  

SciTech Connect (OSTI)

Today there exist many almost overfilled storage tanks with liquid radioactive waste in the Russian Federation. This waste was generated over several years by the civil and military utilization of nuclear power. The current waste treatment capacity is either not available or inadequate. Following the London Convention, dumping of the waste in the Arctic seas is no longer an alternative. Waste is being generated from today's operations, and large volumes are expected to be generated from the dismantling of decommissioned nuclear submarines. The US and Norway have an ongoing co-operation project with the Russian Federation to upgrade and expand the capacity of a treatment facility for low level liquid waste at the RTP Atomflot site in Murmansk. The capacity will be increased from 1,200 m{sup 3}/year to 5,000 m{sup 3} /year. The facility will also be able to treat high saline waste. The construction phase will be completed the first half of 1998. This will be followed by a start-up and a one year post-construction phase, with US and Norwegian involvement for the entire project. The new facility will consist of 9 units containing various electrochemical, filtration, and sorbent-based treatment systems. The units will be housed in two existing buildings, and must meet more stringent radiation protection requirements that were not enacted when the facility was originally designed. The US and Norwegian technical teams have evaluated the Russian design and associated documentation. The Russian partners send monthly progress reports to US and Norway. Not only technical issues must be overcome but also cultural differences resulting from different methods of management techniques. Six to eight hour time differentials between the partners make real time decisions difficult and relying on electronic age tools becomes extremely important. Language difficulties is another challenge that must be solved. Finding a common vocabulary, and working through interpreters make the process very vulnerable. Each of these obstacles can be overcome when there is a common goal and vision shared by all parties and adequate funds are provided to accomplish the task. The upgrading and expansion of this facility and the construction of a similar facility on the Far East coast of Russia will enable the Russians to sign the London Convention dumping prohibition. This project is one of the first waste management construction projects in the north-west of Russia with foreign contribution. Its success may open for additional co-operative projects with Russia in the future.

BOWERMAN,B.; CZAJKOWSKI,C.; DYER,R.S.; SORLIE,A.

2000-03-01T23:59:59.000Z

136

Development of radiological profiles for U.S. Department of Energy low-level mixed wastes  

SciTech Connect (OSTI)

Radiological profiles have been developed by Argonne National Laboratory for low-level mixed wastes (LLMWs) that are under the management of the US Department of Energy (DOE). These profiles have been used in the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS) to support the analysis of environmental and health risks associated with the various waste management strategies. The radiological characterization of DOE LLMWs is generally inadequate and has made it difficult to develop a site- and waste-stream-dependent radiological profile for LLMWs. On the basis of the operational history of the DOE sites, a simple model was developed to generate site-dependent and waste-stream-independent radiological profiles for LLMWs. This paper briefly discusses the assumptions used in this model and the uncertainties in the results.

Wilkins, B.D.; Meshkov, N.K.; Dolak, D.A.; Wang, Y.Y.

1995-03-01T23:59:59.000Z

137

Assuring Access to Low-Level Radioactive Waste Disposal Facilities for Non-DOE Users of Radioactive Materials: Solutions -Outside the Box  

SciTech Connect (OSTI)

This paper proposes both near-term and long-term solutions for disposal of low-level radioactive waste (LLRW) Classes B and C generated by non-DOE organizations in thirty-six states that will lose access to the Barnwell, SC disposal facility on July 1, 2008. The solutions proposed here call for the federal government, specifically the US Department of Energy (DOE), to play a key role and are outside the existing interstate compact framework established by the Low-Level Radioactive Waste Policy Act of 1980 (amended in 1985) and subsequent state ratification and Congressional consent statutes. (authors)

Pasternak, A.D. [Ph.D. California Radioactive Materials Management Forum, Lafayette, CA (United States)

2008-07-01T23:59:59.000Z

138

Analysis of the low-level waste radionuclide inventory for the Radioactive Waste Management Complex performance assessment  

SciTech Connect (OSTI)

This report summarizes the results of a study to improve the estimates of the radionuclides in the low-level radioactive waste (LLW) inventory which is buried in the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA). The work is done to support the RWMC draft performance assessment (PA). Improved radionuclide inventory estimates are provided for the INEL LLW generators. Engineering, environmental assessment or other research areas may find use for the information in this report. It may also serve as a LLW inventory baseline for data quality assurance. The individual INEL LLW generators, their history and their activities are also described in detail.

Plansky, L.E.; Hoiland, S.A.

1992-02-01T23:59:59.000Z

139

Comparison of TCLP and long-term PCT performance on low-level mixed waste glasses  

SciTech Connect (OSTI)

The Mixed Waste Integrated Program (MWIP) of the US Department of Energy (DOE) is currently investigating technologies for conversion of low-level mixed waste (LLMW) into a form suitable for permanent disposal. Vitrification is one of the preferred technologies since it is capable of consistently producing a durable, leach resistant wasteform, while simultaneously minimizing disposal volumes. Since vitrification of LLMW is a relatively new concept, final wasteform specifications have not been developed. The Savannah River Technology Center (SRTC) of the Westinghouse Savannah River Company (WSRC) has developed the Product Consistency Test (PCI), which is a 7-day leaching procedure for glass. Comparison indicates that both tests have merit where LLMW glasses are concerned. The TCLP is an important test for determining the release of metals and for allowing the wasteform to be delisted while the PCT is more useful for determining consistent production of durable glass. It is a better indicator of the behavior of glass in disposal site conditions. Most aggressive leaching of common oxide glasses occurs under caustic rather than acidic conditions, therefore it is necessary to perform both tests. Further tests will be conducted using additional glass compositions and variations in the TCLP and the PCT.

Cicero, C.A.; Andrews, M.K.; Bickford, D.F.

1994-06-01T23:59:59.000Z

140

Proposed research and development plan for mixed low-level waste forms  

SciTech Connect (OSTI)

The objective of this report is to recommend a waste form program plan that addresses waste form issues for mixed low-level waste (MLLW). The report compares the suitability of proposed waste forms for immobilizing MLLW in preparation for permanent near-surface disposal and relates them to their impact on the U.S. Department of Energy`s mixed waste mission. Waste forms are classified into four categories: high-temperature waste forms, hydraulic cements, encapsulants, and specialty waste forms. Waste forms are evaluated concerning their ability to immobilize MLLW under certain test conditions established by regulatory agencies and research institutions. The tests focused mainly on leach rate and compressive strength. Results indicate that all of the waste forms considered can be tailored to give satisfactory performance immobilizing large fractions of the Department`s MLLW inventory. Final waste form selection will ultimately be determined by the interaction of other, often nontechnical factors, such as economics and politics. As a result of this report, three top-level programmatic needs have been identified: (1) a basic set of requirements for waste package performance and disposal; (2) standardized tests for determining waste form performance and suitability for disposal; and (3) engineering experience operating production-scale treatment and disposal systems for MLLW.

O`Holleran, T.O.; Feng, X.; Kalb, P. [and others

1996-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities  

SciTech Connect (OSTI)

In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country`s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today`s standards. This report summarizes each site`s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US.

Birk, S.M.

1997-10-01T23:59:59.000Z

142

Comparative life-cycle cost analysis for low-level mixed waste remediation alternatives  

SciTech Connect (OSTI)

The purpose of this study is two-fold: (1) to develop a generic, life-cycle cost model for evaluating low-level, mixed waste remediation alternatives, and (2) to apply the model specifically, to estimate remediation costs for a site similar to the Fernald Environmental Management Project near Cincinnati, OH. Life-cycle costs for vitrification, cementation, and dry removal process technologies are estimated. Since vitrification is in a conceptual phase, computer simulation is used to help characterize the support infrastructure of a large scale vitrification plant. Cost estimating relationships obtained from the simulation data, previous cost estimates, available process data, engineering judgment, and expert opinion all provide input to an Excel based spreadsheet for generating cash flow streams. Crystal Ball, an Excel add-on, was used for discounting cash flows for net present value analysis. The resulting LCC data was then analyzed using multi-attribute decision analysis techniques with cost and remediation time as criteria. The analytical framework presented allows alternatives to be evaluated in the context of budgetary, social, and political considerations. In general, the longer the remediation takes, the lower the net present value of the process. This is true because of the time value of money and large percentage of the costs attributed to storage or disposal.

Jackson, J.A.; White, T.P.; Kloeber, J.M.; Toland, R.J.; Cain, J.P.; Buitrago, D.Y.

1995-03-01T23:59:59.000Z

143

Guideline for benchmarking thermal treatment systems for low-level mixed waste  

SciTech Connect (OSTI)

A process for benchmarking low-level mixed waste (LLMW) treatment technologies has been developed. When used in conjunction with the identification and preparation of surrogate waste mixtures, and with defined quality assurance and quality control procedures, the benchmarking process will effectively streamline the selection of treatment technologies being considered by the US Department of Energy (DOE) for LLMW cleanup and management. Following the quantitative template provided in the benchmarking process will greatly increase the technical information available for the decision-making process. The additional technical information will remove a large part of the uncertainty in the selection of treatment technologies. It is anticipated that the use of the benchmarking process will minimize technology development costs and overall treatment costs. In addition, the benchmarking process will enhance development of the most promising LLMW treatment processes and aid in transferring the technology to the private sector. To instill inherent quality, the benchmarking process is based on defined criteria and a structured evaluation format, which are independent of any specific conventional treatment or emerging process technology. Five categories of benchmarking criteria have been developed for the evaluation: operation/design; personnel health and safety; economics; product quality; and environmental quality. This benchmarking document gives specific guidance on what information should be included and how it should be presented. A standard format for reporting is included in Appendix A and B of this document. Special considerations for LLMW are presented and included in each of the benchmarking categories.

Hoffman, D.P.; Gibson, L.V. Jr.; Hermes, W.H. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Bastian, R.E. [Focus Environmental, Inc., Knoxville, TN (United States); Davis, W.T. [Tennessee Univ., Knoxville, TN (United States)

1994-01-01T23:59:59.000Z

144

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies  

SciTech Connect (OSTI)

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

145

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

146

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 2: Technical basis and discussion of results  

SciTech Connect (OSTI)

A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 first describes the screening process used to determine the sites to be considered in the PEs. This volume then provides the technical details of the methodology for conducting the performance evaluations. It also provides a comparison and analysis of the overall results for all sites that were evaluated. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

Waters, R.D.; Gruebel, M.M.; Hospelhorn, M.B. [and others

1996-03-01T23:59:59.000Z

147

Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste  

SciTech Connect (OSTI)

DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

NONE

1998-09-01T23:59:59.000Z

148

Radiological Impact of Low Level Solid Radioactive Waste Disposed of with Ordinary Hospital Refuse  

Science Journals Connector (OSTI)

......Radioactive Waste Disposed of with Ordinary Hospital Refuse A. Beretta L. Conte M. Monciardini...contained in cardboard boxes used to store hospital refuse was developed, testing its reliability...analysis of all waste boxes produced in the hospital, but suggesting that measurements on......

A. Beretta; L. Conte; M. Monciardini; L. Bianchi

1997-06-01T23:59:59.000Z

149

Guidance on the application of quality assurance for characterizing a low-level radioactive waste disposal site  

SciTech Connect (OSTI)

This document provides the Nuclear Regulatory Commission's staff guidance to an applicant on meeting the quality control (QC) requirements of Title 10 of the Code of Federal Regulations, Part 61, Section 61.12 (10 CFR 61.12), for a low-level waste disposal facility. The QC requirements combined with the requirements for managerial controls and audits are the basis for developing a quality assurance (QA) program and for the guidance provided herein. QA guidance is specified for site characterization activities necessary to meet the performance objectives of 10 CFR Part 61 and to limit exposure to or the release of radioactivity. 1 tab.

Pittiglio, C.L. Jr.; Starmer, R.J.; Hedges, D.

1990-10-01T23:59:59.000Z

150

Geochemical studies of commercial low-level radioactive waste disposal sites  

SciTech Connect (OSTI)

The results of source term characterization studies for the commercially operated low-level waste (LLW) disposal sites located in the eastern United States are used to provide an understanding of the importance of hydrological and geochemical factors in controlling the mechanics of leachate formation, evolution of leachate compositions, microbial degradation of organic waste and development of anoxia in the trenches, and the nature and extent of leaching of waste materials. The varying degrees of the intensity of these processes, as determined by the different site characteristics, are clearly reflected in the contrasting leachate geochemistries of Maxey Flats and West Valley trenches, as compared to those of Barnwell and Sheffield trenches. These are important geochemical considerations which not only define LLW source terms but also shed light on the nature and extent of geochemical changes that are likely to occur along a redox gradient outside of the trench environment.

Dayal, R.; Pietrzak, R.F.; Clinton, J.H.

1986-06-01T23:59:59.000Z

151

Summary of expenditures of rebates from the DOE low-level radioactive waste surcharge escrow account for calendar year 1986  

SciTech Connect (OSTI)

The Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240, requires the Department of Energy (DOE) to manage an escrow account creatd by collection of 25% of the non-penalty surcharge fees paid by the generators in non-sited regions and nonmember states to sited states for disposal of low-level radioactive waste. For the milestone period ending June 30, 1986, a total of $921,807.84, representing surcharge fees collected and interest earned, was in escrow during 1986 for rebate to the nonmember states, non-sited compact regions, and sited states. As of December 31, 1986, $802,194.54 had been rebated from the Escrow Account with an additional $118,517.62 scheduled for rebate in early 1987. The remaining rebate to be disbursed under this milestone is $1,095.68 for the state of Delaware. At the request of the state of Delaware, this rebate amount is being held in the Escrow Account until the state provides specific instructions for its disbursement. Individual rebate expenditure reports were submitted to DOE by all the non-sited compact regions and nonmember states that received rebates in 1986. Only $14.00 of these rebates were expended in 1986. DOE reviewed all of these reports and concluded that the single expenditure complies with the expenditure limitations stated in the Act.

Not Available

1987-06-01T23:59:59.000Z

152

Identification of permit and waste acceptance criteria provisions requiring modification for acceptance of commercial mixed waste. National Low-Level Waste Management Program  

SciTech Connect (OSTI)

In October 1990, representatives of States and compact regions requested that the US Department of Energy (DOE) explore an agreement with host States and compact regions under which DOE would accept commercial mixed low-level radioactive waste (LLW) at DOE`s own treatment and disposal facilities. A program for DOE management of commercial mixed waste is made potentially more attractive in light of the low commercial mixed waste volumes, high regulatory burdens, public opposition to new disposal sites, and relatively high cost of constructing commercial disposal facilities. Several studies were identified as essential in determining the feasibility of DOE accepting commercial mixed waste for disposal. The purpose of this report is to identify any current or proposed waste acceptance criteria (WAC) or Resource Conservation and Recovery Act (RCRA) provisions that would have to be modified for commercial mixed waste acceptance at specified DOE facilities. Following the introduction, Section 2 of this report (a) provides a background summary of existing and proposed mixed waste disposal facilities at each DOE site, and (b) summarizes the status of any RCRA Part B permit and WAC provisions relating to the disposal of mixed waste, including provisions relating to acceptance of offsite waste. Section 3 provides overall conclusions regarding the current status and permit modifications that must be implemented in order to grant DOE sites authority under their permits to accept commercial mixed waste for disposal. Section 4 contains a list of references.

Not Available

1994-03-01T23:59:59.000Z

153

Auxiliary analyses in support of performance assessment of a hypothetical low-level waste facility: Two-phase flow and contaminant transport in unsaturated soils with application to low-level radioactive waste disposal. Volume 2  

SciTech Connect (OSTI)

A numerical model of multiphase air-water flow and contaminant transport in the unsaturated zone is presented. The multiphase flow equations are solved using the two-pressure, mixed form of the equations with a modified Picard linearization of the equations and a finite element spatial approximation. A volatile contaminant is assumed to be transported in either phase, or in both phases simultaneously. The contaminant partitions between phases with an equilibrium distribution given by Henry`s Law or via kinetic mass transfer. The transport equations are solved using a Galerkin finite element method with reduced integration to lump the resultant matrices. The numerical model is applied to published experimental studies to examine the behavior of the air phase and associated contaminant movement under water infiltration. The model is also used to evaluate a hypothetical design for a low-level radioactive waste disposal facility. The model has been developed in both one and two dimensions; documentation and computer codes are available for the one-dimensional flow and transport model.

Binning, P. [Newcastle Univ., NSW (Australia); Celia, M.A.; Johnson, J.C. [Princeton Univ., NJ (United States). Dept. of Civil Engineering and Operations Research

1995-05-01T23:59:59.000Z

154

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both radioactive materials  

E-Print Network [OSTI]

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both as noted on the list, you do not have a mixed waste and it may be managed as a normal radioactive waste radioactive waste after initially dating the container, the hold for decay time is extended, but you cannot

Straight, Aaron

155

Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory  

SciTech Connect (OSTI)

Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

Dorries, Alison M [Los Alamos National Laboratory

2010-11-09T23:59:59.000Z

156

Environmental monitoring report for commercial low-level radioactive waste disposal sites (1960`s through 1990`s)  

SciTech Connect (OSTI)

During the time period covered in this report (1960`s through early 1990`s), six commercial low-level radioactive waste (LLRW) disposal facilities have been operated in the US. This report provides environmental monitoring data collected at each site. The report summarizes: (1) each site`s general design, (2) each site`s inventory, (3) the environmental monitoring program for each site and the data obtained as the program has evolved, and (4) what the program has indicated about releases to off-site areas, if any, including a statement of the actual health and safety significance of any release. A summary with conclusions is provided at the end of each site`s chapter. The six commercial LLRW disposal sites discussed are located near: Sheffield, Illinois; Maxey Flats, Kentucky; Beatty, Nevada; West Valley, New York; Barnwell, South Carolina; Richland, Washington.

NONE

1996-11-01T23:59:59.000Z

157

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1995  

SciTech Connect (OSTI)

This report is submitted in response to Title 1 of the 1980 Low-Level Radioactive Waste Policy Act, as amended, (the Act). The report summarizes expenditures made by compact regions and unaffiliated states during calendar year 1995 of surcharge rebates from the July 1, 1986, January 1, 1988, and January 1, 1990, milestones, and the January 1, 1993, deadline. Section 5(d)(2)(A) of the Act requires the Department of Energy (DOE) to administer a surcharge escrow account. This account consists of a portion of the surcharge fees paid by generators of low-level radioactive waste in nonsited compact regions (compact regions currently without disposal sites) and nonmember states (states without disposal sites that are not members of compact regions) to the three sited states (states with operating disposal facilities--Nevada, South Carolina, and Washington) for the use of facilities in sited states through the end of 1992. In administering the surcharge escrow account, the Act requires DOE to: (1) Invest the funds in interest-bearing United States Government securities with the highest available yield; (2) Determine eligibility for rebates of the funds by evaluating compact region and state progress toward developing new disposal sites against the milestone requirements set forth in the Act; (3) Disburse the collected rebates and accrued interest to eligible compact regions, states, or generators; (4) Assess compliance of rebate expenditures in accordance with the conditions and limitations prescribed in the Act; and (5) Submit a report annually to Congress summarizing rebate expenditures by state and compact region and assessing the compliance of each such state or compact region with the requirement for expenditure of the rebates as provided in section 5(d)(2)(E) of the Act.

NONE

1996-06-01T23:59:59.000Z

158

Remote Sensing Analysis of the Sierra Blanca (Faskin Ranch) Low-Level Radioactive Waste Disposal Site, Hudspeth County, Texas  

SciTech Connect (OSTI)

Remote sensing images provide useful physical information, revealing such features as geological structure, vegetation, drainage patterns, and variations in consolidated and unconsolidated lithologies. That technology has been applied to the failed Sierra Blanca (Faskin Ranch) shallow burial low-level radioactive waste disposal site selected by the Texas Low-Level Radioactive Waste Disposal Authority. It has been re-examined using data from LANDSAT satellite series. The comparison of the earlier LANDSAT V (5/20/86) (30-m resolution) with the later new, higher resolution ETM imagery (10/23/99) LANDSAT VII data (15-m resolution) clearly shows the superiority of the LANDSAT VII data. The search for surficial indications of evidence of fatal flaws at the Sierra Blanca site utilizing was not successful, as it had been in the case of the earlier remote sensing analysis of the failed Fort Hancock site utilizing LANDSAT V data. The authors conclude that the tectonic activity at the Sierra Blanca site is much less recent and active than in the previously studied Fort Hancock site. The Sierra Blanca site failed primarily on the further needed documentation concerning a subsurface fault underneath the site and environmental justice issues. The presence of this fault was not revealed using the newer LANDSAT VII data. Despite this fact, it must be remembered that remote sensing provides baseline documentation for determining future physical and financial remediation responsibilities. On the basis of the two sites examined by LANDSAT remote sensing imaging, it is concluded that it is an essential, cost-effective tool that should be utilized not only in site examination but also in all nuclear-related facilities.

LeMone, D. V.; Dodge, R.; Xie, H.; Langford, R. P.; Keller, G. R.

2002-02-26T23:59:59.000Z

159

Method for making a low density polyethylene waste form for safe disposal of low level radioactive material  

DOE Patents [OSTI]

In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

Colombo, P.; Kalb, P.D.

1984-06-05T23:59:59.000Z

160

Characterization of Class A low-level radioactive waste 1986--1990. Volume 3: Main report -- Part B  

SciTech Connect (OSTI)

Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 to 7 contain Appendices A to P with supporting information.

Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Record of Decision for the Solid Waste Program, Hanford Site, Richland, WA: Storage and Treatment of Low-Level Waste and Mixed Low-Level Waste; Disposal of Low-Level Waste and Mixed Low-Level Waste, and Storage, Processing, and Certification of Transuran  

Broader source: Energy.gov (indexed) [DOE]

9 9 Federal Register / Vol. 69, No. 125 / Wednesday, June 30, 2004 / Notices mixed low-level waste, and TRU waste shipments using Year 2000 census data and an updated version of the RADTRAN computer code to calculate potential risks associated with shipping. This analysis included the route- specific impacts of transporting the West Jefferson TRU waste to Hanford and subsequent shipment of this waste to WIPP. Due to the additional TRU waste generated and identified at West Jefferson subsequent to DOE's September 6, 2002, decision, DOE's currently estimated total number of 18 shipments (3 completed RH-TRU waste shipments, 14 remaining RH-TRU waste shipments, and 1 remaining CH-TRU waste shipment) exceeds DOE's prior estimate of total shipments by 3. However, the currently estimated

162

A Fresh Look at Greater Confinement Boreholes for Greater-Than-Class C Low-Level Radioactive Waste Disposal  

SciTech Connect (OSTI)

The United States Federal government has responsibility for disposal of low-level radioactive waste (LLW) with concentrations of radionuclides that exceed limits established by the United States Nuclear Regulatory Commission (NRC) for Class C LLW. Since Greater-Than-Class-C (GTCC) LLW is from activities licensed by NRC or NRC Agreement States, a disposal facility by law must be licensed by NRC. The United States (U.S.) Department of Energy (DOE) has the responsibility to site, design, construct, operate, decommission, and provide long-term care for GTCC LLW disposal facilities. On May 11, 2005, DOE issued an advance notice of intent to begin preparation of an Environmental Impact Statement (EIS) for GTCC LLW disposal. Since the initiation of the EIS, analysis has focused on compiling the inventory of commercial GTCC LLW and DOE GTCC-like wastes, reviewing disposal technologies, and other preliminary studies. One of the promising disposal technologies being considered is intermediate depth greater confinement boreholes. Greater confinement boreholes have been used effectively to safely dispose of long-lived radioactive waste at the Nevada Test Site (NTS). The DOE took a fresh look at global experiences with the use of greater confinement borehole disposal, including current considerations being given for future applications in the U.S., and concluded that the U.S. is positioned to benefit from international collaboration on borehole disposal technology, and could ultimately become a pilot project, if the technology is selected. (authors)

Tonkay, D.W.; Joyce, J.L. [U.S. Department of Energy, Office of Disposal Operations, Washington, DC (United States); Cochran, J.R. [Sandia National Laboratories1, Albuquerque, NM (United States)

2007-07-01T23:59:59.000Z

163

Application of Molecular Techniques To Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site  

Science Journals Connector (OSTI)

...stratified soil system. The processing of nuclear materials, operation of nuclear reactors, and research and development activities at...radiopharmaceutical manufacturers have led to the generation of a substantial amount of low-level mixed...

Erin K. Field; Seth D'Imperio; Amber R. Miller; Michael R. VanEngelen; Robin Gerlach; Brady D. Lee; William A. Apel; Brent M. Peyton

2010-03-19T23:59:59.000Z

164

Chemically bonded phosphate ceramics for low-level mixed waste stabilization  

SciTech Connect (OSTI)

Novel chemically bonded phosphate ceramics (CBPCs) are being developed and fabricated for low-temperature stabilization and solidification of mixed waste streams which are amenable to conventional high-temperature stabilization processes due to presence of volatiles such as heavy metal chloride and fluorides and/or pyrophorics in the wastes. Phosphates of Mg, Mg-Na and Zr are being developed as candidate matrix materials. In this paper, we present the fabrication procedures of phosphate waste forms using surrogates compositions of three typical mixed wastes streams -- ash, cement sludges, and salts. The performance of the final waste forms such as compression strength, leachability of the contaminants, durability in aqueous environment were conducted. In addition, parameteric studies have been conducted to establish the optimal waste loading in a particular binder system. Based on the results, we present potential applications in the treatment of various mixed waste streams.

Singh, D.; Wagh, A.S.; Cunnane, J.C. [Argonne National Lab., IL (United States); Mayberry, J.L. [Science Applications International Corp., Idaho Falls, ID (United States)

1994-12-31T23:59:59.000Z

165

Method for stabilizing low-level mixed wastes at room temperature  

DOE Patents [OSTI]

A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

Wagh, A.S.; Singh, D.

1997-07-08T23:59:59.000Z

166

Method for stabilizing low-level mixed wastes at room temperature  

DOE Patents [OSTI]

A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.

