National Library of Energy BETA

Sample records for mix electric assn

  1. Charles Mix Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Charles Mix Electric Assn, Inc Jump to: navigation, search Name: Charles Mix Electric Assn, Inc Place: South Dakota Phone Number: 605-487-7321 Website: www.cme.coop Twitter:...

  2. Chugach Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    Chugach Electric Assn Inc Jump to: navigation, search Name: Chugach Electric Assn Inc Place: Alaska Phone Number: 907-563-7494 or (800) 478-7494 or 907-563-7366 Website:...

  3. Matanuska Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    Matanuska Electric Assn Inc Jump to: navigation, search Name: Matanuska Electric Assn Inc Place: Alaska Phone Number: MEA Headquarters: 907-761-9300, 907-745-3231 or Eagle River:...

  4. FEM Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    FEM Electric Assn, Inc Jump to: navigation, search Name: FEM Electric Assn, Inc Place: South Dakota Phone Number: 605.426.6891 Website: www.femelectric.coop Twitter: @Femelectric...

  5. Runestone Electric Assn | Open Energy Information

    Open Energy Info (EERE)

    search Name: Runestone Electric Assn Place: Minnesota Website: www.runestoneelectric.com Facebook: https:www.facebook.comRunestoneElectric Outage Hotline: 1-800-473-1722 Outage...

  6. Empire Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Empire Electric Assn, Inc Place: Colorado Website: www.eea.coop Facebook: https:www.facebook.compagesEmpire-Electric-Association122876331103446 Outage Hotline: 1-800-709-3726...

  7. Highline Electric Assn | Open Energy Information

    Open Energy Info (EERE)

    Name: Highline Electric Assn Place: Colorado Website: www.hea.coop Twitter: @heacoop Facebook: https:www.facebook.comHighlineElectric Outage Hotline: 970.854.2236 References:...

  8. South Central Electric Assn | Open Energy Information

    Open Energy Info (EERE)

    South Central Electric Assn Place: Minnesota Website: www.southcentralelectric.com Facebook: https:www.facebook.compagesSouth-Central-Electric-Association554997227953077...

  9. Delta Montrose Electric Assn | Open Energy Information

    Open Energy Info (EERE)

    search Name: Delta Montrose Electric Assn Place: Colorado Website: www.dmea.com Facebook: https:www.facebook.compagesDelta-Montrose-Electric-Association204100546282579...

  10. White River Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Assn, Inc Jump to: navigation, search Name: White River Electric Assn, Inc Place: Colorado Website: www.white-river-electric-assoc Twitter: @WREAColorado Facebook: https:...

  11. Federated Rural Electric Assn | Open Energy Information

    Open Energy Info (EERE)

    Electric Assn Place: Minnesota Phone Number: 8003213520 Website: www.federatedrea.coop Facebook: https:www.facebook.comfederated Outage Hotline: 5078473520 References: EIA...

  12. Tombigbee Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    search Name: Tombigbee Electric Power Assn Place: Mississippi Phone Number: TUPELO OFFICE (662) 842- 7635 -- FULTON OFFICE (662) 862 -3146 Website: tombigbeeelectric.com...

  13. Delta Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    Name: Delta Electric Power Assn Place: Mississippi Phone Number: Greenwood District Office: (662)453-6352 -- Indianola District Office: (662) 887-1652 -- Cleveland District...

  14. Coahoma Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    search Name: Coahoma Electric Power Assn Place: Mississippi Phone Number: Lyon Office: (662) 624-8321 -- Tunica Office: (662) 363-2931 Website: www.coahomaepa.com Outage...

  15. Niobrara Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Assn, Inc Place: Wyoming Phone Number: 307-334-3221 Website: niobrara-electric.org Facebook: https:www.facebook.comNiobraraElectric Outage Hotline: 800-322-0544 References:...

  16. Kotzebue Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    Name: Kotzebue Electric Assn Inc Place: Alaska Phone Number: (907) 442-3491 Website: www.kea.coop Outage Hotline: (907) 442-3491 References: EIA Form EIA-861 Final Data File for...

  17. Magnolia Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    Electric Power Assn Place: Mississippi Phone Number: McComb (601) 684-4011 -- Brookhaven (601) 833-7011 -- Tylertown (601) 876-5671 -- Franklin County 1-800-898-0265...

  18. Dixie Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    Power Assn Place: Mississippi Phone Number: 601-425-2535 Website: www.dixieepa.com Twitter: @DixieEPA Facebook: https:www.facebook.comDixieElectricMS Outage Hotline:...

  19. Y-W Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    Y-W Electric Assn Inc Jump to: navigation, search Name: Y-W Electric Assn Inc Place: Colorado Phone Number: (970) 345-2291 or (800) 660 - 2291 Website: www.ywelectric.coop...

  20. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for September 2008. Monthly Electric Utility Sales...

  1. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric...

  2. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for November 2008. Monthly Electric Utility Sales and...

  3. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for December 2008. Monthly Electric Utility Sales and...

  4. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for January 2009. Monthly Electric Utility Sales and...

  5. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for February 2008. Monthly Electric Utility Sales and...

  6. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for October 2008. Monthly Electric Utility Sales and...

  7. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric...

  8. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric...

  9. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric...

  10. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric...

  11. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County...

  12. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County...

  13. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for May 2008. Monthly Electric Utility Sales and Revenue...

  14. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric Power Assn for June 2008. Monthly Electric Utility Sales and Revenue...

  15. Empire Electric Assn, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    search Name: Empire Electric Assn, Inc Place: Utah Phone Number: 970-565-4444 or 800-709-3726 Website: www.eea.coop Outage Hotline: 970-565-4444 or 800-709-3726 References:...

  16. Y-W Electric Assn Inc (Nebraska) | Open Energy Information

    Open Energy Info (EERE)

    Nebraska) Jump to: navigation, search Name: Y-W Electric Assn Inc Place: Nebraska Phone Number: (970) 345-2291 Website: www.ywelectric.coop Twitter: @ywelectric Facebook: https:...

  17. Moon Lake Electric Assn Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    search Name: Moon Lake Electric Assn Inc Place: Utah Phone Number: ALTAMONT OFFICE (435) 454-3611 -- DUCHESNE OFFICE (435) 738-5322 -- RANGELY OFFICE (970) 675-2291 --...

  18. La Plata Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: La Plata Electric Assn, Inc Address: 45 Stewart St. P.O. Box 2750 Place: Durango, Colorado Website: www.lpea.com References: EIA Form EIA-861...

  19. La Plata Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Association) Jump to: navigation, search Name: La Plata Electric Assn, Inc Address: 45 Stewart St. P.O. Box 2750 Place: Durango, Colorado Website: www.lpea.com References: EIA...

  20. Phases Energy Services County Electric Power Assn A N Electric...

    Open Energy Info (EERE)

    Alliant Energy Alpena Power Co Altamaha Electric Member Corp Amana Society Service Co Ambit Energy L P Ambit Energy L P Maryland Ambit Energy L P New York Ameren Energy Marketing...

  1. Florida Keys El Coop Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Keys El Coop Assn, Inc Jump to: navigation, search Name: Florida Keys El Coop Assn, Inc Place: Florida Phone Number: 305-852-2431 Website: www.fkec.com Twitter: @FLKeysElectric...

  2. Itasca-Mantrap Co-op Electrical Assn | Open Energy Information

    Open Energy Info (EERE)

    www.facebook.compagesItasca-Mantrap-Co-op-Electrical-Association443726809007201?refstream Outage Hotline: 8887133377 Outage Map: outage.itasca-mantrap.com References:...

  3. Intermountain Rural Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    Rural Elec Assn Place: Colorado Website: www.irea.coop Twitter: @IREAColorado Facebook: https:www.facebook.comIntermountainREA Outage Hotline: 1-800-332-9540 References:...

