Sample records for mix evaporator sme

  1. Ammonia scrubber testing during IDMS SRAT and SME processing. Revision 1

    SciTech Connect (OSTI)

    Lambert, D.P.

    1995-04-28T23:59:59.000Z

    This report summarizes results of the Integrated DWPF (Defense Waste Processing Facility) Melter System (IDMS) ammonia scrubber testing during the PX-7 run (the 7th IDMS run with a Purex type sludge). Operation of the ammonia scrubber during IDMS Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processing has been completed. The ammonia scrubber was successful in removing ammonia from the vapor stream to achieve NH3 concentrations far below the 10 ppM vapor exist design basis during SRAT processing. However, during SME processing, vapor NH3 concentrations as high as 450 ppM were measured exiting the scrubber. Problems during the SRAT and SME testing were vapor bypassing the scrubber and inefficient scrubbing of the ammonia at the end of the SME cycle (50% removal efficiency; 99.9% is design basis efficiency).

  2. SLURRY MIX EVAPORATOR BATCH ACCEPTABILITY AND TEST CASES OF THE PRODUCT COMPOSITION CONTROL SYSTEM WITH THORIUM AS A REPORTABLE ELEMENT

    SciTech Connect (OSTI)

    Edwards, T.

    2010-10-07T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF), which is operated by Savannah River Remediation, LLC (SRR), has recently begun processing Sludge Batch 6 (SB6) by combining it with Frit 418 at a nominal waste loading (WL) of 36%. A unique feature of the SB6/Frit 418 glass system, as compared to the previous glass systems processed in DWPF, is that thorium will be a reportable element (i.e., concentrations of elemental thorium in the final glass product greater than 0.5 weight percent (wt%)) for the resulting wasteform. Several activities were initiated based upon this unique aspect of SB6. One of these was an investigation into the impact of thorium on the models utilized in DWPF's Product Composition and Control System (PCCS). While the PCCS is described in more detail below, for now note that it is utilized by Waste Solidification Engineering (WSE) to evaluate the acceptability of each batch of material in the Slurry Mix Evaporator (SME) before this material is passed on to the melter. The evaluation employs models that predict properties associated with processability and product quality from the composition of vitrified samples of the SME material. The investigation of the impact of thorium on these models was conducted by Peeler and Edwards [1] and led to a recommendation that DWPF can process the SB6/Frit 418 glass system with ThO{sub 2} concentrations up to 1.8 wt% in glass. Questions also arose regarding the handling of thorium in the SME batch acceptability process as documented by Brown, Postles, and Edwards [2]. Specifically, that document is the technical bases of PCCS, and while Peeler and Edwards confirmed the reliability of the models, there is a need to confirm that the current implementation of DWPF's PCCS appropriately handles thorium as a reportable element. Realization of this need led to a Technical Task Request (TTR) prepared by Bricker [3] that identified some specific SME-related activities that the Savannah River National Laboratory (SRNL) was requested to conduct. SRNL issued a Task Technical and Quality Assurance (TT&QA) plan [4] in response to the SRR request. The conclusions provided in this report are that no changes need to be made to the SME acceptability process (i.e., no modifications to WSRC-TR-95-00364, Revision 5, are needed) and no changes need to be made to the Product Composition Control System (PCCS) itself (i.e. the spreadsheet utilized by Waste Solidification Engineering (WSE) for acceptability decisions does not require modification) in response to thorium becoming a reportable element for DWPF operations. In addition, the inputs and results for the two test cases requested by WSE for use in confirming the successful activation of thorium as a reportable element for DWPF operations during the processing of SB6 are presented in this report.

  3. Author's personal copy Mixed crystalline films of co-evaporated hydrogen-and

    E-Print Network [OSTI]

    Schreiber, Frank

    Author's personal copy Mixed crystalline films of co-evaporated hydrogen- and fluorine-terminated phthalocyanines and their application in photovoltaic devices Andreas Opitz a,*, Bernhard Ecker a , Julia Wagner Photovoltaic cells a b s t r a c t Blends of organic electron and hole conductive materials are widely used

  4. How to test SME with space missions ?

    E-Print Network [OSTI]

    A. Hees; B. Lamine; C. Le Poncin-Lafitte; P. Wolf

    2013-08-01T23:59:59.000Z

    In this communication, we focus on possibilities to constrain SME coefficients using Cassini and Messenger data. We present simulations of radioscience observables within the framework of the SME, identify the linear combinations of SME coefficients the observations depend on and determine the sensitivity of these measurements to the SME coefficients. We show that these datasets are very powerful for constraining SME coefficients.

  5. How to test SME with space missions ?

    E-Print Network [OSTI]

    Hees, A; Poncin-Lafitte, C Le; Wolf, P

    2013-01-01T23:59:59.000Z

    In this communication, we focus on possibilities to constrain SME coefficients using Cassini and Messenger data. We present simulations of radioscience observables within the framework of the SME, identify the linear combinations of SME coefficients the observations depend on and determine the sensitivity of these measurements to the SME coefficients. We show that these datasets are very powerful for constraining SME coefficients.

  6. Antimatter, the SME, and Gravity

    E-Print Network [OSTI]

    Jay D. Tasson

    2012-12-07T23:59:59.000Z

    A general field-theoretic framework for the analysis of CPT and Lorentz violation is provided by the Standard-Model Extension (SME). This work discusses a number of SME-based proposals for tests of CPT and Lorentz symmetry, including antihydrogen spectroscopy and antimatter gravity tests.

  7. Antimatter, the SME, and Gravity

    E-Print Network [OSTI]

    Tasson, Jay D

    2012-01-01T23:59:59.000Z

    A general field-theoretic framework for the analysis of CPT and Lorentz violation is provided by the Standard-Model Extension (SME). This work discusses a number of SME-based proposals for tests of CPT and Lorentz symmetry, including antihydrogen spectroscopy and antimatter gravity tests.

  8. Equation of motion for incompressible mixed fluid driven by evaporation and its application to online rankings

    E-Print Network [OSTI]

    Kumiko Hattori; Tetsuya Hattori

    2008-05-17T23:59:59.000Z

    We give a unique classical solution to initial value problem for a system of partial differential equations for the densities of components of one dimensional incompressible fluid mixture driven by evaporation. Motivated by the known fact that the solution appears as an infinite particle limit of stochastic ranking processes, which is a simple stochastic model of time evolutions of e.g., Amazon Sales Ranks, we collected data from the web and performed statistical fits to our formula. The results suggest that the fluid equations and solutions may have an application in the analysis of online rankings.

  9. Lorentz Symmetry, the SME, and Gravitational Experiments

    E-Print Network [OSTI]

    Jay D. Tasson

    2012-12-10T23:59:59.000Z

    This proceedings contribution summarizes the implications of recent SME-based investigations of Lorentz violation for gravitational experiments.

  10. Lorentz Symmetry, the SME, and Gravitational Experiments

    E-Print Network [OSTI]

    Tasson, Jay D

    2012-01-01T23:59:59.000Z

    This proceedings contribution summarizes the implications of recent SME-based investigations of Lorentz violation for gravitational experiments.

  11. SME0141 lgebra Linear e Equaes Diferenciais

    E-Print Network [OSTI]

    Spreafico, Mauro - Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo

    SME0141 Álgebra Linear e Equações Diferenciais Aula 5 Maria Luísa Bambozzi de Oliveira marialuisa; Propriedades; Teorema. Maria Luísa SME0141 Aula 5 #12;Equações Diferenciais ­ Introdução Fenômenos em física químicas, etc. Maria Luísa SME0141 Aula 5 #12;Equações Diferenciais ­ Definições Equação diferencial

  12. Challenges in Applying Formal Methods An SME View

    E-Print Network [OSTI]

    Southampton, University of

    Challenges in Applying Formal Methods An SME View Mathieu Clabaut Systerel, Aix-en-Provence, France classical B and event B to design safety related systems in an SME. 1 Activities Systerel is an SME doing

  13. Licence SME 1 1`eme session, Semestre 2, Mai 2007

    E-Print Network [OSTI]

    Merini, David

    Value Chains, Mobilizing SME Investment in Frontier Finance Countries, Smart Regulation, Cultivating

  14. SME Annual Meeting Feb. 26-28, Denver, Colorado

    E-Print Network [OSTI]

    Saylor, John R.

    SME Annual Meeting Feb. 26-28, Denver, Colorado 1 Copyright © 2001 by SME Preprint 01-114 EFFECTS of operating conditions that included multiple drum heights and the use of side and underboom sprays. #12;SME Annual Meeting Feb. 26-28, Denver, Colorado 2 Copyright © 2001 by SME TEST FACILITY Gallery Testing

  15. ISOLOK VALVE ACCEPTANCE TESTING FOR DWPF SME SAMPLING PROCESS

    SciTech Connect (OSTI)

    Edwards, T.; Hera, K.; Coleman, C.; Jones, M.; Wiedenman, B.

    2011-12-05T23:59:59.000Z

    Evaluation of the Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. Of the opportunities, a focus area related to optimizing the equipment and efficiency of the sample turnaround time for DWPF Analytical Laboratory was identified. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) evaluated the possibility of using an Isolok{reg_sign} sampling valve as an alternative to the Hydragard{reg_sign} valve for taking process samples. Previous viability testing was conducted with favorable results using the Isolok sampler and reported in SRNL-STI-2010-00749 (1). This task has the potential to improve operability, reduce maintenance time and decrease CPC cycle time. This report summarizes the results from acceptance testing which was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 (2) and which was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNL-RP-2011-00145 (3). The Isolok to be tested is the same model which was tested, qualified, and installed in the Sludge Receipt Adjustment Tank (SRAT) sample system. RW-0333P QA requirements apply to this task. This task was to qualify the Isolok sampler for use in the DWPF Slurry Mix Evaporator (SME) sampling process. The Hydragard, which is the current baseline sampling method, was used for comparison to the Isolok sampling data. The Isolok sampler is an air powered grab sampler used to 'pull' a sample volume from a process line. The operation of the sampler is shown in Figure 1. The image on the left shows the Isolok's spool extended into the process line and the image on the right shows the sampler retracted and then dispensing the liquid into the sampling container. To determine tank homogeneity, a Coliwasa sampler was used to grab samples at a high and low location within the mixing tank. Data from the two locations were compared to determine if the contents of the tank were well mixed. The Coliwasa sampler is a tube with a stopper at the bottom and is designed to obtain grab samples from specific locations within the drum contents. A position paper (4) was issued to address the prototypic flow loop issues and simulant selections. A statistically designed plan (5) was issued to address the total number of samples each sampler needed to pull, to provide the random order in which samples were pulled and to group samples for elemental analysis. The TTR required that the Isolok sampler perform as well as the Hydragard sampler during these tests to ensure the acceptability of the Isolok sampler for use in the DWPF sampling cells. Procedure No.L9.4-5015 was used to document the sample parameters and process steps. Completed procedures are located in R&D Engineering job folder 23269.

  16. SME Annual Meeting February 24-26, 2003, Cincinnati Ohio

    E-Print Network [OSTI]

    SME Annual Meeting February 24-26, 2003, Cincinnati Ohio Preprint Results of Practical Design dust. The previous year's work, published SME 2002 pre-print, consisted of laboratory testing to help

  17. Transactions of NAMRI/SME FINITE ELEMENT SIMULATION OF

    E-Print Network [OSTI]

    Ozel, Tugrul

    Transactions of NAMRI/SME FINITE ELEMENT SIMULATION OF Ti-6Al-4V ALLOY Turul Manufacturing #12;Transactions of NAMRI/SME 50 Volume 38, 2010 excessive heat generation. Usually above 120 m

  18. TRAINING SME'S FOR NEW PRODUCT DEVELOPMENT N. Bialis (1)

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    TRAINING SME'S FOR NEW PRODUCT DEVELOPMENT MANAGEMENT N. Bialis (1) , A. Antoniadis (2) , K. A product developments. SME's are rather slow in adopting practices arising from large companies experiences. A toolkit (the PROMISE toolkit), suitable for SME's has been developed. It contains a series of inter

  19. The Role of SME Suppliers in Implementing Sustainability Osama Meqdadia

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 The Role of SME Suppliers in Implementing Sustainability Osama Meqdadia , Thomas Johnsenb , Rhona network from a small and medium-sized enterprise (SME) perspective. The paper provides a literature review have been conducted in France exploring how large manufacturing companies engage SME suppliers

  20. Component-based Situational Methods A framework for understanding SME

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Draft copy Component-based Situational Methods A framework for understanding SME Yves-Roger Nehan Engineering (SME) which focuses on project-specific method construction. We propose a faceted framework to understand and classify issues in system development SME. The framework identifies four different

  1. An Innovative Framework Supporting SME Networks for Complex Product Manufacturing

    E-Print Network [OSTI]

    Boyer, Edmond

    An Innovative Framework Supporting SME Networks for Complex Product Manufacturing Luis Maia.kankaanpaa@uwasa.fi, ahsh@uwasa.fi Abstract. Current market dynamics require European SME's to focus on complex products collaboration processes and supporting ICT tools. This paper presents a framework to support SME

  2. Bigger isn't always better: working for an SME

    E-Print Network [OSTI]

    Martin, Stephen John

    Bigger isn't always better: working for an SME www.sheffield.ac.uk/careers You are probably? What is an SME? Small and medium sized enterprises (SMEs) accounted for nearly 60% of employment of an SME is a company with less than 250 employees (medium sized enterprise) or less than 50 employees

  3. SME dependence and coordination in innovation networks RESEARCH PAPER

    E-Print Network [OSTI]

    Boyer, Edmond

    SME dependence and coordination in innovation networks RESEARCH PAPER Elodie Gardet elodie and characterize the coordination systems used by SME hub firms that are in a situation of dependence with respect of the adequate coordination mechanims is central for a SME hub firm and the success of the innovation project

  4. Making SME greedy and pragmatic Kenneth D . Forbus Dan Oblinger

    E-Print Network [OSTI]

    Forbus, Kenneth D.

    Making SME greedy and pragmatic Kenneth D . Forbus Dan Oblinger Qualitative Reasoning Group Beckman : The Structure-Mapping Engine (SME) has successfully modeled several aspects of human analogical processing. However, it has two significant drawbacks : (1) SME constructs all structurally consistent interpretations

  5. Model of innovation transfer in small and medium enterprises (SME)

    E-Print Network [OSTI]

    Model of innovation transfer in small and medium enterprises (SME) Justyna Patalas-Maliszewska1 society, governments and entrepreneurs. In this paper the concept of innovation transfer in SME based of innovation transfer - based on correlations between innovation level in the enterprise sector SME

  6. DIMENSIONS OF DISTRIBUTED LEADERSHIP IN THE SME CONTEXT

    E-Print Network [OSTI]

    Mottram, Nigel

    1 DIMENSIONS OF DISTRIBUTED LEADERSHIP IN THE SME CONTEXT Steve Kempster*, Jason Cope** and Ken IN THE SME CONTEXT Abstract. Entrepreneurial ventures are led as effectively by small teams as by individuals individual leadership within the SME context. The overlap between heroic individual leadership

  7. Covariant Photon Quantization in the SME

    E-Print Network [OSTI]

    Colladay, Don

    2013-01-01T23:59:59.000Z

    The Gupta Bleuler quantization procedure is applied to the SME photon sector. A direct application of the method to the massless case fails due to an unavoidable incompleteness in the polarization states. A mass term can be included into the photon lagrangian to rescue the quantization procedure and maintain covariance.

  8. Covariant Photon Quantization in the SME

    E-Print Network [OSTI]

    Don Colladay

    2013-09-23T23:59:59.000Z

    The Gupta Bleuler quantization procedure is applied to the SME photon sector. A direct application of the method to the massless case fails due to an unavoidable incompleteness in the polarization states. A mass term can be included into the photon lagrangian to rescue the quantization procedure and maintain covariance.

  9. Maerz, N. H., and Palangio, 2000. Online fragmentation analysis for grinding and crushing control. Control 2000 Symposium, 2000 SME Annual Meeting, March 1, 2000, Salt Lake City, Utah, SME, pp.

    E-Print Network [OSTI]

    Maerz, Norbert H.

    . Control 2000 Symposium, 2000 SME Annual Meeting, March 1, 2000, Salt Lake City, Utah, SME, pp. 109

  10. BUSINESS INTELLIGENCE AS AN INNOVATIVE COMPUTER TOOL FOR SUPPORTING DECISIONS IN SME

    E-Print Network [OSTI]

    BUSINESS INTELLIGENCE AS AN INNOVATIVE COMPUTER TOOL FOR SUPPORTING DECISIONS IN SME Justyna the model of sustainable development of SME based on using Business Intelligence as an innovative computer Management, Business Intelligence, SME BUSINESS INTELLIGENCE JAKO PRZYKLAD INNOWACYJNEGO NARZDZIA

  11. Proceedings of NAMRI/SME, Vol. 41, 2013 Removal Mechanism and Defect Characterization for Glass-

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Proceedings of NAMRI/SME, Vol. 41, 2013 Removal Mechanism and Defect Characterization for Glass of NAMRI/SME, Vol. 41, 2013 f

  12. An SME's Perspective on Implementing the Superior Energy Performance Program

    E-Print Network [OSTI]

    Waz, P.

    An SME?s Perspective on Implementing the Superior Energy Performance Program? Pierre Waz CCP The CCP Houston plant participating in the Texas pilot project is a synthetic resin manufacturing plant and has approximately 50 employees. As a...

  13. The First Lunar Ranging Constraints on Gravity Sector SME Parameters

    E-Print Network [OSTI]

    James B. R. Battat; John F. Chandler; Christopher Stubbs

    2007-10-03T23:59:59.000Z

    We present the first constraints on pure-gravity sector Standard-Model Extension (SME) parameters using Lunar Laser Ranging (LLR). LLR measures the round trip travel time of light between the Earth and the Moon. With 34+ years of LLR data, we have constrained six independent linear combinations of SME parameters at the level of $10^{-6}$ to $10^{-11}$. There is no evidence for Lorentz violation in the LLR dataset.

  14. SME-Entrepreneurship Global Conference 2006 -Refereed Paper Bakke et al.: ICT diffusion and usage among Asian SMEs 1

    E-Print Network [OSTI]

    Sahay, Sundeep

    SME-Entrepreneurship Global Conference 2006 - Refereed Paper Bakke et al.: ICT diffusion and usage factors, infrastructures and post-adoption behaviour Paper for the conference: "SME ­ Entrepreneurship. Keywords: Diffusion models, infrastructure, domestication, small and medium sized enterprises, SME, ICT

  15. MULTIAGENT DECISION MAKING FOR SME SUPPLY CHAIN Jihene Tounsi Julien Boissire Georges Habchi

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MULTIAGENT DECISION MAKING FOR SME SUPPLY CHAIN SIMULATION Jihene Tounsi Julien Boissière Georges of autonomous actors and SME networks which collaborate to achieve a given process. Secondly, the studied SMEs

  16. Transactions of NAMRI/SME 439 Volume 32, 2004 ANALYSIS AND PREDICTION OF SIZE EFFECT

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Transactions of NAMRI/SME 439 Volume 32, 2004 ANALYSIS AND PREDICTION OF SIZE EFFECT ON LASER of NAMRI/SME 440 Volume 32, 2004 temperature gradient mechanism (TGM) as- sumption. Due to the assumption

  17. Licences SV et SME UE 10 diversit et volution du monde vivant

    E-Print Network [OSTI]

    Boudouresque, Charles F.

    and Science 17 Call SME Instrument 4 Obiettivi: · Aumentare la competitività, la non-dipendenza e l (2014-2015) H2020-GALILEO-2014/2015 17/12/2013 EGNSS applications GALILEO 1 ­ 2014 - 2015 SME based

  18. Transactions of NAMRI/SME 589 Volume 31, 2003 MODELING SCHEMES, TRANSIENCY, AND STRAIN MEASUREMENT

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Transactions of NAMRI/SME 589 Volume 31, 2003 MODELING SCHEMES, TRANSIENCY, AND STRAIN MEASUREMENT the shock pressure and the particle velocities of the coating layer #12;Transactions of NAMRI/SME 590 Volume

  19. Proceedings of NAMRI/SME, Vol. 40, 2012 Smooth Surface Fabrication in Mask Projection based

    E-Print Network [OSTI]

    Chen, Yong

    Proceedings of NAMRI/SME, Vol. 40, 2012 Smooth Surface Fabrication in Mask Projection based-stepping effect. #12;Proceedings of NAMRI/SME, Vol. 40, 2012 In this paper, we present an alternative approach

  20. Le magn)sme ar)ficiel pour les gaz d'atomes froids Jean Dalibard

    E-Print Network [OSTI]

    Dalibard, Jean

    Le magné)sme ar)ficiel pour les gaz d'atomes froids Jean Dalibard Année 2013-14 Chaire Atomes et rayonnement Magné8sme ar8ficiel pour un atome isolé poten8el vecteur et la simula8on du magné8sme orbital A(r) V

  1. Network learning effects of ISO 22000 standard implementation in a food SME: a case study

    E-Print Network [OSTI]

    Boyer, Edmond

    Network learning effects of ISO 22000 standard implementation in a food SME: a case study Zam to a specific food SME case in order to test it and to identify the key network learning effects that occur will be especially targeted towards the strengthening of learning processes and effects between the SME

  2. A model of employee selection for SME based on innovation transfer

    E-Print Network [OSTI]

    A model of employee selection for SME based on innovation transfer Justyna Patalas-Maliszewska1) and hypothesizes on the positive correlation between innovation characteristic in SME and value of strategic is based on a database referring to: The SME, with defined the selected functional area, the business

  3. EXAMPLE FOR COMPLETE MANUSCRIPT STRATEGIC KNOWLEDGE MANAGEMENT IN SME BASED ON

    E-Print Network [OSTI]

    EXAMPLE FOR COMPLETE MANUSCRIPT STRATEGIC KNOWLEDGE MANAGEMENT IN SME BASED ON INNOVATION TRANSFER University of Technology Cottbus, Germany ABSTRACT Added value for SME can be determine as knowledge question: whether a given algorithm that enables capital intellectual in SME index and implemented

  4. TECHNICALPAPER Society of Manufacturing Engineers One SME Drive P.O. Box 930

    E-Print Network [OSTI]

    Bors, Adrian

    TECHNICALPAPER 2005 Society of Manufacturing Engineers One SME Drive P.O. Box 930 Dearborn, MI 48121 Phone (313) 271-1500 www.sme.org TP05PUB25 Segmentation of Colour Images Using Variational Training Color Image Segmentation Bayesian Interference Maximum Log Likelihood Gaussian Mixtures #12;SME

  5. The SME boom in rural South Africa links to electricity and telephony

    E-Print Network [OSTI]

    -) ) The SME boom in rural South Africa links to electricity and telephony Paper to be presented* In this study we investigate into determinants of households' small and micro enterprise (SME) activities suggest a doubled number of SME's in the country's deep rural areas between 1997 and 2004. A growing

  6. A generic knowledge Model for SME Supply Chain Based on Multiagent Paradigm

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A generic knowledge Model for SME Supply Chain Based on Multiagent Paradigm Jihene Tounsi1 Enterprises (SME). These companies evolve in an unstable and complex network. In order to guarantee its role in a supply chain, SME must be able to support the inherent requirements of the supply chain (low lead times

  7. Le magn)sme ar)ficiel pour les gaz d'atomes froids Jean Dalibard

    E-Print Network [OSTI]

    Dalibard, Jean

    Le magné)sme ar)ficiel pour les gaz d'atomes froids Jean Dalibard Année 2013-14 Chaire Atomes et rayonnement Magné8sme ar8ficiel pour un atome isolé (I) #12;Simula8on du magné8sme avec des atomes neutres Le but : réaliser pour

  8. An e-Learning Platform for SME Manager Upgrade and its Evolution Toward a Distributed

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    An e-Learning Platform for SME Manager Upgrade and its Evolution Toward a Distributed Training and the evaluation of an innovative e-learning platform for manager upgrade in Small and Medium Enterprises (SME but it is more and more true for Small and Medium Enterprises (SME) that often don't have a well defined

  9. EXAMEN UE Diversit et volution du monde vivant licences SV et SME-1re session janvier 2005

    E-Print Network [OSTI]

    Boudouresque, Charles F.

    Centres of Excellence can facilitate SME collaboration. #12;September 19, 2012 2 4. Priority Focus Areas

  10. Overview of the SME: Implications and Phenomenology of Lorentz Violation

    E-Print Network [OSTI]

    Robert Bluhm

    2005-06-06T23:59:59.000Z

    The Standard Model Extension (SME) provides the most general observer-independent field theoretical framework for investigations of Lorentz violation. The SME lagrangian by definition contains all Lorentz-violating interaction terms that can be written as observer scalars and that involve particle fields in the Standard Model and gravitational fields in a generalized theory of gravity. This includes all possible terms that could arise from a process of spontaneous Lorentz violation in the context of a more fundamental theory, as well as terms that explicitly break Lorentz symmetry. An overview of the SME is presented, including its motivations and construction. Some of the theoretical issues arising in the case of spontaneous Lorentz violation are discussed, including the question of what happens to the Nambu-Goldstone modes when Lorentz symmetry is spontaneously violated and whether a Higgs mechanism can occur. A minimal version of the SME in flat Minkowski spacetime that maintains gauge invariance and power-counting renormalizability is used to search for leading-order signals of Lorentz violation. Recent Lorentz tests in QED systems are examined, including experiments with photons, particle and atomic experiments, proposed experiments in space and experiments with a spin-polarized torsion pendulum.

  11. Gupta-Bleuler Photon Quantization in the SME

    E-Print Network [OSTI]

    Colladay, Don; Potting, Robertus

    2014-01-01T23:59:59.000Z

    Photon quantization is implemented in the standard model extension (SME) using the Gupta-Bleuler method and BRST concepts. The quantization prescription applies to both the birefringent and non-birefringent CPT-even couplings. A curious incompatibility is found between the presence of the Lorentz-violating terms and the existence of a nontrivial conjugate momentum $\\Pi^0$ yielding problems with covariant quantization procedure. Introduction of a mass regulator term can avoid the vanishing of $\\Pi^0$ and allows for the implementation of a covariant quantization procedure. Field-theoretic calculations involving the SME photons can then be performed using the mass regulator, similar to the conventional procedure used in electrodynamics for infrared-divergence regulation.

  12. Gupta-Bleuler Photon Quantization in the SME

    E-Print Network [OSTI]

    Don Colladay; Patrick McDonald; Robertus Potting

    2014-01-06T23:59:59.000Z

    Photon quantization is implemented in the standard model extension (SME) using the Gupta-Bleuler method and BRST concepts. The quantization prescription applies to both the birefringent and non-birefringent CPT-even couplings. A curious incompatibility is found between the presence of the Lorentz-violating terms and the existence of a nontrivial conjugate momentum $\\Pi^0$ yielding problems with covariant quantization procedure. Introduction of a mass regulator term can avoid the vanishing of $\\Pi^0$ and allows for the implementation of a covariant quantization procedure. Field-theoretic calculations involving the SME photons can then be performed using the mass regulator, similar to the conventional procedure used in electrodynamics for infrared-divergence regulation.

  13. Quantum-gravity phenomenology, Lorentz symmetry, and the SME

    E-Print Network [OSTI]

    Ralf Lehnert

    2007-03-16T23:59:59.000Z

    Violations of spacetime symmetries have recently been identified as promising signatures for physics underlying the Standard Model. The present talk gives an overview over various topics in this field: The motivations for spacetime-symmetry research, including some mechanisms for Lorentz breaking, are reviewed. An effective field theory called the Standard-Model Extension (SME) for the description of the resulting low-energy effects is introduced, and some experimental tests of Lorentz and CPT invariance are listed.

  14. CX-005501: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Slurry Mix Evaporator (SME) Viability Testing with SME SimulantsCX(s) Applied: B3.6Date: 02/24/2011Location(s): Aiken, South CarolinaOffice(s): Environmental Management, Savannah River Operations Office

  15. Le magn)sme ar)ficiel pour les gaz d'atomes froids Jean Dalibard

    E-Print Network [OSTI]

    Dalibard, Jean

    Le magné)sme ar)ficiel pour les gaz d'atomes froids Jean Dalibard Année 2013-14 Chaire Atomes et rayonnement Magné8sme ar8ficiel et interac8ons : condensats en rota8on #12;Magné8sme dans une assemblée de par8cule en interac8on

  16. Le magn)sme ar)ficiel pour les gaz d'atomes froids

    E-Print Network [OSTI]

    Dalibard, Jean

    Le magné)sme ar)ficiel pour les gaz d'atomes froids Jean Dalibard Année 2013-14 Chaire Atomes et rayonnement #12;Thème général du cours : le magné?sme = q v B = 0 perdu d'avance ? pas forcément... On peut émuler ce magné?sme par

  17. Proc. International Conference on Manufacturing Education, SME, San Diego, CA Proceedings of the SME Int. Conf. on Manufacturing Education for the 21st Century, San Diego CA, March 1996 Page1

    E-Print Network [OSTI]

    Lamancusa, John S.

    Proc. International Conference on Manufacturing Education, SME, San Diego, CA March 1996 Proceedings of the SME Int. Conf. on Manufacturing Education for the 21st Century, San Diego CA, March 1996

  18. Proceedings of NAMRI/SME, Vol. 40, 2012 PVD Coated Mill Rolls for Cold Rolling of Stainless Steel

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Proceedings of NAMRI/SME, Vol. 40, 2012 PVD Coated Mill Rolls for Cold Rolling of Stainless Steel : United States (2012)" #12;Proceedings of NAMRI/SME, Vol. 40, 2012 again affecting both friction

  19. Transactions of NAMRI/SME 543 Volume XXX, 2002 MICRO-SCALE LASER SHOCK PROCESSING MODELING, TESTING,

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Transactions of NAMRI/SME 543 Volume XXX, 2002 MICRO-SCALE LASER SHOCK PROCESSING ­ MODELING of NAMRI/SME 544 Volume XXX, 2002 implicitly assumed. Effects of finite size and complex geometry

  20. Transactions of NAMRI/SME 79 Volume 31, 2003 FEM BASED PROCESS DESIGN FOR LASER FORMING OF DOUBLY

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Transactions of NAMRI/SME 79 Volume 31, 2003 FEM BASED PROCESS DESIGN FOR LASER FORMING OF DOUBLY form- ing process. #12;Transactions of NAMRI/SME 80 Volume 31, 2003 Edwardson, et al. (2001

  1. Transactions of NAMRI/SME 39 Volume XXX, 2002 OPTIMAL AND ROBUST DESIGN OF LASER FORMING PROCESS

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Transactions of NAMRI/SME 39 Volume XXX, 2002 OPTIMAL AND ROBUST DESIGN OF LASER FORMING PROCESS parameters, including laser power, beam scanning velocity, beam diameter and #12;Transactions of NAMRI/SME 40

  2. Transactions of NAMRI/SME 351 Volume 32, 2004 FOURIER ANALYSIS OF X-RAY MICRODIFFRACTION PROFILES TO

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Transactions of NAMRI/SME 351 Volume 32, 2004 FOURIER ANALYSIS OF X-RAY MICRODIFFRACTION PROFILES), Wilkens (1970) developed a theory for symmet- #12;Transactions of NAMRI/SME 352 Volume 32, 2004 rical X

  3. A cooperation model and demand-oriented ICT Infrastructure for SME Development and Production Networks in the field of Microsystem

    E-Print Network [OSTI]

    Boyer, Edmond

    A cooperation model and demand-oriented ICT Infrastructure for SME Development and Production of Small Medium Enterprises (SME) in this branch refers to organizational issues, arising from the specific SME´s lack of sufficient human resources and an effective management of cross company knowledge about

  4. This paper describes the Structure-Mapping Engine (SME), a cognitive simulation program for studying human analogical

    E-Print Network [OSTI]

    Forbus, Kenneth D.

    This paper describes the Structure-Mapping Engine (SME), a cognitive simulation program for studying human analogical processing. SME is based on Gentner's Structure-Mapping theory of analogy enhances cognitive simulation studies by simplifying experimentation. Furthermore, SME is very efficient

  5. Building a Network of SME for a Global PSS Infrastructure in Complex High-Tech Systems: Example of Urban Applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Building a Network of SME for a Global PSS Infrastructure in Complex High-Tech Systems: Example is then applied to the case of urban PSS. Keywords: Network of SME, PSS Organization, Machine and facilitating maintenance. Dynamic high-technology Small and Medium Enterprises (SME) propose innovative

  6. Stimulating Manufacturing Excellence in Small and Medium Enterprises, SMESME 2005 Stimulating Industrial Excellence in European Textile SME's

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    Industrial Excellence in European Textile SME's Nicholas Bilalis 1 , Emmanuel Alvizos 1 , Emmanuel There are more than 100.000 European SME's, in the whole chain of operation from spinning to clothing. Keywords: Industrial Excellence, Textile Sector, IEA, SME 1. Introduction The findings presented

  7. Measure Guideline: Evaporative Condensers

    SciTech Connect (OSTI)

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01T23:59:59.000Z

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  8. Comparative study on making loans to large companies and SME's in China

    E-Print Network [OSTI]

    Tian, Michael Jiaming

    2013-01-01T23:59:59.000Z

    The SME financing problem in China has been widely acknowledged during the recent financial crisis. The SMEs compose 99% of all registered enterprises and employ more than 60% of labors in China. They contributed significantly ...

  9. Evaporation of extrasolar planets

    E-Print Network [OSTI]

    Etangs, A Lecavelier des

    2012-01-01T23:59:59.000Z

    This article presents a review on the observations and theoretical modeling of the evaporation of extrasolar planets. The observations and the resulting constraints on the upper atmosphere (thermosphere and exosphere) of the "hot-Jupiters". are described. The early observations of the first discovered transiting extrasolar planet, HD209458b, allowed the discovery that this planet has an extended atmosphere of escaping hydrogen. Subsequent observations showed the presence of oxygen and carbon at very high altitude. These observations give unique constraints on the escape rate and mechanism in the atmosphere of hot-Jupiters. The most recent Lyman-alpha HST observations of HD189733b and MgII observations of Wasp-12b allow for the first time comparison of the evaporation from different planets in different environments. Models to quantify the escape rate from the measured occultation depths, and an energy diagram to describe the evaporation state of hot-Jupiters are presented. Using this diagram, it is shown that...

  10. Hot air drum evaporator

    DOE Patents [OSTI]

    Black, Roger L. (Idaho Falls, ID)

    1981-01-01T23:59:59.000Z

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  11. EPREUVE DE Diversit et volution du monde vivant UE 10 licences SV et SME 1re session 2006-2007

    E-Print Network [OSTI]

    Boudouresque, Charles F.

    of wh ail. The Dep anted to shar ving end of etter or packa e, open, sme ediately 743-3333 nto contact w

  12. Sujet d'examen du second semestre, premire session -Microbiologie UE12 -Licence SME -anne universitaire 2007-2008 Sujet d'examen de Microbiologie UE12

    E-Print Network [OSTI]

    Boudouresque, Charles F.

    Sujet d'examen du second semestre, première session - Microbiologie UE12 - Licence SME - année'examen du second semestre, première session - Microbiologie UE12 - Licence SME - année universitaire 2007

  13. SupplementalFigures1 Supplementary Figure S1: Sample Mean Excess (SME) for a range of thresholds at the grid point closest to 3

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    SupplementalFigures1 2 Supplementary Figure S1: Sample Mean Excess (SME) for a range of thresholds at the grid point closest to 3 Bergen, Norway in the BCMHIRHAM5 downscaling. The SME

  14. 1602 Federal Register / Vol. 76, No. 7 / Tuesday, January 11, 2011 / Notices * An SME is defined as a firm with 500 or fewer

    E-Print Network [OSTI]

    1602 Federal Register / Vol. 76, No. 7 / Tuesday, January 11, 2011 / Notices * An SME is defined,000 for large firms and $2,000 for a small or medium-sized enterprise (SME),* with up to two company

  15. EXAMEN UE 10 Diversit et volution du monde vivant Licences SV et SME-2me session Juin 2005

    E-Print Network [OSTI]

    Boudouresque, Charles F.

    electron microscope operated at 200 kV. XRD was performed in a D/MAX-RA X-ray diffractometer. The SME by an fcc structure (Ti,Hf)2Ni with Figure 1. Schematic illustration for the SME measurement in the bending

  16. SME Student Chapter Professional and Social Responsibilities Policy The Department of Mining Engineering encourages the students to participate in as many

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SME Student Chapter Professional and Social Responsibilities Policy The Department of Mining Engineering encourages the students to participate in as many SME activities as possible to enhance in the SME activities there are rules to be followed and appropriate social behavior is expected

  17. 21600 Federal Register / Vol. 75, No. 79 / Monday, April 26, 2010 / Notices 1 An SME is defined as a firm with 500 or fewer

    E-Print Network [OSTI]

    21600 Federal Register / Vol. 75, No. 79 / Monday, April 26, 2010 / Notices 1 An SME is defined,680 for large firms and $2,925 for a small or medium-sized enterprise (SME) 1 or small organization, which will cover one representative. The fee for each additional firm representative (large firm or SME) is $500

  18. Sujet d'examen de la deuxime session -Microbiologie UE12 -Licence SME -anne universitaire 2006-2007 Sujet d'examen de Microbiologie UE12

    E-Print Network [OSTI]

    Boudouresque, Charles F.

    Sujet d'examen de la deuxième session - Microbiologie UE12 - Licence SME - année universitaire 2006 la deuxième session - Microbiologie UE12 - Licence SME - année universitaire 2006-2007 Sujet de session - Microbiologie UE12 - Licence SME - année universitaire 2006-2007 2. Qu'est-ce que la

  19. Non-local on-shell field redefinition for the SME

    E-Print Network [OSTI]

    Ralf Lehnert

    2006-09-23T23:59:59.000Z

    This work instigates a study of non-local field mappings within the Lorentz- and CPT-violating Standard-Model Extension (SME). An example of such a mapping is constructed explicitly, and the conditions for the existence of its inverse are investigated. It is demonstrated that the associated field redefinition can remove b-type Lorentz violation from free SME fermions in certain situations. These results are employed to obtain explicit expressions for the corresponding Lorentz-breaking momentum-space eigenspinors and their orthogonality relations.

  20. Converting Simulated Sodium-bearing Waste into a Single Solid Waste Form by Evaporation: Laboratory- and Pilot-Scale Test Results on Recycling Evaporator Overheads

    SciTech Connect (OSTI)

    Griffith, D.; D. L. Griffith; R. J. Kirkham; L. G. Olson; S. J. Losinski

    2004-01-01T23:59:59.000Z

    Conversion of Idaho National Engineering and Environmental Laboratory radioactive sodium-bearing waste into a single solid waste form by evaporation was demonstrated in both flask-scale and pilot-scale agitated thin film evaporator tests. A sodium-bearing waste simulant was adjusted to represent an evaporator feed in which the acid from the distillate is concentrated, neutralized, and recycled back through the evaporator. The advantage to this flowsheet is that a single remote-handled transuranic waste form is produced in the evaporator bottoms without the generation of any low-level mixed secondary waste. However, use of a recycle flowsheet in sodium-bearing waste evaporation results in a 50% increase in remote-handled transuranic volume in comparison to a non-recycle flowsheet.