Wagh, Arun S. (Joliet, IL); Singh, Dileep (Westmont, IL)

1997-01-01T23:59:59.000Z

167

Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches  

SciTech Connect (OSTI)

As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

Davis, E.C.; Spalding, B.P.; Lee, S.Y.; Hyder, L.K.

1989-01-01T23:59:59.000Z

168

Characterization of radionuclide-chelating agent complexes found in low-level radioactive decontamination waste. Literature review  

SciTech Connect (OSTI)

The US Nuclear Regulatory Commission is responsible for regulating the safe land disposal of low-level radioactive wastes that may contain organic chelating agents. Such agents include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), picolinic acid, oxalic acid, and citric acid, and can form radionuclide-chelate complexes that may enhance the migration of radionuclides from disposal sites. Data from the available literature indicate that chelates can leach from solidified decontamination wastes in moderate concentration (1--100 ppm) and can potentially complex certain radionuclides in the leachates. In general it appears that both EDTA and DTPA have the potential to mobilize radionuclides from waste disposal sites because such chelates can leach in moderate concentration, form strong radionuclide-chelate complexes, and can be recalcitrant to biodegradation. It also appears that oxalic acid and citric acid will not greatly enhance the mobility of radionuclides from waste disposal sites because these chelates do not appear to leach in high concentration, tend to form relatively weak radionuclide-chelate complexes, and can be readily biodegraded. In the case of picolinic acid, insufficient data are available on adsorption, complexation of key radionuclides (such as the actinides), and biodegradation to make definitive predictions, although the available data indicate that picolinic acid can chelate certain radionuclides in the leachates.

Serne, R.J.; Felmy, A.R.; Cantrell, K.J.; Krupka, K.M.; Campbell, J.A.; Bolton, H. Jr.; Fredrickson, J.K. [Pacific Northwest National Lab., Richland, WA (United States)

1996-03-01T23:59:59.000Z

169

Low-level waste forum meeting reports  

SciTech Connect (OSTI)

This report contains highlights from the 1991 fall meeting of the Low Level Radioactive Waste Forum. Topics included legal updates; US NRC updates; US EPA updates; mixed waste issues; financial assistance for waste disposal facilities; and a legislative and policy report.

NONE

1991-12-31T23:59:59.000Z

170

EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste  

Broader source: Energy.gov [DOE]

This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C (GTCC) low-level radioactive waste and GTCC-like waste. The Environmental Protection Agency is a cooperating agency in the preparation of this EIS.

171

Recommendations for management of greater-than-Class-C low-level radioactive waste: Report to Congress in response to Public Law 99-240  

SciTech Connect (OSTI)

This report sets forth the Department's findings and recommendations for ensuring the safe management and disposal of low-level radioactive waste (LLW) with concentrations of radionuclides that exceed the limits established by the Nuclear Regulatory Commission for Class C LLW. Chapters are devoted to: Identification of Greater-Than Class-C Low-Level Waste; Regulatory Needs and Legislative Authorities; Proposed Actions to Ensure the Safe Management of Greater-Than-Class-C Low-Level Waste; System Considerations for Waste Disposal; Funding Options; Requirements for Implementation; and Schedule and Cost. Three Appendices are included: Public Law 99-240, Section 3(b); Greater-Than-Class-C Low-Level Waste Types and Quantities; and Descriptions of Systems Considerations for Waste Disposal. (LM)

Not Available

1987-02-01T23:59:59.000Z

172

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1992  

SciTech Connect (OSTI)

This is the seventh report submitted to Congress in accordance with section 5(d)(2)(E)(ii)(II) of Title I--Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act). This section of the Act directs the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the limitations specified in the Act. In addition to placing limitations on the use of these funds, the Act also requires the nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within 6 months after receiving the individual reports, the Act requires the Secretary to furnish Congress with a summary of the reported expenditures and an assessment of compliance with the specified usage limitations. This report fulfills that requirement. DOE disbursed funds totaling $15,037,778.91 to the States and compact regions following the July 1, 1986, January 1, 1988, and January 1, 1990, milestones specified in the Act. Of this amount, $1,445,701.61 was expended during calendar year 1992 and $10,026,763.87 was expended during the prior 6 years. At the end of December 1992, $3,565,313.43 was unexpended. DOE has reviewed each of the reported expenditures and concluded that all reported expenditures comply with the spending limitations stated in section 5(d)(2)(E)(i) of the Act.

Not Available

1993-06-01T23:59:59.000Z

173

Low-level liquid radioactive waste treatment at Murmansk, Russia: Technical design and review of facility upgrade and expansion  

SciTech Connect (OSTI)

The governments of Norway and the US have committed their mutual cooperation and support the Murmansk Shipping Company (MSCo) to expand and upgrade the Low-Level Liquid Radioactive Waste (LLRW) treatment system located at the facilities of the Russian company RTP Atomflot, in Murmansk, Russia. RTP Atomflot provides support services to the Russian icebreaker fleet operated by the MSCo. The objective is to enable Russia to permanently cease disposing of this waste in Arctic waters. The proposed modifications will increase the facility`s capacity from 1,200 m{sup 3} per year to 5,000 m{sup 3} per year, will permit the facility to process high-salt wastes from the Russian Navy`s Northern fleet, and will improve the stabilization and interim storage of the processed wastes. The three countries set up a cooperative review of the evolving design information, conducted by a joint US and Norwegian technical team from April through December, 1995. To ensure that US and Norwegian funds produce a final facility which will meet the objectives, this report documents the design as described by Atomflot and the Russian business organization, ASPECT, both in design documents and orally. During the detailed review process, many questions were generated, and many design details developed which are outlined here. The design is based on the adsorption of radionuclides on selected inorganic resins, and desalination and concentration using electromembranes. The US/Norwegian technical team reviewed the available information and recommended that the construction commence; they also recommended that a monitoring program for facility performance be instituted.

Dyer, R.S.; Diamante, J.M. [Environmental Protection Agency, Washington, DC (United States). Office of International Activities; Duffey, R.B. [Brookhaven National Lab., Upton, NY (United States)] [and others

1996-07-01T23:59:59.000Z

174

Radionuclide Concentrations in soils an Vegetation at Low-Level Radioactive Waste Disposal Area G During 2004  

SciTech Connect (OSTI)

Soil samples were collected at 15 locations and unwashed overstory and understory vegetation samples were collected at nine locations within and around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). These samples were analyzed for {sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 90}Sr, {sup 241}Am, {sup 137}Cs, {sup 234}U, {sup 235}U, and {sup 238}U. Soil samples collected at Area G contained detectable concentrations of 3H (27%), {sup 239,240}Pu (60%), {sup 238}Pu (40%), and {sup 241}Am (47%) above regional statistical reference levels (RSRLs). In contrast, the levels of {sup 137}Cs, {sup 90}Sr, and U in all of the soil samples at Area G were either nondetectable or within RSRLs. The highest levels of {sup 3}H in soils were detected in the southwestern portion of Area G near the {sup 3}H shafts, whereas the highest concentrations of the Pu isotopes were detected in the northern and northeastern portions. All concentrations of {sup 3}H and Pu in soils, however, were far below LANL screening action levels. As for vegetation, most radionuclides in/on plants were either nondetectable or within RSRLs. The exceptions were {sup 3}H in overstory and some understory vegetation, particularly in the southwestern portion of Area G, which correlated very well with the soils data in that area. Also, there was some foliar contamination from {sup 241}Am and Pu isotopes in/on a few plant samples--the highest concentrations occurring in the northern section of Area G.

P.R. Fresquez; E.A. Lopez

2004-11-01T23:59:59.000Z

175

Radioactive and mixed waste - risk as a basis for waste classification. Symposium proceedings No. 2  

SciTech Connect (OSTI)

The management of risks from radioactive and chemical materials has been a major environmental concern in the United states for the past two or three decades. Risk management of these materials encompasses the remediation of past disposal practices as well as development of appropriate strategies and controls for current and future operations. This symposium is concerned primarily with low-level radioactive wastes and mixed wastes. Individual reports were processed separately for the Department of Energy databases.

NONE

1995-06-21T23:59:59.000Z

176

Stakeholder Engagement on the Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste -12565  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Office of Disposal Operations is responsible for developing a permanent disposal capability for a small volume, but highly radioactive, class of commercial low-level radioactive waste, known as Greater-Than-Class C (GTCC) low-level radioactive waste. DOE has issued a draft environmental impact statement (EIS) and will be completing a final EIS under the National Environmental Policy Act (NEPA) that evaluates a range of disposal alternatives. Like other classes of radioactive waste, proposing and evaluating disposal options for GTCC waste is highly controversial, presents local and national impacts, and generates passionate views from stakeholders. Recent national and international events, such as the cancellation of the Yucca Mountain project and the Fukushima Daiichi nuclear accident, have heighten stakeholder awareness of everything nuclear, including disposal of radioactive waste. With these challenges, the Office of Disposal Operations recognizes that informed decision-making that will result from stakeholder engagement and participation is critical to the success of the GTCC EIS project. This paper discusses the approach used by the Office of Disposal Operations to engage stakeholders on the GTCC EIS project, provides advice based on our experiences, and proffers some ideas for future engagements in today's open, always connected cyber environment. (authors)

Gelles, Christine; Joyce, James; Edelman, Arnold [Office of Environmental Management, Office of Disposal Operations-EM-43 (United States)

2012-07-01T23:59:59.000Z

177

Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams  

SciTech Connect (OSTI)

This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)] [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States)] [Science Applications International Corp., Idaho Falls, ID (United States); Frazier, G. [Univ. of Tennessee, Knoxville, TN (United States)] [Univ. of Tennessee, Knoxville, TN (United States)

1994-01-01T23:59:59.000Z

178

EIS-0110: Central Waste Disposal Facility for Low-Level Radioactive Waste, Oak Ridge Reservation, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

This EIS assesses the environmental impacts of alternatives for the disposal of low-level waste and by-product materials generated by the three major plants on the Oak Ridge Reservation (ORR). In addition to the no-action alternative, two classes of alternatives are evaluated: facility design alternatives and siting alternatives.

179

Project management plan for low-level mixed waste and greater-than-category 3 waste per tri-party agreement M-91-10  

SciTech Connect (OSTI)

The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-thaw category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10, The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; (4) an acquisition plan was developed to establish the technical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are tabulated, along with the required treatment for disposal.

BOUNINI, L.

1999-05-20T23:59:59.000Z

180

Project management plan for low-level mixed wastes and greater-than category 3 waste per Tri-Party Agreement M-91-10  

SciTech Connect (OSTI)

The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-Than-Category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10. The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; and (4) an acquisition plan was developed to establish the techuical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are summarized in the table below, along with the required treatment for disposal.

BOUNINI, L.

1999-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

2009-03-01T23:59:59.000Z

182

Trench water chemistry at commercially operated low-level radioactive waste disposal sites. [Trench waters from Maxey Flats, Kentucky and West Valley, New York  

SciTech Connect (OSTI)

Water samples from the disposal trenches of two low-level radioactive-waste-disposal sites were analyzed for their inorganic, organic, and radionuclide contents. Since oxidation of the trench waters can occur during their movement along the groundwater flow path, experiments were performed to measure the chemical and physical changes that occur in these waters upon oxidation. Low concentrations of chelating agents, shown to exist in trench waters, may be responsible for keeping radionuclides, particularly /sup 60/Co, in solution. 4 figures, 5 tables.

Pietrzak, R.F.; Dayal, R.; Kinsley, M.T.; Clinton, J.; Czyscinski, K.S.; Weiss, A.J.

1982-01-01T23:59:59.000Z

183

Survey of statistical and sampling needs for environmental monitoring of commercial low-level radioactive waste disposal facilities  

SciTech Connect (OSTI)

This project was designed to develop guidance for implementing 10 CFR Part 61 and to determine the overall needs for sampling and statistical work in characterizing, surveying, monitoring, and closing commercial low-level waste sites. When cost-effectiveness and statistical reliability are of prime importance, then double sampling, compositing, and stratification (with optimal allocation) are identified as key issues. If the principal concern is avoiding questionable statistical practice, then the applicability of kriging (for assessing spatial pattern), methods for routine monitoring, and use of standard textbook formulae in reporting monitoring results should be reevaluated. Other important issues identified include sampling for estimating model parameters and the use of data from left-censored (less than detectable limits) distributions.

Eberhardt, L.L.; Thomas, J.M.

1986-07-01T23:59:59.000Z

184

Environmental Assessment and Finding of No Significant Impact: On-Site Treatment of Low Level Mixed Waste  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1292) to evaluate the proposed treatment of low level mixed waste (LLMW) at the Rocky Flats Environmental Technology Site (Site). The purpose of the action is to treat LLMW in order to meet the Land Disposal Restrictions specified by the Resource Conservation and Recovery Act and the waste acceptance criteria of the planned disposal site(s). Approximately 17,000 cubic meters (m{sup 3}) of LLMW are currently stored at the Site. Another 65,000 m{sup 3}of LLMW are likely to be generated by Site closure activities (a total of 82,000 m{sup 3} of LLMW). About 35,000 m{sup 3} can be directly disposed of off-site without treatment, and most of the remaining 47,000 m{sup 3} of LLMW can be treated at off-site treatment, storage, and disposal facilities. However, some LLMW will require treatment on-site, either because it does not meet shipping requirements or because off-site treatment is not available for these particular types of LLMW. Currently, this LLMW is stored at the Site pending the development and implementation of effective treatment processes. The Site needs to treat this LLMW on-site prior to shipment to off-site disposal facilities, in order to meet the DOE long-term objective of clean up and closure of the Site. All on-site treatment of LLMW would comply with applicable Federal and State laws designed to protect public health and safety and to enhance protection of the environment. The EA describes and analyzes the environmental effects of the proposed action (using ten mobile treatment processes to treat waste on-site), and the alternatives of treating waste onsite (using two fixed treatment processes), and of taking no action. The EA was the subject of a public comment period from February 3 to 24, 1999. No written or other comments regarding the EA were received.

N /A

1999-03-22T23:59:59.000Z

185

Oxidation-induced geochemical changes in trench leachates from the Maxey Flats low-level radioactive waste disposal site  

SciTech Connect (OSTI)

A knowledge of extra-trench processes related to oxidation-induced geochemical changes that are likely to occur when iron-rich, anoxic trench waters encounter an oxidizing environment along a redox gradient is essential for modeling radionuclide transport at low-level waste (LLW) disposal sites. The results of laboratory oxidation experiments on several trench leachates from the Maxey Flats site show that, upon oxidation, a series of geochemical changes were initiated that resulted in a drastically different solute geochemistry, involving oxidation of ferrous iron and subsequent precipitation of ferric oxyhydroxide, changes in alkalinity and acidity, a drastic increase in redox potential (Eh), and generally relatively little change in the concentrations of /sup 60/Co, /sup 137/Cs, and /sup 85/Sr in solution. The observations made in this study have important geochemical implications for the modeling of LLW sites in that the source term as an input parameter cannot be assumed to be constant, both spatially and temporally. The acid-generating potential and buffering capacity of an anoxic source term are important geochemical controls that maintain a balance between acidity and alkalinity and largely determine the nature and extent of oxidation-induced geochemical changes likely to occur along a redox gradient. The presence of organic chelating agents can alter the source term geochemistry to such an extent that authigenic ferric oxyhydroxide, which represents a geochemical discontinuity at the redox interface along leachate migration paths, proves to be a relatively ineffective sink for radionuclides.

Dayal, R.; Pietrzak, R.F.; Clinton, J.H.

1986-02-01T23:59:59.000Z

186

Geochemical information for sites contaminated with low-level radioactive wastes: II. St. Louis Airport Storage Site  

SciTech Connect (OSTI)

The St. Louis Airport Storage Site (SLASS) became radioactively contaminated as a result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy is considering various remedial action options for the SLASS under the Formerly Utilized Site Remedial Action Program (FUSRAP). This report describes the results of geochemical investigations, carried out to support the FUSRAP activities and to aid in quantifying various remedial action options. Soil and groundwater samples from the site were characterized, and sorption ratios for uranium and radium and apparent concentration limit values for uranium were measured in soil/groundwater systems by batch contact methodology. The uranium and radium concentrations in soil samples were significantly above background near the old contaminated surface horizon (now at the 0.3/sup -/ to 0.9/sup -/m depth); the maximum values were 1566 ..mu..g/g and 101 pCi/g, respectively. Below about the 6/sup -/m depth, the concentrations appeared to be typical of those naturally present in soils of this area (3.8 +- 1.2 ..mu..g/g and 3.1 +- 0.6 pCi/g). Uranium sorption ratios showed stratigraphic trends but were generally moderate to high (100 to 1000 L/kg). The sorption isotherm suggested an apparent uranium concentration limit of about 200 mg/L. This relatively high solubility can probably be correlated with the carbonate content of the soil/groundwater systems. The lower sorption ratio values obtained from the sorption isotherm may have resulted from changes in the experimental procedure or the groundwater used. The SLASS appears to exhibit generally favorable behavior for the retardation of uranium solubilized from waste in the site. Parametric tests were conducted to estimate the sensitivity of uranium sorption and solubility to the pH and carbonate content of the system.

Seeley, F.G.; Kelmers, A.D.

1985-01-01T23:59:59.000Z

187

Recommendations to the NRC for review criteria for alternative methods of low-level radioactive waste disposal: Task 2b: Earth-mounded concrete bunkers  

SciTech Connect (OSTI)

The US Army Engineers Waterways Experiment Station (WES) and US Army Engineer Division, Huntsville (HNDED) have developed general design criteria and specific design review criteria for the earth-mounded concrete bunker (EMCB) alternative method of low-level radioactive waste (LLW) disposal. An EMCB is generally described as a reinforced concrete vault placed below grade, underneath a tumulus, surrounded by filter-blanket and drainage zones. The tumulus is covered over with a low permeability cover layer and top soil with vegetation. Eight major review criteria categories have been developed ranging from the loads imposed on the EMCB structure through material quality and durability considerations. Specific design review criteria have been developed in detail for each of the eight major categories. 63 refs., 13 figs., 2 tabs.

Denson, R.H.; Bennett, R.D.; Wamsley, R.M.; Bean, D.L.; Ainsworth, D.L.

1988-01-01T23:59:59.000Z

188

Evaluation of isotope migration: land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Quarterly progress report, October-December 1979  

SciTech Connect (OSTI)

Decreasing radionuclide sorption, K/sub d/, was observed for /sup 241/Am, /sup 85/Sr, and /sup 60/Co when organic substances were added to well water and shale from the Maxey Flats, Kentucky, disposal site. Ethylenediaminetetraacetic acid (EDTA) caused the greatest decrease in K/sub d/. Several reference clays were also used for comparison. Only montmorillonite maintained its sorption capability in the presence of EDTA. Experiments were performed to establish the existence of organoradionuclide complexes in trench waters from the low level radioactive waste disposal sites. Fractionations of trench waters were accomplished by gel filtration chromatography. Preliminary results indicated that cesium isotopes in the trench water from West Valley, New York, may be associated with organic molecules as species with molecular weight less than 700, and that it is unlikely an EDTA complex.

Weiss, A.J.; Colombo, P.

1980-02-01T23:59:59.000Z

189

Evaluation of plasma melter technology for verification of high-sodium content low-level radioactive liquid wastes: Demonstration test No. 4 preliminary test report  

SciTech Connect (OSTI)

This document provides a preliminary report of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System Low-Level Waste (LLW) Vitrification Program. Phase I test conduct included 26 hours (24 hours steady state) of melting of simulated high-sodium low-level radioactive liquid waste. Average processing rate was 4.9 kg/min (peak rate 6.2 kg/min), producing 7330 kg glass product. Free-flowing glass pour point was 1250 C, and power input averaged 1530 kW(e), for a total energy consumption of 19,800 kJ/kg glass. Restart capability was demonstrated following a 40-min outage involving the scrubber liquor heat exchanger, and glass production was continued for another 2 hours. Some volatility losses were apparent, probably in the form of sodium borates. Roughly 275 samples were collected and forwarded for analysis. Sufficient process data were collected for heat/material balances. Recommendations for future work include lower boron contents and improved tuyere design/operation.

McLaughlin, D.F.; Gass, W.R.; Dighe, S.V.; D`Amico, N.; Swensrud, R.L.; Darr, M.F.

1995-01-10T23:59:59.000Z

190

A user's guide to the GoldSim/BLT-MS integrated software package:a low-level radioactive waste disposal performance assessment model.  

SciTech Connect (OSTI)

Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in the assessment of radioactive waste disposal and at the time of this publication is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. In countries with small radioactive waste programs, international technology transfer program efforts are often hampered by small budgets, schedule constraints, and a lack of experienced personnel. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available software codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission (NRC) and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, revitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a credible and solid computational platform for constructing probabilistic safety assessment models. This document is a reference users guide for the GoldSim/BLT-MS integrated modeling software package developed as part of a cooperative technology transfer project between Sandia National Laboratories and the Institute of Nuclear Energy Research (INER) in Taiwan for the preliminary assessment of several candidate low-level waste repository sites. Breach, Leach, and Transport-Multiple Species (BLT-MS) is a U.S. NRC sponsored code which simulates release and transport of contaminants from a subsurface low-level waste disposal facility. GoldSim is commercially available probabilistic software package that has radionuclide transport capabilities. The following report guides a user through the steps necessary to use the integrated model and presents a successful application of the paradigm of renewing legacy codes for contemporary application.

Knowlton, Robert G.; Arnold, Bill Walter; Mattie, Patrick D.

2007-03-01T23:59:59.000Z

191

An Update On Waste Control Specialists' 2004 License Application For Safe Disposal Of Class A, B, and C Low-Level Radioactive Waste In Texas  

SciTech Connect (OSTI)

On December 10, 2007, Waste Control Specialists LLC (WCS) received notification that the Executive Director of the Texas Commission on Environmental Quality (TCEQ) had prepared an interim draft license and made a preliminary decision that it met all statutory and regulatory requirements for safe disposal of low-level radioactive waste (LLW) at the WCS' site in Texas. Pursuant to this interim draft license, WCS will be authorized to dispose Class A, B, and C LLW in two enhanced near-surface landfills at WCS' 5.4-square-kilometer (1,338-acre) treatment, storage, and disposal (TSD) site in Andrews County, Texas (Fig. 1). One landfill will be dedicated to LLW generated within the member/party states of the Texas Compact (Texas and Vermont), while the other will be dedicated to LLW generated by the federal government. The calculated annual peak dose to the maximally exposed member of the general public, i.e., an adjacent resident, from any of the proposed LLW-disposal landfills occurs approximately 36,400 years after closure and is 0.034 milli-sievert (mSv) (3.4 milli-rem (mrem)), which is less than 14 percent of the applicable regulatory limit of 25 mSv (25 mrem). The draft license will be published in February 2008, which will be followed by 12 months of public hearings, and three months for preparation of the final license. Based on this schedule, the final license is due in May 2009. When opened, the WCS site will achieve a national milestone; it will be the first new Compact LLW-disposal site in the USA to open under the Low-Level Radioactive Waste Policy Act of 1980, as amended in 1985. (authors)

Baltzer, R.; Eriksson, L. [Waste Control Specialists LLC, Three Lincoln Centre, Dallas, Texas (United States)

2008-07-01T23:59:59.000Z

192

Fire hazard analysis of the radioactive mixed waste trenchs  

SciTech Connect (OSTI)

This Fire Hazards Analysis (FHA) is intended to assess comprehensively the risk from fire associated with the disposal of low level radioactive mixed waste in trenches within the lined landfills, provided by Project W-025, designated Trench 31 and 34 of the Burial Ground 218-W-5. Elements within the FHA make recommendations for minimizing risk to workers, the public, and the environment from fire during the course of the operation`s activity. Transient flammables and combustibles present that support the operation`s activity are considered and included in the analysis. The graded FHA contains the following elements: description of construction, protection of essential safety class equipment, fire protection features, description of fire hazards, life safety considerations, critical process equipment, high value property, damage potential--maximum credible fire loss (MCFL) and maximum possible fire loss (MPFL), fire department/brigade response, recovery potential, potential for a toxic, biological and/or radiation incident due to a fire, emergency planning, security considerations related to fire protection, natural hazards (earthquake, flood, wind) impact on fire safety, and exposure fire potential, including the potential for fire spread between fire areas. Recommendations for limiting risk are made in the text of this report and printed in bold type. All recommendations are repeated in a list in Section 18.0.

McDonald, K.M. [Westinghouse Hanford Co., Richland, WA (United States)

1995-04-27T23:59:59.000Z

193

Letter report: Pre-conceptual design study for a pilot-scale Non-Radioactive Low-Level Waste Vitrification Facility  

SciTech Connect (OSTI)

This report presents a pre-conceptual design study for a Non-Radioactive Low-Level Waste, Pilot-Scale Vitrification System. This pilot plant would support the development of a full-scale LLW Vitrification Facility and would ensure that the full-scale facility can meet its programmatic objectives. Use of the pilot facility will allow verification of process flowsheets, provide data for ensuring product quality, assist in scaling to full scale, and support full-scale start-up. The facility will vitrify simulated non-radioactive LLW in a manner functionally prototypic to the full-scale facility. This pre-conceptual design study does not fully define the LLW Pilot-Scale Vitrification System; rather, it estimates the funding required to build such a facility. This study includes identifying all equipment necessary. to prepare feed, deliver it into the melter, convert the feed to glass, prepare emissions for atmospheric release, and discharge and handle the glass. The conceived pilot facility includes support services and a structure to contain process equipment.

Thompson, R.A.; Morrissey, M.F.

1996-03-01T23:59:59.000Z

194

Supplemental information related to risk assessment for the off-site transportation of low-level mixed waste for the U.S. Department of Energy waste management programmatic environmental impact statement  

SciTech Connect (OSTI)

This report provides supplemental information to support the human health risk assessment conducted for the transportation of low-level mixed waste (LLMW) in support of the US Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS). The assessment considers both the radioactive and chemical hazards associated with LLMW transportation. Detailed descriptions of the transportation health risk assessment methods and results of the assessment are presented in Appendix E of the WM PEIS. This report presents additional information that is not included in Appendix E but that was needed to conduct the transportation risk assessment for Waste Management (WM) LLMW. Included are definitions of the LLMW alternatives considered in the WM PEIS; data related to the inventory and to the physical, chemical, and radiological characteristics of WM LLMW; an overview of the risk assessment methods; and detailed results of the assessment for each WM LLMW case considered.