  4. 2013,1,"AK",3522,"Chugach Electric Assn Inc",0,,,,0,0,,,,0,0,,,,0

    U.S. Energy Information Administration (EIA) Indexed Site

    STATE_CODE","UTILITY_ID","UTILNAME","RESIDENTIAL_GPREVENUES","COMMERCIAL_GPREVENUES","INDUSTRIAL_GPREVENUES","TRANS_GPREVENUES","TOTAL_GPREVENUES","RESIDENTIAL_GPGENERATION","COMMERCIAL_GPGENERATION","INDUSTRIAL_GPGENERATION","TRANS_GPGENERATION","TOTAL_GPGENERATION","RESIDENTIAL_GPCUSTOMERS","COMMERCIAL_GPCUSTOMERS","INDUSTRIAL_GPCUSTOMERS","TRANS_GPCUSTOMERS","TOTAL_GPCUSTOMERS" 2013,1,"AK",3522,"Chugach Electric Assn Inc",0,,,,0,0,,,,0,0,,,,0 2013,1,"AL",195,"Alabama Power Co",2.507,0.063,,,2.57,55.7,1.4,,,57.1,628,12,,,640 2013,1,"AL",4958,"Decatur Utilities",0.14,0.1,0,0,0.24,5.25,3.75,0,0,9,19,1,0,0,20 2013,1,"AL",6422,"City of Florence - (AL)",0.368,0,0,0,0.368,13.8,0,0,0,13.8,50,0,0,0,50 2013,1,"AL",9094,"City of Huntsville - (AL)",8.632,1.64,0,0,10.272,323.7,61.5,0,0,385.2,1022,4,0,0,1026 2013,1,"AL",9739,"Joe Wheeler Elec Member Corp",0.188,0,0,0,0.188,7.05,0,0,0,7.05,20,0,0,0,20 2013,1,"AR",14063,"Oklahoma Gas & Electric Co",0.314,0.222,0.029,0,0.565,86.294,63.454,8.333,0,158.081,88,1,1,0,90 2013,1,"AZ",803,"Arizona Public Service Co",8.198,35.475,,,43.673,2049.62,8868.77,,,10918.39,2739,85,,,2824 2013,1,"AZ",16572,"Salt River Project",,5.429,,,5.429,,502,,,502,,8,,,8 2013,1,"AZ",19189,"Trico Electric Cooperative Inc",0.01,,,,0.01,0.25,,,,0.25,3,,,,3 2013,1,"AZ",19728,"UNS Electric, Inc",1.471,0.077,,,1.548,44.83,2.74,,,47.57,248,7,,,255 2013,1,"AZ",24211,"Tucson Electric Power Co",18.123,2.247,0.399,,20.769,657.86,173.23,5.3,,836.39,2619,62,2,,2683 2013,1,"CA",11208,"Los Angeles Department of Water & Power",64.746,109.462,0.47,,174.678,2158.218,3648.722,15.676,,5822.616,16536,614,28,,17178 2013,1,"CA",12745,"Modesto Irrigation District",0.122,,,,0.122,0.639,,,,0.639,1,,,,1 2013,1,"CA",14328,"Pacific Gas & Electric Co",0,0,0,0,0,0,0,0,0,0,0,0,0,,0 2013,1,"CA",14354,"PacifiCorp",5.272,0.451,0.016,0,5.739,274.699,23.147,0.8,0,298.646,1223,38,2,0,1263 2013,1,"CA",14534,"City of Pasadena - (CA)",16.888,14.845,0,0,31.733,675.458,593.795,0,0,1269.253,1043,53,0,0,1096 2013,1,"CA",16534,"Sacramento Municipal Util Dist",219.094,7.646,63.401,,290.141,33465.982,771.746,7565.049,,41802.777,53171,1423,646,,55240 2013,1,"CA",17612,"Bear Valley Electric Service",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"CA",18260,"Surprise Valley Electrificatio",0.045,0,0,0,0.045,1.8,0,0,0,1.8,9,0,0,0,9 2013,1,"CA",19281,"Turlock Irrigation District",0.015,,0.122,,0.137,2.99,,24.36,,27.35,6,,1,,7 2013,1,"CO",3989,"City of Colorado Springs - (CO)",2.513,0.654,,,3.167,235.6,33.8,,,269.4,743,16,,,759 2013,1,"CO",6604,"City of Fort Collins - (CO)",19.565,9.057,11.83,0,40.452,858.504,397.43,587.373,0,1843.307,1257,95,3,0,1355 2013,1,"CO",9336,"Intermountain Rural Elec Assn",0.418,,,,0.418,29,,,,29,43,,,,43 2013,1,"CO",12866,"Moon Lake Electric Assn Inc",0.036,,,,0.036,1.92,,,,1.92,4,,,,4 2013,1,"CO",15257,"Poudre Valley R E A, Inc",0.436,0.036,1.399,0,1.871,484.511,40.533,1554.178,0,2079.222,636,17,1,0,654 2013,1,"CO",15466,"Public Service Co of Colorado",277.472,142.981,,,420.453,12851.359,6623.167,,,19474.526,29441,788,,,30229 2013,1,"CO",16603,"San Luis Valley R E C, Inc",0.3,0.06,0.604,,0.964,75.1,15,151,,241.1,175,5,2,,182 2013,1,"CO",19499,"United Power, Inc",0.47,0.05,1.43,,1.95,527,50.4,1586.8,,2164.2,357,6,8,,371 2013,1,"CT",4176,"Connecticut Light & Power Co",181.909,23.844,0.747,0,206.5,19710.744,2410.9,75.421,0,22197.065,21408,371,7,0,21786 2013,1,"CT",7716,"Groton Dept of Utilities - (CT)",0.065,,,,0.065,5.9,,,,5.9,15,,,,15 2013,1,"CT",19497,"United Illuminating Co",41.54,,,,41.54,4237.62,,,,4237.62,5933,,,,5933 2013,1,"CT",20038,"Town of Wallingford - (CT)",1.688,0.113,0,0,1.801,153.447,10.274,0,0,163.721,230,4,0,0,234 2013,1,"DE",5070,"Delaware Electric Cooperative",0.059,,,,0.059,29.6,,,,29.6,35,,,,35 2013,1,"DE",13519,"City of Newark - (DE)",0.367,0,0,0,0.367,1751,0,0,0,1751,269,0,0,0,269 2013,1,"FL",18454,"Tampa Electric Co",13.23,2.89,0,0,16.12,529.2,115.6,0,0,644.8,2215,28,0,0,2243 2013,1,"GA",3408,"City of Chattanooga - (TN)",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"GA",3916,"Cobb Electric Membership Corp",1.029,0.026,0.443,,1.498,30.881,0.765,13.3,,44.946,151,3,1,,155 2013,1,"GA",7140,"Georgia Power Co",27.42,16.46,22.46,,66.34,670,1430,2346,,4446,4107,44,6,,4157 2013,1,"GA",9601,"Jackson Electric Member Corp - (GA)",2.282,0.075,0.646,0,3.003,76.05,3,25.84,0,104.89,507,2,2,0,511 2013,1,"IA",9417,"Interstate Power and Light Co",45.4,2.9,,,48.3,5570.9,144.7,,,5715.6,6107,568,,,6675 2013,1,"ID",9191,"Idaho Power Co",10.229,5.453,0.017,,15.699,1203,642,2,,1847,2034,67,2,,2103 2013,1,"ID",11273,"Lower Valley Energy Inc",0.105,,,,0.105,9.006,,,,9.006,23,,,,23 2013,1,"ID",14354,"PacifiCorp",4.106,0.431,0.002,0,4.539,211.627,23.68,0.1,0,235.407,1167,27,1,0,1195 2013,1,"ID",20169,"Avista Corp",3.747,0.748,0,0,4.495,1124.1,224.4,0,0,1348.5,965,40,0,0,1005 2013,1,"IN",9273,"Indianapolis Power & Light Co",6.442,0.571,14.835,,21.848,4294.886,380.52,9890.167,,14565.573,4170,129,24,,4323 2013,1,"IN",15470,"Duke Energy Indiana Inc",8.128,,,,8.128,406.5,,,,406.5,1309,,,,1309 2013,1,"KS",10000,"Kansas City Power & Light Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"KS",10005,"Kansas Gas & Electric Co",0.131,,,,0.131,13.1,,,,13.1,35,,,,35 2013,1,"KS",22500,"Westar Energy Inc",0.12,0.022,1.1,0,1.242,12,2.2,110,,124.2,37,1,1,,39 2013,1,"KY",10171,"Kentucky Utilities Co",2.69,0.085,0.004,0,2.779,795,25,1,0,821,536,18,1,0,555 2013,1,"KY",11249,"Louisville Gas & Electric Co",4.55,0.12,0,0,4.67,1330,38,0,0,1368,926,11,0,0,937 2013,1,"KY",14724,"Pennyrile Rural Electric Coop",0.212,0,0,0,0.212,7.95,0,0,0,7.95,37,0,0,0,37 2013,1,"KY",17564,"South Kentucky Rural E C C",0.539,0.003,,,0.542,19.6,0.1,,,19.7,172,1,,,173 2013,1,"KY",19446,"Duke Energy Kentucky",0.507,,,,0.507,47.6,,,,47.6,116,,,,116 2013,1,"KY",20130,"Warren Rural Elec Coop Corp",0.088,0.02,0,0,0.108,3.3,0.75,0,0,4.05,14,1,0,0,15 2013,1,"MA",11804,"Massachusetts Electric Co",74.761,2.618,0.018,0,77.397,3332.112,103.699,0.717,0,3436.528,5179,199,3,0,5381 2013,1,"MA",13206,"Nantucket Electric Co",0.342,0.243,0,0,0.585,13.526,9.159,0,0,22.685,31,8,0,0,39 2013,1,"MI",3828,"Cloverland Electric Co-op",0.1,,,,0.1,10.858,,,,10.858,36,,,,36 2013,1,"MI",4254,"Consumers Energy Co",41,14,7,,62,41,1817,88,,1946,14389,114,3,,14506 2013,1,"MI",5109,"The DTE Electric Company",97,5,18,0,120,4283,225,887,0,5395,23341,113,25,0,23479 2013,1,"MI",10704,"City of Lansing - (MI)",2.922,0.818,0.007,0,3.747,97.5,27.25,0.25,0,125,390,109,1,0,500 2013,1,"MI",13780,"Northern States Power Co",0.091,,,,0.091,7.595,,,,7.595,15,,,,15 2013,1,"MI",19578,"Upper Peninsula Power Co",0.613,0,0,0,0.613,25.55,0,0,0,25.55,119,0,0,0,119 2013,1,"MI",20847,"Wisconsin Electric Power Co",2.14,0.091,0,0,2.231,71,3,0,0,74,275,5,0,0,280 2013,1,"MI",20860,"Wisconsin Public Service Corp",0.073,0.005,0,0,0.078,4.7,0.3,0,0,5,17,1,0,0,18 2013,1,"MN",689,"Connexus Energy",1.807,0.092,5.968,0,7.867,371.7,15,978.296,0,1364.996,471,3,1,0,475 2013,1,"MN",5574,"East Central Energy",1.255,0.07,0,0,1.325,313.8,17.6,0,0,331.4,894,24,0,0,918 2013,1,"MN",9417,"Interstate Power and Light Co",4.2,0.1,,,4.3,556.5,5.3,,,561.8,549,55,,,604 2013,1,"MN",12647,"Minnesota Power Inc",2.843,0.608,,,3.451,113.7,22.3,,,136,618,16,,,634 2013,1,"MN",13781,"Northern States Power Co - Minnesota",299.015,244.218,,,543.233,8470.68,6918.365,,,15389.045,20885,240,,,21125 2013,1,"MN",14232,"Otter Tail Power Co",0.767,1.078,0,0,1.845,59,82.9,0,0,141.9,263,32,0,0,295 2013,1,"MN",16181,"Rochester Public Utilities",0.165,0.074,0,0,0.239,47.042,18.417,0,0,65.459,66,1,0,0,67 2013,1,"MN",20996,"Wright-Hennepin Coop Elec Assn",0.334,8.149,,,8.483,33.4,814.9,,,848.3,79,1,,,80 2013,1,"MN",25177,"Dakota Electric Association",2.238,0.059,1.557,,3.854,559.5,14.8,389.2,,963.5,1365,82,22,,1469 2013,1,"MO",4675,"Cuivre River Electric Coop Inc",0.943,0.035,,,0.978,37.7,1.4,,,39.1,142,2,,,144 2013,1,"MO",10000,"Kansas City Power & Light Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"MO",12698,"KCP&L Greater Missouri Operations Co.",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"MO",17833,"City Utilities of Springfield - (MO)",0.842,0.13,0,0,0.972,35.7,7.9,0,0,43.6,149,8,0,0,157 2013,1,"MO",19436,"Union Electric Co - (MO)",71.2,,,,71.2,4748,,,,4748,6868,,,,6868 2013,1,"MS",6641,"4-County Electric Power Assn",0.204,0,0,0,0.204,7.65,0,0,0,7.65,25,0,0,0,25 2013,1,"MS",12686,"Mississippi Power Co",0.02,,,,0.02,0.4,,,,0.4,2,,,,2 2013,1,"MS",19273,"City of Tupelo - (MS)",0.04,1,0,0,1.04,1.5,37.5,0,0,39,5,1,0,0,6 2013,1,"MT",6395,"Flathead Electric Coop Inc",1.63,,,,1.63,326,,,,326,326,,,,326 2013,1,"MT",12825,"NorthWestern Energy LLC - (MT)",1.952,3.266,0,0,5.218,97.6,163.3,0,0,260.9,307,19,0,0,326 2013,1,"MT",20997,"Yellowstone Valley Elec Co-op",0.02,,,,0.02,0.5,,,,0.5,12,,,,12 2013,1,"NC",3046,"Progress Energy Carolinas Inc",19.469,0.904,0.096,,20.469,486.729,36.16,3.84,,526.729,3298,83,2,,3383 2013,1,"NC",5416,"Duke Energy Carolinas, LLC",32.928,8.54,,,41.468,823.2,213.5,,,1036.7,5901,179,,,6080 2013,1,"NC",6235,"Public Works Comm-City of Fayetteville",0.308,0,0,0,0.308,7.7,0,0,0,7.7,57,0,0,0,57 2013,1,"NC",9837,"Jones-Onslow Elec Member Corp",0.196,,,,0.196,4.9,,,,4.9,49,,,,49 2013,1,"NC",16496,"Rutherford Elec Member Corp",0.14,,,,0.14,3.5,,,,3.5,24,,,,24 2013,1,"NC",24889,"Brunswick Electric Member Corp",0.329,0,0,0,0.329,8.225,0,0,0,8.225,71,0,0,0,71 2013,1,"ND",12087,"McKenzie Electric Coop Inc",0.001,,,,0.001,0.1,,,,0.1,1,,,,1 2013,1,"ND",14232,"Otter Tail Power Co",0.511,0.12,0,0,0.631,39.321,9.2,0,0,48.521,195,14,0,0,209 2013,1,"NH",13441,"New Hampshire Elec Coop Inc",1.689,0.057,0,0,1.746,56.3,1.9,0,0,58.2,236,7,0,0,243 2013,1,"NH",15472,"Public Service Co of NH",2.406,0.47,0.105,0,2.981,101.332,46.972,3.798,0,152.102,158,9,2,0,169 2013,1,"NH",24590,"Unitil Energy Systems",0.463,0.004,0,0,0.467,14.438,0.065,0,0,14.503,25,1,0,0,26 2013,1,"NH",26510,"Granite State Electric Co",1.135,0.074,,,1.209,29.382,2.324,,,31.706,103,7,,,110 2013,1,"NJ",963,"Atlantic City Electric Co",6.266,1.458,0,0,7.724,477.501,79.252,0,0,556.753,771,12,0,0,783 2013,1,"NJ",16213,"Rockland Electric Co",1.784,0.006,0,0,1.79,131.281,0.667,0,0,131.948,119,1,0,0,120 2013,1,"NM",5701,"El Paso Electric Co",0.671,2.023,0,0,2.694,11.5,64.6,0,0,76.1,62,15,0,0,77 2013,1,"NM",6204,"City of Farmington - (NM)",0.035,0,0,0,0.035,1.9,0,0,0,1.9,6,0,0,0,6 2013,1,"NM",11204,"Los Alamos County",0.885,0.052,,,0.937,157.6,11.039,,,168.639,3333,10,,,3343 2013,1,"NM",15473,"Public Service Co of NM",21.724,4.901,1.134,0,27.759,5172.37,1166.87,269.91,0,6609.15,12248,464,3,0,12715 2013,1,"NM",17718,"Southwestern Public Service Co",12.153,1.439,,,13.592,405.088,47.982,,,453.07,827,91,,,918 2013,1,"NV",13073,"Mt Wheeler Power, Inc",0.12,0.002,,,0.122,6.2,0.1,,,6.3,21,1,,,22 2013,1,"NY",11171,"Long Island Power Authority",11.169,1.617,,,12.786,409,587,,,996,540,140,,,680 2013,1,"NY",13511,"New York State Elec & Gas Corp",100.211,4.478,1.008,,105.697,4048,213,47,,4308,14873,255,6,,15134 2013,1,"NY",13573,"Niagara Mohawk Power Corp.",103.04,2.12,1.06,0,106.22,5970,123,62,0,6155,8045,166,83,0,8294 2013,1,"NY",16183,"Rochester Gas & Electric Corp",37.822,0.735,,,38.557,1535.1,40.692,,,1575.792,5567,73,,,5640 2013,1,"OH",3542,"Duke Energy Ohio Inc",2.756,,,,2.756,275.6,,,,275.6,634,,,,634 2013,1,"OH",14006,"Ohio Power Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"OK",7490,"Grand River Dam Authority",0,0,54.776,,54.776,0,0,13694,,13694,0,0,1,,1 2013,1,"OK",13734,"Northeast Oklahoma Electric Co",0.218,0.004,0,0,0.222,26.6,0.5,0,0,27.1,152,3,0,0,155 2013,1,"OK",14062,"Oklahoma Electric Coop Inc",0.824,0,0,0,0.824,164.9,0,0,0,164.9,1649,0,0,0,1649 2013,1,"OK",14063,"Oklahoma Gas & Electric Co",171.747,317.054,16.633,0,505.434,7733.377,19106.41,1935.612,0,28775.399,9681,837,38,0,10556 2013,1,"OK",15474,"Public Service Co of Oklahoma",15.434,0.336,0,0,15.77,457.587,9.634,0,0,467.221,673,8,0,0,681 2013,1,"OR",1738,"Bonneville Power Administration",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"OR",6022,"City of Eugene - (OR)",23.141,12.428,0,0,35.569,2226,1153,0,0,3379,2443,246,0,0,2689 2013,1,"OR",9191,"Idaho Power Co",0.093,,,,0.093,11,,,,11,18,,,,18 2013,1,"OR",14354,"PacifiCorp",408.297,81.386,27.237,0,516.92,35002.862,8816.17,3558.931,0,47377.963,41305,1371,65,0,42741 2013,1,"OR",15248,"Portland General Electric Co",806.261,27.751,101.307,0,935.319,76384.997,2622.585,5959.253,0,84966.835,85894,1947,145,0,87986 2013,1,"OR",40437,"Emerald People's Utility Dist",12.284,6.469,0,0,18.753,1535.477,808.62,0,0,2344.097,34,34,0,0,68 2013,1,"PA",14715,"PPL Electric Utilities Corp",2.59,,,,2.59,103.7,,,,103.7,335,,,,335 2013,1,"PA",14940,"PECO Energy Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"RI",13214,"The Narragansett Electric Co",60.105,1.484,0.044,0,61.633,2596.708,58.236,1.626,0,2656.57,4021,102,1,0,4124 2013,1,"SC",1613,"Berkeley Electric Coop Inc",1.317,0.03,0,0,1.347,43.9,0.439,0,0,44.339,333,4,,,337 2013,1,"SC",3046,"Progress Energy Carolinas Inc",0.229,0.028,,,0.257,5.723,1.12,,,6.843,47,2,,,49 2013,1,"SC",5416,"Duke Energy Carolinas, LLC",0.596,0.004,,,0.6,14.9,0.1,,,15,110,1,,,111 2013,1,"SC",14398,"Palmetto Electric Coop Inc",2.034,2.411,2.454,0,6.899,67.8,105.317,81.8,0,254.917,458,30,3,0,491 2013,1,"SC",17539,"South Carolina Electric&Gas Co",1.037,0,226.131,0,227.168,25.925,0,8228.212,0,8254.137,192,0,2,0,194 2013,1,"SC",17543,"South Carolina Public Service Authority",9.441,26.736,0.287,0,36.464,298.9,891.2,9.583,0,1199.683,1600,396,1,0,1997 2013,1,"SD",14232,"Otter Tail Power Co",0.315,0.23,0,0,0.545,8.2,6,0,0,14.2,41,5,0,0,46 2013,1,"SD",20401,"West River Electric Assn Inc",0.034,,,,0.034,17.1,,,,17.1,80,,,,80 2013,1,"TN",727,"Appalachian Electric Coop",0.292,0.1,0,0,0.392,10.95,3.75,0,0,14.7,36,1,0,0,37 2013,1,"TN",2247,"City of Bristol - (TN)",0.192,0.012,0,0,0.204,7.2,0.45,0,0,7.65,18,3,0,0,21 2013,1,"TN",3408,"City of Chattanooga - (TN)",5.912,6.292,0,0,12.204,221.7,235.95,0,0,457.65,816,29,0,0,845 2013,1,"TN",3704,"City of Clarksville - (TN)",0.696,1.74,0,0,2.436,26.1,65.25,0,0,91.35,91,5,0,0,96 2013,1,"TN",3758,"City of Cleveland - (TN)",0.208,0,0,0,0.208,7.8,0,0,0,7.8,34,0,0,0,34 2013,1,"TN",3812,"City of Clinton - (TN)",0.408,0.344,0,0,0.752,15.3,12.9,0,0,28.2,57,5,0,0,62 2013,1,"TN",4624,"Cumberland Elec Member Corp",1.152,0.152,0,0,1.304,43.2,5.7,0,0,48.9,165,7,0,0,172 2013,1,"TN",5399,"Duck River Elec Member Corp",1.324,2.296,0,0,3.62,49.65,86.1,0,0,135.75,175,8,0,0,183 2013,1,"TN",7174,"Gibson Electric Members Corp",0.2,0.1,0,0,0.3,7.5,3.75,0,0,11.25,39,1,0,0,40 2013,1,"TN",7625,"City of Greeneville - (TN)",0.052,0.1,0,0,0.152,1.95,3.75,0,0,5.7,10,1,0,0,11 2013,1,"TN",9777,"Johnson City - (TN)",2.552,0.472,0,0,3.024,95.7,17.7,0,0,113.4,335,8,0,0,343 2013,1,"TN",10421,"Knoxville Utilities Board",19.256,26.664,0,0,45.92,700.5,1262.4,0,0,1962.9,2245,69,0,0,2314 2013,1,"TN",10906,"City of Lenoir - (TN)",3.588,0.212,0,0,3.8,115.35,7.05,0,0,122.4,362,9,0,0,371 2013,1,"TN",12293,"City of Memphis - (TN)",17.07,1.986,4.812,0,23.868,426.75,49.65,120.3,0,596.7,1308,21,3,0,1332 2013,1,"TN",12470,"Middle Tennessee E M C",4.836,0.872,0,0,5.708,181.35,32.7,0,0,214.05,550,13,0,0,563 2013,1,"TN",13216,"Nashville Electric Service",21.372,7.504,0,0,28.876,801.45,281.4,0,0,1082.85,2429,63,0,0,2492 2013,1,"TN",17694,"Southwest Tennessee E M C",0.196,0.02,0,0,0.216,7.35,0.75,0,0,8.1,18,1,0,0,19 2013,1,"TN",19574,"Upper Cumberland E M C",0.392,0.048,0,0,0.44,14.7,1.8,0,0,16.5,29,3,0,0,32 2013,1,"TN",19898,"Volunteer Electric Coop",0.8,0.388,0,0,1.188,30,14.55,0,0,44.55,93,7,0,0,100 2013,1,"TX",5701,"El Paso Electric Co",2.823,0.088,0,0,2.911,79.9,2.5,0,0,82.4,370,6,0,0,376 2013,1,"TX",16604,"City of San Antonio - (TX)",48.654,51.084,0.384,0,100.122,4425.609,5090.967,38.376,0,9554.952,6462,557,1,0,7020 2013,1,"UT",12866,"Moon Lake Electric Assn Inc",0.148,0.022,,,0.17,7.99,1.212,,,9.202,17,1,,,18 2013,1,"UT",13073,"Mt Wheeler Power, Inc",0.021,,,,0.021,1.1,,,,1.1,2,,,,2 2013,1,"UT",14354,"PacifiCorp",158.394,33.901,9.139,0,201.434,8152.211,2846.716,1173.5,0,12172.427,35413,807,25,0,36245 2013,1,"UT",17874,"City of St George",0.084,0,0,0,0.084,2.84,0,0,0,2.84,8,0,0,0,8 2013,1,"VA",733,"Appalachian Power Co",0.221,,,,0.221,14.76,,,,14.76,11,,,,11 2013,1,"VA",17066,"Shenandoah Valley Elec Coop",0.213,0,0,0,0.213,14.246,0,0,0,14.246,12,0,0,0,12 2013,1,"VA",19876,"Virginia Electric & Power Co",166.416,14.353,0.762,0,181.531,12801.234,3064.185,58.615,0,15924.034,15248,226,1,0,15475 2013,1,"VT",7601,"Green Mountain Power Corp",39.65,10.83,0,0,50.48,1068,276,0,0,1344,3998,216,0,0,4214 2013,1,"WA",1738,"Bonneville Power Administration",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,1,"WA",14354,"PacifiCorp",10.666,3.788,0.006,0,14.46,547.74,316.508,0.3,0,864.548,2669,112,3,0,2784 2013,1,"WA",15500,"Puget Sound Energy Inc",334.185,64.655,0,0,398.84,26734.802,9103.828,0,0,35838.63,34030,959,0,0,34989 2013,1,"WA",17470,"Snohomish County PUD No 1",,2.091,,,2.091,,243.95,,,243.95,,16,,,16 2013,1,"WA",18429,"City of Tacoma - (WA)",6.11,2.57,0,0,8.68,509,214,0,0,723,1161,21,0,0,1182 2013,1,"WA",20169,"Avista Corp",9.34,5.835,0.144,0,15.319,2802,1750.5,43.2,0,4595.7,2374,64,2,0,2440 2013,1,"WI",5574,"East Central Energy",0.109,0,0,0,0.109,27.3,0,0,0,27.3,88,0,0,0,88 2013,1,"WI",11479,"Madison Gas & Electric Co",158,111,1,,270,5110,5939,29,,11078,12045,951,9,,13005 2013,1,"WI",13780,"Northern States Power Co",8.698,4.609,,,13.307,634.884,336.445,,,971.329,1277,55,,,1332 2013,1,"WI",20847,"Wisconsin Electric Power Co",166.97,40.3,44.391,0,251.661,9264,2329,3139,0,14732,18251,601,23,0,18875 2013,1,"WI",20856,"Wisconsin Power & Light Co",72.336,8.4,,,80.736,5682.6,417.2,,,6099.8,7122,971,,,8093 2013,1,"WI",20860,"Wisconsin Public Service Corp",13.098,8.448,0,0,21.546,545.77,352,0,0,897.77,1838,56,0,0,1894 2013,1,"WV",733,"Appalachian Power Co",0.011,,,,0.011,0.7,,,,0.7,2,,,,2 2013,1,"WY",3461,"Cheyenne Light Fuel & Power Co",0.291,0.581,,,0.872,8.314,16.6,,,24.914,28,7,,,35 2013,1,"WY",7222,"City of Gillette - (WY)",0.45,0.492,0,0,0.942,30,32.8,0,0,62.8,39,6,0,0,45 2013,1,"WY",11273,"Lower Valley Energy Inc",12.326,4.929,9.552,,26.807,1059.429,504.749,1138.606,,2702.784,1126,387,33,,1546 2013,1,"WY",14354,"PacifiCorp",15.753,0.84,0.903,0,17.496,814.892,43.2,110.8,0,968.892,3839,105,3,0,3947 2013,1,"WY",19156,"Powder River Energy Corp",0.032,0.028,,,0.06,16.2,13.8,,,30,24,2,,,26 2013,1,,99999,"National Total",4792.148,1589.407,655.869,0,7037.424,350819.302,108835.977,66013.422,0,525668.701,603911,18477,1249,0,623637 2013,2,"AL",195,"Alabama Power Co",2.558,0.072,,,2.63,56.85,1.6,,,58.45,634,12,,,646 2013,2,"AL",4958,"Decatur Utilities",0.14,0.1,0,0,0.24,5.25,3.75,0,0,9,19,1,0,0,20 2013,2,"AL",6422,"City of Florence - (AL)",0.36,0,0,0,0.36,13.5,0,0,0,13.5,49,0,0,0,49 2013,2,"AL",9094,"City of Huntsville - (AL)",8.544,1.64,0,0,10.184,320.4,61.5,0,0,381.9,1013,4,0,0,1017 2013,2,"AL",9739,"Joe Wheeler Elec Member Corp",0.188,0,0,0,0.188,7.05,0,0,0,7.05,20,0,0,0,20 2013,2,"AR",14063,"Oklahoma Gas & Electric Co",0.279,0.235,0.029,0,0.543,76.151,67.134,8.333,0,151.618,85,2,1,0,88 2013,2,"AZ",803,"Arizona Public Service Co",7.164,40.617,,,47.781,1791.018,10154.21,,,11945.228,2714,84,,,2798 2013,2,"AZ",16572,"Salt River Project",,5.044,,,5.044,,466,,,466,,8,,,8 2013,2,"AZ",19189,"Trico Electric Cooperative Inc",0.01,,,,0.01,0.25,,,,0.25,3,,,,3 2013,2,"AZ",19728,"UNS Electric, Inc",1.387,0.077,,,1.464,43.63,2.74,,,46.37,236,7,,,243 2013,2,"AZ",24211,"Tucson Electric Power Co",15.866,2.383,0.399,,18.648,575.93,180.79,5.3,,762.02,2533,60,2,,2595 2013,2,"CA",11208,"Los Angeles Department of Water & Power",67.077,105.929,0.395,,173.401,2235.918,3530.96,13.174,,5780.052,16512,627,17,,17156 2013,2,"CA",12745,"Modesto Irrigation District",0.116,,,,0.116,0.605,,,,0.605,1,,,,1 2013,2,"CA",14354,"PacifiCorp",5.193,0.449,0.016,0,5.658,267.638,23.03,0.8,0,291.468,1220,38,2,0,1260 2013,2,"CA",14534,"City of Pasadena - (CA)",9.243,6.621,,,15.864,369.68,264.838,,,634.518,567,23,,,590 2013,2,"CA",16534,"Sacramento Municipal Util Dist",194.815,6.859,60.348,,262.022,26474.29,693.025,6049.057,,33216.372,53268,1414,645,,55327 2013,2,"CA",17612,"Bear Valley Electric Service",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,2,"CA",18260,"Surprise Valley Electrificatio",0.03,0,0,0,0.03,1.2,0,0,0,1.2,6,0,0,0,6 2013,2,"CA",19281,"Turlock Irrigation District",0.015,,0.147,,0.162,2.995,,29.36,,32.355,6,,1,,7 2013,2,"CO",3989,"City of Colorado Springs - (CO)",5.488,0.512,10.578,,16.578,532.7,38.8,269.5,,841,1116,13,3,,1132 2013,2,"CO",6604,"City of Fort Collins - (CO)",16.784,10.696,0.557,0,28.037,659.762,420.421,21.875,0,1102.058,1185,92,2,0,1279 2013,2,"CO",9336,"Intermountain Rural Elec Assn",0.418,,,,0.418,30,,,,30,44,,,,44 2013,2,"CO",12866,"Moon Lake Electric Assn Inc",0.066,,,,0.066,3.58,,,,3.58,4,,,,4 2013,2,"CO",15257,"Poudre Valley R E A, Inc",0.421,0.036,1.316,,1.773,467.667,40.533,1462.156,,1970.356,635,17,1,,653 2013,2,"CO",15466,"Public Service Co of Colorado",218.716,126.556,,,345.272,10129.88,5862.309,,,15992.189,29402,784,,,30186 2013,2,"CO",16603,"San Luis Valley R E C, Inc",0.296,0.065,0.604,,0.965,73.9,16.2,151,,241.1,168,12,2,,182 2013,2,"CO",19499,"United Power, Inc",0.47,0.05,2.16,,2.68,520.4,50.5,2401,,2971.9,355,6,8,,369 2013,2,"CT",4176,"Connecticut Light & Power Co",174.364,22.601,0.693,0,197.658,18933.921,2287.732,69.942,0,21291.595,21539,368,10,0,21917 2013,2,"CT",7716,"Groton Dept of Utilities - (CT)",0.065,,,,0.065,5.9,,,,5.9,15,,,,15 2013,2,"CT",19497,"United Illuminating Co",42.21,,,,42.21,4305.87,,,,4305.87,5935,,,,5935 2013,2,"CT",20038,"Town of Wallingford - (CT)",1.547,0.121,0,0,1.668,140.6,11.027,0,0,151.627,228,4,0,0,232 2013,2,"DE",5070,"Delaware Electric Cooperative",0.059,,,,0.059,29.6,,,,29.6,35,,,,35 2013,2,"DE",13519,"City of Newark - (DE)",0.367,0,0,0,0.367,1751,0,0,0,1751,269,0,0,0,269 2013,2,"FL",18454,"Tampa Electric Co",13.18,2.88,0,0,16.06,527.2,115.2,0,0,642.4,2206,26,0,0,2232 2013,2,"GA",3408,"City of Chattanooga - (TN)",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,2,"GA",3916,"Cobb Electric Membership Corp",0.907,0.023,0.4,,1.33,27.202,0.69,12.013,,39.905,151,3,1,,155 2013,2,"GA",7140,"Georgia Power Co",27.53,17,22.46,,66.99,672,1431,2346,,4449,4122,42,6,,4170 2013,2,"GA",9601,"Jackson Electric Member Corp - (GA)",2.282,0.075,0.544,0,2.901,76.05,3,21.768,0,100.818,507,2,2,0,511 2013,2,"IA",9417,"Interstate Power and Light Co",39.3,2.9,,,42.2,4816,143.8,,,4959.8,6097,563,,,6660 2013,2,"ID",9191,"Idaho Power Co",10.104,5.557,0.017,0,15.678,1189,654,2,0,1845,2018,66,2,0,2086 2013,2,"ID",11273,"Lower Valley Energy Inc",0.105,,,,0.105,9.076,,,,9.076,23,,,,23 2013,2,"ID",14354,"PacifiCorp",4.172,0.401,0.002,0,4.575,213.241,23.797,0.1,0,237.138,1161,27,1,0,1189 2013,2,"ID",20169,"Avista Corp",3.735,0.748,0,0,4.483,1120.5,224.4,0,0,1344.9,968,40,0,0,1008 2013,2,"IN",9273,"Indianapolis Power & Light Co",4.498,0.444,8.201,,13.143,2998.883,293.547,5469.37,,8761.8,4188,128,25,,4341 2013,2,"IN",15470,"Duke Energy Indiana Inc",7.967,,,,7.967,796.7,,,,796.7,1304,,,,1304 2013,2,"KS",10000,"Kansas City Power & Light Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,2,"KS",10005,"Kansas Gas & Electric Co",0.131,,,,0.131,13.1,,,,13.1,34,,,,34 2013,2,"KS",22500,"Westar Energy Inc",0.117,0.022,1,,1.139,11.7,2.2,100,,113.9,36,1,1,,38 2013,2,"KY",10171,"Kentucky Utilities Co",6.795,0.212,0.009,0,7.016,3808,119,5,0,3932,536,18,1,0,555 2013,2,"KY",11249,"Louisville Gas & Electric Co",10.98,0.243,0.067,0,11.29,6149,137,38,0,6324,914,11,1,0,926 2013,2,"KY",14724,"Pennyrile Rural Electric Coop",0.212,0,0,0,0.212,7.95,0,0,0,7.95,37,0,0,0,37 2013,2,"KY",17564,"South Kentucky Rural E C C",0.539,0.003,0,0,0.542,19.6,0.1,0,0,19.7,172,1,0,0,173 2013,2,"KY",19446,"Duke Energy Kentucky",0.521,,,,0.521,49,,,,49,118,,,,118 2013,2,"KY",20130,"Warren Rural Elec Coop Corp",0.088,0.02,0,0,0.108,3.3,0.75,0,0,4.05,14,1,0,0,15 2013,2,"MA",11804,"Massachusetts Electric Co",69.404,2.75,0.014,0,72.168,3070.386,106.677,0.559,0,3177.622,5183,208,3,0,5394 2013,2,"MA",13206,"Nantucket Electric Co",0.336,0.245,0,0,0.581,13.056,9.301,0,0,22.357,32,7,0,0,39 2013,2,"MI",3828,"Cloverland Electric Co-op",0.1,,,,0.1,10.87,,,,10.87,34,,,,34 2013,2,"MI",4254,"Consumers Energy Co",40,13,1,,54,4013,1809,88,,5910,18636,95,2,,18733 2013,2,"MI",5109,"The DTE Electric Company",87,4,16,0,107,3785,177,799,0,4761,21658,109,25,0,21792 2013,2,"MI",10704,"City of Lansing - (MI)",2.874,0.818,0.008,0,3.7,95.75,27.25,0.25,0,123.25,383,109,1,0,493 2013,2,"MI",13780,"Northern States Power Co",0.079,,,,0.079,6.56,,,,6.56,15,,,,15 2013,2,"MI",19578,"Upper Peninsula Power Co",0.607,,,,0.607,25.3,,,,25.3,118,,,,118 2013,2,"MI",20847,"Wisconsin Electric Power Co",1.549,0.086,,,1.635,51,3,,,54,269,5,,,274 2013,2,"MI",20860,"Wisconsin Public Service Corp",0.073,0.005,,,0.078,4.7,0.3,,,5,17,1,,,18 2013,2,"MN",689,"Connexus Energy",1.837,0.092,6.024,0,7.953,376.7,15,987.58,0,1379.28,471,3,1,0,475 2013,2,"MN",5574,"East Central Energy",1.255,0.07,0,0,1.325,313.8,17.6,0,0,331.4,894,24,0,0,918 2013,2,"MN",9417,"Interstate Power and Light Co",3.6,0.1,,,3.7,472.9,5.3,,,478.2,549,55,,,604 2013,2,"MN",12647,"Minnesota Power Inc",2.819,0.508,,,3.327,112.3,20.3,,,132.6,582,15,,,597 2013,2,"MN",13781,"Northern States Power Co - Minnesota",242.939,158.251,,,401.19,6882.134,4483.034,,,11365.168,20895,240,,,21135 2013,2,"MN",14232,"Otter Tail Power Co",0.672,1.063,0,0,1.735,51.724,81.8,0,0,133.524,245,30,0,0,275 2013,2,"MN",16181,"Rochester Public Utilities",0.165,0.074,0,0,0.239,47.043,18.417,0,0,65.46,66,1,0,0,67 2013,2,"MN",20996,"Wright-Hennepin Coop Elec Assn",0.334,9.596,,,9.93,33.4,959.6,,,993,79,1,,,80 2013,2,"MN",25177,"Dakota Electric Association",2.241,0.059,1.075,,3.375,560.2,14.8,268.7,,843.7,1363,82,22,,1467 2013,2,"MO",4675,"Cuivre River Electric Coop Inc",0.943,0.035,0,0,0.978,37.7,1.4,0,0,39.1,142,2,0,0,144 2013,2,"MO",10000,"Kansas City Power & Light Co",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,2,"MO",12698,"KCP&L Greater Missouri Operations Co.",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 2013,2,"MO",17833,"City Utilities of Springfield - (MO)",0.84,0.13,,,0.97,35.7,7.9,,,43.6,148,8,,,156 2013,2,"MO",19436,"Union Electric Co - (MO)",79.1,,,,79.1,5274,,,,5274,6871,,,,6871 2013,2,"MS",6641,"4-County Electric Power Assn",0.212,0,0,0,0.212,7.95,0,0,0,7.95,25,0,0,0,25 2013,2,"MS",12686,"Mississippi Power Co",0.02,,,,0.02,0.4,,,,0.4,2,,,,2 2013,2,"MS",19273,"City of Tupelo - (MS)",0.04,1,0,0,1.04,1.5,37.5,0,0,39,5,1,0,0,6 2013,2,"MT",6395,"Flathead Electric Coop Inc",1.63,,,,1.63,326,,,,326,326,,,,326 2013,2,"MT",12825,"NorthWestern Energy LLC - (MT)",1.954,3.266,0,0,5.22,97.7,163.3,0,0,261,307,19,0,0,326 2013,2,"MT",20997,"Yellowstone Valley Elec Co-op",0.02,,,,0.02,0.5,,,,0.5,12,,,,12 2013,2,"NC",3046,"Progress Energy Carolinas Inc",18.236,1.419,0.096,,19.751,455.892,56.772,3.84,,516.504,3285,84,2,,3371 2013,2,"NC",5416,"Duke Energy Carolinas, LLC",32.852,8.536,,,41.388,821.3,213.4,,,1034.7,5890,178,,,6068 2013,2,"NC",6235,"Public Works Comm-City of Fayetteville",0.34,0,0,0,0.34,8.5,0,0,0,8.5,57,0,0,0,57 2013,2,"NC",9837,"Jones-Onslow Elec Member Corp",0.188,0,0,0,0.188,4.7,0,0,0,4.7,47,0,0,0,47 2013,2,"NC",16496,"Rutherford Elec Member Corp",0.144,,,,0.144,3.6,,,,3.6,25,,,,25 2013,2,"NC",24889,"Brunswick Electric Member Corp",0.329,0,0,0,0.329,8.225,0,0,0,8.225,71,0,0,0,71 2013,2,"ND",12087,"McKenzie Electric Coop Inc",0.001,0,0,0,0.001,0.1,0,0,0,0.1,1,0,0,0,1 2013,2,"ND",14232,"Otter Tail Power Co",0.458,0.118,0,0,0.576,35.209,9.1,0,0,44.309,184,13,0,0,197 2013,2,"NH",13441,"New Hampshire Elec Coop Inc",1.683,0.057,0,0,1.74,56.1,1.9,0,0,58,236,7,0,0,243 2013,2,"NH",15472,"Public Service Co of NH",2.299,0.521,0.114,0,2.934,98.317,52.529,4.062,0,154.908,154,10,2,0,166 2013,2,"NH",24590,"Unitil Energy Systems",0.461,0.003,0,0,0.464,14.017,0.061,0,0,14.078,25,1,0,0,26 2013,2,"NH",26510,"Granite State Electric Co",1.135,0.074,0,0,1.209,29.382,2.324,0,0,31.706,103,7,0,0,110 2013,2,"NJ",963,"Atlantic City Electric Co",7.184,1.321,0,0,8.505,454.968,72.472,0,0,527.44,762,12,0,0,774 2013,2,"NJ",16213,"Rockland Electric Co",1.535,0.005,0,0,1.54,103.4,0.56,0,0,103.96,119,1,0,0,120 2013,2,"NM",5701,"El Paso Electric Co",0.671,2.023,0,0,2.694,11.5,64.6,0,0,76.1,61,15,0,0,76 2013,2,"NM",6204,"City of Farmington - (NM)",0.032,0,0,0,0.032,1.9,0,0,0,1.9,6,0,0,0,6 2013,2,"NM",11204,"Los Alamos County",0.682,0.097,,,0.779,118.828,17.435,,,136.263,293,11,,,304 2013,2,"NM",15473,"Public Service Co of NM",21.724,4.901,1.134,,27.759,5172.37,1166.87,269.91,,6609.15,12244,453,3,,12700 2013,2,"NM",17718,"Southwestern Public Service Co",8.89,1.962,,,10.852,296.337,65.408,,,361.745,820,91,,,911 2013,2,"NV",13073,"Mt Wheeler Power, Inc",0.12,0.002,,,0.122,6.2,0.1,,,6.3,21,1,,,22 2013,2,"NY",11171,"Long Island Power Authority",11.9,9.1,,,21,387,517,,,904,720,123,,,843 2013,2,"NY",13511,"New York State Elec & Gas Corp",100.014,4.473,1.008,0,105.495,4035,212,48,0,4295,14802,254,6,0,15062 2013,2,"NY",13573,"Niagara Mohawk Power Corp.",103.4,2.12,1.06,0,106.58,5970,123,62,0,6155,8045,166,83,0,8294 2013,2,"

