National Library of Energy BETA

Sample records for mittal steel usa

  1. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect (OSTI)

    Seaman, John

    2013-01-14

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  2. Steel Manufacturer Proves Its "Mittal" by Doing More with Less Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Steel Manufacturer Proves Its "Mittal" by Doing More with Less Energy Steel Manufacturer Proves Its "Mittal" by Doing More with Less Energy November 2, 2010 - 12:15pm Addthis ArcelorMittal, Department of Energy and elected officials gather for the groundbreaking in front of North America’s largest blast furnace. ArcelorMittal, Department of Energy and elected officials gather for the groundbreaking in front of North America's largest blast

  3. Energy Department, ArcelorMittal Partnership Boosts Efficiency...

    Energy Savers [EERE]

    ArcelorMittal Partnership Boosts Efficiency of Major Steel Manufacturing Plant Energy Department, ArcelorMittal Partnership Boosts Efficiency of Major Steel Manufacturing Plant ...

  4. Ashutosh Mittal | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ashutosh Mittal Ashutosh Mittal Research Scientist IV Ashutosh.Mittal@nrel.gov | 303-384-6136 Research Interests Ashutosh Mittal received an M.S. in 2004 and a Ph.D. in 2007 in environmental resource engineering, both from the Department of Paper and Bioprocess Engineering at the State University College of New York (SUNY) College of Environmental Science and Forestry (ESF). His dissertation work was focused on studying the kinetics of hemicellulose (sugars) extraction from hardwoods (sugar

  5. Alcoa and ArcelorMittal

    Office of Energy Efficiency and Renewable Energy (EERE)

    Profile story on Alcoa and ArcelorMittal for the American Energy and Manufacturing Competitiveness Summit.

  6. Alcoa and ArcelorMittal

    ScienceCinema (OSTI)

    Fabina, Larry; Brockway, Walter

    2014-06-06

    Profile story on Alcoa and ArcelorMittal for the American Energy and Manufacturing Competitiveness Summit.

  7. Energy Department, ArcelorMittal Partnership Boosts Efficiency of Major

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steel Manufacturing Plant | Department of Energy ArcelorMittal Partnership Boosts Efficiency of Major Steel Manufacturing Plant Energy Department, ArcelorMittal Partnership Boosts Efficiency of Major Steel Manufacturing Plant December 17, 2012 - 2:14pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Today, Senior Advisor in the Office of Energy Efficiency and Renewable Energy Gil Sperling, joined local officials and company representatives for the ribbon cutting ceremony and tour of

  8. In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency November 22, 2013 - 10:46am Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's efforts to double our nation's energy productivity by 2030, the Energy Department today recognized aluminum manufacturer Alcoa and steel manufacturer ArcelorMittal for

  9. Success Story: Alcoa and ArcelorMittal

    Broader source: Energy.gov [DOE]

    Profile success story on Alcoa and ArcelorMittal for the American Energy and Manufacturing Competitiveness Summit.

  10. Steel Mill Powered by Waste Heat Recovery System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficient recovery boiler. Locations Indiana Partners ArcelorMittal USA, Inc. EERE Investment 31.6 million Clean Energy Sector Energy-saving homes, buildings, and manufacturing

  11. EERE Success Story-Steel Mill Powered by Waste Heat Recovery System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Steel Mill Powered by Waste Heat Recovery System EERE Success Story-Steel Mill Powered by Waste Heat Recovery System May 16, 2013 - 12:00am Addthis EERE worked with ArcelorMittal USA, Inc. to install an efficient recovery boiler to burn blast furnace gases generated during iron-making operations to produce electricity and steam onsite at the company's Indiana Harbor Steel Mill in East Chicago, Indiana. The steam is being used to drive existing turbogenerators onsite,

  12. EA-1745: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Blast Furnace Gas Flare Capture Project at the ArcelorMittal USA, Inc., Indiana Harbor Steel Mill, East Chicago, Indiana

  13. Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs ArcelorMittal Indiana Harbor Energy Recovery & Reuse 504 Boiler constructed and installed with DOE Recovery Act Funding The Advanced Manufacturing Office (AMO) at the U.S. Department of Energy provided $31.6 million in American Recovery & Reinvestment Act (ARRA) funding to construct and install an energy-efficient boiler and upgrade ArcelorMittal Indiana Harbor steelmaking complex facilities. One of

  14. Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Costs | Department of Energy Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs March 17, 2014 - 2:24pm Addthis Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs One-page factsheet describing how ArcelorMittal Indiana Harbor Energy Recovery & Reuse 504 Boiler was constructed and installed with DOE Recovery Act

  15. Capturing Waste Gas: Saves Energy, Lower Costs - Case Study,...

    Office of Environmental Management (EM)

    Capturing Waste Gas: Saves Energy, Lower Costs - Case Study, 2013 Capturing Waste Gas: Saves Energy, Lower Costs - Case Study, 2013 ArcelorMittal USA, Inc.'s Indiana Harbor steel ...

  16. Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs

    Broader source: Energy.gov [DOE]

    ArcelorMittal Indiana Harbor Energy Recovery & Reuse 504 Boiler constructed and installed with DOE Recovery Act Funding

  17. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  18. Vestas USA | Open Energy Information

    Open Energy Info (EERE)

    USA Jump to: navigation, search Name: Vestas USA Place: Rolling Meadows, Illinois Zip: IL 60008-4030 Sector: Wind energy Product: Vestas Wind Systems American arm. References:...

  19. Solar Unlimited USA | Open Energy Information

    Open Energy Info (EERE)

    USA Jump to: navigation, search Logo: Solar Unlimited USA Name: Solar Unlimited USA Address: 2353 Park Ave. Place: Cedar City, Utah Zip: 84721 Region: Rockies Area Sector: Solar...

  20. Geo processors USA | Open Energy Information

    Open Energy Info (EERE)

    processors USA Jump to: navigation, search Name: Geo-processors USA Place: California Zip: 91204 Sector: Carbon Product: California based Geo-procesors USA has developed an...

  1. LAPD Madison, Wisconsin USA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 th LAPD Madison, Wisconsin USA Sunday, 22 September 2013 Varsity Hall III, Union South 18:00-20:00 Reception and Registration Monday, 23 September 2013 Session I (8:30-12:30) Varsity Hall III, Union South Chairs: J-P. Booth, E. E. Scime Time Speaker Title Index 7:30-8:30 Continental Breakfast 8:30-8:45 D. J. Den Hartog Welcome 8:45-9:35 N. C. Luhmann, Jr. Millimeter Wave and THz Plasma Diagnostic Development AK (1) 9:35-10:00 L. Lin Laser-Based Faraday-Effect Measurement of Magnetic

  2. Arlington, VA 22209 USA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    22209 USA Phone: (703) 522-0086 * Fax: (703) 522-0548 Email: governmentaffairs@hpba.org Web Site: www.hpba.org Before the Department of Energy Docket No. EERE-2014-BT-STD-0036 RIN 1904-AD35 Hearth, Patio, and Barbecue Association's Supplemental Request for Extension of Comment Period on Proposed Energy Conservation Standard for "Hearth Products" 80 Fed. Reg. 7082 (February 9, 2015) March 31, 2015 The Hearth, Patio & Barbecue Association ("HPBA") has already requested

  3. Worldwide Energy and Manufacturing USA Inc formerly Worldwide...

    Open Energy Info (EERE)

    and Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name: Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)...

  4. Stockbridge-Munsee Community - Renewable Energy Feasibility Study

    Office of Environmental Management (EM)

    Department of Energy Steel Manufacturer Proves Its "Mittal" by Doing More with Less Energy Steel Manufacturer Proves Its "Mittal" by Doing More with Less Energy November 2, 2010 - 12:15pm Addthis ArcelorMittal, Department of Energy and elected officials gather for the groundbreaking in front of North America’s largest blast furnace. ArcelorMittal, Department of Energy and elected officials gather for the groundbreaking in front of North America's largest blast

  5. Scheuten Solar USA Inc | Open Energy Information

    Open Energy Info (EERE)

    USA Inc Jump to: navigation, search Name: Scheuten Solar USA, Inc. Place: Rancho Santa Margarita, California Zip: 92688 Sector: Solar Product: Manufacturer of Solar PV systems...

  6. Energy Pro USA | Open Energy Information

    Open Energy Info (EERE)

    Pro USA Jump to: navigation, search Name: Energy Pro USA Place: Chesterfield, Missouri Zip: MO 63017 Product: Energy Pro funds and implements demand side energy savings programs to...

  7. Windkraft Nord USA | Open Energy Information

    Open Energy Info (EERE)

    Nord USA Jump to: navigation, search Name: Windkraft Nord USA Place: San Diego, California Zip: 92122 Product: Subsidiary of WKN AG based in North America. References: Windkraft...

  8. Solar Millennium LLC USA | Open Energy Information

    Open Energy Info (EERE)

    LLC USA Jump to: navigation, search Name: Solar Millennium LLC (USA) Place: Berkeley, California Sector: Solar Product: California-based STEG power plant developer, parabolic...

  9. Coaltec Energy USA Inc | Open Energy Information

    Open Energy Info (EERE)

    Coaltec Energy USA Inc Jump to: navigation, search Name: Coaltec Energy USA, Inc. Place: Carterville, Illinois Zip: 62918 Sector: Biomass Product: Coaltec Energy provides energy...

  10. Think Solar USA | Open Energy Information

    Open Energy Info (EERE)

    Solar USA Jump to: navigation, search Name: Think Solar USA Product: Maker, installer and distributor of parabolic trough STEG power and hot water systems. References: Think Solar...

  11. Energy Optimizers USA | Open Energy Information

    Open Energy Info (EERE)

    Optimizers USA Jump to: navigation, search Name: Energy Optimizers USA Address: 6 S. 3rd Street Place: Tipp City, Ohio Zip: 45371 Sector: Biomass, Carbon, Geothermal energy,...

  12. AREA USA LLC | Open Energy Information

    Open Energy Info (EERE)

    AREA USA LLC Jump to: navigation, search Name: AREA USA LLC Place: Washington, DC Zip: 20004 Sector: Services Product: Washington, D.C.-based division of Fabiani & Company...

  13. Usina Santo Angelo USA | Open Energy Information

    Open Energy Info (EERE)

    Santo Angelo USA Jump to: navigation, search Name: Usina Santo Angelo (USA) Place: Pirajuba, Minas Gerais, Brazil Product: Minas Gerais-based ethanol and energy producer company....

  14. BROAD USA Inc | Open Energy Information

    Open Energy Info (EERE)

    BROAD USA Inc Jump to: navigation, search Name: BROAD USA, Inc Place: Hackensack, New Jersey Zip: 7601 Product: BROAD manufactures absorption chillers powered by clean and...

  15. Norvento USA LLC | Open Energy Information

    Open Energy Info (EERE)

    USA LLC Jump to: navigation, search Name: Norvento USA LLC Place: Boston, Massachusetts Product: Boston-based engineering consultancy and division of Norvento SA. Coordinates:...

  16. Sharp Electronics Corporation USA | Open Energy Information

    Open Energy Info (EERE)

    Electronics Corporation USA Jump to: navigation, search Name: Sharp Electronics Corporation (USA) Place: Huntington Beach, California Zip: 92647 Product: North American division of...

  17. ITP Steel: Theoretical Minimum Energies to Produce Steel for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000 ITP Steel: Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000 ...

  18. Ultrahigh carbon steels, Damascus steels, and superplasticity

    SciTech Connect (OSTI)

    Sherby, O.D.; Wadsworth, J.

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  19. Supporting steel

    SciTech Connect (OSTI)

    Badra, C.

    1995-10-01

    The US Department of Energy (DOE) and the American Iron and Steel Institute (AISI) have just completed a pilot program on the technical and economic viability of direct ironmaking by a process based on bath smelting. In this process, oxygen, prereduced iron ore pellets, coal, and flux are charged into a molten slag bath containing a high percentage of carbon. The carbon removes oxygen from the iron ore and generates carbon monoxide and liquid iron. Oxygen is then injected to burn some of the carbon monoxide gas before it leaves the smelting vessel. The partially combusted gas is sued to preheat and prereduced the ore before it is injected into the bath. There are several competing cokeless ironmaking processes in various stages of development around the world. A brief comparison of these processes provides a useful perspective with which to gauge the progress and objectives of the AISI-DOE research initiative. The principal competing foreign technologies include the Corex process, DIOS, HIsmelt, and Jupiter. The advantages of the direct ironmaking process examined by AISI-DOE were not sufficiently demonstrated to justify commercialization without further research. However, enough knowledge was gained from laboratory and pilot testing to teach researchers how to optimize the direct ironmaking process and to provide the foundation for future research. Researchers now better understand issues such as the dissolution of materials, reduction mechanisms and rates, slag foaming and control, the behavior of sulfur, dust generation, and the entire question of energy efficiency--including post combustion and the role of coal/volatile matter.

  20. Steel Industry Profile

    Broader source: Energy.gov [DOE]

    The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of manufacturing, construction, transportation, and various consumer products. Traditionally...

  1. Comminuting irradiated ferritic steel

    DOE Patents [OSTI]

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  2. Methods of forming steel

    DOE Patents [OSTI]

    Branagan, Daniel J.; Burch, Joseph V.

    2001-01-01

    In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.

  3. USA Manufacturing: Order (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  4. FRONIUS USA LLC | Open Energy Information

    Open Energy Info (EERE)

    48116 USA, Michigan Sector: Solar Product: Focused on welding machines and solar inverters. References: FRONIUS USA LLC1 This article is a stub. You can help OpenEI by...

  5. Absolute Energy USA | Open Energy Information

    Open Energy Info (EERE)

    USA Jump to: navigation, search Name: Absolute Energy (USA) Place: St. Ansgar, Iowa Zip: 50472 Product: Absolute Energy has built a 100 million gallon per year ethanol plant on the...

  6. PNE Wind USA Inc | Open Energy Information

    Open Energy Info (EERE)

    USA Inc Jump to: navigation, search Name: PNE Wind USA Inc Place: Chicago, Illinois Zip: 60601 Sector: Wind energy Product: Chicago-based subsidiary of wind farm project developer,...

  7. Hisense USA: Order (2010-CE-1211)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE issued an Order after entering into a Compromise Agreement with Hisense USA Corp. after finding Hisense USA had failed to certify that certain models of residential refrigerators, refrigerator-freezers, and freezers comply with the applicable energy conservation standards.

  8. OTB USA Inc | Open Energy Information

    Open Energy Info (EERE)

    OTB USA Inc Jump to: navigation, search Name: OTB USA Inc Address: 1871 Suffolk Rd. Place: Columbus, Ohio Zip: 43221 Sector: Solar Product: Other:Capital Equipment Phone Number:...

  9. Euro Chef USA: Order (2014-CE-23004)

    Broader source: Energy.gov [DOE]

    DOE ordered Euro Chef USA Inc. to pay a $8,000 civil penalty after finding Euro Chef USA had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

  10. Recent Progress of R&D Activities on Reduced Activation Ferritic/Martensitic Steels

    SciTech Connect (OSTI)

    Huang, Q.; Baluc, N.; Dai, Y.; Jitsukawa, S.; Kimura, A.; Konys, J.; Kurtz, Richard J.; Lindau, R.; Muroga, T.; Odette, George R.; Raj, B.; Stoller, Roger E.; Tan, L.; Tanigawa, Hiroyasu; Tavassoli, A,-A.F.; Yamamoto, Takuya; Wan, F.; Wu, Y.

    2013-01-03

    Several types of reduced activation ferritic/martensitic (RAFM) steel have been developed over the past 30 years in China, Europe, India, Japan, Russia and the USA for application in ITER TBM and future fusion DEMO and power reactors. The progress has been particularly important during the past few years with evaluation of mechanical porperties of these steels before and after irradiation and in contact with different cooling media. This paper presents recent RAFM steel results obtained in ITER partner countries in relation with different TBM and DEMO options

  11. Baotou Iron and Steel Group Baotou Steel | Open Energy Information

    Open Energy Info (EERE)

    search Name: Baotou Iron and Steel Group (Baotou Steel) Place: Baotou, Inner Mongolia Autonomous Region, China Product: Baotou-based iron and steel maker as well as a rare...

  12. Success Story: Harrison Steel

    Broader source: Energy.gov [DOE]

    This case study highlights how Harrison Steel leveraged both EPA's ENERGY STAR program and DOE resources to enhance energy efficiency efforts and multiply captured energy savings.

  13. Auto/Steel Partnership: Advanced High-Strength Steel Research...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications AutoSteel Partnership: AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS Joining FY 2008 Progress Report for Lightweighting ...

  14. ITP Steel: Steel Industry Marginal Opportunity Study September...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marginal Opportunity Study September 2005 ITP Steel: Steel Industry Marginal Opportunity Study September 2005 steelmarginalopportunity.pdf (346.86 KB) More Documents & Publications ...

  15. Energy Education Resources in Spanish | Department of Energy

    Energy Savers [EERE]

    Steel Manufacturing Plant | Department of Energy ArcelorMittal Partnership Boosts Efficiency of Major Steel Manufacturing Plant Energy Department, ArcelorMittal Partnership Boosts Efficiency of Major Steel Manufacturing Plant December 17, 2012 - 2:14pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Today, Senior Advisor in the Office of Energy Efficiency and Renewable Energy Gil Sperling, joined local officials and company representatives for the ribbon cutting ceremony and tour of

  16. H2USA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USA H2USA In 2013 many auto manufacturers announced fuel cell electric vehicle (FCEV) commercialization plans; Toyota, Hyundai, General Motors, Honda, Mercedes/Daimler, and others have committed to putting FCEVs on the road, some as early as the 2015-2017 timeframe. While the cars are coming, hydrogen infrastructure remains the greatest challenge to commercialization of FCEVs. To address this challenge, in 2013 DOE, along with automakers and other key stakeholders, launched H2USA, a new

  17. Glass Stronger than Steel

    DOE R&D Accomplishments [OSTI]

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  18. Dezincing of steel scrap

    SciTech Connect (OSTI)

    Rij, P.W. van; Campenon, B.; Mooij, J.N.

    1997-04-01

    Scrap is an important raw material in the steel industry. Depending on the type of steelmaking process, the composition of the scrap may vary. Market research in Europe shows that there will be a shortage of zinc-free scrap in the future. An alkaline dezincing process for galvanized steel has been developed. A description of a pilot plant based on alkaline dezincing technology is presented.

  19. Sol-Up USA, LLC | Open Energy Information

    Open Energy Info (EERE)

    Sol-Up USA, LLC Jump to: navigation, search Logo: Sol-Up USA, LLC Name: Sol-Up USA, LLC Address: 3355 West Spring Mountain Road, Suite 3 Place: Las Vegas, NV Zip: 89102 Sector:...

  20. MOU signed between CIAE and Jefferson National Lab, USA. (China...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MOU signed between CIAE and Jefferson National Lab, USA. (China Nuclear Industry News, ... of Jefferson National Lab, USA visited the China Institute of Atomic Energy (CIAE). ...