Monette, F.A.; Biwer, B.M.; LePoire, D.J.; Lazaro, M.A.; Antonopoulos, A.A.; Hartmann, H.M.; Policastro, A.J.; Chen, S.Y. [Argonne National Lab., IL (United States). Environmental Assessment Div.] [Argonne National Lab., IL (United States). Environmental Assessment Div.

1996-12-01T23:59:59.000Z

195

Accident analysis of railway transportation of low-level radioactive and hazardous chemical wastes: Application of the /open quotes/Maximum Credible Accident/close quotes/ concept  

SciTech Connect (OSTI)

The maximum credible accident (MCA) approach to accident analysis places an upper bound on the potential adverse effects of a proposed action by using conservative but simplifying assumptions. It is often used when data are lacking to support a more realistic scenario or when MCA calculations result in acceptable consequences. The MCA approach can also be combined with realistic scenarios to assess potential adverse effects. This report presents a guide for the preparation of transportation accident analyses based on the use of the MCA concept. Rail transportation of contaminated wastes is used as an example. The example is the analysis of the environmental impact of the potential derailment of a train transporting a large shipment of wastes. The shipment is assumed to be contaminated with polychlorinated biphenyls and low-level radioactivities of uranium and technetium. The train is assumed to plunge into a river used as a source of drinking water. The conclusions from the example accident analysis are based on the calculation of the number of foreseeable premature cancer deaths the might result as a consequence of this accident. These calculations are presented, and the reference material forming the basis for all assumptions and calculations is also provided.

Ricci, E.; McLean, R.B.

1988-09-01T23:59:59.000Z

196

Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches. FY 1988 progress report  

SciTech Connect (OSTI)

As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

Davis, E.C.; Spalding, B.P.; Lee, S.Y.; Hyder, L.K.

1989-01-01T23:59:59.000Z

197

Vitrification of M-Area Mixed (Hazardous and Radioactive) F006 Wastes: I. Sludge and Supernate Characterization  

SciTech Connect (OSTI)

Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert low-level and mixed (hazardous and radioactive) wastes to a solid stabilized waste form for permanent disposal. One of the alternative technologies is vitrification into a borosilicate glass waste form. The Environmental Protection Agency (EPA) has declared vitrification the Best Demonstrated Available Technology (BDAT) for high-level radioactive mixed waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The DOE Office of Technology Development (OTD) has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both current and future regulatory specifications. Stabilization of low level and hazardous wastes in glass are in accord with the 1988 Savannah River Technology Center (SRTC), then the Savannah River Laboratory (SRL), Professional Planning Committee (PPC) recommendation that high nitrate containing (low-level) wastes be incorporated into a low temperature glass (via a sol-gel technology). The investigation into this new technology was considered timely because of the potential for large waste volume reduction compared to solidification into cement.

Jantzen, C.M.

2001-10-05T23:59:59.000Z

198

Analysis of the technical capabilities of DOE sites for disposal of residuals from the treatment of mixed low-level waste  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has stored or expects to generate over the next five years more than 130,000 m{sup 3} of mixed low-level waste (MLLW). Before disposal, MLLW is usually treated to comply with the land disposal restrictions of the Resource Conservation and Recovery Act. Depending on the type of treatment, the original volume of MLLW and the radionuclide concentrations in the waste streams may change. These changes must be taken into account in determining the necessary disposal capacity at a site. Treatment may remove the characteristic in some waste that caused it to be classified as mixed. Treatment of some waste may, by reduction of the mass, increase the concentrations of some transuranic radionuclides sufficiently so that it becomes transuranic waste. In this report, the DOE MLLW streams were analyzed to determine after-treatment volumes and radionuclide concentrations. The waste streams were reclassified as residual MLLW or low-level or transuranic waste resulting from treatment. The volume analysis indicated that about 89,000 m{sup 3} of waste will require disposal as residual MLLW. Fifteen DOE sites were then evaluated to determine their capabilities for hosting disposal facilities for some or all of the residual MLLW. Waste streams associated with about 90% of the total residual MLLW volume are likely to present no significant issues for disposal and require little additional analysis. Future studies should focus on the remaining waste streams that are potentially problematic by examining site-specific waste acceptance criteria, alternative treatment processes, alternative waste forms for disposal, and pending changes in regulatory requirements.

Waters, R.D.; Gruebel, M.M.; Langkopf, B.S.; Kuehne, P.B.

1997-04-01T23:59:59.000Z

199

Low-level waste forum meeting reports  

SciTech Connect (OSTI)

This paper provides highlights from the spring meeting of the Low Level Radioactive Waste Forum. Topics of discussion included: state and compact reports; New York`s challenge to the constitutionality of the Low-Level Radioactive Waste Amendments Act of 1985; DOE technical assistance for 1993; interregional import/export agreements; Department of Transportation requirements; superfund liability; nonfuel bearing components; NRC residual radioactivity criteria.

NONE

1992-12-31T23:59:59.000Z

200

DOE/EIS-0375D: Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375D)(February 2011)  

Broader source: Energy.gov (indexed) [DOE]

Impact Statement for the Volume 1: Chapters 1 through 8 February 2011 Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375-D) T H E U.S. D E P A R T M E N T O F E N E R G Y ENERGY U.S. DEPARTMENT OF On the cover: The photographs on the front cover are, from left to right: glove boxes contaminated with GTCC Other Waste, abandoned Am-241 and Cs-137 gauges and shipping shields, and disused well logging sources being loaded into a 55-gallon drum. Draft GTCC EIS Cover Sheet COVER SHEET Lead Agency: U.S. Department of Energy (DOE) Cooperating Agency: U.S. Environmental Protection Agency (EPA) Title: Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375-D)

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DOE/EIS-0375D: Draft Environmental Impact Statement for the Disposal of Greater-Than-Class (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (February 2011)  

Broader source: Energy.gov (indexed) [DOE]

Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375-D) February 2011 SUMMARY ENERGY U.S. DEPARTMENT OF U.S. D E P A R T M E N T O F E N E R G Y On the cover: The photographs on the front cover are, from left to right: glove boxes contaminated with GTCC Other Waste, abandoned Am-241 and Cs-137 gauges and shipping shields, and disused well logging sources being loaded into a 55-gallon drum. COVER SHEET Lead Agency: U.S. Department of Energy (DOE) Cooperating Agency: U.S. Environmental Protection Agency (EPA) Title: Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375-D)

202

Proposed design requirements for high-integrity containers used to store, transport, and dispose of high-specific-activity, low-level radioactive wastes from Three Mile Island Unit II  

SciTech Connect (OSTI)

This report develops proposed design requirements for high integrity containers used to store, transport and/or dispose of high-activity, low-level radioactive wastes from Three Mile Island Unit II. The wastes considered are the dewatered resins produced by the EPICOR II waste treatment system used to clean-up the auxiliary building water. The radioactivity level of some of these EPICOR II liners is 1300 curies per container. These wastes may be disposed of in an intermediate depth burial (10 to 20 meter depth) facility. The proposed container design requirements are directed to ensure isolation of the waste and protection of the public health and safety.

Vigil, M.G.; Allen, G.C.; Pope, R.B.

1981-04-01T23:59:59.000Z

203

Radionuclides, Heavy Metals, and Polychlorinated Biphenyls in Soils Collected Around the Perimeter of Low-Level Radioactive Waste Disposal Area G during 2006  

SciTech Connect (OSTI)

Twenty-one soil surface samples were collected in March around the perimeter of Area G, the primary disposal facility for low-level radioactive solid waste at Los Alamos National Laboratory (LANL). Three more samples were collected in October around the northwest corner after elevated tritium levels were detected on an AIRNET station located north of pit 38 in May. Also, four soil samples were collected along a transect at various distances (48, 154, 244, and 282 m) from Area G, starting from the northeast corner and extending to the Pueblo de San Ildefonso fence line in a northeasterly direction (this is the main wind direction). Most samples were analyzed for radionuclides ({sup 3}H, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, and {sup 238}U), inorganic elements (Al, Ba, Be, Ca, Cr, Co, Cu, Fe, Mg, Mn, Ni, K, Na, V, Hg, Zn, Sb, As, Cd, Pb, Se, Ag, and Tl) and polychlorinated biphenyl (PCB) concentrations. As in previous years, the highest levels of {sup 3}H in soils (690 pCi/mL) were detected along the south portion of Area G near the {sup 3}H shafts; whereas, the highest concentrations of {sup 241}Am (1.2 pCi/g dry) and the Pu isotopes (1.9 pCi/g dry for {sup 238}Pu and 5 pCi/g dry for {sup 239,240}Pu) were detected along the northeastern portions near the transuranic waste pads. Concentrations of {sup 3}H in three soil samples and {sup 241}Am and Pu isotopes in one soil sample collected around the northwest corner in October increased over concentrations found in soils collected at the same locations earlier in the year. Almost all of the heavy metals, with the exception of Zn and Sb in one sample each, in soils around the perimeter of Area G were below regional statistical reference levels (mean plus three standard deviations) (RSRLs). Similarly, only one soil sample collected on the west side contained PCB concentrations--67 {micro}g/kg dry of aroclor-1254 and 94 {micro}g/kg dry of aroclor-1260. Radionuclide and inorganic element concentrations in soils collected along a transect from Area G to the Pueblo de San Ildefonso fence line show that most contained concentrations of {sup 241}Am, {sup 238}Pu, and {sup 239,240}Pu above the RSRLs. Overall, all concentrations of radionuclides, heavy metals, and PCBs that were detected above background levels in soils collected around the perimeter of Area G and towards the Pueblo de San Ildefonso boundary were still very low and far below LANL screening levels and regulatory standards.

P. R. Fresquez

2007-02-28T23:59:59.000Z

204

Low-level waste forum meeting reports  

SciTech Connect (OSTI)

This paper provides highlights from the 1992 winter meeting of the Low Level Radioactive Wastes Forum. Topics of discussion included: legal information; state and compact reports; freedom of information requests; and storage.

Sternwheeler, W.D.E.

1992-12-31T23:59:59.000Z

205

Low-level waste forum meeting reports  

SciTech Connect (OSTI)

This report provides highlights from the 1992 fall meeting of the Low LEvel Radioactive Waste Forum. Topics included: disposal options after 1992; interregional agreements; management alternatives; policy; and storage.

NONE

1992-12-31T23:59:59.000Z

206

Evaluation of the capabilities of the Hanford Reservation and Envirocare of Utah for disposal of potentially problematic mixed low-level waste streams  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Mixed Waste Focus Area is developing a program to address and resolve issues associated with final waste form performance in treating and disposing of DOE`s mixed low-level waste (MLLW) inventory. A key issue for the program is identifying MLLW streams that may be problematic for disposal. Previous reports have quantified and qualified the capabilities of fifteen DOE sites for MLLW disposal and provided volume and radionuclide concentration estimates for treated MLLW based on the DOE inventory. Scoping-level analyses indicated that 101 waste streams identified in this report (approximately 6,250 m{sup 3} of the estimated total treated MLLW) had radionuclide concentrations that may make their disposal problematic. The radionuclide concentrations of these waste streams were compared with the waste acceptance criteria (WAC) for a DOE disposal facility at Hanford and for Envirocare`s commercial disposal facility for MLLW in Utah. Of the treated MLLW volume identified as potentially problematic, about 100 m{sup 3} exceeds the WAC for disposal at Hanford, and about 4,500 m{sup 3} exceeds the WAC for disposal at Envirocare. Approximately 7% of DOE`s total MLLW inventory has not been sufficiently characterized to identify a treatment process for the waste and was not included in the analysis. In addition, of the total treated MLLW volume, about 30% was associated with waste streams that did not have radionuclide concentration data and could not be included in the determination of potentially problematic waste streams.

Waters, R.D.; Pohl, P.I.; Cheng, W.C.; Gruebel, M.M.; Wheeler, T.A.; Langkopf, B.S.

1998-03-01T23:59:59.000Z

207

Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes  

SciTech Connect (OSTI)

This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D`Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace.

McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D`Amico, N. [ed.

1994-10-20T23:59:59.000Z

208

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1989: Report to Congress in response to Public Law 99-240  

SciTech Connect (OSTI)

This response is submitted in response to the Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act), Public Law 99-240. The report summarizes expenditures made during the calendar year 1989 of surcharge rebates from the July 1, 1986, milestones. Title I of the Act requires the Department of Energy (DOE) to administer a Surcharge Escrow Account. This account consists of a portion of the surcharge fees paid by generators of low-level radioactive waste in nonsited compacts (regional compacts currently without operating disposal sites) and nonmember States (States without disposal sites that are not members of compacts) to the three States with operating disposal facilities (Nevada, South Carolina, and Washington) (sited States) for using their disposal facilities. In administering the Surcharge Escrow Account, the Act requires DOE to: invest the funds in interest-bearing United States Government securities; determine eligibility of rebates of the funds by evaluating State and compact progress toward developing new disposal sites against milestones set forth in the Act; disburse the collected rebates and interest; assess compliance of rebate expenditures with the limitations prescribed in the Act; and submit a report annually to Congress summarizing rebate expenditures by States and regions. 5 tabs.

Not Available

1990-06-01T23:59:59.000Z

209

Phosphate glasses for radioactive, hazardous and mixed waste immobilization  

DOE Patents [OSTI]

Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

1999-03-09T23:59:59.000Z

210

Phosphate glasses for radioactive, hazardous and mixed waste immobilization  

DOE Patents [OSTI]

Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

1998-11-24T23:59:59.000Z

211

Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 3, May-June 1994  

SciTech Connect (OSTI)

This issue includes the following articles: Vermont ratifies Texas compact; Pennsylvania study on rates of decay for classes of low-level radioactive waste; South Carolina legislature adjourns without extending access to Barnwell for out-of-region generators; Southeast Compact Commission authorizes payments for facility development, also votes on petitions, access contracts; storage of low-level radioactive waste at Rancho Seco removed from consideration; plutonium estimates for Ward Valley, California; judgment issued in Ward Valley lawsuits; Central Midwest Commission questions court`s jurisdiction over surcharge rebates litigation; Supreme Court decides commerce clause case involving solid waste; parties voluntarily dismiss Envirocare case; appellate court affirms dismissal of suit against Central Commission; LLW Forum mixed waste working group meets; US EPA Office of Radiation and Indoor Air rulemakings; EPA issues draft radiation site cleanup regulation; EPA extends mixed waste enforcement moratorium; and NRC denies petition to amend low-level radioactive waste classification regulations.

NONE

1994-06-01T23:59:59.000Z

212

Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required.

Not Available

1993-06-01T23:59:59.000Z

213

Structural constraints for proposed Fort Hancock low-level radioactive waste disposal site (NTP-S34), southern Hudspeth County, Texas  

SciTech Connect (OSTI)

Structural complexities reduce the homogeneity necessary for a site characterization model to an unacceptable level for performance assessment for radioactive waste disposal sites. The proposed site lies between the northern, stable Diablo platform and the southern, mobile Mesozoic Chihuahua tectonic belt. Structural movement along this interface has been active for the past 14,000 years. In addition, the area lies along the northern margin of the Permian Marfa basin and the northeastern margin of the deeply faulted Hueco bolson segment of the late Cenozoic Rio Grande rift system. Recent seismic activity with extensive surface rupture in Quitman Canyon (30 mi southeast of the site) is also documented from the 1931 Valentine, Texas, earthquake (6.4 Richter scale). The site is underlain by either a thrust fault or the complex terminus of a Mesozoic thrust fault. This fault is a segment of the continuous thrust sheet extending from exposures in the Sierra Blanc area, 30 mi east (Devil Ridge fault), to the El Paso area west (Rio Grande fault). This segment of the Devil Ridge-Rio Grande thrust is documented by the Haymond Krupp No. 1 Thaxton wildcat drilled at Campogrande Mountain immediately south of the site. The recent rift fault scarp (Campo Grande) immediately south of the Thaxton well has a 17-mi surface trace and is, no doubt, related to the subsurface Clint fault to the west in the El Paso area. An additional complexity is the presence of a monoclinal flexure with a minimum of 900 ft of surface relief (2 mi northeast of NTP-S34). A 4.5-mi, east-west, down-to-the-south normal fault occurs near the top of the monocline with a small associated graben. These complexities seriously compromise the proposed Fort Hancock site.

Lemone, D.V.

1989-03-01T23:59:59.000Z

214

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12T23:59:59.000Z

215

Proceedings of the tenth annual DOE low-level waste management conference: Session 6: Closure and decommissioning  

SciTech Connect (OSTI)

This document contains eight papers on various aspects of low-level radioactive waste management. Topics include: site closure; ground cover; alternate cap designs; performance monitoring of waste trenches; closure options for a mixed waste site; and guidance for environmental monitoring. Individual papers were processed separately for the data base. (TEM)

Not Available

1988-12-01T23:59:59.000Z

216

Proceedings of the tenth annual DOE low-level waste management conference: Session 1: Institutional and regulatory issues  

SciTech Connect (OSTI)

This document contains eleven papers on various aspects of low-level radioactive waste regulation. Topics include: EPA environmental standards; international exemption principles; the concept of below regulatory concern; envirocare activities in Utah; mixed waste; FUSRAP and the Superfund; and a review of various incentive programs. Individual papers are processed separately for the data base. (TEM)

Not Available

1988-12-01T23:59:59.000Z

217

Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes  

SciTech Connect (OSTI)

The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem'' wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above it's melting point (120{degree}C), combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991. 12 refs., 8 figs., 3 tabs.

Kalb, P.D.; Heiser, J.H. III; Colombo, P.

1990-01-01T23:59:59.000Z

218

Record of Decision on Treating Transuranic (TRU)/Alpha Low-Level Waste at the Oak Ridge National Laboratory (DOE/EIS-0305) (8/9/00)  

Broader source: Energy.gov (indexed) [DOE]

83 83 Federal Register / Vol. 65, No. 154 / Wednesday, August 9, 2000 / Notices 1 TRU waste is waste containing alpha-emitting radionuclides with an atomic number greater than 92 and half-lives greater than 20 years, at concentrations greater than 100 nanocuries per gram of waste. 2 Alpha low-level waste is low-level waste that contains alpha-emitting isotopes. 3 Mixed waste contains radioactive waste regulated under the Atomic Energy Act of 1954, as amended, and a hazardous component subject to RCRA regulation. 4 Low-level waste is any radioactive waste that is not classified as high-level waste, spent nuclear fuel, TRU waste, byproduct material, or mixed waste. 5 Remote-handled TRU/alpha low-level waste contains alpha-, beta-, and gamma-emitting isotopes with a surface dose rate greater than 200 millirem

219

Migration barrier covers for radioactive and mixed waste landfills  

SciTech Connect (OSTI)

Migration barrier cover technology will likely serve as the remediation alternative of choice for most of DOE's radioactive and mixed waste landfills simply because human and ecological risks can be effectively managed without the use of more expensive alternatives. However, very little testing and evaluation has been done, either before or after installation, to monitor how effective they are in isolating waste or to develop data that can be used to evaluate model predictions of long term performance. Los Alamos National Laboratory has investigated the performance of a variety of landfill capping alternatives since 1981 using large field lysimeters to monitor the fate of precipitation falling on the cap surface. The objective of these studies is to provide the risk manager with a variety of field tested capping designs, of various complexities and costs, so that design alternatives can be matched to the need for hydrologic control at the site. Four different landfill cap designs, representing different complexities and costs, were constructed at Hill Air Force Base (AFB) in October and November, 1989. The designs were constructed in large lysimeters and instrumented to provide estimates of all components of water balance including precipitation, runoff (and soil erosion), infiltration, leachate production, evapotranspiration, and capillary/hydraulic barrier flow. The designs consisted of a typical soil cover to serve as a baseline, a modified EPA RCRA cover, and two versions of a Los Alamos design that contained erosion control measures, an improved vegetation cover to enhance evapotranspiration, and a capillary barrier to divert downward flow of soil water. A comprehensive summary of the Hill AFB demonstration will be available in October 1993, when the project is scheduled to terminate.

Hakonson, T.E.; Manies, K.L.; Warren, R.W.; Bostick, K.V.; Trujillo, G. (Los Alamos National Lab., NM (United States)); Kent, J.S. (Air Force Academy, CO (United States). Dept. of Biology); Lane, L.J. (Department of Agriculture, Tucson, AZ (United States))

1993-01-01T23:59:59.000Z

220

Migration barrier covers for radioactive and mixed waste landfills  

SciTech Connect (OSTI)

Migration barrier cover technology will likely serve as the remediation alternative of choice for most of DOE`s radioactive and mixed waste landfills simply because human and ecological risks can be effectively managed without the use of more expensive alternatives. However, very little testing and evaluation has been done, either before or after installation, to monitor how effective they are in isolating waste or to develop data that can be used to evaluate model predictions of long term performance. Los Alamos National Laboratory has investigated the performance of a variety of landfill capping alternatives since 1981 using large field lysimeters to monitor the fate of precipitation falling on the cap surface. The objective of these studies is to provide the risk manager with a variety of field tested capping designs, of various complexities and costs, so that design alternatives can be matched to the need for hydrologic control at the site. Four different landfill cap designs, representing different complexities and costs, were constructed at Hill Air Force Base (AFB) in October and November, 1989. The designs were constructed in large lysimeters and instrumented to provide estimates of all components of water balance including precipitation, runoff (and soil erosion), infiltration, leachate production, evapotranspiration, and capillary/hydraulic barrier flow. The designs consisted of a typical soil cover to serve as a baseline, a modified EPA RCRA cover, and two versions of a Los Alamos design that contained erosion control measures, an improved vegetation cover to enhance evapotranspiration, and a capillary barrier to divert downward flow of soil water. A comprehensive summary of the Hill AFB demonstration will be available in October 1993, when the project is scheduled to terminate.

Hakonson, T.E.; Manies, K.L.; Warren, R.W.; Bostick, K.V.; Trujillo, G. [Los Alamos National Lab., NM (United States); Kent, J.S. [Air Force Academy, CO (United States). Dept. of Biology; Lane, L.J. [Department of Agriculture, Tucson, AZ (United States)

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste  

SciTech Connect (OSTI)

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

NONE

1994-12-31T23:59:59.000Z

222

Assessment of LANL solid low-level waste management documentation  

SciTech Connect (OSTI)

DOE Order 5820.2A requires that a system performance assessment be conducted to assure efficient and compliant management of all radioactive waste. The objective of this report is to determine the present status of the Radioactive Waste Operations Section's capabilities regarding preparation and maintenance of appropriate criteria, plans and procedures and identify particular areas where these documents are not presently in existence or being fully implemented. DOE Order 5820.2A, Radioactive Waste Management, Chapter III sets forth the requirements and guidelines for preparation and implementation of criteria, plans and procedures to be utilized in the management of solid low-level waste. The documents being assessed in this report are: Solid Low-Level Waste Acceptance Criteria, Solid Low-Level Waste Characterization Plan, Solid Low-Level Waste Certification Plan, Solid Low-Level Waste Acceptance Procedures, Solid Low-Level Waste Characterization Procedures, Solid Low-Level Waste Certification Procedures, Solid Low-Level Waste Training Procedures, and Solid Low-Level Waste Recordkeeping Procedures. Suggested outlines for these documents are presented as Appendix A.

Klein, R.B.; Jennrich, E.A.; Lund, D.M.; Danna, J.G. (Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)); Davis, K.D.; Rutz, A.C. (Wastren, Inc., Idaho Falls, ID (United States))

1991-04-01T23:59:59.000Z

223

Assessment of LANL solid low-level waste management documentation  

SciTech Connect (OSTI)

DOE Order 5820.2A requires that a system performance assessment be conducted to assure efficient and compliant management of all radioactive waste. The objective of this report is to determine the present status of the Radioactive Waste Operations Section`s capabilities regarding preparation and maintenance of appropriate criteria, plans and procedures and identify particular areas where these documents are not presently in existence or being fully implemented. DOE Order 5820.2A, Radioactive Waste Management, Chapter III sets forth the requirements and guidelines for preparation and implementation of criteria, plans and procedures to be utilized in the management of solid low-level waste. The documents being assessed in this report are: Solid Low-Level Waste Acceptance Criteria, Solid Low-Level Waste Characterization Plan, Solid Low-Level Waste Certification Plan, Solid Low-Level Waste Acceptance Procedures, Solid Low-Level Waste Characterization Procedures, Solid Low-Level Waste Certification Procedures, Solid Low-Level Waste Training Procedures, and Solid Low-Level Waste Recordkeeping Procedures. Suggested outlines for these documents are presented as Appendix A.

Klein, R.B.; Jennrich, E.A.; Lund, D.M.; Danna, J.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States); Davis, K.D.; Rutz, A.C. [Wastren, Inc., Idaho Falls, ID (United States)

1991-04-01T23:59:59.000Z

224

Evaluation of isotope migration - land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Status report, October 1979-September 1980. [Maxey Flats, KY and Barnwell, SC  

SciTech Connect (OSTI)

A field and laboratory program was initiated to study the existing commercial low-level radioactive waste disposal sites. This investigation will provide source term data for radionuclides and other solutes in trench waters at the sites and will describe the physical, chemical, and biological properties of the geochemical system that control the movement of radionuclides. In the past year, the disposal sites at Maxey Flats, Kentucky, and Barnwell, South Carolina, were sampled, Maxey Flats for the fourth time, Barnwell for the second. Results of trench water inorganic, organic, and radiochemical analyses are similar to those reported for previous samplings. No overall systematic changes in any disposal trenches were observed during the relatively brief sampling interval. However, changes in some radionuclide and inorganic components were observed in several trenches. Tritium was the most abundant of the radionuclides and was found in all the trench waters. Analyses of water collected from a series of experimental interceptor trenches at Maxey Flats showed them to have a chemical composition intermediate between disposal trench water and local groundwater. Preliminary results of batch sorption tests using site-specific materials from the Barnwell disposal site are reported. Tritium content as a function of depth has been determined in four sediment cores collected from beneath the disposal trenches at the Barnwell facility. Gel filtration chromatography experiments using trench waters from the West Valley, New York, disposal site showed an association between /sup 137/Cs and a portion of the trench water dissolved organic content (DOC). Experiments with spiked trench water (/sup 137/Cs and EDTA) indicated that the organic fraction referred to above was not EDTA.