  5. Harrison Rural Elec Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Harrison Rural Elec Assn, Inc Jump to: navigation, search Name: Harrison Rural Elec Assn, Inc Place: West Virginia Phone Number: 304.624.6365 Website: www.harrisonrea.com...

  6. Brown County Rural Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    Rural Elec Assn Jump to: navigation, search Name: Brown County Rural Elec Assn Place: Minnesota Phone Number: 1-800-658-2368 Website: www.browncountyrea.coop Outage Hotline:...

  7. Bon Homme Yankton El Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Bon Homme Yankton El Assn, Inc Jump to: navigation, search Name: Bon Homme Yankton El Assn, Inc Place: South Dakota Phone Number: (605) 463-2507 Website: byelectric.com Facebook:...

  8. Cooperative L&P Assn Lake Cnty | Open Energy Information

    Open Energy Info (EERE)

    Cooperative L&P Assn Lake Cnty Jump to: navigation, search Name: Cooperative L&P Assn Lake Cnty Place: Minnesota Phone Number: 800-580-5881 Website: www.clpower.com Facebook:...

  9. Minnesota Valley Coop L&P Assn | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Valley Coop L&P Assn Jump to: navigation, search Name: Minnesota Valley Coop L&P Assn Place: Minnesota Phone Number: 320-269-2163 or 1-800-247-5051 Website:...

  10. Virginia Mun Elec Assn No 1 | Open Energy Information

    Open Energy Info (EERE)

    Elec Assn No 1 Jump to: navigation, search Name: Virginia Mun Elec Assn No 1 Place: Virginia Website: www.mepav.org References: EIA Form EIA-861 Final Data File for 2010 -...

  11. Tri-State G & T Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    T Assn, Inc Jump to: navigation, search Name: Tri-State G & T Assn, Inc Place: Colorado Website: www.tristategt.org Twitter: @TriStateGT Facebook: https:www.facebook.com...

  12. West Florida El Coop Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    El Coop Assn, Inc Jump to: navigation, search Name: West Florida El Coop Assn, Inc Place: Florida Phone Number: 1-800-342-7400 Website: www.westflorida.coop Twitter: https:...

  13. Caney Valley El Coop Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Assn, Inc Jump to: navigation, search Name: Caney Valley El Coop Assn, Inc Place: Kansas Phone Number: (620) 758-2262 Website: www.caneyvalley.com Outage Hotline: 1-800-310-8911...

  14. Pearl River Valley El Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    Valley El Pwr Assn Jump to: navigation, search Name: Pearl River Valley El Pwr Assn Place: Mississippi Phone Number: Columbia: 601-736-2666 -- Hattiesburg: 601-264-2458 -- Purvis:...

  15. Panhandle Rural El Member Assn | Open Energy Information

    Open Energy Info (EERE)

    Rural El Member Assn Jump to: navigation, search Name: Panhandle Rural El Member Assn Place: Nebraska Phone Number: 308-762-1311 Website: www.prema.coop Facebook: https:...

  16. Sedgwick Cnty El Coop Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    Cnty El Coop Assn Inc Jump to: navigation, search Name: Sedgwick Cnty El Coop Assn Inc Place: Kansas Phone Number: 316-542-3131 Website: www.sedgwickcountyelectric.coo Twitter:...

  17. Blachly-Lane Cnty Coop El Assn | Open Energy Information

    Open Energy Info (EERE)

    Blachly-Lane Cnty Coop El Assn Jump to: navigation, search Name: Blachly-Lane Cnty Coop El Assn Place: Oregon Phone Number: (541) 688-8711 Website: www.blachlylane.coop Twitter:...

  18. Butler Rural El Coop Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Coop Assn, Inc Jump to: navigation, search Name: Butler Rural El Coop Assn, Inc Place: Kansas Phone Number: 316.321.9600 Website: www.butler.coop Facebook: https:...

  19. Red River Valley Rrl Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    Elec Assn Jump to: navigation, search Name: Red River Valley Rrl Elec Assn Place: Oklahoma Phone Number: 1-800-749-3364 or 580-564-1800 Website: www.rrvrea.com Twitter:...

  20. Red River Valley Coop Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    Red River Valley Coop Pwr Assn Jump to: navigation, search Name: Red River Valley Coop Pwr Assn Place: Minnesota Website: www.rrvcoop.com Facebook: https:www.facebook.comRRVCPA...

  1. Copper Valley Elec Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Valley Elec Assn, Inc Jump to: navigation, search Name: Copper Valley Elec Assn, Inc Place: Alaska Phone Number: Copper Basin: 907-822-3211 or Valdez: 907-835-4301 Website:...

  2. Initial Comments of the National Rural Electric Cooperative Associatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Prepared by: Ken Winder Manager of Engineering Moon Lake Electric Assn., Inc. Roosevelt, UT kwinder@mleainc.com Russell Tucker Senior Economist National Rural Electric Cooperative ...

  3. Pontotoc Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    Id 15211 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes This article is a stub. You can help OpenEI by expanding it. Utility Rate...

  4. Coast Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    8,492 76,104 72,011 2,887 27,200 6,393 1,346 20,612 11 12,725 123,916 78,415 2008-04 7,666 67,494 69,413 2,443 22,273 6,011 1,330 19,202 11 11,439 108,969 75,435 2008-03 8,389...

  5. Kodiak Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    563 3,448 4,663 309 1,952 1,072 1,048 7,142 95 1,920 12,542 5,830 2008-12 568 3,250 4,666 343 2,037 1,073 964 6,164 95 1,875 11,451 5,834 2008-11 494 2,797 4,656 288 1,683 1,072...

  6. Umatilla Electric Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    - File1a1 EIA Form 861 Data Utility Id 19325 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes...

  7. Valley Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    727-5312 Outage Map: www.vea.coopsitesvea.coopweb References: Energy Information Administration.1 EIA Form 861 Data Utility Id 19840 This article is a stub. You can help OpenEI...

  8. Kotzebue Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    EIA Form EIA-861 Final Data File for 2010 - File1a1 Energy Information Administration Form 8262 EIA Form 861 Data Utility Id 10451 Utility Location Yes Ownership C...

  9. Central Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    Place: Mississippi Phone Number: HEADQUARTERS: CARTHAGE DISTRICT: 601-267-5671 -- PHILADELPHIA DISTRICT: 601-656-2601 -- RANKIN DISTRICT: 601-829-1201 -- SEBASTOPOL DISTRICT:...

  10. Egyptian Electric Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    www.eeca.coop Twitter: @EgyptianCoop Facebook: https:www.facebook.comeeca.coop?refhl&reftypebookmark Outage Hotline: 800-606-1505 Outage Map: outagemap.trimble.com...

  11. Homer Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    26 6,677.525 39,527.589 28,099 2009-01 4,146.494 19,665.2 24,481 3,221.894 16,306.882 3,607 1,168.56 11,035.914 26 8,536.948 47,007.996 28,114 2008-12 3,340.29 18,838.236 24,465...

  12. South Mississippi El Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    South Mississippi El Pwr Assn Place: Mississippi Phone Number: 601.268.2083 Website: www.smepa.coop Outage Hotline: 601.268.2083 References: EIA Form EIA-861 Final Data File for...

  13. East Mississippi Elec Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    search Name: East Mississippi Elec Pwr Assn Place: Mississippi Phone Number: Meridian Office: 601-581-8600 -- Quitman Office: 601-776-6271 -- DeKalb Office: 601-743-2641 --...

  14. Columbia Power Coop Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Columbia Power Coop Assn Inc Place: Oregon Phone Number: HEPPNER OFFICE: 541-676-9146; CONDON OFFICE: 541-384-2023 Website: www.cbec.cc Outage Hotline:...

  15. South Louisiana Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    search Name: South Louisiana Elec Coop Assn Place: Louisiana Phone Number: Houma Office: (985) 876-6880 or Amelia Office: (985) 631-3605 Website: www.sleca.com Facebook:...

  16. Morgan County Rural Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    search Name: Morgan County Rural Elec Assn Place: Colorado Website: www.mcrea.org Twitter: @MorganCountyREA Facebook: https:www.facebook.compagesMorgan-County-Rural-Ele...

  17. Bailey County Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    Elec Coop Assn Place: Texas Phone Number: (806) 272-4504 Website: www.bcecoop.com Facebook: https:www.facebook.combcecoop Outage Hotline: (806) 272-4504 References: EIA Form...

  18. Comanche County Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    Comanche County Elec Coop Assn Place: Texas Website: www.ceca.coophome.aspx Facebook: https:www.facebook.comCECA.coop Outage Hotline: 1-800-915-2533 References: EIA Form...

  19. Idaho Cnty L&P Coop Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Cnty L&P Coop Assn, Inc Jump to: navigation, search Name: Idaho Cnty L&P Coop Assn, Inc Place: Idaho Phone Number: 208-983-1065 Website: www.iclp.coop Outage Hotline: 877-212-0424...

  20. Naknek Electric Association | Open Energy Information

    Open Energy Info (EERE)

    Naknek Electric Association Jump to: navigation, search Name: Naknek Electric Assn, Inc Place: Alaska Phone Number: 1 (907) 246-4261 Website: www.nea.coop Outage Hotline: 1 (907)...

  1. Environmental effects of interstate power trading on electricity consumption mixes

    SciTech Connect (OSTI)

    Joe Marriott; H. Scott Matthews

    2005-11-15

    Although many studies of electricity generation use national or state average generation mix assumptions, in reality a great deal of electricity is transferred between states with very different mixes of fossil and renewable fuels, and using the average numbers could result in incorrect conclusions in these studies. The authors create electricity consumption profiles for each state and for key industry sectors in the U.S. based on existing state generation profiles, net state power imports, industry presence by state, and an optimization model to estimate interstate electricity trading. Using these 'consumption mixes' can provide a more accurate assessment of electricity use in life-cycle analyses. It is concluded that the published generation mixes for states that import power are misleading, since the power consumed in-state has a different makeup than the power that was generated. And, while most industry sectors have consumption mixes similar to the U.S. average, some of the most critical sectors of the economy - such as resource extraction and material processing sectors - are very different. This result does validate the average mix assumption made in many environmental assessments, but it is important to accurately quantify the generation methods for electricity used when doing life-cycle analyses. 16 refs., 7 figs., 2 tabs.

  2. Valley Electric Assn, Inc (Nevada) | Open Energy Information

    Open Energy Info (EERE)

    179 4,679.899 42,922.927 20,844 2008-01 3,850.286 34,707.275 18,348 1,206.59 11,803.666 2,340 16.827 200.721 176 5,073.703 46,711.662 20,864 References "EIA Form EIA-861...

  3. 4-County Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    44,787 2008-12 5,629 49,312 35,980 2,031 15,395 8,710 1,337 14,148 19 8,997 78,855 44,709 2008-11 4,227 35,279 35,982 2,029 15,195 8,707 1,178 14,250 19 7,434 64,724 44,708...

  4. Victory Electric Coop Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 19820 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  5. Western Coop Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 20476 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  6. West River Electric Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    130772586951526 Outage Hotline: 605-279-2135 Outage Map: ebill.westriver.comomsoutage References: EIA Form EIA-861 Final Data File for 2010 - File1a1 Energy...

  7. Holy Cross Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    HolyCrossEnergy Outage Hotline: 970-945-5491 Outage Map: ebill.holycross.comomsoutage References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861...

  8. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Golden Valley Elec Assn Inc","Cooperative",1253161,286768,133156,833237,0 2,"Chugach Electric Assn Inc","Cooperative",1162364,534522,573447,54395,0 3,"Anchorage Municipal Light and Power","Public",1047470,139733,907737,0,0

  9. Property:Tot cons | Open Energy Information

    Open Energy Info (EERE)

    + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 44,709 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 +...

  10. Maricopa Assn. of Governments- PV and Solar Domestic Water Heating Permitting Standards

    Broader source: Energy.gov [DOE]

    In an effort to promote uniformity, the Maricopa Association of Governments (MAG) approved standard procedures for securing necessary electrical/building permits for residential (single-family) and...

  11. Method and apparatus for steam mixing a nuclear fueled electricity generation system

    DOE Patents [OSTI]

    Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

    1996-01-01

    A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  12. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"PacifiCorp","Investor-Owned",24510395,6976758,8556034,8923492,54111 2,"Provo City Corp","Public",788727,242592,410382,135753,0 3,"City of St George","Public",619529,278940,67594,272995,0 4,"Moon Lake Electric Assn

  13. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Electricity suppliers and electricity companies must also provide a fuel mix report to customers twice annually, within the June and December billing cycles. Emissions information must be disclos...

  14. Fuel Mix Disclosure

    Broader source: Energy.gov [DOE]

    California's retail electricity suppliers must disclose to all customers the fuel mix used in the generation of electricity. Utilities must use a standard label created by the California Energy...

  15. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  16. Isothermal kinetic of phase transformation and mixed electrical conductivity in Bi{sub 3}NbO{sub 7}

    SciTech Connect (OSTI)

    Wang, X.P.; Corbel, G.; Kodjikian, S.; Fang, Q.F.; Lacorre, P. . E-mail: Philippe.Lacorre@univ-lemans.fr

    2006-11-15

    Bismuth niobate (Bi{sub 3}NbO{sub 7}) exists under two crystallographic modifications, a tetragonal (type-III) phase between 800 and 900 deg. C, and a pseudocubic (type-II) phase above and below this thermal range. The quenching at room temperature of pseudocubic type-II phase made it possible to carry out a detailed study of the transformation kinetics of this metastable type-II phase to the stable type-III phase, using isothermal in situ X-ray diffraction. The obtained Avrami exponent and activation energy for the transition are around 2.5 and 3.25 eV, respectively. The value of the Avrami exponent is consistent with a three-dimensional diffusion-controlled transformation with constant nucleation rate. Investigations of electrical properties using AC impedance spectroscopy and Wagner polarization method show that the tetragonal phase exhibits higher ionic and electronic conductivities than those of the pseudocubic form. Such a deviation is likely to originate from different distributions of cations/electronic-lone-pairs and oxygen vacancies. - Graphical abstract: The metastable type-II form of Bi{sub 3}NbO{sub 7}, whose phase transformation kinetics to type-III form is studied in isothermal conditions, is shown to have a larger volume and a lower anionic (and electronic) conductivity than the type-III form of thisorite-type bismuth niobate.

  17. Category:Cedar City, UT | Open Energy Information

    Open Energy Info (EERE)

    KB SVLargeHotel Cedar City UT Moon Lake Electric Assn Inc (Utah).png SVLargeHotel Cedar Cit... 54 KB SVOutPatient Cedar City UT Moon Lake Electric Assn Inc (Utah).png SVOutPatient...

  18. Fuel Mix and Emissions Disclosure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    utility restructuring legislation requires all electric companies and electricity suppliers to provide customers with details regarding the fuel mix and emissions of electric...

  19. Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl?) solutions

    SciTech Connect (OSTI)

    Bourg, Ian C.; Sposito, Garrison

    2011-01-01

    We report new molecular dynamics results elucidating the structure of the electrical double layer (EDL) on smectite surfaces contacting mixed NaCl–CaCl2 electrolyte solutions in the range of concentrations relevant to pore waters in geologic repositories for CO2 or high-level radioactive waste (0.34–1.83 molc dm-3). Our results confirm the existence of three distinct ion adsorption planes (0-, ?-, and d-planes), often assumed in EDL models, but with two important qualifications: (1) the location of the ?- and d-planes are independent of ionic strength or ion type and (2) “indifferent electrolyte” ions can occupy all three planes. Charge inversion occurred in the diffuse ion swarm because of the affinity of the clay surface for CaCl+ ion pairs. Therefore, at concentrations {>=0.34 molc dm-3}, properties arising from long-range electrostatics at interfaces (electrophoresis, electro-osmosis, co-ion exclusion, colloidal aggregation) will not be correctly predicted by most EDL models. Co-ion exclusion, typically neglected by surface speciation models, balanced a large part of the clay mineral structural charge in the more concentrated solutions. Water molecules and ions diffused relatively rapidly even in the first statistical water monolayer, contradicting reports of rigid “ice-like” structures for water on clay mineral surfaces.

  20. Property:Utility Company | Open Energy Information

    Open Energy Info (EERE)

    EIA Revenue and Sales - September 2008 + 4-County Electric Power Assn + A A & N Electric Coop (Maryland) EIA Revenue and Sales - April 2008 + A & N Electric Coop + A &...

  1. Fuel Mix and Emissions Disclosure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    restructuring legislation, Illinois established provisions for the disclosure of fuel mix and emissions data. All electric utilities and alternative retail electric...

  2. OutageMapURL Phases Energy Services

    Open Energy Info (EERE)

    OutageMapURL Phases Energy Services County Electric Power Assn http outages county org A N Electric Coop Virginia AEP Generating Company https www aepaccount com zipr...

  3. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  4. Property:EIA/861/NercMro | Open Energy Information

    Open Energy Info (EERE)

    + true + Brainerd Public Utilities + true + Brodhead Water & Lighting Comm + true + Brown County Rural Elec Assn + true + Burke-Divide Electric Coop Inc + true + Butler County...

  5. Property:Ind cons | Open Energy Information

    Open Energy Info (EERE)

    the property "Ind cons" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 20 +...

  6. RAPID/BulkTransmission/California | Open Energy Information

    Open Energy Info (EERE)

    District Valley Electric Assn, Inc Current Projects Colorado River-Valley (and Red Bluff Substation) Eldorado-Ivanpah Carrizo-Midway Reconductoring SCEIID Joint Path 42...

  7. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  8. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  9. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  10. Fuel Mix and Emissions Disclosure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    customers the fuel mix of its electricity production and the associated sulfur dioxide, nitrogen oxide, and carbon dioxide emissions emissions, expressed in pounds per 1000...

  11. Fuel Mix and Emissions Disclosure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to disclose to residential and small commercial customers details regarding the fuel mix and emissions of electric generation. Such information is provided to customers four...