  1. Macquarie Funds Management USA Inc | Open Energy Information

    Open Energy Info (EERE)

    Macquarie Funds Management USA Inc Jump to: navigation, search Name: Macquarie Funds Management (USA) Inc. Place: Carlsbad, California Zip: 92008 Product: Fund of funds arm of...

  2. China Solar Clean Energy Solutions Inc formerly Deli Solar USA...

    Open Energy Info (EERE)

    Inc formerly Deli Solar USA Inc Jump to: navigation, search Name: China Solar & Clean Energy Solutions Inc ( formerly Deli Solar (USA) Inc) Place: Connecticut Zip: 6039 Sector:...

  3. Mitsubishi Electric and Electronics USA Inc | Open Energy Information

    Open Energy Info (EERE)

    and Electronics USA Inc Jump to: navigation, search Name: Mitsubishi Electric and Electronics USA Inc Place: Cypress, California Zip: 90630 Sector: Solar Product: Markets and...

  4. E ON Climate Renewables North America formerly Airtricity USA...

    Open Energy Info (EERE)

    Climate Renewables North America formerly Airtricity USA Jump to: navigation, search Name: E.ON Climate & Renewables North America (formerly Airtricity USA) Place: Chicago,...

  5. FRV USA formerly Fotowatio Renewable Ventures LLC | Open Energy...

    Open Energy Info (EERE)

    USA formerly Fotowatio Renewable Ventures LLC Jump to: navigation, search Name: FRV USA (formerly Fotowatio Renewable Ventures LLC) Place: San Francisco, California Zip: 94104...

  6. Calyxo USA Solar Fields LLC | Open Energy Information

    Open Energy Info (EERE)

    USA Solar Fields LLC Jump to: navigation, search Name: Calyxo USA (Solar Fields LLC) Place: Perrysburg, Ohio Zip: 43551 Sector: Solar Product: Producer of cadmium telluride...

  7. USA Science and Engineering Festival: Inspiring and Educating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USA Science and Engineering Festival: Inspiring and Educating the Clean Energy Workforce of Tomorrow USA Science and Engineering Festival: Inspiring and Educating the Clean Energy...

  8. Acciona Wind Energy USA LLC | Open Energy Information

    Open Energy Info (EERE)

    USA LLC Jump to: navigation, search Name: Acciona Wind Energy USA LLC Place: Chicago, Illinois Zip: 60631 Sector: Wind energy Product: US wind farms developer subsidiary of Acciona...

  9. HERA USA Inc formerly Ergenics Inc | Open Energy Information

    Open Energy Info (EERE)

    USA Inc (formerly Ergenics Inc) Place: Ringwood, New Jersey Zip: 7456 Sector: Hydro, Hydrogen Product: Ergenics is a USA based company with extensive experience in the development...

  10. MOU signed between CIAE and Jefferson National Lab, USA. (China...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlesmou-signed-between-cia...-and-jefferson-national-lab-usa-china-nuclear-industry-news-ge... ... USA visited the China Institute of Atomic Energy (CIAE). ...

  11. Naturener USA LLC formerly Great Plains Wind Energy | Open Energy...

    Open Energy Info (EERE)

    USA LLC formerly Great Plains Wind Energy Jump to: navigation, search Name: Naturener USA, LLC (formerly Great Plains Wind & Energy) Place: San Francisco, California Zip: 94111...

  12. Profiles in garbage: Steel cans

    SciTech Connect (OSTI)

    Miller, C.

    1998-02-01

    Steel mills are the largest market for steel cans. Integrated mills use the basic oxygen process to manufacture tinplate, appliances, car bodies, and steel framing. Electric arc furnaces use 100% scrap to produce steel shapes such as railroad ties and bridge spans. Electric arc furnaces are more geographically diverse and tend to have smaller capacities than basic oxygen furnaces. Detinners remove the tin from steel cans for resale to tin using industries. With less tin use in steel cans, the importance of the detinning market has declined substantially. Foundries use scrap as a raw material in making castings and molds for industrial users.

  13. ITP Steel: Steel Industry Energy Bandwidth Study October 2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Steel can be hot or cold rolled; with hot rolling, the steel either is reheated or directly charged after casting. Reheating is the major energy consumer in the rolling process. ...

  14. ITP Steel: Steel Industry Marginal Opportunity Study September 2005

    Office of Energy Efficiency and Renewable Energy (EERE)

    The objective of this study is to generate a marginal opportunity curve for the ITP steel subprogram showing the location of the current portfolio compared against all opportunities for steel manufacturing.

  15. Funding & Financing for Energy Businesses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Businesses Funding & Financing for Energy Businesses Secretary Moniz and President Obama tour ArcelorMittal's steel plant in Cleveland, Ohio, which produces materials that are helping vehicles become more fuel efficient. | Photo courtesy of the White House. Secretary Moniz and President Obama tour ArcelorMittal's steel plant in Cleveland, Ohio, which produces materials that are helping vehicles become more fuel efficient. | Photo courtesy of the White House. Do you own or represent an energy

  16. Continuous steel production and apparatus

    DOE Patents [OSTI]

    Peaslee, Kent D.; Peter, Jorg J.; Robertson, David G. C.; Thomas, Brian G.; Zhang, Lifeng

    2009-11-17

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  17. ITP Steel: Energy Use in the U.S. Steel Industry: An Historical Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Future Opportunities, September 2000 | Department of Energy Use in the U.S. Steel Industry: An Historical Perspective and Future Opportunities, September 2000 ITP Steel: Energy Use in the U.S. Steel Industry: An Historical Perspective and Future Opportunities, September 2000 steel_energy_use.pdf (431.85 KB) More Documents & Publications ITP Steel: Steel Industry Marginal Opportunity Study September 2005 ITP Steel: Steel Industry Energy Bandwidth Study October 2004 ITP Steel: Energy

  18. Solar Systems USA | Open Energy Information

    Open Energy Info (EERE)

    up":"","inlineLabel":"","visitedicon":"" Hide Map References: Solar Systems USA Online Solar Panel Retailer1 This article is a stub. You can help OpenEI by expanding it. Solar...

  19. Hisense USA: Proposed Penalty (2010-CE-1211)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Hisense USA Corp. failed to certify a variety of residential refrigerators, refrigerator-freezers, and freezers as compliant with the applicable energy conservation standards.

  20. USA Manufacturing: Proposed Penalty (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that USA Manufacturing failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

  1. LES' URENCO-USA Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LES' URENCO-USA Facility LES' URENCO-USA Facility PowerPoint slides on LES's URENCO-USA Facility LES' URENCO-USA Facility (581.43 KB) More Documents & Publications 2014 Review of the Potential Impact of DOE Excess Uranium Inventory On the Commercial Markets Memorandum Memorializing Ex Parte Communication Report on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the USA and the Russian Federation has on the Domestic Uranium Mining, Conversion,

  2. Steel Market Development Institute Awards "Community Hero" Award...

    Broader source: Energy.gov (indexed) [DOE]

    Steel Market Development Institute Men and Women of Steel Awardees Steel Market Development Institute Men and Women of Steel Awardees At the 2016 North American International Auto ...

  3. Ferritic steel melt and FLiBe/steel experiment : melting ferritic steel.

    SciTech Connect (OSTI)

    Troncosa, Kenneth P.; Smith, Brandon M.; Tanaka, Tina Joan

    2004-11-01

    In preparation for developing a Z-pinch IFE power plant, the interaction of ferritic steel with the coolant, FLiBe, must be explored. Sandia National Laboratories Fusion Technology Department was asked to drop molten ferritic steel and FLiBe in a vacuum system and determine the gas byproducts and ability to recycle the steel. We tried various methods of resistive heating of ferritic steel using available power supplies and easily obtained heaters. Although we could melt the steel, we could not cause a drop to fall. This report describes the various experiments that were performed and includes some suggestions and materials needed to be successful. Although the steel was easily melted, it was not possible to drip the molten steel into a FLiBe pool Levitation melting of the drop is likely to be more successful.

  4. History of ultrahigh carbon steels

    SciTech Connect (OSTI)

    Wadsworth, J.; Sherby, O.D.

    1997-06-20

    The history and development of ultrahigh carbon steels (i.e., steels containing between 1 and 2.l percent C and now known as UHCS) are described. The early use of steel compositions containing carbon contents above the eutectoid level is found in ancient weapons from around the world. For example, both Damascus and Japanese sword steels are hypereutectoid steels. Their manufacture and processing is of interest in understanding the role of carbon content in the development of modern steels. Although sporadic examples of UHCS compositions are found in steels examined in the early part of this century, it was not until the mid-1970s that the modern study began. This study had its origin in the development of superplastic behavior in steels and the recognition that increasing the carbon content was of importance in developing that property. The compositions that were optimal for superplasticity involved the development of steels that contained higher carbon contents than conventional modern steels. It was discovered, however, that the room temperature properties of these compositions were of interest in their own right. Following this discovery, a period of intense work began on understanding their manufacture, processing, and properties for both superplastic forming and room temperature applications. The development of superplastic cast irons and iron carbides, as well as those of laminated composites containing UHCS, was an important part of this history.

  5. High-performance steels

    SciTech Connect (OSTI)

    Barsom, J.M.

    1996-03-01

    Steel is the material of choice in structures such as storage tanks, gas and oil distribution pipelines, high-rise buildings, and bridges because of its strength, ductility, and fracture toughness, as well as its repairability and recyclability. Furthermore, these properties are continually being improved via advances in steelmaking, casting, rolling, and chemistry. Developments in steelmaking have led to alloys having low sulfur, sulfide shape control, and low hydrogen. They provide reduced chemical segregation, higher fracture toughness, better through-thickness and weld heat-affected zone properties, and lower susceptibility to hydrogen cracking. Processing has moved beyond traditional practices to designed combinations of controlled rolling and cooling known as thermomechanical control processes (TMCP). In fact, chemical composition control and TMCP now enable such precise adjustment of final properties that these alloys are now known as high-performance steels (HPS), engineered materials having properties tailored for specific applications.

  6. High-Alloy Ferritic Steels: Semi-Austenitic Stainless Steels...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    however, have low fracture toughness in high strength conditions and at low (subzero) temperature. ... Stainless Steels 1700 - 3 4.2 Heat treatment These alloys typically employ ...

  7. Stainless Steel Permeability

    SciTech Connect (OSTI)

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  8. MECS 2006- Iron and Steel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input, October 2012 (MECS 2006)

  9. Process for dezincing galvanized steel

    DOE Patents [OSTI]

    Morgan, William A.; Dudek, Frederick J.; Daniels, Edward J.

    1998-01-01

    A process for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75.degree. C. and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (i) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (ii) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (iii) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (iv) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte.

  10. High strength, tough alloy steel

    DOE Patents [OSTI]

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  11. Process for dezincing galvanized steel

    DOE Patents [OSTI]

    Morgan, W.A.; Dudek, F.J.; Daniels, E.J.

    1998-07-14

    A process is described for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75 C and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (1) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (2) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (3) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (4) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte. 1 fig.

  12. DuraLamp USA: Order (2010-CE-0912)

    Broader source: Energy.gov [DOE]

    DOE ordered DuraLamp USA, Inc. to pay a $2,500 civil penalty after finding DuraLamp USA had failed to certify that model PAR 30, an incandescent reflector lamp, complies with the applicable energy conservation standards.

  13. Smeg USA: Order (2011-CE-14/1909)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE ordered Smeg USA, Inc. to pay a $6,000 civil penalty after finding Smeg USA had failed to certify that certain models of dishwashers and refrigerators comply with the applicable energy conservation standards.

  14. Ultra Soy of America DBA USA Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Ultra Soy of America DBA USA Biofuels Jump to: navigation, search Name: Ultra Soy of America (DBA USA Biofuels) Place: Fort Wayne, Indiana Zip: 46898 Sector: Biofuels Product: An...

  15. JFE Steel Corp | Open Energy Information

    Open Energy Info (EERE)

    Corp Jump to: navigation, search Name: JFE Steel Corp Place: Tokyo, Tokyo, Japan Zip: 100-0011 Product: Japanese steel manufacturer; manufactures metallurgical silicon and plans to...

  16. Kobe Steel Ltd Kobelco | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Kobe Steel Ltd (Kobelco) Place: Kobe-shi, Hyogo, Japan Zip: 651-8585 Sector: Solar Product: Japanese steel manufacturer; manufactures PV...

  17. Improved Martensitic Steel for High Temperature Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Martensitic Steel for High Temperature Applications A stainless steel composition and heat treatment process for a high-temperature, titanium alloyed 9 Cr-1 molybdenum ...

  18. Mr. Frank Iannizzara Engineering Department Copperweld Steel...

    Office of Legacy Management (LM)

    Frank Iannizzara Engineering Department Copperweld Steel Company 4000 Mahoning Street ... (ORNL) performed a of the Copperweld Steel Company facility in Warren, Ohio. copy of ...

  19. EA-332 Nexen Marketing U.S.A. Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nexen Marketing U.S.A. Inc. EA-332 Nexen Marketing U.S.A. Inc. Order authorizing Nexen Marketing U.S.A. Inc. to export electric energy to Canada EA-332 Nexen Marketing U.S.A. Inc. ...

  20. The industrial ecology of steel

    SciTech Connect (OSTI)

    Considine, Timothy J.; Jablonowski, Christopher; Considine, Donita M.M.; Rao, Prasad G.

    2001-03-26

    This study performs an integrated assessment of new technology adoption in the steel industry. New coke, iron, and steel production technologies are discussed, and their economic and environmental characteristics are compared. Based upon detailed plant level data on cost and physical input-output relations by process, this study develops a simple mathematical optimization model of steel process choice. This model is then expanded to a life cycle context, accounting for environmental emissions generated during the production and transportation of energy and material inputs into steelmaking. This life-cycle optimization model provides a basis for evaluating the environmental impacts of existing and new iron and steel technologies. Five different plant configurations are examined, from conventional integrated steel production to completely scrap-based operations. Two cost criteria are used to evaluate technology choice: private and social cost, with the latter including the environmental damages associated with emissions. While scrap-based technologies clearly generate lower emissions in mass terms, their emissions of sulfur dioxide and nitrogen oxides are significantly higher. Using conventional damage cost estimates reported in the literature suggests that the social costs associated with scrap-based steel production are slightly higher than with integrated steel production. This suggests that adopting a life-cycle viewpoint can substantially affect environmental assessment of new technologies. Finally, this study also examines the impacts of carbon taxes on steel production costs and technology choice.

  1. DOE Analysis Related to H2USA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Related to H2USA DOE Analysis Related to H2USA Download presentation slides from the DOE Fuel Cell Technologies Office webinar "DOE Analysis Related to H2USA" held on July 24, 2013. DOE Analysis Related to H2USA Webinar Slides (4.8 MB) More Documents & Publications National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Fuel Cell Technologies Program Overview: 2012 DOE Polymer and Composite Materials Meetings Hydrogen and Fuel Cells Program Overview: 2014

  2. Advanced steel reheat furnace

    SciTech Connect (OSTI)

    Moyeda, D.; Sheldon, M.; Koppang, R.; Lanyi, M.; Li, X.; Eleazer, B.

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  3. High-Alloy Ferritic Steels: Martensitic Stainless Steels, Precipitatio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Metall Trans 12A (1981) 2138-2141. 7. LW Tsay, WC Lee, RK Shiue and JK Wu. Notch tensile properties of laser-surface-annealed 17-4 PH stainless steel in hydrogen-related ...

  4. 2169 steel waveform experiments.

    SciTech Connect (OSTI)

    Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd; Brown, Justin L.

    2012-11-01

    In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included the elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe - phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mm-thick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.

  5. ITP Steel: Energy Use in the U.S. Steel Industry: An Historical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use in the U.S. Steel Industry: An Historical Perspective and Future Opportunities, September 2000 ITP Steel: Energy Use in the U.S. Steel Industry: An Historical ...

  6. ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting Operations castingops.pdf (875.11 KB) More Documents & Publications Steel Industry Technology Roadmap ITP Steel: ...

  7. Nano-composite stainless steel (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Nano-composite stainless steel Citation Details In-Document Search Title: Nano-composite stainless steel A composite stainless steel composition is composed essentially of, ...

  8. Auto/Steel Partnership: AHSS Stamping, Strain Rate Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS Joining AutoSteel ... More Documents & Publications AutoSteel Partnership: Fatigue of AHSS Strain Rate ...

  9. Auto/Steel Partnership: Hydroforming Materials and Lubricant...

    Broader source: Energy.gov (indexed) [DOE]

    FY 2008 Progress Report for Lightweighting Materials - 5. Automotive Metals-Steel FY 2009 Progress Report for Lightweighting Materials - 5. Automotive Metals - Steel AutoSteel ...

  10. Hydrogen Embrittlement in Pipeline Steels

    Broader source: Energy.gov (indexed) [DOE]

    Division Material Measurement Laboratory Cheaper vs Safe?: Does it have to be choice * Steel is sold by the ton * X80 costs about the same as a X42ton * Use less X80, therefore ...

  11. Great Lakes Steel -- PCI facility

    SciTech Connect (OSTI)

    Eichinger, F.T.; Dake, S.H.; Wagner, E.D.; Brown, G.S.

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  12. Electrochemical Dezincing of Steel Scrap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Half of the steel produced in the United States is derived from scrap. With zinc-coated prompt scrap increasing fivefold since 1980, steelmakers are feeling the effect of increased contaminant...

  13. Hydrogen embrittlement of structural steels.

    SciTech Connect (OSTI)

    Somerday, Brian P.

    2010-06-01

    Carbon-manganese steels are candidates for the structural materials in hydrogen gas pipelines, however it is well known that these steels are susceptible to hydrogen embrittlement. Decades of research and industrial experience have established that hydrogen embrittlement compromises the structural integrity of steel components. This experience has also helped identify the failure modes that can operate in hydrogen containment structures. As a result, there are tangible ideas for managing hydrogen embrittement in steels and quantifying safety margins for steel hydrogen containment structures. For example, fatigue crack growth aided by hydrogen embrittlement is a key failure mode for steel hydrogen containment structures subjected to pressure cycling. Applying appropriate structural integrity models coupled with measurement of relevant material properties allows quantification of safety margins against fatigue crack growth in hydrogen containment structures. Furthermore, application of these structural integrity models is aided by the development of micromechanics models, which provide important insights such as the hydrogen distribution near defects in steel structures. The principal objective of this project is to enable application of structural integrity models to steel hydrogen pipelines. The new American Society of Mechanical Engineers (ASME) B31.12 design code for hydrogen pipelines includes a fracture mechanics-based design option, which requires material property inputs such as the threshold for rapid cracking and fatigue crack growth rate under cyclic loading. Thus, one focus of this project is to measure the rapid-cracking thresholds and fatigue crack growth rates of line pipe steels in high-pressure hydrogen gas. These properties must be measured for the base materials but more importantly for the welds, which are likely to be most vulnerable to hydrogen embrittlement. The measured properties can be evaluated by predicting the performance of the pipeline

  14. Safety Analysis Report for Packaging (SARP): Models AL-M3 and AL-M6 nuclear packaging (DOE C of C No. USA/5790/BLF and No. USA/5791/BLF)

    SciTech Connect (OSTI)

    Coleman, H.L.; Whitney, M.A.; Williams, M.A.; Alexander, B.M.; Shapiro, A.