Czyscinski, K.S.; Weiss, A.J.

1981-01-01T23:59:59.000Z

225

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

1999-07-09T23:59:59.000Z

226

Low-level Waste Forum meeting report. Summer meeting, July 21--23, 1993  

SciTech Connect (OSTI)

The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

NONE

1993-12-31T23:59:59.000Z

227

Low-level Waste Forum meeting report. Quarterly meeting, July 25--26, 1991  

SciTech Connect (OSTI)

The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

NONE

1991-12-31T23:59:59.000Z

228

Low-level Waste Forum meeting report. Winter meeting, January 26--28, 1994  

SciTech Connect (OSTI)

The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

NONE

1994-12-31T23:59:59.000Z

229

Low-level Waste Forum meeting report. Spring meeting, April 28--30, 1993  

SciTech Connect (OSTI)

The Low-Level Radioactive Waste Forum is an association of representatives of states and compacts established to facilitate state and compact commission implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies. The Forum participants include representatives from regional compacts, designated host states, unaffiliated states, and states with currently-operating low-level radioactive waste facilities. This report contains information synthesizing the accomplishments of the Forum, as well as any new advances that have been made in the management of low-level radioactive wastes.

NONE

1993-12-31T23:59:59.000Z

230

Proceedings of the tenth annual DOE low-level waste management conference: Session 3: Disposal technology and facility development  

SciTech Connect (OSTI)

This document contains ten papers on various aspects of low-level radioactive waste management. Topics include: design and construction of a facility; alternatives to shallow land burial; the fate of tritium and carbon 14 released to the environment; defense waste management; engineered sorbent barriers; remedial action status report; and the disposal of mixed waste in Texas. Individual papers were processed separately for the data base. (TEM)

Not Available

1988-12-01T23:59:59.000Z

231

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

1998-03-24T23:59:59.000Z

232

Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

Kalb, P.D.; Colombo, P.

1997-07-15T23:59:59.000Z

233

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

Kalb, P.D.; Colombo, P.

1998-03-24T23:59:59.000Z

234

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

Kalb, P.D.; Colombo, P.

1999-07-20T23:59:59.000Z

235

Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

Kalb, Paul D. (21 Barnes Road, Wading River, NY 11792); Colombo, Peter (44 N. Pinelake Dr., Patchogue, NY 11772)

1997-01-01T23:59:59.000Z

236

Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

Kalb, Paul D. (Wading River, NY); Colombo, Peter (Patchogue, NY)

1999-07-20T23:59:59.000Z

237

Low Level Waste Disposition - Quantity and Inventory | Department of  

Broader source: Energy.gov (indexed) [DOE]

Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the volume of low level waste resulting from a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. This study provides an estimate of Class A/B/C low level waste (LLW), greater than Class C (GTCC) waste, mixed LLW and mixed GTCC waste generated from the following initial set of fuel cycles and recycling processes: 1. Operations at a geologic repository based upon a once through light

238

Low Level Waste Disposition - Quantity and Inventory | Department of  

Broader source: Energy.gov (indexed) [DOE]

Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the volume of low level waste resulting from a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. This study provides an estimate of Class A/B/C low level waste (LLW), greater than Class C (GTCC) waste, mixed LLW and mixed GTCC waste generated from the following initial set of fuel cycles and recycling processes: 1. Operations at a geologic repository based upon a once through light

239

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

1999-07-09T23:59:59.000Z

240

Supplemental design requirements document enhanced radioactive and mixed waste storage Phase V Project W-112  

SciTech Connect (OSTI)

This document provides additional and supplemental information to WHC-SD-W112-FDC-001, Project W-112 for radioactive and mixed waste storage. It provides additional requirements for the design and summarizes Westinghouse Hanford Company key design guidance and establishes the technical baseline agreements to be used for definitive design of the Project W-112 facilities.

Ocampo, V.P.; Boothe, G.F.; Greager, T.M.; Johnson, K.D.; Kooiker, S.L.; Martin, J.D.

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Detecting low levels of radionuclides in fluids  

DOE Patents [OSTI]

An apparatus and method for detecting low levels of one or more radionuclides in a fluid sample uses a substrate that includes an ion exchange resin or other sorbent material to collect the radionuclides. A collecting apparatus includes a collecting chamber that exposes the substrate to a measured amount of the fluid sample such that radionuclides in the fluid sample are collected by the ion exchange resin. A drying apparatus, which can include a drying chamber, then dries the substrate. A measuring apparatus measures emissions from radionuclides collected on the substrate. The substrate is positioned in a measuring chamber proximate to a detector, which provides a signal in response to emissions from the radionuclides. Other analysis methods can be used to detect non-radioactive analytes, which can be collected with other types of sorbent materials.

Patch, Keith D. (Lexington, MA); Morgan, Dean T. (Sudbury, MA)

2000-01-01T23:59:59.000Z

242

Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes  

DOE Patents [OSTI]

The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

Colombo, Peter (Patchogue, NY); Kalb, Paul D. (Wading River, NY); Heiser, III, John H. (Bayport, NY)

1997-11-14T23:59:59.000Z

243

Explanation of Significant Differences Between Models used to Assess Groundwater Impacts for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and Greater-Than-Class C-Like Waste Environmental Impact Statement (DOE/EIS-0375-D) and the  

SciTech Connect (OSTI)

Models have been used to assess the groundwater impacts to support the Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE-EIS 2011) for a facility sited at the Idaho National Laboratory and the Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project (INL 2011). Groundwater impacts are primarily a function of (1) location determining the geologic and hydrologic setting, (2) disposal facility configuration, and (3) radionuclide source, including waste form and release from the waste form. In reviewing the assumptions made between the model parameters for the two different groundwater impacts assessments, significant differences were identified. This report presents the two sets of model assumptions and discusses their origins and implications for resulting dose predictions. Given more similar model parameters, predicted doses would be commensurate.

Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

2011-08-01T23:59:59.000Z

244

Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL  

SciTech Connect (OSTI)

In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste.

Not Available

1991-09-01T23:59:59.000Z

245

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

1999-07-09T23:59:59.000Z

246

National Low-Level Waste Management Program Radionuclide Report Series  

SciTech Connect (OSTI)

This volume serves as an introduction to the National Low-Level Radioactive Waste Management Program Radionuclide Report Series. This report includes discussions of radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha-emitting transuranics with half-lives greater than five years). Each report includes information regarding radiological and chemical characteristics of specific radionuclides. Information is also included discussing waste streams and waste forms that may contain each radionuclide, and radionuclide behavior in the environment and in the human body. Not all radionuclides commonly found at low-level radioactive waste sites are included in this report. The discussion in this volume explains the rationale of the radionuclide selection process.

Rudin, M.J.; Garcia, R.S.

1992-02-01T23:59:59.000Z

247

Mixed-layered bismuth-oxygen-iodine materials for capture and waste disposal of radioactive iodine  

DOE Patents [OSTI]

Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

Krumhansl, James L; Nenoff, Tina M

2013-02-26T23:59:59.000Z

248

Radioactive wastewater treatment using a mixture of TANNIX sorbent and VARION mixed bed ion exchange resin  

Science Journals Connector (OSTI)

A wastewater treatment system has been developed by using a mixture of ammonium-insoluble tannin (TANNIX, this is the trademark of an adsorbent made by Mitsubishi Nuclear Fuel Co. Ltd) and mixed (strong acid cation exchanger and strong base anion exchanger) ion exchange resin (MIX) for the selective separation of transuranium isotopes, including Pu, Am, Cm, and U, as well as fission and radioactive corrosion products from boric acid solution (pH ? 4.1). The equilibrium and fixed bed sorption experiments resulted in Kd values of 104‚??105 ml/g, and decontamination factors of 1,000, with a breakthrough point between 1500 BV and 5000 BV of accumulated volume.

G. Patzay; P. Tilky; J. Schunk; T. Pinter; F. Feil; K. Hamaguchi; L. Weiser

2006-01-01T23:59:59.000Z

249

Immobilization and Waste Form Product Acceptance for Low Level and TRU Waste Forms  

SciTech Connect (OSTI)

The Tanks Focus Area is supporting technology development in immobilization of both High Level (HLW) and Low Level (LLW) radioactive wastes. The HLW process development at Hanford and Idaho is patterned closely after that of the Savannah River (Defense Waste Processing Facility) and West Valley Sites (West Valley Demonstration Project). However, the development and options open to addressing Low Level Waste are diverse and often site specific. To start, it is important to understand the breadth of Low Level Wastes categories.

Holtzscheiter, E.W. [Westinghouse Savannah River Company, AIKEN, SC (United States); Harbour, J.R.

1998-05-01T23:59:59.000Z

250

Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 2, April 1994  

SciTech Connect (OSTI)

This is a publication of the Low-Level Radioactive Waste Forum Participants. The topics of the publication include DOE policy, state concerns and activities, court hearings and decisions, federal agency activities, US NRC waste management function reorganization, low-level radioactive waste storage and compaction, and US NRC rulemaking and hearings.

NONE

1994-04-01T23:59:59.000Z

251

Two stage, low temperature, catalyzed fluidized bed incineration with in situ neutralization for radioactive mixed wastes  

SciTech Connect (OSTI)

A two stage, low temperature, catalyzed fluidized bed incineration process is proving successful at incinerating hazardous wastes containing nuclear material. The process operates at 550{degrees}C and 650{degrees}C in its two stages. Acid gas neutralization takes place in situ using sodium carbonate as a sorbent in the first stage bed. The feed material to the incinerator is hazardous waste-as defined by the Resource Conservation and Recovery Act-mixed with radioactive materials. The radioactive materials are plutonium, uranium, and americium that are byproducts of nuclear weapons production. Despite its low temperature operation, this system successfully destroyed poly-chlorinated biphenyls at a 99.99992% destruction and removal efficiency. Radionuclides and volatile heavy metals leave the fluidized beds and enter the air pollution control system in minimal amounts. Recently collected modeling and experimental data show the process minimizes dioxin and furan production. The report also discusses air pollution, ash solidification, and other data collected from pilot- and demonstration-scale testing. The testing took place at Rocky Flats Environmental Technology Site, a US Department of Energy facility, in the 1970s, 1980s, and 1990s.

Wade, J.F.; Williams, P.M.

1995-05-17T23:59:59.000Z

252

Rubber membrane liner confines low level radioactive material  

SciTech Connect (OSTI)

One of the most sophisticated membrane lining projects in the world was undertaken in 1979 by the Cotter Corporation, Canon City, Colorado, producers of vanadium and uranium, when a new tailings pond was built to handle mill tailings and effluents. To comply with local, state and federal regulations, Cotter sought maximum protection for downstream residents. The lining was designed to keep leakage near zero and withstand tailings and water pressure at the deepest part of the pond. Other considerations were compatibility with alkalis and acids and durability and effectiveness of the lining beyond the life of the mill. ''We had to be sure the impoundment would outlast the mill because of the need for long-term isolation of the tailings,'' said Joseph McCluskey, Cotter's executive vice presient. Gotter chose an industrial grade sheeting made of Hypalon synthetic rubber, a chlorosulfonated polyethylene, that has an exposed life expectancy of 40 years; however, once covered with earth and tailings, it will last much longer. The sheeting consists of a reinforced scrim sandwiched between two sheets of Hypalon. The rubber comprises nearly 50 percent of the total linear weight, and the reinforcement is a 10' x 10' 1000D polyester scrim whose open weave allows the rubber to penetrate the fabric and create excellent adhesion between the layers. After two years, the impoundment contains approximately 1400 acre feet of liquid. Currently, about one half of the pond consists of run-off with tailings and liquids from the new mill making up the difference.

Not Available

1982-03-01T23:59:59.000Z

253

Solid low-level radioactive waste radiation stability studies  

E-Print Network [OSTI]

properties and condition; on the other, on the specific features of thermal and radiation influences on it (Spitsyn et al. 1983). For the average composition of the fission products going to wastes repositories, the mean energy of irradiation may vary from... to the container determines, in part, the life of the container. Cormsion studies of containers by solidified wastes has indicated no problem areas in limited measurements to date; however very long-term effects have not been evaluated. The useful life...

Williams, Arnold Andre?

1989-01-01T23:59:59.000Z

254

EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge  

Broader source: Energy.gov (indexed) [DOE]

05: Treating Transuranic (TRU)/Alpha Low-Level at the Oak 05: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee SUMMARY This EIS evaluates DOE's proposal to construct, operate, and decontaminate/decommission a Transuranic (TRU) Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be

255

Advanced Mixed Waste Treatment Project Achieves Impressive Safety and  

Broader source: Energy.gov (indexed) [DOE]

Advanced Mixed Waste Treatment Project Achieves Impressive Safety Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks June 26, 2013 - 12:00pm Addthis Only the 620 employees at EM√ʬĬôs Advanced Mixed Waste Treatment Project earned the right to this vanity plate after working more than 14 million hours without a lost-time injury and safely and compliantly shipping more than 50,000 cubic meters of transuranic and mixed low-level radioactive waste for disposal. Only the 620 employees at EM's Advanced Mixed Waste Treatment Project earned the right to this vanity plate after working more than 14 million hours without a lost-time injury and safely and compliantly shipping more than 50,000 cubic meters of transuranic and mixed low-level radioactive

256

West Valley Demonstration Project Low-Level Waste Shipment |...  

Office of Environmental Management (EM)

West Valley Demonstration Project Low-Level Waste Shipment West Valley Demonstration Project Low-Level Waste Shipment West Valley Demonstration Project Low-Level Waste Shipment...

257

DOE Comments on Radioactive Waste | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

on Radioactive Waste DOE Comments on Radioactive Waste 1. Summary Comments on Draft Branch Technical Position on a Performance Assessment Methodology for Low-Level Radioactive...

258

EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology  

Broader source: Energy.gov (indexed) [DOE]

46: Radioactive Waste Storage at Rocky Flats Environmental 46: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to convert buildings at the U.S. Department of Energy Rocky Flats Environmental Technology Site from their former uses to interim waste storage facilities in order to increase storage capacity for low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 9, 1996 EA-1146: Finding of No Significant Impact Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado

259

Defense-in-Depth, How Department of Energy Implements Radiation Protection in Low Level Waste Disposal  

Broader source: Energy.gov [DOE]

Defense-in-Depth, How Department of Energy Implements Radiation Protection in Low Level Waste Disposal Linda Suttora*, U.S. Department of Energy ; Andrew Wallo, U.S. Department of Energy Abstract: The United States Department of Energy (DOE) has adopted an integrated protection system for the safety of radioactive waste disposal similar to the concept of a safety case that is used internationally. This approach has evolved and been continuously improved as a result of many years of experience managing low-level waste (LLW) and mixed LLW from on-going operations, decommissioning and environmental restoration activities at 29 sites around the United States. The integrated protection system is implemented using a defense-in-depth approach taking into account the combination of natural and engineered barriers, performance objectives, long-term risk assessments, maintenance of those assessments based on the most recent information to ascertain continued compliance, site-specific waste acceptance criteria based on the risk assessment and a commitment to continuous improvement. There is also a strong component of stakeholder involvement. The integrated protection system approach will be discussed to demonstrate the commitment to safety for US DOE disposal.

260

Glass optimization for vitrification of Hanford Site low-level tank waste  

SciTech Connect (OSTI)

The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design.

Feng, X.; Hrma, P.R.; Westsik, J.H. Jr. [and others

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Performance Assessment Monitoring Plan for the Hanford Site Low-Level Burial Grounds  

SciTech Connect (OSTI)

The U.S. Department of Energy Order 435.1, Radioactive Waste Management, requires a disposal authorization statement authorizing operation (or continued operation) for low-level waste disposal facilities. In fulfillment of these requirements, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area burial grounds and the 200 West Area burial grounds. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area low-level burial grounds be written and approved by the Richland Operations Office. As a result of a record of decision for the Hanford Site Solid Waste Program and acceptance of the Hanford Site Solid Waste Environmental Impact Statement, the use of the low-level burial ground (LLBG) as a disposal facility for low-level and mixed low-level wastes has been restricted to lined trenches and the Navy reactor-compartment trench only. Hence, as of July 2004, only the two lined trenches in burial ground 218-W-5 (trenches 31 and 34, see Appendix A) and the Navy reactor-compartment trench in burial ground 218 E 12B (trench 94) are allowed to receive waste. When the two lined trenches are filled, the LLBG will cease to operate except for reactor compartment disposal at trench 94. Remaining operational lifetime of the LLBG is dependent on waste volume disposal rates. Existing programs for air sampling and analyses and subsidence monitoring are currently adequate for performance assessment at the LLBG. The waste disposal authorization for the Hanford Site is based (in part) on the post-closure performance assessments for the LLBG. In order to maintain a useful link between operational monitoring (e.g., Resource Conservation and Recovery Act [RCRA], Comprehensive Environmental Response, Compensation, and Liability Act, and State Waste Discharge Permits), constituents, monitoring frequencies, and boundaries require regular review and comparison. The annual reports discussed here are the primary sources for these reviews. The pathways of interest are air and groundwater for both operational and post-closure conditions at the LLBG, with groundwater considered to be the most significant long-term exposure pathway. Constituents that contributed at least 0.1% of the total relative hazard were selected as target analytes for monitoring. These are technetium-99, uranium, and iodine-129. Because of its environmental unavailability, carbon 14 was removed from the list of constituents. Given the potential uncertainties in inventories at the 200 Area LLBG and the usefulness of tritium as a contaminant indicator, tritium will be monitored as a constituent of concern at all burial grounds. Preexisting contamination plumes in groundwater beneath low-level waste management areas are attributed to other past-practice liquid waste disposal sites. Groundwater and air will be sampled and analyzed for radiogenic components. Subsidence monitoring will also be performed on a regular basis. The existing near-facility and surveillance air monitoring programs are sufficient to satisfy the performance assessment monitoring. Groundwater monitoring will utilize the existing network of wells at the LLBG, and co-sampling with RCRA groundwater monitoring, to be sampled semiannually. Installation of additional wells is currently underway to replace wells that have gone dry.

None

2006-03-30T23:59:59.000Z

262

Journey to the Nevada Test Site Radioactive Waste Management Complex  

ScienceCinema (OSTI)

Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.

None

2014-10-28T23:59:59.000Z

263

Low-level stored waste inspection using mobile robots  

SciTech Connect (OSTI)

A mobile robot inspection system, ARIES (Autonomous Robotic Inspection Experimental System), has been developed for the U.S. Department of Energy to replace human inspectors in the routine, regulated inspection of radioactive waste stored in drums. The robot will roam the three-foot aisles of drums, stacked four high, making decisions about the surface condition of the drums and maintaining a database of information about each drum. A distributed system of onboard and offboard computers will provide versatile, friendly control of the inspection process. This mobile robot system, based on a commercial mobile platform, will improve the quality of inspection, generate required reports, and relieve human operators from low-level radioactive exposure. This paper describes and discusses primarily the computer and control processes for the system.

Byrd, J.S.; Pettus, R.O.

1996-06-01T23:59:59.000Z

264

Overview of resuspension model: application to low level waste management  

SciTech Connect (OSTI)

Resuspension is one of the potential pathways to man for radioactive or chemical contaminants that are in the biosphere. In waste management, spills or other surface contamination can serve as a source for resuspension during the operational phase. After the low-level waste disposal area is closed, radioactive materials can be brought to the surface by animals or insects or, in the long term, the surface can be removed by erosion. Any of these methods expose the material to resuspension in the atmosphere. Intrusion into the waste mass can produce resuspension of potential hazard to the intruder. Removal of items from the waste mass by scavengers or archeologists can result in potential resuspension exposure to others handling or working with the object. The ways in which resuspension can occur are wind resuspension, mechanical resuspension and local resuspension. While methods of predicting exposure are not accurate, they include the use of the resuspension factor, the resuspension rate and mass loading of the air.

Healy, J.W.

1980-01-01T23:59:59.000Z

265

EA-1793: Replacement Capability for Disposal of Remote-handled Low-level  

Broader source: Energy.gov (indexed) [DOE]

793: Replacement Capability for Disposal of Remote-handled 793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site EA-1793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site Summary This EA evaluates the environmental impacts of replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017. Public Comment Opportunities Submit Comments to: Mr. Chuck Ljungberg 1955 Fremont Avenue, Mailstop 1216 Idaho Falls, ID 83415 Electronic mail: rhllwea@id.doe.gov Documents Available for Download December 21, 2011 EA-1793: Finding of No Significant Impact Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive

266

SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING  

SciTech Connect (OSTI)

This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

2011-01-12T23:59:59.000Z

267

National low-level waste management program radionuclide report series, Volume 15: Uranium-238  

SciTech Connect (OSTI)

This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.

Adams, J.P.

1995-09-01T23:59:59.000Z

268

Monitoring of a RCRA Mixed Waste Management Facility  

SciTech Connect (OSTI)

Since startup of the Savannah River Site (SRS) in 1953, solid radioactive waste materials have been disposed of in a centrally located facility known as the Radioactive Waste Burial Grounds. These burial grounds comprise three distinct disposal sites which include the original set of burial trenches for solid low level radioactive wastes (643-G), the currently operating Low Level Radioactive Waste Disposal Facility (643-7G), and the Mixed Waste Management Facility (643-28G) located within 643-7G. The Mixed Waste Management Facility (MWMF) has been used to dispose of various low level radioactive waste materials just as the other portions of the Radioactive Waste Burial Grounds. Some of the waste materials in the MWMF have been classified as mixed waste under the Resource Conservation and Recovery Act (RCRA). Because the MWMF contains mixed wastes, a closure plan for the facility was developed and submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) to comply with RCRA requirements. This paper discusses the various aspects of the groundwater monitoring program developed to satisfy regulatory requirements for post-closure care and provides some initial results on groundwater quality.

Gordon, D.E.; Stevens, C.B.; Tuckfield, R.C.

1989-01-01T23:59:59.000Z

269

Monitoring of a RCRA Mixed Waste Management Facility  

SciTech Connect (OSTI)

Since startup of the Savannah River Site (SRS) in 1953, solid radioactive waste materials have been disposed of in a centrally located facility known as the Radioactive Waste Burial Grounds. These burial grounds comprise three distinct disposal sites which include the original set of burial trenches for solid low level radioactive wastes (643-G), the currently operating Low Level Radioactive Waste Disposal Facility (643-7G), and the Mixed Waste Management Facility (643-28G) located within 643-7G. The Mixed Waste Management Facility (MWMF) has been used to dispose of various low level radioactive waste materials just as the other portions of the Radioactive Waste Burial Grounds. Some of the waste materials in the MWMF have been classified as mixed waste under the Resource Conservation and Recovery Act (RCRA). Because the MWMF contains mixed wastes, a closure plan for the facility was developed and submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) to comply with RCRA requirements. This paper discusses the various aspects of the groundwater monitoring program developed to satisfy regulatory requirements for post-closure care and provides some initial results on groundwater quality.

Gordon, D.E.; Stevens, C.B.; Tuckfield, R.C.

1989-12-31T23:59:59.000Z

270

RSP-MW UNIVERSITY OF HAWAII RADIOACTIVE MIXED WASTE PICKUP REQUEST FORM Revision, 4/04 (WASTE CONTAINING BOTH RADIOISOTOPES AND HAZARDOUS CHEMICALS)  

E-Print Network [OSTI]

RSP-MW UNIVERSITY OF HAWAII RADIOACTIVE MIXED WASTE PICKUP REQUEST FORM Revision, 4/04 (WASTE AND UNDERSTAND ALL CONDITIONS ON THIS FORM. GENERATOR CERTIFICATION: I certify the above waste contains

Browder, Tom

271

Low-level-waste-disposal methodologies  

SciTech Connect (OSTI)

This report covers the followng: (1) history of low level waste disposal; (2) current practice at the five major DOE burial sites and six commercial sites with dominant features of these sites and radionuclide content of major waste types summarized in tables; (3) site performance with performance record on burial sites tabulated; and (4) proposed solutions. Shallow burial of low level waste is a continuously evolving practice, and each site has developed its own solutions to the handling and disposal of unusual waste forms. There are no existing national standards for such disposal. However, improvements in the methodology for low level waste disposal are occurring on several fronts. Standardized criteria are being developed by both the Nuclear Regulatory Commission (NRC) and by DOE. Improved techniques for shallow burial are evolving at both commercial and DOE facilities, as well as through research sponsored by NRC, DOE, and the Environmental Protection Agency. Alternatives to shallow burial, such as deeper burial or the use of mined cavities is also being investigated by DOE.

Wheeler, M.L.; Dragonette, K.

1981-01-01T23:59:59.000Z

272

Low-Level Waste Disposal Facility Federal Review Group Manual...  

Office of Environmental Management (EM)

Low-Level Waste Disposal Facility Federal Review Group Manual Low-Level Waste Disposal Facility Federal Review Group Manual This Revision 3 of the Low-Level Waste Disposal Facility...

273

Environmental assessment for DOE permission for off-loading activities to support the movement of commercial low level nuclear waste across the Savannah River Site  

SciTech Connect (OSTI)

This environmental assessment investigates the potential environmental and safety effects which could result from the land transport of low level radioactive wastes across the Savannah River Plant. Chem-Nuclear Systems operates a low level radioactive waste burial facility adjacent to the Savannah River Plant and is seeking permission from the DOE to transport the waste across Savannah River Plant.