  12. Fuel Mix and Emissions Disclosure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Customer Choice and Electric Reliability Act of 2000 (P.A. 141) requires electric suppliers to disclose to customers details related to the fuel mix and emissions, in pounds...

  13. Low-Frequency Sonic Mixing Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Frequency Sonic Mixing Technology Low-Frequency Sonic Mixing Technology New Acoustic Mixing Technology Improves Productivity Using Low-Frequency, High-Intensity Sound Energy Typical mixing technology uses a drive mechanism-usually an electric, hydraulic, or pneumatic motor-to rotate a shaft with one or more impellers. While many other mixer designs are available, including static mixers that do not use motors, the motor-driven mixer is the most prevalent mixing method. Resodyn Corporation's

  14. Electricity Advisory Committee Meeting Presentations September...

    Broader source: Energy.gov (indexed) [DOE]

    Edward Cazalet, TeMix Inc. and MegaWatt Storage Farms, Inc. Susan Kennedy, Advanded Microgrid Solutions John Shelk, Electric Power Supply Association Mark Irwin, Southern...

  15. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Use: December 2015 Supply and fuel consumption In this section, we look at the resources used to produce electricity. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below, electricity generation output by fuel type and generator type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation output by region By fuel type

  16. Sylgard® Mixing Study

    SciTech Connect (OSTI)

    Bello, Mollie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Welch, Cynthia F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodwin, Lynne Alese [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Keller, Jennie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-08-22

    Sylgard® 184 and Sylgard® 186 silicone elastomers form Dow Corning® are used as potting agents across the Nuclear Weapons Complex. A standardized mixing procedure is required for filled versions of these products. The present study is a follow-up to a mixing study performed by MST-7 which established the best mixing procedure to use when adding filler to either 184 or 186 base resins. The most effective and consistent method of mixing resin and curing agent for three modified silicone elastomer recipes is outlined in this report. For each recipe, sample size, mixing type, and mixing time was varied over 10 separate runs. The results show that the THINKY™ Mixer gives reliable mixing over varying batch sizes and mixing times. Hand Mixing can give improved mixing, as indicated by reduced initial viscosity; however, this method is not consistent.

  17. Florida's electric industry and solar electric technologies

    SciTech Connect (OSTI)

    Camejo, N.

    1983-12-01

    The Florida Electric Industry is in a process of diversifying its generation technology and its fuel mix. This is being done in an effort to reduce oil consumption, which in 1981 accounted for 46.5% of the electric generation by fuel type. This does not compare well with the rest of the nation where oil use is lower. New coal and nuclear units are coming on line, and probably more will be built in the near future. However, eventhough conservation efforts may delay their construction, new power plants will have to be built to accomodate the growing demand for electricity. Other alternatives being considered are renewable energy resources. The purpose of this paper is to present the results of a research project in which 10 electric utilities in Florida and the Florida Electric Power Coordinating Group rated six Solar Electric options. The Solar Electric options considered are: 1) Wind, 2) P.V., 3) Solar thermal-electric, 4) OTEC, 5) Ocean current, and 6) Biomass. The questionaire involved rating the economic and technical feasibility, as well as, the potential environmental impact of these options in Florida. It also involved rating the difficulty in overcoming institutional barriers and assessing the status of each option. A copy of the questionaire is included after the references. The combined capacity of the participating utilities represent over 90% of the total generating capacity in Florida. A list of the participating utilities is also included. This research was done in partial fulfillment for the Mater's of Science Degree in Coastal Zone Management. This paper is complementary to another paper (in these condensed conference proceedings) titled COASTAL ZONE ENERGY MANAGEMENT: A multidisciplinary approach for the integration of Solar Electric Systems with Florida's power generation system, which present a summary of the Master's thesis.

  18. Consumer preferences for electric vehicles. Final report

    SciTech Connect (OSTI)

    Garrison, W.L.; Calfee, J.E.; Bruck, H.W.

    1986-06-01

    A small-sample survey of consumer preferences for a second car - featuring both conventional and electric vehicle choices - indicates a proelectric bias. The potential of electric cars in the utility market largely depends on dramatic improvements in battery technology and the right mix of electricity and gasoline prices.

  19. Fuel Mix and Emissions Disclosure | Department of Energy

    Energy Savers [EERE]

    Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure < Back Eligibility Investor-Owned Utility Municipal Utilities Cooperative Utilities Program Info Sector Name State Website http://www.powertochoose.org State Texas Program Type Generation Disclosure Summary Disclosure Requirements As part of Texas's 1999 electric utility restructuring legislation, the state's retail electric providers (REPs) are required to disclose certain information in the form of a standardized

  20. Hydropower Still in the Mix | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Still in the Mix Hydropower Still in the Mix April 27, 2015 - 9:39am Addthis Hydropower Still in the Mix Hoyt Battey Market Acceleration and Deployment Program Manager, Wind and Water Power Technologies Office Hydropower has provided clean, reliable power for more than a hundred years, and remains the largest source of renewable electricity in the United States. While hydropower dates back to the early 1900s, many people are unaware of hydropower's existing infrastructure since newer

  1. List of United States Utility Companies and Aliases | Open Energy...

    Open Energy Info (EERE)

    and is sourced from EIA Form EIA-861 Final Data File for 2010 - File1a1. 3 Phases Energy Services (ID 21093) 4-County Electric Power Assn (ID 6641) A & N Electric Coop...

  2. Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries With their immense potential for increasing the country's energy, economic, and environmental security, plug-in electric vehicles (PEVs, including plug-in hybrid electric and all-electric) will play a key role in the country's transportation future. In fact, transitioning to a mix of plug-in

  3. Mixed oxide solid solutions

    DOE Patents [OSTI]

    Magno, Scott (Dublin, CA); Wang, Ruiping (Fremont, CA); Derouane, Eric (Liverpool, GB)

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  4. Fuel Mix Disclosure

    Broader source: Energy.gov [DOE]

    In January 1999, the Colorado Public Utility Commission (PUC) adopted regulations requiring the state's utilities to disclose information regarding their fuel mix to retail customers. Utilities are...

  5. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  6. ADVANCED MIXING MODELS

    SciTech Connect (OSTI)

    Lee, S.; Dimenna, R.; Tamburello, D.

    2011-02-14

    The process of recovering and processing High Level Waste (HLW) the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four mixers (pumps) located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are typically set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The focus of the present work is to establish mixing criteria applicable to miscible fluids, with an ultimate goal of addressing waste processing in HLW tanks at SRS and quantifying the mixing time required to suspend sludge particles with the submersible jet pump. A single-phase computational fluid dynamics (CFD) approach was taken for the analysis of jet flow patterns with an emphasis on the velocity decay and the turbulent flow evolution for the farfield region from the pump. Literature results for a turbulent jet flow are reviewed, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. The work described in this report suggests a basis for further development of the theory leading to the identified mixing indicators, with benchmark analyses demonstrating their consistency with widely accepted correlations. Although the indicators are somewhat generic in nature, they are applied to Savannah River Site (SRS) waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. One of the main objectives in the waste processing is to provide feed of a uniform slurry composition at a certain weight percentage (e.g. typically {approx}13 wt% at SRS) over an extended period of time. In preparation of the sludge for slurrying, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination?

  7. Mixing method and apparatus

    DOE Patents [OSTI]

    Green, Norman W. (Redwood City, CA)

    1982-06-15

    Method of mixing particulate materials comprising contacting a primary source and a secondary source thereof whereby resulting mixture ensues; preferably at least one of the two sources has enough motion to insure good mixing and the particulate materials may be heat treated if desired. Apparatus for such mixing comprising an inlet for a primary source, a reactor communicating therewith, a feeding means for supplying a secondary source to the reactor, and an inlet for the secondary source. Feeding means is preferably adapted to supply fluidized materials.

  8. Nearly discontinuous chaotic mixing

    SciTech Connect (OSTI)

    Sharp, David Howland [Los Alamos National Laboratory; Lim, Hyun K [STONYBROOK UNIV.; Yu, Yan [STONYBROOK UNIV.; Glimm, James G [STONYBROOK UNIV.

    2009-01-01

    A new scientific approach is presented for a broad class of chaotic problems involving a high degree of mixing over rapid time scales. Rayleigh-Taylor and Richtmyer-Meshkov unstable flows are typical of such problems. Microscopic mixing properties such as chemical reaction rates for turbulent mixtures can be obtained with feasible grid resolution. The essential dependence of (some) fluid mixing observables on transport phenomena is observed. This dependence includes numerical as well as physical transport and it includes laminar as well as turbulent transport. A new approach to the mathematical theory for the underlying equations is suggested.

  9. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  10. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  11. Roles of electricity: Electric steelmaking

    SciTech Connect (OSTI)

    Burwell, C.C.

    1986-07-01

    Electric steel production from scrap metal continues to grow both in total quantity and in market share. The economics of electric-steel production in general, and of electric minimills in particular, seem clearly established. The trend towards electric steelmaking provides significant economic and competitive advantages for producers and important overall economic, environmental, and energy advantages for the United States at large. Conversion to electric steelmaking offers up to a 4-to-1 advantage in terms of the overall energy used to produce a ton of steel, and s similar savings in energy cost for the producer. The amount of old scrap used to produce a ton of steel has doubled since 1967 because of the use of electric furnaces.

  12. Electric machine

    DOE Patents [OSTI]

    El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Reddy, Patel Bhageerath (Madison, WI)

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  13. Category:Hospital | Open Energy Information

    Open Energy Info (EERE)

    of Memphis Tennessee (Utility Company).png SVHospital Nashville T... 71 KB SVHospital Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVHospital Salt Lake C... 57 KB...

  14. Property:Tot rev (thousand $) | Open Energy Information

    Open Energy Info (EERE)

    "Tot rev (thousand )" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 6,790 +...

  15. Property:Ind rev (thousand $) | Open Energy Information

    Open Energy Info (EERE)

    "Ind rev (thousand )" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 1,350 +...

  16. Property:Ind sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    property "Ind sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 18,637 +...

  17. Property:Com cons | Open Energy Information

    Open Energy Info (EERE)

    the property "Com cons" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 8,105 +...

  18. Property:Res sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    property "Res sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 35,568 +...

  19. Property:Res cons | Open Energy Information

    Open Energy Info (EERE)

    the property "Res cons" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 35,751 +...

  20. Property:Tot sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    property "Tot sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 69,154 +...

  1. Property:Res rev (thousand $) | Open Energy Information

    Open Energy Info (EERE)

    "Res rev (thousand )" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 3,675 +...

  2. Property:ShortName | Open Energy Information

    Open Energy Info (EERE)

    the property "ShortName" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 2008-04...

  3. Property:Com rev (thousand $) | Open Energy Information

    Open Energy Info (EERE)

    "Com rev (thousand )" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 1,765 +...

  4. Property:Com sales (mwh) | Open Energy Information

    Open Energy Info (EERE)

    property "Com sales (mwh)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 14,949 +...

  5. ADVANCED MIXING MODELS

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R; David Tamburello, D

    2008-11-13

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and schedule savings. The focus of the present work is to establish mixing criteria associated with the waste processing at SRS and to quantify the mixing time required to suspend sludge particles with the submersible jet pump. Literature results for a turbulent jet flow are reviewed briefly, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. One of the main objectives in the waste processing is to provide the DWPF a uniform slurry composition at a certain weight percentage (typically {approx}13 wt%) over an extended period of time. In preparation of the sludge for slurrying to DWPF, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition for DWPF? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination? Grenville and Tilton (1996) investigated the mixing process by giving a pulse of tracer (electrolyte) through the submersible jet nozzle and by monitoring the conductivity at three locations within the cylindrical tank. They proposed that the mixing process was controlled by the turbulent kinetic energy dissipation rate in the region far away from the jet entrance. They took the energy dissipation rates in the regions remote from the nozzle to be proportional to jet velocity and jet diameter at that location. The reduction in the jet velocity was taken to be proportional to the nozzle velocity and distance from the nozzle. Based on their analysis, a correlation was proposed. The proposed correlation was shown to be valid over a wide range of Reynolds numbers (50,000 to 300,000) with a relative standard deviation of {+-} 11.83%. An improved correlat

  6. Community D Mixed/Pine Hardwood D Bottomland Hardwood Mixed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Mixed/Pine Hardwood D Bottomland Hardwood _ Mixed Swamp Forest Soils 540 Soils Soil Series and Phase DCh .OrC .Sh .Ta o 540 1080 Meters N A sc Figure 7-2. Plant communities and soils associated with the Mixed Swamp Forest Set-Aside Area. 7-7 Set-Aside 7: Mixed Swamp Forest

  7. Solar Power and the Electric Grid, Energy Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    In today's electricity generation system, different resources make different contributions to the electricity grid. This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity system. The advantages of a diversified mix of power generation systems are highlighted.

  8. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  9. Electrical connector

    DOE Patents [OSTI]

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  10. Mixed crystal organic scintillators

    DOE Patents [OSTI]

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  11. MixDown

    Energy Science and Technology Software Center (OSTI)

    2010-01-01

    MixDown is a meta-build tool that orchestrates and manages the building of multiple 3rd party libraries. It can manage the downloading, uncompressing, unpacking, patching, configuration, build, and installation of 3rd party libraries using a variety of configuration and build tools. As a meta-build tool, it relies on 3rd party tools such as GNU Autotools, make, Cmake, scons, etc. to actually confugure and build libraries. MixDown includes an extensive database of settings to be used formore » general machines and specific leadership class computing resources.« less

  12. Fact #753: November 12, 2012 Sources of Electricity by State | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 3: November 12, 2012 Sources of Electricity by State Fact #753: November 12, 2012 Sources of Electricity by State Electric vehicles do not create emissions from a tailpipe like conventional vehicles do. The electricity used to fuel electric vehicles is generated at power plants all across the nation. Because each plant that generates electricity can use a different mix of energy sources, the emissions associated with electric vehicle charging can vary significantly depending on

  13. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S. (Pleasanton, CA); Wilson, James R. (Livermore, CA); McDonald, Jr., Charles A. (Danville, CA)

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  14. Realizing a supercapacitor in an electrical circuit

    SciTech Connect (OSTI)

    Fukuhara, Mikio Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2014-11-17

    Capacitors are commonly used in electronic resonance circuits; however, capacitors have not been used for storing large amounts of electrical energy in electrical circuits. Here, we report a superior RC circuit which serves as an electrical storage system characterized by quick charging and long-term discharging of electricity. The improved energy storage characteristics in this mixed electric circuit (R{sub 1}?+?R{sub 2}C{sub 1}) with small resistor R{sub 1}, large resistor R{sub 2}, and large capacitor C{sub 1} are derived from the damming effect by large R{sub 2} in simple parallel R{sub 2}C{sub 1} circuit. However, no research work has been carried out previously on the use of capacitors as electrical energy storage devices in circuits. Combined with nanotechnology, we hope that our finding will play a remarkable role in a variety of applications such as hybrid electric vehicles and backup power supplies.

  15. Polymer flood mixing apparatus and method

    SciTech Connect (OSTI)

    Cox, B.M.; Stephenson, S.V.

    1984-02-28

    A method and an apparatus are described for controlling the viscosity of a mixture by controlling the volumetric flow of a fluid with respect to the volumetric flow of another fluid. The apparatus includes volumetric flow detectors for detecting the flow of the 2 fluids. An electronic controller responds to electric signals generated by the volumetric flow detectors in proportion to the respective detective volumetric flows. The output of the controller operates a flow drive element, such as a pump, so that the volumetric flow of one of the fluids is controlled. The volumetric flow of the controlled fluid and the volumetric flow of the other fluid are mixed by a suitable mixer to obtain the mix having the desired viscosity. 7 claims

  16. TO: Honorable Patricia Hoffman, Assistant Secretary for Electricity Delivery

    Energy Savers [EERE]

    TO: Honorable Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, U.S. Department of Energy FROM: Electricity Advisory Committee (EAC) Richard Cowart, Chair DATE: September 25, 2014 RE: Expanding and Modernizing the Electric Power Delivery System for the 21 st Century Introduction The United States electricity system is undergoing more change than it has in many decades. The causes are numerous: a changing mix of resources driven by lowering prices, climate

  17. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  18. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Massachusetts's 1997 electric utility restructuring legislation authorized the Massachusetts Department of Telecommunications and Energy (DTE)* to require certain electricity providers to disclose...

  19. A mixed plug flow anaerobic digester for dairy manure

    SciTech Connect (OSTI)

    Cournoyer, M.S.; Delisle, U.; Ferland, D.; Chagnon, R.

    1985-01-01

    In 1982, a ''mixed plug-flow'' anaerobic digester has been built to produce biogas from the manure of 350 dairy cows and, subsequently, to produce electricity for on-farm use only. This paper describes the digester and presents the main results of one year of technical follow-up.

  20. South Mississippi El Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  1. Golden Valley Elec Assn Inc | Open Energy Information

    Open Energy Info (EERE)

    36,891 1,877.823 13,175.914 6,327 8,171.591 69,159.555 448 14,556.482 111,832.096 43,666 2009-01 5,677.62 38,170.143 36,902 2,140.742 15,217.149 6,337 8,864.82 76,857.948 449...

  2. Mountain View Elec Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: Colorado Website: www.mvea.coop Facebook: https:www.facebook.comMVEAInc Outage Hotline: (800) 388-9881 Outage Map: outage.mvea.org References: EIA Form EIA-861...

  3. Calhoun County Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    Facebook: https:www.facebook.compagesCalhoun-County-REC173498466069004?skwall Outage Hotline: 800-821-4879 Outage Map: www.iowarec.orgoutages References: EIA Form...

  4. Wright-Hennepin Coop Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    3,398.952 34,434.725 40,549 1,975.209 23,239.907 4,920 388.083 5,035.346 51 5,762.244 62,709.978 45,520 2008-04 3,544.862 38,665.009 40,564 1,688.916 21,647.519 4,965 376.604...

  5. Wabash Valley Power Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Utility Id 40211 Utility Location Yes Ownership C NERC Location RFC,SERC NERC RFC Yes RTO PJM Yes ISO MISO Yes Activity Generation Yes Activity Transmission Yes Activity Buying...

  6. McLeod Cooperative Power Assn | Open Energy Information

    Open Energy Info (EERE)

    www.mcleodcoop.com Outage Hotline: 1.800.927.5685 Outage Map: info.mcleodcoop.comomsoutage References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861...

  7. Meeker Coop Light & Power Assn | Open Energy Information

    Open Energy Info (EERE)

    erative-Light-Power-Assoc400233190021573 Outage Hotline: 800.232.6257 Outage Map: pyxis-oms.comOutageMapMeeker References: EIA Form EIA-861 Final Data File for 2010 - File1a1...

  8. Osage Valley Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    Outage Hotline: 660-679-3131 or 800-889-6832 Outage Map: ebill.osagevalley.comomsouta References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861...

  9. Southern Pine Elec Power Assn | Open Energy Information

    Open Energy Info (EERE)

    87,734 60,157 3,222 30,360 4,536 5,087 63,820 24 18,195 181,914 64,717 2008-05 6,897 62,132 60,058 2,887 27,862 4,522 4,430 56,228 24 14,214 146,222 64,604 2008-04 6,581 59,423...

  10. Singing River Elec Pwr Assn (Mississippi) | Open Energy Information

    Open Energy Info (EERE)

    9,647.445 93,322.028 60,225 3,117.42 30,825.248 8,207 692.763 8,259.846 11 13,457.628 132,407.122 68,443 2008-06 9,059.584 86,892.462 60,106 3,046.146 30,089.083 8,193 709.428...

  11. Maricopa Assn. of Governments - PV and Solar Domestic Water Heating...

    Broader source: Energy.gov (indexed) [DOE]

    June 18, 2003, MAG passed permit submission requirements for residential solar domestic water heating systems. This is in addition to the existing standards for residential and...

  12. Magnetically coupled system for mixing

    DOE Patents [OSTI]

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2014-04-01

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  13. Magnetically coupled system for mixing

    DOE Patents [OSTI]

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2015-09-22

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  14. Electricity - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural gas expected to surpass coal in mix of fuel used for U.S. power generation in 2016 natural gasgenerationcoal Total electricity sales fell in 2015 for 5th time in past 8 ...

  15. Two-phase mixed media dielectric with macro dielectric beads for enhancing resistivity and breakdown strength

    SciTech Connect (OSTI)

    Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary

    2014-06-10

    A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.

  16. Robertsons Ready Mix | Open Energy Information

    Open Energy Info (EERE)

    Ready Mix Jump to: navigation, search Name Robertsons Ready Mix Facility Robertsons Ready Mix Sector Wind energy Facility Type Community Wind Facility Status In Service Owner...

  17. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics,...

  18. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information and Staff The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S....

  19. Electrical receptacle

    DOE Patents [OSTI]

    Leong, R.

    1993-06-22

    The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

  20. Electrical Safety

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOT MEASUREMENT SENSITIVE DOE HANDBOOK ELECTRICAL SAFETY DOE-HDBK-1092-2013 July 2013 Superseding DOE-HDBK-1092-2004 December 2004 U.S. Department of Energy AREA SAFT Washington, D.C.20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1092-2013 Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/techstds/ ii DOE-HDBK-1092-2013 FOREWORD 1. This Department of Energy (DOE) Handbook is

  1. Electrical Safety

    Office of Environmental Management (EM)

    NOT MEASUREMENT SENSITIVE DOE HANDBOOK ELECTRICAL SAFETY DOE-HDBK-1092-2013 July 2013 Superseding DOE-HDBK-1092-2004 December 2004 U.S. Department of Energy AREA SAFT Washington, D.C.20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1092-2013 Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/techstds/ ii DOE-HDBK-1092-2013 FOREWORD 1. This Department of Energy (DOE) Handbook is

  2. Smoothing of mixed complementarity problems

    SciTech Connect (OSTI)

    Gabriel, S.A.; More, J.J.

    1995-09-01

    The authors introduce a smoothing approach to the mixed complementarity problem, and study the limiting behavior of a path defined by approximate minimizers of a nonlinear least squares problem. The main result guarantees that, under a mild regularity condition, limit points of the iterates are solutions to the mixed complementarity problem. The analysis is applicable to a wide variety of algorithms suitable for large-scale mixed complementarity problems.