    1987-11-24

    This revised Safety Analysis Report for Packaging (SARP) satisfies the requirement of the US Department of Energy (DOE) for an updated formal safety analysis of the two insulated drum shipping containers identified as USA/5790/BLF and USA/5791/BLF. The report makes available to all potential users the technical information and limits pertinent to the construction and use of the shipping containers. This SARP includes discussions of structural integrity, thermal resistance, radiation shielding and radiological safety, nuclear criticality safety, and quality control. Complete physical and technical descriptions of the packages are presented. Each package consists of a cylindrical steel inner container centered within an insulating steel drum assembly. The contents may be any radioactive materials that satisfy the requirements established in this SARP. A shipment of plutonium-238 in the form of a solid oxide is evaluated in this SARP as an example. Design and development considerations, the tests and evaluations required to prove the ability of the containers to withstand normal transportation conditions, and the sequence of four hypothetical accident conditions (free drop, puncture, thermal, and water immersion) are discussed. Tables, graphs, dimensional sketches, photographs, technical references, loading and shipping procedures, Mound Facility experience in using the containers, and copies of the DOE Certificates of Compliance are included.

  15. Development of New Stainless Steel

    SciTech Connect (OSTI)

    Robert F. Buck

    2005-08-30

    A new family of innovative martensitic stainless steels, 521-A, 521-B, and 521-C has been developed by Advanced Steel Technology, LLC (Trafford, PA) as high strength fastener (bolt) materials for use at moderate temperatures in turbine engines, including steam turbines, gas turbines, and aircraft engines. The primary objective of the development program was to create a martensitic stainless steel with high strength at moderate temperatures, and which could replace the expensive nickel-based superalloy IN 718 in some fasteners applications. A secondary objective was to replace conventional 12Cr steels such as AISI 422 used as blades, buckets and shafts that operate at intermediate temperatures in turbine engines with stronger steel. The composition of the new alloys was specifically designed to produce excellent mechanical properties while integrating heat treatment steps into production to reduce energy consumption during manufacturing. As a result, production costs and energy consumption during production of rolled bar products is significantly lower than conventional materials. Successful commercialization of the new alloys would permit the installed cost of certain turbine engines to be reduced without sacrificing high availability or operational flexibility, thereby enhancing the global competitiveness of U.S. turbine engine manufacturers. Moreover, the domestic specialty steel industry would also benefit through increased productivity and reduced operating costs, while increasing their share of the international market for turbine engine fasteners, blades, buckets and shafts.

  16. USA Biomass Power Producers Alliance | Open Energy Information

    Open Energy Info (EERE)

    Biomass Power Producers Alliance Jump to: navigation, search Name: USA Biomass Power Producers Alliance Place: Sacramento, California Sector: Biomass Product: National trade...

  17. International Energy Services USA Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: International Energy Services USA Inc Place: Washington, Washington, DC Sector: Renewable Energy Product: Owns various renewable energy...

  18. File:INL-geothermal-west-usa.pdf | Open Energy Information

    Open Energy Info (EERE)

    INL-geothermal-west-usa.pdf Jump to: navigation, search File File history File usage Western United States Geothermal Resources Size of this preview: 653 599 pixels. Other...

  19. Ormat Technologies Inc. North Brawley, California USA | Open...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Ormat Technologies Inc. North Brawley, California USA Citation Ormat...

  20. Euro Chef USA: Proposed Penalty (2014-CE-23004)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Euro Chef USA Inc. failed to certify cooking products as compliant with the applicable energy conservation standards.

  1. H-Series Cast Austenitic Stainless Steels

    Broader source: Energy.gov [DOE]

    Cast H-Series austenitic steels are used extensively in several industries for a broad range of high-temperature applications. The H-Series stainless steels have evolved over many years of complex...

  2. EA-332-A Nexen Marketing U.S.A. Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -A Nexen Marketing U.S.A. Inc. EA-332-A Nexen Marketing U.S.A. Inc. Order authorizing Nexen Marketing U.S.A. Inc. to export electric energy to Canada EA-332-A Nexen Marketing ...

  3. Deputy Secretary Daniel Poneman USA Today Op-Ed September 13...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deputy Secretary Daniel Poneman USA Today Op-Ed September 13, 2011 Deputy Secretary Daniel Poneman USA Today Op-Ed September 13, 2011 PDF icon 091411Poneman USA Today op-ed.pdf...

  4. ENG-Canada-USA Government Procurement (clean 11 Feb 2010 printed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENG-Canada-USA Government Procurement (clean 11 Feb 2010 printed) ENG-Canada-USA Government Procurement (clean 11 Feb 2010 printed) ENG-Canada-USA Government Procurement (clean 11 ...

  5. Reply Comments of T-Mobile USA, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    T-Mobile USA, Inc. Reply Comments of T-Mobile USA, Inc. T-Mobile USA, Inc. ("T-Mobile") hereby submits these reply comments in response to the above-captioned Request for ...

  6. ITP Steel: Steel Industry Marginal Opportunity Study September 2005

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steel Industry Marginal Opportunity Study Energetics, Inc. for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Industrial Technologies Program September 2005 1 Table of Contents Introduction.....................................................................................................................- 1 - Ore-Based Steelmaking: Bandwidth and Opportunities................................................- 3 - EAF Steelmaking: Bandwidth and

  7. Today`s steel technology

    SciTech Connect (OSTI)

    1996-01-01

    AISI members have made significant advances in steelmaking technology over the past several years. This report details the alloy developments and processes that have made steel an engineered material suitable for an expanding range of applications. Improved processes involve casting, rolling, welding, forging, chemical composition and computerized control. Applications cover a broad range including automobile, buildings and bridges.

  8. Large Scale Evaluation fo Nickel Aluminide Rolls

    SciTech Connect (OSTI)

    2005-09-01

    This completed project was a joint effort between Oak Ridge National Laboratory and Bethlehem Steel (now Mittal Steel) to demonstrate the effectiveness of using nickel aluminide intermetallic alloy rolls as part of an updated, energy-efficient, commercial annealing furnace system.

  9. DOE - Office of Legacy Management -- Sutton Steele and Steele Co - TX 09

    Office of Legacy Management (LM)

    Sutton Steele and Steele Co - TX 09 FUSRAP Considered Sites Site: SUTTON, STEELE & STEELE CO. (TX.09) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Sutton, Steele & Steele, Inc. TX.09-1 Location: Dallas , Texas TX.09-1 Evaluation Year: 1993 TX.09-2 Site Operations: Conducted operations to separate Uranium shot by means of air float tables and conducted research to air classify C-Liner and C-Special materials. TX.09-1 TX.09-3 TX.09-4 TX.09-5

  10. Steel project fact sheet: Steel reheating for further processing

    SciTech Connect (OSTI)

    1998-04-01

    Steel reheating is an energy-intensive process requiring uniform temperature distribution within reheating furnaces. Historically, recuperators have ben used to preheat combustion air, thereby conserving energy. More recent innovations include oxygen enrichment and the use of regenerative burners, which provide higher preheat air temperatures than recuperators. These processes have limitations such as equipment deterioration, decreasing energy efficiency over time, high maintenance costs, and increased NO{sub x} emissions with increased air preheat temperature, unless special equipment is used. Praxair, Inc., supplier of oxygen and other industrial gases to the steel industry, proposes to introduce an innovative oxy-fuel burner technology (using 100% oxygen) to the steel reheating industry. Oxy-fuel combustion reduces or eliminates nitrogen in combustion air and substantially reduces waste heat carried out with flue gas. Based on technology currently used in the glass, hazardous waste, and aluminum industries, Praxair has developed and patented low temperature, oxy-fuel burners that can be used in high temperature industrial furnaces where temperature uniformity is critical and extremely low NO{sub x} emissions are desired. The technical goal of the project is to demonstrate the use of oxy-fuel burners in a slab reheat furnace while reducing energy consumption by 45% and NO{sub x} emissions by 90% within the converted furnace zones. Successful implementation of this technology also will eliminate the need to periodically replace recuperators and install NO{sub x} removal equipment.

  11. Automotive frames of stainless steel

    SciTech Connect (OSTI)

    Emmons, J.B.; Douthett, J.

    1996-08-01

    A lightweight, stainless steel vehicle modular frame that meets the requirements of the Partnership for a New Generation of Vehicles (PNGV) is being jointly developed by Armco and Autokinetics. Reaching the long-term goal of the program known as the Supercar will require technology that is capable of significantly reducing mass, while holding the cost of the finished vehicle to current levels. The structure should reduce mass by at least 50%, and must be high in performance, practical to manufacture, and conceptually simple compared to current practice. Another key PNGV goal is the development of a manufacturing infrastructure to attain cost and production levels consistent with auto industry norms. A third goal is to spin off as much of the resulting advanced technology as possible to conventional vehicles, enabling them to benefit from advances in mass reduction, aerodynamics, and materials technologies. All of these benefits can be realized with the stainless steel modular frame.

  12. Steel Industry Energy Bandwidth Study

    SciTech Connect (OSTI)

    none,

    2004-10-01

    ITP conducted a study on energy use and potential savings, or "bandwidth" study, in major steelmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results based on the 2nd law of thermodynamics. The Steel Industry Energy Bandwidth Study (PDF133 KB) also estimates steel industry energy use in the year 2010, and uses that value as a basis for comparison against the minimum requirements. This energy savings opportunity for 2010 will aid focus on longer term R&D.

  13. De'Longhi USA: Order (2010-CE-2114)

    Broader source: Energy.gov [DOE]

    DOE issued an Order after entering into a Compromise Agreement with De'Longhi USA, Inc. to resolve a case involving the failure to certify that a variety of dehumidifiers comply with the applicable energy conservation standards.

  14. DuraLamp USA: Proposed Penalty (2010-CE-0912)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that DuraLamp USA, Inc. failed to certify a variety of general service fluorescent lamps as compliant with the applicable energy conservation standards.

  15. Smeg USA: Proposed Penalty (2011-CE-14/1909)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE alleged in a Notice of Proposed Civil Penalty that Smeg USA, Inc. failed to certify a variety of dishwashers and refrigerators as compliant with the applicable energy conservation standards.

  16. TianRun USA Inc | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Sector: Wind energy Product: Minnesota-based investment arm of Goldwind Science & Technology, Beijing Tianrun invested USD 3m to set up the TianRun USA subsidiary in...

  17. De'Longhi USA: Proposed Penalty (2010-CE-2114)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that De'Longhi USA, Inc. failed to certify a variety of dehumidifiers as compliant with the applicable energy conservation standards.

  18. Chevron U.S.A. Inc.- 14-119-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed August 27, 2014 by Chevron U.S.A. Inc. (Chevron), requesting blanket authorization to export liquefied natural gas (LNG)...

  19. Nano-composite stainless steel

    SciTech Connect (OSTI)

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  20. Steel Industry Marginal Opportunity Analysis

    SciTech Connect (OSTI)

    none,

    2005-09-01

    The Steel Industry Marginal Opportunity Analysis (PDF347 KB) identifies opportunities for developing advanced technologies and estimates both the necessary funding and the potential payoff. This analysis determines what portion of the energy bandwidth can be captured through the adoption of state-of-the-art technology and practices. R&D opportunities for addressing the remainder of the bandwidth are characterized and plotted on a marginal opportunity curve.

  1. Director of Maintenance for USA Jet Airlines, Inc. | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Director of Maintenance for USA Jet Airlines, Inc. Rick A. Wilson Rick Wilson July 2009 U.S. General Services Administration (GSA) Aviation Maintenance Professional of the Year Rick A. Wilson has received the U.S. General Services Administration (GSA) Aviation Maintenance Professional of the Year award. Wilson is the director of maintenance for USA Jet Airlines, Inc., in Albuquerque. He manages the maintenance activity of seven different fleet aircraft for

  2. H2USA Accomplishments Push Hydrogen Infrastructure Forward | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy H2USA Accomplishments Push Hydrogen Infrastructure Forward H2USA Accomplishments Push Hydrogen Infrastructure Forward April 21, 2015 - 4:47pm Addthis A fuel cell electric vehicle (FCEV) at a fueling station in California. A fuel cell electric vehicle (FCEV) at a fueling station in California. Sunita Satyapal Director, Fuel Cell Technologies Office In 2013, auto manufacturers started announcing fuel cell electric vehicle (FCEV) commercialization plans. Since then, Toyota, Hyundai,

  3. PROJECT PROFILE: Fraunhofer USA, Center for Sustainable Energy Systems CSE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (SHINES) | Department of Energy Fraunhofer USA, Center for Sustainable Energy Systems CSE (SHINES) PROJECT PROFILE: Fraunhofer USA, Center for Sustainable Energy Systems CSE (SHINES) Title: SunDial - An Integrated SHINES System to Enable High-Penetration Feeder-Level Photovoltaics Fraunhofer logo.png Funding Opportunity: Sustainable and Holistic Integration of Energy Storage and Solar PV SunShot Subprogram: Systems Integration Location: Boston, Massachusetts Partners: National Grid, EnerNOC

  4. Steel: Material for the 21. century

    SciTech Connect (OSTI)

    1996-01-01

    In spite of inroads by a range of competing materials, steel is still the primary structural material because of its outstanding strength, ductility, fracture toughness, repairability, and recyclability. Over the past ten years, advances in steelmaking and processing technologies have enabled the development of a wide range of new steel products with improved properties. For example, combinations of closely controlled chemical composition, rolling practices, and cooling rates now permit the production of steels with enhanced fracture toughness and lower susceptibility to hydrogen cracking.

  5. Tokyo Steel Manufacturing Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Tokyo Steel Manufacturing Co, Ltd Place: Japan Zip: 100-0013 Product: Tokyo Steel is involved in the manufacture and sale of steel...

  6. Korea Iron Steel Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Steel Co Ltd Jump to: navigation, search Name: Korea Iron & Steel Co Ltd Place: Changwon, South Gyeongsang, Korea (Republic) Zip: 641 370 Product: Korea-based manufacturer of steel...

  7. Auto industry steel project to boost efficiency, safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Auto industry steel project to boost efficiency, safety Auto industry steel project to boost efficiency, safety Higher-strength, lighter-weight steels could be coming to a car near ...

  8. Iron and Steel (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iron and Steel (2010 MECS) Iron and Steel (2010 MECS) Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Iron and Steel (125.81 KB) More Documents & Publications MECS 2006 - Iron and Steel Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October

  9. Multi-component Cu-Strengthened Steel Welding Simulations: Atom...

    Office of Scientific and Technical Information (OSTI)

    Steel Welding Simulations: Atom Probe Tomography and Synchrotron X-ray Diffraction Analyses Citation Details In-Document Search Title: Multi-component Cu-Strengthened Steel Welding ...

  10. NanoComposite Stainless Steel Powder Technologies (Technical...

    Office of Scientific and Technical Information (OSTI)

    NanoComposite Stainless Steel Powder Technologies Citation Details In-Document Search Title: NanoComposite Stainless Steel Powder Technologies You are accessing a document from ...

  11. Post-Test Metallurgical Evaluation Results for Steel Containment...

    Office of Scientific and Technical Information (OSTI)

    Results for Steel Containment Vessel (SCV) High Pressure Test Citation Details In-Document Search Title: Post-Test Metallurgical Evaluation Results for Steel Containment ...

  12. Hydrogen Assisted Fracture of Stainless Steels (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Hydrogen Assisted Fracture of Stainless Steels Citation Details In-Document Search Title: Hydrogen Assisted Fracture of Stainless Steels You are accessing a ...

  13. 2169 steel waveform experiments. (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: 2169 steel waveform experiments. Citation Details In-Document Search Title: 2169 steel waveform experiments. In support of LLNL efforts to develop multiscale ...

  14. Steele Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Steele Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Steele Hot...

  15. Hydrogen Assisted Fracture of Stainless Steels (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Assisted Fracture of Stainless Steels Citation Details In-Document Search Title: Hydrogen Assisted Fracture of Stainless Steels Abstract not provided. Authors: Somerday,...

  16. Hydrogen Assisted Fracture of Stainless Steels (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Assisted Fracture of Stainless Steels Citation Details In-Document Search Title: Hydrogen Assisted Fracture of Stainless Steels You are accessing a document from the...

  17. DOE - Office of Legacy Management -- American Steel Foundries...

    Office of Legacy Management (LM)

    Steel Foundries Elmes-King Div - OH 36 FUSRAP Considered Sites Site: American Steel Foundries Elmes-King Div (OH.36 ) Eliminated from consideration under FUSRAP Designated Name: ...

  18. DOE - Office of Legacy Management -- Wyckoff Steel Co - NJ 20

    Office of Legacy Management (LM)

    Steel Co - NJ 20 FUSRAP Considered Sites Site: Wyckoff Steel Co (NJ 20) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: ...

  19. Auto/Steel Partnership: Fatigue of AHSS Strain Rate Characterization...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications AutoSteel Partnership: AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS Joining FY 2009 Progress Report for Lightweighting ...

  20. DOE - Office of Legacy Management -- Copperweld Steel Co - OH...

    Office of Legacy Management (LM)

    Copperweld Steel Co - OH 33 FUSRAP Considered Sites Site: COPPERWELD STEEL CO. (OH.33 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate ...

  1. Largest Producer of Steel Products in the United States Achieves...

    Office of Environmental Management (EM)

    Largest Producer of Steel Products in the United States Achieves Significant Energy Savings at its Minntac Plant Largest Producer of Steel Products in the United States Achieves ...

  2. Decorative Steel Composition with a Crystalline Surface - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Decorative Steel Composition with a Crystalline ... Technology Marketing SummaryA method for producing a new decorative steel with a ...

  3. COLLOQUIUM: How Trenton Iron and Steel Innovations Reshaped America...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium COLLOQUIUM: How Trenton Iron and Steel Innovations Reshaped America Mr. Clifford Zink Independent Historian Iron and steel innovations in Trenton helped transform ...

  4. DOE - Office of Legacy Management -- Carpenter Steel Co - PA...

    Office of Legacy Management (LM)

    Carpenter Steel Co - PA 12 FUSRAP Considered Sites Site: Carpenter Steel Co. (PA.12 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate ...

  5. SURVEY OF ROLLING MILL USED BY BETHLEHEM STEEL CORPORATION LACKAWANNA...

    Office of Legacy Management (LM)

    SURVEY OF ROLLING MILL USED BY BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK Work ... SURVEY OF ROLLING MILL USED BY BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK A ...

  6. Stainless Steel Hotplate Heater for Long Objects --- Inventor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stainless Steel Hotplate Heater for Long Objects --- Inventor(s): Stephan Jurczynski and ... High electrical current is passed through a stainless steel plate longer and slightly ...

  7. DOE - Office of Legacy Management -- Bethlehem Steel Corporation...

    Office of Legacy Management (LM)

    Bethlehem Steel Corporation - NY 02 FUSRAP Considered Sites Site: BETHLEHEM STEEL CORPORATION (NY.02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated ...