  1. Proceedings of NAMRI/SME, Vol. 39, 2011 Additive Manufacturing based on Optimized Mask Video

    E-Print Network [OSTI]

    Chen, Yong

    Proceedings of NAMRI/SME, Vol. 39, 2011 Additive Manufacturing based on Optimized Mask Video@usc.edu, (213) 740-7829 ABSTRACT Additive manufacturing (AM) processes based on mask image projection and resolution of built components. KEYWORDS Additive manufacturing, Solid freeform fabrication, Mask image

  2. Vacuum flash evaporated polymer composites

    DOE Patents [OSTI]

    Affinito, John D. (Kennewick, WA); Gross, Mark E. (Pasco, WA)

    1997-01-01T23:59:59.000Z

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  3. Vacuum flash evaporated polymer composites

    DOE Patents [OSTI]

    Affinito, J.D.; Gross, M.E.

    1997-10-28T23:59:59.000Z

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  4. Conductive Thermal Interaction in Evaporative Cooling Process

    E-Print Network [OSTI]

    Kim, B. S.; Degelman, L. O.

    1990-01-01T23:59:59.000Z

    from the evaporative cooler would often be more than 6.5'F lower than that of a conventional evaporative cooling system due to thermal conduction between water and entering air. - Figure 1 Pad type evaporative cooler. DIRECT EVAPORATIVE COOLER... There are several types of direct evaporative cooler configurations available. Two popular system types are pad type unit and rotary type unit. A number of window mounted units are pad type evaporative coolers (Figure 1). In a pad type cooler, water...

  5. Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning...

    Broader source: Energy.gov (indexed) [DOE]

    Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant...

  6. Rating of Mixed Split Residential Air Conditioners

    E-Print Network [OSTI]

    Domanski, P. A.

    1988-01-01T23:59:59.000Z

    A methodology is presented for rating the performance of mixed, split residential air conditioners. The method accounts for the impact on system performance of the indoor evaporator, expansion device and fan; three major components that are likely...

  7. Field Performance of a Slimline Turbomist Evaporator under Southeastern U. S. Climate Conditions

    SciTech Connect (OSTI)

    Sappington, F.C.

    2003-12-15T23:59:59.000Z

    A recent study of evaporation technologies for treating F- and H-area groundwater contaminated with radionuclides and metals (Flach 2002) suggested that spray evaporation might be a viable alternative or supplemental technique for managing tritiated groundwater at the Mixed Waste Management Facility. The particular technology of interest in this study is the Slimline Manufacturing Ltd. Turbo-Mist Evaporator, which uses a powerful blower and high-pressure spray nozzles to propel a fine mist into the air at high air and water flowrates.

  8. List of SME Contacts to Notify of Important Issues, April 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy and EmissionsDepartment ofEnergy fuelsListSME

  9. Solar Roof Cooling by Evaporation

    E-Print Network [OSTI]

    Patterson, G. V.

    1982-01-01T23:59:59.000Z

    Evaporation is nature's way of cooling. By the application of a thin film of water, in the form of a mist, on the roof of the building, roof temperatures can be reduced from as high as 165o to a cool 86oF. Thus, under-roof temperatures are reduced...

  10. Evaporative Cooling for Energy Conservation

    E-Print Network [OSTI]

    Meyer, J. R.

    1983-01-01T23:59:59.000Z

    cooling. A recent application of evaporative air cooling equipment in a heat treat area at the John Deere Component Works in Waterloo, Iowa provided the required cooling at an operating cost of 30% of a city water coil and 10% of a chilled water system...

  11. Solar Roof Cooling by Evaporation

    E-Print Network [OSTI]

    Patterson, G. V.

    1981-01-01T23:59:59.000Z

    It is generally recognized that as much as 60% of the air conditioning load in a building is generated by solar heat from the roof. This paper on SOLAR ROOF COOLING BY EVAPORATION is presented in slide form, tracing the history of 'nature's way...

  12. Status and prospects for $CPT$ and Lorentz invariance violation searches in neutral meson mixing

    E-Print Network [OSTI]

    Jeroen van Tilburg; Maarten van Veghel

    2015-02-02T23:59:59.000Z

    An overview of current experimental bounds on $CPT$ violation in neutral meson mixing is given. New values for the $CPT$ asymmetry in the $B^0$ and $B_s^0$ systems are deduced from published BaBar, Belle and LHCb results. With dedicated analyses, LHCb will be able to further improve the bounds on $CPT$ violation in the $D^0$, $B^0$ and $B_s^0$ systems. Since $CPT$ violation implies violation of Lorentz invariance in an interacting local quantum field theory, the observed $CPT$ asymmetry will exhibit sidereal- and boost-dependent variations. Such $CPT$-violating and Lorentz-violating effects are accommodated in the framework of the Standard-Model Extension (SME). The large boost of the neutral mesons produced at LHCb results in a high sensitivity to the corresponding SME coefficients. For the $B^0$ and $B_s^0$ systems, using existing LHCb results, we determine with high precision the SME coefficients that are not varying with sidereal time. With a full sidereal analysis, LHCb will be able to improve the existing SME bounds in the $D^0$, $B^0$ and $B_s^0$ systems by up to two orders of magnitude.

  13. Dynamics of evaporative colloidal patterning

    E-Print Network [OSTI]

    C. Nadir Kaplan; Ning Wu; Shreyas Mandre; Joanna Aizenberg; L. Mahadevan

    2014-12-04T23:59:59.000Z

    Drying suspensions often leave behind complex patterns of particulates, as might be seen in the coffee stains on a table. Here we consider the dynamics of periodic band or uniform solid film formation on a vertical plate suspended partially in a drying colloidal solution. Direct observations allow us to visualize the dynamics of the band and film deposition, and the transition in between when the colloidal concentration is varied. A minimal theory of the liquid meniscus motion along the plate reveals the dynamics of the banding and its transition to the filming as a function of the ratio of deposition and evaporation rates. We also provide a complementary multiphase model of colloids dissolved in the liquid, which couples the inhomogeneous evaporation at the evolving meniscus to the fluid and particulate flows and the transition from a dilute suspension to a porous plug. This allows us to determine the concentration dependence of the bandwidth and the deposition rate. Together, our findings allow for the control of drying-induced patterning as a function of the colloidal concentration and evaporation rate.

  14. The Science and Technology Facilities Council's (STFC) Hartree Centre has provided local SME ACAL Energy with the supercomputing

    E-Print Network [OSTI]

    Zharkova, Valentina V.

    The Science and Technology Facilities Council's (STFC) Hartree Centre has provided local SME ACAL Energy with the supercomputing capability they required to gain a better insight into their fuel cell technology, enabling them to solve a technical performance problem. Work with us The Science and Technology

  15. Introduction to Black Hole Evaporation

    E-Print Network [OSTI]

    Pierre-Henry Lambert

    2014-01-16T23:59:59.000Z

    These lecture notes are an elementary and pedagogical introduction to the black hole evaporation, based on a lecture given by the author at the Ninth Modave Summer School in Mathematical Physics and are intended for PhD students. First, quantum field theory in curved spacetime is studied and tools needed for the remaining of the course are introduced. Then, quantum field theory in Rindler spacetime in 1+1 dimensions and in the spacetime of a spherically collapsing star are considered, leading to Unruh and Hawking effects, respectively. Finally, some consequences such as thermodynamics of black holes and information loss paradox are discussed.

  16. Evaporative Coolers | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome |Cooking forEnvironment, Health,Evaporative

  17. Portable brine evaporator unit, process, and system

    DOE Patents [OSTI]

    Hart, Paul John (Indiana, PA); Miller, Bruce G. (State College, PA); Wincek, Ronald T. (State College, PA); Decker, Glenn E. (Bellefonte, PA); Johnson, David K. (Port Matilda, PA)

    2009-04-07T23:59:59.000Z

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  18. Apparatus and method for evaporator defrosting

    DOE Patents [OSTI]

    Mei, Viung C. (Oak Ridge, TN); Chen, Fang C. (Knoxville, TN); Domitrovic, Ronald E. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.

  19. Dew-Point Evaporative Comfort Cooling (Presentation)

    SciTech Connect (OSTI)

    Dean, J.

    2012-10-01T23:59:59.000Z

    Presentation on innovative indirect evaporative cooling technology developed by Coolerado Corporation given at the Rocky Mountain Chapter ASHRAE conference in April 2012.

  20. Techniques for evaluation of E-beam evaporative processes

    SciTech Connect (OSTI)

    Meier, T.C.; Nelson, C.M.

    1996-10-01T23:59:59.000Z

    High dynamic range video imaging of the molten pool surface has provided insight regarding process responses at the melt pool liquid-vapor interface. A water-cooled video camera provides continuous high resolution imaging of the pool surface from a low angle position within 20 cm of the liquid-vapor interface. From the vantage point, the e-beam footprint is clearly defined and melt pool free surface shape can be observed. Effects of changes in a beam footprint, power distribution, and sweep frequency on pool surface shape and stability of vaporization are immediately shown. Other events observed and recorded include: formation of the pool and dissipation of ``rafts`` on the pool surface during startup, behavior of feed material as it enters the pool, effects of feed configuration changes on mixing of feed entering the pool volume and behaviors of co-evaporated materials of different vapor pressures at the feed/pool boundary. When used in conjunction with laser vapor monitoring, correlation between pool surface phenomena and vaporizer performance has been identified. This video capability was used in verifying the titanium evaporation model results presented at this conference by confirming the calculated melt pool surface deformations caused by vapor pressure of the departing evaporant at the liquid-vapor interface.

  1. Novel mixed organoboranes for the reductive alkylation of p-benzoquinone

    E-Print Network [OSTI]

    Hincapié, Gloria

    2011-01-01T23:59:59.000Z

    sulfide complex (BMS), 61 BH 3 -SMe 2 . Borane complexes aredimethyl sulfide, H 3 B·SMe 2 (BMS). Hydroboration reactionsdimethyl sulfide, HBX 2 ·SMe 2 . 103 In contrast to

  2. Techniques for evaluation of e-beam evaporative processes

    SciTech Connect (OSTI)

    Meier, T.C.; Nelson, C.M. [Lawrence Livermore National Lab., CA (United States)

    1996-12-31T23:59:59.000Z

    Efforts to evaluate and characterize electron beam evaporative processes at LLNL have produced a number of techniques and capabilities which have proven useful in advancing the process understanding. One of these diagnostic tools, high dynamic range video imaging of the molten pool surface, has provided insight regarding process responses at the melt pool liquid-vapor interface. A water cooled video camera provides continuous high resolution imaging of the pool surface from a low angle position within 20 cm of the liquid-vapor interface. From this vantage point, the e-beam footprint is clearly defined and melt pool free surface shape can be observed. Effects of changes in e-beam footprint, power distribution and sweep frequency on pool surface shape and stability of vaporization are immediately shown. Other electron beam melting and vaporization events have been observed and recorded. These include: formation of the pool and dissipation of {open_quotes}rafts{close_quotes} on the pool surface during startup, behavior of feed material as it enters the pool, effects of feed configuration changes on the mixing of feed entering the pool volume and behaviors of co-evaporated materials of different vapor pressures at the feed/pool boundary. When used in conjunction with laser vapor monitoring capabilities (presented at the 1994 Electron Beam Melting and Refining Conference, Reno, NV), correlation between pool surface phenomena and vaporizer performance has been identified. This video capability was used in verifying the titanium evaporation model results presented at this conference by confirming the calculated melt pool surface deformations caused by vapor pressure of the departing evaporant at the liquid-vapor interface.

  3. Water Evaporation Studies in Texas.

    E-Print Network [OSTI]

    Patterson, R. E. (Raleigh Elwood); Bloodgood, Dean W.; Smith, R. L.

    1954-01-01T23:59:59.000Z

    28 71 4,753 2.14 3.30 3.40 61 41 85 3,726 - .29 48 17 - 4,197 1.69 2.00 56 33 76 5,287 1.56 1.13 1.24 56 30 67' 3,638 for FEE! 2.99 3.02. 3.86 64 42 75 5,804 4,215 2.58 2.52 3.28 1.95 62 39 2,259 2.90 .94... Location COOPERATIVE EVAPORATION STATIONS Amarillo Potter 3.795 35' 10' 102' 05' 14 mi. W of Amarillo Angleton Brazoria 27 29' 12' 95' 23' 4 mi. NE of Angleton Balmorbea Reeves 3.225 31' 00' 103' 41' 4 mi. E of Balmorhea Beaumont Jefferson 3 0 30' 04...

  4. Advanced evaporator technology progress report FY 1992

    SciTech Connect (OSTI)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

    1995-01-01T23:59:59.000Z

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  5. Periodic Trends within a Series of Five-Coordinate Thiolate-Ligated [MII(SMe2N4(tren))]+ (M ) Mn, Fe, Co, Ni, Cu, Zn) Complexes, Including a

    E-Print Network [OSTI]

    Kovacs, Julie

    Periodic Trends within a Series of Five-Coordinate Thiolate-Ligated [MII(SMe2N4(tren))]+ (M ) Mn-ligated complexes [MII (tren)N4SMe2 ]+ (M ) Mn, Fe, Co, Ni, Cu, Zn; tren ) tris(2-aminoethyl)amine) are reported. All of the gem-dimethyl derivatized complexes are monomeric and, with the exception of [NiII (SMe2 N4

  6. Fundamental study of evaporation model in micron pore

    E-Print Network [OSTI]

    Oinuma, Ryoji

    2004-11-15T23:59:59.000Z

    of evaporation has not been established. The purpose of this study is to establish a method to apply the evaporation model based on the statistical rate theory for engineering application including vapor-liquid-structure intermolecular effect. The evaporation...

  7. 242-A evaporator safety analysis report

    SciTech Connect (OSTI)

    CAMPBELL, T.A.

    1999-05-17T23:59:59.000Z

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  8. Black Hole Evaporation as a Nonequilibrium Process

    E-Print Network [OSTI]

    Hiromi Saida

    2008-11-11T23:59:59.000Z

    When a black hole evaporates, there arises a net energy flow from the black hole into its outside environment due to the Hawking radiation and the energy accretion onto black hole. Exactly speaking, due to the net energy flow, the black hole evaporation is a nonequilibrium process. To study details of evaporation process, nonequilibrium effects of the net energy flow should be taken into account. In this article we simplify the situation so that the Hawking radiation consists of non-self-interacting massless matter fields and also the energy accretion onto the black hole consists of the same fields. Then we find that the nonequilibrium nature of black hole evaporation is described by a nonequilibrium state of that field, and we formulate nonequilibrium thermodynamics of non-self-interacting massless fields. By applying it to black hole evaporation, followings are shown: (1) Nonequilibrium effects of the energy flow tends to accelerate the black hole evaporation, and, consequently, a specific nonequilibrium phenomenon of semi-classical black hole evaporation is suggested. Furthermore a suggestion about the end state of quantum size black hole evaporation is proposed in the context of information loss paradox. (2) Negative heat capacity of black hole is the physical essence of the generalized second law of black hole thermodynamics, and self-entropy production inside the matter around black hole is not necessary to ensure the generalized second law. Furthermore a lower bound for total entropy at the end of black hole evaporation is given. A relation of the lower bound with the so-called covariant entropy bound conjecture is interesting but left as an open issue.

  9. Catastrophic Evaporation of Rocky Planets

    E-Print Network [OSTI]

    Perez-Becker, Daniel

    2013-01-01T23:59:59.000Z

    Short-period exoplanets can have dayside surface temperatures surpassing 2000 K, hot enough to vaporize rock and drive a thermal wind. Small enough planets evaporate completely. We construct a radiative-hydrodynamic model of atmospheric escape from strongly irradiated, low-mass rocky planets, accounting for dust-gas energy exchange in the wind. Rocky planets with masses 2000 K are found to disintegrate entirely in 0.1 M_Earth/Gyr --- our model yields a present-day planet mass of < 0.02 M_Earth or less than about twice the mass of the Moon. Mass loss rates depend so strongly on planet mass that bodies can reside on close-in orbits for Gyrs with initial masses comparable to or less than that of Mercury, before entering a final short-lived phase of catastrophic mass loss (which KIC 12557548b has entered). Because this catastrophic stage lasts only up to a few percent of the planet's life, we estimate that for every object like KIC 12557548b, there should be 10--100 close-in quiescent progenitors with sub-da...

  10. Vapor canister heater for evaporative emissions systems

    SciTech Connect (OSTI)

    Bishop, R.P.; Berg, P.G.

    1987-01-01T23:59:59.000Z

    Automotive evaporative emissions systems use a charcoal canister to store evaporative hydrocarobn emissions. These stored vapors are later purged and burned during engine operation. Under certain conditions the engine cannot completely purge the canister of the stored fuel vapors, which results in a decreased vapor storage capacity in the canister. A self-regulating PTC (Positive Temperature Coefficient) heater has been developed to warm the purge air as it enters the canister, in order to provide thermal energy for increased release of the vapors from charcoal sites. This paper describes the construction and operation of the vapor canister heater as it relates to improved evaporative emission system performance.

  11. 241-A evaporator flowsheet users manual

    SciTech Connect (OSTI)

    Larrick, A.P.

    1994-12-22T23:59:59.000Z

    This supporting document presents a description of the 242-A Evaporator flowsheet. Material balances are calculated for feed, slurry, and effluent streams based on input data for the feed stream.

  12. Topological transitions in evaporating thin films

    E-Print Network [OSTI]

    Avraham Klein; Oded Agam

    2012-07-31T23:59:59.000Z

    A thin water film evaporating from a cleaved mica substrate undergoes a first-order phase transition between two values of film thickness. During evaporation, the interface between the two phases develops a fingering instability similar to that observed in the Saffman-Taylor problem. The dynamics of the droplet interface is dictated by an infinite number of conserved quantities: all harmonic moments decay exponentially at the same rate. A typical scenario is the nucleation of a dry patch within the droplet domain. We construct solutions of this problem and analyze the toplogical transition occuring when the boundary of the dry patch meets the outer boundary. We show a duality between Laplacian growth and evaporation, and utilize it to explain the behaviour near the transition. We construct a family of problems for which evaporation and Laplacian growth are limiting cases and show that a necessary condition for a smooth topological transition, in this family, is that all boundaries share the same pressure.

  13. Predictability in Quantum Gravity and Black Hole Evaporation

    E-Print Network [OSTI]

    J. W. Moffat

    1993-12-09T23:59:59.000Z

    A possible resolution of the information loss paradox for black holes is proposed in which a phase transition occurs when the temperature of an evaporating black hole equals a critical value, $T_c$, and Lorentz invariance and diffeomorphism invariance are spontaneously broken. This allows a generalization of Schr\\"odinger's equation for the quantum mechanical density matrix, such that a pure state can evolve into a mixed state, because in the symmetry broken phase the conservation of energy-momentum is spontaneously violated. TCP invariance is also spontaneously broken together with time reversal invariance, allowing the existence of white holes, which are black holes moving backwards in time. Domain walls would form which separate the black holes and white holes (anti-black holes) in the broken symmetry regime, and the system could evolve into equilibrium producing a balance of information loss and gain.

  14. The development of a new evaporation formula for Texas

    E-Print Network [OSTI]

    Moe, R. D

    1965-01-01T23:59:59.000Z

    of Texas. From these maps an equation for evapo- ration can be extracted for any location in Texas. It was found that wind speed and relative humidity had little effect on evaporation from pans in Texas, at least when considered in terms of mean... IMPORTANCE Statement of the Problem Importance of Evaporation History of Evaporation Studies II REVIEW OF THE LITERATURE Evaporation Formulas Measurement of Evaporation The Water Budget Approach The Energy Budget Approach The Turbulent Transfer...

  15. 183-H Basin Mixed Waste Analysis and Testing Report

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The purpose of this sampling and analysis report is to provide data necessary to support treatment and disposal options for the low-level mixed waste from the 183-H solar evaporation ponds. In 1973, four of the 16 flocculation and sedimentation basins were designated for use as solar evaporation basins to provide waste reduction by natural evaporation of liquid chemical wastes from the 300 Area fuel fabrication facilities. The primary purpose of this effort is to gather chemical and bulk property data for the waste in the drums/boxes of sediment removed from the basin at Central Waste Complex.

  16. Evaporative cooling of the dipolar radical OH

    E-Print Network [OSTI]

    Stuhl, Benjamin K; Yeo, Mark; Quéméner, Goulven; Bohn, John L; Ye, Jun

    2012-01-01T23:59:59.000Z

    Atomic physics was revolutionized by the development of forced evaporative cooling: it led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases, and ultracold optical lattice simulations of condensed matter phenomena. More recently, great progress has been made in the production of cold molecular gases, whose permanent electric dipole moment is expected to generate rich, novel, and controllable phases, dynamics, and chemistry in these ultracold systems. However, while many strides have been made in both direct cooling and cold-association techniques, evaporative cooling has not yet been achieved due to unfavorable elastic-to-inelastic ratios and impractically slow thermalization rates in the available trapped species. We now report the observation of microwave-forced evaporative cooling of hydroxyl (OH) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least an order of magnitude in tempera...

  17. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, P.

    1991-10-15T23:59:59.000Z

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  18. Hot air drum evaporator. [Patent application

    DOE Patents [OSTI]

    Black, R.L.

    1980-11-12T23:59:59.000Z

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  19. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, Peter (Cary, NC)

    1991-01-01T23:59:59.000Z

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  20. Direct Evaporative Precooling Model and Analysis

    SciTech Connect (OSTI)

    Shen, Bo [ORNL; Ally, Moonis Raza [ORNL; Rice, C Keith [ORNL; Craddick, William G [ORNL

    2011-01-01T23:59:59.000Z

    Evaporative condenser pre-cooling expands the availability of energy saving, cost-effective technology options (market engagement) and serves to expedite the range of options in upcoming codes and equipment standards (impacting regulation). Commercially available evaporative pre-coolers provide a low cost retrofit for existing packaged rooftop units, commercial unitary split systems, and air cooled chillers. We map the impact of energy savings and peak energy reduction in the 3 building types (medium office, secondary school, and supermarket) in 16 locations for three building types with four pad effectivenesses and show the effect for HVAC systems using either refrigerants R22 or R410A

  1. Evaporative cooling of the dipolar radical OH

    E-Print Network [OSTI]

    Benjamin K. Stuhl; Matthew T. Hummon; Mark Yeo; Goulven Quéméner; John L. Bohn; Jun Ye

    2012-09-27T23:59:59.000Z

    Atomic physics was revolutionized by the development of forced evaporative cooling: it led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases, and ultracold optical lattice simulations of condensed matter phenomena. More recently, great progress has been made in the production of cold molecular gases, whose permanent electric dipole moment is expected to generate rich, novel, and controllable phases, dynamics, and chemistry in these ultracold systems. However, while many strides have been made in both direct cooling and cold-association techniques, evaporative cooling has not yet been achieved due to unfavorable elastic-to-inelastic ratios and impractically slow thermalization rates in the available trapped species. We now report the observation of microwave-forced evaporative cooling of hydroxyl (OH) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least an order of magnitude in temperature and three orders in phase-space density, limited only by the low-temperature sensitivity of our spectroscopic thermometry technique. With evaporative cooling and sufficiently large initial populations, much colder temperatures are possible, and even a quantum-degenerate gas of this dipolar radical -- or anything else it can sympathetically cool -- may now be in reach.

  2. Water Management for Evaporatively Cooled Condensers

    E-Print Network [OSTI]

    California at Davis, University of

    Water Management for Evaporatively Cooled Condensers Theresa Pistochini May 23rd, 2012 ResearchAirCapacity,tons Gallons of Water Continuous Test - Outdoor Air 110-115 Deg F Cyclic Test - Outdoor Air 110-115 Deg F #12 AverageWaterHardness(ppm) Cooling Degree Days (60°F Reference) 20% Population 70% Population 10

  3. Tank 26F-2F Evaporator Study

    SciTech Connect (OSTI)

    Adu-Wusu, K.

    2012-12-19T23:59:59.000Z

    Tank 26F supernate sample was sent by Savannah River Remediation to Savannah River National Laboratory for evaporation test to help understand the underlying cause of the recent gravity drain line (GDL) pluggage during operation of the 2F Evaporator system. The supernate sample was characterized prior to the evaporation test. The evaporation test involved boiling the supernate in an open beaker until the density of the concentrate (evaporation product) was between 1.4 to 1.5 g/mL. It was followed by filtering and washing of the precipitated solids with deionized water. The concentrate supernate (or concentrate filtrate), the damp unwashed precipitated solids, and the wash filtrates were characterized. All the precipitated solids dissolved during water washing. A semi-quantitative X-ray diffraction (XRD) analysis on the unwashed precipitated solids revealed their composition. All the compounds with the exception of silica (silicon oxide) are known to be readily soluble in water. Hence, their dissolution during water washing is not unexpected. Even though silica is a sparingly water-soluble compound, its dissolution is also not surprising. This stems from its small fraction in the solids as a whole and also its relative freshness. Assuming similar supernate characteristics, flushing the GDL with water (preferably warm) should facilitate dissolution and removal of future pluggage events as long as build up/aging of the sparingly soluble constituent (silica) is limited. On the other hand, since the amount of silica formed is relatively small, it is quite possible dissolution of the more soluble larger fraction will cause disintegration or fragmentation of the sparingly soluble smaller fraction (that may be embedded in the larger soluble solid mass) and allow its removal via suspension in the flushing water.

  4. Evaporative system for water and beverage refrigeration in hot countries

    E-Print Network [OSTI]

    Evaporative system for water and beverage refrigeration in hot countries A Saleh1 and MA Al-Nimr2 1 Abstract: The present study proposes an evaporative refrigerating system used to keep water or other are found to be consistent with the available literature data. Keywords: evaporative refrigeration, heat

  5. Radiative generation of the CPT-even gauge term of the SME from a dimension-five nonminimal coupling term

    E-Print Network [OSTI]

    R. Casana; M. M. Ferreira Jr; R. V. Maluf; F. E. P. dos Santos

    2013-09-07T23:59:59.000Z

    In this letter we show for the first time that the usual CPT-even gauge term of the standard model extension (SME) can be radiatively generated, in a gauge invariant level, in the context of a modified QED endowed with a dimension-five nonminimal coupling term recently proposed in the literature. As a consequence, the existing upper bounds on the coefficients of the tensor $(K_{F}) $ can be used improve the bounds on the magnitude of the nonminimal coupling, $\\lambda(K_{F}),$ by the factors $10^{5}$ or $10^{25}.$ The nonminimal coupling also generates higher-order derivative contributions to the gauge field effective action quadratic terms.

  6. Radiative generation of the CPT-even gauge term of the SME from a dimension-five nonminimal coupling term

    E-Print Network [OSTI]

    Casana, R; Maluf, R V; Santos, F E P dos

    2013-01-01T23:59:59.000Z

    In this letter we show for the first time that the usual CPT-even gauge term of the standard model extension (SME) can be radiatively generated, \\textbf{}in a gauge invariant level, in the context of a modified QED endowed with a dimension-five nonminimal coupling term recently proposed in the literature. As a consequence, the existing upper bounds on the coefficients of the tensor $(K_{F}) $ can be used improve the bounds on the magnitude of the nonminimal coupling, $\\lambda(K_{F}),$ by the factors $10^{5}$ or $10^{25}.$ The nonminimal coupling also generates higher-order derivative contributions to the gauge field effective action quadratic terms.

  7. Sludge Batch 2 (Macrobatch 3) Rheology Studies with Simulants

    SciTech Connect (OSTI)

    Koopman, D.C.

    2001-05-02T23:59:59.000Z

    Non-radioactive sludge-only process simulations of the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) cycles were conducted for a 50:50 blend of Tank 8 and Tank 40 washed sludge and Tank 40 washed sludge by itself. Rheological characterization of the sludge, SRAT product, and SME product material was requested as part of the simulant program.

  8. Front instabilities in evaporatively dewetting nanofluids

    E-Print Network [OSTI]

    Vancea, I; Pauliac-Vaujour, E; Stannard, A; Martín, C P; Blunt, M O; Moriarty, P J

    2008-01-01T23:59:59.000Z

    Various experimental settings that involve drying solutions or suspensions of nanoparticles -- often called nanofluids -- have recently been used to produce structured nanoparticle layers. In addition to the formation of polygonal networks and spinodal-like patterns, the occurrence of branched structures has been reported. After reviewing the experimental results we use a modified version of the Monte Carlo model first introduced by Rabani et al. [Nature 426, 271 (2003)] to study structure formation in evaporating films of nanoparticle solutions for the case that all structuring is driven by the interplay of evaporating solvent and diffusing nanoparticles. After introducing the model and its general behavior we focus on receding dewetting fronts which are initially straight but develop a transverse fingering instability. We analyze the dependence of the characteristics of the resulting branching patterns on the driving chemical potential, the mobility and concentration of the nanoparticles, and the interactio...

  9. Front instabilities in evaporatively dewetting nanofluids

    E-Print Network [OSTI]

    I. Vancea; U. Thiele; E. Pauliac-Vaujour; A. Stannard; C. P. Martin; M. O. Blunt; P. J. Moriarty

    2008-06-25T23:59:59.000Z

    Various experimental settings that involve drying solutions or suspensions of nanoparticles -- often called nanofluids -- have recently been used to produce structured nanoparticle layers. In addition to the formation of polygonal networks and spinodal-like patterns, the occurrence of branched structures has been reported. After reviewing the experimental results we use a modified version of the Monte Carlo model first introduced by Rabani et al. [Nature 426, 271 (2003)] to study structure formation in evaporating films of nanoparticle solutions for the case that all structuring is driven by the interplay of evaporating solvent and diffusing nanoparticles. After introducing the model and its general behavior we focus on receding dewetting fronts which are initially straight but develop a transverse fingering instability. We analyze the dependence of the characteristics of the resulting branching patterns on the driving chemical potential, the mobility and concentration of the nanoparticles, and the interaction strength between liquid and nanoparticles. This allows us to understand the underlying instability mechanism.

  10. EVAPORATIVE COOLING - CONCEPTUAL DESIGN FOR ATLAS SCT

    E-Print Network [OSTI]

    Niinikoski, T O

    1998-01-01T23:59:59.000Z

    The conceptual design of an evaporative two-phase flow cooling system for the ATLAS SCT detector is described, using perfluorinated propane (C3F8) as a coolant. Comparison with perfluorinated butane (C4F10) is made, although the detailed design is presented only for C3F8. The two-phase pressure drop and heat transfer coefficient are calculated in order to determine the dimensions of the cooling pipes and module contacts for the Barrel SCT. The region in which the flow is homogeneous is determined. The cooling cycle, pipework, compressor, heat exchangers and other main elements of the system are calculated in order to be able to discuss the system control, safety and reliability. Evaporative cooling appears to be substantially better than the binary ice system from the point of view of safety, reliability, detector thickness, heat transfer coefficient, cost and simplicity.

  11. Evaporated Lithium Surface Coatings in NSTX

    SciTech Connect (OSTI)

    Kugel, H. W.; Mansfield, D.; Maingi, R.; Bel, M. G.; Bell, R. E.; Allain, J. P.; Gates, D.; Gerhardt, S.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.; Majeski, R.; Menard, J.; Mueller, D.; Ono, M.

    2009-04-09T23:59:59.000Z

    Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: 1) plasma density reduction as a result of lithium deposition; 2) suppression of ELMs; 3) improvement of energy confinement in a low-triangularity shape; 4) improvement in plasma performance for standard, high-triangularity discharges; 5) reduction of the required HeGDC time between discharges; 6) increased pedestal electron and ion temperature; 7) reduced SOL plasma density; and 8) reduced edge neutral density.

  12. Nuclear evaporation process with simultaneous multiparticle emission

    E-Print Network [OSTI]

    Leonardo P. G. De Assis; Sergio B. Duarte; Bianca M. Santos

    2012-08-07T23:59:59.000Z

    The nuclear evaporation process is reformulated by taking into account simultaneous multiparticle emission from a hot compound nucleus appearing as an intermediate state in many nuclear reaction mechanisms. The simultaneous emission of many particles is particularly relevant for high excitation energy of the compound nucleus.These channels are effectively open in competition with the single particle emissions and fission in this energy regime. Indeed, the inclusion of these channels along the decay evaporating chain shows that the yield of charged particles and occurrence of fission are affected by these multiparticle emission processes of the compounded nucleus, when compared to the single sequential emission results. The effect also shows a qualitative change in the neutron multiplicity of different heavy compound nucleus considered. This should be an important aspect for the study of spallation reaction in Acceleration Driven System (ADS) reactors. The majority of neutrons generated in these reactions come from the evaporation stage of the reaction, the source of neutron for the system. A Monte Carlo simulation is employed to determine the effect of these channels on the particle yield and fission process. The relevance of the simultaneous particle emission with the increasing of excitation energy of the compound nucleus is explicitly shown.

  13. THE FLAMMABILITY ANALYSIS AND TIME TO REACH LOWER FLAMMABILITY LIMIT CALCULATIONS ON THE WASTE EVAPORATION AT 242-A EVAPORATOR

    SciTech Connect (OSTI)

    HU TA

    2007-10-31T23:59:59.000Z

    This document describes the analysis of the waste evaporation process on the flammability behavior. The evaluation calculates the gas generation rate, time to reach 25% and 100% of the lower flammability limit (LFL), and minimum ventilation rates for the 242-A Evaporator facility during the normal evaporation process and when vacuum is lost. This analysis performs flammability calculations on the waste currently within all 28 double-shell tanks (DST) under various evaporation process conditions to provide a wide spectrum of possible flammable gas behavior. The results of this analysis are used to support flammable gas control decisions and support and upgrade to Documented Safety Analysis for the 242-A Evaporator.

  14. Neutrino Mixing

    E-Print Network [OSTI]

    Carlo Giunti; Marco Laveder

    2004-10-01T23:59:59.000Z

    In this review we present the main features of the current status of neutrino physics. After a review of the theory of neutrino mixing and oscillations, we discuss the current status of solar and atmospheric neutrino oscillation experiments. We show that the current data can be nicely accommodated in the framework of three-neutrino mixing. We discuss also the problem of the determination of the absolute neutrino mass scale through Tritium beta-decay experiments and astrophysical observations, and the exploration of the Majorana nature of massive neutrinos through neutrinoless double-beta decay experiments. Finally, future prospects are briefly discussed.

  15. Mixing and its effects on biogeochemistry in the persistently stratified, deep, tropical Lake Matano, Indonesia

    E-Print Network [OSTI]

    Katsev, S.; Crowe, S.A.; Mucci, Alfonso; Sundby, Bjorn; Nomosatryo, Sulung; Haffner, G. Douglas; Fowle, David A.

    2009-09-24T23:59:59.000Z

    , the small density gradient results in large (20 m) vertical eddies and high mixing rates (Kz ~ 10-2 m2 s-1). The estimated timescale of water renewal in the monimolimnion is several hundred years. Intense evaporation depletes the surface mixed layer of 16O...

  16. Treatment of evaporator condensates by pervaporation

    DOE Patents [OSTI]

    Blume, Ingo (Hengelq, NL); Baker, Richard W. (Palo Alto, CA)

    1990-01-01T23:59:59.000Z

    A pervaporation process for separating organic contaminants from evaporator condensate streams is disclosed. The process employs a permselective membrane that is selectively permeable to an organic component of the condensate. The process involves contacting the feed side of the membrane with a liquid condensate stream, and withdrawing from the permeate side a vapor enriched in the organic component. The driving force for the process is the in vapor pressure across the membrane. This difference may be provided for instance by maintaining a vacuum on the permeate side, or by condensing the permeate. The process offers a simple, economic alternative to other separation techniques.

  17. Radion clouds around evaporating black holes

    E-Print Network [OSTI]

    J. R. Morris

    2009-09-03T23:59:59.000Z

    A Kaluza-Klein model, with a matter source associated with Hawking radiation from an evaporating black hole, is used to obtain a simple form for the radion effective potential. The environmental effect generally causes a matter-induced shift of the radion vacuum, resulting in the formation of a radion cloud around the hole. There is an albedo due to the radion cloud, with an energy dependent reflection coefficient that depends upon the size of the extra dimensions and the temperature of the hole.

  18. Evaporative Cooling Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration |10 DOEGoalsEvaluation11of NREL is aEvaporative

  19. Forward-backward emission of target evaporated evaporated fragments at high energy nucleus-nucleus collisions

    E-Print Network [OSTI]

    Zhi Zhang; Tian-Li Ma; Dong-Hai Zhang

    2015-01-03T23:59:59.000Z

    The multiplicity distribution, multiplicity moment, scaled variance, entropy and reduced entropy of target evaporated fragment emitted in forward and backward hemispheres in 12 A GeV $^{4}$He, 3.7 A GeV $^{16}$O, 60 A GeV $^{16}$O, 1.7 A GeV $^{84}$Kr and 10.7 A GeV $^{197}$Au induced emulsion heavy targets (AgBr) interactions are investigated. It is found that the multiplicity distribution of target evaporated fragments emitted in forward and backward hemispheres can be fitted by a Gaussian distribution. The multiplicity moments of target evaporated particles emitted in forward and backward hemispheres increase with the order of the moment {\\em q}, and second-order multiplicity moment is energy independent over the entire energy for all the interactions in the forward and backward hemisphere respectively. The scaled variance, a direct measure of multiplicity fluctuations, is close to one for all the interactions which may be said that there is a feeble correlation among the produced particles. The entropy of target evaporated fragments emitted in forward and backward hemispheres are the same within experimental errors, respectively.

  20. Optimal Electron Energies for Driving Chromospheric Evaporation in Solar Flares

    E-Print Network [OSTI]

    Reep, Jeffrey; Alexander, David

    2015-01-01T23:59:59.000Z

    In the standard model of solar flares, energy deposition by a beam of electrons drives strong chromospheric evaporation leading to a significantly denser corona and much brighter emission across the spectrum. Chromospheric evaporation was examined in great detail by Fisher, Canfield, & McClymont (1985a,b,c), who described a distinction between two different regimes, termed explosive and gentle evaporation. In this work, we examine the importance of electron energy and stopping depths on the two regimes and on the atmospheric response. We find that with explosive evaporation, the atmospheric response does not depend strongly on electron energy. In the case of gentle evaporation, lower energy electrons are significantly more efficient at heating the atmosphere and driving up-flows sooner than higher energy electrons. We also find that the threshold between explosive and gentle evaporation is not fixed at a given beam energy flux, but also depends strongly on the electron energy and duration of heating. Furt...

  1. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    E-Print Network [OSTI]

    Koh, Christine J.

    2013-01-01T23:59:59.000Z

    + ][Dca ? ]. Figure 2. Aerosol particle size distribution ofhypergolic ionic liquid aerosols Christine J. Koh † , Chen-ionization of evaporated IL aerosols Isolated ion pairs of a

  2. Quantum Cooling Evaporation Process in Regular Black Holes

    E-Print Network [OSTI]

    Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

    2007-09-28T23:59:59.000Z

    We investigate a universal behavior of thermodynamics and evaporation process for the regular black holes. We newly observe an important point where the temperature is maximum, the heat capacity is changed from negative infinity to positive infinity, and the free energy is minimum. Furthermore, this point separates the evaporation process into the early stage with negative heat capacity and the late stage with positive heat capacity. The latter represents the quantum cooling evaporation process. As a result, the whole evaporation process could be regarded as the inverse Hawking-Page phase transition.