  3. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies

  4. Mixed Oxide Fuel Fabrication Facility

    National Nuclear Security Administration (NNSA)

    0%2A en Mixed Oxide (MOX) Fuel Fabrication Facility http:nnsa.energy.govfieldofficessavannah-river-field-officemixed-oxide-mox-fuel-fabrication-facility

  5. Mixing in polymeric microfluidic devices.

    SciTech Connect (OSTI)

    Schunk, Peter Randall; Sun, Amy Cha-Tien; Davis, Robert H. (University of Colorado at Boulder, Boulder, CO); Brotherton, Christopher M. (University of Colorado at Boulder, Boulder, CO)

    2006-04-01

    This SAND report describes progress made during a Sandia National Laboratories sponsored graduate fellowship. The fellowship was funded through an LDRD proposal. The goal of this project is development and characterization of mixing strategies for polymeric microfluidic devices. The mixing strategies under investigation include electroosmotic flow focusing, hydrodynamic focusing, physical constrictions and porous polymer monoliths. For electroosmotic flow focusing, simulations were performed to determine the effect of electroosmotic flow in a microchannel with heterogeneous surface potential. The heterogeneous surface potential caused recirculations to form within the microchannel. These recirculations could then be used to restrict two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the mixing region surface potential to the average channel surface potential was made large in magnitude and negative in sign, and when the ratio of the characteristic convection time to the characteristic diffusion time was minimized. Based on these results, experiments were performed to evaluate the manipulation of surface potential using living-radical photopolymerization. The material chosen to manipulate typically exhibits a negative surface potential. Using living-radical surface grafting, a positive surface potential was produced using 2-(Dimethylamino)ethyl methacrylate and a neutral surface was produced using a poly(ethylene glycol) surface graft. Simulations investigating hydrodynamic focusing were also performed. For this technique, mixing is enhanced by using a tertiary fluid stream to constrict the two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the tertiary flow stream flow-rate to the mixing streams flow-rate was maximized. Also, like the electroosmotic focusing mixer, mixing was also maximized when the ratio of the characteristic convection time to the characteristic diffusion time was minimized. Physical constrictions were investigated through simulations. The results show that the maximum mixing occurs when the height of the mixing region is minimized. Finally, experiments were performed to determine the effectiveness of using porous polymer monoliths to enhance mixing. The porous polymer monoliths were constructed using a monomer/salt paste. Two salt crystal size ranges were used; 75 to 106 microns and 53 to 180 microns. Mixing in the porous polymer monoliths fabricated with the 75 to 106 micron salt crystal size range was six times higher than a channel without a monolith. Mixing in the monolith fabricated with the 53 to 180 micron salt crystal size range was nine times higher.

  6. Mixed Waste Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  7. Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 |

    Office of Environmental Management (EM)

    Department of Energy Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. File Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (Excel) File Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (CSV) Image icon Chart of Electric and Hybrid Electric Vehicle

  8. Is the tribimaximal mixing accidental?

    SciTech Connect (OSTI)

    Abbas, Mohammed; Smirnov, A. Yu.

    2010-07-01

    The tribimaximal (TBM) mixing is not accidental if structures of the corresponding leptonic mass matrices follow immediately from certain (residual or broken) flavor symmetry. We develop a simple formalism which allows one to analyze effects of deviations of the lepton mixing from TBM on the structure of the neutrino mass matrix and on the underlying flavor symmetry. We show that possible deviations from the TBM mixing can lead to strong modifications of the mass matrix and strong violation of the TBM-mass relations. As a result, the mass matrix may have an 'anarchical' structure with random values of elements or it may have some symmetry that differs from the TBM symmetry. Interesting examples include matrices with texture zeros, matrices with certain 'flavor alignment' as well as hierarchical matrices with a two-component structure, where the dominant and subdominant contributions have different symmetries. This opens up new approaches to understanding the lepton mixing.

  9. Mixed-mu superconducting bearings

    DOE Patents [OSTI]

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  10. Mixed-mu superconducting bearings

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Mulcahy, Thomas M. (Western Springs, IL)

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  11. Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles...

    Open Energy Info (EERE)

    Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric...

  12. Electrical Generation for More-Electric Aircraft using Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells This study, completed by...

  13. Scientists ignite aluminum water mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists ignite aluminum water mix Scientists ignite aluminum water mix Don't worry, that beer can you're holding is not going to spontaneously burst into flames. June 30, 2014 Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the compound burns like a Fourth of July sparkler. Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the

  14. Overview of mixed waste issues

    SciTech Connect (OSTI)

    Piciulo, P.L.; Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.

    1986-01-01

    Based on BNL's study it was concluded that there are LLWs which contain chemically hazardous components. Scintillation liquids may be considered an EPA listed hazardous waste and are, therefore, potential mixed wastes. Since November, 1985 no operating LLW disposal site will accept these wastes for disposal. Unless such wastes contain de minimis quantities of radionuclides, they cannot be disposed of at an EPA an EPA permitted site. Currently generators of LSC wastes can ship de minimis wastes to be burned at commercial facilities. Oil wastes will also eventually be an EPA listed waste and thus will have to be considered a potential radioactive mixed wasted unless NRC establishes de minimis levels of radionuclides below which oils can be managed as hazardous wastes. Regarding wastes containing lead metal there is some question as to the extent of the hazard posed by lead disposed in a LLW burial trench. Chromium-containing wastes would have to be tested to determine whether they are potential mixed wastes. There may be other wastes that are mixed wastes; the responsibility for determining this rests with the waste generator. It is believed that there are management options for handling potential mixed wastes but there is no regulatory guidance. BNL has identified and evaluated a variety of treatment options for the management of potential radioactive mixed wastes. The findings of that study showed that application of a management option with the purpose of addressing EPA concern can, at the same time, address stabilization and volume reduction concerns of NRC.

  15. Electrical safety guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  16. DOE handbook electrical safety

    SciTech Connect (OSTI)

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  17. Edison Electric Institute Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the Edison Electric Institute (EEI) and the current electricity landscape.

  18. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Electric Power Sector comprises electricity-only and combined heat and power (CHP) plants within the North American Industrial Classification System 22 category whose...

  19. DOE Electricity Advisory Committee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Advisory Committee March 2015 1 MEMORANDUM TO: Honorable Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, U.S. Department of ...

  20. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See all Electricity Reports Electricity Monthly Update With Data for November 2014 | Release Date: Jan. 26, 2015 | Next Release Date: Feb. 24, 2015 Previous Issues Issue:...

  1. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Update November 28, 2012 Map of Electric System Selected for Daily Peak Demand was replaced with the correct map showing Selected Wholesale Electricity and Natural Gas Locations....

  2. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general...

  3. Annual Power Electric

    U.S. Energy Information Administration (EIA) Indexed Site

    Noncoincident Peak Load by North American Electric Reliability Corporation Assessment Area, Actual Table 8.6.B. Noncoincident Peak Load by North American Electric Reliability ...

  4. Integrating Electricity Subsector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrating Electricity Subsector Failure Scenarios into a Risk Assessment Methodology ... Executive, Cyber Security Electric Power Research Institute (EPRI) For more information on ...

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada Electricity Profile 2013 Table 1. 2013 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,652 34 Electric...

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Electricity Profile 2013 Table 1. 2013 Summary statistics (Minnesota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 15,758 26 Electric...

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Electricity Profile 2013 Table 1. 2013 Summary statistics (New York) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 39,918 6 Electric...

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Electricity Profile 2013 Table 1. 2013 Summary statistics (Vermont) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 1,255 50 Electric...

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric...

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Electricity Profile 2013 Table 1. 2013 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,329 41 Electric utilities...

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Electricity Profile 2013 Table 1. 2013 Summary statistics (Virginia) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 24,828 16 Electric...

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Electricity Profile 2013 Table 1. 2013 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,801 19 Electric...

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Electricity Profile 2013 Table 1. 2013 Summary statistics (Texas) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 109,584 1 Electric...

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin Electricity Profile 2013 Table 1. 2013 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,342 23 Electric...

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Electricity Profile 2013 Table 1. 2013 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,128 11 Electric...

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Electricity Profile 2013 Table 1. 2013 Summary statistics (New Jersey) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 18,997 22 Electric...

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Electricity Profile 2013 Table 1. 2013 Summary statistics (Pennsylvania) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 43,040 5 Electric...

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Electricity Profile 2013 Table 1. 2013 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,449 36 Electric utilities...

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Electricity Profile 2013 Table 1. 2013 Summary statistics (Alaska) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 2,384 48 Electric...

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Electricity Profile 2013 Table 1. 2013 Summary statistics (Oklahoma) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 23,300 17 Electric...

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric...

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Electricity Profile 2013 Table 1. 2013 Summary statistics (Maryland) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 12,339 33 Electric...

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (South Carolina) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 23,017 18 Electric...

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee Electricity Profile 2013 Table 1. 2013 Summary statistics (Tennessee) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,326 20 Electric...

  5. Electricity | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources Electricity Electricity March 17, 2016 Dr. Imre Gyuk -- pictured speaking at a Green Mountain Power energy storage event -- was recently recognized for his game-changing ...

  6. Independent Oversight Review, Advanced Mixed Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Mixed Waste Treatment Project - April 2013 Independent Oversight Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation Protection...

  7. CASL - Westinghouse Electric Company

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Westinghouse Electric Company Cranberry Township, PA Westinghouse Electric Company provides fuel, services, technology, plant design and equipment for the commercial nuclear electric power industry. Westinghouse nuclear technology is helping to provide future generations with safe, clean and reliable electricity. Key Contributions Definition of CASL challenge problems Existing codes and expertise Data for validation Computatinoal fluid dynamics modeling and analysis Development of test stand for

  8. Lesson 2- Electricity Basics

    Broader source: Energy.gov [DOE]

    It’s difficult to imagine life without convenient electricity. You just flip a switch or plug in an appliance, and it’s there. But how did it get there? Many steps go into providing the reliable electricity we take for granted. This lesson takes a closer look at electricity. It follows the path of electricity from the fuel source to the home, including the power plant and the electric power grid. It also covers the role of electric utilities in the generation, transmission, and distribution of electricity.

  9. Nonideal Rayleigh-Taylor mixing

    SciTech Connect (OSTI)

    Sharp, David Howland [Los Alamos National Laboratory; Lin, Hyun K [STONY BROOK UNIV.; Iwerks, Justin G [Los Alamos National Laboratory; Gliman, James G [Los Alamos National Laboratory; [NON LANL

    2009-01-01

    Rayleigh-Taylor mixing is a classical hydrodynamic Instability, which occurs when a light fluid pushes against a heavy fluid. The two main sources of nonideal behavior in Rayleigh-Taylor (RT) mixing are regularizations (physical and numerical) which produce deviations from a pure Euler equation, scale Invariant formulation, and non Ideal (i.e. experimental) initial conditions. The Kolmogorov theory of turbulence predicts stirring at all length scales for the Euler fluid equations without regularization. We Interpret mathematical theories of existence and non-uniqueness in this context, and we provide numerical evidence for dependence of the RT mixing rate on nonideal regularizations, in other words indeterminacy when modeled by Euler equations. Operationally, indeterminacy shows up as non unique solutions for RT mixing, parametrized by Schmidt and Prandtl numbers, In the large Reynolds number (Euler equation) limit. Verification and validation evidence is presented for the large eddy simulation algorithm used here. Mesh convergence depends on breaking the nonuniqueness with explicit use of the laminar Schmidt and PrandtJ numbers and their turbulent counterparts, defined in terms of subgrid scale models. The dependence of the mixing rate on the Schmidt and Prandtl numbers and other physical parameters will be illustrated. We demonstrate numerically the influence of initial conditions on the mixing rate. Both the dominant short wavelength Initial conditions and long wavelength perturbations are observed to playa role. By examination of two classes of experiments, we observe the absence of a single universal explanation, with long and short wavelength initial conditions, and the various physical and numerical regularizations contributing In different proportions In these two different contexts.

  10. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy

  11. Electricity Transmission, A Primer

    Office of Environmental Management (EM)

    Transmission A Primer National Council on Electricity Policy National Council on Electricity Policy i Electricity Transmission A Primer By Matthew H. Brown, National Conference of State Legislatures Richard P. Sedano, The Regulatory Assistance Project National Council on Electric Policy The National Council on Electricity Policy is a joint venture among the National Conference of State Legislatures (NCSL), the National Association of Regulatory Utility Commissioners (NARUC) and the National

  12. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    The Ohio Public Utilities Commission (PUCO) adopted rules in 2000 to implement this policy; the rules have been amended subsequently. There are separate rules for electric utilities providing a...

  13. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Information must be provided to customers and to the Virginia State Corporation Commission (SCC) at least once annually. If any portion of this information is unavailable, the electricity provide...

  14. Mixed ternary heterojunction solar cell

    DOE Patents [OSTI]

    Chen, Wen S.; Stewart, John M.

    1992-08-25

    A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

  15. Baltimore Gas & Electric Company (Electric) - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    AC: 30 Recycling RefrigeratorFreezer: 50 ACDehumidifier: 25 Summary The Baltimore Gas & Electric Company (BGE) offers rebates for residential customers to improve the...

  16. Advances in compressible turbulent mixing

    SciTech Connect (OSTI)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  17. Effects of gas injection condition on mixing efficiency in the ladle refining process

    SciTech Connect (OSTI)

    Pan, S.M.; Chiang, J.D.; Hwang, W.S.

    1997-02-01

    The aim of this research was to investigate the effects of injection condition on the mixing efficiency of the gas injection treatment of the ladle refining process in steelmaking. A water modeling approach was employed. A NaCl solution was injected into the vessel and the electric conductivity value of the water solution was measured to represent the concentration of the additive. The results of this investigation reveal that up to a certain level, mixing efficiency is improved as the gas flow rate increases. Off-center injection is better than centerline injection. However, the injection lance should not be too close to the wall. Also, mixing efficiency is improved when the submerged depth of the immersion lance increases. The immersion hood has a optimal size as far as mixing efficiency is concerned. A larger or smaller hood would reduce its efficiency. The submerged depth of the immersion hood should be kept to a minimum to improve mixing efficiency.

  18. Electric arc saw apparatus

    DOE Patents [OSTI]

    Deichelbohrer, Paul R [Richland, WA

    1986-01-01

    A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.

  19. Electric Efficiency Standard

    Broader source: Energy.gov [DOE]

    In December 2009, the Indiana Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity sa...

  20. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    cheap price of natural gas reduced coals share of electricity production. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power...

  1. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  2. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  3. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-09-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  4. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-11-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  5. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    End Use: August 2015 Retail ratesprices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based...

  6. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by state Percent Change Per KWh map showing U.S. electric industry percent...

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Electricity Profile 2013 Table 1. 2013 Summary statistics (Georgia) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 38,210 7 Electric...

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Electricity Profile 2013 Table 1. 2013 Summary statistics (Arizona) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 27,910 13 Electric...

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine Electricity Profile 2013 Table 1. 2013 Summary statistics (Maine) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 4,499 43 Electric...

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Electricity Profile 2013 Table 1. 2013 Summary statistics (Utah) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 7,698 39 Electric utilities 6,669...

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Electricity Profile 2013 Table 1. 2013 Summary statistics (Hawaii) Item Value U.S. Rank Primary energy source Petroleum Net summer capacity (megawatts) 2,757 47 Electric...

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Electricity Profile 2013 Table 1. 2013 Summary statistics (Kentucky) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 21,004 21 Electric...

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana Electricity Profile 2013 Table 1. 2013 Summary statistics (Indiana) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 27,196 14 Electric...

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Electricity Profile 2013 Table 1. 2013 Summary statistics (Colorado) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 14,769 30 Electric...

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Electricity Profile 2013 Table 1. 2013 Summary statistics (Ohio) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 32,482 8 Electric utilities 20,779...

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Electricity Profile 2013 Table 1. 2013 Summary statistics (Iowa) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 15,929 25 Electric utilities...

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Electricity Profile 2013 Table 1. 2013 Summary statistics (Illinois) Item Value U.S. Rank Primary energy source Nuclear Net summer capacity (megawatts) 44,950 4 Electric...

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Electricity Profile 2013 Table 1. 2013 Summary statistics (New Mexico) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 7,938 38 Electric...

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Electricity Profile 2013 Table 1. 2013 Summary statistics (Kansas) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 14,093 32 Electric...

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Electricity Profile 2013 Table 1. 2013 Summary statistics (Florida) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 58,781 3 Electric...

  1. Estimating the Value of Electricity Storage Resources in Electricity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research and development for electricity storage technologies and applications. PDF icon EAC - Estimating the Value of Electricity Storage Resources in Electricity Markets Oct ...

  2. Panasonic Electric Works Ltd formerly Matsushita Electric Works...

    Open Energy Info (EERE)

    Electric Works Ltd (formerly Matsushita Electric Works) Place: Kadoma-shi, Osaka, Japan Zip: 571-8686 Product: Japanese manufacturer of mainly electric appliances including...

  3. Table 2a. Electricity Consumption and Electricity Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Home Page Home > Commercial Buildings Home > Sq Ft Tables > Table 2a. Electricity Consumption per Sq Ft Table 2a. Electricity Consumption and Electricity...

  4. Electric arc saw apparatus

    DOE Patents [OSTI]

    Deichelbohrer, P.R.

    1983-08-08

    A portable, hand-held electric arc saw apparatus comprising a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc between the blade and a workpiece of opposite polarity. Electrically conducting means are provided on said frame for transmitting current to said blade. A pair of freely movable endless belts in the form of crawler treads are employed to facilitate movement of the apparatus relative to the workpiece.

  5. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    End Use: December 2015 Retail rates/prices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on

  6. EIA Electric Power Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EIA Electric Power Forms EIA Electric Power Forms Listing of Publicly Available and Confidential Data EIA's statistical surveys encompass each significant electric supply and demand activity in the United States. Most of the electric power survey forms resulting data elements are published, but respondent confidentiality is required. The chart below shows the data elements for each survey form and how each data element is treated in regard to confidentiality. Data Categories Data collection

  7. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  8. Syngas Mixed Alcohol Cost Validation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1, 2013 DOE Bioenergy Technologies Office: Project Peer Review Syngas Mixed Alcohol Cost Validation Abhijit Dutta, NREL This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement Enable research and development of cost-competitive biomass to liquid fuels by providing: - Techno-economic analysis (TEA) - Feedback to the research efforts Specific objective in 2012: Provide TEA and validate DOE BETO's goal to demonstrate technologies capable

  9. Integrating Electricity Subsector

    Office of Environmental Management (EM)

    Integrating Electricity Subsector Failure Scenarios into a Risk Assessment Methodology 3002001181 | DEC 2013 Program Leads Jason D. Christopher Technical Lead, Cyber Security Capabilities & Risk Management Department of Energy (DOE), Office of Electricity Delivery and Energy Reliability (OE) Annabelle Lee Senior Technical Executive, Cyber Security Electric Power Research Institute (EPRI) For more information on the DOE's cyber security risk management programs, please contact

  10. DOE Electricity Advisory Committee

    Office of Environmental Management (EM)

    Electricity Advisory Committee March 2015 1 MEMORANDUM TO: Honorable Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, U.S. Department of Energy FROM: Electricity Advisory Committee (EAC) Richard Cowart, Chair DATE: March 27, 2015 RE: Recommendations on Smart Grid Research and Development Needs _________________________________________________________________________ Overview The Smart Grid is envisioned to provide the enhancements to ensure higher levels of

  11. Mixed Alcohol Synthesis Catalyst Screening

    SciTech Connect (OSTI)

    Gerber, Mark A.; White, James F.; Stevens, Don J.

    2007-09-03

    National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

  12. EWEB- Solar Electric Program (Rebate)

    Broader source: Energy.gov [DOE]

    The Eugene Water & Electric Board's (EWEB) Solar Electric Program offers financial incentives for residential, nonprofit, and government customers that generate electricity solar photovoltaic...

  13. Lincoln Electric | Open Energy Information

    Open Energy Info (EERE)

    Electric Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Lincoln Electric Developer Lincoln Electric Energy Purchaser Lincoln...

  14. Epcot Electric | Open Energy Information

    Open Energy Info (EERE)

    Epcot Electric Jump to: navigation, search Name: Epcot Electric Place: Texas Facebook: https:www.facebook.compagesEpcot-Electric108882552477023 References: EIA Form EIA-861...

  15. Power Sales to Electric Utilities

    SciTech Connect (OSTI)

    1989-02-01

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

  16. Mixed Solvent Electrolyte Model | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixed Solvent Electrolyte Model Mixed Solvent Electrolyte Model Software Tool to Predict Solubility of Solids and Other Thermophysical Properties With assistance from AMO, OLI Systems, Inc., developed the mixed-solvent electrolyte model, a comprehensive physical property package that can predict the properties of electrolyte systems ranging from dilute solutions to fused salts in water, nonaqueous, or mixed solvents. The model accurately predicts the solubility of solids in complex

  17. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Beluga","Natural gas","Chugach Electric Assn Inc",344.4 2,"George M Sullivan Generation Plant 2","Natural gas","Anchorage Municipal Light and Power",248.1 3,"Southcentral Power Project","Natural gas","Chugach Electric Assn Inc",169.7 4,"North

  18. UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (

    U.S. Energy Information Administration (EIA) Indexed Site

    1998,1,4908,24636,4694,29431,1351,11643,1370,5978,12322,71688 213,"Alaska Electric Light&Power Co","AK",1998,1,1430,14868,354,3934,363,4986,459,6435,2606,30223 599,"Anchorage Mun Light and Power","AK",1998,1,1536,16776,4633,63484,0,0,103,993,6272,81253 3522,"Chugach Electric Assn, Inc.","AK",1998,1,5237,53636,3662,48363,171,2657,110,629,9180,105285 7353,"Golden Valley Elec Assn,

  19. Thin film mixed potential sensors

    DOE Patents [OSTI]

    Garzon, Fernando H. (Santa Fe, NM); Brosha, Eric L. (Los Alamos, NM); Mukundan, Rangachary (Santa Fe, NM)

    2007-09-04

    A mixed potential sensor for oxidizable or reducible gases and a method of making. A substrate is provided and two electrodes are formed on a first surface of the substrate, each electrode being formed of a different catalytic material selected to produce a differential voltage between the electrodes from electrochemical reactions of the gases catalyzed by the electrode materials. An electrolytic layer of an electrolyte is formed over the electrodes to cover a first portion of the electrodes from direct exposure to the gases with a second portion of the electrodes uncovered for direct exposure to the gases.

  20. Electricity 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Electricity 101 Electricity 101 FREQUENTLY ASKED QUESTIONS: Why do other countries use different shaped plugs? Why do outlets have three holes? Why do we have AC electricity? Can we harness lightning as an energy source? Can we have wireless transmission of electricity? SYSTEM: What is electricity? Where does electricity come from? What is the "grid"? How much electricity does a typical household use? How did the electric system evolve? What does the future look like?

  1. Controlling the set of carbon-fiber embedded cement with electric current

    DOE Patents [OSTI]

    Mattus, Alfred J.

    2004-06-15

    A method for promoting cement or concrete set on demand for concrete that has been chemically retarded by adding carbon fiber to the concrete, which enables it to become electrically conductive, sodium tartrate retardant, and copper sulfate which forms a copper tartrate complex in alkaline concrete mixes. Using electricity, the concrete mix anodically converts the retarding tartrate to an insoluble polyester polymer. The carbon fibers act as a continuous anode surface with a counter electrode wire embedded in the mix. Upon energizing, the retarding effect of tartrate is defeated by formation of the polyester polymer through condensation esterification thereby allowing the normal set to proceed unimpeded.

  2. Mixing It Up | Department of Energy

    Office of Environmental Management (EM)

    Mixing It Up Mixing It Up June 30, 2015 - 12:00pm Addthis Mixing It Up PADUCAH, Ky. - A 150-foot-tall crane turns an eight-foot-diameter auger performing deep-soil mixing at the Paducah Gaseous Diffusion Plant's southwest groundwater plume. More than 260 borings are being made to a depth of about 60 feet to remove a source of trichloroethene groundwater contamination. Addthis Related Articles A 150-foot-tall crane turns an eight-foot-diameter auger performing deep-soil mixing at the Paducah

  3. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    1997-09-01

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  4. Mixing stops at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agrawal, Prateek; Frugiuele, Claudia

    2014-01-01

    We study the phenomenology of a light stop NLSP in the presence of large mixing with either the first or the second generation. R-symmetric models provide a prime setting for this scenario, but our discussion also applies to the MSSM when a significant amount of mixing can be accommodated. In our framework the dominant stop decay is through the flavor violating mode into a light jet and the LSP in an extended region of parameter space. There are currently no limits from ATLAS and CMS in this region. We emulate shape-based hadronic SUSY searches for this topology, and find thatmore » they have potential sensitivity. If the extension of these analyses to this region is robust, we find that these searches can set strong exclusion limits on light stops. If not, then the flavor violating decay mode is challenging and may represent a blind spot in stop searches even at 13 TeV. Thus, an experimental investigation of this scenario is well motivated.« less

  5. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  6. Electrical system architecture

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

    2008-07-15

    An electrical system for a vehicle includes a first power source generating a first voltage level, the first power source being in electrical communication with a first bus. A second power source generates a second voltage level greater than the first voltage level, the second power source being in electrical communication with a second bus. A starter generator may be configured to provide power to at least one of the first bus and the second bus, and at least one additional power source may be configured to provide power to at least one of the first bus and the second bus. The electrical system also includes at least one power consumer in electrical communication with the first bus and at least one power consumer in electrical communication with the second bus.