  8. DOE - Office of Legacy Management -- Jessop Steel Co - PA 17

    Office of Legacy Management (LM)

    Jessop Steel Co - PA 17 FUSRAP Considered Sites Site: JESSOP STEEL CO. (PA.17 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: ...

  9. PRELIMINARY SURVEY OF AL-TECH SPECIALTY STEEL CORPORATION WATERVLIET...

    Office of Legacy Management (LM)

    . PRELIMINARY SURVEY OF AL-TECH SPECIALTY STEEL CORPORATION WATERVLIET, NEW YORK Work ... I . . . .*l-..l- . ..-.-- - - - - .-- AL-TECH SPECIALTY STEEL CORPORATION ...

  10. Assessing Steel Pipeline and Weld Susceptibility to Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    Office webinar "Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement" held on January 12, 2016. Assessing Steel Pipeline and Weld Susceptibility to ...

  11. Post Irradiation Examination of Stainless Steel Cladding from...

    Office of Environmental Management (EM)

    Post Irradiation Examination of Stainless Steel Cladding from In-Reactor Permeation Experiment Post Irradiation Examination of Stainless Steel Cladding from In-Reactor Permeation ...

  12. Corrosion Testing of Carbon Steel in Acid Cleaning Solutions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Report: Corrosion Testing of Carbon Steel in Acid Cleaning Solutions Citation Details In-Document Search Title: Corrosion Testing of Carbon Steel in Acid Cleaning ...

  13. Improved Processing of High Alloy Steels for Wear Components...

    Office of Scientific and Technical Information (OSTI)

    Steels for Wear Components in Energy Generation Systems, Transportation and ... Title: Improved Processing of High Alloy Steels for Wear Components in Energy Generation ...

  14. Largest Producer of Steel Products in the United States Achieves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iron on the Mesabi Iron Range in northern Minnesota, the U. S. Steel Minntac plant ... Significant Energy Savings at its Minntac Plant U. S. Steel's Taconite Pellet ...

  15. Clean steel technology -- Fundamental to the development of high performance steels

    SciTech Connect (OSTI)

    Wilson, A.D.

    1999-07-01

    The use of clean steel technology (low sulfur with calcium treatment for inclusion shape control) is a fundamental building block in the development of high performance plate steels. A brief review will be presented of the benefits of calcium treatment and its effect on non-metallic inclusions (sulfides and oxides) and reducing sulfur levels. During the past thirty years the requirements for low sulfur levels have been reduced from 0.010% maximum to 0.001% maximum. The effects of clean steel practices on specific properties will be reviewed including tensile ductility, Charpy V-notch and fracture toughness, fatigue crack propagation and hydrogen-induced-cracking resistance. Traditional low sulfur plate steel applications have included pressure vessels. offshore platforms, plastic injection molds and line-pipe skelp. More recent applications will be discussed including bridge steels, high strength structural steels to 130 ksi (897 MPa) minimum yield strength, 9% nickel steels for cryogenic applications, and military armor.

  16. Stainless steel 4003 in the transportation industry

    SciTech Connect (OSTI)

    Kovacs, H.; Stoeckl, M.

    1998-12-31

    The world today sees a dramatic increase in the number of people and the quantities of articles and products which are to be transported. This results in an ever-increasing demand in the steels used in the transportation industry. Key factors are environmental regulations, safety, and life expectancy and product cost in determining which types steel to use. Especially the ferritic 12% chromium stainless steels has seen a significant development and usage in recent years. Compared to typical carbon steels high strength/low alloy steels and structural steels the 12% chromium steels offers improvement in corrosion and wear resistance and weldability outlining advantages in light weight construction and an overall saving. The paper presents the chemical composition and mechanical properties of grade 4003 which is increasingly used worldwide in areas of public transportation, rail transportation, mining industry and sugar industry, among others. The impact of corrosion and abrasion of this stainless steel versus the standard carbon grades and cost efficiency are discussed.

  17. Weldability of nitrogen-enhanced HSLA steels

    SciTech Connect (OSTI)

    Liao, F.C.; Liu, S.; Olson, D.L.

    1993-12-31

    Light microscopy, electron microscopy and Charpy-V-Notch (CVN) testing were used to characterize two Ti-V microalloyed steels which contained 130 and 30 ppm of nitrogen with respect to weldability. Particular emphasis has been placed on the understanding of the heat input-microstructure-toughness relationship in the high nitrogen HSLA steel. Within the 1 to 3 kJ/mm heat input range, the high nitrogen steel exhibited coarse grained heat affected zone (CGHAZ) toughness superior to that of the low nitrogen steel. The transition temperatures (measured at 50 ft-lb impact energy) were, in average, 15 to 60 C lower than those presented by the low nitrogen steel. Quantitative metallography results showed that high nitrogen steel CGHAZs have smaller austenite grain size and larger amount of grain boundary ferrite. Combining the microstructural information and toughness data, it was concluded that for the high nitrogen steel to exhibit superior properties than the low nitrogen steel, the final HAZ microstructure must contain at least 60% of lathy (bainitic) phases, balanced with ferritic products.

  18. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOE Patents [OSTI]

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  19. Low Mn alloy steel for cryogenic service

    DOE Patents [OSTI]

    Morris, J.W. Jr.; Niikura, M.

    A ferritic cryogenic steel which has a relatively low (about 4 to 6%) manganese content and which has been made suitable for use at cryogenic temperatures by a thermal cycling treatment followed by a final tempering. The steel includes 4 to 6% manganese, 0.02 to 0.06% carbon, 0.1 to 0.4% molybdenum and 0 to 3% nickel.

  20. Method for welding chromium molybdenum steels

    DOE Patents [OSTI]

    Sikka, Vinod K.

    1986-01-01

    Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

  1. Automated Steel Cleanliness Analysis Tool (ASCAT)

    SciTech Connect (OSTI)

    Gary Casuccio; Michael Potter; Fred Schwerer; Dr. Richard J. Fruehan; Dr. Scott Story

    2005-12-30

    The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment/steel cleanliness; slab, billet

  2. Tritiated Water Interaction with Stainless Steel

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2007-05-01

    Experiments conducted to study tritium permeation of stainless steel at ambient and elevated temperatures revealed that HT converts relatively quickly to HTO. Further, the HTO partial pressure contributes essentially equally with elemental tritium gas in driving permeation through the stainless steel. Such permeation appears to be due to dissociation of the water molecule on the hot stainless steel surface. There is an equilibrium concentration of HTO vapor above adsorbed gas on the walls of the experimental apparatus evident from freezing transients. The uptake process of tritium from the carrier gas involves both surface adsorption and isotopic exchange with surface bound water.

  3. Geneva Steel blast furnace improvements

    SciTech Connect (OSTI)

    Fowles, R.D.; Hills, L.S.

    1993-01-01

    Geneva Steel is located in Utah and is situated near the western edge of the Rocky Mountains adjacent to the Wasatch Front. Geneva's No. 1, 2 and 3 are the only remaining operating blast furnaces in the United States west of the Mississippi River. They were originally constructed in 1943 to support steelmaking during World War II. During the early 60's all three furnaces were enlarged to their current working volume. Very few major improvements were made until recently. This discussion includes a brief historical perspective of operating difficulties associated with practice, design and equipment deficiencies. Also included is an overview of blast furnace improvements at Geneva found necessary to meet the demands of modern steelmaking. Particular emphasis will be placed on casthouse improvements.

  4. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    SciTech Connect (OSTI)

    Jafarzadegan, M.; State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin ; Feng, A.H.; Abdollah-zadeh, A.; Saeid, T.; Shen, J.; Assadi, H.

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  5. Eni USA Gas Marketing LLC- FE Dkt. No.- 15-13-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed January 21, 2015 by Eni USA Gas Marketing LLC (ENI USA Gas Marketing), requesting blanket authorization to export...

  6. Solar World USA not SolarWorld AG | Open Energy Information

    Open Energy Info (EERE)

    World USA not SolarWorld AG Jump to: navigation, search Name: Solar World USA (not SolarWorld AG) Place: Colorado Springs, Colorado Zip: 80907 Sector: Solar Product: Solar World...

  7. SEMI-ANNUAL REPORTS FOR GASFIN DEVELOPMENT USA, LLC - FE DKT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GASFIN DEVELOPMENT USA, LLC - FE DKT. NO. 13-06-LNG - ORDER 3253 SEMI-ANNUAL REPORTS FOR GASFIN DEVELOPMENT USA, LLC - FE DKT. NO. 13-06-LNG - ORDER 3253 PDF icon April 2013 PDF ...

  8. FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System Energy-Reduction Goals with a Three-Phased Strategy FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System ...

  9. SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 October 2015 (1.1 MB) April 2016 ...

  10. Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings

    Broader source: Energy.gov [DOE]

    H2USA will host an online workshop about hydrogen fueling station component listings on April 22 from 2 to 3:30 p.m. Eastern Daylight Time. This workshop will focus on the need for components for hydrogen fueling stations to be listed by Nationally Recognized Testing Laboratories (NRTLs).

  11. National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012.

  12. Field weldability of high strength pipeline steels

    SciTech Connect (OSTI)

    Noble, D.N.; Pargeter, R.J.

    1988-01-01

    This project has studied the small-scale SMA weldability of two X80 grade pipeline steels and conducted mechanical and fracture toughness tests on full-size SMA and GMA welds in both pipes.

  13. High performance corrosion-resistant structural steels

    SciTech Connect (OSTI)

    Fletcher, F.B.; Ferry, B.N.; Beblo, D.G.

    1995-12-31

    A new corrosion-resistant structural steel named Duracorr was developed for low maintenance when compared to conventional structural steels. The new stainless steel is a dual phase composition between the established 12% Cr, ferritic T409 and martensitic T410 grades. Attractive combinations of hardness, strength, toughness, weldability and formability are derived from a microstructure that is a dual phase mixture of ferrite and martensite. The Duracorr composition, UNS S41003, provides for a microstructure of ferrite and austenite to be present throughout the hot rolling process. Cooling to room temperature causes transformation of the austenite to martensite. Subsequent tempering of the steel creates minimum mechanical properties of 275 MPa (40 ksi) yield strength and 455 MPa (66 ksi) tensile strength with room temperature longitudinal Charpy impact values typically greater than 34 J (25 ft-lbs).

  14. Case hardenable nickel-cobalt steel

    SciTech Connect (OSTI)

    Qian, Yana; Olson, Gregory B.

    2012-04-17

    An advanced secondary hardening carburized Ni--Co steel achieves an improved case hardness of about 68-69 Rc together with nominal core hardness of about 50 Rc.

  15. Hydrogen compatibility handbook for stainless steels

    SciTech Connect (OSTI)

    Caskey, G.R. Jr.

    1983-06-01

    This handbook compiles data on the effects of hydrogen on the mechanical properties of stainless steels and discusses this data within the context of current understanding of hydrogen compatibility of metals. All of the tabulated data derives from continuing studies of hydrogen effects on materials that have been conducted at the Savannah River Laboratory over the past fifteen years. Supplementary data from other sources are included in the discussion. Austenitic, ferritic, martensitic, and precipitation hardenable stainless steels have been studied. Damage caused by helium generated from decay of tritium is a distinctive effect that occurs in addition to the hydrogen isotopes protium and deuterium. The handbook defines the scope of our current knowledge of hydrogen effects in stainless steels and serves as a guide to selection of stainless steels for service in hydrogen.

  16. Lightweight Steel Solutions for Automotive Industry

    SciTech Connect (OSTI)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-15

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  17. Stainless Steel to Titanium Bimetallic Transitions

    SciTech Connect (OSTI)

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  18. Mr. Thomas Mahl Granite City Steel Company

    Office of Legacy Management (LM)

    8&v Mr. Thomas Mahl Granite City Steel Company 20th and State Streets Granite City, IL 62040 Dear Mr. Mahl: This is to notify you that the U.S. Department of Energy (DOE) has ...

  19. Precise carbon control of fabricated stainless steel

    DOE Patents [OSTI]

    Nilsen, R.J.

    1975-12-01

    A process is described for controlling the carbon content of fabricated stainless steel components including the steps of heat treating the component in hydrogen atmospheres of varying dewpoints and carbon potentials.

  20. High strength and high toughness steel

    DOE Patents [OSTI]

    Parker, Earl R.; Zackay, Victor F.

    1979-01-01

    A structural steel which possess both high strength and high toughness and has particular application of cryogenic uses. The steel is produced by the utilization of thermally induced phase transformation following heating in a three-phase field in iron-rich alloys of the Fe-Ni-Ti system, with a preferred composition of 12% nickel, 0.5% titanium, the remainder being iron.

  1. High strength, high ductility low carbon steel

    DOE Patents [OSTI]

    Koo, Jayoung; Thomas, Gareth

    1978-01-01

    A high strength, high ductility low carbon steel consisting essentially of iron, 0.05-0.15 wt% carbon, and 1-3 wt% silicon. Minor amounts of other constituents may be present. The steel is characterized by a duplex ferrite-martensite microstructure in a fibrous morphology. The microstructure is developed by heat treatment consisting of initial austenitizing treatment followed by annealing in the (.alpha. + .gamma.) range with intermediate quenching.

  2. Development of Steel Foam Materials and Structures

    SciTech Connect (OSTI)

    Kenneth Kremer; Anthony Liszkiewicz; James Adkins

    2004-10-20

    In the past few years there has been a growing interest in lightweight metal foams. Demands for weight reduction, improved fuel efficiency, and increased passenger safety in automobiles now has manufacturers seriously considering the use of metal foams, in contrast to a few years ago, when the same materials would have been ruled out for technical or economical reasons. The objective of this program was to advance the development and use of steel foam materials, by demonstrating the advantages of these novel lightweight materials in selected generic applications. Progress was made in defining materials and process parameters; characterization of physical and mechanical properties; and fabrication and testing of generic steel foam-filled shapes with compositions from 2.5 wt.% to 0.7 wt.% carbon. A means of producing steel foam shapes with uniform long range porosity levels of 50 to 60 percent was demonstrated and verified with NDE methods. Steel foam integrated beams, cylinders and plates were mechanically tested and demonstrated advantages in bend stiffness, bend resistance, and crush energy absorption. Methods of joining by welding, adhesive bonding, and mechanical fastening were investigated. It is important to keep in mind that steel foam is a conventional material in an unconventional form. A substantial amount of physical and mechanical properties are presented throughout the report and in a properties database at the end of the report to support designer's in applying steel foam in unconventional ways.

  3. Microstructural studies of advanced austenitic steels

    SciTech Connect (OSTI)

    Todd, J. A.; Ren, Jyh-Ching

    1989-11-15

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  4. Irradiation Assisted Grain Boundary Segregation in Steels

    SciTech Connect (OSTI)

    Lu, Zheng; Faulkner, Roy G.

    2008-07-01

    The understanding of radiation-induced grain boundary segregation (RIS) has considerably improved over the past decade. New models have been introduced and much effort has been devoted to obtaining comprehensive information on segregation from the literature. Analytical techniques have also improved so that chemical analysis of layers 1 nm thick is almost routine. This invited paper will review the major methods used currently for RIS prediction: namely, Rate Theory, Inverse Kirkendall, and Solute Drag approaches. A summary is made of the available data on phosphorus RIS in reactor pressure vessel (RPV) steels. This will be discussed in the light of the predictions of the various models in an effort to show which models are the most reliable and easy to use for forecasting P segregation behaviour in steels. A consequence of RIS in RPV steels is a radiation induced shift in the ductile to brittle transition temperature (DBTT). It will be shown how it is possible to relate radiation-induced P segregation levels to DBTT shift. Examples of this exercise will be given for RPV steels and for ferritic steels being considered for first wall fusion applications. Cr RIS in high alloy stainless steels and associated irradiation-assisted stress corrosion cracking (IASCC) will be briefly discussed. (authors)

  5. Influence of solid fuel on the carbon-monoxide and nitrogen-oxide emissions on sintering

    SciTech Connect (OSTI)

    M.F. Vitushchenko; N.L. Tatarkin; A.I. Kuznetsov; A.E. Vilkov

    2007-07-01

    Laboratory and industrial research now underway at the sintering plant of AO Mittal Steel Temirtau is focusing on the preparation of fuel of optimal granulometric composition, the replacement of coke fines, and the adaptation of fuel-input technology so as to reduce fuel consumption and toxic emissions without loss of sinter quality.

  6. Tensile-property characterization of thermally aged cast stainless steels

    SciTech Connect (OSTI)

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  7. ITP Steel: Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000

    Broader source: Energy.gov [DOE]

    The absolute theoretical minimum energies to produce liquid steel from idealized scrap (100% Fe) and ore (100% Fe2O3) are much lower than consumed in practice, as are the theoretical minimum energies to roll the steel into its final shape.

  8. High Mn austenitic stainless steel

    DOE Patents [OSTI]

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  9. 2012 USA Science & Engineering Festival | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USA Science & Engineering Festival View larger image IMG 0658 View larger image IMG 0659 View larger image IMG 0664 View larger image IMG 0667 View larger image IMG 0682 View larger image IMG 0688 View larger image IMG 0698 View larger image IMG 0701 View larger image IMG 0696 View larger image IMG 0700 View larger image IMG 0712 View larger image IMG 0720 View larger image IMG 0729 View larger image IMG 0738 View larger image IMG 0735

  10. Mechanical properties of irradiated 9Cr-2WVTa steel

    SciTech Connect (OSTI)

    Klueh, R.L.; Alexander, D.J.; Rieth, M.

    1998-09-01

    An Fe-9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa) steel has excellent strength and impact toughness before and after irradiation in the Fast Flux Test Facility and the High Flux Reactor (HFR). The ductile-brittle transition temperature (DBTT) increased only 32 C after 28 dpa at 365 C in FFTF, compared to a shift of {approx}60 C for a 9Cr-2WV steel--the same as the 9Cr-2WVTa steel but without tantalum. This difference occurred despite the two steels having similar tensile but without tantalum. This difference occurred despite the two steels having similar tensile properties before and after irradiation. The 9Cr-2WVTa steel has a smaller prior-austenite grain size, but otherwise microstructures are similar before irradiation and show similar changes during irradiation. The irradiation behavior of the 9Cr-2WVTa steel differs from the 9Cr-2WV steel and other similar steels in two ways: (1) the shift in DBTT of the 9Cr-2WVTa steel irradiated in FFTF does not saturate with fluence by {approx}28 dpa, whereas for the 9Cr-2WV steel and most similar steels, saturation occurs at <10 dpa, and (2) the shift in DBTT for 9Cr-2WVTa steel irradiated in FFTF and HFR increased with irradiation temperature, whereas it decreased for the 9Cr-2WV steel, as it does for most similar steels. The improved properties of the 9Cr-2WVTa steel and the differences with other steels were attributed to tantalum in solution.

  11. Process development of thin strip steel casting

    SciTech Connect (OSTI)

    Sussman, R.C.; Williams, R.S.

    1990-12-01

    An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

  12. Superplastic forming of stainless steel automotive components

    SciTech Connect (OSTI)

    Bridges, B.; Elmer, J.; Carol, L.