  3. Front instabilities in evaporatively dewetting nanofluids and U. Thiele

    E-Print Network [OSTI]

    Front instabilities in evaporatively dewetting nanofluids I. Vancea and U. Thiele Department of nanoparticles ­ often called nanofluids ­ have recently been used to produce structured nanoparticle layers

  4. Liquid Evaporation on Superhydrophobic and Superhydrophilic Nanostructured Surfaces

    E-Print Network [OSTI]

    Miljkovic, Nenad

    Environmental scanning electron microscope (ESEM) images of water evaporation from superhydrophilic and superhydrophobic nanostructured surfaces are presented. The nanostructured surfaces consiste of an array of equidistant ...

  5. Triangular Ring Resonator: Direct measurement of the parity-odd parameters of the photon sector of SME

    E-Print Network [OSTI]

    Qasem Exirifard

    2014-02-25T23:59:59.000Z

    We introduce the the Triangular Ring (TR) resonator. We show that the difference between the clockwise and anti-clockwise resonant frequencies of a vacuum TR resonator is sensitive to the birefringence parity-odd parameters of the photon's sector of the minimal Standard Model Extension (mSME): the Standard Model plus all the perturbative parameters encoding the break the Lorentz symmetry. We report that utilizing the current technology allows for direct measurement of these parameters with a sensitivity of the parity even ones and improves the best current resonator bounds by couple of orders of magnitudes. We note that designing an optical table that rotates perpendicular to the gravitational equipotential surface (geoid) allows for direct measurement of the constancy of the light speed at the vicinity of the earth in all directions in particular perpendicular to the geoid. If this table could achieve the precision of the ordinary tables, then it would improve the GPS bounds on the constancy of the light speed perpendicular to geoid by about eight orders of magnitude.

  6. Sessile droplet evaporation on superheated superhydrophobic surfaces

    E-Print Network [OSTI]

    Hays, Robb C; Maynes, Daniel; Webb, Brent W

    2013-01-01T23:59:59.000Z

    This fluid dynamics video depicts the evaporation of sessile water droplets placed on heated superhydrophobic (SH) surfaces of varying cavity fraction, F_c, and surface temperature, T_s, above the saturation temperature, T_sat. Images were captured at 10,000 FPS and are played back at 30 FPS in this video. Teflon-coated silicon surfaces of F_c = 0, 0.5, 0.8, and 0.95 were used for these experiments. T_s ranging from 110{\\deg}C to 210{\\deg}C were studied. The video clips show how the boiling behavior of sessile droplets is altered with changes in surface microstructure. Quantitative results from heat transfer rate experiments conducted by the authors are briefly discussed near the end of the video.

  7. innovati nInnovative Evaporative and Thermally Activated Technologies

    E-Print Network [OSTI]

    Unit DEVap Cooling Core Cool, Dry Supply Air Return Air Outdoor Air NREL is a national laboratory moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses in TATs and evaporative technologies, which work well together to cool buildings. They have also created

  8. Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1

    E-Print Network [OSTI]

    Watson, Craig A.

    when the need is discovered, but a good preventive maintenance program will reduce the number. This fact sheet will emphasize corrective and preventive maintenance procedures for ventilation, evaporativeAE26 Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1 D. E

  9. The Mixed Phase of Charged AdS Black holes

    E-Print Network [OSTI]

    Piyabut Burikham; Chatchai Promsiri

    2015-01-20T23:59:59.000Z

    We study the mixed phase of charged AdS black hole and radiation when the total energy is fixed below the threshold to produce a stable charged black hole branch. The coexistence conditions for the charged AdS black hole and radiation are derived for the generic case when radiation particles carry charge. The phase diagram of the mixed phase is demonstrated for both fixed potential and charge ensemble. In the dual gauge picture, they correspond to the mixed phase of quark-gluon plasma~(QGP) and hadron gas in the fixed chemical potential and density ensemble respectively. In the nuclei and heavy ion collisions at intermediate energies, the mixed phase of exotic QGP and hadron gas could be produced. The mixed phase will condensate and evaporate into the hadron gas as the fireball expands.

  10. Decentralized model predictive control of a multiple evaporator HVAC system

    E-Print Network [OSTI]

    Elliott, Matthew Stuart

    2009-05-15T23:59:59.000Z

    separate body of water, referred to as a cooling zone. The two evaporators are connected to a single condenser and variable speed compressor, and feature variable water flow and electronic expansion valves. The control problem lies in development of a...

  11. Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint

    SciTech Connect (OSTI)

    Woods, J.; Kozubal, E.

    2012-10-01T23:59:59.000Z

    This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

  12. Analysis of the diurnal behavior of Evaporative Fraction

    E-Print Network [OSTI]

    Gentine, Pierre

    2006-01-01T23:59:59.000Z

    In this thesis, the diurnal behavior of Evaporative Fraction (EF) was examined. EF was shown to exhibit a typical concave-up shape, with a minimum usually reached in the middle of the day. The influence of the vegetation ...

  13. Evaporative Roof Cooling- A Simple Solution to Cut Cooling Costs

    E-Print Network [OSTI]

    Abernethy, D.

    Since the “Energy Crisis” Evaporative Roof Cooling Systems have gained increased acceptance as a cost effective method to reduce the high cost of air conditioning. Documented case histories in retro-fit installations show direct energy savings...

  14. arc evaporation process: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    state of quantum size black hole evaporation is proposed in the context of information loss paradox. (2) Negative heat capacity of black hole is the physical essence of the...

  15. Self-excited hydrothermal waves in evaporating sessile drops 

    E-Print Network [OSTI]

    Sefiane K.; Moffat J.R.; Matar O.K.; Craster R.V.

    2008-08-01T23:59:59.000Z

    Pattern formation driven by the spontaneous evaporation of sessile drops of methanol, ethanol, and FC-72 using infrared thermography is observed and, in certain cases, interpreted in terms of hydrothermal waves. Both methanol and ethanol drops...

  16. Potential of Evaporative Cooling Systems for Buildings in India

    E-Print Network [OSTI]

    Maiya, M. P.; Vijay, S.

    2010-01-01T23:59:59.000Z

    Evaporative cooling potential for building in various climatic zones in India is investigated. Maintainable indoor conditions are obtained from the load - capacity analysis for the prevailing ambient conditions. For the assumed activity level...

  17. Theoretical and testing performance of an innovative indirect evaporative chiller

    SciTech Connect (OSTI)

    Jiang, Yi; Xie, Xiaoyun [Department of Building Science and Technology, Tsinghua University, Beijing (China)

    2010-12-15T23:59:59.000Z

    An indirect evaporative chiller is a device used to produce chilled water at a temperature between the wet bulb temperature and dew point of the outdoor air, which can be used in building HVAC systems. This article presents a theoretical analysis and practical performance of an innovative indirect evaporative chiller. First, the process of the indirect evaporative chiller is introduced; then, the matching characteristics of the process are presented and analyzed. It can be shown that the process that produces cold water by using dry air is a nearly-reversible process, so the ideal produced chilled water temperature of the indirect evaporative chiller can be set close to the dew point temperature of the chiller's inlet air. After the indirect evaporative chiller was designed, simulations were done to analyze the output water temperature, the cooling efficiency relative to the inlet dew point temperature, and the COP that the chiller can performance. The first installation of the indirect evaporative chiller of this kind has been run for 5 years in a building in the city of Shihezi. The tested output water temperature of the chiller is around 14-20 C, which is just in between of the outdoor wet bulb temperature and dew point. The tested COP{sub r,s} of the developed indirect evaporative chiller reaches 9.1. Compared with ordinary air conditioning systems, the indirect evaporative chiller can save more than 40% in energy consumption due to the fact that the only energy consumed is from pumps and fans. An added bonus is that the indirect evaporative chiller uses no CFCs that pollute to the aerosphere. The tested internal parameters, such as the water-air flow rate ratio and heat transfer area for each heat transfer process inside the chiller, were analyzed and compared with designed values. The tested indoor air conditions, with a room temperature of 23-27 C and relative humidity of 50-70%, proved that the developed practical indirect evaporative chiller successfully satisfy the indoor air conditioning load for the demo building. The indirect evaporative chiller has a potentially wide application in dry regions, especially for large scale commercial buildings. Finally, this paper presented the geographic regions suitable for the technology worldwide. (author)

  18. Evaporation of alpha particles from $^31$P nucleus

    E-Print Network [OSTI]

    D. Bandyopadhyay; S. K. Basu; C. Bhattacharya; S. Bhattacharya; K. Krishan; A. Chatterjee; S. Kailas; A. Navin; A. Srivastava

    1998-07-24T23:59:59.000Z

    The energy spectra of alpha particles have been measured in coincidence with the evaporation residues for the decay of the compound nucleus $^31$P produced in the reaction $^19$F (96 MeV) + $^12$C. The data have been compared with the predictions of the statistical model code CASCADE. It has been observed that significant deformation effect in the compound nucleus need to be considered in order to explain the shape of the evaporated alpha particle energy spectra.

  19. 2H Evaporator CP class instrumentation uncertainties evaluations

    SciTech Connect (OSTI)

    Hwang, E.

    1994-02-10T23:59:59.000Z

    The Evaporator Pot Temperature Instrumentations and the Steam Condensate Gamma Monitors are two instrumentation systems in the 2H Evaporator facilities that are classified as the critical protection. The temperature high alarm and interlock circuit and the temperature recorder circuit of the pot temperature instrumentation loop are described. From the gamma monitor loop, the high gamma alarm and interlock circuit, failure alarm and interlock circuit, cesium activity recorder circuit, and americium activity recorder circuit are described. (GHH)

  20. Thermodynamics and evaporation of the noncommutative black hole

    E-Print Network [OSTI]

    Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

    2007-01-21T23:59:59.000Z

    We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process.

  1. On Reducing Evaporator Superheat Nonlinearity with Control Architecture

    E-Print Network [OSTI]

    Elliot, M.S.; Rasmussen, B.P.

    , and refrigeration VCC vapor compression cycle TEV thermostatic expansion valve EEV electronic expansion valve HEV hybrid expansion valve PID proportional-integral-derivative P, Pevap evaporator pressure Q(s) transfer function from PSET to evaporator superheat (inner... by a number of different valve types, which vary in expense and design KFM product of KF times KM(v) KU gain from HEV position to mechanical pressure setpoint U HEV position MEMS micro-electrical-mechanical systemsregulating device also known...

  2. An evaluation of atmospheric evaporation for treating wood preserving wastes

    E-Print Network [OSTI]

    Shack, Pete A

    1976-01-01T23:59:59.000Z

    i. hat a constant rate of total organi carbon and chemical oxygen demand removal occurred as the wastewai. r was evaporated. A procedure for designing atmospheric evaporation ponds was developed and applied to a hypothetical wood preserving plant.... From this example design estimates of equivalent hydrocarbon concentrations in the air downwind of the pond are made. Various other design con- siderations such as the input data, modifications to the design pro- cedure, solids accumulation...

  3. Superhydrophobic coated apparatus for liquid purification by evaporative condensation

    DOE Patents [OSTI]

    Simpson, John T; McNeany, Steve R; Dinsmore, Thomas V; Hunter, Scott R; Ivanov, Ilia N

    2014-03-11T23:59:59.000Z

    Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a first vessel for storing the contaminated fluid. The first vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus simplifying maintenance of the apparatus.

  4. BSW process of the slowly evaporating charged black hole

    E-Print Network [OSTI]

    Liancheng Wang; Feng He; Xiangyun Fu

    2015-02-09T23:59:59.000Z

    In this paper, we study the BSW process of the slowly evaporating charged black hole. It can be found that the BSW process will also arise near black hole horizon when the evaporation of charged black hole is very slow. But now the background black hole does not have to be an extremal black hole, and it will be approximately an extremal black hole unless it is nearly a huge stationary black hole.

  5. Method and apparatus for flash evaporation of liquids

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO)

    1984-01-01T23:59:59.000Z

    A vertical tube flash evaporator for introducing a superheated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  6. Method and apparatus for flash evaporation of liquids

    DOE Patents [OSTI]

    Bharathan, D.

    1984-01-01T23:59:59.000Z

    A vertical tube flash evaporator for introducing a super-heated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  7. Progress in year 1994 1. An analytical model for evaporative cooling

    E-Print Network [OSTI]

    Progress in year 1994 1. An analytical model for evaporative cooling We have developed an analytical model for evaporative cooling [1]. By simulating evaporation as a sequence of discrete steps, we the cloud rethermalizes and ensures efficient evaporative cooling. 2. Elastic collision cross section

  8. Development of fluorocarbon evaporative cooling recirculators and controls for the ATLAS pixel and semiconductor tracking detectors

    E-Print Network [OSTI]

    Bayer, C; Bonneau, P; Bosteels, Michel; Burckhart, H J; Cragg, D; English, R; Hallewell, G D; Hallgren, Björn I; Kersten, S; Kind, P; Langedrag, K; Lindsay, S; Merkel, M; Stapnes, Steinar; Thadome, J; Vacek, V

    2000-01-01T23:59:59.000Z

    Development of fluorocarbon evaporative cooling recirculators and controls for the ATLAS pixel and semiconductor tracking detectors

  9. Upward-facing Lithium Flash Evaporator for NSTX-U

    SciTech Connect (OSTI)

    Roquemore, A. L.

    2013-07-09T23:59:59.000Z

    NSTX plasma performance has been significantly enhanced by lithium conditioning [1]. To date, the lower divertor and passive plates have been conditioned by downward facing lithium evaporators (LITER) as appropriate for lower null plasmas. The higher power operation expected from NSTX-U requires double null plasma operation in order to distribute the heat flux between the upper and lower divertors making it desirable to coat the upper divertor region with Li as well. An upward aiming LITER (U-LITER) is presently under development and will be inserted into NSTX-U using a horizontal probe drive located in a 6" upper midplane port. In the retracted position the evaporator will be loaded with up to 300 mg of Li granules utilizing one of the calibrated NSTX Li powder droppers[2]. The evaporator will then be inserted into the vessel in a location within the shadow of the RF limiters and will remain in the vessel during the discharge. About 10 seconds before a discharge, it will be rapidly heated and the lithium completely evaporated onto the upper divertor, thus avoiding the complication of a shutter that prevents evaporation during the shot when the diagnostic shutters are open. The minimal time interval between the evaporation and the start of the discharge will avoid the passivation of the lithium by residual gases and enable the study of the conditioning effects of un-passivated Li surfaces [3]. Two methods are being investigated to accomplish the rapid (few second) heating of the lithium. A resistive method relies on passing a large current through a Li filled crucible. A second method requires using a 3 kW e-beam gun to heat the Li. In this paper the evaporator systems will be described and the pros and cons of each heating method will be discussed.

  10. Evaporation rate of hot Jupiters and formation of Chthonian planets

    E-Print Network [OSTI]

    G. Hébrard; A. Lecavelier des Étangs; A. Vidal-Madjar; J. -M. Désert; R. Ferlet

    2003-12-15T23:59:59.000Z

    Among the hundred of known extrasolar planets, about 15% are closer than 0.1 AU from their parent stars. But there are extremely few detections of planets orbiting in less than 3 days. At this limit the planet HD209458b has been found to have an extended upper atmosphere of escaping hydrogen. This suggests that the so-called hot Jupiters which are close to their parent stars could evaporate. Here we estimate the evaporation rate of hydrogen from extrasolar planets in the star vicinity. With high exospheric temperatures, and owing to the tidal forces, planets evaporate through a geometrical blow-off. This may explain the absence of Jupiter mass planets below a critical distance from the stars. Below this critical distance, we infer the existence of a new class of planets made of the residual central core of former hot Jupiters, which we propose to call the ``Chthonian'' planets.

  11. Simulation of multicomponent evaporation in electron beam melting and refining

    SciTech Connect (OSTI)

    Powell, A.; Szekely, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Van Den Avyle, J.; Damkroger, B. [Sandia National Labs., Albuquerque, NM (United States)

    1996-06-01T23:59:59.000Z

    Experimental results and a mathematical model are presented to describe differential evaporation rates in electron beam melting of titanium alloys containing aluminum and vanadium. Experiments characterized the evaporation rate of commercially pure titanium, and vapor composition over titanium with up to 6% Al and 4.5% V content as a function of beam power, scan frequency and background pressure. The model is made up of a steady-state heat and mass transport model of a melting hearth and a model of transient thermal and flow behavior near the surface. Activity coefficients for aluminum and vanadium in titanium are roughly estimated by fitting model parameters to experimental results. Based on the ability to vary evaporation rate by 10-15% using scan frequency alone, we discuss the possibility of on-line composition control by means of intelligent manipulation of the electron beam.

  12. Black hole evaporation in a noncommutative charged Vaidya model

    SciTech Connect (OSTI)

    Sharif, M., E-mail: msharif.math@pu.edu.pk; Javed, W. [University of the Punjab, Department of Mathematics (Pakistan)

    2012-06-15T23:59:59.000Z

    We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstroem-like solution of this model, which leads to an exact (t - r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.

  13. Electron beam evaporation for titanium metal matrix composites

    SciTech Connect (OSTI)

    Storer, J. [3M, Mendota Heights, MN (United States)

    1994-12-31T23:59:59.000Z

    3M, in partnership with ARPA, is developing electron beam evaporation as a method for producing titanium metal matrix composites (TMC`s). This paper discusses some of the opportunities presented by these strong and lightweight structural materials but also points out the many challenges which must be met. The excellent mechanical properties of titanium matrix composites have been recognized for quite some time; however use of these materials has been limited by the lack of a commercially viable process to produce them. 3M is removing this logjam in processing technology by using high rate electron beam evaporation technology to manufacture these materials on a significantly large scale.

  14. Simulation of Diffusive Lithium Evaporation Onto the NSTX Vessel Walls

    SciTech Connect (OSTI)

    Stotler, D. P.; Skinner, C. H.; Blanchard, W. R.; Krstic, P. S.; Kugel, H. W.; Schneider, H.; Zakharov, L. E.

    2010-12-09T23:59:59.000Z

    A model for simulating the diffusive evaporation of lithium into a helium filled NSTX vacuum vessel is described and validated against an initial set of deposition experiments. The DEGAS 2 based model consists of a three-dimensional representation of the vacuum vessel, the elastic scattering process, and a kinetic description of the evaporated atoms. Additional assumptions are required to account for deuterium out-gassing during the validation experiments. The model agrees with the data over a range of pressures to within the estimated uncertainties. Suggestions are made for more discriminating experiments that will lead to an improved model.

  15. mixed-bean-chili

    E-Print Network [OSTI]

    ... J. Infante) MIXED BEAN CHILI So, I added 1 cup of tvp to 2 cups of water, ... was about 6 cups of water to mix everything together) Cook for about 5 hours at ...

  16. 11Chandra 'Sees' a Distant Planet Evaporating NASA's Chandra Observatory

    E-Print Network [OSTI]

    energy. A simple model of this planet's interior suggests that its atmosphere might account for as much11Chandra 'Sees' a Distant Planet Evaporating NASA's Chandra Observatory has discovered that the star CoRot-2a is a powerful X-ray source. This is unfortunate because it is also known that a planet

  17. Constraints on power spectrum of density fluctuations from PBH evaporations

    E-Print Network [OSTI]

    Edgar Bugaev; Peter Klimai

    2006-12-21T23:59:59.000Z

    We calculate neutrino and photon energy spectra in extragalactic space from evaporation of primordial black holes, assuming that the power spectrum of primordial density fluctuations has a strong bump in the region of small scales. The constraints on the parameters of this bump based on neutrino and photon cosmic background data are obtained.

  18. Evaporation of iodine-containing off-gas scrubber solution

    DOE Patents [OSTI]

    Partridge, J.A.; Bosuego, G.P.

    1980-07-14T23:59:59.000Z

    Mercuric nitrate-nitric acid scrub solutions containing radioiodine may be reduced in volume without excessive loss of volatile iodine. The use of concentrated nitric acid during an evaporation process oxidizes the mercury-iodide complex to a less volatile mercuric iodate precipitate.

  19. Calculation of Reactive-evaporation Rates of Chromia

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2008-04-01T23:59:59.000Z

    A methodology is developed to calculate Cr-evaporation rates from Cr2O3 with a flat planar geometry. Variables include temperature, total pressure, gas velocity, and gas composition. The methodology was applied to solid-oxide, fuel cell conditions for metallic interconnects and to advanced-steam turbines conditions. The high velocities and pressures of the advanced steam turbine led to evaporation predictions as high as 5.18 9 10-8 kg/m2/s of CrO2(OH)2(g) at 760 °C and 34.5 MPa. This is equivalent to 0.080 mm per year of solid Cr loss. Chromium evaporation is expected to be an important oxidation mechanism with the types of nickel-base alloys proposed for use above 650 °C in advanced-steam boilers and turbines. It is shown that laboratory experiments, with much lower steam velocities and usually much lower total pressure than found in advanced steam turbines, would best reproduce chromium-evaporation behavior with atmospheres that approach either O2 + H2O or air + H2O with 57% H2O.

  20. Calculation notes that support accident scenario and consequence of the evaporator dump

    SciTech Connect (OSTI)

    Crowe, R.D., Westinghouse Hanford

    1996-09-09T23:59:59.000Z

    The purpose of this calculation note is to provide the basis for evaporator dump consequence for the Tank Farm Safety Analysis Report (FSAR). Evaporator Dump scenario is developed and details and description of the analysis methods are provided.

  1. Calculation notes that support accident scenario and consequence of the evaporator dump

    SciTech Connect (OSTI)

    Crowe, R.D.

    1996-09-27T23:59:59.000Z

    The purpose of this calculation note is to provide the basis for evaporator dump consequence for the Tank Farm Safety Analysis Report (FSAR). Evaporator Dump scenario is developed and details and description of the analysis methods are provided.

  2. Experimental Simulation of Evaporation-Driven Silica Sinter Formation and Microbial Silicification in Hot Spring Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in geothermal waters after they have reached the surface. Water evaporation is, along with cooling, one Evaporation of silica-rich geothermal waters is one of the main abiotic drivers of the formation of silica

  3. Energy Savings in Direct Evaporative Cooling: real application in the Madrid metro and simulated application for offices in Sydney 

    E-Print Network [OSTI]

    Simonetti, R.

    2010-01-01T23:59:59.000Z

    Water evaporates spontaneously in contact with the air, absorbing around 680 W/(kg/h of evaporated water) from the air (1,053 BTU/lb.). Direct Evaporative Cooling (DEC) exploits this simple physical phenomenon to achieve ...

  4. Inkjet fabrication of polymer microarrays and grids-solving the evaporation problem 

    E-Print Network [OSTI]

    Bradley M.; Zhang R.; Liberski A.

    2009-01-01T23:59:59.000Z

    allowing the rapid generation of a broad range of co-polymers, while solving the problem of selective monomer evaporation....

  5. Effect of surfactant on evaporative heat transfer coefficients in vertical film forced convection 

    E-Print Network [OSTI]

    Shah, Basit Husain

    1972-01-01T23:59:59.000Z

    to the present design conditions in desalination evaporators. A commercial surfactant, procter and Gamble 'Joy ' (Ammon1um Lauryl Sulphate + Cl2-C)&-diethanoiamine, 3:1) was used in the present study. The evaporative coefficients were observed to increase... encountered in de- salinationn evaporators (36). The evaporative coeffici ents were determined under the above conditions for pure water as well as for solutions containing 15, 30, and 50 ppm of surfactant (Procter and Gamble 'Joy'). The feed to the boi...

  6. Detailed modeling of the evaporation and thermal decomposition of urea-water-solution in SCR systems

    E-Print Network [OSTI]

    Boyer, Edmond

    on the UWS evaporation is taken into account using a NRTL activity model. The thermal decomposition model

  7. Energy conservation in black-liquor evaporator of pulp and paper industry

    SciTech Connect (OSTI)

    Agarwal, V.K.; Gupta, S.C. [Univ. of Roorkee (India). Dept. of Chemical Engineering

    1995-12-31T23:59:59.000Z

    This paper is an attempt on energy conservation in a quintuple effect evaporator used to concentrate dilute black liquor solution by raising their steam economy through the changes in the operating variables. It also describes the steam economy of the evaporator for the various feed arrangements so as to determine the ranges of the variables for which evaporation occurs profitable.

  8. Evaporation and Condensation of Large Droplets in the Presence of Inert Admixtures Containing Soluble Gas

    E-Print Network [OSTI]

    Elperin, Tov

    the mutual influence of heat and mass transfer during gas absorption and evaporation or condensation transfer during gas absorption by liquid droplets and during droplets evaporation and va- por condensationEvaporation and Condensation of Large Droplets in the Presence of Inert Admixtures Containing

  9. Evaporation-driven ring and film deposition from colloidal droplets

    E-Print Network [OSTI]

    C. Nadir Kaplan; L. Mahadevan

    2014-11-18T23:59:59.000Z

    Evaporating suspensions of colloidal particles lead to the formation of a variety of patterns, ranging from a left-over ring of a dried coffee drop to uniformly distributed solid pigments left behind wet paint. To characterize the transition between single rings, multiple concentric rings, broad bands, and uniform deposits, we investigate the dynamics of a drying droplet via a multiphase model of colloidal particles in a solvent. Our theory couples the inhomogeneous evaporation at the evolving droplet interface to the dynamics inside the drop, i.e. the liquid flow, local variations of the particle concentration, and the propagation of the deposition front where the solute forms an incompressible porous medium at high concentrations. A dimensionless parameter combining the capillary number and the droplet aspect ratio captures the formation conditions of different pattern types.

  10. Evaporation-based Ge/.sup.68 Ga Separation

    DOE Patents [OSTI]

    Mirzadeh, Saed (Albuquerque, NM); Whipple, Richard E. (Los Alamos, NM); Grant, Patrick M. (Los Alamos, NM); O'Brien, Jr., Harold A. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    Micro concentrations of .sup.68 Ga in secular equilibrium with .sup.68 Ge in strong aqueous HCl solution may readily be separated in ionic form from the .sup.68 Ge for biomedical use by evaporating the solution to dryness and then leaching the .sup.68 Ga from the container walls with dilute aqueous solutions of HCl or NaCl. The chloro-germanide produced during the evaporation may be quantitatively recovered to be used again as a source of .sup.68 Ga. If the solution is distilled to remove any oxidizing agents which may be present as impurities, the separation factor may easily exceed 10.sup.5. The separation is easily completed and the .sup.68 Ga made available in ionic form in 30 minutes or less.

  11. Noncommutative effects in the black hole evaporation in two dimensions

    SciTech Connect (OSTI)

    Garcia-Compean, Hugo [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Monterrey Cerro de las Mitras 2565, Colonia Obispado, Monterrey Nuevo Leon 64060 (Mexico); Departamento de Fisica Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico Distrito Federal (Mexico); Soto-Campos, Carlos [Departamento de Fisica Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico Distrito Federal (Mexico); Unidad Profesional Interdisciplinaria en Ingenieria y Tecnologias Avanzadas del IPN Avenida IPN 2580 Colonia Laguna Ticoman 07340 Mexico Distrito Federal (Mexico)

    2006-11-15T23:59:59.000Z

    We discuss some possible implications of a two-dimensional toy model for black hole evaporation in noncommutative field theory. While the noncommutativity we consider does not affect gravity, it can play an important role in the dynamics of massless and Hermitian scalar fields in the event horizon of a Schwarzschild black hole. We find that noncommutativity will affect the flux of outgoing particles and the nature of its UV/IR divergences. Moreover, we show that the noncommutative interaction does not affect Leahy's and Unruh's interpretation of thermal ingoing and outgoing fluxes in the black hole evaporation process. Thus, the noncommutative interaction still destroys the thermal nature of fluxes. In the process, some nonlocal implications of the noncommutativity are discussed.

  12. How water droplets evaporate on a superhydrophobic substrate

    E-Print Network [OSTI]

    Gelderblom, Hanneke; Nair, Hrudya; van Houselt, Arie; Lefferts, Leon; Snoeijer, Jacco H; Lohse, Detlef

    2010-01-01T23:59:59.000Z

    Evaporation of water droplets on a superhydrophobic substrate, on which the contact line is pinned, is investigated. While previous studies mainly focused on droplets with contact angles smaller than $90^\\circ$, here we analyze almost the full range of possible contact angles (10$^\\circ$-150$^\\circ$). The greater contact angles and pinned contact lines can be achieved by the use of superhydrophobic Carbon Nanofiber substrates. The time-evolutions of the contact angle and the droplet mass are examined. The experimental data is in good quantitative agreement with the model presented by Popov (Physical Review E 71, 2005), demonstrating that the evaporation process is quasi-static, diffusion-driven, and that thermal effects play no role. Furthermore, we show that the experimental data for the evolution of both the contact angle and the droplet mass can be collapsed onto one respective universal curve for all droplet sizes and initial contact angles.

  13. REAL WASTE TESTING OF SLUDGE BATCH 5 MELTER FEED RHEOLOGY

    SciTech Connect (OSTI)

    Reboul, S.; Stone, M.

    2010-03-17T23:59:59.000Z

    Clogging of the melter feed loop at the Defense Waste Processing Facility (DWPF) has reduced the throughput of Sludge Batch 5 (SB5) processing. After completing a data review, DWPF attributed the clogging to the rheological properties of the Slurry Mix Evaporator (SME) project. The yield stress of the SB5 melter feed material was expected to be high, based on the relatively high pH of the SME product and the rheological results of a previous Chemical Process Cell (CPC) demonstration performed at the Savannah River National Laboratory (SRNL).

  14. Key results from SB8 simulant flowsheet studies

    SciTech Connect (OSTI)

    Koopman, D. C.

    2013-04-26T23:59:59.000Z

    Key technically reviewed results are presented here in support of the Defense Waste Processing Facility (DWPF) acceptance of Sludge Batch 8 (SB8). This report summarizes results from simulant flowsheet studies of the DWPF Chemical Process Cell (CPC). Results include: Hydrogen generation rate for the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles of the CPC on a 6,000 gallon basis; Volume percent of nitrous oxide, N2O, produced during the SRAT cycle; Ammonium ion concentrations recovered from the SRAT and SME off-gas; and, Dried weight percent solids (insoluble, soluble, and total) measurements and density.

  15. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01T23:59:59.000Z

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  16. Mesoporous-silica films, fibers, and powders by evaporation

    DOE Patents [OSTI]

    Bruinsma, P.J.; Baskaran, S.; Bontha, J.R.; Liu, J.

    1999-07-13T23:59:59.000Z

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s). 24 figs.

  17. The lifetime problem of evaporating black holes: mutiny or resignation

    E-Print Network [OSTI]

    Carlos Barceló; Raúl Carballo-Rubio; Luis J. Garay; Gil Jannes

    2015-02-09T23:59:59.000Z

    It is logically possible that regularly evaporating black holes exist in nature. In fact, the prevalent theoretical view is that these are indeed the real objects behind the curtain in astrophysical scenarios. There are several proposals for regularizing the classical singularity of black holes so that their formation and evaporation do not lead to information-loss problems. One characteristic is shared by most of these proposals: these regularly evaporating black holes present long-lived trapping horizons, with absolutely enormous evaporation lifetimes in whatever measure. Guided by the discomfort with these enormous and thus inaccessible lifetimes, we elaborate here on an alternative regularization of the classical singularity, previously proposed by the authors in an emergent gravity framework, which leads to a completely different scenario. In our scheme the collapse of a stellar object would result in a genuine time-symmetric bounce, which in geometrical terms amounts to the connection of a black-hole geometry with a white-hole geometry in a regular manner. The two most differential characteristics of this proposal are: i) the complete bouncing geometry is a solution of standard classical general relativity everywhere except in a transient region that necessarily extends beyond the gravitational radius associated with the total mass of the collapsing object; and ii) the duration of the bounce as seen by external observers is very brief (fractions of milliseconds for neutron-star-like collapses). This scenario motivates the search for new forms of stellar equilibrium different from black holes. In a brief epilogue we compare our proposal with a similar geometrical setting recently proposed by Haggard and Rovelli.

  18. Nanoparticle enhanced evaporation of liquids: A case study of silicone oil and water

    E-Print Network [OSTI]

    Wenbin Zhang; Rong Shen; Kunquan Lu; Ailing Ji; Zexian Cao

    2012-10-23T23:59:59.000Z

    Evaporation is a fundamental physical phenomenon, of which many challenging questions remain unanswered. Enhanced evaporation of liquids in some occasions is of enormous practical significance. Here we report the enhanced evaporation of the nearly permanently stable silicone oil by dispersing with nanopariticles including CaTiO3, anatase and rutile TiO2. The results can inspire the research of atomistic mechanism for nanoparticle enhanced evaporation and exploration of evaporation control techniques for treatment of oil pollution and restoration of dirty water.

  19. Torque on an exoplanet from an anisotropic evaporative wind

    E-Print Network [OSTI]

    Teyssandier, Jean; Adams, Fred C; Quillen, Alice C

    2015-01-01T23:59:59.000Z

    Winds from short-period Earth and Neptune mass exoplanets, driven by high energy radiation from a young star, may evaporate a significant fraction of a planet's mass. If the momentum flux from the evaporative wind is not aligned with the planet/star axis, then it can exert a torque on the planet's orbit. Using steady-state one-dimensional evaporative wind models we estimate this torque using a lag angle that depends on the product of the speed of the planet's upper atmosphere and a flow timescale for the wind to reach its sonic radius. We also estimate the momentum flux from time-dependent one-dimensional hydrodynamical simulations. We find that only in a very narrow regime in planet radius, mass and stellar radiation flux is a wind capable of exerting a significant torque on the planet's orbit. Similar to the Yarkovsky effect, the wind causes the planet to drift outward if atmospheric circulation is prograde (super-rotating) and in the opposite direction if the circulation is retrograde. A close-in super Ear...

  20. Moduli vacuum bubbles produced by evaporating black holes

    SciTech Connect (OSTI)

    Morris, J. R. [Physics Department, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States)

    2007-10-15T23:59:59.000Z

    We consider a model with a toroidally compactified extra dimension giving rise to a temperature-dependent 4D effective potential with one-loop contributions due to the Casimir effect, along with a 5D cosmological constant. The forms of the effective potential at low and high temperatures indicate a possibility for the formation of a domain wall bubble, formed by the modulus scalar field, surrounding an evaporating black hole. This is viewed as an example of a recently proposed black hole vacuum bubble arising from matter-sourced moduli fields in the vicinity of an evaporating black hole [D. Green, E. Silverstein, and D. Starr, Phys. Rev. D 74, 024004 (2006)]. The black hole bubble can be highly opaque to lower-energy particles and photons, and thereby entrap them within. For high-temperature black holes, there may also be a symmetry-breaking black hole bubble of false vacuum of the type previously conjectured by Moss [I. G. Moss, Phys. Rev. D 32, 1333 (1985)], tending to reflect low-energy particles from its wall. A double bubble composed of these two different types of bubble may form around the black hole, altering the hole's emission spectrum that reaches outside observers. Smaller mass black holes that have already evaporated away could have left vacuum bubbles behind that contribute to the dark matter.

  1. Mixed-mode cooling.

    E-Print Network [OSTI]

    Brager, Gail

    2006-01-01T23:59:59.000Z

    ASHRAE’s permission. Mixed-Mode Cooling Photo Credit: Paulnatural ventilation for cooling. Buildings typically had1950s of large-scale mechanical cooling, along with other

  2. Mixed oxide solid solutions

    DOE Patents [OSTI]

    Magno, Scott (Dublin, CA); Wang, Ruiping (Fremont, CA); Derouane, Eric (Liverpool, GB)

    2003-01-01T23:59:59.000Z

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  3. A Rinsing Effluent Evaporator for Dismantling Operations - 13271

    SciTech Connect (OSTI)

    Rives, Rachel [AREVA BE/NV, Marcoule (France)] [AREVA BE/NV, Marcoule (France); Asou-Pothet, Marielle [CEA DEN/DPAD, Marcoule (France)] [CEA DEN/DPAD, Marcoule (France); Chambon, Frederic [AREVA FEDERAL SERVICES, Columbia, MD (United States)] [AREVA FEDERAL SERVICES, Columbia, MD (United States)

    2013-07-01T23:59:59.000Z

    Between 1958 and 1997, the UP1 plant at Marcoule - located in the south of France - reprocessed and recycled nearly 20,000 MT of used fuel from special defense applications reactors, as well as fuel from the first generation of electricity generating reactors in France (natural uranium fuel, CO{sub 2}-cooled, graphite-moderated). Decommissioning and Dismantling of the UP1 plant and its associated units started in 1998. Since 2005, the UP1 facility has been operated by AREVA as the Marcoule Management and Operation contractor for French Atomic Energy Commission (CEA). An important part of this decommissioning program deals with the vitrification facility of Marcoule. This facility includes 20 tanks devoted to interim storage of highly active solutions, prior to vitrification. In 2006, a rinsing program was defined as part of the tank cleanup strategy. The main objective of the rinsing phases was to decrease activity in order to limit the volume of 'long-life active' waste produced during the decommissioning operations, so the tanks can be dismantled without the need of remote operations. To enable this rinsing program, and anticipating large volumes of generated effluent, the construction of an evaporation unit proved to be essential. The main objective of this unit was to concentrate the effluent produced during tank rinsing operations by a factor of approximately 10, prior to it being treated by vitrification. The evaporator design phase was launched in September 2006. The main challenge for the Project team was the installation of this new unit within a nuclear facility still in operation and in existing compartments not initially designed for this purpose. Cold operating tests were completed in 2008, and in May 2009, the final connections to the process were activated to start the hot test phase. During the first hot test operations performed on the first batches of clean-up effluent, the evaporator had a major operating problem. Extremely large quantities of foam were produced, affecting the evaporator operation, and creating the risk of a reduction in its capacity and throughput performance. A task force of AREVA process, operations, and safety experts from Marcoule and the La Hague reprocessing complex was assembled. New operating parameters were defined and tested to improve the process. Since then, the evaporator has performed very satisfactorily. The foam buildup phenomenon has been brought under complete control. All the different types of effluents produced during cleanup operations have been concentrated, and the results obtained in terms of quality and throughput, have ensured a consistent supply to the vitrification unit. The evaporator was operated until the end of April 2012, and enabled the production of 500 cubic meters of very high activity effluent, concentrating the fission products rinsed from the storage tanks. The evaporator will now be deactivated and decommissioned, with the first rinsing and cleanup operations scheduled to begin in 2014. (authors)

  4. Liquid mixing device

    SciTech Connect (OSTI)

    O'Leary, R. P.

    1985-08-06T23:59:59.000Z

    A mixing device for mixing at least two liquids to produce a homogenous mixture. The device includes an elongated chamber in which a vertically oriented elongated mixing cavity is located. The cavity is sealed at its lower end and it is open at its upper end and in communication with the interior of the chamber. An elongated conduit extends the length of the cavity and is adapted to receive liquids to be mixed. The conduit includes a plurality of ports located at longitudinally spaced positions therealong and which ports are directed in different directions. The ports create plural streams of liquid which interact and mix with one another within the cavity. The mixed liquids overflow the cavity and out its top end into the chamber 24. The chamber 24 includes an outlet from which the mixed liquids are withdrawn. In accordance with the preferred embodiment gas eductor means are provided in the inlet to the conduit to introduce gas bubbles within the cavity. Gas vent means are also provided in the device to vent any introduced gases from the device so that only the mixed liquids flow out the outlet.