  7. Integrated electrical connector

    DOE Patents [OSTI]

    Benett, William J.; Ackler, Harold D.

    2005-05-24

    An electrical connector is formed from a sheet of electrically conductive material that lies in between the two layers of nonconducting material that comprise the casing of an electrical chip. The connector is electrically connected to an electrical element embedded within the chip. An opening in the sheet is concentrically aligned with a pair of larger holes respectively bored through the nonconducting layers. The opening is also smaller than the diameter of an electrically conductive contact pin. However, the sheet is composed flexible material so that the opening adapts to the diameter of the pin when the pin is inserted therethrough. The periphery of the opening applies force to the sides of the pin when the pin is inserted, and thus holds the pin within the opening and in contact with the sheet, by friction. The pin can be withdrawn from the connector by applying sufficient axial force.

  8. Electric power monthly

    SciTech Connect (OSTI)

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  9. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  10. Expandable mixing section gravel and cobble eductor

    DOE Patents [OSTI]

    Miller, Arthur L. (Kenyon, MN); Krawza, Kenneth I. (Lakeville, MN)

    1997-01-01

    In a hydraulically powered pump for excavating and transporting slurries in hich it is immersed, the improvement of a gravel and cobble eductor including an expandable mixing section, comprising: a primary flow conduit that terminates in a nozzle that creates a water jet internal to a tubular mixing section of the pump when water pressure is applied from a primary supply flow; a tubular mixing section having a center line in alignment with the nozzle that creates a water jet; a mixing section/exit diffuser column that envelopes the flexible liner; and a secondary inlet conduit that forms an opening at a bas portion of the column and adjacent to the nozzle and water jet to receive water saturated gravel as a secondary flow that mixes with the primary flow inside of the mixing section to form a combined total flow that exits the mixing section and decelerates in the exit diffuser.

  11. Renewable Electricity Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by Midwest Research Institute * Battelle Renewable Electricity Overview Bobi Garrett Associate Director, Renewable Electricity Science & Technology 12 August 2008 State Energy Advisory Board 2 National Renewable Energy Laboratory Innovation for Our Energy Transforming Our Electricity System Create Smart Grid Two-Way Power Flow Higher Capacity High Reliability/Self Healing

  12. Electric Power Monthly

    Gasoline and Diesel Fuel Update (EIA)

    Electric Power Monthly > Electric Power Monthly Back Issues Electric Power Monthly Back Issues Monthly Excel files zipped 2010 January February March April May June July August September October November December 2009 January February March April May June July August September October November December 2008 January February March March Supplement April May June July August September October November December 2007 January February March April May June July August September October November

  13. Electric Power Research Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -000 Electric Power Research Institute (EPRI) Workshop on High Performance Computing and Modeling Simulation Heather Feldman, Brenden Mervin Electric Power Research Insititute (EPRI) October 15-16, 2014 CASL-U-2015-0200-000 1 AGENDA WORKSHOP ON HIGH PERFORMANCE COMPUTING AND MODELING & SIMULATION "Overcoming Barriers to Enable the Electric Power Industry to Realize the Benefits of High Performance Computing and Modeling & Simulation" October 15-16, 2014 * EPRI Charlotte

  14. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information and Staff The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Editorial Lead: Chris Cassar (christopher.cassar@eia.gov) Senior Adviser: Bill Booth Core Team: Paul McCardle, Glenn McGrath, Stephen Scott, Tim Shear, April Lee

  15. Office of Electricity Delivery

    Energy Savers [EERE]

    4 DOE Resilient Electric Distribution Grid R&D Workshop June 11, 2014 Upton, New York 2014 DOE Resilient Electric Distribution Grid R&D Workshop Report Page i June 24, 2014 Acknowledgment The U.S. Department of Energy (DOE) acknowledges the support provided by the organizations represented at the Resilient Electric Distribution Grid R&D Workshop. The report content is based on the workshop session discussions, with session summary descriptions taken from the report-out presentations

  16. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wholesale Markets: February 2014 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

  17. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Reliability Council of Texas (ERCOT), and two locations in the California ISO (CAISO). Also shown are wholesale prices at trading hubs in Louisiana (into Entergy),...

  18. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    costs, of which fuel costs account for the lion's share. Therefore, we present below, electricity generation output by fuel type and generator type. Since the generatorfuel...

  19. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Wholesale Markets: May 2015 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

  20. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wholesale Markets: August 2015 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

  1. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and fuel consumption In this section, we look at the resources used to produce electricity. Generating units are chosen to run primarily on their operating costs, of which...

  2. 2013 Electricity Form Proposals

    Gasoline and Diesel Fuel Update (EIA)

    Electricity Survey Form Changes in 2013 The U.S. Energy Information Administration (EIA) proposed changes to its electricity data collection in 2013. These changes involve three forms: Form EIA-861, "Annual Electric Power Industry Report" The addition of a new form, the Form EIA-861S, "Annual Electric Power Industry Report (Short Form)" Form EIA-923, "Power Plant Operations Report." The proposals were initially announced to the public via a Federal Register Notice

  3. Perforation patterned electrical interconnects

    DOE Patents [OSTI]

    Frey, Jonathan

    2014-01-28

    This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

  4. Electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  5. Electric Storage Water Heaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  6. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  7. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New York ISO (NYISO), PJM Interconnection (PJM), Midwest ISO (MISO), Electric Reliability Council of Texas (ERCOT), and two locations in the California ISO (CAISO). Also...

  8. Department of Energy - Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    opportunities and challenges that lie ahead. Secretary Moniz headed down to Florida to talk about Grid Modernization. Learn more about our nation's electric grid in this fact...

  9. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    ... All states from the Rocky Mountains to the Pacific Ocean, except for Montana and Wyoming, ... Therefore, one can often explain current wholesale electricity prices by looking at what ...

  10. Electric Power Annual 2011

    U.S. Energy Information Administration (EIA) Indexed Site

    B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2001-2011 Actual, 2012-2016 Projected megawatts ...

  11. Electric power annual 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-06

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  12. 2015 Electricity Form Proposals

    U.S. Energy Information Administration (EIA) Indexed Site

    Proposed Changes to Electricity and Renewable (Photovoltaic) Survey Forms November 19, 2015 In early 2016 the U.S. Energy Information Administration (EIA) will formally propose ...

  13. 2015 Electricity Form Proposals

    U.S. Energy Information Administration (EIA) Indexed Site

    Quarterly Electricity Imports and Exports Report (EIA-111) OMB Clearance Renewal in 2015 The U.S. Energy Information Administration (EIA) has received approval from the Office of ...

  14. Electrical Circuit Tester

    DOE Patents [OSTI]

    Love, Frank (Amarillo, TX)

    2006-04-18

    An electrical circuit testing device is provided, comprising a case, a digital voltage level testing circuit with a display means, a switch to initiate measurement using the device, a non-shorting switching means for selecting pre-determined electrical wiring configurations to be tested in an outlet, a terminal block, a five-pole electrical plug mounted on the case surface and a set of adapters that can be used for various multiple-pronged electrical outlet configurations for voltages from 100 600 VAC from 50 100 Hz.

  15. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Electricity Profile 2013 Table 1. 2013 Summary statistics (Mississippi) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 15,561 28...

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Electricity Profile 2013 Table 1. 2013 Summary statistics (Massachusetts) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 13,678 32...

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Electricity Profile 2013 Table 1. 2013 Summary statistics (Connecticut) Item Value U.S. Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,769 35...

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (North Carolina) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,048 12...

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island Electricity Profile 2013 Table 1. 2013 Summary statistics (Rhode Island) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 1,809 49...

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Electricity Profile 2013 Table 1. 2013 Summary statistics (West Virginia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,282 24...

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Electricity Profile 2013 Table 1. 2013 Summary statistics (District of Columbia) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity...

  3. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains...

  4. Electric Power Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    ... In 1997, the SIC Manual name was changed to North American ... Education services 622 Health services 624 Social ... | Electric Power Monthly Public Administration 92 Multiple ...

  5. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  6. Electricity Generation, Transmission ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation, Transmission and Energy Storage Systems Utilities and other electricity and transmission providers and regulators often require that equipment be proven safe and ...

  7. electric energy storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electric energy storage - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power ...

  8. Resilient Electric Infrastructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Weather-related and other natural disasters, which cause the bulk of power outages, ... As a consequence, our nation faces significant risk from prolonged electrical outages, which, ...

  9. Tunable infrared source employing Raman mixing

    DOE Patents [OSTI]

    Byer, Robert L. (Stanford, CA); Herbst, Richard L. (Menlo Park, CA)

    1980-01-01

    A tunable source of infrared radiation is obtained by irradiating an assemblage of Raman active gaseous atoms or molecules with a high intensity pumping beam of coherent radiation at a pump frequency .omega..sub.p to stimulate the generation of Stokes wave energy at a Stokes frequency .omega..sub.s and to stimulate the Raman resonant mode at the Raman mode frequency .omega..sub.R within the irradiated assemblage where the pump frequency .omega..sub.p minus the Stokes frequency .omega..sub.s is equal to the Raman mode frequency .omega..sub.R. The stimulated assemblage is irradiated with a tunable source of coherent radiation at a frequency .omega..sub.i to generate the output infrared radiation of the frequency .omega..sub.0 which is related to the Raman mode frequency .omega..sub.R and the input wave .omega..sub.i by the relation .omega..sub.0 =.omega..sub.i .+-..omega..sub.R. In one embodiment the interaction between the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i is collinear and the ratio of the phase velocity mismatch factor .DELTA.k to the electric field exponential gain coefficient T is within the range of 0.1 to 5. In another embodiment the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i have velocity vectors k.sub.p and k.sub.i which cross at an angle to each other to compensate for phase velocity mismatches in the medium. In another embodiment, the Stokes wave energy .omega..sub.s is generated by pump energy .omega..sub.p in a first Raman cell and .omega..sub.s, .omega..sub.i and .omega..sub.p are combined in a second Raman mixing cell to produce the output at .omega..sub.i.

  10. Electricity Distribution System Workshop

    Broader source: Energy.gov (indexed) [DOE]

    ... Such analysis would need to go beyond simple financial estimates of upgrades and into ... technologies to support flexibility. a. Mixed AC-DC networks with new control theory. b. ...

  11. Mixing in SRS Closure Business Unit Applications

    SciTech Connect (OSTI)

    POIRIER, MICHAELR.

    2004-06-23

    The following equipment is commonly used to mix fluids: mechanical agitators, jets (pumps), shrouded axial impeller mixers (Flygt mixers), spargers, pulsed jet mixers, boiling, static mixers, falling films, liquid sprays, and thermal convection. This discussion will focus on mechanical agitators, jets, shrouded axial impeller mixers, spargers, and pulsed jet mixers, as these devices are most likely to be employed in Savannah River Site (SRS) Closure Business applications. In addressing mixing problems in the SRS Tank Farm, one must distinguish between different mixing objectives. These objectives include sludge mixing (e.g., Extended Sludge Processing), sludge retrieval (e.g., sludge transfers between tanks), heel retrieval (e.g., Tanks 18F and 19F), chemical reactions (e.g., oxalic acid neutralization) and salt dissolution. For example, one should not apply sludge mixing guidelines to heel removal applications. Mixing effectiveness is a function of both the mixing device (e.g., slurry pump, agitator, air sparger) and the properties of the material to be mixed (e.g., yield stress, viscosity, density, and particle size). The objective of this document is to provide background mixing knowledge for the SRS Closure Business Unit personnel and to provide general recommendations for mixing in SRS applications.

  12. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  13. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  14. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  15. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.; Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

  16. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  17. Electrically conductive diamond electrodes

    DOE Patents [OSTI]

    Swain, Greg (East Lansing, MI); Fischer, Anne (Arlington, VA),; Bennett, Jason (Lansing, MI); Lowe, Michael (Holt, MI)

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  18. Electrical Circuit Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  19. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  20. Hawaii electric system reliability.

    SciTech Connect (OSTI)

    Silva Monroy, Cesar Augusto; Loose, Verne William

    2012-09-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  1. Alternative Fuels Data Center: Electricity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity to someone by E-mail Share Alternative Fuels Data Center: Electricity on Facebook Tweet about Alternative Fuels Data Center: Electricity on Twitter Bookmark Alternative Fuels Data Center: Electricity on Google Bookmark Alternative Fuels Data Center: Electricity on Delicious Rank Alternative Fuels Data Center: Electricity on Digg Find More places to share Alternative Fuels Data Center:

  2. Electric power monthly

    SciTech Connect (OSTI)

    Smith, Sandra R.; Johnson, Melvin; McClevey, Kenneth; Calopedis, Stephen; Bolden, Deborah

    1992-05-01

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

  3. Electric turbocompound control system

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Dunlap, IL)

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  4. Galena Electric Power A Situational Analysis

    SciTech Connect (OSTI)

    Robert E. Chaney; Stephen G. Colt; Ronald A. Johnson; Richard W. Wiles; Gregory J. White

    2008-12-31

    The purpose of the investigation is to compare the economics of various electrical power generation options for the City of Galena. Options were assessed over a 30-year project period, beginning in 2010, and the final results were compared on the basis of residential customer electric rates ($/kWh). Galena's electric utility currently generates power using internal combustion diesel engines and generator sets. Nearby, there is an exposed coal seam, which might provide fuel for a power plant. Contributions to the energy mix might come from solar, municipal solid waste, or wood. The City has also been approached by Toshiba, Inc., as a demonstration site for a small (Model 4S) nuclear reactor power plant. The Yukon River is possibly a site for in-river turbines for hydroelectric power. This report summarizes the comparative economics of various energy supply options. This report covers: (1) thermal and electric load profiles for Galena; (2) technologies and resources available to meet or exceed those loads; (3) uses for any extra power produced by these options; (4) environmental and permitting issues and then; and (5) the overall economics of each of the primary energy options.

  5. Quantifying uncertainty in stable isotope mixing models

    SciTech Connect (OSTI)

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-19

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, SIAR [Parnell et al., 2010] a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (?15N and ?18O) but all methods tested are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated mixing fractions.

  6. Quantifying uncertainty in stable isotope mixing models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-19

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, SIAR [Parnell et al., 2010] a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ15N and δ18O) but all methods testedmore » are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated mixing fractions.« less

  7. Electric Resistance Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric

  8. Fuel Mix and Environmental Characteristics Disclosure

    Broader source: Energy.gov [DOE]

    In July 2010, New Hampshire enacted legislation (S.B. 327) requiring investor-owned utilities and electric cooperatives to disclose the energy sources of their electricity and the environmental...

  9. Fuel Mix Disclosure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    customers. Such information must be provided on customers' bills or as a bill insert once annually. The fuel mix is also published in annual reports. Source http:...

  10. Microsecond Microfluidic Mixing for Investigation of Protein...

    Office of Scientific and Technical Information (OSTI)

    for Investigation of Protein Folding Kinetics Citation Details In-Document Search Title: Microsecond Microfluidic Mixing for Investigation of Protein Folding Kinetics We have ...

  11. TANK MIXING STUDY WITH FLOW RECIRCULATION

    SciTech Connect (OSTI)

    Lee, S.

    2014-06-25

    The primary objective of this work is to quantify the mixing time when two miscible fluids are mixed by one recirculation pump and to evaluate adequacy of 2.5 hours of pump recirculation to be considered well mixed in SRS tanks, JT-71/72. The work scope described here consists of two modeling analyses. They are the steady state flow pattern analysis during pump recirculation operation of the tank liquid and transient species transport calculations based on the initial steady state flow patterns. The modeling calculations for the mixing time are performed by using the 99% homogeneity criterion for the entire domain of the tank contents.

  12. Lanthanide doped strontium barium mixed halide scintillators

    DOE Patents [OSTI]

    Gundiah, Gautam; Bizarri, Gregory; Hanrahan, Stephen M; Bourret-Courchesne, Edith; Derenzo, Stephen E

    2013-07-16

    The present invention provides for a composition comprising an inorganic scintillator comprising a lanthanide-doped strontium barium mixed halide useful for detecting nuclear material.

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Electricity Profile 2013 Table 1. 2013 Summary statistics (Alaska) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 2,384 48 Electric utilities 2,205 39 IPP & CHP 179 50 Net generation (megawatthours) 6,496,822 49 Electric utilities 5,851,727 39 IPP & CHP 645,095 49 Emissions Sulfur dioxide (short tons) 4,202 43 Nitrogen oxide (short tons) 18,043 37 Carbon dioxide (thousand metric tons) 3,768 44 Sulfur dioxide (lbs/MWh) 1.3 29 Nitrogen oxide

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Electricity Profile 2013 Table 1. 2013 Summary statistics (Arizona) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 27,910 13 Electric utilities 20,668 12 IPP & CHP 7,242 16 Net generation (megawatthours) 113,325,986 12 Electric utilities 92,740,582 8 IPP & CHP 20,585,405 15 Emissions Sulfur dioxide (short tons) 23,716 31 Nitrogen oxide (short tons) 59,416 15 Carbon dioxide (thousand metric tons) 55,342 16 Sulfur dioxide (lbs/MWh) 0.4 42 Nitrogen

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    California Electricity Profile 2013 Table 1. 2013 Summary statistics (California) Item Value U.S. Rank Primary energy source Natural Gas Net summer capacity (megawatts) 73,772 2 Electric utilities 28,165 4 IPP & CHP 45,607 2 Net generation (megawatthours) 200,077,115 5 Electric utilities 78,407,643 14 IPP & CHP 121,669,472 4 Emissions Sulfur dioxide (short tons) 2,109 48 Nitrogen oxide (short tons) 96,842 5 Carbon dioxide (thousand metric tons) 57,323 13 Sulfur dioxide (lbs/MWh) 0.0 49

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Electricity Profile 2013 Table 1. 2013 Summary statistics (Colorado) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 14,769 30 Electric utilities 10,238 28 IPP & CHP 4,531 20 Net generation (megawatthours) 52,937,436 28 Electric utilities 42,508,826 25 IPP & CHP 10,428,610 29 Emissions Sulfur dioxide (short tons) 40,012 27 Nitrogen oxide (short tons) 49,623 21 Carbon dioxide (thousand metric tons) 39,387 20 Sulfur dioxide (lbs/MWh) 1.5 27 Nitrogen

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Electricity Profile 2013 Table 1. 2013 Summary statistics (Connecticut) Item Value U.S. Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,769 35 Electric utilities 152 46 IPP & CHP 8,617 13 Net generation (megawatthours) 35,610,789 38 Electric utilities 50,273 45 IPP & CHP 35,560,516 10 Emissions Sulfur dioxide (short tons) 3,512 45 Nitrogen oxide (short tons) 9,372 45 Carbon dioxide (thousand metric tons) 8,726 41 Sulfur dioxide (lbs/MWh) 0.2 47 Nitrogen

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Electricity Profile 2013 Table 1. 2013 Summary statistics (Delaware) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 3,246 46 Electric utilities 102 47 IPP & CHP 3,144 32 Net generation (megawatthours) 7,760,861 47 Electric utilities 25,986 47 IPP & CHP 7,734,875 34 Emissions Sulfur dioxide (short tons) 2,241 47 Nitrogen oxide (short tons) 2,585 48 Carbon dioxide (thousand metric tons) 4,722 43 Sulfur dioxide (lbs/MWh) 0.6 40 Nitrogen oxide

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Electricity Profile 2013 Table 1. 2013 Summary statistics (District of Columbia) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 9 51 Electric utilities IPP & CHP 9 51 Net generation (megawatthours) 65,852 51 Electric utilities IPP & CHP 65,852 51 Emissions Sulfur dioxide (short tons) 0 51 Nitrogen oxide (short tons) 148 51 Carbon dioxide (thousand metric tons) 49 50 Sulfur dioxide (lbs/MWh) 0.0 51 Nitrogen oxide (lbs/MWh) 4.5 3

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Electricity Profile 2013 Table 1. 2013 Summary statistics (Florida) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 58,781 3 Electric utilities 50,967 1 IPP & CHP 7,813 15 Net generation (megawatthours) 222,398,924 3 Electric utilities 202,527,297 1 IPP & CHP 19,871,627 18 Emissions Sulfur dioxide (short tons) 117,797 12 Nitrogen oxide (short tons) 88,345 6 Carbon dioxide (thousand metric tons) 108,431 3 Sulfur dioxide (lbs/MWh) 1.1 34

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Electricity Profile 2013 Table 1. 2013 Summary statistics (Georgia) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 38,210 7 Electric utilities 28,875 2 IPP & CHP 9,335 10 Net generation (megawatthours) 120,953,734 10 Electric utilities 107,082,884 4 IPP & CHP 13,870,850 26 Emissions Sulfur dioxide (short tons) 123,735 10 Nitrogen oxide (short tons) 55,462 20 Carbon dioxide (thousand metric tons) 56,812 15 Sulfur dioxide (lbs/MWh) 2.0 20

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Electricity Profile 2013 Table 1. 2013 Summary statistics (Hawaii) Item Value U.S. Rank Primary energy source Petroleum Net summer capacity (megawatts) 2,757 47 Electric utilities 1,821 40 IPP & CHP 937 45 Net generation (megawatthours) 10,267,052 45 Electric utilities 5,748,256 40 IPP & CHP 4,518,796 40 Emissions Sulfur dioxide (short tons) 20,710 33 Nitrogen oxide (short tons) 25,416 31 Carbon dioxide (thousand metric tons) 7,428 42 Sulfur dioxide (lbs/MWh) 4.0 5 Nitrogen oxide

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho Electricity Profile 2013 Table 1. 2013 Summary statistics (Idaho) Item Value U.S. Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,924 42 Electric utilities 3,394 37 IPP & CHP 1,530 39 Net generation (megawatthours) 15,186,128 43 Electric utilities 9,600,216 36 IPP & CHP 5,585,912 39 Emissions Sulfur dioxide (short tons) 6,565 42 Nitrogen oxide (short tons) 7,627 46 Carbon dioxide (thousand metric tons) 1,942 49 Sulfur dioxide (lbs/MWh) 0.9 37 Nitrogen

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Electricity Profile 2013 Table 1. 2013 Summary statistics (Illinois) Item Value U.S. Rank Primary energy source Nuclear Net summer capacity (megawatts) 44,950 4 Electric utilities 5,269 35 IPP & CHP 39,681 4 Net generation (megawatthours) 203,004,919 4 Electric utilities 11,571,734 35 IPP & CHP 191,433,185 3 Emissions Sulfur dioxide (short tons) 203,951 6 Nitrogen oxide (short tons) 63,358 11 Carbon dioxide (thousand metric tons) 97,812 6 Sulfur dioxide (lbs/MWh) 2.0 21 Nitrogen