NONE

1995-02-01T23:59:59.000Z

274

12/2000 Low-Level Waste Disposal Capacity Report Version 2 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Services ¬Ľ Waste Management ¬Ľ Waste Disposition ¬Ľ 12/2000 Services ¬Ľ Waste Management ¬Ľ Waste Disposition ¬Ľ 12/2000 Low-Level Waste Disposal Capacity Report Version 2 12/2000 Low-Level Waste Disposal Capacity Report Version 2 The purpose of this Report is to assess whether U.S. Department of Energy (DOE or the Department) disposal facilities have sufficient volumetric and radiological capacity to accommodate the low-level waste (LLW) and mixed low-level waste (MLLW) that the Department expects to dispose at these facilities. 12/2000 Low-Level Waste Disposal Capacity Report Version 2 More Documents & Publications EIS-0243: Record of Decision EIS-0200: Record of Decision EIS-0286: Record of Decision Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and Transportation

275

Alternative techniques for low-level waste shallow land burial  

SciTech Connect (OSTI)

Experience to date relative to the shallow land burial of low-level radioactive waste (LLW) indicates that the physical stability of the disposal unit and the hydrologic isolation of the waste are the two most important factors in assuring disposal site performance. Disposal unit stability can be ensured by providing stable waste packages and waste forms, compacting backfill material, and filling the void spaces between the packages. Hydrologic isolation can be achieved though a combination of proper site selection, subsurface drainage controls, internal trench drainage systems, and immobilization of the waste. A generalized design of a LLW disposal site that would provide the desired long-term isolation of the waste is discussed. While this design will be more costly than current practices, it will provide additional confidence in predicted and reliability and actual site performance.

Levin, G.B.; Mezga, L.J.

1983-01-01T23:59:59.000Z

276

Lid design for low level waste container  

DOE Patents [OSTI]

A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame.

Holbrook, Richard H. (Clinton, TN); Keener, Wendell E. (Lenior City, TN)

1995-01-01T23:59:59.000Z

277

Lid design for low level waste container  

DOE Patents [OSTI]

A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame. 6 figs.

Holbrook, R.H.; Keener, W.E.

1995-02-28T23:59:59.000Z

278

National Low-Level Waste Management Program radionuclide report series. Volume 2, Niobium-94  

SciTech Connect (OSTI)

The Purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to, state representatives and developers of low-level radioactive waste disposal facilities about the radiological chemical, and physical characteristics of selected radionuclides and their behavior in the low-level radioactive waste disposal facility environment. Extensive surveys of available literature provided information used to produce this series of reports and an introductory report. This report is Volume 11 of the series. It outlines the basic radiological, chemical, and physical characteristics of niobium-94, waste types and forms that contain it, and its behavior in environmental media such as soils, plants, groundwater, air, animals and the human body.

Adams, J.P.; Carboneau, M.L.

1995-04-01T23:59:59.000Z

279

Low-Level Waste Disposal Facility Federal Review Group (LFRG) | Department  

Broader source: Energy.gov (indexed) [DOE]

Program Management ¬Ľ Compliance ¬Ľ Low-Level Waste Program Management ¬Ľ Compliance ¬Ľ Low-Level Waste Disposal Facility Federal Review Group (LFRG) Low-Level Waste Disposal Facility Federal Review Group (LFRG) The Office of Environmental Management (EM) Low-Level Waste Disposal Facility Federal Review Group (LFRG) was established to fulfill the requirements contained in Section I.2.E(1)(a) of the Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and exercised by the senior managers of EM. The LFRG assists EM senior managers in the review of documentation that supports the approval of performance assessments and composite analyses or appropriate Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)documents as described in Section II of the LFRG Charter. Through its efforts, the LFRG supports the issuance

280

DOE to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal  

Broader source: Energy.gov (indexed) [DOE]

to Weigh Alternatives for Greater Than Class C Low-Level Waste to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal DOE to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal July 20, 2007 - 2:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will evaluate disposal options for Greater Than Class C (GTCC) low-level radioactive waste (LLW) generated from the decommissioning of nuclear power plants, medical activities and nuclear research. DOE delivered to the Federal Register this week a Notice of Intent (NOI) to prepare an Environmental Impact Statement (EIS), which will evaluate how and where to safely dispose of GTCC LLW that is currently stored at commercial nuclear power plants and other generator sites across the country. The Energy Policy Act of 2005 requires DOE to report to Congress on its evaluation of

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Comparison of low-level waste disposal programs of DOE and selected international countries  

SciTech Connect (OSTI)

The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada`s first demonstration LLW disposal facility.

Meagher, B.G. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cole, L.T. [Cole and Associates (United States)

1996-06-01T23:59:59.000Z

282

R&D ERL: Low level RF  

SciTech Connect (OSTI)

A superconducting RF (SRF) Energy Recovery Linac (ERL) is currently under development at the Collider-Accelerator Department (C-AD) at Brookhaven National Laboratory (BNL). The major components from an RF perspective are (a) a 5-cell SRF ERL cavity, (b) an SRF photocathode electron gun, and (c) a drive laser for the photocathode gun. Each of these RF subsystems has its own set of RF performance requirements, as well as common requirements for ensuring correct synchronism between them. A low level RF (LLRF) control system is currently under development, which seeks to leverage both technology and experience gained from the recently commissioned RHIC LLRF system upgrade. This note will review the LLRF system requirements and describe the system to be installed at the ERL.

Smith, K.

2010-01-15T23:59:59.000Z

283

Mixing with Intermittent Jets with Application in Handling Radioactive Waste Sludges  

SciTech Connect (OSTI)

This document presents the results of theoretical and experimental studies undertaken to establish a methodology for performing reduced-scale mixing tests with intermittent jet mixing systems in non-Newtonian fluids. A theoretical model for mixing cavern formation from steady and pulsed jets is developed and compared with data from single mixing jet tests in a non-Newtonian simulant. Scaling laws are proposed based on the modeling and dimensional analysis. Experimental validation of the scaling laws performed. Tests were conducted at three scales using two non-Newtonian simulants. The key similarity parameters were found to be the non-dimension jet frequency, the yield Reynolds number, and the jet Reynolds number. The validated scaling laws provided the basis for reduced-scale testing of plant-scale mixing systems. In this article, only the initial results for a single jet and the developed model and scaling laws will be discussed.

Meyer, Perry A.; Etchells, Arthur W.

2007-05-01T23:59:59.000Z

284

Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL. Revision 1  

SciTech Connect (OSTI)

In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL`s Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL`s acceptance criteria for radioactive and mixed waste.

Not Available

1991-09-01T23:59:59.000Z

285

MESERAN Calibration for Low Level Organic Residues  

SciTech Connect (OSTI)

Precision cleaning studies done at Honeywell Federal Manufacturing & Technologies (FM&T), the Kansas City Plant (KCP), and at other locations within the Department of Energy (DOE) Weapons complex over the last 30 years have depended upon results from MESERAN Evaporative Rate Analysis for detecting low levels of organic contamination. The characterization of the surface being analyzed is carried out by depositing a Carbon-14 tagged radiochemical onto the test surface and monitoring the rate at which the radiochemical disappears from the surface with a Geiger-Mueller counter. In the past, the total number of counts over a 2-minute span have been used to judge whether a surface is contaminated or not and semi-quantitatively to what extent. This technique is very sensitive but has not enjoyed the broad acceptance of a purely quantitative analysis. The work on this project developed calibrations of various organic contaminants typically encountered in KCP operations. In addition, a new analysis method was developed to enhance the ability of MESERAN Analyzers to detect organic contamination and yield quantitative data in the microgram and nanogram levels.

Benkovich, M.G.

2004-04-08T23:59:59.000Z

286

12/2000 Low-Level Waste Disposal Capacity Report Version 2  

Broader source: Energy.gov (indexed) [DOE]

Current and Planned Current and Planned Low-Level Waste Disposal Capacity Report Revision 2 December 2000 U.S. Department of Energy Office of Environmental Management i TABLE OF CONTENTS EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ES-1 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.1 Summary of Report Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.2 History of Past DOE Low-Level Waste Disposal Operations . . . . . . . . . . . . . . . . . . . . . . 1-2 1.3 Current Status of the Low-Level and Mixed Low-Level Waste Disposal Configuration . . 1-3 1.4 Methodology for Base Case and Alternative Scenarios Analyses . . . . . . . . . . . . . . . . . . . 1-5 1.5 Radiological Assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 1.6 Data Sources for Waste Disposal Volumes, Waste Radiological Profiles, and Disposal

287

Maintenance Guide for DOE Low-Level Waste Disposal Facility ...  

Office of Environmental Management (EM)

Guide for DOE Low-Level Waste Disposal Facility Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses...

288

Capping as an alternative for remediating radioactive and mixed waste landfills  

SciTech Connect (OSTI)

This report describes some of the regulatory and technical issues concerning the use of capping as a containment strategy for radioactive and hazardous waste. Capping alternatives for closure of landfills is not just an engineering problem, but rather involves complex physical, biological, and chemical processes requiring a multidisciplinary approach to develop designs that will work over the long haul and are cost-effective. Much of the information has been distilled from regulatory and guidance documents and a compilation of research activities on waste disposal, contaminant transport processes, and technology development for landfills that has been conducted over the last 21 years.

Hakonson, T.E. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Fishery and Wildlife Biology

1994-03-01T23:59:59.000Z

289

National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1997  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985 to assist states and compacts in their siting and licensing efforts for low-level radioactive waste disposal facilities. The National Low-Level Waste Management Program (NLLWMP) is the element of the DOE that performs the key support activities under the Act. The NLLWMP`s activities are driven by the needs of the states and compacts as they prepare to manage their low-level waste under the Act. Other work is added during the fiscal year as necessary to accommodate new requests brought on by status changes in states` and compacts` siting and licensing efforts. This report summarizes the activities and accomplishments of the NLLWMP during FY 1997.

Rittenberg, R.B.

1998-03-01T23:59:59.000Z

290

National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1995  

SciTech Connect (OSTI)

To assist the Department of Energy (DOE) in fulfilling its responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985, the National Low-Level Waste Management Program (NLLWMP) outlines the key activities that the NLLWMP will accomplish in the following fiscal year. Additional activities are added during the fiscal year as necessary to accomplish programmatic goals. This report summarizes the activities and accomplishments of the NLLWMP during fiscal year 1995.

Forman, S.

1995-12-01T23:59:59.000Z

291

National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1996  

SciTech Connect (OSTI)

To assist the Department of Energy (DOE) in fulfilling its responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985, the National Low-Level Waste Management Program (NLLWMP) outlines the key activities tat the NLLWMP will accomplish in the following fiscal year. Additional activities are added during the fiscal year as necessary to accomplish programmatic goals. This report summarizes the activities and accomplishments of the NLLWMP during Fiscal Year 1996.

Garcia, R.S.

1996-12-01T23:59:59.000Z

292

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect (OSTI)

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

293

Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary  

SciTech Connect (OSTI)

This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

Not Available

1990-06-01T23:59:59.000Z

294

Final closure cover for a Hanford radioactive mixed waste disposal facility  

SciTech Connect (OSTI)

This study provides a preliminary design for a RCRA mixed waste landfill final closure cover. The cover design was developed by a senior class design team from Seattle University. The design incorporates a layered design of indigenous soils and geosynthetics in a layered system to meet final closure cover requirements for a landfill as imposed by the Washington Administrative Code WAC-173-303 implementation of the Resource Conservation and Recovery Act.

Johnson, K.D.

1996-02-06T23:59:59.000Z

295

Processing results of 1,800 gallons of mercury and radioactively contaminated mixed waste rinse solution  

SciTech Connect (OSTI)

The mercury-contaminated rinse solution (INEL waste ID{number_sign} 123; File 8 waste) was successfully treated at the Idaho National Engineering Laboratory (INEL). This waste was generated during the decontamination of the Heat Transfer Reactor Experiment 3 (HTRE-3) reactor shield tank. Approximately 1,800 gal of waste was generated and was placed into 33 drums. Each drum contained precipitated sludge material ranging from 1--10 in. in depth, with the average depth of about 2.5 in. The pH of each drum varied from 3--11. The bulk liquid waste had a mercury level of 7.0 mg/l, which exceeded the Resource Conservation and Recovery Act (RCRA) limit of 0.2 mg/l. The average liquid bulk radioactivity was about 2.1 pCi/ml, while the average sludge contamination was about 13,800 pci/g. Treatment of the waste required separation of the liquid from the sludge, filtration, pH adjustment, and ion exchange. Because of difficulties in processing, three trials were required to reduce the mercury levels to below the RCRA limit. In the first trial, insufficient filtration of the waste allowed solid particulate produced during pH adjustment to enter into the ion exchange columns and ultimately the waste storage tank. In the second trial, the waste was filtered down to 0.1 {mu} to remove all solid mercury compounds. However, before filtration could take place, a solid mercury complex dissolved and mercury levels exceeded the RCRA limit after filtration. In the third trial, the waste was filtered through 0.3-A filters and then passed through the S-920 resin to remove the dissolved mercury. The resulting solution had mercury levels at 0.0186 mg/l and radioactivity of 0.282 pCi/ml. This solution was disposed of at the TAN warm waste pond, TAN782, TSF-10.

Thiesen, B.P.

1993-01-01T23:59:59.000Z

296

Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

2012-05-01T23:59:59.000Z

297

Low Level Descriptors for Automatic Violin Transcription Alex Loscos  

E-Print Network [OSTI]

Low Level Descriptors for Automatic Violin Transcription Alex Loscos MTG at Universitat Pompeu additional processing. 3. Pitch Analysis Previous system [5] already confronted the problem of octave errors

Wang, Ye

298

Determining Patch Saliency Using Low-Level Devi Parikh1  

E-Print Network [OSTI]

Determining Patch Saliency Using Low-Level Context Devi Parikh1 , C. Lawrence Zitnick2 , and Tsuhan. Existing classes of low-level saliency measures for image patches include those based on interest points saliency measures based on co-occurrence and spatial information between image patches. For recog- nition

Chen, Tsuhan

299

Prospects for vitrification of mixed wastes at ANL-E  

SciTech Connect (OSTI)

This report summarizes a study evaluating the prospects for vitrification of some of the mixed wastes at ANL-E. This project can be justified on the following basis: Some of ANL-E`s mixed waste streams will be stabilized such that they can be treated as a low-level radioactive waste. The expected volume reduction that results during vitrification will significantly reduce the overall waste volume requiring disposal. Mixed-waste disposal options currently used by ANL-E may not be permissible in the near future without treatment technologies such as vitrification.

Mazer, J.; No, Hyo

1993-12-01T23:59:59.000Z

300

Proceedings of the tenth annual DOE low-level waste management conference: Session 4: Waste treatment minimization  

SciTech Connect (OSTI)

This document contains eleven papers on various aspects of low-level radioactive waste management. Topics in this volume include: volume reduction plans; incentitives; and cost proposals; acid detoxification and reclamation; decontamination of lead; leach tests; West Valley demonstration project status report; and DOE's regional management strategies. Individual papers were processed separately for the data base. (TEM)

Not Available

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Annual Report - FY 2001, Radioactive Waste Shipments To and From the Nevada Test Site, February 2002  

SciTech Connect (OSTI)

In February 1997, the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV) issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). NNSA/NV committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Sites (RWMSs) at Area 3 and Area 5. This document satisfies requirements with regard to low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during fiscal year (FY 2001).

U.S. Department of Energy, National Nuclear Security Administration, Nevada Operations Office

2002-02-01T23:59:59.000Z

302

Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2010-10-01T23:59:59.000Z

303

Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 4, July 1994  

SciTech Connect (OSTI)

This issue includes the following articles: Federal Facility Compliance Act Task Force forms mixed waste workgroup; Illinois Department of Nuclear Safety considers construction of centralized storage facility; Midwest Commission agrees on capacity limit, advisory committee; EPA responds to California site developer`s queries regarding application of air pollutant standards; county-level disqualification site screening of Pennsylvania complete; Texas Compact legislation introduced in US Senate; Generators ask court to rule in their favor on surcharge rebates lawsuit; Vermont authority and Battelle settle wetlands dispute; Eighth Circuit affirms decision in Nebraska community consent lawsuit; Nebraska court dismisses action filed by Boyd County local monitoring committee; NC authority, Chem-Nuclear, and Stowe exonerated; Senator Johnson introduces legislation to transfer Ward Valley site; Representative Dingell writes to Clinton regarding disposal of low-level radioactive waste; NAS committee on California site convenes; NRC to improve public petition process; NRC releases draft proposed rule on criteria for decontamination and closure of NRC-licensed facilities; and EPA names first environmental justice federal advisory council.

NONE

1994-07-01T23:59:59.000Z

304

Hanford low-level tank waste interim performance assessment  

SciTech Connect (OSTI)

The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single- and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and its performance as early as possible in the project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives.

Mann, F.M.

1996-09-16T23:59:59.000Z

305

Hanford low-level tank waste interim performance assessment  

SciTech Connect (OSTI)

The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and performance early in the disposal system project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives.

Mann, F.M.

1997-09-12T23:59:59.000Z

306

Structure of the low level jet over Texas  

E-Print Network [OSTI]

STRUCTURE OF THE LOW LEVEL JET OVER TEXAS A Thesis by Michel Stuart Damiani Jr. Submitted to the Graduate College of Texas A&M University in partial fulfullment of the requirements for the degree of MASTER OF SCIENCE May 1979 Major Subject... Jet Over Texas (May, 1979) Michel S. Damiani Jr. , B. A. , Univ. of St. Thomas Directed by Dr. Dusan Djuric The intial stage of the low level jet has been studied over Texas and Oklahoma during the winter months of 1974 through 1976. The low level...

Damiani, Michel Stuart

2012-06-07T23:59:59.000Z

307

Low-Level Waste Disposal Facility Federal Review Group Manual  

Broader source: Energy.gov (indexed) [DOE]

LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page intentionally left blank) Low-Level JVllsfe Disposal Fllcili~l' Federal Review Group il1allUlli Revision 3, June 200S Concurrence The Low-Level Waste Disposal Facility Federal Review Group Manual, Revision 3, is approved for use as of the most recent date below. Date Chair, Low-Level Waste Disposal Federal Review Group Andrew WalJo, 1II Deputy Director, Otlice of Nuclear Safety, Quality Assurance, and Environment Department of Energy OHlce of Health, Safety, and Security e C. WilJiams Associate Administrator for Infrastructure and Environment National Nuclear Security Administration Low-Level 'Vaste Disposal Facility Federal Review Group J1aJll/ai

308

The Argonne low level14C counting system  

Science Journals Connector (OSTI)

A low level14CO2 counting system is described. This system was used to process several thousand CO2 samples derived from atmospheric collections at various altitudes. Special features include counter construction...

J. Gray; S. J. Rymas; L. D. StudebakerÖ

1988-10-01T23:59:59.000Z

309

Effects of Low Level Laser Therapy on Orthodontic Pain  

E-Print Network [OSTI]

Purpose: To determine the effectiveness of low level laser therapy applied extra orally on the reduction of orthodontic pain. Materials and Methods: Sixty dental students were voluntarily recruited for this randomized, double-blinded, placebo...

Buchwald, Bradley

2014-04-28T23:59:59.000Z

310

Low Level Heat Recovery Through Heat Pumps and Vapor Recompression  

E-Print Network [OSTI]

The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

Gilbert, J.

1980-01-01T23:59:59.000Z

311

Low-Level Airflow in Southern Wyoming during Wintertime  

Science Journals Connector (OSTI)

A number of low-level flights were conducted with an instrumented aircraft to investigate wind characteristics in the planetary boundary layer over the low regions of the continental divide in southern Wyoming. The airflow upwind of the ...

John D. Marwitz; Paul J. Dawson

1984-06-01T23:59:59.000Z

312

Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energy¬źs Idaho Site  

Broader source: Energy.gov (indexed) [DOE]

Environmental Assessment Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site August 2011 DOE/EA-1793 Draft Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site August 2011 v EXECUTIVE SUMMARY The U.S. Department of Energy (DOE) proposes to provide replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017. Historically, INL has disposed of this LLW onsite. However, the existing disposal area located within the INL Radioactive Waste Management Complex will undergo

313

Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 2, Appendixes  

SciTech Connect (OSTI)

This report presents information derived form the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. Volume 1 contains the main text. This Volume contains the appendixes, including data and supporting information that verify content and results found in the main text.

Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

1989-01-01T23:59:59.000Z

314

Low-level and transuranic waste transportation, disposal, and facility decommissioning cost sensitivity analysis  

SciTech Connect (OSTI)

The Systems Design Study (SDS) identified technologies available for the remediation of low-level and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the Idaho National Engineering Laboratory. The SDS study intentionally omitted the costs of transportation and disposal of the processed waste and the cost of decommissioning the processing facility. This report provides a follow-on analysis of the SDS to explore the basis for life-cycle cost segments of transportation, disposal, and facility decommissioning; to determine the sensitivity of the cost segments; and to quantify the life-cycle costs of the 10 ex situ concepts of the Systems Design Study.

Schlueter, R. [Bechtel National, Inc., San Francisco, CA (United States); Schafer, J.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-05-01T23:59:59.000Z

315

Low-level and transuranic waste transportation, disposal, and facility decommissioning cost sensitivity analysis  

SciTech Connect (OSTI)

The Systems Design Study (SDS) identified technologies available for the remediation of low-level and transuranic waste stored at the Radioactive Waste Management Complex's Subsurface Disposal Area at the Idaho National Engineering Laboratory. The SDS study intentionally omitted the costs of transportation and disposal of the processed waste and the cost of decommissioning the processing facility. This report provides a follow-on analysis of the SDS to explore the basis for life-cycle cost segments of transportation, disposal, and facility decommissioning; to determine the sensitivity of the cost segments; and to quantify the life-cycle costs of the 10 ex situ concepts of the Systems Design Study.

Schlueter, R. (Bechtel National, Inc., San Francisco, CA (United States)); Schafer, J.J. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

1992-05-01T23:59:59.000Z

316

Task 1.6 - mixed waste. Topical report, April 1, 1994--September 30, 1995  

SciTech Connect (OSTI)

For fifty years, the United States was involved in a nuclear arms race of immense proportions. During the majority of this period, the push was always to design new weapons, produce more weapons, and increase the size of the arsenal, maintaining an advantage over the opposition in order to protect U.S. interests. Now that the {open_quotes}Cold War{close_quotes} is over, we are faced with the imposing tasks of dismantling, cleaning up, and remediating the wide variety of problems created by this arms race. An overview of the current status of the total remediation effort within the DOE is presented in the DOE publication {open_quotes}ENVIRONMENTAL MANAGEMENT 1995{close_quotes} (EM 1995). Not all radioactive waste is the same though; therefore, a system was devised to categorize the different types of radioactive waste. These categories are as follows: spent fuel; high-level waste; transuranic waste; low-level waste; mixed waste; and uranium-mill tailings. Mixed waste is defined to be material contaminated with any of these categories of radioactive material plus an organic or heavy metal component. However, for this discussion, {open_quotes}mixed waste{close_quote} will pertain only to low-level mixed waste which consists of low-level radioactive waste mixed with organic solvents and or heavy metals. The area of {open_quotes}mixed-waste characterization, treatment, and disposal{close_quotes} is listed on page 6 of the EM 1995 publication as one of five focus areas for technological development, and while no more important than the others, it has become an area of critical concern for DOE. Lacking adequate technologies for treatment and disposal, the DOE stockpiled large quantities of mixed waste during the 1970s and 1980s. Legislative changes and the need for regulatory compliance have now made it expedient to develop methods of achieving final disposition for this stockpiled mixed waste.

NONE

1998-12-31T23:59:59.000Z

317

Robotics for mixed waste operations, demonstration description  

SciTech Connect (OSTI)

The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. This waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.

Ward, C.R.

1993-11-01T23:59:59.000Z

318

Geopolymeric Agent for Immobilization of Radioactive Ashes after Biomass Burning  

Science Journals Connector (OSTI)

Solidification of low-level radioactive wastes obtained after biomass burning was studied. Two solidification modes using Portland...- 6 g cm- 2 day- 1.... Thus, su...

A. D. Chervonnyi; N. A. Chervonnaya

2003-03-01T23:59:59.000Z

319

LLW (Low-Level Waste) Forum meeting report, February 10--13, 1998, San Diego, CA  

SciTech Connect (OSTI)

The Low-Level Radioactive Waste Forum met in San Diego, California, on February 10--13, 1998. Twenty-four Forum Participants, Alternate Forum Participants, and meeting designees representing 19 compacts, host states, and unaffiliated states participated. Additional information was provided by 19 resource people from, variously, the States of California, Colorado, and Utah; the National Governors` Association; the Department of the Army; EPA; DOE and DOE`s National Low-Level Waste Management Program; NRC; the Electric Power Research Institute and the Nuclear Energy Institute; US Ecology, Chem-Nuclear Systems, Envirocare of Utah, and Waste Control Specialists (represented by Egan and Associates); and Rocketdyne Propulsion and Power. Also in attendance, as observers, were six other state and compact officials; a staff person from DOE`s National Low-Level Waste Management Program; one NRC headquarters staff person; and seven representatives of other interested parties, including a regional generators` organization, two generators, one California anti-nuclear group, and two private companies.

NONE

1998-07-01T23:59:59.000Z

320

Application of spectral summing to suspect low level debris drums at Los Alamos National Laboratory  

SciTech Connect (OSTI)

The spectral summing technique developed by Pajarito Scientific Corporation (PSC) is a unique modeling technique that is being employed by the Waste Disposition Project - Low Level Waste Disposal (WDP-LLWD) Group at Los Alamos National Laboratory (LANL). This technique is being used to disposition low-level radioactive waste that has dropped out of the transuranic (TRU) category and has no place to go unless it can be proven to be LLW and not TRU. The TRU program at LANL run by Mobile Characterization Services (MCS) employs two High Efficiency Neutron Counters (HENC) with built-in gamma assay systems to assay radioactive waste for shipment and disposal as TRU waste at the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico. As well as being certified for WIPP assays, the HENC systems can also be used for low-level waste assays for disposal at LANL or off-site disposal facilities, such as the Nevada Test Site (NTS). Some of the waste processed through the HENC systems cannot be confirmed TRU due to the absence of detected TRU alpha emitters above the TRU cutoff of 100 nCi/g. This waste becomes suspect low-level waste (SLLW). In many cases, the waste also can't be classified as LLW because the minimum detectable activity (MDA) of TRU radionuclides is above the 100 nCi/g level. These wastes that do not have enough detectable TRU activity to be classified as TRU waste and have too high a MDA to be classified as LLW enter a radioactive waste characterization limbo that prevents their dispositioning as either TRU waste or LLW. Spectral summing allows an experienced gamma spectroscopy analyst to add the HENC gamma spectra of a number of similar waste items together to form a consolidated (summed) spectrum. This summed spectrum contains the assay results of the group of items rather than the individual item, and gamma peaks that were not discernable in the individual spectra become quantifiable in the summed spectrum. The group of waste items can then be properly classified as LLW based on the summed spectrum and valid assay values can be assigned for disposal. This technique is being successfully used to dispose of LLW debris drums from LANL.