  5. Guidelines for mixed waste minimization

    SciTech Connect (OSTI)

    Owens, C.

    1992-02-01T23:59:59.000Z

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

  6. POTENTIAL IMPACT OF TANK F FLUSH SOLUTION ON H-CANYON EVAPORATOR OPERATION

    SciTech Connect (OSTI)

    Kyser, E.; Fondeur, F.; Fink, S.

    2010-09-13T23:59:59.000Z

    Previous chemical analysis of a sample from the liquid heel found in Tank F of the High Activity Drain (HAD) system in F/H laboratory revealed the presence of n-paraffin, tributyl phosphate (TBP), Modifier from the Modular Caustic-Side Solvent Extraction Unit (MCU) process and a vinyl ester resin that is very similar to the protective lining on Tank F. Subsequent analyses detected the presence of a small amount of diisopropylnaphthalene (DIN) (major component of Ultima Gold{trademark} AB liquid scintillation cocktail). Indications are that both vinyl ester resin and DIN are present in small amounts in the flush solution. The flush solution currently in the LR-56S trailer likely has an emulsion which is believed to contain a mixture of the reported organic species dominated by TBP. An acid treatment similar to that proposed to clear the HAD tank heel in F/H laboratory was found to allow separation of an organic phase from the cloudy sample tested by SRNL. Mixing of that clear sample did re-introduce some cloudiness that did not immediately clear but that cloudiness is attributed to the DIN in the matrix. An organic phase does quickly separate from the cloudy matrix allowing separation by a box decanter in H-Canyon prior to transfer to the evaporator feed tank. This separation should proceed normally as long as the emulsion is broken-up by acidification.

  7. Thermodynamics of an Evaporating Schwarzschild Black Hole in Noncommutative Space

    E-Print Network [OSTI]

    Kourosh Nozari; Behnaz Fazlpour

    2007-01-14T23:59:59.000Z

    We investigate the effects of space noncommutativity and the generalized uncertainty principle on the thermodynamics of a radiating Schwarzschild black hole. We show that evaporation process is in such a way that black hole reaches to a maximum temperature before its final stage of evolution and then cools down to a nonsingular remnant with zero temperature and entropy. We compare our results with more reliable results of string theory. This comparison Shows that GUP and space noncommutativity are similar concepts at least from view point of black hole thermodynamics.

  8. List of Evaporative Coolers Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,LakefrontLighthouseEvaporative Coolers Incentives Jump

  9. ADVANCED MIXING MODELS

    SciTech Connect (OSTI)

    Lee, S.; Dimenna, R.; Tamburello, D.

    2011-02-14T23:59:59.000Z

    The process of recovering and processing High Level Waste (HLW) the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four mixers (pumps) located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are typically set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The focus of the present work is to establish mixing criteria applicable to miscible fluids, with an ultimate goal of addressing waste processing in HLW tanks at SRS and quantifying the mixing time required to suspend sludge particles with the submersible jet pump. A single-phase computational fluid dynamics (CFD) approach was taken for the analysis of jet flow patterns with an emphasis on the velocity decay and the turbulent flow evolution for the farfield region from the pump. Literature results for a turbulent jet flow are reviewed, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. The work described in this report suggests a basis for further development of the theory leading to the identified mixing indicators, with benchmark analyses demonstrating their consistency with widely accepted correlations. Although the indicators are somewhat generic in nature, they are applied to Savannah River Site (SRS) waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. One of the main objectives in the waste processing is to provide feed of a uniform slurry composition at a certain weight percentage (e.g. typically {approx}13 wt% at SRS) over an extended period of time. In preparation of the sludge for slurrying, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination?

  10. Dynamical processes, element mixing and chemodynamical cycles in dwarf galaxies

    E-Print Network [OSTI]

    Rieschick, A; Rieschick, Andreas; Hensler, Gerhard

    2000-01-01T23:59:59.000Z

    Since the chemical evolution of galaxies seems to differ between morphological types and deviates in many details from the standard scenario the question has to be addressed when, how and to what amount metal-enriched ejecta from Supernovae and Planetary Nebulae polute their environment. Since recent observations of dwarf galaxies show no significant metal abundance gradients throughout the galaxies while enhancement of metals happens in isolated HII regions, an effective mixing process has to be assumed. Chemodynamical evolution models can provide a possible explanation by demonstrating that strong evaporation of gas clouds by hot gas and following condensation leads to an almost perfect mixing of the gas. We focus on the different phases of chemodynamical evolution that are experienced by a representative dwarf irregular galaxy model and present a quantitative analysis of the chemodynamical gas flow cycles.

  11. Dynamical processes, element mixing and chemodynamical cycles in dwarf galaxies

    E-Print Network [OSTI]

    Andreas Rieschick; Gerhard Hensler

    2000-05-04T23:59:59.000Z

    Since the chemical evolution of galaxies seems to differ between morphological types and deviates in many details from the standard scenario the question has to be addressed when, how and to what amount metal-enriched ejecta from Supernovae and Planetary Nebulae polute their environment. Since recent observations of dwarf galaxies show no significant metal abundance gradients throughout the galaxies while enhancement of metals happens in isolated HII regions, an effective mixing process has to be assumed. Chemodynamical evolution models can provide a possible explanation by demonstrating that strong evaporation of gas clouds by hot gas and following condensation leads to an almost perfect mixing of the gas. We focus on the different phases of chemodynamical evolution that are experienced by a representative dwarf irregular galaxy model and present a quantitative analysis of the chemodynamical gas flow cycles.

  12. On the interface instability during rapid evaporation in microgravity

    SciTech Connect (OSTI)

    Juric, D. [Los Alamos National Lab., NM (United States). Theoretical Div.

    1997-05-01T23:59:59.000Z

    The rapid evaporation of a superheated liquid (vapor explosion) under microgravity conditions is studied by direct numerical simulation. The time-dependent Navier-Stokes and energy equations coupled to the interface dynamics are solved using a two-dimensional finite-difference/front-tracking method. Large interface deformations, topology change, latent heat, surface tension and unequal material properties between the liquid and vapor phases are included in the simulations. A comparison of numerical results to the exact solution of a one-dimensional test problem shows excellent agreement. For the two-dimensional rapid evaporation problem, the vapor volume growth rate and unstable interface dynamics are studied for increasing levels of initial liquid superheat. As the superheat is increased the liquid-vapor interface experiences increasingly unstable energetic growth. These results indicate that heat transfer plays a very important role in the instability mechanism leading to vapor explosions. It is suggested that the Mullins-Sekerka instability could play a role in the instability initiation mechanism.

  13. Use of DOE-2 to Evaluate Evaporative Cooling in Texas Correctional Facilities

    E-Print Network [OSTI]

    Saman, N.; Heneghan, T.; Bou-Saada, T. E.

    1996-01-01T23:59:59.000Z

    , W.K., "Fundamental Concepts Integrating Evaporative Techniques in HVAC Systems," ASHRAE TRANSACTIONS, V. 96, Pt. 1, 1990. 3. McDonald, G.W., M.H. Turietta and R.E. Foster, "Modeling Evaporative Cooling Systems with DOE- 2. ID," ASHRAE...USE OF DOE-2 TO EVALUATE EVAPORATIVE COOLING IN TEXAS CORRECTIONAL FACILITIES Namir Saman, Ph.D., P.E. Tarek Bou-Saada Tia Heneghan Visiting Assistant Professor Research Associate Energy Manager Energy Systems Laboratory Energy Systems...

  14. Fuel Mix Disclosure

    Broader source: Energy.gov [DOE]

    Hawaii requires the state’s retail electric suppliers to disclose details regarding the fuel mix of their electric generation to retail customers. Such information must be provided on customers’...

  15. Fuel Mix Disclosure

    Broader source: Energy.gov [DOE]

    Washington’s retail electric suppliers must disclose details regarding the fuel mix of their electric generation to customers. Electric suppliers must provide such information in a standard format...

  16. A Study of Mechanisms and Supression of Evaporation of Water from Soils 

    E-Print Network [OSTI]

    Wendt, C. W.

    1971-01-01T23:59:59.000Z

    Extensive greenhouse experiments were conducted to evaluate chemicals not previously studied extensively for their potential as evaporation suppressants. Included in the studies were crude oil, anionics, cationics, nonionics, ...

  17. 13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS

    E-Print Network [OSTI]

    13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS Updated October 2011 by K compelling evidences for oscillations of neutrinos caused by nonzero neutrino masses and neutrino mixing. The data imply the existence of 3-neutrino mixing in vacuum. We review the theory of neutrino oscillations

  18. 13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS

    E-Print Network [OSTI]

    13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS Written May 2010 by K. Nakamura for oscillations of neutrinos caused by nonzero neutrino masses and neutrino mixing. The data imply the existence of 3-neutrino mixing in vacuum. We review the theory of neutrino oscillations, the phenomenology

  19. ADVANCED MIXING MODELS

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R; David Tamburello, D

    2008-11-13T23:59:59.000Z

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and schedule savings. The focus of the present work is to establish mixing criteria associated with the waste processing at SRS and to quantify the mixing time required to suspend sludge particles with the submersible jet pump. Literature results for a turbulent jet flow are reviewed briefly, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. One of the main objectives in the waste processing is to provide the DWPF a uniform slurry composition at a certain weight percentage (typically {approx}13 wt%) over an extended period of time. In preparation of the sludge for slurrying to DWPF, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition for DWPF? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination? Grenville and Tilton (1996) investigated the mixing process by giving a pulse of tracer (electrolyte) through the submersible jet nozzle and by monitoring the conductivity at three locations within the cylindrical tank. They proposed that the mixing process was controlled by the turbulent kinetic energy dissipation rate in the region far away from the jet entrance. They took the energy dissipation rates in the regions remote from the nozzle to be proportional to jet velocity and jet diameter at that location. The reduction in the jet velocity was taken to be proportional to the nozzle velocity and distance from the nozzle. Based on their analysis, a correlation was proposed. The proposed correlation was shown to be valid over a wide range of Reynolds numbers (50,000 to 300,000) with a relative standard deviation of {+-} 11.83%. An improved correlat

  20. The Explorationon the Energy Saving Potential of an Innovative Dual-temperature Air Conditioner and the Mechanism of the Theoretical Mixed Refrigeration Cycl

    E-Print Network [OSTI]

    Zhao,L.; Zhao,X.; Hu,A.

    2014-01-01T23:59:59.000Z

    The Exploration on the Energy Saving Potential of an Innovative Dual-temperature Air Conditioner and the Mechanism of the Theoretical Mixed Refrigeration Cycle Zhao Lei, Zhao Xijin, Hu Andu Professor, graduate student, graduate student...-temperature air conditioning system and its corresponding theoretical mixed refrigeration cycle are proposed. This consists of a separate air handling unit and a metal radiation panel as the dual-temperature evaporators, a compressor, a condenser, two thermal...

  1. Fixture for forming evaporative pattern (EPC) process patterns

    DOE Patents [OSTI]

    Turner, Paul C. (Albany, OR); Jordan, Ronald R. (Albany, OR); Hansen, Jeffrey S. (Corvallis, OR)

    1993-01-01T23:59:59.000Z

    A method of casting metal using evaporative pattern casting process patterns in combination with a fixture for creating and maintaining a desired configuration in flexible patterns. A pattern is constructed and gently bent to the curvature of a suitable fixture. String or thin wire, which burns off during casting, is used to tie the pattern to the fixture. The fixture with pattern is dipped in a commercially available refractory wash to prevent metal adherence and sticking to the fixture. When the refractory wash is dry, the fixture and pattern are placed in a flask, and sand is added and compacted by vibration. The pattern remains in position, restrained by the fixture. Metal that is poured directly into the pattern replaces the pattern exactly but does not contact or weld to the fixture due to the protective refractory layer. When solid, the casting is easily separated from the fixture. The fixture can be cleaned for reuse in conventional casting cleaning equipment.

  2. Melt and vapor characteristics in an electron beam evaporator

    SciTech Connect (OSTI)

    Blumenfeld, L.; Fleche, J.L.; Gonella, C. [DCC/DPE/SPEA Centre d`Etudes de Saclay, Gif-sur-Yvette (France)

    1994-12-31T23:59:59.000Z

    We compare the free surface temperatures T{sub s}, calculated by two methods, in cerium or copper evaporation experiments. The first method considers properties of the melt: by an empirical law we take into account turbulent thermal convection, instabilities and craterization of the free surface. The second method considers the vapor flow expansion and connects T{sub s} to the measured terminal parallel temperature and the terminal mean parallel velocity of the vapor jet, by Direct Simulation Monte Carlo calculations including an atom-atom inelastic collision algorithm. The agreement between the two approaches is better for cerium than for copper in the high craterization case. The analysis, from the point of view of the properties of the melt, of the terminal parameters of the vapor jet for the high beam powers shows that T{sub s} and the Knudsen number at the vapor source reach a threshold when the beam power increases.

  3. Modelling the Evaporation of Non-singular Black Holes

    E-Print Network [OSTI]

    Tim Taves; Gabor Kunstatter

    2015-01-11T23:59:59.000Z

    We present a model for studying the formation and evaporation of non-singular (quantum corrected) black holes. The model is based on a generalized form of the dimensionally reduced, spherically symmetric Einstein--Hilbert action and includes a suitably generalized Polyakov action to provide a mechanism for radiation back-reaction. The equations of motion describing self-gravitating scalar field collapse are derived in local form both in null co--ordinates and in Painleve--Gullstrand (flat slice) co--ordinates. They provide the starting point for numerical studies of complete spacetimes containing dynamical horizons that bound a compact trapped region. Such spacetimes have been proposed in the past as solutions to the information loss problem because they possess neither an event horizon nor a singularity. Since the equations of motion in our model are derived from a diffeomorphism invariant action they preserve the constraint algebra and the resulting energy momentum tensor is manifestly conserved.

  4. A graphics processor-based intranuclear cascade and evaporation simulation

    E-Print Network [OSTI]

    H. Wan Chan Tseung; C. Beltran

    2014-02-19T23:59:59.000Z

    Monte Carlo simulations of the transport of protons in human tissue have been deployed on graphics processing units (GPUs) with impressive results. To provide a more complete treatment of non-elastic nuclear interactions in these simulations, we developed a fast intranuclear cascade-evaporation simulation for the GPU. This can be used to model non-elastic proton collisions on any therapeutically relevant nuclei at incident energies between 20 and 250 MeV. Predictions are in good agreement with Geant4.9.6p2. It takes approximately 2 s to calculate $1\\times 10^6$ 200 MeV proton-$^{16}$O interactions on a NVIDIA GTX680 GPU. A speed-up factor of $\\sim$20 relative to one Intel i7-3820 core processor thread was achieved.

  5. Technical basis document for the evaporator dump accident

    SciTech Connect (OSTI)

    GOETZ, T.G.

    2003-03-22T23:59:59.000Z

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for the evaporator dump representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and/or technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report.

  6. 1998 interim 242-A Evaporator tank system integrity assessment report

    SciTech Connect (OSTI)

    Jensen, C.E.

    1998-07-02T23:59:59.000Z

    This Integrity Assessment Report (IAR) is prepared by Fluor Daniel Northwest (FDNW) under contract to Lockheed-Martin Hanford Company (LMHC) for Waste Management Hanford (WMH), the 242-A Evaporator (facility) operations contractor for Fluor Daniel Hanford, and the US Department of Energy, the system owner. The contract specifies that FDNW perform an interim (5 year) integrity assessment of the facility and prepare a written IAR in accordance with Washington Administrative Code (WAC) 173-303-640. The WAC 173-303 defines a treatment, storage, or disposal (TSD) facility tank system as the ``dangerous waste storage or treatment tank and its ancillary equipment and containment.`` This integrity assessment evaluates the two tank systems at the facility: the evaporator vessel, C-A-1 (also called the vapor-liquid separator), and the condensate collection tank, TK-C-100. This IAR evaluates the 242-A facility tank systems up to, but not including, the last valve or flanged connection inside the facility perimeter. The initial integrity assessment performed on the facility evaluated certain subsystems not directly in contact with dangerous waste, such as the steam condensate and used raw water subsystems, to provide technical information. These subsystems were not evaluated in this IAR. The last major upgrade to the facility was project B-534. The facility modifications, as a result of project B-534, were evaluated in the 1993 facility interim integrity assessment. Since that time, the following upgrades have occurred in the facility: installation of a process condensate recycle system, and installation of a package steam boiler to provide steam for the facility. The package boiler is not within the scope of the facility TSD.

  7. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health

    1993-12-31T23:59:59.000Z

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  8. Mixing by Swimming Algae

    E-Print Network [OSTI]

    Guasto, Jeffrey S; Gollub, J P; Pesci, Adriana I; Goldstein, Raymond E

    2009-01-01T23:59:59.000Z

    In this fluid dynamics video, we demonstrate the microscale mixing enhancement of passive tracer particles in suspensions of swimming microalgae, Chlamydomonas reinhardtii. These biflagellated, single-celled eukaryotes (10 micron diameter) swim with a "breaststroke" pulling motion of their flagella at speeds of about 100 microns/s and exhibit heterogeneous trajectory shapes. Fluorescent tracer particles (2 micron diameter) allowed us to quantify the enhanced mixing caused by the swimmers, which is relevant to suspension feeding and biogenic mixing. Without swimmers present, tracer particles diffuse slowly due solely to Brownian motion. As the swimmer concentration is increased, the probability density functions (PDFs) of tracer displacements develop strong exponential tails, and the Gaussian core broadens. High-speed imaging (500 Hz) of tracer-swimmer interactions demonstrates the importance of flagellar beating in creating oscillatory flows that exceed Brownian motion out to about 5 cell radii from the swimm...

  9. LETTER doi:10.1038/nature11718 Evaporative cooling of the dipolar hydroxyl radical

    E-Print Network [OSTI]

    direct cooling and cold-association techniques, evaporative cooling has not been achieved so far-temperature sensi- tivity of our spectroscopic thermometry technique. With evapora- tive cooling and a sufficientlyLETTER doi:10.1038/nature11718 Evaporative cooling of the dipolar hydroxyl radical Benjamin K

  10. Ultracold molecules for the masses: evaporative cooling and magneto-optical trapping

    E-Print Network [OSTI]

    Jin, Deborah

    cooling, until now none of these techniques have been applicable to molecules. In this thesis, two majorUltracold molecules for the masses: evaporative cooling and magneto-optical trapping by B. K. Stuhl for the masses: evaporative cooling and magneto-optical trapping written by B. K. Stuhl has been approved

  11. Evaporative Cooling of Antiprotons to Cryogenic Temperatures G. B. Andresen,1

    E-Print Network [OSTI]

    Wurtele, Jonathan

    of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trappedEvaporative Cooling of Antiprotons to Cryogenic Temperatures G. B. Andresen,1 M. D. Ashkezari,2 M the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured

  12. Mathematical modeling of evaporative cooling of moisture bearing epoxy composite plates

    E-Print Network [OSTI]

    Payette, Gregory Steven

    2006-08-16T23:59:59.000Z

    of Composite Materials. 2 EVAPORATIVE COOLING Evaporative cooling is deemed to be an appropriate alternative mechanism for the cooling of stealth aircraft due to its simplicity, as well as its success as a cooling mechanism in other applications... Element Assembly 34 Boundary Conditions 36 viii CHAPTER Page Convective Heat Transfer Coefficients 46 Convective Mass Transfer Coefficients 50 Material Properties 52 Time Step Approximations 54...

  13. Variation and Uncertainty in Evaporation from a Subtropical Estuary: Florida Bay

    E-Print Network [OSTI]

    Miami, University of

    Variation and Uncertainty in Evaporation from a Subtropical Estuary: Florida Bay RENE´ M. PRICE1 both vapor flux and energy budget methods. The results were placed into a long-term context using 33 the overall uncertainty in monthly evaporation, and ranged from 9% to 26%. Over a 33-yr period (1970

  14. Temperature Effect on Pump Oil and Alkanes Evaporation Nathaniel A. Waldstein and Alex A. Volinsky

    E-Print Network [OSTI]

    Volinsky, Alex A.

    temperatures than in the past. The greater the operating temperature the faster the lubricating oil in the hardTemperature Effect on Pump Oil and Alkanes Evaporation Nathaniel A. Waldstein and Alex A. Volinsky of several milligrams, of lubricants for proper operation. The following study investigated the evaporation

  15. CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER

    E-Print Network [OSTI]

    Kandlikar, Satish

    1 CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER for evaporation heat transfer coefficient of refrigerant R-134a flowing in a plate heat exchanger. Correlation schemes proposed by Yan and Lin (1999b) for modeling the heat transfer coefficient in both a single- phase

  16. EVAPORATION LAW IN KINETIC GRAVITATIONAL SYSTEMS DESCRIBED BY SIMPLIFIED LANDAU MODELS

    E-Print Network [OSTI]

    Méhats, Florian

    EVAPORATION LAW IN KINETIC GRAVITATIONAL SYSTEMS DESCRIBED BY SIMPLIFIED LANDAU MODELS PIERRE to a mathematical and numerical study of a simplified kinetic model for evaporation phenomena in gravitational) is the gravitational potential and (u) is the following 3 Ã? 3 matrix (u)ij = |u|2ij - uiuj |u|2 , (1.2) 1 #12;2 P

  17. Kinetics for evaporative cooling of a trapped gas Kirstine BergSrensen \\Lambda

    E-Print Network [OSTI]

    Berg-Sørensen, Kirstine

    the kinetic theory for evaporative cooling of a dilute collisional gas in a trap. The analysis in 0. J. Luiten and increase the phase­space density of an atomic, bosonic gas towards a Bose­Einstein condensate (BECKinetics for evaporative cooling of a trapped gas Kirstine Berg­Sørensen \\Lambda The Rowland

  18. PHYSICAL REVIEW E 83, 026306 (2011) How water droplets evaporate on a superhydrophobic substrate

    E-Print Network [OSTI]

    Snoeijer, Jacco

    2011-01-01T23:59:59.000Z

    PHYSICAL REVIEW E 83, 026306 (2011) How water droplets evaporate on a superhydrophobic substrate October 2010; published 17 February 2011) Evaporation of water droplets on a superhydrophobic substrate ). The greater contact angles and pinned contact lines can be achieved by use of superhydrophobic carbon

  19. Evaporative self-assembly of nanowires on superhydrophobic surfaces of nanotip latching structures

    E-Print Network [OSTI]

    Yang, Eui-Hyeok

    Evaporative self-assembly of nanowires on superhydrophobic surfaces of nanotip latching structures-assembly of nanowires during the evaporation of a colloid droplet of nanowires on nanoengineered superhydrophobic and the superhydrophobic surface engineered with sharp-tip latching nanostructures of micropillars, provided

  20. Mixed crystal organic scintillators

    DOE Patents [OSTI]

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16T23:59:59.000Z

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  1. Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines

    SciTech Connect (OSTI)

    Holcomb, G.R. [US DOE, Albany, OR (United States)

    2009-07-01T23:59:59.000Z

    The U.S. Department of Energy's goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 {sup o}C and 340 atm, so-called ultrasupercritical conditions. Evaporation of protective chromia scales is a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  2. Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines

    SciTech Connect (OSTI)

    Gordon H. Holcomb

    2009-01-01T23:59:59.000Z

    U.S. Department of Energy’s goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  3. Unitarity constraints on trimaximal mixing

    SciTech Connect (OSTI)

    Kumar, Sanjeev [Department of Physics and Astrophysics, University of Delhi, Delhi -110005 (India)

    2010-07-01T23:59:59.000Z

    When the neutrino mass eigenstate {nu}{sub 2} is trimaximally mixed, the mixing matrix is called trimaximal. The middle column of the trimaximal mixing matrix is identical to tribimaximal mixing and the other two columns are subject to unitarity constraints. This corresponds to a mixing matrix with four independent parameters in the most general case. Apart from the two Majorana phases, the mixing matrix has only one free parameter in the CP conserving limit. Trimaximality results in interesting interplay between mixing angles and CP violation. A notion of maximal CP violation naturally emerges here: CP violation is maximal for maximal 2-3 mixing. Similarly, there is a natural constraint on the deviation from maximal 2-3 mixing which takes its maximal value in the CP conserving limit.

  4. HIGH-EFFICIENCY BACK-JUNCTION SILICON SOLAR CELL WITH AN IN-LINE EVAPORATED ALUMINUM FRONT GRID

    E-Print Network [OSTI]

    HIGH-EFFICIENCY BACK-JUNCTION SILICON SOLAR CELL WITH AN IN-LINE EVAPORATED ALUMINUM FRONT GRID M-diffused back-junction emitter. The aluminum front side grid is evaporated in an industrial-type in-thick silicon shadow masks for the in-line evaporation of the aluminum front grid. The masks are fabricated

  5. Simulated Waste Testing Of Glycolate Impacts On The 2H-Evaporator System

    SciTech Connect (OSTI)

    Martino, C. J.

    2013-08-13T23:59:59.000Z

    Glycolic acid is being studied as a total or partial replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste tank farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the tank farm were addressed via a literature review, but several outstanding issues remained. This report documents the non-radioactive simulant tests impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The testing for which non-radioactive simulants could be used involved the following: the partitioning of glycolate into the evaporator condensate, the impacts of glycolate on metal solubility, and the impacts of glycolate on the formation and dissolution of sodium aluminosilicate scale within the evaporator. The following are among the conclusions from this work: Evaporator condensate did not contain appreciable amounts of glycolate anion. Of all tests, the highest glycolate concentration in the evaporator condensate was 0.38 mg/L. A significant portion of the tests had glycolate concentration in the condensate at less than the limit of quantification (0.1 mg/L). At ambient conditions, evaporator testing did not show significant effects of glycolate on the soluble components in the evaporator concentrates. Testing with sodalite solids and silicon containing solutions did not show significant effects of glycolate on sodium aluminosilicate formation or dissolution.

  6. Analysis of the e-beam evaporation of titanium and Ti-6Al-4V

    SciTech Connect (OSTI)

    Westerberg, K.W.; Merier, T.C.; McClelland, M.A.; Braun, D.G.; Berzins, L.V.; Anklam, T.M.; Storer, J.

    1998-02-11T23:59:59.000Z

    An experimental and finite element analysis was performed for the electron-beam evaporation of Ti and Ti-6Al-4V from a bottom-feed system. The bulk evaporation rate was measured by feed consumption, and the pool elevation was held constant by adjusting the feed rate in a closed-loop control system. The instantaneous titanium and aluminum evaporation rates were determined by laser absorption in the vapor plume. Water temperature rises in cooling water circuits provided heat flows, and post-run cross sections revealed the location of the solidification zone. The MELT finite element code was applied to model the steady-state two-dimensional fluid flow and energy transport in the rod. There was good agreement between model and measured values of the heat flows and solidification boundaries for Ti. Measured bulk evaporation rates were similar for Ti and Ti-6-4 with greater variation observed for the Ti values. The model evaporation rates were higher than the measured values, but a similar linear dependence on e-beam power was observed in all cases. In a Ti-6-4 evaporation experiment with steady process conditions, laser absorption measurements showed much larger fluctuations in the evaporation rate for Al than Ti.

  7. ACID EVAPORATION OF ULTIMA GOLD TM AB LIQUID SCINTILLATION COCKTAIL RESIDUE

    SciTech Connect (OSTI)

    Kyser, E.; Fondeur, F.; Crump, S.

    2011-12-21T23:59:59.000Z

    Prior analyses of samples from the F/H Lab solutions showed the presence of diisopropylnapthalene (DIN), a major component of Ultima Gold{trademark} AB liquid scintillation cocktail (LSC). These solutions are processed through H-Canyon Tank 10.5 and ultimately through the 17.8E evaporator. Similar solutions originated in SRNL streams sent to the same H Canyon tanks. This study examined whether the presence of these organics poses a process-significant hazard for the evaporator. Evaporation and calorimetry testing of surrogate samples containing 2000 ppm of Ultima Gold{trademark} AB LSC in 8 M nitric acid have been completed. These experiments showed that although reactions between nitric acid and the organic components do occur, they do not appear to pose a significant hazard for runaway reactions or generation of energetic compounds in canyon evaporators. The amount of off-gas generated was relatively modest and appeared to be well within the venting capacity of the H-Canyon evaporators. A significant fraction of the organic components likely survives the evaporation process primarily as non-volatile components that are not expected to represent any new process concerns during downstream operations such as neutralization. Laboratory Waste solutions containing minor amounts of DIN can be safely received, stored, transferred, and processed through the canyon waste evaporator.

  8. 13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS

    E-Print Network [OSTI]

    13. Neutrino mixing 1 13. NEUTRINO MASS, MIXING, AND OSCILLATIONS Updated May 2012 by K. Nakamura have provided compelling evidences for oscillations of neutrinos caused by nonzero neutrino masses of neutrino oscillations, the phenomenology of neutrino mixing, the problem of the nature - Dirac or Majorana

  9. Scientists ignite aluminum water mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists ignite aluminum water mix Scientists ignite aluminum water mix Don't worry, that beer can you're holding is not going to spontaneously burst into flames. June 30, 2014...

  10. Nozzle mixing apparatus

    SciTech Connect (OSTI)

    Mensink, D.L.

    1992-12-31T23:59:59.000Z

    This invention is comprised of a nozzle device for causing two fluids to mix together. In particular, a spray nozzle comprise two hollow, concentric housings, an inner housing and an outer housing. The inner housing has a channel formed therethrough for a first fluid. Its outer surface cooperates with the interior surface of the outer housing to define the second channel for a second fluid. The outer surface of the inner housing and the inner surface of the outer housing each carry a plurality of vanes that interleave but do not touch, each vane of one housing being between two vanes of the other housing. The vanes are curved and the inner surface of the outer housing and the outer surface of the inner housing converge to narrow the second channel. The shape of second channel results in a swirling, accelerating second fluid that will impact the first fluid just past the end of the nozzle where mixing will take place.

  11. Cosmological Kinetic Mixing

    E-Print Network [OSTI]

    Ashok Das; Jorge Gamboa; Miguel Pino

    2015-04-15T23:59:59.000Z

    In this paper we generalize the kinetic mixing idea to time reparametrization invariant theories, namely, relativistic point particles and cosmology in order to obtain new insights for dark matter and energy. In the first example, two relativistic particles interact through an appropriately chosen coupling term. It is shown that the system can be diagonalized by means of a non-local field redefinition, and, as a result of this procedure, the mass of one the particles gets rescaled. In the second case, inspired by the previous example, two cosmological models (each with its own scale factor) are made to interact in a similar fashion. The equations of motion are solved numerically in different scenarios (dust, radiation or a cosmological constant coupled to each sector of the system). When a cosmological constant term is present, kinetic mixing rescales it to a lower value which may be more amenable to observations.

  12. Reduced low frequency noise in electron beam evaporated MgO magnetic tunnel junctions

    SciTech Connect (OSTI)

    Diao, Z.; Feng, J. F.; Kurt, H.; Feng, G.; Coey, J. M. D. [CRANN and School of Physics, Trinity College, Dublin 2 (Ireland)

    2010-05-17T23:59:59.000Z

    We compare low frequency noise in magnetic tunnel junctions with MgO barriers prepared by electron-beam evaporation with those prepared by radiofrequency sputtering, both showing a high tunneling magnetoresistance. The normalized noise parameter in the parallel state of junctions with evaporated barriers is at least one order of magnitude lower than that in junctions with sputtered barriers, and exhibits a weaker bias dependence. The lowest normalized noise is in the 10{sup -11} mum{sup 2} range. A lower density of oxygen vacancies acting as charge trap states in the evaporated MgO is responsible for the lower noise.

  13. Evaporation of Picolitre Droplets on Surfaces with a Range of Wettabilities and Thermal Conductivities

    E-Print Network [OSTI]

    Talbot, E.L.; Berson, A.; Brown, P.S.; Bain, C.D.

    2012-01-01T23:59:59.000Z

    of inkjet droplets ranges between 10 µm and 100 µm. Evaporation should still be limited by dif- fusion at this scale. Convection occurs in evaporating sessile droplets [12] where, in order to conserve mass, evaporating liquid is replenished by a convective... Controller CT-M3-02). High-purity water (MilliQ) or ethanol filtered through a 0.45 µm pore filter were used as the fluids. Shadowgraph profile images of the droplets were produced using side illumination. A cold LED light source (Beaglehole instruments...

  14. Quantification of evaporative running losses from light-duty gasoline-powered trucks. Final report

    SciTech Connect (OSTI)

    McClement, D.

    1992-11-03T23:59:59.000Z

    The objective of the study was to determine the evaporative running loss characteristics from light-duty gasoline powered trucks. The contract involved testing of 18 randomly selected light-duty trucks by the contractor, Automotive Testing Laboratories in Indiana. Seventy-six running loss tests were performed at ambient temperatures of 40, 95, and 105 degrees Fahrenheit and driven over the LA-4 and the New York City Cycle. Six vehicles underwent Sealed Housing Evaporative Determination tests to determine if there is any relationship between other types of evaporative emissions and running loss emissions.

  15. Cooking with Dry Egg Mix

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09T23:59:59.000Z

    package has been opened, place the unused egg mix in a resealable bag or in an airtight container and store it in the refrigerator. How to prepare it To make liquid eggs, stir 1 part mix with 2 parts warm water. Use a fork to blend the egg mix...

  16. Magnetically coupled system for mixing

    SciTech Connect (OSTI)

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2014-04-01T23:59:59.000Z

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  17. A feasibility study of internal evaporative cooling for proton exchange membrane fuel cells

    E-Print Network [OSTI]

    Snyder, Loren E

    2006-04-12T23:59:59.000Z

    An investigation was conducted to determine the feasibility of using the technique of ultrasonic nebulization of water into the anode gas stream for evaporative cooling of a Proton Exchange Membrane (PEM) fuel cell. The basic concept of this form...

  18. A feasibility study of internal evaporative cooling for proton exchange membrane fuel cells 

    E-Print Network [OSTI]

    Snyder, Loren E

    2006-04-12T23:59:59.000Z

    An investigation was conducted to determine the feasibility of using the technique of ultrasonic nebulization of water into the anode gas stream for evaporative cooling of a Proton Exchange Membrane (PEM) fuel cell. The ...

  19. Experimental Study of the Circulation Air Volume of Recirculation Evaporative Cooling

    E-Print Network [OSTI]

    Xiong, J.; Liu, Z.; Wang, C.; Chen, G.

    2006-01-01T23:59:59.000Z

    This paper introduces the technology of re-circulation evaporative cooling (REC), which uses a portion of supply air as secondary air to make cool water used to indirectly cool outside air through a heat exchanger. The circulation volume...

  20. A Study of Mechanisms and Supression of Evaporation of Water from Soils

    E-Print Network [OSTI]

    Wendt, C. W.

    Extensive greenhouse experiments were conducted to evaluate chemicals not previously studied extensively for their potential as evaporation suppressants. Included in the studies were crude oil, anionics, cationics, nonionics, silicones...

  1. 1998 Annual Cathodic Protection Survey Report for the 242-A Evaporator Area

    SciTech Connect (OSTI)

    BOWMAN, T.J.

    1999-12-07T23:59:59.000Z

    This report is the second annual cathodic protection report for the 242-A evaporator. The report documents and trends annual polarization survey data, rectifier inspection data, and continuity data from 1994 through mid-1999.

  2. Free and forced tropical variability: role of the wind-evaporation-sea surface temperature (WES) feedback

    E-Print Network [OSTI]

    Mahajan, Salil

    2009-05-15T23:59:59.000Z

    The Wind-Evaporation-Sea Surface Temperature (WES) feedback is believedto play an important role in the tropics, where climate variability is governed byatmosphere-ocean coupled interactions. This dissertation reports on studies to distinctlyisolate...

  3. On the inherent asymmetric nature of the complementary relationship of evaporation

    E-Print Network [OSTI]

    Szilagyi, Jozsef

    On the inherent asymmetric nature of the complementary relationship of evaporation Jozsef Szilagyi1-Taylor and Penman equations. Citation: Szilagyi, J. (2007), On the inherent asymmetric nature of the complementary

  4. An evaporation estimation method based on the coupled 2-D turbulent heat and vapor transport equations

    E-Print Network [OSTI]

    Szilagyi, Jozsef

    equations Jozsef Szilagyi1,2 and Janos Jozsa1 Received 14 July 2008; revised 4 December 2008; accepted 7 temperature data. Citation: Szilagyi, J., and J. Jozsa (2009), An evaporation estimation method based

  5. Temescal FC-2000 Electron Beam Evaporator CORAL NAME = EbeamFP

    E-Print Network [OSTI]

    Reif, Rafael

    Temescal FC-2000 Electron Beam Evaporator CORAL NAME = EbeamFP STANDARD OPERATING PROCEDURE immediately, via CORAL. Operating the System 1. Engage the machine in Coral 2. From the Monitor's main Screen

  6. Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys

    SciTech Connect (OSTI)

    Cunningham, W.A.; Migon, G.V.

    1985-01-01T23:59:59.000Z

    The solar updraft and a natural evaporative downdraft tower built onto an existing residence structure and a greenhouse were completed and operating. Performance data for the hottest days of June, July, and August, 1985 are included. (MHR)

  7. The evaporation of drops from super-heated nano-engineered surfaces

    E-Print Network [OSTI]

    Hughes, Fiona Rachel

    2009-01-01T23:59:59.000Z

    In pool boiling and spray cooling the Leidenfrost point marks the transition from nucleate boiling, in which the evaporating liquid is in contact with the surface, and film boiling, in which a layer of vapor separates the ...

  8. Experimental investigation into the evaporating behaviour of pure and nanofluid droplets. 

    E-Print Network [OSTI]

    Moffat, John Ross

    2011-06-28T23:59:59.000Z

    In this experimental investigation the evaporative behaviour of liquid droplets of both pure fluids and fluids containing nanoparticles was studied. Initial tests were conducted on drops of pure volatile liquids using IR ...

  9. EVIDENCE OF EXPLOSIVE EVAPORATION IN A MICROFLARE OBSERVED BY HINODE/EIS

    SciTech Connect (OSTI)

    Chen, F.; Ding, M. D., E-mail: dmd@nju.edu.c [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

    2010-11-20T23:59:59.000Z

    We present a detailed study of explosive chromospheric evaporation during a microflare which occurred on 2007 December 7 as observed with the Extreme-ultraviolet Imaging Spectrometer on board Hinode. We find temperature-dependent upflows for lines formed from 1.0 to 2.5 MK and downflows for lines formed from 0.05 to 0.63 MK in the impulsive phase of the flare. Both the line intensity and the nonthermal line width appear enhanced in most of the lines and are temporally correlated with the evaporation velocity. Our results are consistent with the numerical simulations of flare models, which take into account a strong nonthermal electron beam in producing the explosive chromospheric evaporation. The explosive evaporation observed in this microflare implies that the same dynamic processes may exist in events with very different magnitudes.

  10. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    SciTech Connect (OSTI)

    Adu-Wusu, K.