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana Electricity Profile 2013 Table 1. 2013 Summary statistics (Indiana) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 27,196 14 Electric utilities 23,309 8 IPP & CHP 3,888 24 Net generation (megawatthours) 110,403,477 13 Electric utilities 96,047,678 7 IPP & CHP 14,355,799 23 Emissions Sulfur dioxide (short tons) 273,718 4 Nitrogen oxide (short tons) 121,681 3 Carbon dioxide (thousand metric tons) 98,895 5 Sulfur dioxide (lbs/MWh) 5.0 2 Nitrogen

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Electricity Profile 2013 Table 1. 2013 Summary statistics (Iowa) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 15,929 25 Electric utilities 12,092 21 IPP & CHP 3,837 26 Net generation (megawatthours) 56,670,757 27 Electric utilities 41,932,708 26 IPP & CHP 14,738,048 22 Emissions Sulfur dioxide (short tons) 106,879 14 Nitrogen oxide (short tons) 44,657 25 Carbon dioxide (thousand metric tons) 39,175 21 Sulfur dioxide (lbs/MWh) 3.8 6 Nitrogen oxide

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Electricity Profile 2013 Table 1. 2013 Summary statistics (Kansas) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 14,093 32 Electric utilities 11,593 24 IPP & CHP 2,501 35 Net generation (megawatthours) 48,472,581 32 Electric utilities 39,808,763 28 IPP & CHP 8,663,819 32 Emissions Sulfur dioxide (short tons) 30,027 30 Nitrogen oxide (short tons) 30,860 30 Carbon dioxide (thousand metric tons) 33,125 27 Sulfur dioxide (lbs/MWh) 1.2 30 Nitrogen

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Electricity Profile 2013 Table 1. 2013 Summary statistics (Kentucky) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 21,004 21 Electric utilities 19,599 16 IPP & CHP 1,405 40 Net generation (megawatthours) 89,741,021 18 Electric utilities 89,098,127 11 IPP & CHP 642,894 50 Emissions Sulfur dioxide (short tons) 190,782 7 Nitrogen oxide (short tons) 87,201 7 Carbon dioxide (thousand metric tons) 85,304 7 Sulfur dioxide (lbs/MWh) 4.3 4 Nitrogen oxide

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Electricity Profile 2013 Table 1. 2013 Summary statistics (Louisiana) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,228 15 Electric utilities 17,297 17 IPP & CHP 8,931 12 Net generation (megawatthours) 102,010,177 15 Electric utilities 56,226,016 17 IPP & CHP 45,784,161 8 Emissions Sulfur dioxide (short tons) 122,578 11 Nitrogen oxide (short tons) 82,286 9 Carbon dioxide (thousand metric tons) 58,274 12 Sulfur dioxide (lbs/MWh) 2.4 16

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine Electricity Profile 2013 Table 1. 2013 Summary statistics (Maine) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 4,499 43 Electric utilities 14 49 IPP & CHP 4,485 21 Net generation (megawatthours) 14,030,038 44 Electric utilities 597 49 IPP & CHP 14,029,441 25 Emissions Sulfur dioxide (short tons) 13,365 38 Nitrogen oxide (short tons) 9,607 44 Carbon dioxide (thousand metric tons) 3,675 45 Sulfur dioxide (lbs/MWh) 1.9 23 Nitrogen oxide

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Electricity Profile 2013 Table 1. 2013 Summary statistics (Maryland) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 12,339 33 Electric utilities 85 48 IPP & CHP 12,254 8 Net generation (megawatthours) 35,850,812 37 Electric utilities 30,205 46 IPP & CHP 35,820,607 9 Emissions Sulfur dioxide (short tons) 41,539 26 Nitrogen oxide (short tons) 21,995 34 Carbon dioxide (thousand metric tons) 18,950 34 Sulfur dioxide (lbs/MWh) 2.3 17 Nitrogen oxide

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Electricity Profile 2013 Table 1. 2013 Summary statistics (Massachusetts) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 13,678 32 Electric utilities 969 42 IPP & CHP 12,709 7 Net generation (megawatthours) 32,885,021 40 Electric utilities 611,320 44 IPP & CHP 32,273,700 12 Emissions Sulfur dioxide (short tons) 12,339 40 Nitrogen oxide (short tons) 15,150 41 Carbon dioxide (thousand metric tons) 14,735 38 Sulfur dioxide (lbs/MWh) 0.8 38

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Electricity Profile 2013 Table 1. 2013 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,128 11 Electric utilities 22,148 9 IPP & CHP 7,981 14 Net generation (megawatthours) 105,417,801 14 Electric utilities 83,171,310 13 IPP & CHP 22,246,490 14 Emissions Sulfur dioxide (short tons) 237,091 5 Nitrogen oxide (short tons) 86,058 8 Carbon dioxide (thousand metric tons) 67,193 10 Sulfur dioxide (lbs/MWh) 4.5 3 Nitrogen oxide

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Electricity Profile 2013 Table 1. 2013 Summary statistics (Minnesota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 15,758 26 Electric utilities 11,901 22 IPP & CHP 3,858 25 Net generation (megawatthours) 51,296,988 31 Electric utilities 41,155,904 27 IPP & CHP 10,141,084 30 Emissions Sulfur dioxide (short tons) 35,625 28 Nitrogen oxide (short tons) 36,972 28 Carbon dioxide (thousand metric tons) 29,255 29 Sulfur dioxide (lbs/MWh) 1.4 28 Nitrogen

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Electricity Profile 2013 Table 1. 2013 Summary statistics (Mississippi) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 15,561 28 Electric utilities 12,842 20 IPP & CHP 2,719 35 Net generation (megawatthours) 52,810,264 29 Electric utilities 45,413,403 23 IPP & CHP 7,396,861 35 Emissions Sulfur dioxide (short tons) 87,718 17 Nitrogen oxide (short tons) 24,490 32 Carbon dioxide (thousand metric tons) 22,633 33 Sulfur dioxide (lbs/MWh) 3.3 9

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Electricity Profile 2013 Table 1. 2013 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,801 19 Electric utilities 20,562 15 IPP & CHP 1,239 42 Net generation (megawatthours) 91,626,593 17 Electric utilities 89,217,205 10 IPP & CHP 2,409,387 46 Emissions Sulfur dioxide (short tons) 157,488 8 Nitrogen oxide (short tons) 78,033 10 Carbon dioxide (thousand metric tons) 78,344 8 Sulfur dioxide (lbs/MWh) 3.4 8 Nitrogen oxide

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Electricity Profile 2013 Table 1. 2013 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,329 41 Electric utilities 2,568 38 IPP & CHP 3,761 27 Net generation (megawatthours) 27,687,326 41 Electric utilities 7,361,898 38 IPP & CHP 20,325,428 16 Emissions Sulfur dioxide (short tons) 16,865 36 Nitrogen oxide (short tons) 21,789 35 Carbon dioxide (thousand metric tons) 16,951 35 Sulfur dioxide (lbs/MWh) 1.2 31 Nitrogen oxide

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Electricity Profile 2013 Table 1. 2013 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,449 36 Electric utilities 7,911 30 IPP & CHP 538 49 Net generation (megawatthours) 37,104,628 34 Electric utilities 35,170,167 30 IPP & CHP 1,934,461 48 Emissions Sulfur dioxide (short tons) 66,884 22 Nitrogen oxide (short tons) 31,505 29 Carbon dioxide (thousand metric tons) 28,043 32 Sulfur dioxide (lbs/MWh) 3.6 7 Nitrogen oxide

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada Electricity Profile 2013 Table 1. 2013 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,652 34 Electric utilities 7,915 29 IPP & CHP 2,737 34 Net generation (megawatthours) 36,443,874 35 Electric utilities 27,888,008 34 IPP & CHP 8,555,866 33 Emissions Sulfur dioxide (short tons) 7,436 41 Nitrogen oxide (short tons) 16,438 39 Carbon dioxide (thousand metric tons) 15,690 37 Sulfur dioxide (lbs/MWh) 0.4 43 Nitrogen

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric utilities 1,121 41 IPP & CHP 3,292 30 Net generation (megawatthours) 19,778,520 42 Electric utilities 2,266,903 41 IPP & CHP 17,511,617 20 Emissions Sulfur dioxide (short tons) 3,733 44 Nitrogen oxide (short tons) 5,057 47 Carbon dioxide (thousand metric tons) 3,447 46 Sulfur dioxide (lbs/MWh) 0.4 45 Nitrogen

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Electricity Profile 2013 Table 1. 2013 Summary statistics (New Jersey) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 18,997 22 Electric utilities 544 43 IPP & CHP 18,452 6 Net generation (megawatthours) 64,750,942 24 Electric utilities -122,674 50 IPP & CHP 64,873,616 6 Emissions Sulfur dioxide (short tons) 3,196 46 Nitrogen oxide (short tons) 15,299 40 Carbon dioxide (thousand metric tons) 15,789 36 Sulfur dioxide (lbs/MWh) 0.1 48 Nitrogen oxide

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Electricity Profile 2013 Table 1. 2013 Summary statistics (New Mexico) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 7,938 38 Electric utilities 5,912 33 IPP & CHP 2,026 36 Net generation (megawatthours) 35,870,965 36 Electric utilities 29,833,095 33 IPP & CHP 6,037,870 37 Emissions Sulfur dioxide (short tons) 17,735 34 Nitrogen oxide (short tons) 59,055 16 Carbon dioxide (thousand metric tons) 28,535 31 Sulfur dioxide (lbs/MWh) 1.0 36 Nitrogen

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Electricity Profile 2013 Table 1. 2013 Summary statistics (New York) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 39,918 6 Electric utilities 10,736 26 IPP & CHP 29,182 5 Net generation (megawatthours) 136,116,830 8 Electric utilities 33,860,490 31 IPP & CHP 102,256,340 5 Emissions Sulfur dioxide (short tons) 30,947 29 Nitrogen oxide (short tons) 44,824 24 Carbon dioxide (thousand metric tons) 33,456 26 Sulfur dioxide (lbs/MWh) 0.5 41 Nitrogen

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (North Carolina) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,048 12 Electric utilities 26,706 6 IPP & CHP 3,342 29 Net generation (megawatthours) 125,936,293 9 Electric utilities 116,317,050 2 IPP & CHP 9,619,243 31 Emissions Sulfur dioxide (short tons) 71,293 20 Nitrogen oxide (short tons) 62,397 12 Carbon dioxide (thousand metric tons) 56,940 14 Sulfur dioxide (lbs/MWh) 1.1 32

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric utilities 5,292 34 IPP & CHP 1,274 41 Net generation (megawatthours) 35,021,673 39 Electric utilities 31,044,374 32 IPP & CHP 3,977,299 42 Emissions Sulfur dioxide (short tons) 56,854 23 Nitrogen oxide (short tons) 48,454 22 Carbon dioxide (thousand metric tons) 30,274 28 Sulfur dioxide (lbs/MWh) 3.2 11 Nitrogen oxide

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Electricity Profile 2013 Table 1. 2013 Summary statistics (Ohio) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 32,482 8 Electric utilities 20,779 11 IPP & CHP 11,703 9 Net generation (megawatthours) 137,284,189 7 Electric utilities 88,763,825 12 IPP & CHP 48,520,364 7 Emissions Sulfur dioxide (short tons) 346,873 2 Nitrogen oxide (short tons) 102,526 4 Carbon dioxide (thousand metrictons) 102,466 4 Sulfur dioxide (lbs/MWh) 5.1 1 Nitrogen oxide (lbs/MWh)

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Electricity Profile 2013 Table 1. 2013 Summary statistics (Oklahoma) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 23,300 17 Electric utilities 16,951 18 IPP & CHP 6,349 17 Net generation (megawatthours) 73,673,680 22 Electric utilities 53,348,841 18 IPP & CHP 20,324,839 17 Emissions Sulfur dioxide 80,418 19 Nitrogen oxide 57,024 17 Carbon dioxide (thousand metric tons) 46,268 19 Sulfur dioxide (lbs/MWh) 2.2 18 Nitrogen oxide (lbs/MWh) 1.5 19

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon Electricity Profile 2013 Table 1. 2013 Summary statistics (Oregon) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 15,662 27 Electric utilities 10,973 25 IPP & CHP 4,689 19 Net generation (megawatthours) 59,895,515 26 Electric utilities 43,254,167 24 IPP & CHP 16,641,348 21 Emissions Sulfur dioxide (short tons) 17,511 35 Nitrogen oxide (short tons) 13,803 42 Carbon dioxide (thousand metric tons) 9,500 40 Sulfur dioxide (lbs/MWh) 0.6 39 Nitrogen

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Electricity Profile 2013 Table 1. 2013 Summary statistics (Pennsylvania) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 43,040 5 Electric utilities 455 44 IPP & CHP 42,584 3 Net generation (megawatthours) 226,785,630 2 Electric utilities 1,105,740 42 IPP & CHP 225,679,890 2 Emissions Sulfur dioxide (short tons) 276,851 3 Nitrogen oxide (short tons) 151,148 2 Carbon dioxide (thousand metric tons) 108,729 2 Sulfur dioxide (lbs/MWh) 2.4 15 Nitrogen

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island Electricity Profile 2013 Table 1. 2013 Summary statistics (Rhode Island) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 1,809 49 Electric utilities 8 50 IPP & CHP 1,802 38 Net generation (megawatthours) 6,246,807 50 Electric utilities 10,659 48 IPP & CHP 6,236,148 36 Emissions Sulfur dioxide (short tons) 1,271 49 Nitrogen oxide (short tons) 1,161 49 Carbon dioxide (thousand metric tons) 2,838 48 Sulfur dioxide (lbs/MWh) 0.4 44 Nitrogen

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (South Carolina) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 23,017 18 Electric utilities 21,039 10 IPP & CHP 1,978 37 Net generation (megawatthours) 95,249,894 16 Electric utilities 91,795,732 9 IPP & CHP 3,454,162 44 Emissions Sulfur dioxide (short tons) 47,671 25 Nitrogen oxide (short tons) 19,035 36 Carbon dioxide (thousand metric tons) 28,809 30 Sulfur dioxide (lbs/MWh) 1.0 35

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (South Dakota) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,109 45 Electric utilities 3,480 36 IPP & CHP 629 48 Net generation (megawatthours) 10,108,887 46 Electric utilities 8,030,545 37 IPP & CHP 2,078,342 47 Emissions Sulfur dioxide (short tons) 15,347 37 Nitrogen oxide (short tons) 11,430 43 Carbon dioxide (thousand metric tons) 3,228 47 Sulfur dioxide (lbs/MWh) 3.0 12

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee Electricity Profile 2013 Table 1. 2013 Summary statistics (Tennessee) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,326 20 Electric utilities 20,635 13 IPP & CHP 690 47 Net generation (megawatthours) 79,651,619 19 Electric utilities 75,988,871 15 IPP & CHP 3,662,748 43 Emissions Sulfur dioxide (short tons) 86,204 18 Nitrogen oxide (short tons) 23,189 33 Carbon dioxide (thousand metric tons) 38,118 22 Sulfur dioxide (lbs/MWh) 2.2 19 Nitrogen oxide

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Electricity Profile 2013 Table 1. 2013 Summary statistics (Texas) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 109,584 1 Electric utilities 28,705 3 IPP & CHP 80,879 1 Net generation (megawatthours) 433,380,166 1 Electric utilities 96,131,888 6 IPP & CHP 337,248,278 1 Emissions Sulfur Dioxide (short tons) 383,728 1 Nitrogen Oxide short tons) 228,695 1 Carbon Dioxide (thousand metric tons) 257,465 1 Sulfur Dioxide (lbs/MWh) 1.8 25 Nitrogen Oxide

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Electricity Profile 2013 Table 1. 2013 Summary statistics (Utah) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 7,698 39 Electric utilities 6,669 32 IPP & CHP 1,029 44 Net generation (megawatthours) 42,516,751 33 Electric utilities 39,526,881 29 IPP & CHP 2,989,870 45 Emissions Sulfur Dioxide (short tons) 23,670 32 Nitrogen Oxide (short tons) 62,296 13 Carbon Dioxide (thousand metric tons) 35,699 24 Sulfur Dioxide (lbs/MWh) 1.1 33 Nitrogen Oxide (lbs/MWh)

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Electricity Profile 2013 Table 1. 2013 Summary statistics (Vermont) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 1,255 50 Electric utilities 329 45 IPP & CHP 925 46 Net generation (megawatthours) 6,884,910 48 Electric utilities 872,238 43 IPP & CHP 6,012,672 38 Emissions Sulfur Dioxide (short tons) 71 50 Nitrogen Oxide (short tons) 792 50 Carbon Dioxide (thousand metric tons) 15 51 Sulfur Dioxide (lbs/MWh) 0.0 50 Nitrogen Oxide (lbs/MWh) 0.2 51

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Electricity Profile 2013 Table 1. 2013 Summary statistics (Virginia) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 24,828 16 Electric utilities 20,601 14 IPP & CHP 4,227 22 Net generation (megawatthours) 76,896,565 20 Electric utilities 63,724,860 16 IPP & CHP 13,171,706 28 Emissions Sulfur Dioxide (short tons) 68,077 21 Nitrogen Oxide (short tons) 39,706 27 Carbon Dioxide (thousand metric tons) 34,686 25 Sulfur Dioxide (lbs/MWh) 1.8 26 Nitrogen

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington Electricity Profile 2013 Table 1. 2013 Summary statistics (Washington) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 30,656 10 Electric utilities 27,070 5 IPP & CHP 3,586 28 Net generation (megawatthours) 114,172,916 11 Electric utilities 100,013,661 5 IPP & CHP 14,159,255 24 Emissions Sulfur Dioxide (short tons) 13,259 39 Nitrogen Oxide (short tons) 17,975 38 Carbon Dioxide (thousand metric tons) 12,543 39 Sulfur Dioxide (lbs/MWh) 0.2 46

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Electricity Profile 2013 Table 1. 2013 Summary statistics (West Virginia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,282 24 Electric utilities 10,625 27 IPP & CHP 5,657 18 Net generation (megawatthours) 75,863,067 21 Electric utilities 46,351,104 22 IPP & CHP 29,511,963 13 Emissions Sulfur Dioxide (short tons) 93,888 15 Nitrogen Oxide (short tons) 60,229 14 Carbon Dioxide (thousand metric tons) 68,862 9 Sulfur Dioxide (lbs/MWh) 2.5 14

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin Electricity Profile 2013 Table 1. 2013 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,342 23 Electric utilities 13,358 19 IPP & CHP 3,984 23 Net generation (megawatthours) 65,962,792 23 Electric utilities 47,027,455 20 IPP & CHP 18,935,337 19 Emissions Sulfur Dioxide (short tons) 108,306 13 Nitrogen Oxide (short tons) 44,114 26 Carbon Dioxide (thousand metric tons) 47,686 18 Sulfur Dioxide (lbs/MWh) 3.3 10 Nitrogen

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Electricity Profile 2013 Table 1. 2013 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,381 37 Electric utilities 7,279 31 IPP & CHP 1,102 43 Net generation (megawatthours) 52,483,065 30 Electric utilities 48,089,178 19 IPP & CHP 4,393,887 41 Emissions Sulfur Dioxide (short tons) 49,587 24 Nitrogen Oxide (short tons) 55,615 19 Carbon Dioxide (thousand metric tons) 50,687 17 Sulfur Dioxide (lbs/MWh) 1.9 24 Nitrogen Oxide

  2. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  3. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho Electricity Profile 2013 Table 1. 2013 Summary statistics (Idaho) Item Value U.S. Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,924 42 Electric utilities 3,394 37 IPP & CHP 1,530 39 Net generation (megawatthours) 15,186,128 43 Electric utilities 9,600,216 36 IPP & CHP 5,585,912 39 Emissions Sulfur dioxide (short tons) 6,565 42 Nitrogen oxide (short tons) 7,627 46 Carbon dioxide (thousand metric tons) 1,942 49 Sulfur dioxide (lbs/MWh) 0.9 37 Nitrogen

  4. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oregon Electricity Profile 2013 Table 1. 2013 Summary statistics (Oregon) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 15,662 27 Electric utilities 10,973 25 IPP & CHP 4,689 19 Net generation (megawatthours) 59,895,515 26 Electric utilities 43,254,167 24 IPP & CHP 16,641,348 21 Emissions Sulfur dioxide (short tons) 17,511 35 Nitrogen oxide (short tons) 13,803 42 Carbon dioxide (thousand metric tons) 9,500 40 Sulfur dioxide (lbs/MWh) 0.6 39 Nitrogen

  5. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    South Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (South Dakota) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,109 45 Electric utilities 3,480 36 IPP & CHP 629 48 Net generation (megawatthours) 10,108,887 46 Electric utilities 8,030,545 37 IPP & CHP 2,078,342 47 Emissions Sulfur dioxide (short tons) 15,347 37 Nitrogen oxide (short tons) 11,430 43 Carbon dioxide (thousand metric tons) 3,228 47 Sulfur dioxide (lbs/MWh) 3.0 12

  6. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    United States Electricity Profile 2013 Table 1. 2013 Summary statistics (United States) Item Value Primary energy source Coal Net summer capacity (megawatts) 1,060,064 Electric utilities 616,799 IPP & CHP 443,264 Net generation (megawatthours) 4,065,964,067 Electric utilities 2,388,058,409 IPP & CHP 1,677,905,658 Emissions Sulfur Dioxide (short tons) 3,978,753 Nitrogen Oxide (short tons) 2,411,564 Carbon Dioxide (thousand metric tons) 2,172,355 Sulfur Dioxide (lbs/MWh) 2.0 Nitrogen Oxide

  7. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Washington Electricity Profile 2013 Table 1. 2013 Summary statistics (Washington) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 30,656 10 Electric utilities 27,070 5 IPP & CHP 3,586 28 Net generation (megawatthours) 114,172,916 11 Electric utilities 100,013,661 5 IPP & CHP 14,159,255 24 Emissions Sulfur Dioxide (short tons) 13,259 39 Nitrogen Oxide (short tons) 17,975 38 Carbon Dioxide (thousand metric tons) 12,543 39 Sulfur Dioxide (lbs/MWh) 0.2 46

  8. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wyoming Electricity Profile 2013 Table 1. 2013 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,381 37 Electric utilities 7,279 31 IPP & CHP 1,102 43 Net generation (megawatthours) 52,483,065 30 Electric utilities 48,089,178 19 IPP & CHP 4,393,887 41 Emissions Sulfur Dioxide (short tons) 49,587 24 Nitrogen Oxide (short tons) 55,615 19 Carbon Dioxide (thousand metric tons) 50,687 17 Sulfur Dioxide (lbs/MWh) 1.9 24 Nitrogen Oxide

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Arkansas Electricity Profile 2013 Table 1. 2013 Summary statistics (Arkansas) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 14,786 29 Electric utilities 11,559 23 IPP & CHP 3,227 31 Net generation (megawatthours) 60,322,492 25 Electric utilities 46,547,772 21 IPP & CHP 13,774,720 27 Emissions Sulfur dioxide (short tons) 88,811 16 Nitrogen oxide (short tons) 45,896 23 Carbon dioxide (thousand metric tons) 37,346 23 Sulfur dioxide (lbs/MWh) 2.9 13 Nitrogen

  10. Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  11. Inference of ICF implosion core mix using experimental data and theoretical mix modeling

    SciTech Connect (OSTI)

    Sherrill, Leslie Welser; Haynes, Donald A; Cooley, James H; Sherrill, Manolo E; Mancini, Roberto C; Tommasini, Riccardo; Golovkin, Igor E; Haan, Steven W

    2009-01-01

    The mixing between fuel and shell materials in Inertial Confinement Fusion (lCF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model predicted trends in the width of the mix layer as a function of initial shell thickness. These results contribute to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increasing confidence in the methods used to extract mixing information from experimental data.