Gruetzmacher, Kathleen M [Los Alamos National Laboratory; Veilleux, John M [Los Alamos National Laboratory; Lucero, Randy P [PAJARITO SCIENTIFIC CORPORATION; Seamans, Jr, James V [PAJARITO SCIENTIFIC CORPORATION; Clapham, Martin J [PAJARITO SCIENTIFIC CORPORATION

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Application of spectral summing to indeterminate suspect low-level drums at Los Alamos National Laboratory  

SciTech Connect (OSTI)

The spectral summing technique developed by Pajarito Scientific Corporation (PSC) is a unique modeling technique that is being employed by the Waste Disposition Project - Low Level Waste Disposition (WDP-LLWD) Group at Los Alamos National Laboratory (LANL). This technique has been used to disposition low-level radioactive waste that has dropped out of the transuranic (TRU) category and has no disposal path unless it can be proven to be LLW and not TRU. The TRU program at LANL run by Mobile Characterization Services (MCS) employs High Efficiency Neutron Counters (HENC) with built-in gamma assay systems to assay radioactive waste for shipment and disposal as TRU waste at the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico. As well as being certified for WIPP assays, the HENC systems can also be used for low-level waste assays for disposal at LANL or off-site disposal facilities, such as the Nevada Test Site (NTS). Some of the waste processed through the HENC systems cannot be confirmed TRU due to the absence of detected TRU alpha emitters above the TRU cutoff of 100 nCi/g. This waste becomes suspect low-level waste (SLLW). In many cases, the waste also can't be classified as LLW because the minimum detectable activity (MDA) of TRU radionuclides is above the 100 nCi/g level. These wastes that do not have enough detectable TRU activity to be classified as TRU waste and have TRU MDAs > 100nCi/g enter a radioactive waste characterization indeterminate state that prevents their dispositioning as either TRU waste or LLW. Spectral summing allows an experienced gamma spectroscopy analyst to add the HENC gamma spectra of a number of similar waste items together to form a consolidated (summed) spectrum. This summed spectrum contains the assay results of the group of items rather than the individual item, and gamma peaks that were not discemable in the individual spectra become quantifiable in the summed spectrum and the MDA for the group sum is reduced. The group of waste items can then be properly classified as LLW waste on the summed spectrum and valid assay values can be assigned for disposal. This technique has been successfully applied to a set of 52 debris drums - with individual MDA > 100nCi/g - with a resulting group total TRU alpha activity concentration below 40nCi/g. Further application of the technique at LANL to other debris drums and sludge drums that were measured on a WIPP certified HENe is planned and good candidate drum sets are being evaluated.

Gruetzmacher, Kathleen M [Los Alamos National Laboratory; Veilleux, John M [Los Alamos National Laboratory; Lucero, Randy P [PAJARITO SCIENTIFIC CORPORATION; Seamans, Jr, J. V. [PAJARITO SCIENTIFIC CORPATION; Clapham, M. J. [PAJARITO SCIENTIFIC CORPORATION

2011-01-27T23:59:59.000Z

322

Application of spectral summing to indeterminate suspect low-level drums at Los Alamos National Laboratory  

SciTech Connect (OSTI)

An analytical technique developed by Pajarito Scientific Corporation (PSC), utilizing spectral summing of spectra from groups of drums of similar waste type, is being employed by the Waste Disposition Project - Low Level Waste Disposal (WDP-LLWD) Group at Los Alamos National Laboratory (LANL). This technique has been used to disposition low-level radioactive waste that has dropped out of the transuranic (TRU) category and has no place to go unless it can be proven to be LLW and not TRU. The TRU program at LANL run by Mobile Characterization Services (MCS) employs two High Efficiency Neutron Counters (HENC) with built-in gamma assay systems to assay radioactive waste for shipment and disposal as TRU waste at the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico. As well as being certified for WIPP assays, the HENC systems can also be used for low-level waste assays for disposal at LANL or off-site disposal facilities, such as the Nevada Test Site (NTS). Some of the waste processed through the HENC systems cannot be confinned TRU due to the absence of detected TRU alpha emitters above the TRU cutoff of 100 nCi/g. This waste becomes suspect low-level waste (SLLW). In many cases, the waste also can't be classified as LLW because the minimum detectable activity (MDA) of TRU radio nuclides is above the 100 nCi/g level. These wastes that do not have enough detectable TRU activity to be classified as TRU waste and have too high a MDA to be classified as LLW enter a radioactive waste characterization indetenninate status that prevents their dispositioning as either TRU waste or LLW. Spectral summing allows an experienced ganuna spectroscopy analyst to add the HENC gamma spectra of a number of similar waste items together to form a consolidated (summed) spectrum. This summed spectrum contains the assay results of the group of items rather than the individual item, and gamma peaks that were not discernable in the individual spectra can become quantifiable in the summed spectrum and the MDA for group sum is reduced. The group of waste items can then be properly classified as LLW based on the summed spectrum and valid assay values can be assigned for disposal. This technique has been successfully applied to a set of 52 debris drums - with individual MDA > 100 nCi/g - with a resulting group total TRU alpha activity concentration below 40nCi/g. Further application of the technique at LANL to other waste drums that are measured on a WIPP certified HENC system is planned and good candidate drum sets are being evaluated as indeterminate situations develop.

Gruetzmacher, Kathleen M [Los Alamos National Laboratory; Veilleux, John M [Los Alamos National Laboratory; Lucero, Randy P [PAJARITO SCIENTIFIC CORAPTION; Seamans, Jr., James V [PAJARITO SCIENTIFIC CORPORATION; Clapham, Martin J [PAJARITO SCIENTIFIC CORPORATION

2010-11-09T23:59:59.000Z

323

Study of chemical toxicity of low-level wastes. Volume 1. Main report  

SciTech Connect (OSTI)

The chemical composition of fuel-cycle wastes is reasonably well known. By comparison, there is little information on the chemical composition of non-fuel cycle wastes. Such non-fuel cycle wastes come from a variety of sources - industrial, chemical, and medical. Because of the paucity of information, it is difficult to define the chemical characteristics and to evaluate potential hazards of non-fuel cycle wastes as a result of chemical toxicity. This report provides an assessment of the chemical toxicity of low-level radioactive wastes based on literature reviews, preparation of bibliographies and monographs, and application of a variety of methodologies either being currently applied or being proposed for relative hazard assessments. The report relies primarily on data from the Maxey Flats, Kentucky waste disposal site. While there are differences between humid and dry sites, the findings are believed to be generally applicable to evaluating the chemical toxicity of wastes at all low-level radioactive waste burial sites.

Not Available

1980-11-01T23:59:59.000Z

324

Study of chemical toxicity of low-level wastes. Volume 2. Monographs  

SciTech Connect (OSTI)

The chemical composition of fuel-cycle wastes is reasonably well known. By comparison, there is little information on the chemical composition of non-fuel cycle wastes. Such non-fuel cycle wastes come from a variety of sources - industrial, chemical, and medical. Because of the paucity of information, it is difficult to define the chemical characteristics and to evaluate potential hazards of non-fuel cycle wastes as a result of chemical toxicity. This report provides an assessment of the chemical toxicity of low-level radioactive wastes based on literature reviews, preparation of bibliographies and monographs, and application of a variety of methodologies either being currently applied or being proposed for relative hazard assessments. The report relies primarily on data from the Maxey Flats, Kentucky waste disposal site. While there are differences between humid and dry sites, the findings are believed to be generally applicable to evaluating the chemical toxicity of wastes at all low-level radioactive waste burial sites.

Not Available

1980-11-01T23:59:59.000Z

325

Maintenance Guide for DOE Low-Level Waste Disposal Facility  

Broader source: Energy.gov (indexed) [DOE]

4 4 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses U.S. DEPARTMENT OF ENERGY DOE G 435.1-4 i (and ii) DRAFT XX-XX-XX LLW Maintenance Guide Revision 0, XX-XX-XX Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses CONTENTS 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . .

326

Catalog of documents produced by the Greater-Than-Class C Low-Level Waste Management Program  

SciTech Connect (OSTI)

This catalog provides a ready reference for documents prepared by the Greater-Than-Class C Low-Level Waste (GTCC LLW) Management Program. The GTCC LLW Management Program is part of the National Low-Level Waste Management Program (NLLWMP). The NLLWMP is sponsored by the US Department of Energy (DOE) and is responsible for assisting the DOE in meeting its obligations under Public Law 99-240, The Low-Level Radioactive Waste Policy Amendments Act of 1985. This law assigns DOE the responsibility of ensuring the safe disposal of GTCC LLW in a facility licensed by the Nuclear Regulatory Commission (NRC). The NLLWMP is managed at the Idaho National Engineering Laboratory (INEL).

Winberg, M.R.

1995-03-01T23:59:59.000Z

327

DEVELOPMENT AND DEMONSTRATION OF POLYMER MICROENCAPSULATION OF MIXED WASTE USING KINETIC MIXER PROCESSING  

SciTech Connect (OSTI)

Thermokinetic mixing was investigated as an alternative processing method for polyethylene microencapsulation, a technology well demonstrated for treatment of hazardous, low-level radioactive and low-level mixed wastes. Polyethylene encapsulation by extrusion has been previously shown to be applicable to a wide range of waste types but often pretreatment of the wastes is necessary due to process limitations regarding the maximum waste moisture content and particle size distribution. Development testing was conducted with kinetic mixing in order to demonstrate technology viability and show improved process applicability in these areas. Testing to establish process capabilities and relevant operating parameters was performed with waste surrogates including an aqueous evaporator concentrate and soil. Using a pilot-scale kinetic mixer which was installed and modified for this program, the maximum waste moisture content and particle size was determined. Following process development with surrogate wastes, the technology was successfully demonstrated at BNL using actual mixed waste.

LAGERAAEN,P.R.; KALB,P.D.; MILIAN,L.W.; ADAMS,J.W.

1997-11-01T23:59:59.000Z

328

Effects of low levels of radiation on humans  

SciTech Connect (OSTI)

The state of knowledge on effects of low-level ionizing radiations on humans is reviewed. Several problems relating to dose thresholds or lack of thresholds for several types of cancer and high LET radiations and the effects of fractionation and dose protection are discussed. (ACR)

Auxier, J.A.

1981-01-01T23:59:59.000Z

329

Long-term, low-level radwaste volume-reduction strategies. Volume 4. Waste disposal costs. Final report  

SciTech Connect (OSTI)

Volume 4 establishes pricing levels at new shallow land burial grounds. The following conclusions can be drawn from the analyses described in the preceding chapters: Application of volume reduction techniques by utilities can have a significant impact on the volumes of wastes going to low-level radioactive waste disposal sites. Using the relative waste stream volumes in NRC81 and the maximum volume reduction ratios provided by Burns and Roe, Inc., it was calculated that if all utilities use maximum volum

Sutherland, A.A.; Adam, J.A.; Rogers, V.C.; Merrell, G.B.

1984-11-01T23:59:59.000Z

330

Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratoryís recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energyís ability to meet obligations with the State of Idaho.

Lisa Harvego

2009-06-01T23:59:59.000Z

331

Low-Level Waste Overview of the Nevada Test Site Waste Disposal Operations  

SciTech Connect (OSTI)

This paper provides an overview and the impacts of new policies, processes, and opportunities at the Nevada Test Site (NTS). Operational changes have been implemented, such as larger trench sizes and more efficient soil management as have administrative processes to address U.S. Department of Energy and U.S. Code of Federal Regulation analyses. Some adverse conditions have prompted changes in transportation and mixed low-level waste polices, and a new funding mechanism was developed. This year has seen many changes to the NTS disposal family. (authors)

Carilli, J.T.; Skougard, M.G. [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Las Vegas, NV (United States); Krenzien, S.K. [Navarro Research and Engineering, Inc., Las Vegas, NV (United States); Wrapp, J.K.; Ramirez, C.; Yucel, V.; Shott, G.J.; Gordon, S.J.; Enockson, K.C.; Desotell, L.T. [National Security Technologies, LLC, Las Vegas, Nevada (United States)

2008-07-01T23:59:59.000Z

332

Seventh annual DOE LLWMP participants' information meeting. DOE Low-Level Waste Management Program. Abstracts  

SciTech Connect (OSTI)

The following sessions were held: International Low-Level Waste Management Activities; Low-Level Waste Disposal; Characteristics and Treatment of Low-Level Waste; Environmental Monitoring and Performance; Greater Confinement and Alternative Disposal Methods; Low-Level Waste Management; Corrective Measures; Performance Prediction and Assessment; and Siting New Defense and Commercial Low-Level Waste Disposal Facilities.

Not Available

1985-08-01T23:59:59.000Z

333

Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1997-12-01T23:59:59.000Z

334

Radioactive Waste Radioactive Waste  

E-Print Network [OSTI]

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

335

A model for a national low level waste program  

SciTech Connect (OSTI)

A national program for the management of low level waste is essential to the success of environmental clean-up, decontamination and decommissioning, current operations and future missions. The value of a national program is recognized through procedural consistency and a shared set of resources. A national program requires a clear waste definition and an understanding of waste characteristics matched against available and proposed disposal options. A national program requires the development and implementation of standards and procedures for implementing the waste hierarchy, with a specitic emphasis on waste avoidance, minimization and recycling. It requires a common set of objectives for waste characterization based on the disposal facility's waste acceptance criteria, regulatory and license requirements and performance assessments. Finally, a national waste certification program is required to ensure compliance. To facilitate and enhance the national program, a centralized generator services organization, tasked with providing technical services to the generators on behalf of the national program, is necessary. These subject matter experts are the interface between the generating sites and the disposal facility(s). They provide an invaluable service to the generating organizations through their involvement in waste planning prior to waste generation and through championing implementation of the waste hierarchy. Through their interface, national treatment and transportation services are optimized and new business opportunities are identified. This national model is based on extensive experience in the development and on-going management of a national transuranic waste program and management of the national repository, the Waste Isolation Pilot Plant. The Low Level Program at the Savannah River Site also successfully developed and implemented the waste hierarchy, waste certification and waste generator services concepts presented below. The Savannah River Site services over forty generators and has historically managed over 12,000 cubic meters of low level waste annually. The results of the waste minimization program at the site resulted in over 900 initiatives, avoiding over 220,000 cubic meters of waste for a life cycle cost savings of $275 million. At the Los Alamos National Laboratory, the low level waste program services over 20 major generators and several hundred smaller generators that produce over 4,000 cubic meters of low level waste annually. The Los Alamos National Laboratory low level waste program utilizes both on-site and off-site disposal capabilities. Off-site disposal requires the implementation of certification requirements to utilize both federal and commercial options. The Waste Isolation Pilot Plant is the US Department of Energy's first deep geological repository for the permanent disposal of Transuanic waste. Transuranic waste was generated and retrievably stored at 39 sites across the US. Transuranic waste is defined as waste with a radionuclide concentration equal to or greater than 100 nCi/g consisting of radionuclides with half-lives greater than 20 years and with an atomic mass greater than uranium. Combining the lessons learned from the national transuranic waste program, the successful low level waste program at Savannah River Site and the experience of off-site disposal options at Los Alamos National Laboratory provides the framework and basis for developing a viable national strategy for managing low level waste.

Blankenhorn, James A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

336

Microbial activity of trench leachates from shallow-land, low-level radioactive waste disposal sites.  

Science Journals Connector (OSTI)

...Ill.; Barnwell, S.C.; West Valley, N.Y.; and Richland, Wash...sites at Maxey Flats, Ky., and West Valley, N.Y., contained 14C, 3H...disposal sites of Maxey Flats, Ky., West Valley, N.Y., Sheffield, Ill...

A J Francis; S Dobbs; B J Nine

1980-07-01T23:59:59.000Z

337

Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites  

SciTech Connect (OSTI)

This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user.

Hakonson, T.E.

1986-02-01T23:59:59.000Z

338

Overview of Low-Level Waste Disposal Operations at the Nevada Test Site  

SciTech Connect (OSTI)

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future.

DOE /Navarro

2007-02-01T23:59:59.000Z

339

Proceedings of the eighth annual DOE low-level waste management forum: Executive summary, opening plenary session, closing plenary session, attendees  

SciTech Connect (OSTI)

The Eighth Annual DOE (Department of Energy) Low-Level Waste Management Forum was held in September 1986, in Denver, Colorado, to provide a forum for exchange of information on low-level radioactive waste (LLW) management activities, requirements, and plans. The one hundred ninety attendees included representatives from the DOE Nuclear Energy and Defense Low-Level Waste Management Programs, DOE Operations Offices and their contractors; representatives from the US Nuclear Regulatory Commission (NRC), US Environmental Protection Agency (EPA), US Geological Survey, and their contractors; representatives of states and regions responsible for development of new commercial low-level waste disposal facilities; representatives of utilities, private contractors, disposal facility operators, and other parties concerned with low-level waste management issues. Plenary sessions were held at the beginning and conclusion of the meeting, while eight concurrent topical sessions were held during the intervening two days. The meeting was organized by topical areas to allow for information exchange and discussion on current and future low-level radioactive waste management challenges. Session chairmen presented summaries of the discussions and conclusions resulting from their respective sessions. Selected papers in this volume have been processed for inclusion in the Energy Data Base.

Not Available

1987-02-01T23:59:59.000Z

340

Radionuclide characterization, migration, and monitoring at a commercial low-level waste disposal site  

SciTech Connect (OSTI)

A commercial low-level radioactive waste disposal facility is being studied to characterize the physicochemical forms of the radionuclides and their behavior during migration in ground waters. Environmental monitoring studies are also in progress to identify and assess migration pathways of the radionuclides. At the Maxey Flats, Kentucky low-level waste burial site, mobile species of various radionuclides have migrated short distances on-site (meters to tens of meters) from the trenches. Plutonium is migrating as a soluble anionic complex in the Pu(III) and Pu(IV) oxidation states. Empirical evidence suggests that EDTA contained in the trench water has formed strong organic complexes with plutonium and /sup 60/Co, thereby increasing their mobility. Mobile forms of /sup 90/Sr and /sup 137/Cs are associated with a variety of polar organic species, e.g. carboxylic acids. Environmental monitoring studies at the Maxey Flats site are assessing surface contamination and biological monitoring techniques which can be used for long-term surveillance. Deciduous forests growing near the Maxey Flats site offer the potential to detect the migration of radionuclides, particularly tritium, occurring by subterranean flow from the waste trenches of the flow is within the rooting depth of the trees.

Kirby, L.J.; Toste, A.P.; Rickard, W.H.

1983-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 1, Text  

SciTech Connect (OSTI)

This report presents information derived from the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. This volume contains the main text. Volume 2 contains the appendixes, including data and supporting information that verify content and results found in the main text. This report documents information collected by the Pacific Northwest Laboratory at the request of Westinghouse Hanford Company. Presented in this report are the preliminary interpretations of the hydrogeologic environment of six low-level burial grounds, which comprise four waste management areas (WMAs) located in the 200 Areas of the Hanford Site. This information and its accompanying interpretations were derived from sampling and testing activities associated with the construction of 35 ground-water monitoring wells as well as a multitude of previously existing boreholes. The new monitoring wells were installed as part of a ground-water monitoring program initiated in 1986. This ground-water monitoring program is based on requirements for interim status facilities in compliance with the Resource Conservation and Recovery Act (1976).

Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

1989-01-01T23:59:59.000Z

342

Parametric study of radionuclide characterization -- Low-level waste. Draft  

SciTech Connect (OSTI)

The criteria and guidance given in this addendum specifically address the classification of low-level waste at the Hanford Reservation into Category 1, Category 3, and Greater Than Category 3 (GTC3). These categories are developed based on the performance assessment (PA) being conducted for the Hanford Site. The radionuclides and their concentration for each category are listed in the revised Table 1-1 (Attachment 1). The information to classify the waste for US Department of Transportation (DOT) and to classify Transuranic (TRU)/ Non-TRU, Contact Handled (CH)/Remote Handled (RH) waste is given in WHC-EP-0063-3 (WHC 1991).

Amir, S.J.

1993-04-01T23:59:59.000Z

343

Nuclear reactor with low-level core coolant intake  

DOE Patents [OSTI]

A natural-circulation boiling-water reactor has skirts extending downward from control rod guide tubes to about 10 centimeters from the reactor vessel bottom. The skirts define annular channels about control rod drive housings that extend through the reactor vessel bottom. Recirculating water is forced in through the low-level entrances to these channels, sweeping bottom water into the channels in the process. The sweeping action prevents cooler water from accumulating at the bottom. This in turn minimizes thermal shock to bottom-dwelling components as would occur when accumulated cool water is swept away and suddenly replaced by warmer water.

Challberg, Roy C. (Livermore, CA); Townsend, Harold E. (Campbell, CA)

1993-01-01T23:59:59.000Z

344

Treatment options for low-level radiologically contaminated ORNL filtercake  

SciTech Connect (OSTI)

Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithic waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.

Lee, Hom-Ti [Oak Ridge Associated Universities, Inc., TN (United States); Bostick, W.D. [Oak Ridge K-25 Site, TN (United States)

1996-04-01T23:59:59.000Z

345

Integrated Data Base for 1989: Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1988. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, commercial reactor and fuel cycle facility decommissioning waste, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous, highly radioactive materials that may require geologic disposal. 45 figs., 119 tabs.

Not Available

1989-11-01T23:59:59.000Z

346

Integrated data base for 1990: US spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1989. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 22 refs., 48 figs., 109 tabs.

Not Available

1990-10-01T23:59:59.000Z

347

Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

Not Available

1992-10-01T23:59:59.000Z

348

Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

Boyd D. Christensen

2012-05-01T23:59:59.000Z

349

Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds  

SciTech Connect (OSTI)

This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States)

1995-06-01T23:59:59.000Z

350

Preliminary low-level waste feed staging plan  

SciTech Connect (OSTI)

A Preliminary Low-Level Waste Feed Staging Plan was prepared. The plan supports the Phase I privatization effort by providing recommendations that may influence the technical content of the final request for proposal, and the interface control documents for the turnover of two double-shell tanks (DST) to the private contractors for use as feed tanks and the transfer of supernate to these tanks. Additionally, the preliminary schedule of feed staging activities will be useful to both RL and the private bidders during the contract negotiation period. A revised feed staging plan will be issued in August 1996 reflecting anticipated changes in the request for proposal, resolution of issues identified in this report, and completion of additional work scope.

Certa, P.J.

1996-02-05T23:59:59.000Z

351

Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), the Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.

N /A

2000-06-30T23:59:59.000Z

352

Phosphate ceramic process for macroencapsulation and stabilization of low-level debris wastes  

SciTech Connect (OSTI)

Across the DOE complex, large quantities of contaminated debris and irradiated lead bricks have been accumulated for disposal. Under the US Environmental Protection Agency`s Alternative Treatment Standards, the preferred method of disposal of these wastes is macroencapsulation. Chemically bonded phosphate ceramic (CBPC) is a novel binder that was developed at Argonne National Laboratory to stabilize and solidify various low-level mixed wastes. This binder is extremely strong, dense, and impervious to water. In this investigation, CBPC has been used to demonstrate macroencapsulation of various contaminated debris wastes, including cryofractured debris, lead bricks, lead-lined plastic gloves, and mercury-contaminated crushed glass. This paper describes the fabrication of the waste forms, as well as the results of various characterizations performed on the waste forms. The results show that the simple and low-cost CBPC is an excellent material system for the macroencapsulation of debris wastes.

Singh, D.; Wagh, A.S.; Tlustochowicz, M.; Jeong, S.Y. [Argonne National Lab., IL (United States). Energy Technology Div.] [Argonne National Lab., IL (United States). Energy Technology Div.

1998-12-31T23:59:59.000Z

353

Macroencapsulation of low-level debris waste with the phosphate ceramic process  

SciTech Connect (OSTI)

Across the DOE complex, large quantities of contaminated debris and irradiated lead bricks require disposal. The preferred method for disposing of these wastes is macroencapsulation under U.S. Environmental Protection Agency Alternative Treatment Standards. Chemically bonded phosphate ceramics serve as a novel binder, developed at Argonne National Laboratory, for stabilizing and solidifying various low-level mixed wastes. Extremely strong, dense, and impervious to water intrusion, this material was developed with support from the U.S. Department of Energy`s Office of Science and Technology (DOE OST). In this investigation, CBPCs have been used to demonstrate macroencapsulation of various contaminated debris wastes, including cryofractured debris, lead bricks, and lead-lined plastic gloves. This paper describes the processing steps for fabricating the waste forms and the results of various characterizations performed on the waste forms. The conclusion is that simple and low-cost CBPCs are excellent material systems for macroencapsulating debris wastes.

Singh, D.; Wagh, A.S.; Tlustochowicz, M.; Jeong, S.Y.

1997-03-01T23:59:59.000Z

354

COUPON IMMERSION TESTING IN SIMULATED HAZARDOUS LOW LEVEL WASTE  

SciTech Connect (OSTI)

AISI Type 304L (304L) stainless steel was recommended as a suitable material of construction for the new Hazardous Low Level Waste Processing Tanks (HLLWPT). This report documents the second phase of a coupon immersion test program to determine the susceptibility of 304L to localized attack in a variety of simulated wastes. The coupon test results confirmed the conclusions that were made from the first phase of the test program. First, 304L is a suitable material of construction for the new waste tanks. Second, the agreement between the cyclic polarization tests and the coupon immersion tests demonstrates that cyclic polarization can be used to predict the susceptibility of a material to localized corrosion in these wastes. In addition to the tests performed on 304L, tests were performed on ASTM A537 carbon steel (A537) and Incoloy 825 (I825). Neither 304L nor I825 was susceptible to attack, while A537 experienced varying degrees of attack in the different wastes. Observations on the surface attack and corrosion products on A537 were used to elucidate the mechanism by which A537 corrodes in these wastes.