    2012-05-10T23:59:59.000Z

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have minor/major impacts are chlorination, pH adjustment, 1st mercury removal, organics removal, 2nd mercury removal, and ion exchange. For minor impacts, the general approach is to use historical process operations data/modeling software like OLI/ESP and/or monitoring/compiled process operations data to resolve any uncertainties with testing as a last resort. For major impacts (i.e., glycolate concentrations > 33 mg/L or 0.44 mM), testing is recommended. No impact is envisaged for the following ETF unit operations regardless of the glycolate concentration - filtration, reverse osmosis, ion exchange resin regeneration, and evaporation.

  11. Economic and Technical Tradeoffs Between Open and Closed Cycle Vapor Compression Evaporators

    E-Print Network [OSTI]

    Timm, M. L.

    in compressor first cost, and isolation of the compressor from potentially corrosive or trou blesome gases and liquid droplets in the suction vapor. A major disadvantage of closed cycle evap oration is that the driving force developed by the compressor... properties and thermodynamics, compressor operating limits and cost, and surface area sizing and cost. INTRODUCTION Evaporators are used for a wide variety of appli cations in many different industries. Evaporators are generally considered to be any...

  12. Supplemental Simulation Case Studies of Dynamic Evaporator Modeling Paradigms with Variable Fluid Phases 

    E-Print Network [OSTI]

    Rodriguez, E.; Rasmussen, B.

    2015-01-01T23:59:59.000Z

    1Supplemental Simulation Case Studies of Dynamic Evaporator Modeling Paradigms with Variable Fluid Phases Erik Rodriguez1, Bryan Rasmussen2 The purpose of this document is to present a multitude of case studies comparing evaporator modeling... which uses two-phase region density to trigger mass conservative switching. Nine case studies are performed through a combination of three different refrigerants, three different physical system parameters, and three different operating conditions...

  13. Experimental and numerical study of e-beam evaporation of titanium

    SciTech Connect (OSTI)

    McClelland, M.A.; Westerberg, K.W.; Meier, T.C. [Lawrence Livermore National Lab., CA (United States)] [and others

    1996-12-31T23:59:59.000Z

    An experimental and numerical study is performed for the electron-beam evaporation of pure titanium from a bottom fed vapor source. In the experiments, an electron beam operating in the nominal range of 30-40 [kW] was used to evaporate metal from the top of a 3 [in] diameter rod. Variations were made in the e-beam power, sweep pattern, and sweep frequency, and the total evaporation rate was measured from feed consumption and laser absorption. The solid-pool interface was obtained from metallographic cross sections of the metal rod. A two-dimensional finite element model was developed for the melt which includes the effect of fluid flow and energy transport in the pool and conduction in the solid. The deformation of the liquid-vapor and solid-liquid interfaces are tracked using a mesh which stretches along spines parallel to the axis of the rod. For the cases considered, high evaporative fluxes and vapor pressures generate significant depressions in the top surface of the pool. Predicted and measured evaporation rates are in good agreement for moderate evaporation fluxes, but discrepancies are larger for the case involving the highest flux and deepest depression.

  14. Experimental and numerical study of E-beam evaporation of titanium

    SciTech Connect (OSTI)

    McClelland, M.A.; Westerberg, K.W.; Meier, T.C.; Braun, D.G.; Berrins, L.V.; Anklam, T.M. Storer, J.

    1997-11-26T23:59:59.000Z

    An experimental and numerical study is performed for the electron- beam evaporation of pure titanium from a bottom fed vapor source. In the experiments, an electron beam operating in the nominal range of 30-40 [kW] was used to evaporate metal from the top of a 3 inch diameter rod. Variations were made in the e-beam power, sweep pattern, and sweep frequency, and the total evaporation rate was measured from feed consumption and laser absorption. The solid-pool interface was obtained from metallographic cross sections of the metal rod. A two-dimensional finite element model was developed for the melt which includes the effect of fluid flow and energy transport in the pool and conduction in the solid. The deformation of the liquid-vapor and solid-liquid interfaces are tracked using a mesh which stretches along spines parallel to the axis of the rod. For the cases considered, high evaporative fluxes and vapor pressures generate significant depressions in the top surface of the pool. Predicted and measured evaporation rates are in good agreement for moderate evaporation fluxes, but discrepancies are larger for the case involving the highest flux and deepest depression.

  15. Projected Benefits of New Residential Evaporative Cooling Systems: Progress Report #2

    SciTech Connect (OSTI)

    Kutscher, C.; Eastment, M.; Hancock, E.; Reeves, P.

    2006-10-01T23:59:59.000Z

    The use of conventional evaporative cooling has rapidly declined in the United States despite the fact that it has high potential for energy savings in dry climates. Evaporative systems are very competitive in terms of first cost and provide significant reductions in operating energy use, as well as peak-load reduction benefits. Significant market barriers still remain and can be addressed through improved systems integration. This report investigates the first of these approaches, exploring innovative components. The U.S. Department of Energy (DOE) Building America research teams are investigating the use of two promising new pieces of residential cooling equipment that employ evaporative cooling as a part of their system design. The OASys unit, which is a combination of direct and indirect evaporative cooling stages developed by Davis Energy Group (DEG) and manufactured by Speakman CRS, is used to ultimately provide outside air to the living space. The outdoor air provided is indirectly and directly evaporatively cooled in two stages to a condition that can be below the wet-bulb (wb) temperature of the outside air, thus outperforming a conventional single-stage direct evaporative cooler.

  16. Plasma-mediated surface evaporation of an aluminium target in vacuum under UV laser irradiation

    SciTech Connect (OSTI)

    Mazhukin, V I; Nosov, V V [Institute of Mathematical Modelling, Russian Academy of Sciences, Moscow (Russian Federation)

    2005-05-31T23:59:59.000Z

    Mathematical simulation is employed to investigate the dynamics of evaporation and condensation on the surface of a metal target under the conditions of plasma production in the vaporised material exposed to the 0.248-{mu}m UV radiation of a KrF laser with the intensity G{sub 0}= 2x10{sup 8}-10{sup 9} W cm{sup -2}, and a pulse duration {tau}= 20 ns. A transient two-dimensional mathematical model is used, which includes, for the condensed medium, the heat conduction equation with the Stefan boundary condition and additional kinetic conditions at the evaporation surface and, for the vapour, the equations of radiative gas dynamics and laser radiation transfer supplemented with tabular data for the parameters of the equations of state and absorption coefficients. The target evaporation in vacuum induced by the UV radiation was found to occur during the laser pulse and is divided into two characteristic stages: initial evaporation with a sound velocity and subsonic evaporation after the plasma production. At the subsonic evaporation stage, one part of the laser radiation passes through the plasma and is absorbed by the target surface and another part is absorbed in a thin plasma layer near the surface to produce a high pressure, which significantly moderates the vapour ejection. After completion of the pulse, a part of the vaporised material is condensed on the surface, both in the evaporation region and some distance away from it due to the lateral expansion of the plasma cloud. (interaction of laser radiation with matter. laser plasma)

  17. Mixed Mode Matrix Multiplication

    SciTech Connect (OSTI)

    Meng-Shiou Wu; Srinivas Aluru; Ricky A. Kendall

    2004-09-30T23:59:59.000Z

    In modern clustering environments where the memory hierarchy has many layers (distributed memory, shared memory layer, cache,...), an important question is how to fully utilize all available resources and identify the most dominant layer in certain computations. When combining algorithms on all layers together, what would be the best method to get the best performance out of all the resources we have? Mixed mode programming model that uses thread programming on the shared memory layer and message passing programming on the distributed memory layer is a method that many researchers are using to utilize the memory resources. In this paper, they take an algorithmic approach that uses matrix multiplication as a tool to show how cache algorithms affect the performance of both shared memory and distributed memory algorithms. They show that with good underlying cache algorithm, overall performance is stable. When underlying cache algorithm is bad, superlinear speedup may occur, and an increasing number of threads may also improve performance.

  18. Radioactive mixed waste disposal

    SciTech Connect (OSTI)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01T23:59:59.000Z

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  19. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Electricity suppliers and electricity companies must also provide a fuel mix report to customers twice annually, within the June and December billing cycles. Emissions information must be disclos...

  20. Optimal broadcasting of mixed states

    SciTech Connect (OSTI)

    Dang Guifang; Fan Heng [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2007-08-15T23:59:59.000Z

    The N to M (M{>=}N) universal quantum broadcasting of mixed states {rho}{sup xN} is proposed for a qubit system. The broadcasting of mixed states is universal and optimal in the sense that the shrinking factor is independent of the input state and achieves the upper bound. The quantum broadcasting of mixed qubits is a generalization of the universal quantum cloning machine for identical pure input states. A pure state decomposition of the identical mixed qubits {rho}{sup xN} is obtained.

  1. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Maryland’s 1999 electric utility restructuring legislation requires all electric companies and electricity suppliers to provide customers with details regarding the fuel mix and emissions of...

  2. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Ohio's 1999 electric industry restructuring law requires the state's electricity suppliers to disclose details regarding their fuel mix and emissions to customers. Electric utilities and...

  3. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Virginia’s 1999 electric industry restructuring law requires the state's electricity providers to disclose -- "to the extent feasible" -- fuel mix and emissions data regarding electric generation....

  4. Overview of Neutrino Mixing Models and Their Mixing Angle Predictions

    SciTech Connect (OSTI)

    Albright, Carl H.

    2009-11-01T23:59:59.000Z

    An overview of neutrino-mixing models is presented with emphasis on the types of horizontal flavor and vertical family symmetries that have been invoked. Distributions for the mixing angles of many models are displayed. Ways to differentiate among the models and to narrow the list of viable models are discussed.

  5. Measurements of moisture suction in hot mix asphalt mixes

    E-Print Network [OSTI]

    Kassem, Emad Abdel-Rahman

    2006-10-30T23:59:59.000Z

    The presence of moisture in hot mix asphalt (HMA) causes loss of strength and durability of the mix, which is referred to as moisture damage. This study deals with the development of experimental methods for measuring total suction in HMA, which can...

  6. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    SciTech Connect (OSTI)

    Oji, L.

    2014-09-23T23:59:59.000Z

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent of dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10.8 hours. Based on averaging the two half-lives from the 2H scale acid dissolution in 1.25 and 1.5 M nitric acid solutions, a reasonable half-live for the dissolution of 2H scales in dilute nitric acid is 11.7 ± 1.3 hours. The plant operational time for chemically cleaning (soaking) the 2H evaporator with dilute nitric acid is 32 hours. It therefore may require about 3 half-lives or less to completely dissolve most of the scales in the Evaporator pot which come into contact with the dilute nitric acid solution. On a mass basis, the Al-to-Si ratio for the scale dissolution in 1.5 M nitric acid averaged 1.30 ± 0.20 and averaged 1.18 ± 0.10 for the 2H scale dissolution in 1.25 M nitric acid. These aluminum-to-silicon ratios are in fairly good agreement with ratios from previous studies. Therefore, there is still more aluminum in the 2H evaporator scales than silicon which implies that there are no significant changes in scale properties which will exclude nitric acid as a viable protic solvent for aluminosilicate scale buildup dissolution from the 2H evaporator. Overall, the monitoring of the scale decomposition reaction in 1.25 and 1.5 M nitric acid may be better ascertained through the determination of aluminum concentration in solution than monitoring silicon in solution. Silicon solution chemistry may lead to partial precipitating of silicon with time as the scale and acid solution is heated.

  7. Analysis Of 2H-Evaporator Scale Pot Bottom Sample [HTF-13-11-28H

    SciTech Connect (OSTI)

    Oji, L. N.

    2013-07-15T23:59:59.000Z

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material from the 2H evaporator has been performed so that the evaporator can be chemically cleaned beginning July of 2013. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from the bottom cone sections of the 2H-evaporator pot. The sample holder from the 2H-evaporator wall was virtually empty and was not included in the analysis. It is worth noting that after the delivery of these 2H-evaporator scale samples to SRNL for the analyses, the plant customer determined that the 2H evaporator could be operated for additional period prior to requiring cleaning. Therefore, there was no need for expedited sample analysis as was presented in the Technical Task Request. However, a second set of 2H evaporator scale samples were expected in May of 2013, which would need expedited sample analysis. X-ray diffraction analysis (XRD) confirmed the bottom cone section sample from the 2H-evaporator pot consisted of nitrated cancrinite, (a crystalline sodium aluminosilicate solid), clarkeite and uranium oxide. There were also mercury compound XRD peaks which could not be matched and further X-ray fluorescence (XRF) analysis of the sample confirmed the existence of elemental mercury or mercuric oxide. On ''as received'' basis, the scale contained an average of 7.09E+00 wt % total uranium (n = 3; st.dev. = 8.31E-01 wt %) with a U-235 enrichment of 5.80E-01 % (n = 3; st.dev. = 3.96E-02 %). The measured U-238 concentration was 7.05E+00 wt % (n=3, st. dev. = 8.25E-01 wt %). Analyses results for Pu-238 and Pu-239, and Pu-241 are 7.06E-05 {+-} 7.63E-06 wt %, 9.45E-04 {+-} 3.52E-05 wt %, and <2.24E-06 wt %, respectively. These results are provided so that SRR can calculate the equivalent uranium-235 concentrations for the NCSA. Because this 2H evaporator pot bottom scale sample contained a significant amount of elemental mercury (11.7 wt % average), it is recommended that analysis for mercury be included in future Technical Task Requests on 2H evaporator sample analysis at SRNL. Results confirm that the uranium contained in the scale remains depleted with respect to natural uranium. SRNL did not calculate an equivalent U-235 enrichment, which takes into account other fissionable isotopes U-233, Pu-239 and Pu-241.

  8. Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates

    E-Print Network [OSTI]

    Feng, Jingjuan; Bauman, Fred

    2013-01-01T23:59:59.000Z

    and high temperature cooling_REHVA Guidebook, Federation ofEvaluation of cooling performance of thermally activatedsystem with evaporative cooling source for typical United

  9. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27T23:59:59.000Z

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

  10. Evaporation system and method for gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1994-01-01T23:59:59.000Z

    A method and apparatus for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases.

  11. Evaporation of water from sodium chloride solutions under controlled climatic conditions

    E-Print Network [OSTI]

    Moore, Jaroy

    1967-01-01T23:59:59.000Z

    . Ratios of daily evaporation of the salt solutions to that oi distilled water were as follows: [2% (NaC1 soln. ) ? 0. 97; 5%(NaC1 soln. ) ? 0. 98; 10/(NaC1 soln. ) ? 0. 93; and 20%(NaC1 soln. ) ? 0. 79. ] Air temperatures during the course of study... of equation [1], calculations of evaporation rates using adjusted solution temperatures were possible. 3. 0 Y = 0. 0456 X 2. 5 Cocff. of Deter. = 93. 24 S = 0. 593 2 X 2. 0 c 1 r o CL e 1. 0 e ~ ~ ~ s s ~ e ~ e es 10 15 Vapor Pre . sure...

  12. Spectral Lags of Gamma-Ray Bursts from Primordial Black Hole (PBH) Evaporations

    E-Print Network [OSTI]

    T. N. Ukwatta; J. H. MacGibbon; W. C. Parke; K. S. Dhuga; A. Eskandarian; N. Gehrels; L. Maximon; D. C. Morris

    2009-08-14T23:59:59.000Z

    Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. PBHs with an initial mass of 5.0 * 10^14 g should be expiring today with a burst of high energy particles. Evaporating PBHs in the solar neighborhood are candidate Gamma-Ray Bursts (GRBs) progenitors. We propose spectral lag, which is the temporal delay between the high energy photon pulse and the low energy photon pulse, as a possible method to detect PBH evaporation events with the Fermi Gamma-ray Space Telescope Observatory.

  13. Procedure for Applying an Open-Cycle Heat Pump to An Existing Evaporator

    E-Print Network [OSTI]

    Wagner, J. R.; Brush, F. C.

    1984-01-01T23:59:59.000Z

    costs of evaporators are well known and have been implemented in many applications. The most basic method to reduce energy costs is to design an eva porator incorporating multiple effects, or stages, so that water vapor driven off in the first effect..., and flow ratings. MVC is of course applicable to other types of eva porators. Figure 2a shows a multiple effect fall ing film evaporator (FFE). Two effects are shown, but additional effects can be added simply by rep 1icat ing the second effect. New...

  14. Neutrino Mixing and Discrete Symmetries

    E-Print Network [OSTI]

    Hu, Bo

    2012-01-01T23:59:59.000Z

    A model independent study of neutrino mixing based on a new method to derive mixing patterns is presented. An interesting result we find is that, in the case where unbroken residual symmetries of the Majorana neutrino and left-handed charged-lepton mass matrices obey some general assumptions, the complete set of possible mixing patterns can be determined by the solutions to the constraint equation with the help of algebraic number theory. This method can also be applied to more general cases beyond the minimal scenario. Several applications and phenomenological implications are discussed.

  15. Aspen Ecology in the MixedAspen Ecology in the Mixed Conifer TypeConifer Type

    E-Print Network [OSTI]

    Aspen Ecology in the MixedAspen Ecology in the Mixed Conifer TypeConifer Type Wayne D. Shepperd Colorado State University Fort Collins, CO Aspen Ecology in the MixedAspen Ecology in the Mixed Conifer disturbances to meet the desired objective #12;Aspen in Mixed Conifer ForestsAspen in Mixed Conifer Forests

  16. Pulsed laser evaporation of boron/carbon pellets: Infrared spectra and quantum chemical structures and frequencies for BCp

    E-Print Network [OSTI]

    Martin, Jan M.L.

    Pulsed laser evaporation of boron/carbon pellets: Infrared spectra and quantum chemical structures March 1993) Pulsed laser evaporation of pellets pressed from boron and graphite powder gave a new 1 decreased with increasing B/C ratio in the pellet and with increasing laser power. Augmented coupled cluster

  17. Three-wire magnetic trap for direct forced evaporative cooling Shengwang Du1,* and Eun Oh2

    E-Print Network [OSTI]

    Du, Shengwang

    Three-wire magnetic trap for direct forced evaporative cooling Shengwang Du1,* and Eun Oh2 1 Kong, China 2 U.S. Naval Research Laboratory, Remote Sensing Division, Washington, D.C. 20375, USA potential for direct forced evaporative cooling of neutral atoms without using induced spin

  18. The contribution of evapotranspiration and evaporation to the water budget of a treatment wetland in Phoenix, AZ, USA

    E-Print Network [OSTI]

    Hall, Sharon J.

    The contribution of evapotranspiration and evaporation to the water budget of a treatment wetland evapotranspiration and evaporation rates in a constructed treatment wetland in Phoenix during the summer, when both budget for the Tres Rios treatment wetland, and will improve our general knowledge of wetland water

  19. Fluid Mixing from Viscous Fingering

    E-Print Network [OSTI]

    Jha, Birendra

    Mixing efficiency at low Reynolds numbers can be enhanced by exploiting hydrodynamic instabilities that induce heterogeneity and disorder in the flow. The unstable displacement of fluids with different viscosities, or ...

  20. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Rhode Island requires all entities that sell electricity in the state to disclose details regarding the fuel mix and emissions of their electric generation to end-use customers. This information...

  1. Mixed-mu superconducting bearings

    DOE Patents [OSTI]

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03T23:59:59.000Z

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  2. Mixed-mu superconducting bearings

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Mulcahy, Thomas M. (Western Springs, IL)

    1998-01-01T23:59:59.000Z

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  3. Is the tribimaximal mixing accidental?

    SciTech Connect (OSTI)

    Abbas, Mohammed [Ain Shams University, Faculty of Sciences, Abbassiyah 11566, Cairo (Egypt); Center for Theoretical Physics (CTP), British University in Egypt, BUE, El-Sherouk City, Cairo (Egypt); Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34014 Trieste (Italy); Smirnov, A. Yu. [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34014 Trieste (Italy); Institute for Nuclear Research, Russian Academy of Sciences, Moscow (Russian Federation)

    2010-07-01T23:59:59.000Z

    The tribimaximal (TBM) mixing is not accidental if structures of the corresponding leptonic mass matrices follow immediately from certain (residual or broken) flavor symmetry. We develop a simple formalism which allows one to analyze effects of deviations of the lepton mixing from TBM on the structure of the neutrino mass matrix and on the underlying flavor symmetry. We show that possible deviations from the TBM mixing can lead to strong modifications of the mass matrix and strong violation of the TBM-mass relations. As a result, the mass matrix may have an 'anarchical' structure with random values of elements or it may have some symmetry that differs from the TBM symmetry. Interesting examples include matrices with texture zeros, matrices with certain 'flavor alignment' as well as hierarchical matrices with a two-component structure, where the dominant and subdominant contributions have different symmetries. This opens up new approaches to understanding the lepton mixing.

  4. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    In 2001, Nevada enacted legislation requiring the state’s electric utilities to provide details regarding the fuel mix and emissions of electric generation to their customers. Utilities must...

  5. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Michigan's Customer Choice and Electric Reliability Act of 2000 (P.A. 141) requires electric suppliers to disclose to customers details related to the fuel mix and emissions, in pounds per megawatt...

  6. EVALUATION OF THE IMPACT OF THE DEFENSE WASTE PROCESSING FACILITY (DWPF) LABORATORY GERMANIUM OXIDE USE ON RECYCLE TRANSFERS TO THE H-TANK FARM

    SciTech Connect (OSTI)

    Jantzen, C.; Laurinat, J.

    2011-08-15T23:59:59.000Z

    When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plus adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO{sub 3}), germanium (IV) oxide (GeO{sub 2}) and cesium carbonate (Cs{sub 2}CO{sub 3}) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to {approx}12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO{sub 2}/year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO{sub 2} may increase to 4 kg/yr when improvements are implemented to attain an annual canister production goal of 400 canisters. Since no Waste Acceptance Criteria (WAC) exists for germanium in the Tank Farm, the Effluent Treatment Project, or the Saltstone Production Facility, DWPF has requested an evaluation of the fate of the germanium in the caustic environment of the RCT, the 2H evaporator, and the tank farm. This report evaluates the effect of the addition of germanium to the tank farm based on: (1) the large dilution of Ge in the RCT and tank farm; (2) the solubility of germanium in caustic solutions (pH 12-13); (3) the potential of germanium to precipitate as germanium sodalites in the 2H Evaporator; and (4) the potential of germanium compounds to precipitate in the evaporator feed tank. This study concludes that the impacts of transferring up to 4 kg/yr germanium to the RCT (and subsequently the 2H evaporator feed tank and the 2H evaporator) results in <2 ppm per year (1.834 mg/L) which is the maximum instantaneous concentration expected from DWPF. This concentration is insignificant as most sodium germanates are soluble at the high pH of the feed tank and evaporator solutions. Even if sodium aluminosilicates form in the 2H evaporator, the Ge will likely substitute for some small amount of the Si in these structures and will be insignificant. It is recommended that the DWPF continue with their strategy to add germanium as a laboratory chemical to Attachment 8.2 of the DWPF Waste Compliance Plan (WCP).

  7. Mixed-Mode Ventilation and Building Retrofits

    E-Print Network [OSTI]

    Brager, Gail; Ackerly, Katie

    2010-01-01T23:59:59.000Z

    Page 15 Mixed-Mode Ventilation and Building RetrofitsEngineers. 2000. Mixed-mode ventilation. CIBSE ApplicationsMichael. 2000. Hybrid Ventilation Systems: An Arup Approach

  8. Occupant satisfaction in mixed-mode buildings.

    E-Print Network [OSTI]

    Brager, Gail; Baker, Lindsay

    2008-01-01T23:59:59.000Z

    Strategies for Mixed-Mode Buildings, Summary Report, CenterCBE). 2006. Website: Mixed-Mode Building Case Studies.Department of Environmental Building Research Establishment

  9. Occupant satisfaction in mixed-mode buildings

    E-Print Network [OSTI]

    Brager, Gail; Baker, Lindsay

    2009-01-01T23:59:59.000Z

    Environmental Quality in Green Buildings”. Indoor Air; 14 (Strategies for Mixed-Mode Buildings, Summary Report, CenterCBE). 2006. Website: Mixed-Mode Building Case Studies.

  10. Neutrino Masses and Flavor Mixing

    E-Print Network [OSTI]

    Fritzsch, Harald

    2015-01-01T23:59:59.000Z

    We discuss the neutrino oscillations, using texture zero mass matrices for the leptons. The reactor mixing angle $\\theta^{}_{l}$ is calculated. The ratio of the masses of two neutrinos is determined by the solar mixing angle. We can calculate the masses of the three neutrinos: $m_1$ $\\approx$ 0.003 eV - $m_2$ $\\approx$ 0.012 eV - $m_3$ $\\approx$ 0.048 eV.

  11. Neutrino Masses and Flavor Mixing

    E-Print Network [OSTI]

    Harald Fritzsch

    2015-03-06T23:59:59.000Z

    We discuss the neutrino oscillations, using texture zero mass matrices for the leptons. The reactor mixing angle $\\theta^{}_{l}$ is calculated. The ratio of the masses of two neutrinos is determined by the solar mixing angle. We can calculate the masses of the three neutrinos: $m_1$ $\\approx$ 0.003 eV - $m_2$ $\\approx$ 0.012 eV - $m_3$ $\\approx$ 0.048 eV.

  12. Quantum computing with mixed states

    E-Print Network [OSTI]

    Michael Siomau; Stephan Fritzsche

    2011-01-17T23:59:59.000Z

    We discuss a model for quantum computing with initially mixed states. Although such a computer is known to be less powerful than a quantum computer operating with pure (entangled) states, it may efficiently solve some problems for which no efficient classical algorithms are known. We suggest a new implementation of quantum computation with initially mixed states in which an algorithm realization is achieved by means of optimal basis independent transformations of qubits.

  13. Quantum computing with mixed states

    E-Print Network [OSTI]

    Siomau, Michael

    2011-01-01T23:59:59.000Z

    We discuss a model for quantum computing with initially mixed states. Although such a computer is known to be less powerful than a quantum computer operating with pure (entangled) states, it may efficiently solve some problems for which no efficient classical algorithms are known. We suggest a new implementation of quantum computation with initially mixed states in which an algorithm realization is achieved by means of optimal basis independent transformations of qubits.

  14. Under consideration for publication in J. Fluid Mech. 1 Evaporation and combustion

    E-Print Network [OSTI]

    Under consideration for publication in J. Fluid Mech. 1 Evaporation and combustion of thin films the tendency to destabilize the planar interface, combustion acts to reduce this effect. In particular, when the heat release by combustion is substantial, all disturbances are obliterated, the film remains nearly

  15. Bi-Sr-Ca-Cu-O thin films grown by flash evaporation and pulsed laser deposition 

    E-Print Network [OSTI]

    Ganapathy Subramanian, Santhana

    2004-09-30T23:59:59.000Z

    . Thin films were grown by flash evaporation at Texas A&M University, and by pulsed laser deposition (PLD) at the University of Wollongong, Australia. The latter of these techniques is widely used for growing thin films of various compounds. Single...

  16. Gas exchange in terrestrial environments comes at the cost of evaporative water loss from respiratory surfaces.

    E-Print Network [OSTI]

    Franz, Nico M.

    3477 Gas exchange in terrestrial environments comes at the cost of evaporative water loss from of gas exchange, both within and among species (Lighton, 1998; Shelton and Appel, 2001; Chown, 2002). The classical pattern is that of discontinuous gas exchange, or discontinuous gas-exchange cycles (DGC; Lighton

  17. Improving Ice Cover and Evaporation Estimates Primary Investigator: Thomas E. Croley (Emeritus), Raymond Assel (Emeritus) -NOAA

    E-Print Network [OSTI]

    Improving Ice Cover and Evaporation Estimates Primary Investigator: Thomas E. Croley (Emeritus. For example, ice cover is projected to be significantly less under global warming, air temperature higher, and precipitation greater (Lofgren, et al, in press). Improved long-range ice forecasts would be of interest

  18. Complementary relationship of evaporation and the mean annual water-energy balance

    E-Print Network [OSTI]

    Szilagyi, Jozsef

    Complementary relationship of evaporation and the mean annual water-energy balance Jozsef Szilagyi1 and the mean annual water-energy balance, Water Resour. Res., 45, W09201, doi:10.1029/2009WR008129. [2] Gerrits balance necessarily operates at the catchment scale, plus E0 depends predominantly on the available energy

  19. Evaporation from a reservoir with fluctuating water level: Correcting for limited fetch

    E-Print Network [OSTI]

    Katul, Gabriel

    a significant impact on evaporation. Reservoirs with different water content will also differ in energy (heat area within the footprint of the ECS is of a dual nature, comprising the water surface and surrounding the reservoir energy balance closure and the agreement between measurements and models that primar- ily rely

  20. To improve the transient performance of methanol evaporator and SMR reformer with TECs.

    E-Print Network [OSTI]

    Berning, Torsten

    . · To reduce heat loss inside methanol evaporator during system startup. · Using TEG heat recovery waste heat is still exhausted unused. And by now, they still cannot get rid of large Li-ion batteries during working condition fluctuating. In this work, possibly useful waste heat from a HTPEMFC system

  1. Evaporation and Condensation Heat Transfer Performance of Flammable Refrigerants in a

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Evaporation and Condensation Heat Transfer Performance of Flammable Refrigerants in a Brazed Plate and Condensation Heat Transfer Performance of Flammable Refrigerants in a Brazed Plate Heat Exchanger Sheila C ........................................................... 8 3. Average relative difference (%) in calculated heat transfer rates for refrigerants and HTF

  2. PROOF COPY 006410JES Electrical Characteristics of Thermally Evaporated HfO2

    E-Print Network [OSTI]

    Misra, Durgamadhab "Durga"

    during evaporation, were investigated for the first time. The dielectric constant as measured effect2 and thermal instability due to the formation of silicides or interfacial layers impede-assisted deposition,8 sputtering,9 in situ rapid thermal chemical vapor deposition,10 and reactive electron beam

  3. Consequence analysis of aqueous ammonia spills using an improved liquid pool evaporation model 

    E-Print Network [OSTI]

    Raghunathan, Vijay

    2005-02-17T23:59:59.000Z

    ) units. This newly developed model can estimate the vaporization rate and net mass evaporating into the air from a multicomponent non- ideal chemical spill. The work has been divided into two parts. In the first step a generic, dynamic source term model...

  4. The evaporation rate, free energy, and entropy of amorphous water Robin J. Speedy

    E-Print Network [OSTI]

    The evaporation rate, free energy, and entropy of amorphous water at 150 K Robin J. Speedy can be interpreted as giving a measure of their free energy difference, i a G 150 K 1100 100 J of amorphous water (a) and ice (i) near 150 K and suppose that their ratio gives a measure of their free energy

  5. Upscaling of soil hydraulic properties for steady state evaporation and infiltration

    E-Print Network [OSTI]

    Mohanty, Binayak P.

    Upscaling of soil hydraulic properties for steady state evaporation and infiltration Jianting Zhu September 2002. [1] Estimation of effective/average soil hydraulic properties for large land areas and guidelines for upscaling soil hydraulic properties in an areally heterogeneous field. In this study, we

  6. Evaporative water losses of exercising sheep in neutral and hot climates

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Evaporative water losses of exercising sheep in neutral and hot climates T Othman KG Johnson, DW, Australia Hot climates require an accelerated water loss to allowed for thermoregulation (Rai et al, 1979, Trop Anim Hlth Prod, 11, 51-56). The water losses associated with locomotion should be greater

  7. Results from evaporation tests to support the MWTF heat removal system design

    SciTech Connect (OSTI)

    Crea, B.A.

    1994-12-22T23:59:59.000Z

    An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system.

  8. Optical Properties and Radiation-Enhanced Evaporation of Nanofluid Fuels Containing Carbon-Based Nanostructures

    E-Print Network [OSTI]

    Qiao, Li

    Optical Properties and Radiation-Enhanced Evaporation of Nanofluid Fuels Containing Carbon characteristics of nanofluid fuels with stable suspension of carbon-based nanostructures under radiation-based nanofluids containing multiwalled carbon nanotubes (MWCNTs) or carbon nanoparticles (CNPs) are both higher

  9. Atmospheric Environment 42 (2008) 30763086 Scavenging of soluble gases by evaporating and growing cloud

    E-Print Network [OSTI]

    Elperin, Tov

    and condensation of a cloud droplet in the presence of soluble gases. It is assumed that gas absorption we performed numerical analysis of simultaneous heat and mass transfer during evaporation into account thermal effect of gas absorption. It was shown that nonlinear behavior of different parameters

  10. Managing steam and concentration disturbances in multi-effect evaporators via

    E-Print Network [OSTI]

    Gravdahl, Jan Tommy

    Managing steam and concentration disturbances in multi-effect evaporators via nonlinear modelling performance due to steam and concentration disturbances. An alternative architecture is then proposed which mill, the volatile component is water, with the remainder being sugar. Steam is used as a heating

  11. Microscopic simulations of molecular cluster decay: Does the carrier gas affect evaporation?

    E-Print Network [OSTI]

    Ford, Ian

    the sys- tems in question. An example of a practical problem is the behavior of steam in turbines, whereMicroscopic simulations of molecular cluster decay: Does the carrier gas affect evaporation? Hoi Yu water droplets produced through condensation in the transition from dry to wet steam can lead

  12. A Simple Analytical Model of Evaporation in the Presence of Roots

    E-Print Network [OSTI]

    Cesare M. Cejas; Larry Hough; Jean-Christophe Castaing; Christian Fretigny; Remi Dreyfus

    2014-06-17T23:59:59.000Z

    Root systems can influence the dynamics of evapotranspiration of water out of a porous medium. The coupling of evapotranspiration remains a key aspect affecting overall root behavior. Predicting the evapotranspiration curve in the presence of roots helps keep track of the amount of water that remains in the porous medium. Using a controlled visual set-up of a 2D model soil system consisting of monodisperse glass beads, we first perform experiments on actual roots grown in partially saturated systems under different relative humidity conditions. We record parameters such as the total mass loss in the medium and the resulting position of the receding fronts and use these experimental results to develop a simple analytical model that predicts the position of the evaporating front as a function of time as well as the total amount of water that is lost from the medium due to the combined effects of evaporation and transpiration. The model is based on fundamental principles of evaporation flux and includes empirical assumptions on the quantity of stoma in the leaves and the transition time between regime 1 and regime 2. The model also underscores the importance of a much prolonged root life as long as the root is exposed to a partially saturated zone composed of a mixture of air and water. Comparison between the model and experimental results shows good prediction of the position of the evaporating front as well as the total mass loss from evapotranspiration in the presence of real root systems. These results provide additional understanding of both complex evaporation phenomenon and its influence on root mechanisms.

  13. VELOCITY CHARACTERISTICS OF EVAPORATED PLASMA USING HINODE/EUV IMAGING SPECTROMETER

    SciTech Connect (OSTI)

    Milligan, Ryan O.; Dennis, Brian R. [Solar Physics Laboratory (Code 671), Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2009-07-10T23:59:59.000Z

    This paper presents a detailed study of chromospheric evaporation using the EUV Imaging Spectrometer (EIS) onboard Hinode in conjunction with hard X-ray (HXR) observations from Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). The advanced capabilities of EIS were used to measure Doppler shifts in 15 emission lines covering the temperature range T = 0.05-16 MK during the impulsive phase of a C-class flare on 2007 December 14. Blueshifts indicative of the evaporated material were observed in six emission lines from Fe XIV-XXIV (2-16 MK). Upflow velocity (v{sub up}) was found to scale with temperature as v{sub up} (km s{sup -1}) {approx} 8-18T(MK). Although the hottest emission lines, Fe XXIII and Fe XXIV, exhibited upflows of >200 km s{sup -1}, their line profiles were found to be dominated by a stationary component in contrast to the predictions of the standard flare model. Emission from O VI-Fe XIII lines (0.5-1.5 MK) was found to be redshifted by v{sub down} (km s{sup -1}) {approx} 60-17T (MK) and was interpreted as the downward-moving 'plug' characteristic of explosive evaporation. These downflows occur at temperatures significantly higher than previously expected. Both upflows and downflows were spatially and temporally correlated with HXR emission observed by RHESSI that provided the properties of the electron beam deemed to be the driver of the evaporation. The energy flux of the electron beam was found to be {approx}>5 x 10{sup 10} erg cm{sup -2} s{sup -1}, consistent with the value required to drive explosive chromospheric evaporation from hydrodynamic simulations.

  14. Fan and Pad Greenhouse Evaporative Cooling Systems1 R. A. Bucklin, J. D. Leary, D. B. McConnell, and E. G. Wilkerson2

    E-Print Network [OSTI]

    Watson, Craig A.

    CIR1135 Fan and Pad Greenhouse Evaporative Cooling Systems1 R. A. Bucklin, J. D. Leary, D. B. Mc systems. Such high temperatures reduce crop quality and worker productivity. Evaporative cooling temperatures are important when dealing with evaporative cooling systems ­ dry bulb temperature and wet bulb

  15. Nanoparticle enhanced evaporation of liquids: A case study of silicone oil Wenbin Zhang, Rong Shen, Kunquan Lu, Ailing Ji, and Zexian Cao

    E-Print Network [OSTI]

    Zexian, Cao

    - hanced evaporation and exploration of evaporation control techniques for treatment of oil pollution Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4764294] I. INTRODUCTION Oil pollution has practical importance beyond the treatment of oil pollution. For water, a raised evaporation rate will lead

  16. Collectibility for Mixed Quantum States

    E-Print Network [OSTI]

    ?ukasz Rudnicki; Zbigniew Pucha?a; Pawe? Horodecki; Karol ?yczkowski

    2012-11-02T23:59:59.000Z

    Bounds analogous to entropic uncertainty relations allow one to design practical tests to detect quantum entanglement by a collective measurement performed on several copies of the state analyzed. This approach, initially worked out for pure states only [Phys. Rev. Lett. 107, 150502 (2011)], is extended here for mixed quantum states. We define collectibility for any mixed states of a multipartite system. Deriving bounds for collectibility for positive partially transposed states of given purity provides a new insight into the structure of entangled quantum states. In case of two qubits the application of complementary measurements and coincidence based detections leads to a new test of entanglement of pseudopure states.

  17. Mixed ternary heterojunction solar cell

    DOE Patents [OSTI]

    Chen, Wen S. (Seattle, WA); Stewart, John M. (Seattle, WA)

    1992-08-25T23:59:59.000Z

    A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

  18. Bs Mixing at the Tevatron

    SciTech Connect (OSTI)

    Gomez-Ceballos, Guillelmo; /Cantabria Inst. of Phys.

    2006-04-01T23:59:59.000Z

    The Tevatron collider at Fermilab provides a very rich environment for the study of B{sub s} mesons. B{sub s} Mixing is the most important analysis within the B Physics program of both experiments. In this paper they summarize the most recent results on this topic from both D0 and CDF experiments. There were very important updates in both experiments after his last talk, hence the organizers warmly recommended me to include the latest available results on B{sub s} mixing, instead of what he presents there.

  19. Impact of a 1,000-foot thermal mixing zone on the steam electric power industry

    SciTech Connect (OSTI)

    Veil, J.A.