  12. March 2012 Electrical Safety Occurrences

    Energy Savers [EERE]

    - Electrical Wiring 08J--OSHA ReportableIndustrial Hygiene - Near Miss (Electrical) 11G--Other - Subcontractor 12C--EH Categories - Electrical Safety 14D--Quality Assurance -...

  13. Sandia Energy - Electric Drive Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Drive Systems Home Transportation Energy Energy Storage Components and Systems Electric Drive Systems Electric Drive Systemscwdd2015-05-08T03:08:45+00:00 Reduce Size,...

  14. Electrically conductive material

    DOE Patents [OSTI]

    Singh, Jitendra P. (Bollingbrook, IL); Bosak, Andrea L. (Burnam, IL); McPheeters, Charles C. (Woodridge, IL); Dees, Dennis W. (Woodridge, IL)

    1993-01-01

    An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

  15. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    systems in the U.S. Electric Power Sector Coal Stocks Data on coal stocks and days of burn are presented in fifth section. The level of coal stockpiles becomes important for...

  16. Electric current locator

    DOE Patents [OSTI]

    King, Paul E. (Corvallis, OR); Woodside, Charles Rigel (Corvallis, OR)

    2012-02-07

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  17. Biomass for Electricity Generation

    Reports and Publications (EIA)

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  18. Generating electricity from viruses

    ScienceCinema (OSTI)

    Lee, Seung-Wuk

    2014-06-23

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  19. Activity: Conserving Electric Energy

    Broader source: Energy.gov [DOE]

    Students participate in two experiments in which they (1) gain an appreciation for their dependency on electricity and (2) learn how regulating the rate of energy consumption makes the energy...

  20. Solar Electric Incentive Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon’s Solar Electric Incentive Program, launched in May 2003, is available to customers of Pacific Power and PGE who install new photovoltaic (PV) systems on new or existing...

  1. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Electric Power Sector Coal Stocks: February 2014 Stocks Extreme cold throughout the winter continued in February, leading to a 13.4 million ton decline in coal inventories from...

  2. Electrically conductive material

    DOE Patents [OSTI]

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  3. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    77 -2.1% Subbituminous 73,777 73 47,345 44 55.8% 75,105 66 -1.8% Source: U.S. Energy Information Administration NOTE: Stockpile levels shown above reflect a sample of electric...

  4. Micromachined electrical cauterizer

    DOE Patents [OSTI]

    Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.

    1999-08-31

    A micromachined electrical cauterizer is disclosed. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 {mu}m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures. 7 figs.

  5. Micromachined electrical cauterizer

    DOE Patents [OSTI]

    Lee, Abraham P. (Walnut Creek, CA); Krulevitch, Peter A. (Pleasanton, CA); Northrup, M. Allen (Berkeley, CA)

    1999-01-01

    A micromachined electrical cauterizer. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 .mu.m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures.

  6. Generating electricity from viruses

    SciTech Connect (OSTI)

    Lee, Seung-Wuk

    2013-10-31

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  7. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California (CAISO) due to very low natural gas prices. Hawaii's retail electricity revenue per kilowatthour fell the most of any state for the fifth month in a row, down 24%...

  8. Electric Power Annual 2012

    Gasoline and Diesel Fuel Update (EIA)

    Electric industry retail statistics by state State Retail sales (million kWh) Retail revenue (thousand dollars) Customers Alabama 87,852 7,923,662 2,524,639 Alaska 6,268 1,033,347...

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Electricity Profile 2013 Table 1. 2013 Summary statistics (Louisiana) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,228 15...

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Electricity Profile 2013 Table 1. 2013 Summary statistics (Delaware) Item Value U.S. Rank Primary energy source Natural gas Net summer capacity (megawatts) 3,246 46...

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    California Electricity Profile 2013 Table 1. 2013 Summary statistics (California) Item Value U.S. Rank Primary energy source Natural Gas Net summer capacity (megawatts) 73,772 2...

  12. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  13. Neutrino mixing and oscillations in astrophysical environments

    SciTech Connect (OSTI)

    Balantekin, A. B. [Physics Department, University of Wisconsin, Madison WI 53706 (United States)

    2014-05-02

    A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

  14. Tower Water-Vapor Mixing Ratio

    SciTech Connect (OSTI)

    Guastad, Krista; Riihimaki, Laura; none,

    2013-04-01

    The purpose of the Tower Water-Vapor Mixing Ratio (TWRMR) value-added product (VAP) is to calculate water-vapor mixing ratio at the 25-meter and 60-meter levels of the meteorological tower at the Southern Great Plains (SGP) Central Facility.

  15. Ion electric propulsion unit

    DOE Patents [OSTI]

    Light, Max E; Colestock, Patrick L

    2014-01-28

    An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.

  16. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

  17. 2012 National Electricity Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy U.S. Department of Energy National Electric Transmission Congestion Study Workshop - December 6, 2011 National Electric Transmission Congestion Study Workshop - December 6, 2011 Hilton Philadelphia Airport, 4509 Island Avenue, Philadelphia, PA 19153 Hilton Philadelphia Airport, 4509 Island Avenue, Philadelphia, PA 19153 Agenda Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:20 am DOE Welcome and Presentation David Meyer, US Department of Energy, Session Moderator

  18. Electrically charged targets

    DOE Patents [OSTI]

    Goodman, Ronald K. (Livermore, CA); Hunt, Angus L. (Alamo, CA)

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  19. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Wholesale Markets: December 2015 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale prices at selected pricing locations and daily peak demand for selected electricity systems in the Nation. The range of daily prices and demand data is shown for the report month and for the year ending with the report month. Prices and demand are shown for six Regional Transmission Operator (RTO) markets: ISO New

  20. Electric power annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-08

    This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

  1. Electric Vehicle Supply Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for proposal (RFP). This Guidance is not intended to be a sample or manual for acquiring electric vehicle supply equipment (EVSE), but rather to serve as a reference for an employer to consider when acquiring EVSE as part of a workplace charging program. Contact the Workplace Charging Challenge at

  2. National Electricity Delivery Division

    Office of Environmental Management (EM)

    (DOE) Office of Electricity Delivery and Energy Reliability (OE) National Electricity Delivery Division Julie Ann Smith, PhD September 24, 2015 The Federal Indian Trust Responsibility is a legal obligation under which the United States has charged itself with moral obligations of the highest responsibility and trust toward American Indian tribes. (Seminole Nation v. United States, 1942; Cherokee Nation v. Georgia, 1831). "When the trust responsibility is acknowledged and upheld by the

  3. Electricity Advisory Committee

    Office of Environmental Management (EM)

    3 Membership Roster Effective Date: December 15, 2013 Richard Cowart Regulatory Assistance Project Sonny Popowsky Pennsylvania Consumer Advocate (Ret.) William Ball Southern Company Linda Blair ITC Holdings Corporation Anjan Bose Washington State University Merwin Brown California Institute for Energy and Environment Paul Centolella The Analysis Group Carlos Coe Millennium Energy Robert Curry Jr. CurryEnergy Clark Gellings Electric Power Research Institute Michael Heyeck American Electric Power

  4. Electricity Advisory Committee

    Office of Environmental Management (EM)

    July 1, 2015 Electricity Advisory Committee 2015 Membership Roster Richard Cowart Regulatory Assistance Project CHAIR Irwin Popowsky Pennsylvania Consumer Advocate VICE CHAIR John Adams Electric Reliability Council of Texas Ake Almgren Orkas Energy Endurance Inc. William Ball Southern Company Anjan Bose Washington State University Marilyn Brown Georgia Institute of Technology Merwin Brown California Institute for Energy and Environment Paula Carmody Maryland People's Council Paul Centolella

  5. Schlumberger Electricity Metering | Open Energy Information

    Open Energy Info (EERE)

    Electricity Metering Jump to: navigation, search Name: Schlumberger Electricity Metering Place: Oconee, South Carolina Product: Manufacturer of electricity meters. Coordinates:...

  6. PNNL Electricity Infrastructure Operations Center | Open Energy...

    Open Energy Info (EERE)

    Electricity Infrastructure Operations Center Jump to: navigation, search Logo: Electricity Infrastructure Operations Center Name Electricity Infrastructure Operations Center...

  7. PNNL Electricity Infrastructure Operations Center | Open Energy...

    Open Energy Info (EERE)

    PNNL Electricity Infrastructure Operations Center (Redirected from Electricity Infrastructure Operations Center) Jump to: navigation, search Logo: Electricity Infrastructure...

  8. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power outlets. The purpose is to measure the ...

  9. Tidal Electric | Open Energy Information

    Open Energy Info (EERE)

    Tidal Electric Place: London, Greater London, United Kingdom Zip: SW19 8UY Product: Developed a technology named 'tidal lagoons' to build tidal electric projects. Coordinates:...

  10. Electrical Techniques | Open Energy Information

    Open Energy Info (EERE)

    fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Electrical Techniques: Electrical techniques aim to image the...

  11. Fortune Electric | Open Energy Information

    Open Energy Info (EERE)

    Fortune Electric Jump to: navigation, search Name: Fortune Electric Place: Taoyuan,Taiwan, Taiwan Product: Taiwanese transformer manufacturer is also engaged in the development of...

  12. Hartford Electric | Open Energy Information

    Open Energy Info (EERE)

    Electric Jump to: navigation, search Name: Hartford Electric Place: Wisconsin Phone Number: (262) 670-3700 Website: hartfordelectric.org Outage Hotline: (262) 670-3710 or (262)...

  13. Salem Electric | Open Energy Information

    Open Energy Info (EERE)

    Electric Place: Oregon Phone Number: (503) 362-3601 Website: www.salemelectric.com Facebook: https:www.facebook.compagesSalem-Electric117577414968337 Outage Hotline: (503)...

  14. Thin films of mixed metal compounds

    DOE Patents [OSTI]

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  15. Lakes, Electricity and You | Department of Energy

    Energy Savers [EERE]

    Lakes, Electricity and You Lakes, Electricity and You Why It's So Important That Lakes Are Used To Generate Electricity PDF icon Lakes, Electricity and You More Documents &...

  16. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  17. All-solid electrodes with mixed conductor matrix

    DOE Patents [OSTI]

    Huggins, Robert A. (Stanford, CA); Boukamp, Bernard A. (Achterste Kamp, NL)

    1984-01-01

    Alkali metal based electrochemical cells offer a great deal of promise for applications in many areas such as electric vehicles and load leveling purposes in stationary power plants. Lithium is an attractive candidate as the electroactive species in such cells since lithium is very electropositive, abundant and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated at elevated temperatures. The subject invention provides an electrochemical cell in one embodiment of which lithium is the electroactive species. The cell comprises an electrolyte, a positive electrode, and a negative electrode, either or both of which is an all-solid, composite microstructural electrode containing both a reactant phase and a mixed ionic-electronic conducting phase. The cells of the subject invention exhibit improved kinetic features, current and power densities. Repeated charging and discharging of these cells can be accomplished without appreciable loss of capacity.

  18. Modeling Electric Vehicle Benefits Connected to Smart Grids

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Mendes, Goncalo; Kloess, Maximillian; Cardoso, Goncalo; MĂ©gel, Olivier; Siddiqui, Afzal

    2011-07-01

    Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO2 emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.

  19. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  20. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  1. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-01

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  2. Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan The REVi plan addresses the electric vehicle market in Richmond and then addresses a regional plan, policies, and analysis of the the communities readiness. PDF icon Richmond EV Initiative More Documents & Publications EV Community Readiness projects: South Florida Regional Planning Council; Virginia Department of Mines, Minerals

  3. A knowledge based model of electric utility operations. Final report

    SciTech Connect (OSTI)

    1993-08-11

    This report consists of an appendix to provide a documentation and help capability for an analyst using the developed expert system of electric utility operations running in CLIPS. This capability is provided through a separate package running under the WINDOWS Operating System and keyed to provide displays of text, graphics and mixed text and graphics that explain and elaborate on the specific decisions being made within the knowledge based expert system.

  4. Reliability of Electrical Interconnects (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2014-06-01

    This presentation discusses the status of NREL's research on the reliability of electrical interconnects.

  5. Electric sales and revenue 1996

    SciTech Connect (OSTI)

    1997-12-01

    Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the US. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1996. 16 figs., 20 tabs.

  6. Electric fluid pump

    SciTech Connect (OSTI)

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  7. Thermoacoustic magnetohydrodynamic electrical generator

    SciTech Connect (OSTI)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1986-07-08

    A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid.

  8. Electric power emergency handbook

    SciTech Connect (OSTI)

    Labadie, J.R.

    1980-09-01

    The Emergency Electric Power Administration's Emergency Operations Handbook is designed to provide guidance to the EEPA organization. It defines responsibilities and describes actions performed by the government and electric utilities in planning for, and in operations during, national emergencies. The EEPA Handbook is reissued periodically to describe organizational changes, to assign new duties and responsibilities, and to clarify the responsibilities of the government to direct and coordinate the operations of the electric utility industry under emergencies declared by the President. This Handbook is consistent with the assumptions, policies, and procedures contained in the National Plan for Emergency Preparedness. Claimancy and restoration, communications and warning, and effects of nuclear weapons are subjects covered in the appendices.

  9. Simple Electric Vehicle Simulation

    Energy Science and Technology Software Center (OSTI)

    1993-07-29

    SIMPLEV2.0 is an electric vehicle simulation code which can be used with any IBM compatible personal computer. This general purpose simulation program is useful for performing parametric studies of electric and series hybrid electric vehicle performance on user input driving cycles.. The program is run interactively and guides the user through all of the necessary inputs. Driveline components and the traction battery are described and defined by ASCII files which may be customized by themore » user. Scaling of these components is also possible. Detailed simulation results are plotted on the PC monitor and may also be printed on a printer attached to the PC.« less

  10. Fluid cooled electrical assembly

    DOE Patents [OSTI]

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  11. Electric sales and revenue 1997

    SciTech Connect (OSTI)

    1998-10-01

    The Electric Sales and Revenue is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the US. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1997. 16 figs., 17 tabs.

  12. Electric sales and revenue 1994

    SciTech Connect (OSTI)

    1995-11-01

    The Electric Sales and Revenue is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the United States. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1994.

  13. Fuel Mix Disclosure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Website http:www.commerce.wa.govProgramsEnergyOfficeUtilitiesPagesFuelMi... State Washington Program Type Generation Disclosure Summary Washington's retail electric...

  14. Fuel Mix Disclosure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    environmental disclosure requirements and consumer protection standards for green power marketing. The PSC's rules require all electric suppliers to disclose to the commission...

  15. Fuel Mix Disclosure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Florida Program Type Generation Disclosure Summary In March 1999, the Florida Public Service Commission issued an order requiring the state's investor-owned electric utilities,...

  16. Fuel Mix Disclosure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1998, the Pennsylvania Public Utility Commission (PUC) adopted rules requiring retail electricity suppliers to "respond to reasonable requests made by consumers for information...

  17. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  18. Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

  19. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  20. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  1. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    DeMeo, E.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  2. 2012 National Electricity Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 U.S. Department of Energy U.S. Department of Energy National Electric Transmission Congestion Study Workshop - December 8, 2011 National Electric Transmission Congestion Study Workshop - December 8, 2011 Hilton St. Louis Airport, 10330 Natural Bridge Road, St. Louis, Missouri 63134 Hilton St. Louis Airport, 10330 Natural Bridge Road, St. Louis, Missouri 63134 Agenda Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:20 am DOE Welcome and Presentation David Meyer, US Department of Energy,

  3. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  4. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  5. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  6. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Sector Coal Stocks: December 2015 Stocks In December, U.S. coal stockpiles increased to 197 million tons, up 4% from the previous month. This increase in November-to-December coal stockpiles can be attributed to the significant decrease in coal consumption that occurred in December due to the record warm temperatures and reduced reliance on coal as a fuel used for electricity generation. Overall U.S. coal stockpile are now nearing record levels due to the loss in market share to

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Alabama Table 1. 2013 Summary statistics (Alabama) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 32,353 9 Electric utilities 23,419 7 IPP & CHP 8,934 11 Net generation (megawatthours) 150,572,924 6 Electric utilities 115,027,021 3 IPP & CHP 35,545,903 11 Emissions Sulfur dioxide (short tons) 144,568 9 Nitrogen oxide (short tons) 56,885 18 Carbon dioxide (thousand metric tons) 66,986 11 Sulfur dioxide (lbs/MWh) 1.9 22 Nitrogen oxide (lbs/MWh) 0.8 39

  8. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  9. Electric Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Metering Electric Metering Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by visiting our Forrestal Metering Dashboard at the following website: http://forrestal.nrel.gov The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power

  10. Micellar compositions in mixed surfactant solutions

    SciTech Connect (OSTI)

    Zhi-Jian Yu ); Guo-Xi Zhao )

    1993-03-15

    Micellization of aqueous mixtures of alkyltriethylammonium bromide and sodium alkylsulfate in the presence of excess sodium bromide has been studied by surface tension measurements. The molecular ratio of the cationic surfactant to the anionic surfactant in the mixed micelles is deduced by applying the Gibbs-Duhem equation to the measured critical micelle concentrations. Approximately equimolar amounts of the surfactant components in the mixed micelles over a wide range of aqueous mixing ratio are found in the systems of components similar in chain lengths. Large deviations of the surfactant molecular ratio deduced by the regular solution approach (Rubingh's model) when compared with that deduced by this approach are discovered, which suggests a limitation in applying the regular solution approach to mixed systems of cationic/anionic surfactants.

  11. Mixing lengths scaling in a gravity flow

    SciTech Connect (OSTI)

    Ecke, Robert E [Los Alamos National Laboratory; Rivera, Micheal [Los Alamos National Laboratory; Chen, Jun [Los Alamos National Laboratory; Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    We present an experimental study of the mixing processes in a gravity current. The turbulent transport of momentum and buoyancy can be described in a very direct and compact form by a Prandtl mixing length model [1]: the turbulent vertical fluxes of momentum and buoyancy are found to scale quadraticatly with the vertical mean gradients of velocity and density. The scaling coefficient is the square of the mixing length, approximately constant over the mixing zone of the stratified shear layer. We show in this paper how, in different flow configurations, this length can be related to the shear length of the flow {radical}({var_epsilon}/{partial_derivative}{sub z}u{sup 3}).

  12. Ice in Arctic Mixed-phase Stratocumulus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Nuclei Recycling in the Maintenance of Cloud Ice in Arctic Mixed-phase Stratocumulus For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

  13. Mixed oxide nanoparticles and method of making

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Phelps, Tommy J. (Knoxville, TN); Zhang, Chuanlun (Columbia, MO); Roh, Yul (Oak Ridge, TN)

    2002-09-03

    Methods and apparatus for producing mixed oxide nanoparticulates are disclosed. Selected thermophilic bacteria cultured with suitable reducible metals in the presence of an electron donor may be cultured under conditions that reduce at least one metal to form a doped crystal or mixed oxide composition. The bacteria will form nanoparticles outside the cell, allowing easy recovery. Selection of metals depends on the redox potentials of the reducing agents added to the culture. Typically hydrogen or glucose are used as electron donors.

  14. Leptonic mixing, family symmetries, and neutrino phenomenology

    SciTech Connect (OSTI)

    Medeiros Varzielas, I. de [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Fakultaet fuer Physik, Technische Universitaet Dortmund D-44221 Dortmund (Germany); Gonzalez Felipe, R. [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro, 1959-007 Lisboa (Portugal); Serodio, H. [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-02-01

    Tribimaximal leptonic mixing is a mass-independent mixing scheme consistent with the present solar and atmospheric neutrino data. By conveniently decomposing the effective neutrino mass matrix associated to it, we derive generic predictions in terms of the parameters governing the neutrino masses. We extend this phenomenological analysis to other mass-independent mixing schemes which are related to the tribimaximal form by a unitary transformation. We classify models that produce tribimaximal leptonic mixing through the group structure of their family symmetries in order to point out that there is often a direct connection between the group structure and the phenomenological analysis. The type of seesaw mechanism responsible for neutrino masses plays a role here, as it restricts the choices of family representations and affects the viability of leptogenesis. We also present a recipe to generalize a given tribimaximal model to an associated model with a different mass-independent mixing scheme, which preserves the connection between the group structure and phenomenology as in the original model. This procedure is explicitly illustrated by constructing toy models with the transpose tribimaximal, bimaximal, golden ratio, and hexagonal leptonic mixing patterns.

  15. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    SciTech Connect (OSTI)

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    2015-01-12

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m3 to 4921 m3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and product lubricated canned motor pumps designed to fit within available risers and have significant agitation capabilities to suspend waste solids. Waste removal and closure of two tanks has been accomplished with agitation provided by 3 SMPs installed within the tanks. In 2012, a team was assembled to investigate alternative solids removal technologies to support waste removal for closing tanks. The goal of the team was to find a more cost effective approach that could be used to replace the current mixing pump technology. This team was unable to identify an alternative technology outside of mixing pumps to support waste agitation and removal from SRS waste tanks. However, the team did identify a potentially lower cost mixing pump compared to the baseline SLPs and SMPs. Rather than using the traditional procurement using an engineering specification, the team proposed to seek commercially available submersible mixer pumps (CSMP) as alternatives to SLPs and SMPs. SLPs and SMPs have a high procurement cost and the actual cost of moving pumps between tanks has shown to be significantly higher than the original estimates that justified the reuse of SMPs and SLPs. The team recommended procurement of “off-the-shelf” industry pumps which may be available for significant savings, but at an increased risk of failure and reduced operating life in the waste tank. The goal of the CSMP program is to obtain mixing pumps that could mix from bulk waste removal through tank closure and then be abandoned in place as part of tank closure. This paper will present the development, progress and relative advantages of the CSMP.

  16. State Renewable Electricity Profiles

    Reports and Publications (EIA)

    2012-01-01

    Presents a summary of current and recent historical data for the renewable electric power industry. The data focuses on net summer capacity and net generation for each type of renewable generator, as well as fossil-fired and nuclear power plant types, for the period 2006 through 2010.

  17. Electricity Portfolio Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2005-09-01

    Stakeholders often have competing interests when selecting or planning new power plants. The purpose of developing this preliminary Electricity Portfolio Simulation Model (EPSim) is to provide a first cut, dynamic methodology and approach to this problem, that can subsequently be refined and validated, that may help energy planners, policy makers, and energy students better understand the tradeoffs associated with competing electricity portfolios. EPSim allows the user to explore competing electricity portfolios annually from 2002 tomore » 2025 in terms of five different criteria: cost, environmental impacts, energy dependence, health and safety, and sustainability. Four additional criteria (infrastructure vulnerability, service limitations, policy needs and science and technology needs) may be added in future versions of the model. Using an analytic hierarchy process (AHP) approach, users or groups of users apply weights to each of the criteria. The default energy assumptions of the model mimic Department of Energy’s (DOE) electricity portfolio to 2025 (EIA, 2005). At any time, the user can compare alternative portfolios to this reference case portfolio.« less

  18. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  19. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  20. Electric vehicle climate control

    SciTech Connect (OSTI)

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.