    1997-02-06

    Exhaust emission standards are governmentally controlled standards, which are increasingly stringent, forcing alternate strategies to meet these standards. One approach to improve the efficiency of the exhaust emission equipment is to decrease the time required to get the catalytic converter to optimum operating temperature. To accomplish this, automotive manufacturers are using double wall stainless steel exhaust manifolds to reduce heat loss of the exhaust gases to the converter. The current method to manufacture double wall stainless steel exhaust components is to use a low-cost alloy with good forming properties and extensively form, cut, assemble, and weld the pieces. Superplastic forming (SPF) technology along with alloy improvements has potential at making this process more cost effective. Lockheed Martin Energy Systems (LMES), Lawrence Livermore National Laboratory (LLNL) and USCAR Low Emission Partnership (LEP) worked under a Cooperative Research And Development Agreement (CRADA) to evaluate material properties, SPF behavior, and welding behavior of duplex stainless steel alloy for automotive component manufacturing. Battelle Pacific Northwest National Laboratory (PNNL) has a separate CRADA with the LEP to use SPF technology to manufacture a double wall stainless steel exhaust component. As a team these CRADAs developed and demonstrated a technical plan to accomplish making double wall stainless steel exhaust manifolds.

  13. Z Group Steel Holding Zelezarny Veseli | Open Energy Information

    Open Energy Info (EERE)

    Z Group Steel Holding Zelezarny Veseli Jump to: navigation, search Name: Z-Group Steel Holding - Zelezarny Veseli Place: Veseli nad Moravou, Czech Republic Zip: 698 12 Sector: Wind...

  14. Stainless steel 304 cladding mechanical properties and limitations...

    Office of Scientific and Technical Information (OSTI)

    steel 304 cladding mechanical properties and limitations during steady state operation of U-ZrH TRIGA type fuel. Citation Details In-Document Search Title: Stainless steel 304 ...

  15. DOE - Office of Legacy Management -- Wyckoff Drawn Steel Co ...

    Office of Legacy Management (LM)

    Drawn Steel Co - IL 0-09 FUSRAP Considered Sites Site: Wyckoff Drawn Steel Co (IL 0-09) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: ...

  16. How Trenton Iron and Steel Innovations Reshaped America Clifford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trenton Iron and Steel Innovations Reshaped America Clifford Zink Independent Historian ... DeParTmenT of energy faciliTy Iron and steel innovations in Trenton helped transform ...

  17. First Structural Steel Erected at NSLS-II

    ScienceCinema (OSTI)

    None

    2010-01-08

    Ten steel columns were incorporated into the ever-growing framework for the National Synchrotron Light Source II last week, the first structural steel erected for the future 400,000-square-foot facility.

  18. DOE - Office of Legacy Management -- Allegheny-Ludlum Steel Corp...

    Office of Legacy Management (LM)

    Site: ALLEGHENY-LUDLUM STEEL CORP. (NY.0-02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Al-Tech Specialty Steel NY.0-02-1 Location: ...

  19. First Structural Steel Erected at NSLS-II

    SciTech Connect (OSTI)

    2009-09-14

    Ten steel columns were incorporated into the ever-growing framework for the National Synchrotron Light Source II last week, the first structural steel erected for the future 400,000-square-foot facility.

  20. Friction Stir Spot Welding of Advanced High Strength Steels II...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Friction Stir Spot Welding of Advanced High Strength Steels II Friction Stir Spot Welding of Advanced High Strength Steels II 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle ...

  1. Comments of Steele-Waseca Cooperative Electric | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steele-Waseca Cooperative Electric Comments of Steele-Waseca Cooperative Electric Comments of Steele-Waseca Cooperative Electric onImplementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy Comments of Steele-Waseca Cooperative Electric (65.64 KB) More Documents & Publications NBP RFI: Communications Requirements- Comments of Great River Energy Communications Requirements of Smart Grid Technologies Final

  2. Enhanced Incluison Removal from Steel in the Tundish

    SciTech Connect (OSTI)

    R.C. Bradt; M.A.R. Sharif

    2009-09-25

    The objective of this project was to develop an effective chemical filtering system for significantly reducing the content of inclusion particles in the steel melts exiting the tundish for continuous casting. This project combined a multi-process approach that aimed to make significant progress towards an "inclusion free" steel by incorporating several interdependent concepts to reduce the content of inclusions in the molten steel exiting the tundish for the caster. The goal is to produce "cleaner" steel.

  3. Enhanced Inclusion Removal from Steel in the Tundish

    SciTech Connect (OSTI)

    R. C. Bradt; M.A.R. Sharif

    2009-09-25

    The objective of this project was to develop an effective chemical filtering system for significantly reducing the content of inclusion particles in the steel melts exiting the tundish for continuous casting. This project combined a multi-process approach that aimed to make significant progress towards an "inclusion free" steel by incorporating several interdependent concepts to reduce the content of inclusions in the molten steel exiting the tundish for the caster. The goal is to produce "cleaner" steel.

  4. CERTIFICATION DOCKET FOR AL-TECH SPECIALTY STEEL CORPORATION

    Office of Legacy Management (LM)

    NY. 0 -02-3 CERTIFICATION DOCKET FOR AL-TECH SPECIALTY STEEL CORPORATION (THE F01umz ALLEGHENY-LUDLUM STEEL CORPORATION) WATERVLIET, NEW YORK, AND OFFSITE PROPERTY IN DUNKIRK, NEW YORK Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects CONTENTS Introduction to the Certification Docket for the Al-Tech Specialty Steel Corporation, (the Former Allegheny-Ludlum Steel Corporation) Watervliet, New York, and Offsite

  5. CERTIFICATION DOCKET FOR BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK

    Office of Legacy Management (LM)

    BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects CONTENTS Introduction to the Certification Docket for Bethlehem Steel Corporation, Lackawanna, New York Purpose Docket Contents Exhibit I: Summary of Activities at the Bethlehem Steel Corporation, Lackawanna, New York Exhibit II: Documents Supporting the Certification of the Bethlehem Steel Corporation,

  6. Neutron Irradiation Resistance of RAFM Steels

    SciTech Connect (OSTI)

    Gaganidze, Ermile; Dafferner, Bernhard; Aktaa, Jarir

    2008-07-01

    The neutron irradiation resistance of the reduced-activation ferritic/martensitic (RAFM) steel EUROFER97 and international reference steels (F82H-mod, OPTIFER-Ia, GA3X and MANET-I) have been investigated after irradiation in the Petten High Flux Reactor up to 16.3 dpa at different irradiation temperatures (250-450 deg. C). The embrittlement behavior and hardening are investigated by instrumented Charpy-V tests with sub-size specimens. Neutron irradiation-induced embrittlement and hardening of EUROFER97 was studied under different heat treatment conditions. Embrittlement and hardening of as-delivered EUROFER97 steel are comparable to those of reference steels. Heat treatment of EUROFER97 at a higher austenitizing temperature substantially improves the embrittlement behaviour at low irradiation temperatures. Analysis of embrittlement vs. hardening behavior of RAFM steels within a proper model in terms of the parameter C={delta}DBTT/{delta}{sigma} indicates hardening-dominated embrittlement at irradiation temperatures below 350 deg. C with 0.17 {<=} C {<=} 0.53 deg. C/MPa. Scattering of C at irradiation temperatures above 400 deg. C indicates non hardening embrittlement. A role of He in a process of embrittlement is investigated in EUROFER97 based steels, that are doped with different contents of natural B and the separated {sup 10}B-isotope (0.008-0.112 wt.%). Testing on small scale fracture mechanical specimens for determination of quasi-static fracture toughness will be also presented in a view of future irradiation campaigns. (authors)

  7. Modern steels at atomic and nanometre scales

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Caballero, F. G.; Garcia-Mateo, C.; Miller, M. K.

    2014-10-10

    Processing bulk nanocrystalline materials for structural applications still poses a difficult challenge, particularly in achieving an industrially viable process. Recent work in ferritic steels has proved that it is possible to move from ultrafine to nanoscale by exploiting the bainite reaction without the use of severe deformation, rapid heat treatment or mechanical processing. This new generation of steels has been designed in which transformation at low temperature leads to a nanoscale structure consisting of extremely fine, 20–40 nm thick plates of bainitic ferrite and films of retained austenite. Finally, a description of the characteristics and significance of this remarkable microstructuremore » is provided here.« less

  8. Stainless Steel Microstructure and Mechanical Properties Evaluation

    SciTech Connect (OSTI)

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  9. Helium damage in austenitic stainless steels

    SciTech Connect (OSTI)

    Caskey, G.R. Jr.; Mezzanotte, D.A. Jr.; Rawl, D.E. Jr.

    1983-01-01

    Helium produced by tritium decay was first shown to embrittle austenitic stainless steel at ambient temperature in tensile specimens of Nitronic-40 steel (Armco, Inc.). A long-term study was initiated to study this form of helium damage in five austenitic alloys. Results from this study have been analyzed by the J-integral technique and show a decrease in ductile fracture toughness with increasing He-3 concentration. Sustained-load cracking tests indicate that the stress intensity required to initiate and propagate a crack also decreases with increasing He-3 concentration. 9 figures, 3 tables.

  10. Steel Industry Technology Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steel Industry Technology Roadmap Steel Industry Technology Roadmap Table of Contents Introduction Process Improvement 2.1 Cokemaking 2.2 Ironmaking 2.3 Basic Oxygen Furnace (BOF) Steelmaking 2.4 Electric Arc Furnace (EAF) Steelmaking 2.5 Ladle Refining 2.6 Casting 2.7 Rolling and Finishing 2.8 Refractories Iron Recycling Unit 3.1 By-products 3.2 Obsolete Scrap Environment 4.1 Cokemaking 4.2 Ironmaking 4.3 Steelmaking - Basic Oxygen Furnace (BOF) 4.4 Steelmaking - Electric Arc Furnace (EAF) 4.5

  11. ITP Steel: Energy and Environmental Profile fo the U.S. Iron and Steel Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's Office of Industrial Technologes has formed a partnership with the U.S. iron and steel industry to accelerate development of technologies and processes that will improve the industry's production and energy efficiency and environmental performance.

  12. MOU signed between CIAE and Jefferson National Lab, USA. (China Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry News, General News) | Jefferson Lab MOU signed between CIAE and Jefferson National Lab, USA. (China Nuclear Industry News, General News) External Link: https://www.jlab.org/news/articles/mou-signed-between-ciae-and-jefferson-nationa... MOU signed between CIAE and Jefferson National Lab, USA. (News) Recently, the deputy director of Jefferson National Lab, USA visited the China Institute of Atomic Energy (CIAE). An MOU on the collaboration between the two institutions were signed

  13. EXS-16-0012 - In the Matter of Siemens Medical Solutions USA Inc., Siemens

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Healthcare Diagnostics Inc. | Department of Energy 12 - In the Matter of Siemens Medical Solutions USA Inc., Siemens Healthcare Diagnostics Inc. EXS-16-0012 - In the Matter of Siemens Medical Solutions USA Inc., Siemens Healthcare Diagnostics Inc. On July 5, 2016, OHA granted an Application for Stay filed by Siemens Medical Solutions USA Inc. and Siemens Healthcare Diagnostics Inc. (Siemens) in which the firm requested a stay of enforcement of the applicable provisions of DOE's Energy

  14. Join us at the Inaugural USA Science and Engineering Festival! | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy us at the Inaugural USA Science and Engineering Festival! Join us at the Inaugural USA Science and Engineering Festival! October 22, 2010 - 12:00pm Addthis Director Brinkman Director Brinkman Director of the Office of Science What do smart windows and biofuels, climate models and gravity accelerators all have in common? They'll all be part of the Energy Department's exhibits at the inaugural USA Science and Engineering Festival on the National Mall this weekend. The festival

  15. DOE - Office of Legacy Management -- Guterl Specialty Steel - NY 12

    Office of Legacy Management (LM)

    Guterl Specialty Steel - NY 12 FUSRAP Considered Sites Guterl Specialty Steel, NY Alternate Name(s): Simonds Saw and Steel Co. Guterl Steel Allegheny Ludlum Steel Corp. NY.12-1 NY.12-2 Location: Ohio Street and Route 95, Lockport, New York NY.12-12 Historical Operations: Performed rolling mill operations on natural uranium and thorium metal. NY.12-6 NY.12-7 Eligibility Determination: NY.12-11 Radiological Survey(s): Assessment Surveys NY.12-1 NY.12-4 NY.12-8 NY.12-9 NY.12-12 Site Status: Cleanup

  16. Weldment for austenitic stainless steel and method

    DOE Patents [OSTI]

    Bagnall, Christopher; McBride, Marvin A.

    1985-01-01

    For making defect-free welds for joining two austenitic stainless steel mers, using gas tungsten-arc welding, a thin foil-like iron member is placed between the two steel members to be joined, prior to making the weld, with the foil-like iron member having a higher melting point than the stainless steel members. When the weld is formed, there results a weld nugget comprising melted and then solidified portions of the joined members with small portions of the foil-like iron member projecting into the solidified weld nugget. The portions of the weld nugget proximate the small portions of the foil-like iron member which project into the weld nugget are relatively rich in iron. This causes these iron-rich nugget portions to display substantial delta ferrite during solidification of the weld nugget which eliminates weld defects which could otherwise occur. This is especially useful for joining austenitic steel members which, when just below the solidus temperature, include at most only a very minor proportion of delta ferrite.

  17. Recent Photovoltaic Performance Data in the USA (Presentation)

    SciTech Connect (OSTI)

    Jordan, D.

    2014-03-01

    This paper presents performance data from nearly 50,000 Photovoltaic systems totaling 1.7 Gigawatts installed capacity in the USA from 2009 to 2012. 90% of the systems performed to within 10% or better of expected performance. Only 2-4% of the data indicate issues significantly affecting the system performance. Special causes of underperformance and their impacts are delineated by reliability category. Delays and interconnections dominate project-related issues particularly in the first year, but total less than 0.5% of all systems. Hardware-related issues are dominated by inverter problems totaling less than 0.4% and underperforming modules to less than 0.1%.

  18. DOW CHEMICAL U.S.A. + WESTERN DIVISION

    Office of Legacy Management (LM)

    DOW CHEMICAL U.S.A. + WESTERN DIVISION 2855 MITCHELL DRIVE WALNUT CREEK. CtyLlFORNlA 94598 October 29,1976 415 944-2300 (., L,'; ! - J. 022 . William J. Thornton Health Protection Branch Safety and Environmental Control Division U.S. Energy Research and Development Administration Oak Ridge Operations P. 0. Box E Oak Ridge, Tennessee 37830 Dear Mr. Thornton: This letter is in response to your request of September 24,1976 for information on records of radiological condition of the laboratories at

  19. The effect of iron dilution on strength of nickel/steel and Monel/steel welds

    SciTech Connect (OSTI)

    Fout, S.L.; Wamsley, S.D.

    1983-03-28

    The weld strength, as a function of iron content, for nickel/steel and Monel/steel welds was determined. Samples were prepared using a Gas Metal Arc (GMAW) automatic process to weld steel plate together with nickel or Monel to produce a range of iron contents typical of weld compositions. Tensile specimens of each iron content were tested to obtain strength and ductility measurements for that weld composition. Data indicate that at iron contents of less than 20% iron in a nickel/steel weld, the weld fails at the weld interface, due to a lack of fusion. Between 20% and 35% iron, the highest iron dilution that could be achieved in a nickel weld, the welds were stronger than the steel base metal. This indicates that a minimum amount of iron dilution (20%) is necessary for good fusion and optimum strength. On the other hand for Monel/steel welds, test results showed that the welds had good strength and integrity between 10% and 27% iron in the weld. Above 35% iron, the welds have less strength and are more brittle. The 35% iron content also corresponds to the iron dilution in Monel welds that has been shown to produce an increase in corrosion rate. This indicates that the iron dilution in Monel welds should be kept below 35% iron to maximize both the strength and corrosion resistance. 2 refs., 6 figs., 3 tabs.

  20. Comparison of the ENERGYGAUGE USA and BEopt Building Energy Simulation Programs

    SciTech Connect (OSTI)

    Parker, Danny S.; Cummings, Jamie E.

    2009-08-01

    This report compares two hourly energy simulation softwares, BEopt and Energy Gauge USA, to ensure accuracy and evaluate agreement on the impact of various energy efficiency improvements.

  1. OMAE2014 June 8-13, 2014, San Francisco, California, USA OMAE2014-24175

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering OMAE2014 June 8-13, 2014, San Francisco, California, USA OMAE2014-24175 Hydrodynamic Module Coupling in the Offshore Wind Energy Simulation (OWENS) Toolkit Matthew J. Fowler University of Maine Orono, Maine, U.S.A. Andrew J. Goupee University of Maine Orono, Maine, U.S.A. Brian Owens Sandia National Laboratories Albuquerque, New Mexico, U.S.A. John Hurtado Texas A&M University College

  2. Crack stability analysis of low alloy steel primary coolant pipe

    SciTech Connect (OSTI)

    Tanaka, T.; Kameyama, M.; Urabe, Y.

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  3. Clean cast steel technology. Final report

    SciTech Connect (OSTI)

    Bates, C.E.; Griffin, J.A.

    1998-06-01

    This report documents the results obtained from the Clean Cast Steel Technology Program financially supported by the DOE Metal Casting Competitiveness Research Program and industry. The primary objective of this program is to develop technology for delivering steel free of oxide macroinclusions to mold cavities. The overall objective is to improve the quality of cast steel by developing and demonstrating the technology for substantially reducing surface and sub-surface oxide inclusions. Two approaches are discussed here. A total of 23 castings were produced by submerge pouring along with sixty conventionally poured castings. The submerged poured castings contained, on average, 96% fewer observable surface inclusions (11.9 vs 0.4) compared to the conventionally poured cast parts. The variation in the population of surface inclusions also decreased by 88% from 5.5 to 0.7. The machinability of the casting was also improved by submerged pouring. The submerge poured castings required fewer cutting tool changes and less operator intervention during machining. Subsequent to these trials, the foundry has decided to purchase more shrouds for continued experimentation on other problem castings where submerge pouring is possible. An examination of melting and pouring practices in four foundries has been carried out. Three of the four foundries showed significant improvement in casting quality by manipulating the melting practice. These melting practice variables can be grouped into two separate categories. The first category is the pouring and filling practice. The second category concerns the concentration of oxidizable elements contained in the steel. Silicon, manganese, and aluminum concentrations were important factors in all four foundries. Clean heats can consistently be produced through improved melting practice and reducing exposure of the steel to atmospheric oxygen during pouring and filling.

  4. Clean Steel: Advancing the State of the Art (TRP 0003)

    SciTech Connect (OSTI)

    Sridhar Seetharaman; Alan W. Cramb

    2004-05-19

    This project had 3 objectives: (1) to determine the kinetic factors governing inclusion removal from liquid steels at a slag metal interface; (2) to develop a methodology to enable steels of less than 1 ppm total oxygen to be produced with an average inclusion diameter of less than 5 {micro}m; and, (3) to determine the slag-metal interface conditions necessary for ultra clean steels. In objectives 1, and 3, the major finding was that dissolution rates of solid particles in slags were found to be significant in both ladle and tundish slags and must be included in a model to predict steel cleanliness. The work towards objective 2 indicated that liquid steel temperature was a very significant factor in our understanding of clean steel potential and that undercooled steels equilibrated with low oxygen potential inert gases have the potential to be significantly cleaner than current steels. Other work indicated that solidification front velocity could be used to push particles to produce clean steels and that reoxidation must be severely curtailed to allow the potential for clean steels to be realized.