    1994-04-01T23:59:59.000Z

    Thermal discharge requirements for power plants using once-through cooling systems are based on state water quality standards for temperatures that must be met outside of designated mixing zones. This study evaluates the impact of limiting the extent of thermal mixing zones. This study evaluates the impact of limiting the extent of thermal mixing zones to no more than 1,000 feet from the discharge point. Data were collected from 79 steam electric plants. Of the plants currently using once-through cooling systems, 74% could not meet current thermal standards at the edge of a 1,000-foot mixing zone. Of this total, 68% would retrofit cooling towers, and 6% would retrofit diffusers. The estimated nationwide capital cost for retrofitting plants that could not meet current thermal standards at the edge of a 1,000-foot mixing zone is $21.4 billion. Conversion of a plant from once-through cooling to cooling towers or addition of diffusers would result in a lower energy output from that plant. For the affected plants, the total estimated replacement cost would be $370 to $590 million per year. Some power companies would have to construct new generating capacity to meet the increased energy demand. The estimated nationwide cost of this additional capacity would be $1.2 to $4.8 billion. In addition to the direct costs associated with compliance with a 1,000-foot mixing zone limit, other secondary environmental impacts would also occur. Generation of the additional power needed would increase carbon dioxide emissions by an estimated 8.3 million tons per year. In addition, conversion from once-through cooling systems to cooling towers at affected plants would result in increased evaporation of about 2.7 million gallons of water per minute nationwide.

  20. Fabrication and characterization of silver- and copper-coated Nylon 6 forcespun nanofibers by thermal evaporation

    SciTech Connect (OSTI)

    Mihut, Dorina M., E-mail: dorinamm@yahoo.com; Lozano, Karen [Department of Mechanical Engineering, The University of Texas Pan American, 1201 W University Drive, Edinburg, Texas 78539 (United States); Foltz, Heinrich [Department of Electrical Engineering, The University of Texas Pan American, 1201 W University Drive, Edinburg, Texas 78539 (United States)

    2014-11-01T23:59:59.000Z

    Silver and copper nanoparticles were deposited as thin films onto substrates consisting of Nylon 6 nanofibers manufactured using forcespinning{sup ®} equipment. Different rotational speeds were used to obtain continuous nanofibers of various diameters arranged as nonwoven mats. The Nylon 6 nanofibers were collected as successive layers on frames, and a high-vacuum thermal evaporation method was used to deposit the silver and copper thin films on the nanofibers. The structures were investigated using scanning electron microscopy–scanning transmission electron microscopy, atomic force microscopy, x-ray diffraction, and electrical resistance measurements. The results indicate that evaporated silver and copper nanoparticles were successfully deposited on Nylon 6 nanofibers as thin films that adhered well to the polymer substrate while the native morphology of the nanofibers were preserved, and electrically conductive nanostructures were achieved.

  1. Control of pyrophoricity in deposits produced by electron beam evaporation of uranium

    SciTech Connect (OSTI)

    Clifford, J.

    1980-07-01T23:59:59.000Z

    A description is given of an apparatus for reducing the pyrophoricity of deposits of a material evaporated within a chamber comprising: a sealed chamber defined by an enclosure; means for providing within said chamber an atmosphere of generally non-reactive nature; a reservoir of a material to ve evaporated; means for directing a vapor of said material from said reservoir into said chamber; at least one surface within said chamber in the path of the directed vapor and on which at least portions of the vaporized material deposits; means for cooling said enclosure to a temperature at which said vapor deposits at a relatively low pyrophoric density; and means for maintaining a temperature for said collection surfaces higher than the enclosure temperature to promote deposition of said material at a relatively higher density.

  2. Analysis of multicomponent evaporation in electron beam melting and refining of titanium alloys

    SciTech Connect (OSTI)

    Powell, A.; Szekely, J.; Pal, U. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Materials Science and Engineering; Avyle, J. van den; Damkroger, B. [Sandia National Labs., Albuquerque, NM (United States). Materials Processing Dept.

    1997-12-01T23:59:59.000Z

    Experimental evidence and a mathematical model are presented to evaluate the effect of beam-scan frequency on composition change in electron-beam melting of titanium alloys. Experiments characterized the evaporation rate of commercially pure (CP) titanium and vapor composition over titanium alloy with up to 6 wt pct aluminum and 4.5 wt pct vanadium, as a function of beam power, scan frequency, and background pressure. These data and thermal mapping of the hearth melt surface are used to estimate activity coefficients of aluminum and vanadium in the hearth. The model describes transient heat transfer in the surface of the melt and provides a means of estimating enhancement of pure titanium evaporation and change in final aluminum composition due to local heating at moderate beam-scan frequencies.

  3. Green Data Center Cooling: Achieving 90% Reduction: Airside Economization and Unique Indirect Evaporative Cooling

    SciTech Connect (OSTI)

    Weerts, B. A.; Gallaher, D.; Weaver, R.; Van Geet, O.

    2012-01-01T23:59:59.000Z

    The Green Data Center Project was a successful effort to significantly reduce the energy use of the National Snow and Ice Data Center (NSIDC). Through a full retrofit of a traditional air conditioning system, the cooling energy required to meet the data center's constant load has been reduced by over 70% for summer months and over 90% for cooler winter months. This significant change is achievable through the use of airside economization and a new indirect evaporative cooling system. One of the goals of this project was to create awareness of simple and effective energy reduction strategies for data centers. This project's geographic location allowed maximizing the positive effects of airside economization and indirect evaporative cooling, but these strategies may also be relevant for many other sites and data centers in the U.S.

  4. Temperature and humidity control during cooling and dehumidifying by compressor and evaporator fan speed variation

    SciTech Connect (OSTI)

    Krakow, K.I.; Lin, S.; Zeng, Z.S. [Concordia Univ., Montreal, Quebec (Canada). Dept. of Mechanical Engineering

    1995-08-01T23:59:59.000Z

    The accurate control of temperature and relative humidity during cooling and dehumidifying air-conditioning processes may be achieved by compressor and evaporator fan speed variation. Proportional-integral-differential (PID) control methods are shown to be suitable for attaining compressor and evaporator fan speeds such that the sensible and latent components of the refrigeration system capacity equal the sensible and latent components of the system load. The feasibility of the control method has been verified experimentally. A numerical model of an environmental control system, including refrigeration, space, and PID control subsystems, has been developed. The model is suitable for determining system response to variations of PID coefficient values and to variations of system loads.

  5. Running loss evaporative emissions determination by the point-source method. Technical report (Final)

    SciTech Connect (OSTI)

    Not Available

    1989-10-17T23:59:59.000Z

    The work examined the potential of determining running emissions by examining the sources of evaporation of fuel from a vehicle during operation. This required the use of equipment based on constant volume sampling with multiple sources that could simultaneously monitor different locations. The hydrocarbon emissions were measured for their total content with two California certified vehicles. The operating temperature and fuel vapor pressure were control variables that were examined for their effect. Evaporative running losses were found at the charcoal canister and purge air vent. Differences in the losses were observed with the two vehicles. The fuel vapor pressure and driving cycle were major factors over the ranges examined, but temperature had statistical significance. A model used to predict vapor generation from the fuel was in general agreement with the running loss experimental data.

  6. Comparisons of Statistical Multifragmentation and Evaporation Models for Heavy Ion Collisions

    E-Print Network [OSTI]

    Tsang, M B; Charity, R; Durand, D; Friedman, W A; Gulminelli, F; Lefèvre, A; Raduta, A H; Raduta, A R; Souza, S; Trautmann, W; Wada, R; Raduta, Ad.R.; Raduta, Al. H.

    2006-01-01T23:59:59.000Z

    The results from ten statistical multifragmentation models have been compared with each other using selected experimental observables. Even though details in any single observable may differ, the general trends among models are similar. Thus these models and similar ones are very good in providing important physics insights especially for general properties of the primary fragments and the multifragmentation process. Mean values and ratios of observables are also less sensitive to individual differences in the models. In addition to multifragmentation models, we have compared results from five commonly used evaporation codes. The fluctuations in isotope yield ratios are found to be a good indicator to evaluate the sequential decay implementation in the code. The systems and the observables studied here can be used as benchmarks for the development of statistical multifragmentation models and evaporation codes.

  7. An evaporation-based model of thermal neutron induced ternary fission of plutonium

    E-Print Network [OSTI]

    J. P. Lestone

    2007-03-10T23:59:59.000Z

    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~1.2 MeV and ~10^-22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission.

  8. An evaporation-based model of thermal neutron induced ternary fission of plutonium

    E-Print Network [OSTI]

    Lestone, J P

    2007-01-01T23:59:59.000Z

    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~1.2 MeV and ~10^-22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission.

  9. Comparisons of Statistical Multifragmentation and Evaporation Models for Heavy Ion Collisions

    E-Print Network [OSTI]

    M. B. Tsang; R. Bougault; R. Charity; D. Durand; W. A. Friedman; F. Gulminelli; A. Le Fevre; Al. H. Raduta; Ad. R. Raduta; S. Souza; W. Trautmann; R. Wada

    2006-10-03T23:59:59.000Z

    The results from ten statistical multifragmentation models have been compared with each other using selected experimental observables. Even though details in any single observable may differ, the general trends among models are similar. Thus these models and similar ones are very good in providing important physics insights especially for general properties of the primary fragments and the multifragmentation process. Mean values and ratios of observables are also less sensitive to individual differences in the models. In addition to multifragmentation models, we have compared results from five commonly used evaporation codes. The fluctuations in isotope yield ratios are found to be a good indicator to evaluate the sequential decay implementation in the code. The systems and the observables studied here can be used as benchmarks for the development of statistical multifragmentation models and evaporation codes.

  10. Consequence analysis of aqueous ammonia spills using an improved liquid pool evaporation model

    E-Print Network [OSTI]

    Raghunathan, Vijay

    2005-02-17T23:59:59.000Z

    of effective NOx emissions from utility boilers and combustion turbines nowadays (Pritchard et al. 1995). Its applications also include reduction of NOx emissions from diesel engines, process gas streams like nitric acid plants. The flue gas emitted from... serves the purpose of a reducing medium and is replacing anhydrous ammonia in most of the Selective catalytic reduction (SCR) units. This newly developed model can estimate the vaporization rate and net mass evaporating into the air from a...

  11. Fluorocarbon evaporative cooling developments for the ATLAS pixel and semiconductor tracking detectors

    E-Print Network [OSTI]

    Anderssen, E; Berry, S; Bonneau, P; Bosteels, Michel; Bouvier, P; Cragg, D; English, R; Godlewski, J; Górski, B; Grohmann, S; Hallewell, G D; Hayler, T; Ilie, S; Jones, T; Kadlec, J; Lindsay, S; Miller, W; Niinikoski, T O; Olcese, M; Olszowska, J; Payne, B; Pilling, A; Perrin, E; Sandaker, H; Seytre, J F; Thadome, J; Vacek, V

    1999-01-01T23:59:59.000Z

    Heat transfer coefficients 2-5.103 Wm-2K-1 have been measured in a 3.6 mm I.D. heated tube dissipating 100 Watts - close to the full equivalent power (~110 W) of a barrel SCT detector "stave" - over a range of power dissipations and mass flows in the above fluids. Aspects of full-scale evaporative cooling circulator design for the ATLAS experiment are discussed, together with plans for future development.

  12. Characterization Results For The 2013 HTF 3H Evaporator Overhead Samples

    SciTech Connect (OSTI)

    Washington, A. L. II

    2013-12-04T23:59:59.000Z

    This report tabulates the radiochemical analysis of the 3H evaporator overhead sample for {sup 137}Cs, {sup 90}Sr, and {sup 129}I to meet the requirements in the Effluent Treatment Project (ETP) Waste Acceptance Criteria (WAC) (rev. 6). This report identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. All data was found to be within the ETP WAC (rev. 6) specification for the Waste Water Collection Tanks (WWCT).

  13. Enhanced Fusion-Evaporation Cross Sections in Neutron-Rich $^{132}$Sn on $^{64}$Ni

    E-Print Network [OSTI]

    J. F. Liang; D. Shapira; C. J. Gross; J. R. Beene; J. D. Bierman; A. Galindo-Uribarri; J. Gomez del Campo; P. A. Hausladen; Y. Larochelle; W. Loveland; P. E. Mueller; D. Peterson; D. C. Radford; D. W. Stracener; R. L. Varner

    2003-04-02T23:59:59.000Z

    Evaporation residue cross sections have been measured with neutron-rich radioactive $^{132}$Sn beams on $^{64}$Ni in the vicinity of the Coulomb barrier. The average beam intensity was $2\\times 10^{4}$ particles per second and the smallest cross section measured was less than 5 mb. Large subbarrier fusion enhancement was observed. Coupled-channels calculations taking into account inelastic excitation and neutron transfer underpredict the measured cross sections below the barrier.

  14. Construction of a Penrose Diagram for a Spatially Coherent Evaporating Black Hole

    E-Print Network [OSTI]

    Beth A. Brown; James Lindesay

    2007-10-10T23:59:59.000Z

    A Penrose diagram is constructed for an example black hole that evaporates at a steady rate as measured by a distant observer, until the mass vanishes, yielding a final state Minkowski space-time. Coordinate dependencies of significant features, such as the horizon and coordinate anomalies, are clearly demonstrated on the diagram. The large-scale causal structure of the space-time is briefly discussed.

  15. Thermal properties of light nuclei from $^{12}$C+$^{12}$C fusion-evaporation reactions

    E-Print Network [OSTI]

    L Morelli; G Baiocco; M D'Agostino; F Gulminelli; M Bruno; U Abbondanno; S Appannababu; S Barlini; M Bini; G Casini; M Cinausero; M Degerlier; D Fabris; N Gelli; F Gramegna; V L Kravchuk; T Marchi; G Pasquali; S Piantelli; S Valdré; Ad R Raduta

    2014-04-14T23:59:59.000Z

    The $^{12}$C+$^{12}$C reaction at 95 MeV has been studied through the complete charge identification of its products by means of the GARFIELD+RCo experimental set-up at INFN Laboratori Nazionali di Legnaro (LNL). In this paper, the first of a series of two, a comparison to a dedicated Hauser-Feshbach calculation allows to select a set of dissipative events which corresponds, to a large extent, to the statistical evaporation of highly excited $^{24}$Mg. Information on the isotopic distribution of the evaporation residues in coincidence with their complete evaporation chain is also extracted. The set of data puts strong constraints on the behaviour of the level density of light nuclei above the threshold for particle emission. In particular, a fast increase of the level density parameter with excitation energy is supported by the data. Residual deviations from a statistical behaviour are seen in two specific channels, and tentatively associated with a contamination from direct reactions and/or $\\alpha$-clustering effects. These channels are studied in further details in the second paper of the series.

  16. Investigation of an electron beam evaporative source: Part 1, Theory; Part 2, Measurements

    SciTech Connect (OSTI)

    Sze, J.S.; Self, S.A. (Lawrence Livermore National Lab., CA (USA))

    1989-09-14T23:59:59.000Z

    A theory for evaluating the performance parameters of linear electron beam evaporative source is presented. The electron beam is considered to be generated from a linear gun and its trajectory is curved by a uniform magnetic field onto a target. A model has been developed to estimate the trajectory of the electron beam. The performance of the electron gun is characterized by two coefficients: {alpha}, the divergence effect of the beam as it enters into the electric field free space region, and {Beta}, the space charge parameter, which is proportional to the magnitude of the current density of the beam. These two parameters determine the location (angular position) of the beam waist and the current density at the target. In addition, neutralization of the electron space charge by vapor ions generated near the target is considered. A discussion is also given of the shape of the depression in the surface of the molten metal, which is due to the pressure on the surface associated with the momentum recoil from the evaporative vapor flux. By relating the characteristic depth and width of the depression to magnitude and the shape of the pressure profile, useful analytical and numerical results are presented for a given pressure profile. The implication of the results for the design of electron beam evaporative sources are also discussed. Measurements are discussed a the end of the paper. 11 refs., 15 figs.

  17. Application of the TXM system to EB evaporation of alloys -- an update

    SciTech Connect (OSTI)

    Schiller, N. [Fraunhofer Institute Electron Beam and Plasma Technology, Dresden (Germany)

    1994-12-31T23:59:59.000Z

    High Rate E.B. evaporation of alloys with volatile components demands a sophisticated process control to obtain the required layer composition as well as the required deposition rate. In recent years, the analysis of X-radiation emitted from the melting bath of an electron beam facility has been successfully investigated in relation with real time determination of bath composition. X-ray analytical on-line measurements during E.B. evaporation of alloys show that the bath composition is indicative of material feed and layer composition. By the X-ray analytical monitoring of the bath composition the layer composition as well as the deposition rate can be controlled. The TXM-System offers a way to put this approach into effect for high power industrial applications. High analysing accuracies can be achieved. In addition the integration of the TXM-System into the E.B. evaporation as well as E.B. melting technology of a producer permits him to understand better the interaction between process parameters and alloy composition.

  18. Evaporation system and method for gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, J.J.; Halpern, B.L.

    1994-10-18T23:59:59.000Z

    A method and apparatus are disclosed for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases. 8 figs.

  19. DIFFERENT PATTERNS OF CHROMOSPHERIC EVAPORATION IN A FLARING REGION OBSERVED WITH HINODE/EIS

    SciTech Connect (OSTI)

    Li, Y.; Ding, M. D., E-mail: dmd@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

    2011-02-01T23:59:59.000Z

    We investigate the chromospheric evaporation in the flare of 2007 January 16 using line profiles observed by the Exterme-UV Imaging Spectrometer on board Hinode. Three points at flare ribbons of different magnetic polarities are analyzed in detail. We find that the three points show different patterns of upflows and downflows in the impulsive phase of the flare. The spectral lines at the first point are mostly blueshifted, with the hotter lines showing a dominant blueshifted component over the stationary one. At the second point, however, only weak upflows are detected; instead, notable downflows appear at high temperatures (up to 2.5-5.0 MK). The third point is similar to the second one only in that it shows evidence of multi-component downflows. While the evaporated plasma falling back down as warm rain is a possible cause of the redshifts at the second and third points, the different patterns of chromospheric evaporation at the three points imply the existence of different heating mechanisms in the flaring active region.

  20. Advances in compressible turbulent mixing

    SciTech Connect (OSTI)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

    1992-01-01T23:59:59.000Z

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  1. Dark energy and particle mixing

    E-Print Network [OSTI]

    A. Capolupo; S. Capozziello; G. Vitiello

    2008-08-30T23:59:59.000Z

    We show that the vacuum condensate due to particle mixing is responsible of a dynamically evolving dark energy. In particular, we show that values of the adiabatic index close to -1 for vacuum condensates of neutrinos and quarks imply, at the present epoch, contributions to the vacuum energy compatible with the estimated upper bound on the dark energy.

  2. Evaluation of vitrification factors from DWPF's macro-batch 1

    SciTech Connect (OSTI)

    Edwards, T.B.

    2000-01-25T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) is evaluating new sampling and analytical methods that may be used to support future Slurry Mix Evaporator (SME) batch acceptability decisions. This report uses data acquired during DWPF's processing of macro-batch 1 to determine a set of vitrification factors covering several SME and Melter Feed Tank (MFT) batches. Such values are needed for converting the cation measurements derived from the new methods to a ``glass'' basis. The available data from macro-batch 1 were used to examine the stability of these vitrification factors, to estimate their uncertainty over the course of a macro-batch, and to provide a recommendation on the use of a single factor for an entire macro-batch. The report is in response to Technical Task Request HLW/DWPF/TTR-980015.

  3. Evaluation of thermal evaporation conditions used in coating aluminum on near-field fiber-optic probes

    E-Print Network [OSTI]

    Hollars, Christopher W.; Dunn, Robert C.

    1998-01-01T23:59:59.000Z

    The effects that the thermal evaporation conditions have on the roughness of aluminum-coated near-field fiber-optic probes were investigated using the high-resolution capabilities of atomic force microscopy. The coating ...

  4. The design and evaluation of a water delivery system for evaporative cooling of a proton exchange membrane fuel cell

    E-Print Network [OSTI]

    Al-Asad, Dawood Khaled Abdullah

    2009-06-02T23:59:59.000Z

    An investigation was performed to demonstrate system design for the delivery of water required for evaporative cooling of a proton exchange membrane fuel cell (PEMFC). The water delivery system uses spray nozzles capable of injecting water directly...

  5. Spatially resolved temperature and heat flux measurements for slow evaporating droplets heated by a microfabricated heater array 

    E-Print Network [OSTI]

    Paik, Sokwon

    2006-08-16T23:59:59.000Z

    The evaporation phenomenon of a liquid droplet was investigated by using microfabricated heaters. All 32 microheaters were designed to have the same resistance. Gold microheaters worked both as temperature indicators and ...

  6. The design and evaluation of a water delivery system for evaporative cooling of a proton exchange membrane fuel cell 

    E-Print Network [OSTI]

    Al-Asad, Dawood Khaled Abdullah

    2009-06-02T23:59:59.000Z

    An investigation was performed to demonstrate system design for the delivery of water required for evaporative cooling of a proton exchange membrane fuel cell (PEMFC). The water delivery system uses spray nozzles capable of injecting water directly...

  7. Modeling of the Cryogenic Liquid Pool Evaporation and the Effect of the Convective Heat Transfer from Atmosphere

    E-Print Network [OSTI]

    Nawaz, Waqas

    2014-04-25T23:59:59.000Z

    initially stays at its boiling temperature, for models using linear driving force, such indicating the prevalence of boiling on the overall vaporization rate. Subsequently, the temperature of the cryogenic pool drops down, as the heat taken by evaporation...

  8. Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys. Progress report, March 1985--September 1985

    SciTech Connect (OSTI)

    Cunningham, W.A.; Migon, G.V.

    1985-12-31T23:59:59.000Z

    The solar updraft and a natural evaporative downdraft tower built onto an existing residence structure and a greenhouse were completed and operating. Performance data for the hottest days of June, July, and August, 1985 are included. (MHR)

  9. Non-statistical decay and -correlations in the1 C fusion-evaporation reaction at 95 MeV2

    E-Print Network [OSTI]

    Boyer, Edmond

    NUCLEAR REACTIONS 12C(12C,X), E = 95 AMeV, Measured Fusion-evaporation32 reactions, Observed deviationNon-statistical decay and -correlations in the1 12 C+12 C fusion-evaporation reaction at 95 MeV2 L. Multiple alpha coincidences and correlations are studied in the reaction21 12 C+12 C at 95 MeV for fusion

  10. Preliminary evaluation of the performance, water use, and current application trends of evaporative coolers in California climates

    SciTech Connect (OSTI)

    Huang, Y.J.; Hanford, J.W.; Wu, H.F.

    1992-09-01T23:59:59.000Z

    This paper describes the latest results of an ongoing analysis investigating the potential for evaporative cooling as an energy-efficient alternative to standard air-conditioning in California residences. In particular, the study uses detailed numerical models of evaporative coolers linked with the DOE-2 building energy simulation program to study the issues of indoor comfort, energy and peak demand savings with and without supplemental air-conditioning and consumptive water use. In addition, limited surveys are used to assess the current market availability of evaporative cooling in California, typical contractor practices and costs, and general acceptance of the technology among engineers, contractors, and manufacturers. The results show that evaporative coolers can provide significant energy and peak demand savings in California residences, but the impact of the increased indoor humidity on human comfort remains an unanswered question that requires further research and clarification. Evaluated against ASHRAE comfort standards developed primarily for air-conditioning both direct and two-stage evaporative coolers would not maintain comfort at peak cooling conditions due to excessive humidity. However, using bioclimatic charts that place human comfort at the 80% relative humidity line, the study suggests that direct evaporative coolers will work in mild coastal climates, while two-stage models should provide adequate comfort in Title 24 houses throughout California, except in the Imperial Valley. The study also shows that evaporative coolers will increase household water consumption by less than 6% on an annual basis, and as much as 23% during peak cooling months, and that the increases in water cost are minimal compared to the electricity savings. Lastly, a survey of engineers and contractors revealed generally positive experiences with evaporative coolers, with operational cost savings, improved comfort, unproved air quality as the primary benefits in their use.

  11. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    SciTech Connect (OSTI)

    Sullivan, N.

    1995-05-02T23:59:59.000Z

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

  12. APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD

    SciTech Connect (OSTI)

    TEDESCHI AR; WILSON RA

    2010-01-14T23:59:59.000Z

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  13. Neutrino mixing, flavor states and dark energy

    E-Print Network [OSTI]

    M. Blasone; A. Capolupo; S. Capozziello; G. Vitiello

    2007-11-06T23:59:59.000Z

    We shortly summarize the quantum field theory formalism for the neutrino mixing and report on recent results showing that the vacuum condensate induced by neutrino mixing can be interpreted as a dark energy component of the Universe.

  14. Estimating a mixed strategy employing maximum entropy

    E-Print Network [OSTI]

    Golan, Amos; Karp, Larry; Perloff, Jeffrey M.

    1996-01-01T23:59:59.000Z

    MIXED STRATEGY EMPLOYING MAXIMUM ENTROPY by Amos Golan LarryMixed Strategy Employing Maximum Entropy Amos Golan Larry S.Abstract Generalized maximum entropy may be used to estimate

  15. Rotational Mixing and Lithium Depletion

    E-Print Network [OSTI]

    Pinsonneault, M H

    2010-01-01T23:59:59.000Z

    I review basic observational features in Population I stars which strongly implicate rotation as a mixing agent; these include dispersion at fixed temperature in coeval populations and main sequence lithium depletion for a range of masses at a rate which decays with time. New developments related to the possible suppression of mixing at late ages, close binary mergers and their lithium signature, and an alternate origin for dispersion in young cool stars tied to radius anomalies observed in active young stars are discussed. I highlight uncertainties in models of Population II lithium depletion and dispersion related to the treatment of angular momentum loss. Finally, the origins of rotation are tied to conditions in the pre-main sequence, and there is thus some evidence that enviroment and planet formation could impact stellar rotational properties. This may be related to recent observational evidence for cluster to cluster variations in lithium depletion and a connection between the presence of planets and s...

  16. HETEROGENEOUS REBURNING BY MIXED FUELS

    SciTech Connect (OSTI)

    Wei-Yin Chen; Benson B. Gathitu

    2005-01-14T23:59:59.000Z

    Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

  17. Heterogeneous Reburning By Mixed Fuels

    SciTech Connect (OSTI)

    Anderson Hall

    2009-03-31T23:59:59.000Z

    Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

  18. Mixing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pyrocamera t 0 5 ps 10 ps Pyrocamera Diffractive grating wavenumber 1.3 cm -1 Fourier transform Measured Simulated :) Single-shot :) Simple reliable :) Indiv. pulse...

  19. Optimization Online - Analysis of mixed integer programming ...

    E-Print Network [OSTI]

    Thiago Henrique Nogueira

    2014-07-15T23:59:59.000Z

    Jul 15, 2014 ... Analysis of mixed integer programming formulations for single machine scheduling problems with sequence dependent setup times and ...

  20. Dark energy induced by neutrino mixing

    E-Print Network [OSTI]

    Antonio Capolupo; Salvatore Capozziello; Giuseppe Vitiello

    2006-12-11T23:59:59.000Z

    The energy content of the vacuum condensate induced by the neutrino mixing is interpreted as dynamically evolving dark energy.

  1. Tropospheric Chemistry of Internally Mixed Sea Salt and Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are driven by high volatility and irreversible evaporation of the HCl product from drying particles. These field observations were corroborated in a set of laboratory...

  2. On the Dynamics of Non-Relativistic Flavor-Mixed Particles

    E-Print Network [OSTI]

    Mikhail V. Medvedev

    2014-05-28T23:59:59.000Z

    Evolution of a system of interacting non-relativistic quantum flavor-mixed particles is considered both theoretically and numerically. It was shown that collisions of mixed particles not only scatter them elastically, but can also change their mass eigenstates thus affecting particles' flavor composition and kinetic energy. The mass eigenstate conversions and elastic scattering are related but different processes, hence the conversion $S$-matrix elements can be arbitrarily large even when the elastic scattering $S$-matrix elements vanish. The conversions are efficient when the mass eigenstates are well-separated in space but suppressed if their wave-packets overlap; the suppression is most severe for mass-degenerate eigenstates in flat space-time. The mass eigenstate conversions can lead to an interesting process, called `quantum evaporation,' in which mixed particles, initially confined deep inside a gravitational potential well and scattering only off each other, can escape from it without extra energy supply leaving nothing behind inside the potential at $t\\to \\infty$. Implications for the cosmic neutrino background and the two-component dark matter model are discussed and a prediction for the direct detection dark matter experiments is made.

  3. Chemical treatment of simulated solution of evaporator concentrate for immobilization in bitumen

    SciTech Connect (OSTI)

    Awwal, M.A.; Guzella, M.F.R.; Silva, T.V. [National Nuclear Energy Commission, Belo Horizonte, Minas Gerais (Brazil). Nuclear Technology Development Centre] [National Nuclear Energy Commission, Belo Horizonte, Minas Gerais (Brazil). Nuclear Technology Development Centre

    1996-12-31T23:59:59.000Z

    Radioactive liquid and solid wastes are generated from different sections of reactor and radiochemical laboratories associated with nuclear power plants. Liquid radioactive wastes originate from the boric acid control system for safe operation of nuclear power reactors. Studies on the preparation of leach-resistant insoluble boron compound from simulated solution of evaporator concentrate are reported in this work. The insoluble compound CaB{sub 6}O{sub 10}{center_dot}4H{sub 2}O has been prepared from simulated solution of evaporator concentrate by chemical treatment with calcium chloride solution. Other insoluble compounds CaB{sub 2}O{sub 4}{center_dot}6H{sub 2}O/Ca{sub 3}B{sub 4}O{sub 9}{center_dot}9H{sub 2}O/Ca[B(OH){sub 4}]{sub 2}{center_dot}2H{sub 2}O and NaCaB{sub 5}O{sub 6}{center_dot}8H{sub 2}O/NaCaB{sub 5}O{sub 6}{center_dot}5H{sub 2}O/Ca{sub 2}B{sub 6}O{sub 11}{center_dot}13H{sub 2}O have been prepared from simulated solution of evaporator concentrate with calcium hydroxide under controlled conditions of temperature and time. Identification and characterization of these compounds have been done by X-ray diffraction, optical microscopy and differential thermal and thermogravimetric analysis. For low-level radioactive waste treatment, immobilization of insoluble borate compounds in bitumen will produce leach-resistant suitable waste product for safe disposal.

  4. B0-B0bar mixing

    E-Print Network [OSTI]

    Olivier Schneider

    2008-06-30T23:59:59.000Z

    The subject of particle-antiparticle mixing in the neutral B meson systems is reviewed. The formalism of B0-B0bar mixing is recalled and basic Standard Model predictions are given, before experimental issues are discussed and the latest combinations of experimental results on mixing parameters are presented, including those on mixing-induced CP violation, mass differences, and decay-width differences. Finally, time-integrated mixing results are used to improve our knowledge on the fractions of the various b-hadron species produced in Z decays and at high-energy colliders.

  5. B0-B0bar mixing

    E-Print Network [OSTI]

    Olivier Schneider

    2006-06-17T23:59:59.000Z

    The subject of particle-antiparticle mixing in the neutral B meson systems is reviewed. The formalism of B0-B0bar mixing is recalled and basic Standard Model predictions are given, before experimental issues are discussed and the latest combinations of experimental results on mixing parameters are presented, including those on mixing-induced CP violation, mass differences, and decay-width differences. Finally, time-integrated mixing results are used to improve our knowledge on the fractions of the various b-hadron species produced in Z decays and at high-energy colliders.

  6. Two-phase, two-component Stirling engine with controlled evaporation

    SciTech Connect (OSTI)

    West, C.D.

    1982-12-01T23:59:59.000Z

    In a Stirling-like engine, the specific power can be greatly increased by the use of a two-component, two-phase working fluid. Theory and experiments have indicated that a two- to threefold increase is easily attainable. This report shows that by controlling the rate at which the liquid is evaporated into the expansion cylinder, still larger increases may be achieved under quite reasonable operating conditions. Successful application of this principle would make it practicable to operate engines with moderate hot-end temperatures and perhaps even with the very low temperatures available from simple nontracking solar collectors.

  7. Non Evaporable Getter (NEG) Pumps: a Route to UHV-XHV

    SciTech Connect (OSTI)

    Manini, Paolo [SAES Getters SpA, Viale Italia 77, 20010 Lainate (Italy)

    2009-08-04T23:59:59.000Z

    Non Evaporable Getter (NEG) technology has been developed in the 1970's and since then adopted by industry, R and D labs, research centres and in large physics projects like accelerators, synchrotrons and fusion reactors. NEG pumps are very compact and vibration-free devices able to deliver very high pumping with minimal power requirement and electromagnetic interference. In the present paper, main features and performances of getter pumps are reviewed and discussed with a special focus to photocathode gun application, where UHV or XHV conditions are mandatory to ensure adequate gun life. NEG coating and future challenges for NEG technology are also discussed.

  8. A new limit on the rate-density of evaporating black holes

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    Data taken with the CYGNUS detector between 1989 and 1993 have been used to search for 1 second bursts of ultra-high energy (UHE) gamma rays from any point in the northern sky. There is no evidence for such bursts. Therefore the theory-dependent upper limit on the rate-density of evaporating black holes is 6.1 [times] 10[sup 5]pc[sup [minus]3]yr[sup [minus]1] at the 99% C.L.. After renormalizing previous direct searches to the same theory, this limit is the most restrictive by more than 2 orders of magnitude.

  9. A new limit on the rate-density of evaporating black holes

    SciTech Connect (OSTI)

    The CYGNUS Collaboration

    1993-05-01T23:59:59.000Z

    Data taken with the CYGNUS detector between 1989 and 1993 have been used to search for 1 second bursts of ultra-high energy (UHE) gamma rays from any point in the northern sky. There is no evidence for such bursts. Therefore the theory-dependent upper limit on the rate-density of evaporating black holes is 6.1 {times} 10{sup 5}pc{sup {minus}3}yr{sup {minus}1} at the 99% C.L.. After renormalizing previous direct searches to the same theory, this limit is the most restrictive by more than 2 orders of magnitude.

  10. Imaging the condensation and evaporation of molecularly thin ethanol films with surface forces apparatus

    SciTech Connect (OSTI)

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Zhang, Di; Ni, Zhonghua, E-mail: nzh2003@seu.edu.cn, E-mail: yunfeichen@seu.edu.cn; Yi, Hong; Chen, Yunfei, E-mail: nzh2003@seu.edu.cn, E-mail: yunfeichen@seu.edu.cn [Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189 (China)] [Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189 (China)

    2014-01-15T23:59:59.000Z

    A new method for imaging condensation and evaporation of molecularly thin ethanol films is reported. It is found that the first adsorbed layer of ethanol film on mica surface behaves as solid like structure that cannot flow freely. With the increase of exposure time, more ethanol molecules condense over the mica surface in the saturated ethanol vapor condition. The first layer of adsorbed ethanol film is about 3.8 Å thick measured from the surface forces apparatus, which is believed to be the average diameter of ethanol molecules while they are confined in between two atomically smooth mica surfaces.

  11. Tank 30 and 37 Supernatant Sample Cross-Check and Evaporator Feed Qualification Analysis-2012

    SciTech Connect (OSTI)

    Oji, L. N.

    2013-03-07T23:59:59.000Z

    This report summarizes the analytical data reported by the F/H and Savannah River National Laboratories for the 2012 cross-check analysis for high level waste supernatant liquid samples from SRS Tanks 30 and 37. The intent of this Tank 30 and 37 sample analyses was to perform cross-checks against routine F/H Laboratory analyses (corrosion and evaporator feed qualification programs) using samples collected at the same time from both tanks as well as split samples from the tanks.

  12. A study of heat pump fin staged evaporators under frosting conditions

    E-Print Network [OSTI]

    Yang, Jianxin

    2004-09-30T23:59:59.000Z

    the performance of fin-and-tube outdoor coils as well as the whole heat pump system. The objective of the experimental part of this study was to investigate the effects of the staging fin on the frost/defrost performance of heat pump outdoor coils under different... and additional energy is used to melt the frost off the evaporator, the defrosting process increases energy consumption and reduces the seasonal efficiency of the heat pump. Frost formation and the subsequent defrost process continues to be a source...

  13. 242-A Evaporator/Liquid Effluent Retention Facility data quality objectives

    SciTech Connect (OSTI)

    Von Bargen, B.H.

    1994-09-29T23:59:59.000Z

    The purpose of data quality objectives (DQO) is to determine the most cost effective methods of gathering the essential data necessary to make decisions to support successful operation of the facility. The essential data is defined by such information as sample amount, sample location, required analyses, and how sampling and analyses are performed. Successful operation is defined as meeting the campaign objectives while operating within established requirements. This DQO document addresses that portion of the system from 242-A Evaporator candidate feed tanks through discharge of process condensate to the Liquid Effluent Retention of Facility (LERF). Later revisions will incorporate and integrate the entire system, including the Effluent Treatment Facility (ETF).

  14. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect (OSTI)

    Kozubal, E.

    2013-02-01T23:59:59.000Z

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  15. A simple, time-dependent formula for estimating evaporation rates in Texas

    E-Print Network [OSTI]

    Trenchard, Michael Howard

    1976-01-01T23:59:59.000Z

    - dependent one is supuorted by careful consideration of the well-known evaporation formula offered by H. L. Penman 1n 1948. An examinati on of the bas1c assumptions of his phys1cally correct equat1on, espec1ally of those relevant to the energy env1ronment... 0. 9069 0. 8969 0. 9000 0. 9290 0. 9072 0. 8536 0. 9045 0. 8417 0. 9040 0. 9027 0. 8725 0. 8922 0. 9155 0. 8828 0. 9110 0. 8361 104. 7 75. 6 100. 9 78. 6 99. 3 106. 8 120. 2 94. 8 95. 7 97. 4 87. 0 90. 0 130. 8 97. 8 58...

  16. Sensitivity of the FERMI Detectors to Gamma-Ray Bursts from Evaporating Primordial Black Holes (PBHs)

    E-Print Network [OSTI]

    T. N. Ukwatta; Jane H. MacGibbon; W. C. Parke; K. S. Dhuga; S. Rhodes; A. Eskandarian; N. Gehrels; L. Maximon; D. C. Morris

    2010-03-23T23:59:59.000Z

    Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. The Fermi Gamma-ray Space Telescope observatory offers increased sensitivity to the gamma-ray bursts produced by PBHs with an initial mass of $\\sim 5\\times 10^{14}$ g expiring today. PBHs are candidate progenitors of unidentified Gamma-Ray Bursts (GRBs) that lack X-ray afterglow. We propose spectral lag, which is the temporal delay between the high and low energy pulses, as an efficient method to identify PBH evaporation events with the Fermi Large Area Telescope (LAT).