Wiersma, B.

1991-08-22T23:59:59.000Z

355

Feedback Configuration Tools for LHC Low Level RF  

SciTech Connect (OSTI)

The LHC Low Level RF System (LLRF) is a complex multi-VME crate system which is used to regulate the superconductive cavity gap voltage as well as to lower the impedance as seen by the beam through low latency feedback. This system contains multiple loops with several parameters to be set before the loops can be closed. In this paper, we present a suite of MATLAB based tools developed to perform the preliminary alignment of the RF stations and the beginnings of a closed loop model based alignment routine. We briefly introduce the RF system and in particular the base band (time domain noise based) network analyzer system built into the LHC LLRF. The main focus of this paper is the methodology of the algorithms used by the routines within the context of the overall system. Measured results are presented that validate the technique. Because the RF systems are located in a cavern 120 m underground in a location which is relatively un-accessible without beam and completely un-accessible with beam present or magnets are energized, these remotely operated tools are a necessity for the CERN LLRF team to maintain and tune their LLRF systems in a similar fashion as to what was done very successfully in PEP-II at SLAC.

Van Winkle, D.; Fox, J.; Mastorides, T.; Rivetta, C.; /SLAC; Baudrenghien, P.; Butterworth, A.; Molendijk, J.; /CERN

2009-12-16T23:59:59.000Z

356

Remediation alternatives for low-level herbicide contaminated groundwater  

SciTech Connect (OSTI)

In early 1995, an evaluation of alternatives for remediation of a shallow groundwater plume containing low-levels of an organic herbicide was conducted at BASF Corporation, a petrochemical facility located in Ascension Parish, Louisiana. The contaminated site is located on an undeveloped portion of property within 1/4 mile of the east bank of the Mississippi River near the community of Geismar. Environmental assessment data indicated that about two acres of the thirty acre site had been contaminated from past waste management practices with the herbicide bentazon. Shallow soils and groundwater between 5 to 15 feet in depth were affected. Maximum concentrations of bentazon in groundwater were less than seven parts per million. To identify potentially feasible remediation alternatives, the environmental assessment data, available research, and cost effectiveness were reviewed. After consideration of a preliminary list of alternatives, only two potentially feasible alternatives could be identified. Groundwater pumping, the most commonly used remediation alternative, followed by carbon adsorption treatment was identified as was a new innovative alternative known as vegetative transpiration. This alternative relies on the natural transpiration processes of vegetation to bioremediate organic contaminants. Advantages identified during screening suggest that the transpiration method could be the best remediation alternative to address both economic and environmental factors. An experiment to test critical factors of the vegetatived transpiration alternative with bentazon was recommended before a final decision on feasibility can be made.

Conger, R.M. [BASF Corp., Geismar, LA (United States)

1995-10-01T23:59:59.000Z

357

Characterization of radionuclude behavior in low-level waste sites  

SciTech Connect (OSTI)

Our laboratory is investigating the subsurface migration of radionuclides in groundwater at the Maxey Flats, Kentucky, shallow land-burial site and at a low-level aqueous waste disposal facility. At Maxey Flats, radionuclide and tracer data indicate groundwater communication between a waste trench and an adjacent experimental study area. Areal distributions of radionuclides in surface soil confirm that contamination at Maxey Flats has been largely contained on site. Of the radionuclides detected in the surface soil, only /sup 3/H and /sup 60/Co concentrations appear to be derived from waste. Plutonium exists in the anoxic subsurface waters at Maxey Flats as a reduced, anionic complex; some of the plutonium appears to be complexed with EDTA, whereas organic acids seem to be associated with /sup 137/Cs and /sup 90/Sr. At the aqueous waste disposal site, /sup 3/H and mainly anionic species of certain radionuclides, including /sup 60/Co, /sup 106/Ru, /sup 99/Tc, /sup 131/I, and traces of /sup 238/ /sup 239/ /sup 240/Pu, appear to migrate from a trench through soil adjacent to the trench. Radionuclides in the particulate and cationic forms appear to be efficiently retained by the soil. In general, observations indicate that the physicochemical form of the radionuclides mediates their subsurface migration in groundwater at both waste disposal sites.

Toste, A.P.; Kirby, L.J.; Robertson, D.E.; Abel, K.H.; Perkins, R.W.

1982-10-01T23:59:59.000Z

358

Characterization of radionuclide behavior in low level waste sites  

SciTech Connect (OSTI)

This laboratory is investigating the subsurface migration of radionuclides in groundwater at the Maxey Flats, Kentucky, shallow land burial site and at a low-level aqueous waste disposal facility. At Maxey Flats, radionuclide and tracer data indicate groundwater communication between a waste trench and an adjacent experimental study area. Areal distributions of radionuclides in surface soil confirm that contamination at Maxey Flats has been largely contained on site. Of the radionuclides detected in the surface soil, only /sup 3/H and /sup 60/Co concentrations appear to be derived from waste. Plutonium exists in the anoxic subsurface waters at Maxey Flats as a reduced, anionic complex; some of the plutonium appears to be complexed with EDTA, whereas organic acids seem to be associated with /sup 137/Cs and /sup 90/Sr. At the aqueous waste disposal site, /sup 3/H and mainly anionic species of certain radionuclides, including /sup 60/Co, /sup 106/Ru, /sup 99/Tc, /sup 131/I, and TRACES OF /sup 238/Pu, /sup 239/Pu and /sup 240/Pu appear to migrate from a trench through soil adjacent to the trench. Radionuclides in the particulate and cationic forms appear to be efficiently retained by the soil. In general, observations indicate that the physicochemical form of the radionuclides mediates their subsurface migration in groundwater at both waste disposal sites.

Toste, A.P.; Abel, K.H.; Kirby, L.J.; Perkins, R.W.; Robertson, D.E.

1983-02-01T23:59:59.000Z

359

WRAP low level waste (LLW) glovebox operational test report  

SciTech Connect (OSTI)

The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into another 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution`s (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.

Kersten, J.K.

1998-02-19T23:59:59.000Z

360

Technical area status report for low-level mixed waste final waste forms. Volume 1  

SciTech Connect (OSTI)

The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

Mayberry, J.L.; DeWitt, L.M. [Science Applications International Corp., Idaho Falls, ID (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

E-Print Network 3.0 - alpha-mixed low-level waste Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DISPOSAL 12;Volume 5: Waste 3.2 2006 IPCC Guidelines for National Greenhouse Gas... (Germany) 12;Chapter 3: Solid Waste Disposal 2006 IPCC Guidelines for National Greenhouse...

362

Time and motion study for alternative mixed low-level waste treatment systems  

SciTech Connect (OSTI)

The time and motion study was developed to look at time-related aspects of the technologies and systems studied in the Integrated Thermal Treatment Systems (ITTS) and Integrated Nonthermal Treatment Systems (INTS) studies. The INTS and ITTS studies combined technologies into systems and subsystems for evaluation. The system approach provides DOE a method of measuring advantages and disadvantages of the many technologies currently being researched. For example, technologies which are more likely to create secondary waste or require extensive pretreatment handling may be less desirable than technologies which require less support from other processes. The time and motion study was designed to address the time element in the INTS and ITTS systems studies. Previous studies have focused on material balance, cost, technical effectiveness, regulatory issues, community acceptance, and operability. This study looks at system dynamics by estimating the treatment time required for a unit of waste, from receipt to certification for shipping. Labor estimates are also developed, based on the time required to do each task for each process. This focus on time highlights critical path processes and potential bottlenecks in the INTS and ITTS systems.

Biagi, C.; Vetromile, J.; Teheranian, B.

1997-02-01T23:59:59.000Z

363

Low-level detection and quantification of Plutonium(III, IV, V,and VI) using a liquid core waveguide  

SciTech Connect (OSTI)

Understanding the aqueous chemistry of plutonium, in particular in environmental conditions, is often complicated by plutonium's complex redox chemistry. Because plutonium possesses four oxidation states, all of which can coexist in solution, a reliable method for the identification of these oxidation states is needed. The identification of plutonium oxidation states at low levels in aqueous solution is often accomplished through an indirect determination using series of liquid-liquid extraction procedures using oxidation state specific reagents such as HDEHP and TTA. While these methods, coupled with radioactive counting techniques provide superior limits of detection they may influence the plutonium redox equilibrium, are time consuming, waste intensive and costly. Other analytical methods such as mass spectrometry and radioactive counting as stand alone methods provide excellent detection limits but lack the ability to discriminate between the oxidation states of the plutonium ions in solution.

Wilson, Richard E.; Hu, Yung-Jin; Nitsche, Heino

2003-06-28T23:59:59.000Z

364

Project report: Tritiated oil repackaging highlighting the ISMS process. Historical radioactive and mixed waste disposal request validation and waste disposal project  

SciTech Connect (OSTI)

The Integrated Safety Management System (ISMS) was established to define a framework for the essential functions of managing work safely. There are five Safety Management Functions in the model of the ISMS process: (1) work planning, (2) hazards analysis, (3) hazards control, (4) work performance, and (5) feedback and improve. Recent activities at the Radioactive and Mixed Waste Management Facility underscored the importance and effectiveness of integrating the ISMS process to safely manage high-hazard work with a minimum of personnel in a timely and efficient manner. This report describes how project personnel followed the framework of the ISMS process to successfully repackage tritium-contaminated oils. The main objective was to open the boxes without allowing the gaseous tritium oxide, which had built up inside the boxes, to release into the sorting room. The boxes would be vented out the building stack until tritium concentration levels were acceptable. The carboys would be repackaged into 30-gallon drums and caulked shut. Sealing the drums would decrease the tritium off-gassing into the RMWMF.

Schriner, J.A. [Automated Solutions of Albuquerque, Inc., NM (United States)

1998-08-01T23:59:59.000Z

365

EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak...  

Broader source: Energy.gov (indexed) [DOE]

05: Treating Transuranic (TRU)Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EIS-0305: Treating Transuranic (TRU)Alpha Low-Level at the Oak Ridge...

366

EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

305: Treating Transuranic (TRU)Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EIS-0305: Treating Transuranic (TRU)Alpha Low-Level at the Oak Ridge...

367

Format and Content Guide for DOE Low-Level Waste Disposal Facility...  

Office of Environmental Management (EM)

Format and Content Guide for DOE Low-Level Waste Disposal Facility Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments...

368

Format and Content Guide for DOE Low-Level Waste Disposal Facility...  

Broader source: Energy.gov (indexed) [DOE]

and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure...

369

Integrated Data Base for 1991: US spent fuel and radioactive waste inventories, projections, and characteristics. [Contains glossary  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1990. These data are based on the most reliable information available form government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated generally through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 160 refs., 61 figs., 142 tabs.

Not Available

1991-10-01T23:59:59.000Z

370

Integrated Data Base for 1991: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 7  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1990. These data are based on the most reliable information available form government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated generally through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 160 refs., 61 figs., 142 tabs.

Not Available

1991-10-01T23:59:59.000Z

371

Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10  

SciTech Connect (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

Not Available

1994-12-01T23:59:59.000Z

372

Low-level waste management in the South. Task 4. 2 - long-term care requirements. [Shallow land burial  

SciTech Connect (OSTI)

This paper provides an analysis of the long-term care requirements of low-level radioactive waste disposal facilities. Among the topics considered are the technical requirements for long-term care, the experiences of the three inactive and three active commercial disposal facilities concerning perpetual care and maintenance, and the financial management of a perpetual care fund. In addition, certain recommendations for the establishment of a perpetual care fund are provided. The predominant method of disposing of low-level radioactive wastes is shallow land burial. After studying alternative methods of disposal, the U.S Nuclear Regulatory Commission (NRC) concluded that there are no compelling reasons for abandoning this disposal method. Of the 22 shallow land burial facilities in the U.S., the federal government maintains 14 active and two inactive disposal sites. There are three active (Barnwell, South Carolina; Hanford, Washington; and Beatty, Nevada) and three inactive commercial disposal facilities (Maxey Flats, Kentucky; Sheffield, Illinois; and West Valley, New York). The life of a typical facility can be broken into five phases: preoperational, operational, closure, postclosure observation and maintenance, and institutional control. Long-term care of a shallow land burial facility will begin with the disposal site closure phase and continue through the postclosure observation and maintenance and institutional control phases. Since the postclosure observation and maintenance phase will last about five years and the institutional control phase 100 years, the importance of a well planned long-term care program is apparent. 26 references, 1 table.

Not Available

1983-01-01T23:59:59.000Z

373

Technical considerations and problems associated with long-term storage of low-level waste  

SciTech Connect (OSTI)

If a state or regional compact does not have adequate disposal capacity for low-level radioactive waste (LLRW), then extended storage of certain LLRW may be necessary. The Nuclear Regulatory Commission (NRC) contracted with Brookhaven National Laboratory (BNL) several years ago (1984--86) to address the technical issues of extended storage. The dual objectives of this study were (1) to provide practical technical assessments for NRC to consider in evaluating specific proposals for extended storage and (2) to help ensure adequate consideration by NRC, Agreement States, and licensees of potential problems that may arise from existing or proposed extended storage practices. In this summary of that study, the circumstances under which extended storage of LLRW would most likely result in problems during or after the extended storage period are considered and possible mitigative measures to minimize these problems are discussed. These potential problem areas include: (1) the degradation of carbon steel and polyethylene containers during storage and the subsequent need for repackaging (resulting in increased occupational exposure), (2) the generation of hazardous gases during storage, and (3) biodegradative processes in LLRW.

Siskind, B.

1991-01-01T23:59:59.000Z

374

Technical considerations and problems associated with long-term storage of low-level waste  

SciTech Connect (OSTI)

If a state or regional compact does not have adequate disposal capacity for low-level radioactive waste (LLRW), then extended storage of certain LLRW may be necessary. The Nuclear Regulatory Commission (NRC) contracted with Brookhaven National Laboratory (BNL) several years ago (1984--86) to address the technical issues of extended storage. The dual objectives of this study were (1) to provide practical technical assessments for NRC to consider in evaluating specific proposals for extended storage and (2) to help ensure adequate consideration by NRC, Agreement States, and licensees of potential problems that may arise from existing or proposed extended storage practices. In this summary of that study, the circumstances under which extended storage of LLRW would most likely result in problems during or after the extended storage period are considered and possible mitigative measures to minimize these problems are discussed. These potential problem areas include: (1) the degradation of carbon steel and polyethylene containers during storage and the subsequent need for repackaging (resulting in increased occupational exposure), (2) the generation of hazardous gases during storage, and (3) biodegradative processes in LLRW.

Siskind, B.

1991-12-31T23:59:59.000Z

375

National Low-Level Waste Management Program Radionuclide Report Series. Volume 10, Nickel-63  

SciTech Connect (OSTI)

This report outlines the basic radiological, chemical, and physical characteristics of nickel-63 ({sup 63}Ni) and examines how these characteristics affect the behavior of {sup 63}Ni in various environmental media, such as soils, groundwater, plants, animals, the atmosphere, and the human body. Discussions also include methods of {sup 63}Ni production, waste types, and waste forms that contain {sup 63}Ni. The primary source of {sup 63}Ni in the environment has been low-level radioactive waste material generated as a result of neutron activation of stable {sup 62}Ni that is present in the structural components of nuclear reactor vessels. {sup 63}Ni enters the environment from the dismantling activities associated with nuclear reactor decommissioning. However, small amounts of {sup 63}Ni have been detected in the environment following the testing of thermonuclear weapons in the South Pacific. Concentrations as high as 2.7 Bq{sup a} per gram of sample (or equivalently 0.0022 parts per billion) were observed on Bikini Atoll (May 1954). {sup 63}Ni was not created as a fission product species (e.g., from {sup 235}U or {sup 239}Pu fissions), but instead was produced as a result of neutron capture in {sup 63}Ni, a common nickel isotope present in the stainless steel components of nuclear weapons (e.g., stainless-304 contains {approximately}9% total Ni or {approximately}0.3% {sup 63}Ni).

Carboneau, M.L.; Adams, J.P.

1995-02-01T23:59:59.000Z

376

E AREA LOW LEVEL WASTE FACILITY DOE 435.1 PERFORMANCE ASSESSMENT  

SciTech Connect (OSTI)

This Performance Assessment for the Savannah River Site E-Area Low-Level Waste Facility was prepared to meet requirements of Chapter IV of the Department of Energy Order 435.1-1. The Order specifies that a Performance Assessment should provide reasonable assurance that a low-level waste disposal facility will comply with the performance objectives of the Order. The Order also requires assessments of impacts to water resources and to hypothetical inadvertent intruders for purposes of establishing limits on radionuclides that may be disposed near-surface. According to the Order, calculations of potential doses and releases from the facility should address a 1,000-year period after facility closure. The point of compliance for the performance measures relevant to the all pathways and air pathway performance objective, as well as to the impact on water resources assessment requirement, must correspond to the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste following the assumed end of active institutional controls 100 years after facility closure. During the operational and institutional control periods, the point of compliance for the all pathways and air pathway performance measures is the SRS boundary. However, for the water resources impact assessment, the point of compliance remains the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste during the operational and institutional control periods. For performance measures relevant to radon and inadvertent intruders, the points of compliance are the disposal facility surface for all time periods and the disposal facility after the assumed loss of active institutional controls 100 years after facility closure, respectively. The E-Area Low-Level Waste Facility is located in the central region of the SRS known as the General Separations Area. It is an elbow-shaped, cleared area, which curves to the northwest, situated immediately north of the Mixed Waste Management Facility. The E-Area Low-Level Waste Facility is comprised of 200 acres for waste disposal and a surrounding buffer zone that extends out to the 100-m point of compliance. Disposal units within the footprint of the low-level waste facilities include the Slit Trenches, Engineered Trenches, Component-in-Grout Trenches, the Low-Activity Waste Vault, the Intermediate-Level Vault, and the Naval Reactor Component Disposal Area. Radiological waste disposal operations at the E-Area Low-Level Waste Facility began in 1994. E-Area Low-Level Waste Facility closure will be conducted in three phases: operational closure, interim closure, and final closure. Operational closure will be conducted during the 25-year operation period (30-year period for Slit and Engineered Trenches) as disposal units are filled; interim closure measures will be taken for some units. Interim closure will take place following the end of operations and will consist of an area-wide runoff cover along with additional grading over the trench units. Final closure of all disposal units in the E-Area Low-Level Waste Facility will take place at the end of the 100-year institutional control period and will consist of the installation of an integrated closure system designed to minimize moisture contact with the waste and to serve as a deterrent to intruders. Radiological dose to human receptors is analyzed in this PA in the all-pathways analysis, the inadvertent intruder analysis and the air pathway analysis, and the results are compared to the relevant performance measures. For the all-pathways analysis, the performance measure of relevance is a 25-mrem/yr EDE to representative members of the public, excluding dose from radon and its progeny in air. For the inadvertent intruder, the applicable performance measures are 100-mrem/yr EDE and 500 mrem/yr EDE for chronic and exposure scenarios, respectively. The relevant performance measure for the air pathway is 10-mrem/yr EDE via the air pathway, excluding dose from radon and its progeny in air. Protecti

Wilhite, E

2008-03-31T23:59:59.000Z

377

Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energy¬źs Idaho Site  

Broader source: Energy.gov (indexed) [DOE]

FINDING OF NO SIGNIFICANT IMPACT FINDING OF NO SIGNIFICANT IMPACT FOR THE ENVIRONMENTAL ASSESSMENT FOR THE REPLACEMENT CAPABILITY FOR THE DISOPOSAL OF REMOTE-HANDLED LOW-LEVEL RADIOACTIVE WASTE GENERATED AT THE DEPARTMENT OF ENERGY'S IDAHO SITE Agency: U. S. Department of Energy (DOE) Action: Finding ofNo Significant Impact (FONSI) Summary: Operations conducted in support ofIdaho National Laboratory (INL) and Naval Reactors Facility (NRF) missions on the Idaho site generate low-level radioactive waste (LL W). DOE classifies some of the LL W generated at the INL as remote-handled LL W because its potential radiation dose is high enough to require additional protection of workers using distance and shielding. Remote-handled wastes are those with radiation levels exceeding 200 millirem

378

Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energy¬źs Idaho Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

93 93 Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site Final December 2011 Department of Energy Idaho Operations Office 1955 Fremont Avenue Idaho Falls, ID 83415 December 21, 2011 Dear Citizen: The U.S. Department of Energy (DOE) has completed the Final Environmental Assessment (EA) for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site and determined that a Finding of No Significant Impact (FONSI) is appropriate. The draft EA was made available for an 81-day public review and comment period on September 1,2011. DOE considered all comments made

379

EA-1276: Widening Trench 36 of the 218-E-12B Low-level Burial Ground,  

Broader source: Energy.gov (indexed) [DOE]

76: Widening Trench 36 of the 218-E-12B Low-level Burial 76: Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site, Richland, Washington EA-1276: Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to widen and operate unused Trench 36 in the 218-E-12B Low-Level Burial Ground for disposal of low-level waste at the U.S. Department of Energy Hanford Site. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD February 11, 1999 EA-1276: Finding of No Significant Impact Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site, Richland, Washington February 11, 1999 EA-1276: Final Environmental Assessment Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site,

380

Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2  

SciTech Connect (OSTI)

The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate.

Roscha, V.

1994-11-29T23:59:59.000Z

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site  

SciTech Connect (OSTI)

The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

NSTec Environmental Management

2008-09-01T23:59:59.000Z

382

Hazardous and Radioactive Mixed Waste  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

1982-12-31T23:59:59.000Z

383

22 - Radioactive waste disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the disposal of radioactive wastes that arise from a great variety of sources, including the nuclear fuel cycle, beneficial uses of isotopes, and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. The spent fuel is accumulating, awaiting the development of a high-level waste repository. It is anticipated that a multi-barrier system involving packaging and geologic media will provide protection of the public over the centuries. The favored method of disposal is in a mined cavity deep underground. In some countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is done by casks and containers designed to withstand severe accidents. Low-level wastes come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2001-01-01T23:59:59.000Z

384

EA-1203: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford  

Broader source: Energy.gov (indexed) [DOE]

3: Trench 33 Widening in 218-W-5 Low-level Burial Ground, 3: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington EA-1203: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to widen and operate the unused Trench 33 in the 218-W-5 Low-Level Burial Ground at the U.S. Department of Energy's Richland Operations Office. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 28, 1997 EA-1203: Finding of No Significant Impact Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington July 28, 1997 EA-1203: Final Environmental Assessment Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington

385

Low-Level Waste Regulation: Putting Principles Into Practice - 13297 - The Richard S. Hodes, M.D., Honor Lecture Award  

SciTech Connect (OSTI)

In carrying out its mission to ensure the safe use of radioactive materials for beneficial civilian purposes while protecting people and the environment, the U.S. Nuclear Regulatory Commission (NRC) adheres to its Principles of Good Regulation. The Principles-Independence, Openness, Efficiency, Clarity, and Reliability-apply to the agency as a whole in its decision-making and to the individual conduct of NRC employees. This paper describes the application of the Principles in a real-life staff activity, a guidance document used in the NRC's low-level radioactive waste (LLW) program, the Concentration Averaging and Encapsulation Branch Technical Position (CA BTP). The staff's process to revise the document, as well as the final content of the document, were influenced by following the Principles. For example, consistent with the Openness Principle, the staff conducted a number of outreach activities and received many comments on three drafts of the document. Stakeholder comments affected the final staff positions in some cases. The revised CA BTP, once implemented, is expected to improve management and disposal of LLW in the United States. Its positions have an improved nexus to health and safety; are more performance-based than previously, thus providing licensees with options for how they achieve the required outcome of protecting an inadvertent human intruder into a disposal facility; and provide for disposal of more sealed radioactive sources, which are a potential threat to national security. (author)

Kennedy, James E. [Low-Level Waste Branch Division of Waste Management and Environmental Protection, U.S. Nuclear Regulatory Commission, Washington, DC, 20555-0001 (United States)] [Low-Level Waste Branch Division of Waste Management and Environmental Protection, U.S. Nuclear Regulatory Commission, Washington, DC, 20555-0001 (United States)

2013-07-01T23:59:59.000Z

386

Low-Level Plutonium Bioassay Measurements at the Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

Plutonium-239 ({sup 239}Pu) and plutonium-240 ({sup 240}Pu) are important alpha emitting radionuclides contained in radioactive debris from nuclear weapons testing. {sup 239}Pu and {sup 240}Pu are long-lived radionuclides with half-lives of 24,400 years and 6580 years, respectively. Concerns over human exposure to plutonium stem from knowledge about the persistence of plutonium isotopes in the environment and the high relative effectiveness of alpha-radiation to cause potential harm to cells once incorporated into the human body. In vitro bioassay tests have been developed to assess uptakes of plutonium based on measured urinary excretion patterns and modeled metabolic behaviors of the absorbed radionuclides. Systemic plutonium absorbed by the deep lung or from the gastrointestinal tract after ingestion is either excreted or distributed to other organs, primarily to the liver and skeleton, where it is retained for biological half-times of around 20 and 50 years, respectively. Dose assessment and atoll rehabilitation programs in the Marshall Islands have historically given special consideration to residual concentrations of plutonium in the environment even though the predicted dose from inhalation and/or ingestion of plutonium accounts for less than 5% of the annual effective dose from exposure to fallout contamination. Scientists from the Lawrence Livermore National Laboratory (LLNL) have developed a state-of-the-art bioassay test to assess urinary excretion rates of plutonium from Marshallese populations. This new heavy-isotope measurement system is based on Accelerator Mass Spectrometry (AMS). The AMS system at LLNL far exceeds the standard measurement requirements established under the latest United States Department of Energy (DOE) regulation, 10CFR 835, for occupational monitoring of plutonium, and offers several advantages over classical as well as competing new technologies for low-level detection and measurement of plutonium isotopes. The United States National Institute of Standards and Technology (NIST) has independently verified the accuracy and precision of the AMS detection system for low-level bioassay measurements of plutonium isotopes through participation in an intercomparison exercise whereby performance evaluation samples were prepared in a synthetic urine matrix and submitted to participating laboratories for blind analysis. The results of the analyses were then sent to the NIST to independently evaluate the performance of laboratory participants. At LLNL, the AMS measurements of {sup 239}Pu and {sup 240}Pu met ANSI 13.30 criteria for both precision and accuracy at all sample test levels. Livermore scientists continue to test the performance of the Marshall Islands Plutonium Urinalysis Program by routine blind analysis of externally prepared quality control test samples, and through the rigorous implementation of standardized methods and procedures. Although not addressed directly in the report, AMS measurements show that the urinary excretion of plutonium by selected Marshallese populations fall into a low and reproducible range. Moreover, there appears to be no evidence of small incremental intakes of plutonium associated with resettlement activities - past or present. The improved quality, reliability and detection sensitivity of AMS for low-level plutonium isotope measurements will enable DOE to develop high-quality, baseline urinary excretion data for Marshallese populations, and accurately assess and track potential uptakes of plutonium. associated with resettlement activities and/or from long-term changes in plutonium exposure conditions in the Marshall Islands.