  5. Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect (OSTI)

    Sayers, R.E. Jr.; Mealing, H.G. III

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  6. Austenitic stainless steel and drill collar

    SciTech Connect (OSTI)

    Cordea, J. N.; Jasper, J. C.; Sheth, H. V.

    1985-03-05

    A non-magnetic austenitic stainless steel, and a drill collar fabricated therefrom solely by hot forging, the steel having a 0.2% yield strength of at least 85 ksi in the hot worked condition, high stress corrosion cracking resistance, good ductility, and low magnetic permeability even if cold worked, and consisting essentially of, in weight percent, from 0.12% to 0.20% carbon, 11% to 14% manganese, about 16% to about 19% chromium, 1.5% to 2.7% nickel, 0.30% to 0.45% nitrogen, 0.5% to 1.0% copper, about 0.75% maximum molybdenum, about 0.80% maximum silicon, about 0.04% maximum phosphorus, about 0.025% maximum sulfur, and balance essentially iron, with the carbon:nitrogen ratio not greater than 0.6:1.

  7. Phase Transformation in Cast Superaustenitic Stainless Steels

    SciTech Connect (OSTI)

    Nathaniel Steven Lee Phillips

    2006-12-12

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  8. Welding high-molybdenum superaustenitic stainless steel

    SciTech Connect (OSTI)

    Ogawa, T.; Koseki, T.

    1996-02-01

    A high-molybdenum, nitrogen-enriched, nickel-based filler metal was developed for welding superaustenitic stainless steels. The beneficial effects of high Ni content and nitrogen addition in reducing the solute microsegregation and the precipitation of intermetallic phases were used to design the filler alloy. The weld had a precipitate-free, fully austenitic microstructure and exhibited excellent mechanical properties, and reduced hot-cracking susceptibility and high-chloride pitting-corrosion resistance.

  9. Pitting corrosion resistant austenite stainless steel

    DOE Patents [OSTI]

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  10. Heat Treatment Procedure Qualification for Steel Castings

    SciTech Connect (OSTI)

    Mariol Charles; Nicholas Deskevich; Vipin Varkey; Robert Voigt; Angela Wollenburg

    2004-04-29

    Heat treatment practices used by steel foundries have been carefully studied as part of comprehensive heat treatment procedure qualification development trials. These studies highlight the relationships between critical heat treatment process control parameters and heat treatment success. Foundry heat treatment trials to develop heat treatment procedure qualifications have shed light on the relationship between heat treatment theory and current practices. Furnace load time-temperature profiles in steel foundries exhibit significant differences depending on heat treatment equipment, furnace loading practice, and furnace maintenance. Time-temperature profiles of furnace control thermocouples can be very different from the time-temperature profiles observed at the center of casting loads in the furnace. Typical austenitization temperatures and holding times used by steel foundries far exceed what is required for transformation to austenite. Quenching and hardenability concepts were also investigated. Heat treatment procedure qualification (HTPQ) schema to demonstrate heat treatment success and to pre-qualify other alloys and section sizes requiring lesser hardenability have been developed. Tempering success is dependent on both tempering time and temperature. As such, furnace temperature uniformity and control of furnace loading during tempering is critical to obtain the desired mechanical properties. The ramp-up time in the furnace prior to the establishment of steady state heat treatment conditions contributes to the extent of heat treatment performed. This influence of ramp-up to temperature during tempering has been quantified.

  11. Fillability of Thin-Wall Steel Castings

    SciTech Connect (OSTI)

    Robert C. Voigt; Joseph Bertoletti; Andrew Kaley; Sandi Ricotta; Travis Sunday

    2002-07-30

    The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.

  12. Integrating Steel Production with Mineral Carbon Sequestration

    SciTech Connect (OSTI)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  13. Cast Stainless Steel Ferrite and Grain Structure

    SciTech Connect (OSTI)

    Ruud, Clayton O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Mathews, Royce; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    In-service inspection requirements dictate that piping welds in the primary pressure boundary of light-water reactors be subject to a volumetric examination based on the rules contained within the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section XI. The purpose of the inspection is the reliable detection and accurate sizing of service-induced degradation and/or material flaws introduced during fabrication. The volumetric inspection is usually carried out using ultrasonic testing (UT) methods. However, the varied metallurgical macrostructures and microstructures of cast austenitic stainless steel piping and fittings, including statically cast stainless steel and centrifugally cast stainless steel (CCSS), introduce significant variations in the propagation and attenuation of ultrasonic energy. These variations complicate interpretation of the UT responses and may compromise the reliability of UT inspection. A review of the literature indicated that a correlation may exist between the microstructure and the delta ferrite content of the casting alloy. This paper discusses the results of a recent study where the goal was to determine if a correlation existed between measured and/or calculated ferrite content and grain structure in CCSS pipe.

  14. Safety analysis report for packaging (onsite) steel drum

    SciTech Connect (OSTI)

    McCormick, W.A.

    1998-09-29

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

  15. Cast Stainless Steel Aging Research Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cast Stainless Steel Aging Research Plan Cast Stainless Steel Aging Research Plan This work plan proposes to build a systematic knowledge base for the thermal aging behavior of cast stainless steels (CASSs) within a limited time of five years. The final output of execution of the plan is expected to provide conclusive predictions for the integrity of the CASS components of LWR power plants during the extended service life up to and beyond 60 years. Mechanical and microstructural data obtained

  16. DOE - Office of Legacy Management -- Superior Steel Co - PA 03

    Office of Legacy Management (LM)

    Superior Steel Co - PA 03 FUSRAP Considered Sites Superior Steel, PA Alternate Name(s): Copper Weld, Inc. Superbolt Location: Carnegie, Pennsylvania PA.03-1 Historical Operations: Milled uranium metal for AEC. PA.03-4 Eligibility Determination: Eligible Radiological Survey(s): Assessment Survey PA.03-4 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Superior Steel, PA

  17. CERTIFICATION DOCKET FOR AL-TECHSPECIALTY STEEL CORPORATION

    Office of Legacy Management (LM)

    AL-TECHSPECIALTY STEEL CORPORATION (THEFoRMERALLEGHENY-LUDLUMSTEELCORPORATION) WATERVLIET,NEWYORK,ANDOFFSITEPROPER?YIN DUNKIRK,NEWYORK Department of Energy Office of Nuciear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects CONTENTS Page Introduction to the Certification Docket for the Al-Tech Specialty Steel Corporation, (the Former Allegheny-Ludlum Steel Corporation) Watervliet, New York, and Offsite Property in Dunkirk, New York Purpose Docket

  18. Aging Management Program for Stainless Steel Dry Storage System Canisters

    SciTech Connect (OSTI)

    Dunn, Darrell S.; Lin, Bruce P.; Meyer, Ryan M.; Anderson, Michael T.

    2015-06-01

    This is a conference paper presenting an aging management program for stainless steel dry storage system canisters. NRC is lead author of paper. PNNL provided input.

  19. Post-Test Metallurgical Evaluation Results for Steel Containment...

    Office of Scientific and Technical Information (OSTI)

    Post-Test Metallurgical Evaluation Results for Steel Containment Vessel (SCV) High Pressure Test Citation Details In-Document Search Title: Post-Test Metallurgical Evaluation ...

  20. Formability Characterization of a New Generation High Strength Steels

    SciTech Connect (OSTI)

    Sriram Sadagopan; Dennis Urban; Chris Wong; Mai Huang; Benda Yan

    2003-05-16

    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength.

  1. Steele County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    North Dakota M Power LLC Places in Steele County, North Dakota Finley, North Dakota Hope, North Dakota Luverne, North Dakota Sharon, North Dakota Retrieved from "http:...

  2. Bandwidth Study U.S. Advanced High Strength Steel Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The study examines energy consumption and potential energy savings opportunities in advanced high strength steel manufacturing in the U.S. The study relies on multiple sources to ...

  3. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...

    Broader source: Energy.gov (indexed) [DOE]

    Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) ... Enable a Carbon-Neutral Energy Economy Hydrogen Embrittlement of Pipeline Steels: Causes ...

  4. Wear-Resistant, Nano-Composite Steel Coatings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wear-Resistant, Nano-Composite Steel Coatings Laser Processing Techniques Used for the ... wear resistant nano-composite coatings and components for a wide range of applications. ...

  5. Development of 3rd Generation Advanced High Strength Steels ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Integrated Experimental and Simulation Approach QUENCHING AND PARTITIONING PROCESS DEVELOPMENT TO REPLACE HOT STAMPING OF HIGH STRENGTH AUTOMOTIVE STEEL Vehicle Technologies ...

  6. Predicting sigma formation in mo-bearing stainless steels. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Predicting sigma formation in mo-bearing stainless steels. No abstract prepared. Authors: Perricone, Matthew ; Dupont, John Neuman ; Anderson, T. D. 1 ; Robino, Charles ...

  7. Results of Stainless Steel Canister Corrosion Studies and Environmenta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Data Report on Corrosion Testing of Stainless Steel SNF Storage Canisters Status Report: Characterization of Weld Residual Stresses on Full Diameter ...

  8. Study of Caustic Corrosion of Carbon Steel Waste Tanks (Conference...

    Office of Scientific and Technical Information (OSTI)

    Because the total test period for start up is relatively short, penetration will not ... In summary, the test results indicate that the corrosion rates for steel are acceptable ...

  9. ITP Steel: Energy and Environmental Profile fo the U.S. Iron...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Environmental Profile fo the U.S. Iron and Steel Industry ITP Steel: Energy and Environmental Profile fo the U.S. Iron and Steel Industry steelprofile.pdf (581.28 KB) ...

  10. Steel Market Development Institute Awards "Community Hero" Award to the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office | Department of Energy Steel Market Development Institute Awards "Community Hero" Award to the Vehicle Technologies Office Steel Market Development Institute Awards "Community Hero" Award to the Vehicle Technologies Office February 11, 2016 - 4:24pm Addthis Steel Market Development Institute Men and Women of Steel Awardees Steel Market Development Institute Men and Women of Steel Awardees At the 2016 North American International Auto Show in

  11. Development of Advanced 9Cr Ferritic-Martensitic Steels and Austenitic Stainless Steels for Sodium-Cooled Fast Reactor

    SciTech Connect (OSTI)

    Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori

    2013-01-01

    Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for the advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.

  12. Webinar: DOE Analysis Related to H2USA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Related to H2USA Webinar: DOE Analysis Related to H2USA Below is the text version of the webinar titled "DOE Analysis Related to H2USA," originally presented on July 24, 2013. In addition to this text version of the audio, you can access the presentation slides. Sunita Satyapal: [Audio starts mid-sentence] ...companies typically have internal models that cannot be shared publically while the focus of the DOE model is on transparency and accessibility of the analysis as well as

  13. Weldability of an abrasion-resistant steel

    SciTech Connect (OSTI)

    Adonyi, Y.; Domis, W.F.; Chen, C.C.

    1995-12-31

    The welding performance of a low-carbon-equivalent, abrasion-resistant steel newly developed for the mining industry was studied using a combination of simulative and actual weldability tests. The susceptibility to hydrogen-induced cracking in the weld-metal and heat-affected zones (HAZ), as well as the potential loss of strength and toughness in the HAZ, were evaluated. Simulative testing included the use of the Gleeble 1500 thermomechanical simulator to produce single and multiple-pass weld HAZ microstructures on CVN-size specimens. The effects of heat input, interpass temperature, and post-weld heat treatment (PWHT) on the HAZ microstructure and properties were determined. Additionally, a computer software was used to predict theoretical HAZ hardnesses and volume fraction of phases as a function of cooling rates. The actual welding tests included the Gapped Bead-on-Plate and the Y-groove tests to determine the weld-metal and HAZ susceptibility to hydrogen-induced cracking. Three heat inputs, two diffusible hydrogen and two weld-metal yield-strength levels were used for the actual welding stage. Good correlation was found between microstructure predictions, physical simulations, and actual weld testing results. The new steel was found to be highly weldable because of the low preheat required to avoid HAZ hydrogen induced cracking. All aspects of weld-metal and HAZ cracking behavior had to be addressed for a complete weldability characterization. It was also found that use of excessive heat inputs and PWHT should be avoided when welding this type of steels.

  14. SOLID STATE JOINING OF MAGNESIUM TO STEEL

    SciTech Connect (OSTI)

    Jana, Saumyadeep; Hovanski, Yuri; Pilli, Siva Prasad; Field, David P.; Yu, Hao; Pan, Tsung-Yu; Santella, M. L.

    2012-06-04

    Friction stir welding and ultrasonic welding techniques were applied to join automotive magnesium alloys to steel sheet. The effect of tooling and process parameters on the post-weld microstructure, texture and mechanical properties was investigated. Static and dynamic loading were utilized to investigate the joint strength of both cast and wrought magnesium alloys including their susceptibility and degradation under corrosive media. The conditions required to produce joint strengths in excess of 75% of the base metal strength were determined, and the effects of surface coatings, tooling and weld parameters on weld properties are presented.

  15. Automated inspection of hot steel slabs

    DOE Patents [OSTI]

    Martin, R.J.

    1985-12-24

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes. 5 figs.

  16. Automated inspection of hot steel slabs

    DOE Patents [OSTI]

    Martin, Ronald J.

    1985-01-01

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes.

  17. Method for machining steel with diamond tools

    DOE Patents [OSTI]

    Casstevens, J.M.

    1984-01-01

    The present invention is directed to a method for machine optical quality finishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  18. Method for machining steel with diamond tools

    DOE Patents [OSTI]

    Casstevens, John M.

    1986-01-01

    The present invention is directed to a method for machining optical quality inishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  19. Petrochemical feedstock from basic oxygen steel furnace

    SciTech Connect (OSTI)

    Greenwood, C.W.; Hardwick, W.E.

    1983-10-01

    Iron bath gasification in which coal, lime, steam and oxygen are injected into a bath of molten iron for the production of a medium-Btu gas is described. The process has its origin in basic oxygen steelmaking. It operates at high temperatures and is thus not restrictive on the type of coal used. The ash is retained in the slag. The process is also very efficient. The authors suggest that in the present economic climate in the iron and steel industry, such a plant could be sited where existing coal-handling, oxygen and steelmaking equipment are available.

  20. Clean Cast Steel Technology - Machinability and Technology Transfer

    SciTech Connect (OSTI)

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  1. The limit of strength and toughness of steel

    SciTech Connect (OSTI)

    Guo, Zhen

    2001-12-17

    The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the governing principles of strength and toughness, along with the approaches that can be used to improve these properties and the inherent limits to how strong and tough a steel can be.

  2. Steamside Oxidation Behavior of Experimental 9%Cr Steels

    SciTech Connect (OSTI)

    Dogan, O.N.; Holcomb, G.R.; Alman, D.E.; Jablonski, P.D.

    2007-10-01

    Reducing emissions and increasing economic competitiveness require more efficient steam power plants that utilize fossil fuels. One of the major challenges in designing these plants is the availability of materials that can stand the supercritical and ultra-supercritical steam conditions at a competitive cost. There are several programs around the world developing new ferritic and austenitic steels for superheater and reheater tubes exposed to the advanced steam conditions. The new steels must possess properties better than current steels in terms of creep strength, steamside oxidation resistance, fireside corrosion resistance, and thermal fatigue resistance. This paper introduces a series of experimental 9%Cr steels containing Cu, Co, and Ti. Stability of the phases in the new steels is discussed and compared to the phases in the commercially available materials. The steels were tested under both the dry and moist conditions at 650C for their cyclical oxidation resistance. Results of oxidation tests are presented. Under the moist conditions, the experimental steels exhibited significantly less mass gain compared to the commercial P91 steel. Microstructural characterization of the scale revealed different oxide compositions.

  3. Corrosion protection of steel in ammonia/water heat pumps

    DOE Patents [OSTI]

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  4. Theoretical minimum energies to produce steel for selected conditions

    SciTech Connect (OSTI)

    Fruehan, R. J.; Fortini, O.; Paxton, H. W.; Brindle, R.

    2000-03-01

    An ITP study has determined the theoretical minimum energy requirements for producing steel from ore, scrap, and direct reduced iron. Dr. Richard Fruehan's report, Theoretical Minimum Energies to Produce Steel for Selected Conditions, provides insight into the potential energy savings (and associated reductions in carbon dioxide emissions) for ironmaking, steelmaking, and rolling processes (PDF459 KB).

  5. NATIONAL GEODATABASE OF TIDAL STREAM POWER RESOURCE IN USA

    SciTech Connect (OSTI)

    Smith, Brennan T; Neary, Vincent S; Stewart, Kevin M

    2012-01-01

    A geodatabase of tidal constituents is developed to present the regional assessment of tidal stream power resource in the USA. Tidal currents are numerically modeled with the Regional Ocean Modeling System (ROMS) and calibrated with the available measurements of tidal current speeds and water level surfaces. The performance of the numerical model in predicting the tidal currents and water levels is assessed by an independent validation. The geodatabase is published on a public domain via a spatial database engine with interactive tools to select, query and download the data. Regions with the maximum average kinetic power density exceeding 500 W/m2 (corresponding to a current speed of ~1 m/s), total surface area larger than 0.5 km2 and depth greater than 5 m are defined as hotspots and documented. The regional assessment indicates that the state of Alaska (AK) has the largest number of locations with considerably high kinetic power density, followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA), and Florida (FL).

  6. Energy Efficiency is Beautiful! L'Oréal USA Joins Better Plants...

    Broader source: Energy.gov (indexed) [DOE]

    Johnson280x210.jpg The Department of Energy welcomed L'Oral USA to the Better Buildings, Better Plants Program (Better Plants) and it is a beautiful partnership. As the nation's ...

  7. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect (OSTI)

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  8. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...

    Broader source: Energy.gov (indexed) [DOE]

    MB) More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  9. Overview of Station Analysis Tools Developed in Support of H2USA

    Broader source: Energy.gov [DOE]

    Access the recording and download presentation slides from the Fuel Cell Technologies Office webinar "Overview of Station Analysis Tools Developed in Support of H2USA" held on May 12, 2015.

  10. M.; Weaver, J.N.; Wiedemann, H. (Stanford Univ., CA (USA). Stanford

    Office of Scientific and Technical Information (OSTI)

    the 2 MeV microwave gun for the SSRL 150 MeV linac Borland, M.; Weaver, J.N.; Wiedemann, H. (Stanford Univ., CA (USA). Stanford Synchrotron Radiation Lab.); Green, M.C.; Nelson,...

  11. FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System Energy-Reduction Goals with a Three-Phased Strategy In an attempt to eliminate equipment failures and downtime issues ...