  17. Ice Formation in Arctic Mixed-Phase Clouds: Insights from a 3-D Cloud-Resolving Model with Size-Resolved Aerosol and Cloud Microphysics

    SciTech Connect (OSTI)

    Fan, Jiwen; Ovtchinnikov, Mikhail; Comstock, Jennifer M.; McFarlane, Sally A.; Khain, Alexander

    2009-02-27T23:59:59.000Z

    The single-layer mixed-phase clouds observed during the Atmospheric Radiation Measurement (ARM) program’s Mixed-Phase Arctic Cloud Experiment (MPACE) are simulated with a 3-dimensional cloud-resolving model the System for Atmospheric Modeling (SAM) coupled with an explicit bin microphysics scheme and a radar-lidar simulator. Two possible ice enhancement mechanisms – activation of droplet evaporation residues by condensation-followed-by-freezing and droplet freezing by contact freezing inside-out, are scrutinized by extensive comparisons with aircraft and radar and lidar measurements. The locations of ice initiation associated with each mechanism and the role of ice nuclei (IN) in the evolution of mixed-phase clouds are mainly addressed. Simulations with either mechanism agree well with the in-situ and remote sensing measurements on ice microphysical properties but liquid water content is slightly underpredicted. These two mechanisms give very similar cloud microphysical, macrophysical, dynamical, and radiative properties, although the ice nucleation properties (rate, frequency and location) are completely different. Ice nucleation from activation of evaporation nuclei is most efficient near cloud top areas concentrated on the edges of updrafts, while ice initiation from the drop freezing process has no significant location preference (occurs anywhere that droplet evaporation is significant). Both enhanced nucleation mechanisms contribute dramatically to ice formation with ice particle concentration of 10-15 times higher relative to the simulation without either of them. The contribution of ice nuclei (IN) recycling from ice particle evaporation to IN and ice particle concentration is found to be very significant in this case. Cloud can be very sensitive to IN initially and form a nonquilibrium transition condition, but become much less sensitive as cloud evolves to a steady mixed-phase condition. The parameterization of Meyers et al. [1992] with the observed MPACE IN concentration is able to predict the observed mixed-phase clouds reasonably well. This validation may facilitate the application of this parameterization in the cloud and climate models to simulate Arctic clouds.

  18. Tailored mixing inside a translating droplet

    E-Print Network [OSTI]

    Rodolphe Chabreyrie; Dmitri Vainchtein; Cristel Chandre; Pushpendra Singh; Nadine Aubry

    2008-03-03T23:59:59.000Z

    Tailored mixing inside individual droplets could be useful to ensure that reactions within microscopic discrete fluid volumes, which are used as microreactors in ``digital microfluidic'' applications, take place in a controlled fashion. In this article we consider a translating spherical liquid drop to which we impose a time periodic rigid-body rotation. Such a rotation not only induces mixing via chaotic advection, which operates through the stretching and folding of material lines, but also offers the possibility of tuning the mixing by controlling the location and size of the mixing region. Tuned mixing is achieved by judiciously adjusting the amplitude and frequency of the rotation, which are determined by using a resonance condition and following the evolution of adiabatic invariants. As the size of the mixing region is increased, complete mixing within the drop is obtained.

  19. Expandable mixing section gravel and cobble eductor

    DOE Patents [OSTI]

    Miller, Arthur L. (Kenyon, MN); Krawza, Kenneth I. (Lakeville, MN)

    1997-01-01T23:59:59.000Z

    In a hydraulically powered pump for excavating and transporting slurries in hich it is immersed, the improvement of a gravel and cobble eductor including an expandable mixing section, comprising: a primary flow conduit that terminates in a nozzle that creates a water jet internal to a tubular mixing section of the pump when water pressure is applied from a primary supply flow; a tubular mixing section having a center line in alignment with the nozzle that creates a water jet; a mixing section/exit diffuser column that envelopes the flexible liner; and a secondary inlet conduit that forms an opening at a bas portion of the column and adjacent to the nozzle and water jet to receive water saturated gravel as a secondary flow that mixes with the primary flow inside of the mixing section to form a combined total flow that exits the mixing section and decelerates in the exit diffuser.

  20. Orifice mixing of immiscible liquids

    E-Print Network [OSTI]

    McDonough, Joseph Aloysius

    1960-01-01T23:59:59.000Z

    solution (7). The present study of orif1ce mixing is a continuation of previous research on this project which yielded a relationship explaining the effect of operating conditions upon the format1on of 1nterfacial area for the system water-kerosene.... The experimental technique evolved by Helch (18), Vesselhoff (19), McNair (8), and Scott (IA) was changed only slightly. Their work on water-kerosene was repeated for the liquid pairs trichloroethylene-water, heptanol-water, 20 per oent aqueous sucrose-kerosene...

  1. New developments in plasma-activated high-rate EB evaporation for metal strip

    SciTech Connect (OSTI)

    Schiller, S.; Goedicke, K.; Hoetzsch, G. [Fraunhofer Institute, Dresden (Germany)

    1994-12-31T23:59:59.000Z

    The coating of metal strips by EB evaporation is well known since many years. But up to now the application on an industrial scale is very limited. One of the reasons are the costs and the progress of ECD technologies in the last ten years. But there are opportunities for the evaporation technology if layers with new properties can be produced. One way to meet this target is the application of a plasma-activated and ion-assisted process. However, the plasma density and the ion current density on the substrate must fit the high deposition rates. Many efforts in our institute are dedicated to the development of appropriate plasma sources. The systems are explained and main parameters are given. Using a plasma the layer properties can be improved remarkably. Therefore new applications come into play. First results are shown. Layers consisting of compounds will play a growing role for corrosion and abrasion protection. The technologies are explained and important film properties are presented.

  2. Milagro limits and HAWC sensitivity for the rate-density of evaporating primordial black holes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abdo, A. A.; Abeysekara, A. U.; Alfaro, R.; Allen, B. T.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Aune, T.; Ayala Solares, H. A.; et al

    2015-04-01T23:59:59.000Z

    Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of ~ 5.0 × 10¹? g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV – TeV energy range. The Milagro high energy observatory, which operated from 2000 tomore »2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.« less

  3. Evaporative CO$_2$ microchannel cooling for the LHCb VELO pixel upgrade

    E-Print Network [OSTI]

    de Aguiar Francisco, Oscar A; Collins, Paula; Dumps, Raphael; John, Malcolm; Mapelli, Alessandro; Romagnoli, Giulia

    2015-01-01T23:59:59.000Z

    The LHCb Vertex Detector (VELO) will be upgraded in 2018 to a lightweight pixel detector capable of 40 MHz readout and operation in very close proximity to the LHC beams. The thermal management of the system will be provided by evaporative CO$_2$ circulating in microchannels embedded within thin silicon plates. This solution has been selected due to the excellent thermal efficiency, the absence of thermal expansion mismatch with silicon ASICs and sensors, the radiation hardness of CO$_2$, and very low contribution to the material budget. Although microchannel cooling is gaining considerable attention for applications related to microelectronics, it is still a novel technology for particle physics experiments, in particular when combined with evaporative CO$_2$ cooling. The R&D effort for LHCb is focused on the design and layout of the channels together with a fluidic connector and its attachment which must withstand pressures up to 170 bar. Even distribution of the coolant is ensured by means of the use o...

  4. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  5. Salinity controls on trophic interactions among invertebrates and algae of solar evaporation ponds in the Mojave Desert and relation to shorebird foraging and selenium risk

    E-Print Network [OSTI]

    Herbst, David B

    2006-01-01T23:59:59.000Z

    AMONG INVERTEBRATES AND ALGAE OF SOLAR EVAPORATION PONDS INplanktonic invertebrates and algae present along with avianof invertebrates and algae, and avian foraging were examined

  6. Instabilities and Anti-Evaporation of Reissner-Nordström Black Holes in modified $F(R)$ gravity

    E-Print Network [OSTI]

    Shin'ichi Nojiri; Sergei D. Odintsov

    2014-10-05T23:59:59.000Z

    We study the instabilities and related anti-evaporation of the extremal Reissner-Nordstr\\"om (RN) black hole in $F(R)$ gravity. It is remarkable that the effective electric charge can be generated for some solutions of $F(R)$ gravity without electromagnetic field. The anti-evaporation effect occurs but it emerges only in the strong coupling limit of the effective gravitational coupling. The instabilities of RN black hole are also investigated when the electromagnetic sector is added to the action of $F(R)$ gravity. We show the anti-evaporation occurs in the Maxwell-$F(R)$ gravity with the arbitrary gravitational coupling constant although it does not occur in the Maxwell-Einstein gravity. Furthermore, general spherically-symmetric solution of $F(R)$ gravity in the Einstein frame is obtained.

  7. Interpretation of time-of-flight distributions for neutral particles under pulsed laser evaporation using direct Monte Carlo simulation

    SciTech Connect (OSTI)

    Morozov, Alexey A., E-mail: morozov@itp.nsc.ru [Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation)

    2013-12-21T23:59:59.000Z

    A theoretical study of the time-of-flight (TOF) distributions under pulsed laser evaporation in vacuum has been performed. A database of TOF distributions has been calculated by the direct simulation Monte Carlo (DSMC) method. It is shown that describing experimental TOF signals through the use of the calculated TOF database combined with a simple analysis of evaporation allows determining the irradiated surface temperature and the rate of evaporation. Analysis of experimental TOF distributions under laser ablation of niobium, copper, and graphite has been performed, with the evaluated surface temperature being well agreed with results of the thermal model calculations. General empirical dependences are proposed, which allow indentifying the regime of the laser induced thermal ablation from the TOF distributions for neutral particles without invoking the DSMC-calculated database.

  8. Analysis Of 2H-Evaporator Scale Wall [HTF-13-82] And Pot Bottom [HTF-13-77] Samples

    SciTech Connect (OSTI)

    Oji, L. N.

    2013-09-11T23:59:59.000Z

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material has been performed so that uranium and plutonium isotopic analysis can be input into a Nuclear Criticality Safety Assessment (NCSA) for scale removal by chemical cleaning. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from two different locations within the evaporator pot; the bottom cone sections of the 2H-evaporator pot [Sample HTF-13-77] and the wall 2H-evaporator [sample HTF-13-82]. X-ray diffraction analysis (XRD) confirmed that both the 2H-evaporator pot scale and the wall samples consist of nitrated cancrinite (a crystalline sodium aluminosilicate solid) and clarkeite (a uranium oxyhydroxide mineral). On ''as received'' basis, the bottom pot section scale sample contained an average of 2.59E+00 {+-} 1.40E-01 wt % total uranium with a U-235 enrichment of 6.12E-01 {+-} 1.48E-02 %, while the wall sample contained an average of 4.03E+00 {+-} 9.79E-01 wt % total uranium with a U-235 enrichment of 6.03E-01% {+-} 1.66E-02 wt %. The bottom pot section scale sample analyses results for Pu-238, Pu-239, and Pu-241 are 3.16E-05 {+-} 5.40E-06 wt %, 3.28E-04 {+-} 1.45E-05 wt %, and <8.80E-07 wt %, respectively. The evaporator wall scale samples analysis values for Pu-238, Pu-239, and Pu-241 averages 3.74E-05 {+-} 6.01E-06 wt %, 4.38E-04 {+-} 5.08E-05 wt %, and <1.38E-06 wt %, respectively. The Pu-241 analyses results, as presented, are upper limit values. For these two evaporator scale samples obtained at two different locations within the evaporator pot the major radioactive components (on a mass basis) in the additional radionuclide analyses were Sr-90, Cs-137 Np-237, Pu-239/240 and Th-232. Small quantities of americium and curium were detected in the blanks used for Am/Cm method for these radionuclides. These trace radionuclide amounts are assumed to come from airborne contamination in the shielded cells drying or digestion oven, which has been replaced. Therefore, the Am/Cm results, as presented, may be higher than the true Am/Cm values for these samples. These results are provided so that SRR can calculate the equivalent uranium-235 concentrations for the NCSA. Results confirm that the uranium contained in the scale remains depleted with respect to natural uranium. SRNL did not calculate an equivalent U-235 enrichment, which takes into account other fissionable isotopes U-233, Pu-239 and Pu-241. The applicable method for calculation of equivalent U-235 will be determined in the NCSA. With a few exceptions, a comparison of select radionuclides measurements from this 2013 2H evaporator scale characterization (pot bottom and wall scale samples) with those measurements for the same radionuclides in the 2010 2H evaporator scale analysis shows that the radionuclide analysis for both years are fairly comparable; the analyses results are about the same order of magnitude.

  9. Optimal Control of Evolution Mixed Variational Inclusions

    SciTech Connect (OSTI)

    Alduncin, Gonzalo, E-mail: alduncin@geofisica.unam.mx [Universidad Nacional Autónoma de México, Departamento de Recursos Naturales, Instituto de Geofísica (Mexico)

    2013-12-15T23:59:59.000Z

    Optimal control problems of primal and dual evolution mixed variational inclusions, in reflexive Banach spaces, are studied. The solvability analysis of the mixed state systems is established via duality principles. The optimality analysis is performed in terms of perturbation conjugate duality methods, and proximation penalty-duality algorithms to mixed optimality conditions are further presented. Applications to nonlinear diffusion constrained problems as well as quasistatic elastoviscoplastic bilateral contact problems exemplify the theory.

  10. Silicon dioxide and hafnium dioxide evaporation characteristics from a high-frequency sweep e-beam system

    SciTech Connect (OSTI)

    Chow, R. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States); Tsujimoto, N. [MDC Vacuum Products Corporation, Hayward, California 94545 (United States)

    1996-09-01T23:59:59.000Z

    Reactive oxygen evaporation characteristics were determined as a function of the front-panel control parameters provided by a programmable, high-frequency sweep e-beam system. An experimental design strategy used deposition rate, beam speed, pattern, azimuthal rotation speed, and dwell time as the variables. The optimal settings for obtaining a broad thickness distribution, efficient silicon dioxide boule consumption, and minimal hafnium dioxide defect density were generated. The experimental design analysis showed the compromises involved with evaporating these oxides. {copyright} {ital 1996 Optical Society of America.}

  11. Evaporation-assisted high-power impulse magnetron sputtering: The deposition of tungsten oxide as a case study

    SciTech Connect (OSTI)

    Hemberg, Axel; Dauchot, Jean-Pierre; Snyders, Rony; Konstantinidis, Stephanos [Materia Nova Research Center-Parc Initialis, 1, Avenue Copernic, B-7000 Mons, Belgium and Chimie des Interactions Plasma-Surface, CIRMAP, Universite de Mons-20, Place du Parc, B-7000 Mons (Belgium); Chimie des Interactions Plasma-Surface, CIRMAP, Universite de Mons-20, Place du Parc, B-7000 Mons (Belgium); Materia Nova Research Center-Parc Initialis, 1, Avenue Copernic, B-7000 Mons (Belgium) and Chimie des Interactions Plasma-Surface, CIRMAP, Universite de Mons-20, Place du Parc, B-7000 Mons (Belgium); Chimie des Interactions Plasma-Surface, CIRMAP, Universite de Mons-20, Place du Parc, B-7000 Mons (Belgium)

    2012-07-15T23:59:59.000Z

    The deposition rate during the synthesis of tungsten trioxide thin films by reactive high-power impulse magnetron sputtering (HiPIMS) of a tungsten target increases, above the dc threshold, as a result of the appropriate combination of the target voltage, the pulse duration, and the amount of oxygen in the reactive atmosphere. This behavior is likely to be caused by the evaporation of the low melting point tungsten trioxide layer covering the metallic target in such working conditions. The HiPIMS process is therefore assisted by thermal evaporation of the target material.

  12. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01T23:59:59.000Z

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  13. Seesaw enhancement of lepton mixing

    SciTech Connect (OSTI)

    Smirnov, A.Y. (Institute for Advanced Study, Princeton, New Jersey 08540 (United States) International Centre for Theoretical Physics, 34100 Trieste (Italy) Institute for Nuclear Research, 117312 Moscow (Russian Federation))

    1993-10-01T23:59:59.000Z

    The seesaw mechanism of neutrino mass generation may enhance lepton mixing up to maximal even if the Dirac mass matrices of leptons have a structure similar to that in the quark sector. Two sets of conditions for such an enhancement are found. The first one includes the seesaw generation of heavy Majorana masses for right-handed neutrinos and a universality of Yukawa couplings which can follow from the unification of neutrinos with new superheavy neutral leptons. The second set is related to the lepton number symmetry of the Yukawa interactions in the Dirac basis of neutrinos. Models which realize these conditions have a strong hierarchy or strong degeneration of Majorana masses of the right-handed neutrinos.

  14. Classical Lagrange Functions for the SME

    E-Print Network [OSTI]

    Neil Russell

    2010-09-07T23:59:59.000Z

    A technique is presented for finding the classical Lagrange function corresponding to a given dispersion relation. This allows us to study the classical analogue of the Standard-Model Extension. Developments are discussed.

  15. Suspect Counterfeit SME List | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepositoryManagementFacilityExcellenceAbout UsEnergySusanSuspect

  16. Hygroscopic Properties of Internally Mixed Particles Composed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    composed of sea salts and water soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical...

  17. Optimization Online - Convex Quadratic Relaxations for Mixed ...

    E-Print Network [OSTI]

    Hassan L. Hijazi

    2013-09-30T23:59:59.000Z

    Sep 30, 2013 ... Convex Quadratic Relaxations for Mixed-Integer Nonlinear Programs in Power Systems. Hassan L. Hijazi (hassan.hijazi ***at*** nicta.com.au)

  18. Independent Oversight Review, Advanced Mixed Waste Treatment...

    Broader source: Energy.gov (indexed) [DOE]

    April 2013 Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of the Idaho Site This report documents an independent review of...

  19. Optimization Online - Concrete Structure Design Using Mixed ...

    E-Print Network [OSTI]

    Andres Guerra

    2009-11-26T23:59:59.000Z

    Nov 26, 2009 ... Abstract: We present a mixed-integer nonlinear programming (MINLP) formulation to achieve minimum-cost designs for reinforced concrete ...

  20. TANK MIXING STUDY WITH FLOW RECIRCULATION

    SciTech Connect (OSTI)

    Lee, S.

    2014-06-25T23:59:59.000Z

    The primary objective of this work is to quantify the mixing time when two miscible fluids are mixed by one recirculation pump and to evaluate adequacy of 2.5 hours of pump recirculation to be considered well mixed in SRS tanks, JT-71/72. The work scope described here consists of two modeling analyses. They are the steady state flow pattern analysis during pump recirculation operation of the tank liquid and transient species transport calculations based on the initial steady state flow patterns. The modeling calculations for the mixing time are performed by using the 99% homogeneity criterion for the entire domain of the tank contents.

  1. Lanthanide doped strontium barium mixed halide scintillators

    SciTech Connect (OSTI)

    Gundiah, Gautam; Bizarri, Gregory; Hanrahan, Stephen M; Bourret-Courchesne, Edith; Derenzo, Stephen E

    2013-07-16T23:59:59.000Z

    The present invention provides for a composition comprising an inorganic scintillator comprising a lanthanide-doped strontium barium mixed halide useful for detecting nuclear material.

  2. Optimization Online - Mixed-Integer Nonlinear Optimization

    E-Print Network [OSTI]

    Pietro Belotti

    2012-12-02T23:59:59.000Z

    Dec 2, 2012 ... Mixed-Integer Nonlinear Optimization. Pietro Belotti(pbelott ***at*** clemson.edu) Sven Leyffer(leyffer ***at*** mcs.anl.gov) Christian ...

  3. Inference of ICF implosion core mix using experimental data and theoretical mix modeling

    SciTech Connect (OSTI)

    Sherrill, Leslie Welser [Los Alamos National Laboratory; Haynes, Donald A [Los Alamos National Laboratory; Cooley, James H [Los Alamos National Laboratory; Sherrill, Manolo E [Los Alamos National Laboratory; Mancini, Roberto C [UNR; Tommasini, Riccardo [LLNL; Golovkin, Igor E [PRISM COMP. SCIENCES; Haan, Steven W [LLNL

    2009-01-01T23:59:59.000Z

    The mixing between fuel and shell materials in Inertial Confinement Fusion (lCF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model predicted trends in the width of the mix layer as a function of initial shell thickness. These results contribute to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increasing confidence in the methods used to extract mixing information from experimental data.

  4. Light charged particle evaporation from hot ${31}^$P nucleus at E$^*$ ~ 60 MeV

    E-Print Network [OSTI]

    D. Bandyopadhyay; C. Bhattacharya; K. Krishan; S. Bhattacharya; S. K. Basu; A. Chatterjee; S. Kailas; A. Srivastava; K. Mahata

    2002-02-12T23:59:59.000Z

    The energy spectra of evaporated light charged particles (LCP) $\\alpha$, p, d and t have been measured in $7^$Li(47 MeV) + ${24}^$Mg and ${19}^$F(96 MeV)+ ${12}^$C reactions. Both the systems populate the same compound nucleus ${31}^$F at excitation energy E$^*$ ~ 60 MeV. It has been observed that the light particle spectra obtained in Li + Mg reaction follow standard statistical model prediction, whereas a deformed configuration of the compound nucleus is needed to explain the LCP spectra for F + C reaction, which has been attributed to the effect of larger input angular momentum in the case of ${19}^$F(96 MeV)+ ${12}^$C system.

  5. Development of fluorocarbon evaporative cooling recirculators and controls for the ATLAS inner silicon tracker

    E-Print Network [OSTI]

    Bayer, C; Bonneau, P; Bosteels, Michel; Burckhart, H J; Cragg, D; English, R; Hallewell, G D; Hallgren, Björn I; Ilie, S; Kersten, S; Kind, P; Langedrag, K; Lindsay, S; Merkel, M; Stapnes, Steinar; Thadome, J; Vacek, V

    2000-01-01T23:59:59.000Z

    We report on the development of evaporative fluorocarbon cooling recirculators and their control systems for the ATLAS inner silicon tracker. We have developed a prototype circulator using a dry, hermetic compressor with C/sub 3/F/sup 8/ refrigerant, and have prototyped the remote-control analog pneumatic links for the regulation of coolant mass flows and operating temperatures that will be necessary in the magnetic field and radiation environment around ATLAS. pressure and flow measurement and control use 150+ channels of standard ATLAS LMB ("Local Monitor Board") DAQ and DACs on a multi-drop CAN network administered through a BridgeVIEW user interface. A hardwired thermal interlock system has been developed to cut power to individual silicon modules should their temperatures exceed safe values. Highly satisfactory performance of the circulator under steady state, partial-load and transient conditions was seen, with proportional fluid flow tuned to varying circuit power. Future developments, including a 6 kW...

  6. Thermo-dynamical measurements for ATLAS Inner Detector (evaporative cooling system)

    E-Print Network [OSTI]

    Bitadze, Alexander; Buttar, Craig

    During the construction, installation and initial operation of the Evaporative Cooling System for the ATLAS Inner Detector SCT Barrel Sub-detector, some performance characteristics were observed to be inconsistent with the original design specifications, therefore the assumptions made in the ATLAS Inner Detector TDR were revisited. The main concern arose because of unexpected pressure drops in the piping system from the end of the detector structure to the distribution racks. The author of this theses made a series of measurements of these pressure drops and the thermal behavior of SCT-Barrel cooling Stave. Tests were performed on the installed detector in the pit, and using a specially assembled full scale replica in the SR1 laboratory at CERN. This test setup has been used to perform extensive tests of the cooling performance of the system including measurements of pressure drops in different parts of system, studies of the thermal profile along the stave pipe for different running conditions / parameters a...

  7. Evaporative CO2 cooling using microchannels etched in silicon for the future LHCb vertex detector

    E-Print Network [OSTI]

    A. Nomerotski; J. Buytart; P. Collins; R. Dumps; E. Greening; M. John; A. Mapelli; A. Leflat; Y. Li; G. Romagnoli; B. Verlaat

    2013-02-16T23:59:59.000Z

    The extreme radiation dose received by vertex detectors at the Large Hadron Collider dictates stringent requirements on their cooling systems. To be robust against radiation damage, sensors should be maintained below -20 degree C and at the same time, the considerable heat load generated in the readout chips and the sensors must be removed. Evaporative CO2 cooling using microchannels etched in a silicon plane in thermal contact with the readout chips is an attractive option. In this paper, we present the first results of microchannel prototypes with circulating, two-phase CO2 and compare them to simulations. We also discuss a practical design of upgraded VELO detector for the LHCb experiment employing this approach.

  8. Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification

    DOE Patents [OSTI]

    Kozubal, Eric Joseph; Slayzak, Steven Joseph

    2014-07-08T23:59:59.000Z

    An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.

  9. Quantification of evaporative running loss emissions from gasoline-powered passenger cars in California. Final report

    SciTech Connect (OSTI)

    McClement, D.

    1992-01-01T23:59:59.000Z

    The purpose of the study was to collect evaporative running emissions data from a cross section of in-use, light-duty passenger cars. Forty vehicles were procured and tested using the 'LA-4' cycle (the EPA Urban Dynamometer Driving Cycle (UDDS)) and the New York City Cycle (NYCC). The LA-4 cycle was run three times with a two minute idle period between the first two runs. The NYCC was run six times with a two minute idle between the first five runs of the cycle. Tests were performed at 95 and 105 degrees Farenheit, and using 7.5 and 9.0 Reid Vapor Pressure (RVP) fuel. The report describes two types of running losses - Type 1 where emissions are emitted at a constant, low level (typical of late model, properly operating vehicles), and Type II emissions, where there is a high rate of emissions (typical in uncontrolled vehicles).

  10. REPORT ON THE ANALYSIS OF WAC SAMPLES FROM EVAPORATOR OVERHEADS FOR 2011

    SciTech Connect (OSTI)

    Washington, A.

    2012-03-29T23:59:59.000Z

    This report tabulates the chemical analysis of the 3H, 2H and 2F evaporator overhead samples including the inorganic, organic, and radionuclide species according the ETP WAC (rev.4). In addition, the physical properties including pH, total suspended solids, and average particle size are listed for each sample. The report identifies all sample receipt dates, preparation methods, and analyses completed to accumulate these values. All values were found to be within the ETP WAC specifications for WWCT except for the {sup 137}Cs concentration for the 2F sample which was slightly above the limit ({approx}5%). However, tank farm personnel sample each tank overhead for beta/gamma prior to transfer using a pulse height analyzer and these field readings were all well within limits. Additional actions will be taken to help understand the reason in the discrepancy of the field measurement versus laboratory analysis.

  11. Shaping the Globular Cluster Mass Function by Stellar-Dynamical Evaporation

    E-Print Network [OSTI]

    Dean E. McLaughlin; S. Michael Fall

    2008-06-11T23:59:59.000Z

    We show that the globular cluster mass function (GCMF) in the Milky Way depends on cluster half-mass density (rho_h) in the sense that the turnover mass M_TO increases with rho_h while the width of the GCMF decreases. We argue that this is the expected signature of the slow erosion of a mass function that initially rose towards low masses, predominantly through cluster evaporation driven by internal two-body relaxation. We find excellent agreement between the observed GCMF -- including its dependence on internal density rho_h, central concentration c, and Galactocentric distance r_gc -- and a simple model in which the relaxation-driven mass-loss rates of clusters are approximated by -dM/dt = mu_ev ~ rho_h^{1/2}. In particular, we recover the well-known insensitivity of M_TO to r_gc. This feature does not derive from a literal ``universality'' of the GCMF turnover mass, but rather from a significant variation of M_TO with rho_h -- the expected outcome of relaxation-driven cluster disruption -- plus significant scatter in rho_h as a function of r_gc. Our conclusions are the same if the evaporation rates are assumed to depend instead on the mean volume or surface densities of clusters inside their tidal radii, as mu_ev ~ rho_t^{1/2} or mu_ev ~ Sigma_t^{3/4} -- alternative prescriptions that are physically motivated but involve cluster properties (rho_t and Sigma_t) that are not as well defined or as readily observable as rho_h. In all cases, the normalization of mu_ev required to fit the GCMF implies cluster lifetimes that are within the range of standard values (although falling towards the low end of this range). Our analysis does not depend on any assumptions or information about velocity anisotropy in the globular cluster system.

  12. Heat capacity of quantum adsorbates: Hydrogen and helium on evaporated gold films

    SciTech Connect (OSTI)

    Birmingham, J.T. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1996-06-01T23:59:59.000Z

    The author has constructed an apparatus to make specific heat measurements of quantum gases adsorbed on metallic films at temperatures between 0.3 and 4 K. He has used this apparatus to study quench-condensed hydrogen films between 4 and 923 layers thick with J = 1 concentrations between 0.28 and 0.75 deposited on an evaporated gold surface. He has observed that the orientational ordering of the J = 1 molecules depends on the substrate temperature during deposition of the hydrogen film. He has inferred that the density of the films condensed at the lowest temperatures is 25% higher than in bulk H{sub 2} crystals and have observed that the structure of those films is affected by annealing at 3.4 K. The author has measured the J = 1 to J = 0 conversion rate to be comparable to that of the bulk for thick films; however, he found evidence that the gold surface catalyzes conversion in the first two to four layers. He has also used this apparatus to study films of {sup 4}He less than one layer thick adsorbed on an evaporated gold surface. He shows that the phase diagram of the system is similar to that for {sup 4}He/graphite although not as rich in structure, and the phase boundaries occur at different coverages and temperatures. At coverages below about half a layer and at sufficiently high temperatures, the {sup 4}He behaves like a two-dimensional noninteracting Bose gas. At lower temperatures and higher coverages, liquidlike and solidlike behavior is observed. The Appendix shows measurements of the far-infrared absorptivity of the high-{Tc} superconductor La{sub 1.87}Sr{sub 0.13}CuO{sub 4}.

  13. AC microcalorimetry of adsorbates on evaporated metal films: Orientational ordering of H sub 2 multilayers

    SciTech Connect (OSTI)

    Phelps, R.B.

    1991-11-01T23:59:59.000Z

    We have improved and extended a novel ac calorimetric technique for measuring the heat capacity of adsorbates on evaporated metal films. Metallic substrates are of particular interest in current studies of the thermodynamics of adsorbed molecules. The method described in the present work is only calorimetric technique which allows measurements of molecules on simple metallic surfaces. Among other improvements, we have achieved significant progress in the preparation and characterization of the evaporated metal film. We have applied this novel technique to a study of hydrogen multilayers on gold and sapphire substrates. We have shown that samples of normal-hydrogen with a nominal coverage n of approximately 25 monolayers (ML) undergo a bulk-like orientational ordering transition. The transition is suppressed as the coverage is decreased, and no sign of the transition remains above 1.6 K for n {approx} 1 ML. For n {approx lt} 8 ML, the peak in the heat capacity exhibits signs of finite-size effects. At higher coverages, finite-size effects are not observed, and the shape of the peak depends strongly on the substrate. We conclude that the peak is inhomogeneously broadened for n {approx lt} 8 ML. This work represents the first measurements of the heat capacity due to orientational ordering in adsorbed hydrogen. The results of an earlier experiment involving vibrational spectroscopy of adsorbed molecules are included in the Appendix. In this work, we have used infrared emission spectroscopy to study the spectral region in the vicinity of the C=O stretch vibration of bridge-bonded CO on Pt(111).

  14. AC microcalorimetry of adsorbates on evaporated metal films: Orientational ordering of H{sub 2} multilayers

    SciTech Connect (OSTI)

    Phelps, R.B.

    1991-11-01T23:59:59.000Z

    We have improved and extended a novel ac calorimetric technique for measuring the heat capacity of adsorbates on evaporated metal films. Metallic substrates are of particular interest in current studies of the thermodynamics of adsorbed molecules. The method described in the present work is only calorimetric technique which allows measurements of molecules on simple metallic surfaces. Among other improvements, we have achieved significant progress in the preparation and characterization of the evaporated metal film. We have applied this novel technique to a study of hydrogen multilayers on gold and sapphire substrates. We have shown that samples of normal-hydrogen with a nominal coverage n of approximately 25 monolayers (ML) undergo a bulk-like orientational ordering transition. The transition is suppressed as the coverage is decreased, and no sign of the transition remains above 1.6 K for n {approx} 1 ML. For n {approx_lt} 8 ML, the peak in the heat capacity exhibits signs of finite-size effects. At higher coverages, finite-size effects are not observed, and the shape of the peak depends strongly on the substrate. We conclude that the peak is inhomogeneously broadened for n {approx_lt} 8 ML. This work represents the first measurements of the heat capacity due to orientational ordering in adsorbed hydrogen. The results of an earlier experiment involving vibrational spectroscopy of adsorbed molecules are included in the Appendix. In this work, we have used infrared emission spectroscopy to study the spectral region in the vicinity of the C=O stretch vibration of bridge-bonded CO on Pt(111).

  15. Mesoscale Patterns Formed by Evaporation of a Polymer Solution in the Proximity of a Sphere on a Smooth Substrate: Molecular Weight

    E-Print Network [OSTI]

    Lin, Zhiqun

    Mesoscale Patterns Formed by Evaporation of a Polymer Solution in the Proximity of a Sphere evaporation as a simple, lithography- and external-field- free route to well-ordered mesoscale structures weight (MW) effect on the mesoscale polymer patterns formed by drying a drop of polymer solution

  16. A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves

    E-Print Network [OSTI]

    Pelanti, Marica

    , cavitation and evaporation waves Marica Pelantia, , Keh-Ming Shyueb aDepartment of Mechanical Engineering, Taiwan. Abstract We model liquid-gas flows with cavitation by a variant of the six-equation single cavitation mechanisms and evaporation wave dynamics. Keywords: multiphase compressible flow models

  17. Effect of refrigerant charge, duct leakage, and evaporator air flow on the high temerature performance of air conditioners and heat pumps

    E-Print Network [OSTI]

    Rodriguez, Angel Gerardo

    1995-01-01T23:59:59.000Z

    evaporator airflow, and return air leakage from hot attic spaces. There were five sets of tests used for this research: two of them for the charging tests, two for the reduced evaporator airflow, and one for the return air leakage tests. For the charging...

  18. Neutrino Mixing and Oscillations in Astrophysical Environments

    E-Print Network [OSTI]

    A. B. Balantekin

    2014-01-22T23:59:59.000Z

    A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

  19. Milestone M4900: Simulant Mixing Analytical Results

    SciTech Connect (OSTI)

    Kaplan, D.I.

    2001-07-26T23:59:59.000Z

    This report addresses Milestone M4900, ''Simulant Mixing Sample Analysis Results,'' and contains the data generated during the ''Mixing of Process Heels, Process Solutions, and Recycle Streams: Small-Scale Simulant'' task. The Task Technical and Quality Assurance Plan for this task is BNF-003-98-0079A. A report with a narrative description and discussion of the data will be issued separately.

  20. Adaptive wavelet deconvolution for strongly mixing sequences

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Adaptive wavelet deconvolution for strongly mixing sequences Christophe Chesneau Abstract square error over Besov balls, we explore the performances of two wavelet estimators: a standard linear, Strongly mixing, Adap- tivity, Wavelets, Hard thresholding. AMS 2000 Subject Classifications: 62G07, 62G20

  1. Neutrino mixing and oscillations in astrophysical environments

    SciTech Connect (OSTI)

    Balantekin, A. B. [Physics Department, University of Wisconsin, Madison WI 53706 (United States)

    2014-05-02T23:59:59.000Z

    A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

  2. Evaluation of SRAT Sampling Data in Support of a Six Sigma Yellow Belt Process Improvement Project

    SciTech Connect (OSTI)

    Edwards, Thomas B.

    2005-06-01T23:59:59.000Z

    As part of the Six Sigma continuous improvement initiatives at the Defense Waste Processing Facility (DWPF), a Yellow Belt team was formed to evaluate the frequency and types of samples required for the Sludge Receipt and Adjustment Tank (SRAT) receipt in the DWPF. The team asked, via a technical task request, that the Statistical Consulting Section (SCS), in concert with the Immobilization Technology Section (ITS) (both groups within the Savannah River National Laboratory (SRNL)), conduct a statistical review of recent SRAT receipt results to determine if there is enough consistency in these measurements to allow for less frequent sampling. As part of this review process, key decisions made by DWPF Process Engineering that are based upon the SRAT sample measurements are outlined in this report. For a reduction in SRAT sampling to be viable, these decisions must not be overly sensitive to the additional variation that will be introduced as a result of such a reduction. Measurements from samples of SRAT receipt batches 314 through 323 were reviewed as part of this investigation into the frequency of SRAT sampling. The associated acid calculations for these batches were also studied as part of this effort. The results from this investigation showed no indication of a statistically significant relationship between the tank solids and the acid additions for these batches. One would expect that as the tank solids increase there would be a corresponding increase in acid requirements. There was, however, an indication that the predicted reduction/oxidation (REDOX) ratio (the ratio of Fe{sup 2+} to the total Fe in the glass product) that was targeted by the acid calculations based on the SRAT receipt samples for these batches was on average 0.0253 larger than the predicted REDOX based upon Slurry Mix Evaporator (SME) measurements. This is a statistically significant difference (at the 5% significance level), and the study also suggested that the difference was due to predictions of the formate and Mn concentrations in the SME product that were made at the time of the acid addition in the SRAT. For each of these analytes, the SRAT version was statistically different from the SME version (units are moles/kg SME product slurry): the SRAT values were, on average, 0.0914 larger than the SME values for formate and 0.0089 smaller than the SME values for Mn. A look at the signs of the terms corresponding to these two analytes in equation (2) indicates that both of these differences contribute to the calculated REDOX differences between the SRAT and SME product.

  3. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Document (S/RID) is contained in multiple volumes. This document (Volume 2) presents the standards and requirements for the following sections: Quality Assurance, Training and Qualification, Emergency Planning and Preparedness, and Construction.

  4. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID)

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 3) presents the standards and requirements for the following sections: Safeguards and Security, Engineering Design, and Maintenance.

  5. Influence of evaporative demand on aquaporin expression and root hydraulics of hybrid poplarpce_2331 1318..1331

    E-Print Network [OSTI]

    Hacke, Uwe

    Influence of evaporative demand on aquaporin expression and root hydraulics of hybrid poplarpce_2331 1318..1331 ADRIANA M. ALMEIDA-RODRIGUEZ, UWE G. HACKE & JOAN LAUR Department of Renewable (Y), allowing continued gas exchange in hybrid poplar (Populus trichocarpa ¥ deltoides) saplings

  6. Effects of system cycling, evaporator airflow, and condenser coil fouling on the performance of residential split-system air conditioners

    E-Print Network [OSTI]

    Dooley, Jeffrey Brandon

    2005-02-17T23:59:59.000Z

    ????????????????????.. 63 Energy Efficiency Ratio (EER)???????????.. 65 Sensible Heat Factor (SHF)????????????? 66 Power Consumption???????????????... 67 Condenser Discharge Pressure and Temperature????... 69 Evaporator Suction Pressure...??????????. 76 Capacity????????????????????.. 78 Energy Efficiency Ratio (EER)???????????.. 81 Sensible Heat Factor (SHF)????????????.... 83 Power Consumption???????????????... 85 Condenser Discharge Pressure???????????... 86...

  7. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 5

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 5) outlines the standards and requirements for the Fire Protection and Packaging and Transportation sections.