Hamilton, T; Brown, T; Hickman, D; Marchetti, A; Williams, R; Kehl, S

2007-06-18T23:59:59.000Z

387

Dynamical interactions between a mid-tropospheric closed cyclone, a low-level jet, and cyclogenesis  

E-Print Network [OSTI]

is a feature known as the low-level jet (LLJ). This feature is of interest to forecasters in the central United States where the LLJ serves as a conveyor of low-level moisture and is often found in association with outbreaks of severe convection... is a feature known as the low-level jet (LLJ). This feature is of interest to forecasters in the central United States where the LLJ serves as a conveyor of low-level moisture and is often found in association with outbreaks of severe convection...

Ritz, Richard Lee

2012-06-07T23:59:59.000Z

388

Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INLís contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USCß 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

Danny Anderson

2014-07-01T23:59:59.000Z

389

Title of Document: VARIABILITY OF THE GREAT PLAINS LOW-LEVEL JET: LARGE SCALE  

E-Print Network [OSTI]

ABSTRACT Title of Document: VARIABILITY OF THE GREAT PLAINS LOW-LEVEL JET: LARGE SCALE CIRCULATION Nigam, Department of Atmospheric and Oceanic Science Variability of the Great Plains Low-Level Jet Plains precipitation variability, and together, account for ~75% of the variance. Ocean basin centered

Maryland at College Park, University of

390

Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site  

SciTech Connect (OSTI)

This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site.

Bechtel Nevada

2005-06-01T23:59:59.000Z

391

Cyclogenesis and the low-level jet over the southern Great Plains  

E-Print Network [OSTI]

, the areas of observed low -level cloudiness expand d from the Texas Gulf coast into the southern Great Plains. The effect of LLJ advect1on of low-level wate~ vapor could be seen better throuoh the use of a surface isodrosotherm1c analysis. The locat1on...-Level Jet Over the Southern Great Plains. (December 1980) David Scott Ladwig, B. S. , Oklahoma State University Chairman of Advisory Committee: Dr. Dusan Djuric An investigation of the development of the low-level jet as an integral part of winter...

Ladwig, David Scott

2012-06-07T23:59:59.000Z

392

EA-0874: Low-level Waste Drum Staging Building at Weapons Engineering  

Broader source: Energy.gov (indexed) [DOE]

74: Low-level Waste Drum Staging Building at Weapons 74: Low-level Waste Drum Staging Building at Weapons Engineering Tritium Facility, TA-16 Los Alamos National Laboratory, Los Alamos, New Mexico EA-0874: Low-level Waste Drum Staging Building at Weapons Engineering Tritium Facility, TA-16 Los Alamos National Laboratory, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of a proposal to place a 3 meter (m) by 4.5 m prefabricated storage building (transportainer) adjacent to the existing Weapons Engineering Tritium Facility at Technical Area 16, U.S. Department of Energy's Los Alamos National Laboratory in Los Alamos, New Mexico, and to use the building as a staging site for sealed 55-gallon drums of noncompactible waste contaminated with low levels of tritium. PUBLIC COMMENT OPPORTUNITIES

393

An object-oriented implementation of a Low Level Reader Protocol (LLRP) library  

E-Print Network [OSTI]

This Master of Engineering Thesis describes the design and implementation of an object-oriented Low Level Reader Protocol (LLRP) library. LLRP is a recently released protocol which standardizes the formats and methods of ...

Constantinou, Fivos

2007-01-01T23:59:59.000Z

394

Control of water infiltration into near surface low-level waste disposal units. Final report on field experiments at a humid region site, Beltsville, Maryland  

SciTech Connect (OSTI)

This study`s objective was to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work was carried out in large-scale lysimeters 21.34 m x 13.72 m x 3.05 m (70 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration were investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management.

Schulz, R.K.; Ridky, R.W.; O`Donnell, E.

1997-09-01T23:59:59.000Z

395

MONTE CARLO SIMULATION OF RADIONUCLIDE MIGRATION IN FRACTURED ROCK FOR THE PERFORMANCE ASSESSMENT OF RADIOACTIVE WASTE  

E-Print Network [OSTI]

OF RADIOACTIVE WASTE REPOSITORIES F. Cadini1 , J. De Sanctis1 , I. Bertoli1 , E. Zio1,2 1 Dipartimento di Energia is a fundamental task in any performance assessment aimed at verifying the protection offered by radioactive waste for chemical or low-level radioactive wastes, or the Performance Assessment (PA) of geological repositories

Paris-Sud XI, Université de

396

Chapter 22 - Radioactive Waste Disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses safe disposal of radioactive waste in order to provide safety to workers and the public. Radioactive wastes arise from a great variety of sources, including the nuclear fuel cycle, and from beneficial uses of isotopes and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. In the United States spent fuel is accumulating, awaiting the development of a high-level waste repository. A multi-barrier system involving packaging and geological media will provide protection of the public over the centuries the waste must be isolated. The favored method of disposal is in a mined cavity deep underground. In other countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is by casks and containers designed to withstand severe accidents. Low-level wastes (LLWs) come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Establishment of regional disposal sites by interstate compacts has generally been unsuccessful in the United States. Decontamination of defense sites will be long and costly. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2009-01-01T23:59:59.000Z

397

Radionuclide-Chelating Agent Complexes in Low-Level Radioactive Decontamination Waste; Stability, Adsorption and Transport Potential  

SciTech Connect (OSTI)

Speciation calculations were done to determine whether organic complexants facilitate transport of radionuclides leached from waste buried in soils. EDTA readily mobilizes divalent transition metals and moderately impacts trivalent actinides. Picolinate readily mobilizes only Ni2+ and Co2+. These speciation predictions ignore the influence of soil adsorption and biodegradation that break apart the complexes. In adsorption studies, picolinate concentrations have to be >10-4 M to lower the adsorption of Ni and Co. For Sm(III), Th(IV), Np(V), U(VI), and Pu, the picolinate concentration must be >10-3 M before adsorption decreases. EDTA forms strong complexes with divalent transition metals and can stop adsorption of Ni and Co when EDTA solution concentrations are 10-5 M. EDTA complexes with Np(V), U(VI), and Pu are much weaker; EDTA concentrations would have to be >10-3 M to adversely effects non-transition metal/radionuclide adsorption. Most picolinate and ETDA-metal complexes appear to readily dissociate during interactions with soils. The enhanced migration of radionuclide-organic complexes may be limited to a few unique conditions. We recommend that mixtures of metal/radionuclides and EDTA should not be solidified or co-disposed with high pH materials such as cement. For weaker binding organic complexants, such as picolinate, citrate and oxalate, co-disposal of decontamination wastes and concrete should be acceptable.

Serne, R. Jeffrey; Cantrell, Cantrell J.; Lindenmeier, Clark W.; Owen, Antionette T.; Kutnyakov, Igor V.; Orr, Robert D.; Felmy, Andrew R.

2002-02-01T23:59:59.000Z

398

Field studies of engineered barriers for closure of low level radioactive waste landfills at Los Alamos, New Mexico, USA  

SciTech Connect (OSTI)

The Los Alamos National Laboratory examined water balance relationships for four different landfill cover designs containing engineered barriers. These field experiments were performed at Los Alamos, New Mexico, USA, in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15, and 25%. Field measurements of seepage, precipitation, interflow, runoff, and soil water content were collected in each of the 16 plots representing four slopes each with four cover designs: Conventional, EPA, Loam Capillary Barrier and Clay Loam Capillary Barrier. A seepage collection system was installed beneath each cover design to evaluate the influence of slope length on seepage using a series of four metal pans filled with medium gravel that were placed end-to-end in the bottom of each field plot. An automated water flow data logging system was used to collect hourly seepage, interflow and runoff data and consisted of 100 100-liter tanks, each of which was equipped with an ultrasonic liquid-level sensor and a motor-operated ball valve used to drain the tank. Soil water content was routinely monitored every six hours at each of 212 locations throughout the 16 plots with time domain reflectrometry (TDR) techniques using an automated and multiplexed measurement system. Field data is presented to show the effects of slope and slope length on the performance of each landfill cover design for the first 15 months of this field experiment.

Nyhan, J.W.; Langhorst, G.J.; Martin, C.E.; Martinez, J.L.; Schofield, T.G.

1993-05-01T23:59:59.000Z

399

Chemical species of migrating radionuclides at a shallow land low-level radioactive-waste burial site  

SciTech Connect (OSTI)

A research program at the Maxey Flats, Kentucky (U.S.A.) waste disposal site has been undertaken to define the chemical species contributing to the migration or retention of radionuclides contained in waste buried at that site. An experimental trench and inert atmosphere sampling wells were installed to sample water for determination of the chemical species of migrating radionuclides. The organic ligands are studied by gas chromatography, steric exclusion chromatography and mass spectrometry; and the data correlated with specific radionuclide counting data to determine precise chemical species. Preliminary data are reported in the text.

Kirby, L.J.; Toste, A.P.; Wilkerson, C.L.

1981-01-01T23:59:59.000Z

400

Notice of Intent to Prepare an Environmental Impact Statement for the Greater-than-Class C Low Level Radioactive Waste  

Broader source: Energy.gov (indexed) [DOE]

35 Federal Register 35 Federal Register / Vol. 72, No. 140 / Monday, July 23, 2007 / Notices frequent performance reports under 34 CFR 75.720(c). For specific requirements on reporting, please go to http://www.ed.gov/fund/grant/apply/ appforms/appforms.html. Note: NIDRR will provide information by letter to grantees on how and when to submit the report. 4. Performance Measures: To evaluate the overall success of its research program, NIDRR assesses the quality of its funded projects through review of grantee performance and products. Each year, NIDRR examines, through expert review, a portion of its grantees to determine: The percentage of newly awarded NIDRR projects that are conducting at least one multi-site, collaborative, controlled trial. The number of accomplishments (e.g.,

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Treatment of Mixed Waste with GeoMelt In-Container Vitrification  

SciTech Connect (OSTI)

AMEC's GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} has been used to treat diverse types of mixed low-level radioactive waste. ICV is effective in the treatment of mixed wastes containing polychlorinated biphenyls (PCBs) and other semi-volatile organic compounds, volatile organic compounds (VOCs) and heavy metals. The GeoMelt vitrification process destroys organic compounds and immobilizes metals and radionuclides in an extremely durable glass waste form. The process is flexible allowing for treatment of aqueous, oily, and solid mixed waste, including contaminated soil. In 2004, ICV was used to treat mixed radioactive waste sludge containing PCBs generated from a commercial cleanup project regulated by the Toxic Substances Control Act (TSCA), and to treat contaminated soil from Rocky Flats Environmental Technology Site. The Rocky Flats soil contained cadmium, PCBs, and depleted uranium. In 2005, AMEC completed a treatability demonstration of the ICV technology on Mock High Explosive from Sandia National Laboratories. This paper summarizes results from these mixed waste treatment projects. (authors)

Finucane, K.G.; Campbell, B.E. [AMEC Earth and Environmental, Inc., 1135 Jadwin Avenue, Richland, Washington 99352 (United States)

2006-07-01T23:59:59.000Z

402

Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

Klein, J.A.; Storch, S.N.; Ashline, R.C. [and others

1994-03-01T23:59:59.000Z

403

Proceedings of the Third Annual Information Meeting DOE Low-Level Waste-Management Program  

SciTech Connect (OSTI)

The Third Annual Participants Information Meeting of the Low-Level Waste Management Program was held in New Orleans, Louisiana, November 4-6, 1981 The specific purpose was to bring together appropriate representatives of industry, USNRC, program management, participating field offices, and contractors to: (1) exchange information and analyze program needs, and (2) involve participants in planning, developing and implementing technology for low-level waste management. One hundred seven registrants participated in the meeting. Presentation and workshop findings are included in these proceedings under the following headings: low-level waste activities; waste treatment; shallow land burial; remedial action; greater confinement; ORNL reports; panel workshops; and summary. Forty-six papers have been abstracted and indexed for the data base.

Large, D.E.; Lowrie, R.S.; Stratton, L.E.; Jacobs, D.G. (comps.)

1981-12-01T23:59:59.000Z

404

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energyís mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2009-10-01T23:59:59.000Z

405

Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground Environmental Surveillance Programs  

SciTech Connect (OSTI)

This Addendum supplements, and to some extent replaces, the preliminary description of environmental radiological surveillance programs for low-level waste burial grounds (LLWBG) used in the parent document, 11 Technology, Safety and Costs of DecolliTlissioning a Reference Low-Level Waste Burial Ground, 11 NUREG/ CR-0570. The Addendum provides additional detail and rationale for the environmental radiological surveillance programs for the two referenced sites and inventories described in NUREG/CR-0570. The rationale and performance criteria herein are expected to be useful in providing guidance for determining the acceptability of environmental surveillance programs for other inventories and other LLWBG sites. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are reference facilities considered in this Addendum, and as described in the parent document (NUREG/CR-0570). The two sites are assumed to have the same capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology, and hydrology of the two reference sites are typical of existing western and eastern sites, altnough a single population distribution was chosen for both. Each reference burial ground occupies about 70 hectares and includes 180 trenches filled with a total of 1.5 x 10{sup 6} m{sup 3} of radioactive waste. In acldition, there are 10 slit trenches containing about 1.5 x 10{sup 3} m{sup 3} of high beta-gamma activity waste. In this Addendum environmental surveillance programs are described for the several periods in the life of a LLWBG: preoperational (prior to nuclear waste receipt); operational (including interim trench closures); post-operational (after all nuclear waste is received), for both short-term {up to three years) and long-term (up to 100 years) storage and custodial care; and decommissioning (only for the special case of waste removal). The specific environmental monitoring requirements for final site characterization and certification surveys are beyond the scope of this Addendum. Data collection associated with site reconnaissance and preselection is not specifically addressed, but it is recognized that such data may be useful in designing the preoperational program. Predisposal control measures, quality assurance, and record-keeping (other than inventory records) associated with waste disposal operations are also not addressed. The primary intent of routine environmental surveillance at a LLWBG is to help ensure that site activities do not cause significant transport of radioactivity from the site, resulting in an unacceptable health hazard to people. Preoperational environmental surveillance serves to determine for later comparison the background radioactivity levels, either naturally occurring or the result of man's activities (e.g. world-wide fallout or an adjacent nuclear facility), in and around the proposed burial ground site. The operational environmental surveillance program is used to estimate radiological conditions, both onsite and offsite as a possible result of burial ground activities, including trench closure(s). These data help to determine LLWBG compliance with regulatory requirements. During the post-operational period environmental surveillance should normally be an extension of the program carried out during operations, with appropriate deletions (or modifications) to account for the differences between operational and post-operational activities at the site. During the long-term storage and custodial care period, environmental surveillance serves to verify the radionuclide confinement capability of the burial ground and to identify problem situations requiring remedial action. For waste removal (exhumation), the environmental surveillance program is again modified to account for the greatly increased potential for direct radiation and contamination spread. At the time of decommissioning, "environmental surveillance" takes on a new meaning, from that of an ongoing prog

Denham, D. H.; Eddy, P. A.; Hawley, K. A.; Jaquish, R. E.; Corley, J. P.

1981-07-01T23:59:59.000Z

406

Report on waste burial charges. Escalation of decommissioning waste disposal costs at low-level waste burial facilities, Revision 4  

SciTech Connect (OSTI)

One of the requirements placed upon nuclear power reactor licensees by the U.S. Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fourth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991 and 1993, superseding the values given in the May 1993 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1994 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

Not Available

1994-06-01T23:59:59.000Z

407

Report on waste burial charges: Escalation of decommissioning waste disposal costs at Low-Level Waste Burial facilities. Revision 5  

SciTech Connect (OSTI)

One of the requirements placed upon nuclear power reactor licensees by the US Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fifth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991, 1993, and 1994, superseding the values given in the June 1994 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1995 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

NONE

1995-08-01T23:59:59.000Z

408

Format and Content Guide for DOE Low-Level Waste Disposal Facility  

Broader source: Energy.gov (indexed) [DOE]

2 2 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses U.S. DEPARTMENT OF ENERGY DOE G 435.1-2 i DRAFT XX-XX-XX LLW PA and CA Format and Content Guide Revision 0, XX-XX-XX Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses CONTENTS List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Acronyms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v PART A: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

409

Arc Detection and Interlock Module for the PEP II Low Level RF System  

SciTech Connect (OSTI)

A new arc detection and interlock generating module for the SLAC PEP-II low-level RF VXI-based system has been developed. The system is required to turn off the RF drive and high voltage power supply in the event of arcing in the cavity windows, klystron window, or circulator. Infrared photodiodes receive arc signals through radiation resistant optical fibers. Gain and bandwidth are selectable for each channel to allow tailoring response. The module also responds to interlock requests from other modules in the VXI system and communicates with the programmable logic controller (PLC) responsible for much of the low-level RF system's interlock functionality.

Tighe, R.; /SLAC

2011-08-31T23:59:59.000Z

410

A Database for Reviewing and Selecting Radioactive Waste Treatment Technologies and Vendors  

SciTech Connect (OSTI)

Several attempts have been made in past years to collate and present waste management technologies and solutions to waste generators. These efforts have been manifested as reports, buyers' guides, and databases. While this information is helpful at the time it is assembled, the principal weakness is maintaining the timeliness and accuracy of the information over time. In many cases, updates have to be published or developed as soon as the product is disseminated. The recently developed National Low-Level Waste Management Program's Technologies Database is a vendor-updated Internet based database designed to overcome this problem. The National Low-Level Waste Management Program's Technologies Database contains information about waste types, treatment technologies, and vendor information. Information is presented about waste types, typical treatments, and the vendors who provide those treatment methods. The vendors who provide services update their own contact information, their treatment processes, and the types of wastes for which their treatment process is applicable. This information is queriable by a generator of low-level or mixed low-level radioactive waste who is seeking information on waste treatment methods and the vendors who provide them. Timeliness of the information in the database is assured using time clocks and automated messaging to remind featured vendors to keep their information current. Failure to keep the entries current results in a vendor being warned and then ultimately dropped from the database. This assures that the user is dealing with the most current information available and the vendors who are active in reaching and serving their market.

P. C. Marushia; W. E. Schwinkendorf

1999-07-01T23:59:59.000Z

411

A Database for Reviewing and Selecting Radioactive Waste Treatment Technologies and Vendors  

SciTech Connect (OSTI)

Several attempts have been made in past years to collate and present waste management technologies and solutions to waste generators. These efforts have been manifested as reports, buyersí guides, and databases. While this information is helpful at the time it is assembled, their principal weakness is maintaining the timeliness and accuracy of the information over time. In many cases, updates have to be published or developed as soon as the product is disseminated. The recently developed National Low-Level Waste Management Programís Technologies Database is a vendor-updated Internet based database designed to overcome this problem. The National Low-Level Waste Management Programís Technologies Database contains information about waste types, treatment technologies, and vendor information. Information is presented about waste types, typical treatments, and the vendors who provide those treatment methods. The vendors who provide services update their own contact information, their treatment processes, and the types of wastes for which their treatment process is applicable. This information is queriable by a generator of low-level or mixed low-level radioactive waste who is seeking information on waste treatment methods and the vendors who provide them. Timeliness of the information in the database is assured using time clocks and automated messaging to remind featured vendors to keep their information current. Failure to keep the entries current results in a vendor being warned and then ultimately dropped from the database. This assures that the user is dealing with the most current information available and the vendors who are active in reaching and serving their market.

Schwinkendorf, William Erich; Marushia, Patrick Charles

1999-07-01T23:59:59.000Z

412

Proceedings of the Fifth Annual Participants' Information Meeting: DOE Low-Level Waste Management Program  

SciTech Connect (OSTI)

The meeting consisted of the following six sessions: (1) plenary session I; (2) disposal technology; (3) characteristics and treatment of low-level waste; (4) environmental aspects and performance prediction; (5) overall summary sessions; and (6) plenary session II. Fifty two papers of the papers presented were processed for inclusion in the Energy Data Base. (ATT)

Not Available

1983-12-01T23:59:59.000Z

413

National Low-Level Waste Management Program radionuclide report series. Volume 13, Curium-242  

SciTech Connect (OSTI)

This report, Volume 13 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of curium-242 ({sup 242}Cm). This report also includes discussions about waste types and forms in which {sup 242}Cm can be found and {sup 242}Cm behavior in the environment and in the human body.

Adams, J.P.

1995-08-01T23:59:59.000Z

414

Feasibility and Reproducibility of HIV-1 Genotype Resistance Test in Very-Low-Level Viremia  

Science Journals Connector (OSTI)

...Feasibility and Reproducibility of HIV-1 Genotype Resistance Test in Very-Low-Level Viremia Bianca Bruzzone a Antonio Di Biagio...Reliability and clinical relevance of the HIV-1 drug resistance test in patients with low viremia levels. Clin. Infect. Dis. 58...

Bianca Bruzzone; Antonio Di Biagio; Laura Sticchi; Renata Barresi; Francesco Saladini; Giancarlo Icardi; Maurizio Setti

2014-12-01T23:59:59.000Z

415

National Low-Level Waste Management Program Radionuclide Report Series, Volume 17: Plutonium-239  

SciTech Connect (OSTI)

This report, Volume 17 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of plutonium-239 (Pu-239). This report also discusses waste types and forms in which Pu-239 can be found, waste and disposal information on Pu-239, and Pu-239 behavior in the environment and in the human body.

J. P. Adams; M. L. Carboneau

1999-03-01T23:59:59.000Z

416

National low-level waste management program radionuclide report series, Volume 14: Americium-241  

SciTech Connect (OSTI)

This report, Volume 14 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of americium-241 ({sup 241}Am). This report also includes discussions about waste types and forms in which {sup 241}Am can be found and {sup 241}Am behavior in the environment and in the human body.

Winberg, M.R.; Garcia, R.S.

1995-09-01T23:59:59.000Z

417

Storage systems and containers for radioactive materials. February 1971-November 1989 (a Bibliography from the US Patent data base). Report for February 1971-November 1989  

SciTech Connect (OSTI)

This bibliography contains citations of selected patents concerning container designs for storage, shipping, and handling of radioactive materials. Storage equipment and devices such as sheilding, racks, covers, seals, packing materials, and filling systems for containerized radioactive materials are considered. Radioactive materials considered include nuclear fuels, spent fuels, radioactive wastes, and radioactive research materials. High- and low-level radioactive materials are included. (Contains 139 citations fully indexed and including a title list.)

Not Available

1990-03-01T23:59:59.000Z

418

Format and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans  

Broader source: Energy.gov (indexed) [DOE]

3 3 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans U.S. DEPARTMENT OF ENERGY DOE G 435.1-3 i DRAFT XX-XX-XX LLW Closure Plan Format and Content Guide Revision 0, XX-XX-XX Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans CONTENTS PART A: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. PURPOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. ORGANIZATION OF DOCUMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.1 Closure Objectives and Relationship to Other Programs . . . . . . . . . . . . . . . . . . . . . . 2 3.2

419

GRABGAM: A Gamma Analysis Code for Ultra-Low-Level HPGe SPECTRA  

SciTech Connect (OSTI)

The GRABGAM code has been developed for analysis of ultra-low-level HPGe gamma spectra. The code employs three different size filters for the peak search, where the largest filter provides best sensitivity for identifying low-level peaks and the smallest filter has the best resolution for distinguishing peaks within a multiplet. GRABGAM basically generates an integral probability F-function for each singlet or multiplet peak analysis, bypassing the usual peak fitting analysis for a differential f-function probability model. Because F is defined by the peak data, statistical limitations for peak fitting are avoided; however, the F-function does provide generic values for peak centroid, full width at half maximum, and tail that are consistent with a Gaussian formalism. GRABGAM has successfully analyzed over 10,000 customer samples, and it interfaces with a variety of supplementary codes for deriving detector efficiencies, backgrounds, and quality checks.

Winn, W.G.

1999-07-28T23:59:59.000Z

420

Greater-than-Class C low-level waste characterization technical review process  

SciTech Connect (OSTI)

Existing volume projections of greater-than-Class C low-level waste (GTCC LLW) vary significantly. The Department of Energy (DOE) National Low-Level Waste Management Program (NLLWMP) has undertaken activities to develop a best estimate of GTCC LLW volumes and activities for use as the planning basis. Initial information about the generation of GTCC LLW was obtained through a DOE Energy Information Administration survey. That information, combined with information from other related literature, formed the basis of a computer model, which projects potential GTCC LLW. This paper describes uncertainties in existing GTCC LLW characterization and volume projections data and describes the technical review process that is being used to assist in projections of GTCC LLW expected for storage and disposal. 8 refs., 2 tabs.

Hutchison, D.; Magleby, M.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mixed low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421