  12. USA Science and Engineering Festival: Inspiring and Educating the Clean Energy Workforce of Tomorrow

    Broader source: Energy.gov [DOE]

    The Energy Department is helping the nation's future STEM workforce (science, technology, engineering, and mathematics) explore energy literacy at the USA Science and Engineering Festival in Washington, D.C. Learn more about the event and how you can participate.

  13. EXS-16-0009- In the Matter of Alcatel-Lucent USA

    Broader source: Energy.gov [DOE]

    On February 23, 2016, OHA granted an Application for Stay filed by Alcatel-Lucent USA (Alcatel).  Alcatel requested a stay of enforcement of DOE's February 2014 Energy Conservation Standards for...

  14. Pieridae Energy (USA) Ltd. FE Dkt. No. 14-179-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on October 24, 2014, by Pieridae Energy (USA) Ltd (Pieridae) requesting long-term, multi-contract authority as further...

  15. Cast alumina forming austenitic stainless steels

    DOE Patents [OSTI]

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  16. Preliminary Analysis of Modules Deployed at PV-USA for 18-24 Years |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Preliminary Analysis of Modules Deployed at PV-USA for 18-24 Years Preliminary Analysis of Modules Deployed at PV-USA for 18-24 Years Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps1_pvusa_pineda.pdf (417.45 KB) More Documents & Publications Cost of Capital Firearms Qualifications Courses Protective Force Firearms Qualifications Courses, July 2011

  17. 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy -2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2002 DEER Conference Presentation: Southwest Research Institute 2002_deer_leet.pdf (429.05 KB) More Documents & Publications Low Emisssions Potential of EGR-SCR-DPF and Advanced Fuel Formulations - A Progress Report State-of-the-Art and Emergin Truck Engine Technologies Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines

  18. Jacob P. Fugal, Scott Spuler Earth Observing Laboratory NCAR, Boulder, CO USA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    airborne digital holographic instrument for measuring the spatial distribution and local size distributions of cloud particles: Holographic Detector for Clouds 2 (HOLODEC 2) Jacob P. Fugal, Scott Spuler Earth Observing Laboratory NCAR, Boulder, CO USA & Raymond A. Shaw Physics Department, michigan Tech Houghton, MI USA C-130 Hercules Q HIAPER Gulfstream GV HOLODEC (Holographic Detector for Clouds) is an airborne instrument that measures the size, shape, and relative 3D position of cloud

  19. Waste-to-energy: A review of the status and benefits in USA

    SciTech Connect (OSTI)

    Psomopoulos, C.S. Bourka, A.; Themelis, N.J.

    2009-05-15

    The USA has significant experience in the field of municipal solid waste management. The hierarchy of methodologies for dealing with municipal solid wastes consists of recycling and composting, combustion with energy recovery (commonly called waste-to-energy) and landfilling. This paper focuses on waste-to-energy and especially its current status and benefits, with regard to GHG, dioxin and mercury emissions, energy production and land saving, on the basis of experience of operating facilities in USA.

  20. INDUSTRIAL USES OF GEOTHERMAL ENERGY IN THE USA Dr. John W. Lund, PE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USES OF GEOTHERMAL ENERGY IN THE USA Dr. John W. Lund, PE Emeritus Director Geo-Heat Center Oregon Institute of Technology Klamath Falls, OR, USA INTRODUCTION  Industrial applications & agricultural drying  Few in number in the U.S.  Large scale operations dominate - Gold ore heap leaching - Onion dehydration  Many small scale operations: - Milk pasteurization, laundry, beer production, alcohol production and mushroom growing. ENERGY USE  Installed capacity = 38 MWt  Annual

  1. Listeriosis Prevention Knowledge Among Pregnant Women in the USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ogunmodede, Folashade; Jones, Jeffery L.; Scheftel, Joni; Kirkland, Elizabeth; Schulkin, Jay; Lynfield, Ruth

    2005-01-01

    Background: Listeriosis is a food-borne disease often associated with ready-to-eat foods. It usually causes mild febrile gastrointestinal illness in immunocompetent persons. In pregnant women, it may cause more severe infection and often crosses the placenta to infect the fetus, resulting in miscarriage, fetal death or neonatal morbidity. Simple precautions during pregnancy can prevent listeriosis. However, many women are unaware of these precautions and listeriosis education is often omitted from prenatal care. Methods: Volunteer pregnant women were recruited to complete a questionnaire to assess their knowledge of listeriosis and its prevention, in two separate studies. One study was a nationalmore » survey of 403 women from throughout the USA, and the other survey was limited to 286 Minnesota residents. Results: In the multi-state survey, 74 of 403 respondents (18%) had some knowledge of listeriosis, compared with 43 of 286 (15%) respondents to the Minnesota survey. The majority of respondents reported hearing about listeriosis from a medical professional. In the multi-state survey, 33% of respondents knew listeriosis could be prevented by not eating delicatessen meats, compared with 17% in the Minnesota survey ( p = 0.01). Similarly, 31% of respondents to the multi-state survey compared with 19% of Minnesota survey respondents knew listeriosis could be prevented by avoiding unpasteurized dairy products (p = 0.05). As for preventive behaviors, 18% of US and 23% of Minnesota respondents reported avoiding delicatessen meats and ready-to-eat foods during pregnancy, whereas 86% and 88%, respectively, avoided unpasteurized dairy products. Conclusions: Most pregnant women have limited knowledge of listeriosis prevention. Even though most respondents avoided eating unpasteurized dairy products, they were unaware of the risk associated with ready-to-eat foods. Improved education of pregnant women regarding the risk and sources of listeriosis in pregnancy is needed.« less

  2. Crosswell seismic imaging in the Permian Basin, West Texas, USA

    SciTech Connect (OSTI)

    Langan, R.T.; Harris, J.M.; Jensen, T.L.

    1995-12-31

    Crosswell seismic imaging technology has advanced rapidly over the last three years as the processing methods have become more robust, the cost of data acquisition has fallen, and the interwell distances of operation have increased. The Permian Basin of west Texas, USA is proving to be an ideal environment in which to develop this technology because of the relatively low seismic attenuation of the carbonate-dominated lithology, the moderate well spacings in the large number of mature fields, and the unusually high number of reflecting horizons. Current technology permits us to operate in carbonates at well spacings on the order of 2000 ft (650 m) and to image P- and S-wave reflecting horizons on a scale of 8 to 25 ft (2.4 to 7.6 m). Crosswell technology is not limited to carbonates, although the majority of recent applications have been in this environment. We are involved in three separate crosswell experiments in the Permian Basin, each with unique objectives. The first experiment involves a CO{sub 2} pilot project in a Grayburg Formation reservoir on the eastern edge of the Central Basin Platform. Here we are attempting to characterize the reservoir at a scale unobtainable from 3-D surface seismic data and to image CO{sub 2} fronts directly. The second experiment deals with a waterflood in a Middle Clearfork Formation reservoir on the Eastern Shelf, where we are trying to explain the erratic response of adjacent wells to water injection. In the third project we are trying to image the structure and stratigraphy of subtle {open_quotes}anomalies{close_quotes} in 3-D surface seismic images of the Wolfcamp Formation.

  3. Phase Transformations in Cast Duplex Stainless Steels

    SciTech Connect (OSTI)

    Yoon-Jun Kim

    2004-12-19

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as {sigma} and {chi} can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ({sigma} + {chi}) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, {sigma} was stabilized with increasing Cr addition and {chi} by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  4. Hydrostatic Microextrusion of Steel and Copper

    SciTech Connect (OSTI)

    Berti, Guido; Monti, Manuel; D'Angelo, Luciano

    2011-05-04

    The paper presents an experimental investigation based on hydrostatic micro extrusion of billets in low carbon steel and commercially pure copper, and the relevant results. The starting billets have a diameter of 0.3 mm and are 5 mm long; a high pressure generator consisting of a manually operated piston screw pump is used to pressurize the fluid up to 4200 bar, the screw pump is connected through a 3-way distribution block to the extrusion die and to a strain gauge high pressure sensor. The sensor has a full scale of 5000 bar and the extrusion pressure is acquired at a sampling rate of 2 kHz by means of an acquisition program written in the LabVIEW environment. Tests have been conducted at room temperature and a lubricant for wire drawing (Chemetall Gardolube DO 338) acts both as the pressurizing fluid and lubricant too. In addition, billets were graphite coated. Different fluid pressures and process durations have been adopted, resulting in different extrusion lengths. The required extrusion pressure is much higher than in non-micro forming operations (this effect is more evident for steel). On the cross section of the extruded parts, hardness and grain size distribution have been measured, the former through Vickers micro hardness (10 g load) tests. In the case of the extrusion of copper, the material behaves as in microdrawing process. In the case of the extrusion of steel, the hardness increases from the core to the surface as in the drawing process, but with lower values. The analysis evidenced the presence of the external layer, but its thickness is about 1/3 of the external layer in the drawn wire and the grains appear smaller than in the layer of the drawn wire. The extruding force required along the extruding direction is higher (22-24 N) than the drawing force along the same direction (12 N): being the material, the reduction ratio, the die sliding length the same in both cases, the higher extrusion force should be caused by a higher tangential friction

  5. Corrosion resistance of transmission structures fabricated from weathering steel

    SciTech Connect (OSTI)

    Goodwin, E.J. ); Pohlman, J.C.

    1993-01-01

    Introduced to utilities in the late 1960's, weathering steel' appeared to offer a way to reduce structure weight and maintenance of lattice towers through the application of bare, high strength steel that had natural corrosion resistance. Weathering steel found wide application in lattice and tubular transmission structures. Through its service life, however, the weathering steel showed evidence of continuing corrosion rather than the expected protection from corrosion. A consortium of utilities was formed to investigate the impact on structure reliability of the continuing corrosion of the steel beyond initial expectations. Through the completion of field surveys and laboratory tests, projected lifetime corrosion rates, structural integrity and potential sealer/penetrant systems were evaluated. The investigation has shown that existing lattice and tubular structures fabricated from weathering steel will provide continued reliable service with minimal maintenance programs. Weathering Steel remains practical for new lattice and tubular structures provided steps are taken during the design process to minimize the retention and collection of moisture between and around metal contact surfaces and during the operation of the line to minimize vegetation encroachment around structures.

  6. Rapid analysis of steels using laser-based techniques

    SciTech Connect (OSTI)

    Cremers, D.A.; Archuleta, F.L.; Dilworth, H.C.

    1985-01-01

    Based on the data obtained by this study, we conclude that laser-based techniques can be used to provide at least semi-quantitative information about the elemental composition of molten steel. Of the two techniques investigated here, the Sample-Only method appears preferable to the LIBS (laser-induced breakdown spectroscopy) method because of its superior analytical performance. In addition, the Sample-Only method would probably be easier to incorporate into a steel plant environment. However, before either technique can be applied to steel monitoring, additional research is needed.

  7. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect (OSTI)

    Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

    2009-11-13

    Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spot welding in advanced high strength steels.

  8. The future of energy efficiency in the steel industry

    SciTech Connect (OSTI)

    Lakshminarayana, B.

    1997-07-01

    Steel is present in every aspect of life, in all industrial, transportation sectors as well as in households in US. The American steel industry today can be counted among the most productive, efficient and technologically advanced in the world. Steel combines low cost with attractive engineering properties and is the most recycled of all materials. Despite these appealing characteristics of steel, the steel industry has confronted significant challenges from other competitive materials. To keep abreast with the competition it faces, pursuit of research and development activities is an absolute necessity. This competition has forced the steel industry to address many issues that here to fore were deemed unimportant. One of these areas is energy efficiency. Steelmaking energy costs comprise over 15 percent of the manufacturing cost of steel. This compares to less than five percent for most other manufacturing industries. The US steel industry, which accounts for about nine percent (1.8 quads/year) of the US industrial energy use, has made considerable progress in the area of energy efficiency. Over the past 20 years, the US steel industry has reduced its energy intensity by 43 percent. The impact of energy usage on environmental and the results of government regulations have made the industry concentrate more and more on the issues of energy efficiency. In addition, a possible energy shortage could become a global phenomenon in the 21st century if steps to conserve energy are not taken. The risk in researching and adapting new technologies is greater in the steel industry than in many other manufacturing industries. Steelmaking is capital intensive in both equipment and processes. Government/industry partnerships can help reduce such risks. The Department of Energy's Office of Industrial Technologies (DOE/OIT) has been supporting energy efficient research relevant to the steel industry. Salient features of some of the projects will be explored in this paper. These

  9. Diode laser welding of aluminum to steel

    SciTech Connect (OSTI)

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica [University of Rome Tor Vergata, Department of Mechanical Engineering, Via del Politecnico 1, 00133 Rome (Italy)

    2011-05-04

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  10. Creep resistant high temperature martensitic steel

    DOE Patents [OSTI]

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  11. Radiation resistant austenitic stainless steel alloys

    DOE Patents [OSTI]

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  12. Radiation resistant austenitic stainless steel alloys

    DOE Patents [OSTI]

    Maziasz, Philip J.; Braski, David N.; Rowcliffe, Arthur F.

    1989-01-01

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  13. Stainless steel anodes for alkaline water electrolysis and methods of making

    DOE Patents [OSTI]

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  14. Safety Analysis Report for Packaging (SARP): Model AL-M1 nuclear packaging (DOE C of C No. USA/9507/BLF)

    SciTech Connect (OSTI)

    Coleman, H.L.; Whitney, M.A.; Williams, M.A.; Alexander, B.M.; Shapiro, A.

    1987-11-24

    This Safety Analysis Report for Packaging (SARP) satisfies the request of the US Department of Energy for a formal safety analysis of the shipping container identified as USA/9507/BLF, also called AL-M1, configuration 5. This report makes available to all potential users the technical information and the limits pertinent to the construction and use of the shipping containers. It includes discussions of structural integrity, thermal resistance, radiation shielding and radiological safety, nuclear criticality safety, and quality control. A complete physical and technical description of the package is presented. The package consists of an inner container centered within an insulated steel drum. The configuration-5 package contains tritiated water held on sorbent material. There are two other AL-M1 packages, designated configurations 1 and 3. These use the same insulated outer drum, but licensing of these containers will not be addressed in this SARP. Design and development considerations, the tests and evaluations required to prove the ability of the container to withstand normal transportation conditions, and the sequence of four hypothetical accident conditions (free drop, puncture, thermal, and water immersion) are discussed. Tables, graphs, dimensional sketches, photographs, technical references, loading and shipping procedures, Monsanto Research Corporation-Mound experience in using the containers, and a copy of the DOE/OSD/ALO Certificate of Compliance are included.

  15. Using Coke Oven Gas in a Blast Furnace Saves Over $6 Million Annually at a Steel Mill (U.S. Steel Edgar Thompson Plant)

    SciTech Connect (OSTI)

    2000-12-01

    Like most steel companies, U.S. Steel (USS) had been using coke oven gas (COG), a by-product of coke manufacturing, as a fuel in their coke ovens, boilers, and reheat furnaces.

  16. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    SciTech Connect (OSTI)

    Wang, Jy-An John

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  17. FATIGUE LIFE PREDICTION FOR STEELS IN PULSATING IRRADIATED SYSTEMS...

    Office of Scientific and Technical Information (OSTI)

    Title: FATIGUE LIFE PREDICTION FOR STEELS IN PULSATING IRRADIATED SYSTEMS Authors: Farmer, J C ; Kramer, K J ; Williams, D J Publication Date: 2012-04-29 OSTI Identifier: 1082417 ...

  18. Low temperature type new TMCP steel plate for LPG carriers

    SciTech Connect (OSTI)

    Suzuki, Shuichi; Bessyo, Kiyoshi; Arimochi, Kazushige; Yajima, Hiroshi; Tada, Masuo; Sakai, Daisuke

    1994-12-31

    New Thermo-Mechanical Control Process (TMCP) steel plate for LPG carriers of completely liquefied type was developed with non-nickel chemistry. The new steel plate has a capability to arrest a long running brittle crack at {minus}46 C (which is the design temperature of the liquefied LPG tanks). A high heat-input one-pass welding can be applied to this steel despite its nickel-less chemistry. These capabilities were enabled by microalloying technology with low aluminum-medium nitrogen-boron, as well as by the advanced Thermo-Mechanical Control Process. This paper describes the new concept of utilizing the trace elements and the evaluation test results as the steel plate for the LPG tank and hull, especially from the standpoints of the fracture safe reliability at high heat input welding and from that of the shop workability.

  19. Optimization of Composition and Heat Treating of Die Steels for...

    Office of Scientific and Technical Information (OSTI)

    Optimization of Composition and Heat Treating of Die Steels for Extended Lifetime Citation ... A die used in making die cast aluminum engine blocks can cost well over one million ...

  20. Optimization of Composition and Heat Treating of Die Steels for...

    Office of Scientific and Technical Information (OSTI)

    and Heat Treating of Die Steels for Extended Lifetime An ''average'' die casting die costs fifty thousand dollars. A die used in making die cast aluminum engine blocks can ...

  1. Structural characteristics and hydration kinetics of modified steel slag

    SciTech Connect (OSTI)

    Li Jianxin; Yu Qijun; Wei Jiangxiong Zhang Tongsheng

    2011-03-15

    This study investigates the structural characteristics and hydration kinetics of modified basic oxygen furnace steel slag. The basic oxygen furnace steel slag (BOFS) was mixed with electric arc furnace steel slag (EAFS) in appropriate ratios and heated again at high temperature in the laboratory. The mineralogical and structural characteristics of both BOFS and modified steel slag (MSS) were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, Raman and Fourier transform infrared spectroscopies. The results show that modification increases alite content in MSS and decreases alite crystal size with the formation of C{sub 6}AF{sub 2}. One more obvious heat evolution peak appears in MSS's heat-flow rate curves in comparison to BOFS, becoming similar to that of typical Portland cement paste. As a result, its cementitious activity is much improved.

  2. Technology Roadmap Research Program for the Steel Industry

    SciTech Connect (OSTI)

    Joseph R. Vehec

    2010-12-30

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  3. HotEye® Steel Surface Inspection System

    Broader source: Energy.gov [DOE]

    A new inspection system, the HotEye® Rolled Steel Bar (RSB) System, has been developed and demonstrated by OG Technologies (OGT) Inc., with the help of both a NICE3 grant and a project under the...

  4. Eddy sensors for small diameter stainless steel tubes.

    SciTech Connect (OSTI)

    Skinner, Jack L.; Morales, Alfredo Martin; Grant, J. Brian; Korellis, Henry James; LaFord, Marianne Elizabeth; Van Blarigan, Benjamin; Andersen, Lisa E.

    2011-08-01

    The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

  5. Method of making high strength, tough alloy steel

    DOE Patents [OSTI]

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel, particularly suitable for the mining industry, is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other subsitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  6. Process to Continuously Melt, Refine, and Cast High Quality Steel

    Broader source: Energy.gov [DOE]

    This factsheet describes a project to conduct research and development targeted at designing an innovative steelmaking process to produce higher quality steel faster than traditional batch processes while consuming less energy and other resources.

  7. 9 Cr-- 1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  8. Mr. Joseph M. Fallon Director, Engineering Services Slater Steels...