  8. An evaporation test based on Thermal Infra Red Remote-Sensing to select appropriate soil hydraulic properties

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    An evaporation test based on Thermal Infra Red Remote- Sensing to select appropriate soil hydraulic to estimate common soil hydraulic properties at regional scale. Since they rely on an empirical link between at large scales. Here we propose a method for selecting appropriate soil hydraulic properties based

  9. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    SciTech Connect (OSTI)

    TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

    2012-01-26T23:59:59.000Z

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

  10. Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high performance NSTX H-mode discharges

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    1 Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high between discharges in NSTX, partly to reduce recycling. Reduced D emissions from the lower and upper of the recycling light, improvements in global confinement16-19 , along with the appearance of ELM-free regimes20

  11. Study on the heat transfer and pattern formation of an evaporating binary liquid in view of space experiments

    E-Print Network [OSTI]

    Wolper, Pierre

    fluid dynamics simulations are performed using the software ComSol (finite elements methodStudy on the heat transfer and pattern formation of an evaporating binary liquid in view of space numerical simulations Investigate heat transfer and pattern formation for a set of parameters Identify

  12. Influence of contact angle on slow evaporation in 2D porous media. H.Chrabi1,2

    E-Print Network [OSTI]

    Boyer, Edmond

    the invasion percolation model with the computation of the diffusive transport in the gas phase. The overall associated with the Laplace equation governing the vapor transport in the gas phase. Above c the drying of evaporation from porous media is of interest for many environmental and industrial applications

  13. Predictions From High Scale Mixing Unification Hypothesis

    E-Print Network [OSTI]

    Srivastava, Rahul

    2015-01-01T23:59:59.000Z

    Starting with 'High Scale Mixing Unification' hypothesis, we investigate the renormalization group evolution of mixing parameters and masses for both Dirac and Majorana type neutrinos. Following this hypothesis, the PMNS mixing parameters are taken to be identical to the CKM ones at a unifying high scale. Then, they are evolved to a low scale using MSSM renormalization-group equations. For both type of neutrinos, the renormalization group evolution 'naturally' results in a non-zero and small value of leptonic mixing angle $\\theta_{13}$. One of the important predictions of this analysis is that, in both cases, the mixing angle $\\theta_{23}$ turns out to be non-maximal for most of the parameter range. We also elaborate on the important differences between Dirac and Majorana neutrinos within our framework and how to experimentally distinguish between the two scenarios. Furthermore, for both cases, we also derive constraints on the allowed parameter range for the SUSY breaking and unification scales, for which th...

  14. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  15. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11T23:59:59.000Z

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  16. Fast mix table construction for material discretization

    SciTech Connect (OSTI)

    Johnson, S. R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2013-07-01T23:59:59.000Z

    An effective hybrid Monte Carlo-deterministic implementation typically requires the approximation of a continuous geometry description with a discretized piecewise-constant material field. The inherent geometry discretization error can be reduced somewhat by using material mixing, where multiple materials inside a discrete mesh voxel are homogenized. Material mixing requires the construction of a 'mix table,' which stores the volume fractions in every mixture so that multiple voxels with similar compositions can reference the same mixture. Mix table construction is a potentially expensive serial operation for large problems with many materials and voxels. We formulate an efficient algorithm to construct a sparse mix table in O(number of voxels x log number of mixtures) time. The new algorithm is implemented in ADVANTG and used to discretize continuous geometries onto a structured Cartesian grid. When applied to an end-of-life MCNP model of the High Flux Isotope Reactor with 270 distinct materials, the new method improves the material mixing time by a factor of 100 compared to a naive mix table implementation. (authors)

  17. $B_d-\\bar{B}_d$ mixing vs. $B_s-\\bar{B}_s$ mixing with the anomalous $Wtb$ couplings

    E-Print Network [OSTI]

    Jong Phil Lee; Kang Young Lee

    2008-09-29T23:59:59.000Z

    We explore the effects of the anomalous $tbW$ couplings on the $\\bd$ mixing and recently measured $\\bs$ mixing. The combined analysis of mixings via box diagrams with penguin decays provides strong constraints on the anomalous top quark couplings. We find the bound from the $\\bd$ mixing data is stronger than that from the $\\bs$ mixing.

  18. Unveiling neutrino mixing and leptonic CP violation

    SciTech Connect (OSTI)

    Mena, Olga; /Fermilab

    2005-01-01T23:59:59.000Z

    We review the present understanding of neutrino masses and mixings, discussing what are the unknowns in the three family oscillation scenario. Despite the anticipated success coming from the planned long baseline neutrino experiments in unraveling the leptonic mixing sector, there are two important unknowns which may remain obscure: the mixing angle {theta}{sub 13} and the CP-phase {delta}. The measurement of these two parameters has led us to consider the combination of superbeams and neutrino factories as the key to unveil the neutrino oscillation picture.

  19. Updated Constraints on General Squark Flavor Mixing

    E-Print Network [OSTI]

    Arana-Catania, M; Herrero, M J

    2014-01-01T23:59:59.000Z

    We explore the phenomenological implications on non-minimal flavor violating (NMFV) processes from squark flavor mixing within the Minimal Supersymmetric Standard Model. We work under the model-independent hypothesis of general flavor mixing in the squark sector, being parametrized by a complete set of dimensionless delta^AB_ij (A,B = L, R; i,j = u, c, t or d, s, b) parameters. The present upper bounds on the most relevant NMFV processes, together with the requirement of compatibility in the choice of the MSSM parameters with the recent LHC and g-2 data, lead to updated constraints on all squark flavor mixing parameters.

  20. Evaporation — a key mechanism for the thaumasite form of sulfate attack

    SciTech Connect (OSTI)

    Mittermayr, Florian, E-mail: f.mittermayr@tugraz.at [Graz University of Technology, Institute of Applied Geosciences, Rechbauerstraße 12, 8010 GRAZ (Austria)] [Graz University of Technology, Institute of Applied Geosciences, Rechbauerstraße 12, 8010 GRAZ (Austria); Baldermann, Andre [Graz University of Technology, Institute of Applied Geosciences, Rechbauerstraße 12, 8010 GRAZ (Austria)] [Graz University of Technology, Institute of Applied Geosciences, Rechbauerstraße 12, 8010 GRAZ (Austria); Kurta, Christoph [University of Graz, Institute of Chemistry — Analytical Chemistry, Stremayrgasse 16/III, 8010 GRAZ (Austria)] [University of Graz, Institute of Chemistry — Analytical Chemistry, Stremayrgasse 16/III, 8010 GRAZ (Austria); Rinder, Thomas [Graz University of Technology, Institute of Applied Geosciences, Rechbauerstraße 12, 8010 GRAZ (Austria) [Graz University of Technology, Institute of Applied Geosciences, Rechbauerstraße 12, 8010 GRAZ (Austria); Observatoire Midi-Pyrénées, Laboratoire Géosciences Environnement Toulouse, 14, avenue Edouard Belin, 31400 TOULOUSE (France); Klammer, Dietmar [Graz University of Technology, Institute of Applied Geosciences, Rechbauerstraße 12, 8010 GRAZ (Austria)] [Graz University of Technology, Institute of Applied Geosciences, Rechbauerstraße 12, 8010 GRAZ (Austria); Leis, Albrecht [Joanneum Research, Resources — Institute for Water, Energy and Sustainability, Elisabethstraße 18/2, 8010 GRAZ (Austria)] [Joanneum Research, Resources — Institute for Water, Energy and Sustainability, Elisabethstraße 18/2, 8010 GRAZ (Austria); Tritthart, Josef [Graz University of Technology, Institute of Technology and Testing of Building Materials, Inffeldgasse 24, 8010 GRAZ (Austria)] [Graz University of Technology, Institute of Technology and Testing of Building Materials, Inffeldgasse 24, 8010 GRAZ (Austria); Dietzel, Martin [Graz University of Technology, Institute of Applied Geosciences, Rechbauerstraße 12, 8010 GRAZ (Austria)] [Graz University of Technology, Institute of Applied Geosciences, Rechbauerstraße 12, 8010 GRAZ (Austria)

    2013-07-15T23:59:59.000Z

    Understanding the mechanisms leading to chemical attack on concrete is crucial in order to prevent damage of concrete structures. To date, most studies on sulfate attack and thaumasite formation are based on empirical approaches, as the identification of associated reaction mechanisms and paths is known to be highly complex. In this study, sulfate damaged concrete from Austrian tunnels was investigated by mineralogical, chemical and isotope methods to identify the reactions which caused intense concrete alteration. Major, minor and trace elemental contents as well as isotope ratios of local ground water (GW), drainage water (DW) and interstitial solutions (IS), extracted from damaged concrete material, were analyzed. Locally occurring GW contained 3 to 545 mg L{sup ?1} of SO{sub 4} and is thus regarded as slightly aggressive to concrete in accordance to standard specifications (e.g. DIN EN 206-1). The concrete linings and drainage systems of the studied tunnels, however, have partly suffered from intensive sulfate attack. Heavily damaged concrete consisted mainly of thaumasite, secondary calcite, gypsum, and relicts of aggregates. Surprisingly, the concentrations of dissolved ions were extremely enriched in the IS with up to 30,000 and 12,000 mg L{sup ?1} of SO{sub 4} and Cl, respectively. Analyses of aqueous ions with a highly conservative behavior, e.g. K, Rb and Li, as well as {sup 2}H/H and {sup 18}O/{sup 16}O isotope ratios of H{sub 2}O of the IS showed an intensive accumulation of ions and discrimination of the light isotopes vs. the GW. These isotope signals of the IS clearly revealed evaporation at distinct relative humidities. From ion accumulation and isotope fractionation individual total and current evaporation degrees were estimated. Our combined elemental and isotopic approach verified wetting–drying cycles within a highly dynamic concrete-solution-atmosphere system. Based on these boundary conditions, key factors controlling thaumasite formation are discussed regarding the development of more sulfate-resistant concrete and concrete structures.

  1. A Novel Absorption Cycle for Combined Water Heating, Dehumidification, and Evaporative Cooling

    SciTech Connect (OSTI)

    CHUGH, Devesh [University of Florida, Gainesville; Gluesenkamp, Kyle R [ORNL; Abdelaziz, Omar [ORNL; Moghaddam, Saeed [University of Florida, Gainesville

    2014-01-01T23:59:59.000Z

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser. The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the cycle is recovery of the solution heat energy exiting the desorber by process water (a process-solution heat exchanger ) rather than the absorber exiting solution (the conventional solution heat exchanger ). This approach has enabled heating the process water from an inlet temperature of 15 C to 57 C (conforming to the DOE water heater test standard) and interfacing the process water with absorbent on the opposite side of a single metal sheet encompassing the absorber, process-solution heat exchanger, and desorber. The system under development has a 3.2 kW water heating capacity and a target thermal coefficient of performance (COP) of 1.6.

  2. Conservation Community Perspective on Mixed Conifer Management in SW Colorado

    E-Print Network [OSTI]

    Public education important #12;Warm-Dry Mixed Conifer, Cool-Moist Mixed Conifer, Aspen with Conifer One.g., WUI treatment and mixed conifer restoration) where possible. Need to reconcile mc & aspen mngt

  3. The effects of mixing energy on water column oil 

    E-Print Network [OSTI]

    Rogers, Ellen Tiffany

    2001-01-01T23:59:59.000Z

    and format of Water Research. 2 makeup o f the oil such as evaporation, dissolution, dispersion, photochemical oxidation or microbial degradation may have different effects on the oil components (Ezra et al., 2000). The sun can evaporate the volatile... portion of the oil, thus changing its chemical nature. Light oils, which tend to volatilize and degrade more readily, disperse more quickly than heavy oils (Lee et al., 1992a). The heavy oils left behind may undergo further weathering or sink...

  4. Integration of the Uncertainties of Anion and TOC Measurements into the Flammability Control Strategy for Sludge Batch 8 at the DWPF

    SciTech Connect (OSTI)

    Edwards, T. B.

    2013-03-14T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of a flammability control strategy for DWPF’s melter operation during the processing of Sludge Batch 8 (SB8). SRNL’s support has been in response to technical task requests that have been made by SRR’s Waste Solidification Engineering (WSE) organization. The flammability control strategy relies on measurements that are performed on Slurry Mix Evaporator (SME) samples by the DWPF Laboratory. Measurements of nitrate, oxalate, formate, and total organic carbon (TOC) standards generated by the DWPF Laboratory are presented in this report, and an evaluation of the uncertainties of these measurements is provided. The impact of the uncertainties of these measurements on DWPF’s strategy for controlling melter flammability also is evaluated. The strategy includes monitoring each SME batch for its nitrate content and its TOC content relative to the nitrate content and relative to the antifoam additions made during the preparation of the SME batch. A linearized approach for monitoring the relationship between TOC and nitrate is developed, equations are provided that integrate the measurement uncertainties into the flammability control strategy, and sample calculations for these equations are shown to illustrate the impact of the uncertainties on the flammability control strategy.

  5. Cylinder supplied ammonia scrubber testing in IDMS

    SciTech Connect (OSTI)

    Lambert, D.P.

    1994-08-31T23:59:59.000Z

    This report summarizes the results of the off-line testing the Integrated DWPF Melter System (IDMS) ammonia scrubbers using ammonia supplied from cylinders. Three additional tests with ammonia are planned to verify the data collected during off-line testing. Operation of the ammonia scrubber during IDMS SRAT and SME processing will be completed during the next IDMS run. The Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) scrubbers were successful in removing ammonia from the vapor stream to achieve ammonia vapor concentrations far below the 10 ppM vapor exit design basis. In most of the tests, the ammonia concentration in the vapor exit was lower than the detection limit of the analyzers so results are generally reported as <0.05 parts per million (ppM). During SRAT scrubber testing, the ammonia concentration was no higher than 2 ppM and during SME testing the ammonia concentration was no higher than 0.05 m.

  6. ANALYSIS OF 2H-EVAPORATOR SCALE WALL [HTF-13-82] AND POT BOTTOM [HTF-13-77] SAMPLES

    SciTech Connect (OSTI)

    Oji, L.

    2013-06-21T23:59:59.000Z

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material has been performed so that uranium and plutonium isotopic analysis can be input into a Nuclear Criticality Safety Assessment (NCSA) for scale removal by chemical cleaning. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2Hevaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from the bottom cone sections of the 2H-evaporator pot [Sample HTF-13-77] and the wall 2H-evaporator [sample HTF-13-82]. X-ray diffraction analysis (XRD) confirmed that both the 2H-evaporator pot scale and the wall samples consist of nitrated cancrinite (a crystalline sodium aluminosilicate solid) and clarkeite (a uranium oxy-hydroxide mineral). On “as received” basis, the bottom pot section scale sample contained an average of 2.59E+00 ± 1.40E-01 wt % total uranium with a U-235 enrichment of 6.12E-01 ± 1.48E-02 %, while the wall sample contained an average of 4.03E+00 ± 9.79E-01 wt % total uranium with a U-235 enrichment of 6.03E-01% ± 1.66E-02 wt %. The bottom pot section scale sample analyses results for Pu-238, Pu-239, and Pu-241 are 3.16E- 05 ± 5.40E-06 wt %, 3.28E-04 ± 1.45E-05 wt %, and <8.80E-07 wt %, respectively. The evaporator wall scale samples analysis values for Pu-238, Pu-239, and Pu-241 averages 3.74E-05 ± 6.01E-06 wt %, 4.38E-04 ± 5.08E-05 wt %, and <1.38E-06 wt %, respectively. The Pu-241 analyses results, as presented, are upper limit values. These results are provided so that SRR can calculate the equivalent uranium-235 concentrations for the NCSA. Results confirm that the uranium contained in the scale remains depleted with respect to natural uranium. SRNL did not calculate an equivalent U-235 enrichment, which takes into account other fissionable isotopes U-233, Pu-239 and Pu-241. The applicable method for calculation of equivalent U-235 will be determined in the NCSA.

  7. DEVELOPMENT OF AN ANTIFOAM TRACKING SYSTEM AS AN OPTION TO SUPPORT THE MELTER OFF-GAS FLAMMABILITY CONTROL STRATEGY AT THE DWPF

    SciTech Connect (OSTI)

    Edwards, T.; Lambert, D.

    2014-08-27T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of an additional strategy for confidently satisfying the flammability controls for DWPF’s melter operation. An initial strategy for implementing the operational constraints associated with flammability control in DWPF was based upon an analytically determined carbon concentration from antifoam. Due to the conservative error structure associated with the analytical approach, its implementation has significantly reduced the operating window for processing and has led to recurrent Slurry Mix Evaporator (SME) and Melter Feed Tank (MFT) remediation. To address the adverse operating impact of the current implementation strategy, SRR issued a Technical Task Request (TTR) to SRNL requesting the development and documentation of an alternate strategy for evaluating the carbon contribution from antifoam. The proposed strategy presented in this report was developed under the guidance of a Task Technical and Quality Assurance Plan (TTQAP) and involves calculating the carbon concentration from antifoam based upon the actual mass of antifoam added to the process assuming 100% retention. The mass of antifoam in the Additive Mix Feed Tank (AMFT), in the Sludge Receipt and Adjustment Tank (SRAT), and in the SME is tracked by mass balance as part of this strategy. As these quantities are monitored, the random and bias uncertainties affecting their values are also maintained and accounted for. This report documents: 1) the development of an alternate implementation strategy and associated equations describing the carbon concentration from antifoam in each SME batch derived from the actual amount of antifoam introduced into the AMFT, SRAT, and SME during the processing of the batch. 2) the equations and error structure for incorporating the proposed strategy into melter off-gas flammability assessments. Sample calculations of the system are also included in this report. Please note that the system developed and documented in this report is intended as an alternative to the current, analytically-driven system being utilized by DWPF; the proposed system is not intended to eliminate the current system. Also note that the system developed in this report to track antifoam mass in the AMFT, SRAT, and SME will be applicable beyond just Sludge Batch 8. While the model used to determine acceptability of the SME product with respect to melter off-gas flammability controls must be reassessed for each change in sludge batch, the antifoam mass tracking methodology is independent of sludge batch composition and as such will be transferable to future sludge batches.

  8. Elimination Of Catalytic Hydrogen Generation In Defense Waste Processing Facility Slurries

    SciTech Connect (OSTI)

    Koopman, D. C.

    2013-01-22T23:59:59.000Z

    Based on lab-scale simulations of Defense Waste Processing Facility (DWPF) slurry chemistry, the addition of sodium nitrite and sodium hydroxide to waste slurries at concentrations sufficient to take the aqueous phase into the alkaline region (pH > 7) with approximately 500 mg nitrite ion/kg slurry (assuming <25 wt% total solids, or equivalently 2,000 mg nitrite/kg total solids) is sufficient to effectively deactivate the noble metal catalysts at temperatures between room temperature and boiling. This is a potential strategy for eliminating catalytic hydrogen generation from the list of concerns for sludge carried over into the DWPF Slurry Mix Evaporator Condensate Tank (SMECT) or Recycle Collection Tank (RCT). These conclusions are drawn in large part from the various phases of the DWPF catalytic hydrogen generation program conducted between 2005 and 2009. The findings could apply to various situations, including a solids carry-over from either the Sludge Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) into the SMECT with subsequent transfer to the RCT, as well as a spill of formic acid into the sump system and transfer into an RCT that already contains sludge solids. There are other potential mitigating factors for the SMECT and RCT, since these vessels are typically operated at temperatures close to the minimum temperatures that catalytic hydrogen has been observed to occur in either the SRAT or SME (pure slurry case), and these vessels are also likely to be considerably more dilute in both noble metals and formate ion (the two essential components to catalytic hydrogen generation) than the two primary process vessels. Rhodium certainly, and ruthenium likely, are present as metal-ligand complexes that are favored under certain concentrations of the surrounding species. Therefore, in the SMECT or RCT, where a small volume of SRAT or SME material would be significantly diluted, conditions would be less optimal for forming or sustaining the catalytic ligand species. Such conditions are likely to adversely impact the ability of the transferred mass to produce hydrogen at the same rate (per unit mass SRAT or SME slurry) as in the SRAT or SME vessels.

  9. New Constraints on General Slepton Flavor Mixing

    E-Print Network [OSTI]

    Arana-Catania, M; Herrero, M J

    2013-01-01T23:59:59.000Z

    We explore the phenomenological implications on charged lepton flavor violating (LFV) processes from slepton flavor mixing within the Minimal Supersymmetric Standard Model. We work under the model-independent hypothesis of general flavor mixing in the slepton sector, being parametrized by a complete set of dimensionless delta^AB_ij (A,B = L,R; i,j = 1, 2, 3) parameters. The present upper bounds on the most relevant LFV processes, together with the requirement of compatibility in the choice of the MSSM parameters with the recent LHC and (g-2) data, lead to updated constraints on all slepton flavor mixing parameters. A comparative discussion of the most effective LFV processes to constrain the various generation mixings is included.

  10. Mixing in a liquid metal electrode

    E-Print Network [OSTI]

    Kelley, Douglas H.

    Fluid mixing has first-order importance for many engineering problems in mass transport, including design and optimization of liquid-phase energy storage devices. Liquid metal batteries are currently being commercialized ...

  11. Economizer Control Using Mixed Air Enthalpy

    E-Print Network [OSTI]

    Feng, J.; Liu, M.; Pang, W.

    2007-01-01T23:59:59.000Z

    economizer is db-temperature based economizer. Table7. Economizer Operation Testing Period: April.3 rd ~Aug. 22 th ,2007 Temperature- based Economizer Mixed-air enthalpy economizer Operation hours 888 1251 Energy saving - 15.7% 6...

  12. Mixed micelles system: equilibrium and kinetics 

    E-Print Network [OSTI]

    Salonen, Anniina M

    Lipid-detergent systems are interesting to study, as the two amphiphiles have very different spontaneous curvature, however readily form mixed micelles in solution. These micelles can be shorter cylindrical micelles ...

  13. Particle mixing, flavor condensate and dark energy

    E-Print Network [OSTI]

    Massimo Blasone; Antonio Capolupo; Giuseppe Vitiello

    2009-12-08T23:59:59.000Z

    The mixing of neutrinos and quarks generate a vacuum condensate that, at the present epoch, behaves as a cosmological constant. The value of the dark energy is constrained today by the very small breaking of the Lorentz invariance.

  14. Heat capacities of freely evaporating charged water clusters A. E. K. Sundn,1

    E-Print Network [OSTI]

    Hansen, Klavs

    and negatively charged mixed clusters X- H2O N with a small core ion X X=O2, CO3, or NO3 , in the size range N=5­300. The clusters were produced by corona discharge in ambient air, accelerated to 50 keV and mass selected charge are produced in a corona discharge source7 at atmospheric pres- sure see Ref. 8 for details

  15. Fuel Effects on Mixing-Controlled Combustion Strategies for High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion...

  16. Morphology of Mixed Primary and Secondary Organic Particles and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Mixed Primary and Secondary Organic Particles and the Adsorption of Spectator Organic Gases during Aerosol Morphology of Mixed Primary and Secondary Organic Particles and the...

  17. Mixing it up - Measuring diffusion in supercooled liquid solutions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixing it up - Measuring diffusion in supercooled liquid solutions of methanol and ethanol at temperatures near the glass Mixing it up - Measuring diffusion in supercooled liquid...

  18. Design Case Summary: Production of Mixed Alcohols from Municipal...

    Office of Environmental Management (EM)

    Mixed Alcohols from Municipal Solid Waste via Gasification Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via Gasification The Bioenergy Technologies...

  19. Mixed-mode diesel HCCI with External Mixture Formation: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results 2003 DEER Conference...

  20. Elucidating the Higher Stability of Vanadium (V) Cations in Mixed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elucidating the Higher Stability of Vanadium (V) Cations in Mixed Acid Based Redox Flow Battery Electrolytes. Abstract: The Vanadium (V) cation structures in mixed acid based...

  1. Non carbon mixed conducting materials for PEFC electrocatalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non carbon mixed conducting materials for PEFC electrocatalysts and electrodes Non carbon mixed conducting materials for PEFC electrocatalysts and electrodes These slides were...

  2. Advanced Mixed Waste Treatment Project Achieves Impressive Safety...

    Office of Environmental Management (EM)

    Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks June...

  3. Assessment of Evaporative Cooling Enhancement Methods for Air-Cooled Geothermal Power Plants: Preprint

    SciTech Connect (OSTI)

    Kutscher, C.; Costenaro, D.

    2002-08-01T23:59:59.000Z

    Many binary-cycle geothermal power plants are air cooled because insufficient water is available to provide year-round water cooling. The performance of air-cooled geothermal plants is highly dependent on the dry bulb temperature of the air (much more so than fossil fuel plants that operate at higher boiler temperatures), and plant electric output can drop by 50% or more on hot summer days, compared to winter performance. This problem of reduced summer performance is exacerbated by the fact that electricity has a higher value in the summer. This paper describes a spreadsheet model that was developed to assess the cost and performance of four methods for using supplemental evaporative cooling to boost summer performance: (1) pre-cooling with spray nozzles, (2) pre-cooling with Munters media, (3) a hybrid combination of nozzles and Munters media, and (4) direct deluge cooling of the air-cooled condenser tubes. Although all four options show significant benefit, deluge cooling has the potential to be the most economic. However, issues of scaling and corrosion would need to be addressed.

  4. Temporal evolution of multiple evaporating ribbon sources in a solar flare

    E-Print Network [OSTI]

    Graham, D R

    2015-01-01T23:59:59.000Z

    We present new results from the Interface Region Imaging Spectrograph showing the dynamic evolution of chromospheric evaporation and condensation in a flare ribbon, with the highest temporal and spatial resolution to date. IRIS observed the entire impulsive phase of the X-class flare SOL2014-09-10T17:45 using a 9.4 second cadence `sit-and-stare' mode. As the ribbon brightened successively at new positions along the slit, a unique impulsive phase evolution was observed for many tens of individual pixels in both coronal and chromospheric lines. Each activation of a new footpoint displays the same initial coronal up-flows of up to ~300 km/s, and chromospheric downflows up to 40 km/s. Although the coronal flows can be delayed by over 1 minute with respect to those in the chromosphere, the temporal evolution of flows is strikingly similar between all pixels, and consistent with predictions from hydrodynamic flare models. Given the large sample of independent footpoints, we conclude that each flaring pixel can be c...

  5. Selective evaporation of focusing fluid in two-fluid hydrodynamic print head.

    SciTech Connect (OSTI)

    Keicher, David M.; Cook, Adam W.

    2014-09-01T23:59:59.000Z

    The work performed in this project has demonstrated the feasibility to use hydrodynamic focusing of two fluid steams to create a novel micro printing technology for electronics and other high performance applications. Initial efforts focused solely on selective evaporation of the sheath fluid from print stream provided insight in developing a unique print head geometry allowing excess sheath fluid to be separated from the print flow stream for recycling/reuse. Fluid flow models suggest that more than 81 percent of the sheath fluid can be removed without affecting the print stream. Further development and optimization is required to demonstrate this capability in operation. Print results using two-fluid hydrodynamic focusing yielded a 30 micrometers wide by 0.5 micrometers tall line that suggests that the cross-section of the printed feature from the print head was approximately 2 micrometers in diameter. Printing results also demonstrated that complete removal of the sheath fluid is not necessary for all material systems. The two-fluid printing technology could enable printing of insulated conductors and clad optical interconnects. Further development of this concept should be pursued.

  6. Surface chemistry of stainless steel and evaporated titanium layers in tokamaks

    SciTech Connect (OSTI)

    Staib, P.; Dylla, H.F.; Rossenagel, S.M.

    1980-08-01T23:59:59.000Z

    The combined use of x-ray photoelectron spectroscopy and secondary ion mass spectroscopy is shown to be a powerful tool in the investigation of the chemical modifications of a surface in interaction with a plasma. The reported investigations are performed in-situ in the surface analysis station of the PDX tokamak. The evolution of stainless steel surfaces is followed after various treatments such as hydrogen glow discharge conditioning (GDC), exposure to tokamak discharges, and ion sputtering. Iron oxides are shown to be partially reduced by exposure to GDC; the metal-oxide binding is converted to metal-hydroxide binding from which water can be desorbed. The oxygen behavior on evaporated titanium films is substantially different: the oxide layer evolves to higher oxidation states during exposure to GDC. In contrast, the behavior of carbon is identical on both stainless steel and titanium surfaces: carbon is removed during exposure to GDC via the formation of methane which can spontaneously desorb from the surface.

  7. Milagro Limits and HAWC Sensitivity for the Rate-Density of Evaporating Primordial Black Holes

    E-Print Network [OSTI]

    Abdo, A A; Alfaro, R; Allen, B T; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Aune, T; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Gonzalez, J Becerra; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramiñana, A; Castillo, M; Chen, C; Christopher, G E; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Diaz-Cruz, L; Díaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Harding, J P; Hays, E; Hoffman, C M; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kolterman, B E; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-GarcIa, R; MacGibbon, J H; Marinelli, A; Marinelli, S S; Martinez, H; Martinez, O; Martínez-Castro, J; Matthews, J A J; McEnery, J; Torres, E Mendoza; Mincer, A I; Miranda-Romagnoli, P; Moreno, E; Morgan, T; Mostafá, M; Nellen, L; Nemethy, P; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivière, C; Rosa-González, D; Ruiz-Velasco, E; Ryan, J; Salazar, H; Salesa, F; Sandoval, A; Parkinson, P M Saz; Schneider, M; Shoup, A; Silich, S; Sinnis, G; Smith, A J; Stump, D; Woodle, K Sparks; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Vasileiou, V; Villaseñor, L; Walker, G P; Weisgarber, T; Westerhoff, S; Williams, D A; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2014-01-01T23:59:59.000Z

    Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and can emit all species of fundamental particles thermally. PBHs with initial masses of ~5.0 x 10^14 g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV - TeV energy range, making them candidate Gamma-ray Burst (GRB) progenitors. The Milagro high energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma-rays, the Milagro observatory is well suited for a direct search of PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a...

  8. Use of non evaporable getter pumps to ensure long term performances of high quantum efficiency photocathodes

    SciTech Connect (OSTI)

    Sertore, Daniele, E-mail: daniele.sertore@mi.infn.it; Michelato, Paolo; Monaco, Laura [Istituto Nazionale di Fisica Nucleare Sez. Milano – LASA, Via Fratelli Cervi 201, I-20090 Segrate (Italy); Manini, Paolo; Siviero, Fabrizio [SAES Getters S.p.A., Viale Italia 77, 20020 Lainate (Italy)

    2014-05-15T23:59:59.000Z

    High quantum efficiency photocathodes are routinely used as laser triggered emitters in the advanced high brightness electron sources based on radio frequency guns. The sensitivity of “semiconductor” type photocathodes to vacuum levels and gas composition requires special care during preparation and handling. This paper will discuss the results obtained using a novel pumping approach based on coupling a 20?l s{sup ?1} sputter ion getter pump with a CapaciTorr® D100 non evaporable getter (NEG) pump. A pressure of 8?10{sup ?8}?Pa was achieved using only a sputter ion pump after a 6?day bake-out. With the addition of a NEG pump, a pressure of 2?10{sup ?9}?Pa was achieved after a 2?day bake-out. These pressure values were maintained without power due to the ability of the NEG to pump gases by chemical reaction. Long term monitoring of cathodes quantum efficiencies was also carried out at different photon wavelengths for more than two years, showing no degradation of the photoemissive film properties.

  9. Annealing effect for SnS thin films prepared by high-vacuum evaporation

    SciTech Connect (OSTI)

    Revathi, Naidu, E-mail: revathi.naidu@ttu.ee; Bereznev, Sergei; Loorits, Mihkel; Raudoja, Jaan; Lehner, Julia; Gurevits, Jelena; Traksmaa, Rainer; Mikli, Valdek; Mellikov, Enn; Volobujeva, Olga [Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086 (Estonia)

    2014-11-01T23:59:59.000Z

    Thin films of SnS are deposited onto molybdenum-coated soda lime glass substrates using the high-vacuum evaporation technique at a substrate temperature of 300?°C. The as-deposited SnS layers are then annealed in three different media: (1) H{sub 2}S, (2) argon, and (3) vacuum, for different periods and temperatures to study the changes in the microstructural properties of the layers and to prepare single-phase SnS photoabsorber films. It is found that annealing the layers in H{sub 2}S at 400?°C changes the stoichiometry of the as-deposited SnS films and leads to the formation of a dominant SnS{sub 2} phase. Annealing in an argon atmosphere for 1?h, however, causes no deviations in the composition of the SnS films, though the surface morphology of the annealed SnS layers changes significantly as a result of a 2?h annealing process. The crystalline structure, surface morphology, and photosensitivity of the as-deposited SnS films improves significantly as the result of annealing in vacuum, and the vacuum-annealed films are found to exhibit promising properties for fabricating complete solar cells based on these single-phase SnS photoabsorber layers.

  10. Concentrating solar collector system for the evaporation of low-level radioactive waste water

    SciTech Connect (OSTI)

    Diamond, S.C.; Cappiello, C.C.

    1981-01-01T23:59:59.000Z

    The Los Alamos National Laboratory has recently been awarded a grant under the Solar Federal Buildings Program to design, construct, and operate a high-temperature solar energy system for the processing of low-level radioactive waste water. Conceptual design studies have been completed, and detailed design work is under way for a solar system to produce process heat to evaporate 38,000 gal (143,830 L) of waste water per month. The system will use approximately 11,000 ft/sup 2/ (1022 m/sup 2/) of concentrating parabolic trough collectors operating at about 500/sup 0/F (262/sup 0/C). Construction of the system is anticipated to begin in 1981. Performance optimization of collector array size and configuration, storage medium and capacity, system operation, and control schemes are done using the active solar system simulator in the DOE-2 building energy analysis computer program. Results of this optimization are reported. This project represents a unique application of solar energy to an increasingly significant problem area in the energy field.

  11. Oxidation behavior of arc evaporated Al-Cr-Si-N thin films

    SciTech Connect (OSTI)

    Tritremmel, Christian; Daniel, Rostislav; Mitterer, Christian; Mayrhofer, Paul H.; Lechthaler, Markus; Polcik, Peter [Christian Doppler Laboratory for Advanced Hard Coatings, Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Christian Doppler Laboratory for Application Oriented Coating Development, Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); OC Oerlikon Balzers AG, Iramali 18, LI-9496 Balzers (Liechtenstein); PLANSEE Composite Materials GmbH, Siebenbuergerstrasse 23, D-86983 Lechbruck am See (Germany)

    2012-11-15T23:59:59.000Z

    The impact of Al and Si on the oxidation behavior of Al-Cr-(Si)-N thin films synthesized by arc evaporation of powder metallurgically prepared Al{sub x}Cr{sub 1-x} targets with x = Al/(Al + Cr) of 0.5, 0.6, and 0.7 and (Al{sub 0.5}Cr{sub 0.5}){sub 1-z}Si{sub z} targets with Si contents of z = 0.05, 0.1, and 0.2 in N{sub 2} atmosphere was studied in detail by means of differential scanning calorimetry, thermogravimetric analysis (TGA), x-ray diffraction, and Raman spectroscopy. Dynamical measurements in synthetic air (up to 1440 Degree-Sign C) revealed the highest onset temperature of pronounced oxidation for nitride coatings prepared from the Al{sub 0.4}Cr{sub 0.4}Si{sub 0.2} target. Isothermal TGA at 1100, 1200, 1250, and 1300 Degree-Sign C highlight the pronounced improvement of the oxidation resistance of Al{sub x}Cr{sub 1-x}N coatings by the addition of Si. The results show that Si promotes the formation of a dense coating morphology as well as a dense oxide scale when exposed to air.

  12. Heat capacity measurements of atoms and molecules adsorbed on evaporated metal films

    SciTech Connect (OSTI)

    Kenny, T.W.

    1989-05-01T23:59:59.000Z

    Investigations of the properties of absorbed monolayers have received great experimental and theoretical attention recently, both because of the importance of surface processes in practical applications such as catalysis, and the importance of such systems to the understanding of the fundamentals of thermodynamics in two dimensions. We have adapted the composite bolometer technology to the construction of microcalorimeters. For these calorimeters, the adsorption substrate is an evaporated film deposited on one surface of an optically polished sapphire wafer. This approach has allowed us to make the first measurements of the heat capacity of submonolayer films of /sup 4/He adsorbed on metallic films. In contrast to measurements of /sup 4/He adsorbed on all other insulating substrates, we have shown that /sup 4/He on silver films occupies a two-dimensional gas phase over a broad range of coverages and temperatures. Our apparatus has been used to study the heat capacity of Indium flakes. CO multilayers, /sup 4/He adsorbed on sapphire and on Ag films and H/sub 2/ adsorbed on Ag films. The results are compared with appropriate theories. 68 refs., 19 figs.

  13. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOE Patents [OSTI]

    Britten, Jerald A. (Oakley, CA)

    1997-01-01T23:59:59.000Z

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.

  14. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOE Patents [OSTI]

    Britten, J.A.

    1997-08-26T23:59:59.000Z

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.

  15. Mixed oxide nanoparticles and method of making

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Phelps, Tommy J. (Knoxville, TN); Zhang, Chuanlun (Columbia, MO); Roh, Yul (Oak Ridge, TN)

    2002-09-03T23:59:59.000Z

    Methods and apparatus for producing mixed oxide nanoparticulates are disclosed. Selected thermophilic bacteria cultured with suitable reducible metals in the presence of an electron donor may be cultured under conditions that reduce at least one metal to form a doped crystal or mixed oxide composition. The bacteria will form nanoparticles outside the cell, allowing easy recovery. Selection of metals depends on the redox potentials of the reducing agents added to the culture. Typically hydrogen or glucose are used as electron donors.

  16. Mass hierarchies and the seesaw neutrino mixing

    SciTech Connect (OSTI)

    Kuo, T. K. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States)] [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Wu, Guo-Hong [Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403 (United States)] [Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403 (United States); Mansour, Sadek W. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States)] [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States)

    2000-06-01T23:59:59.000Z

    We give a general analysis of neutrino mixing in the seesaw mechanism with three flavors. Assuming that the Dirac and u-quark mass matrices are similar, we establish simple relations between the neutrino parameters and individual Majorana masses. They are shown to depend rather strongly on the physical neutrino mixing angles. We calculate explicitly the implied Majorana mass hierarchies for parameter sets corresponding to different solutions to the solar neutrino problem. (c) 2000 The American Physical Society.

  17. Combustion characteristics in a pre-vaporizing pre-mixing lean combustor for an automotive ceramic gas turbine

    SciTech Connect (OSTI)

    Yoshida, Yusaku; Oguchi, Makoto

    1999-07-01T23:59:59.000Z

    A pre-vaporizing pre-mixing lean combustor (PPL) was developed for an automotive ceramic gas turbine which had high thermal efficiency and clean exhaust emissions. This study has been performed to obtain design data by investigating the basic characteristics of this combustor. Experiments were conducted under a high combustor inlet air temperature of 973K since the combustor inlet air was heated by regenerators to achieve high thermal efficiency. At first, the following measurements were conducted to survey the phenomena in the PPL combustion system; the required distance of vaporizing tube for complete evaporation and uniform mixture formation, and the flow pattern and velocity distribution and flame behaviors in the combustion chamber. Then it has clarified how the emission characteristics were influenced by non-uniformity of the mixture that flew into the combustion chamber. And also the possibility of reducing NOx emission by introducing dilution air into the post flame region has been shown.

  18. Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.

    1992-01-01T23:59:59.000Z

    This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine's helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

  19. Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.

    1992-07-01T23:59:59.000Z

    This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine`s helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

  20. Design, fabrication, and testing of a sodium evaporator for the STM4-120 kinematic Stirling engine

    SciTech Connect (OSTI)

    Rawlinson, K.S.; Adkins, D.R.

    1995-05-01T23:59:59.000Z

    This report describes the development and testing of a compact heat-pipe heat exchanger kW(e) designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW(e) Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases. The liquid metal then condenses on the heater tubes of a Stirling engine, where energy is transferred to the engine`s helium working fluid. Tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15 kW(t) of energy at an operating vapor temperature of 760 C. Four of these prototype units were eventually used to power a 25-kW(e) Stirling engine system. Design details and test results from the prototype unit are presented in this report.