    Office of Legacy Management (LM)

    ... Stainless Steels --. - - -. .. . . - .-.- - . . --- .. .- , UNITED STATES ENERGY i?EsEAECH AND DEVELOPuEftT ADMINISTRATION CIA' . HIDGF OPERkTiO?> P. 0. BOX E OAK SlDGf. ...

  9. Surface modified stainless steels for PEM fuel cell bipolar plates

    DOE Patents [OSTI]

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  10. The very high cycle fatigue behavior of tool steel materials...

    Office of Scientific and Technical Information (OSTI)

    Title: The very high cycle fatigue behavior of tool steel materials Authors: Shyam, Amit 1 ; Blau, Peter Julian 1 ; Jordan, Tyson L 1 ; Yang, Nan 2 ; Pollard, Michael J 3 ...

  11. Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement Webinar

    Broader source: Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement" held on January 12, 2016.

  12. Low-Temperature Colossal Supersaturation of Stainless Steels

    Broader source: Energy.gov [DOE]

    Austenitic stainless steels in the 300 Series are the primary materials used for a very broad range of applications when corrosion resistance is needed in aqueous solutions at ambient temperatures....

  13. DOE - Office of Legacy Management -- Birdsboro Steel and Foundry...

    Office of Legacy Management (LM)

    of Birdsboro Steel & Foundry; October 28, 1987 PA.31-3 - AEC Memorandum; Malone to Smith; Subject: Monthly Progress Report for January; January 24, 1952 PA.31-4 - DOE Letter; ...

  14. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    SciTech Connect (OSTI)

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide

  15. Mechanical Properties of Structural Steels in Hydrogen | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Mechanical Properties of Structural Steels in Hydrogen Mechanical Properties of Structural Steels in Hydrogen Presented at the DOE Hydrogen Pipeline Working Group Meeting, Aiken, SC, September 25-26, 2007 pipeline_group_somerday_ms.pdf (2.72 MB) More Documents & Publications Materials Compatibility Evalutation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture

  16. Safety Analysis Report for packaging (onsite) steel waste package

    SciTech Connect (OSTI)

    BOEHNKE, W.M.

    2000-07-13

    The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A{sub 2}s) and is a type B packaging.

  17. High Strength Nano-Structured Steel - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Return to Search High Strength Nano-Structured Steel Idaho National Laboratory Success Story Details Partner Location Agreement Type Publication Date Nanosteel, Inc. Providence, Rhode Island License Work for Others (WFO) June 4, 2013 Video Bulk Materials Nanotechnology Summary The NanoSteel Company Complex modern challenges are driving new industrial market demands for metal alloys with properties and performance capabilities outside the known boundaries of

  18. Process to Continuously Melt, Refine and Cast High Quality Steel

    SciTech Connect (OSTI)

    2005-09-01

    The purpose of this project is to conduct research and development targeted at designing a revolutionary steelmaking process. This process will deliver high quality steel from scrap to the casting mold in one continuous process and will be safer, more productive, and less capital intensive to build and operate than conventional steelmaking. The new process will produce higher quality steel faster than traditional batch processes while consuming less energy and other resources.

  19. Procedure for flaw detection in cast stainless steel

    DOE Patents [OSTI]

    Kupperman, David S.

    1988-01-01

    A method of ultrasonic flaw detection in cast stainless steel components incorporating the steps of determining the nature of the microstructure of the cast stainless steel at the site of the flaw detection measurements by ultrasonic elements independent of the component thickness at the site; choosing from a plurality of flaw detection techniques, one such technique appropriate to the nature of the microstructure as determined and detecting flaws by use of the chosen technique.

  20. Steel-SiC Metal Matrix Composite Development

    SciTech Connect (OSTI)

    Smith, Don D.

    2005-07-17

    The goal of this project is to develop a method for fabricating SiC-reinforced high-strength steel. We are developing a metal-matrix composite (MMC) in which SiC fibers are be embedded within a metal matrix of steel, with adequate interfacial bonding to deliver the full benefit of the tensile strength of the SiC fibers in the composite.

  1. Measurement of intergranular attack in stainless steel using ultrasonic energy

    DOE Patents [OSTI]

    Mott, Gerry; Attaar, Mustan; Rishel, Rick D.

    1989-08-08

    Ultrasonic test methods are used to measure the depth of intergranular attack (IGA) in a stainless steel specimen. The ultrasonic test methods include a pitch-catch surface wave technique and a through-wall pulse-echo technique. When used in combination, these techniques can establish the extent of IGA on both the front and back surfaces of a stainless steel specimen from measurements made on only one surface.

  2. Used Fuel Disposition Stainless Steel Canister Challenges Steve Marschman

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stainless Steel Canister Challenges Steve Marschman Field Demonstration Lead Idaho National Laboratory NEET ASI Review Meeting September 17, 2014 Used Fuel Disposition Date 2 Overview n Chloride-Induced Stress Corrosion Cracking (CISCC) has been identified by the NRC as a potential degradation mechanism for welded, stainless steel used fuel canisters (not bare fuel storage casks). n Systems are difficult to inspect and monitor n Three in-service inspections have been performed - Results

  3. Two Companies Recognized for Leadership in Energy Efficiency | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Two Companies Recognized for Leadership in Energy Efficiency Two Companies Recognized for Leadership in Energy Efficiency November 27, 2013 - 12:00am Addthis The Energy Department on November 22 recognized aluminum manufacturer Alcoa and steel manufacturer ArcelorMittal for leadership in the Energy Department's Better Buildings, Better Plants Program. As a part of the Better Plants Challenge, Alcoa has demonstrated leadership by setting an ambitious goal to reduce the energy

  4. Two Electron Holes in Hematite Facilitate Water Splitting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Two Companies Recognized for Leadership in Energy Efficiency Two Companies Recognized for Leadership in Energy Efficiency November 27, 2013 - 12:00am Addthis The Energy Department on November 22 recognized aluminum manufacturer Alcoa and steel manufacturer ArcelorMittal for leadership in the Energy Department's Better Buildings, Better Plants Program. As a part of the Better Plants Challenge, Alcoa has demonstrated leadership by setting an ambitious goal to reduce the energy

  5. The properties and weldability of low activation ferritic steels

    SciTech Connect (OSTI)

    Chin, B.A.

    1990-05-11

    A series of ferritic steels patterned on the chromium-molybdenum alloys, 2 1/4Cr--1Mo, 9Cr--1MoVNb and 12Cr--1MoVW, were tested for weldability. These steels are being developed as candidates for the first wall and blanket structures of fusion reactors. Use of these materials will minimize the long term radioactive hazards associated with disposal after service. In these low activation alloys, elements which become activated during irradiation with long half lives (Mo and Nb) are replaced. The major changes include the replacement of molybdenum with tungsten, the addition of vanadium in 2 1/4% Cr steels, and the replacement of niobium in the 9% Cr steel with tantalum. These replacement elements radically modify both the mechanical properties and weldability of the alloys. In this study, the effect of the alloy modifications on the microstructure and the mechanical properties of the welds are presented. Bainitic steels (2 1/4 Cr%) usually exhibit good weldability, while the martensitic steels (5, 9 and 12 Cr%) are suspectable to embrittlement in the heat affected zone (HAZ). The objective of this study was to characterize the welded microstructure and mechanical properties of these low activation alloys. Autogeneous bead-on-plate welds were produced using the gas tungsten arc welding (GTAW) process. Microstructure, microhardness, weld bend and tensile test results are reported for the base metal, heat affected zone and fusion zone of the weld. 46 refs., 36 figs., 14 tabs.

  6. Ancient Blacksmiths, The Iron Age, Damascus Steels, and Modern Metallurgy

    SciTech Connect (OSTI)

    Sherby, O.D.; Wadsworth, J.

    2000-09-11

    The history of iron and Damascus steels is described through the eyes of ancient blacksmiths. For example, evidence is presented that questions why the Iron Age could not have begun at about the same time as the early Bronze Age (i.e. approximately 7000 B.C.). It is also clear that ancient blacksmiths had enough information from their forging work, together with their observation of color changes during heating and their estimate of hardness by scratch tests, to have determined some key parts of the present-day iron-carbon phase diagram. The blacksmiths' greatest artistic accomplishments were the Damascus and Japanese steel swords. The Damascus sword was famous not only for its exceptional cutting edge and toughness, but also for its beautiful surface markings. Damascus steels are ultrahigh carbon steels (UHCSs) that contain from 1.0 to 2.1%. carbon. The modern metallurgical understanding of UHCSs has revealed that remarkable properties can be obtained in these hypereutectoid steels. The results achieved in UHCSs are attributed to the ability to place the carbon, in excess of the eutectoid composition, to do useful work that enhances the high temperature processing of carbon steels and that improves the low and intermediate temperature mechanical properties.

  7. Morphological and microstructural studies on aluminizing coating of carbon steel

    SciTech Connect (OSTI)

    Samsu, Zaifol; Othman, Norinsan Kamil; Daud, Abd Razak; Hussein, Hishammuddin

    2013-11-27

    Hot dip aluminizing is one of the most effective methods of surface protection for steels and is gradually gaining popularity. The morphology and microstructure of an inter-metallic layer form on the surface of low carbon steel by hot dip aluminization treatment had been studied in detail. This effect has been investigated using optical and scanning electron microscopy, and X-ray diffraction. The result shows that the reaction between the steel and the molten aluminium leads to the formation of Fe–Al inter-metallic compounds on the steel surface. X-ray diffraction and electron microscopic studies showed that a two layer coating was formed consisting of an external Al layer and a (Fe{sub 2}Al{sub 5}) inter metallic on top of the substrate after hot dip aluminizing process. The inter-metallic layer is ‘thick’ and exhibits a finger-like growth into the steel. Microhardness testing shown that the intermetallic layer has high hardness followed by steel substrate and the lowest hardness was Al layer.

  8. Successful development and application of high performance plate steels

    SciTech Connect (OSTI)

    Wilson, A.D.

    1995-12-31

    New high performance plate steels (HPPS) are developed in reaction to customer requirements and the availability of essential steelmaking facilities. In this decade significant improvements to steelmaking equipment has made possible the development and production of a variety of new HPPS. Four case studies are presented reviewing the key metallurgical needs and the innovative steel processing that was required. These applications include: (1) Hydrogen Induced Cracking Resistant A516 C-Mn pressure vessel steel with ultra low sulfur and controlled carbon equivalent levels, (2) Temper Embrittlement Resistant A387 Cr-Mo alloy steels for high temperature pressure vessels with low phosphorus, J Factor and sulfur levels with high toughness, (3) formable, weldable, 400HB abrasion resistant alloy steels, which are produced with extra low sulfur levels, reduced carbon and carbon equivalent levels and rigorous heat treatment controls, and (4) weldable, high strength structural steels with low carbon levels, based on Cu-Ni precipitation hardening and A710. Future opportunities for HPPS will result with the installation of additional new steelmaking facilities.

  9. Yield Improvement in Steel Casting (Yield II)

    SciTech Connect (OSTI)

    Richard A. Hardin; Christoph Beckermann; Tim Hays

    2002-02-18

    This report presents work conducted on the following main projects tasks undertaken in the Yield Improvement in Steel Casting research program: Improvement of Conventional Feeding and Risering Methods, Use of Unconventional Yield Improvement Techniques, and Case Studies in Yield Improvement. Casting trials were conducted and then simulated using the precise casting conditions as recorded by the participating SFSA foundries. These results present a statistically meaningful set of experimental data on soundness versus feeding length. Comparisons between these casting trials and casting trials performed more than forty years ago by Pellini and the SFSA are quite good and appear reasonable. Comparisons between the current SFSA feeding rules and feeding rules based on the minimum Niyama criterion reveal that the Niyama-based rules are generally less conservative. The niyama-based rules also agree better with both the trials presented here, and the casting trails performed by Pellini an d the SFSA years ago. Furthermore, the use of the Niyama criterion to predict centerline shrinkage for horizontally fed plate sections has a theoretical basis according to the casting literature reviewed here. These results strongly support the use of improved feeding rules for horizontal plate sections based on the Niyama criterion, which can be tailored to the casting conditions for a given alloy and to a desired level of soundness. The reliability and repeatability of ASTM shrinkage x-ray ratings was investigated in a statistical study performed on 128 x-rays, each of which were rated seven different times. A manual ''Feeding and Risering Guidelines for Steel Castings' is given in this final report. Results of casting trials performed to test unconventional techniques for improving casting yield are presented. These use a stacked arrangement of castings and riser pressurization to increase the casting yield. Riser pressurization was demonstrated to feed a casting up to four time s the

  10. Development of Next Generation Heating System for Scale Free Steel Reheating

    SciTech Connect (OSTI)

    Dr. Arvind C. Thekdi

    2011-01-27

    The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

  11. USA RS Basic Contract - Contract No.: DE-RW0000005 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USA RS Basic Contract - Contract No.: DE-RW0000005 USA RS Basic Contract - Contract No.: DE-RW0000005 This document describes the Statement of Work (SOW) of the Management and Operating Contractor (M&O) Contract for the U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) Program's Yucca Mountain Project (YMP). An M&O contract is defined at Federal Acquisition Regulation (FAR) 17.6 and Department of Energy Acquisition Regulation (DEAR) 970. Inasmuch as

  12. SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORDER 3639 | Department of Energy PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 October 2015 (1.1 MB) April 2016 (1.05 MB) More Documents & Publications SEMI-ANNUAL REPORTS FOR COMMONWEALTH LNG, LLC (FORMERLY WALLER LNG SERVICES, LLC D/B/A WALLER POINT LNG) - FE DKT. NO. 12-152-LNG - ORDER 3211 SEMI-ANNUAL REPORTS FOR GULF COAST LNG EXPORT, LLC - FE DKT. NO. 12-05-LNG - ORDER 3163

  13. ORDER 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC ORDER 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC OPINION AND ORDER GRANTING LONG-TERM, MULTI-CONTRACT AUTHORIZATION TO EXPORT U.S.-SOURCED NATURAL GAS BY PIPELINE TO CANADA FOR LIQUEFACTION AND RE-EXPORT IN THE FORM OF LIQUEFIED NATURAL GAS TO NON-FREE TRADE AGREEMENT COUNTRIES On February 5, 2016, the Energy Department issued an authorization to Bear Head LNG Corporation and Bear Head LNG

  14. Weldable, age hardenable, austenitic stainless steel

    DOE Patents [OSTI]

    Brooks, J.A.; Krenzer, R.W.

    1975-07-22

    An age hardenable, austenitic stainless steel having superior weldability properties as well as resistance to degradation of properties in a hydrogen atmosphere is described. It has a composition of from about 24.0 to about 34.0 weight percent (w/o) nickel, from about 13.5 to about 16.0 w/o chromium, from about 1.9 to about 2.3 w/o titanium, from about 1.0 to about 1.5 w/ o molybdenum, from about 0.01 to about 0.05 w/o carbon, from about 0 to about 0.25 w/o manganese, from about 0 to about 0.01 w/o phosphorous and preferably about 0.005 w/o maximum, from about 0 to about 0.010 w/o sulfur and preferably about 0.005 w/o maximum, from about 0 to about 0.25 w/o silicon, from about 0.1 to about 0.35 w/o aluminum, from about 0.10 to about 0.50 w/o vanadium, from about 0 to about 0.0015 w/o boron, and the balance essentially iron. (auth)

  15. Welding Behavior of Free Machining Stainless Steel

    SciTech Connect (OSTI)

    BROOKS,JOHN A.; ROBINO,CHARLES V.; HEADLEY,THOMAS J.; MICHAEL,JOSEPH R.

    2000-07-24

    The weld solidification and cracking behavior of sulfur bearing free machining austenitic stainless steel was investigated for both gas-tungsten arc (GTA) and pulsed laser beam weld processes. The GTA weld solidification was consistent with those predicted with existing solidification diagrams and the cracking response was controlled primarily by solidification mode. The solidification behavior of the pulsed laser welds was complex, and often contained regions of primary ferrite and primary austenite solidification, although in all cases the welds were found to be completely austenite at room temperature. Electron backscattered diffraction (EBSD) pattern analysis indicated that the nature of the base metal at the time of solidification plays a primary role in initial solidification. The solid state transformation of austenite to ferrite at the fusion zone boundary, and ferrite to austenite on cooling may both be massive in nature. A range of alloy compositions that exhibited good resistance to solidification cracking and was compatible with both welding processes was identified. The compositional range is bounded by laser weldability at lower Cr{sub eq}/Ni{sub eq} ratios and by the GTA weldability at higher ratios. It was found with both processes that the limiting ratios were somewhat dependent upon sulfur content.

  16. NanoComposite Stainless Steel Powder Technologies

    SciTech Connect (OSTI)

    DeHoff, R.; Glasgow, C.

    2012-07-25

    Oak Ridge National Laboratory has been investigating a new class of Fe-based amorphous material stemming from a DARPA, Defense Advanced Research Projects Agency initiative in structural amorphous metals. Further engineering of the original SAM materials such as chemistry modifications and manufacturing processes, has led to the development of a class of Fe based amorphous materials that upon processing, devitrify into a nearly homogeneous distribution of nano sized complex metal carbides and borides. The powder material is produced through the gas atomization process and subsequently utilized by several methods; laser fusing as a coating to existing components or bulk consolidated into new components through various powder metallurgy techniques (vacuum hot pressing, Dynaforge, and hot isostatic pressing). The unique fine scale distribution of microstructural features yields a material with high hardness and wear resistance compared to material produced through conventional processing techniques such as casting while maintaining adequate fracture toughness. Several compositions have been examined including those specifically designed for high hardness and wear resistance and a composition specifically tailored to devitrify into an austenitic matrix (similar to a stainless steel) which poses improved corrosion behavior.

  17. Austenitic stainless steel for high temperature applications

    DOE Patents [OSTI]

    Johnson, Gerald D.; Powell, Roger W.

    1985-01-01

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; 0.01-0.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; 0.03 maximum, As; 0.01 maximum, O; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P+wt. % B+wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  18. High productivity injection practices at Rouge Steel

    SciTech Connect (OSTI)

    Barker, D.H.; Hegler, G.L.; Falls, C.E.

    1995-12-01

    Rouge Steel Company, located in Dearborn, Michigan, operates two blast furnaces. The smaller of the pair, ``B`` Furnace, has a hearth diameter of 20 feet and 12 tuyeres. It has averaged 2,290 NTHM (net ton of hot metal) per day of 8.2 NTHM per 100 cubic feet of working volume. ``C`` Furnace has a hearth diameter of 29 feet and 20 tuyeres. Both of these furnaces are single tap hole furnaces. Prior to its reline in 1991, ``C`` Furnace was producing at a rate of 3,300 NTHM/day or about 6.25 NTHM/100 cfwv. In November, 1994 it averaged 5,106 NTHM/day or 9.6 NTHM/100 cfwv. This paper discusses how the current production rates were achieved. Also, the areas that needed to be addressed as production increased will be described. These areas include casthouse arrangement and workload, hot metal ladle capacity, slag pot capacity and charging capability. Coupled with the high blast temperature capability, the furnace was provided with a new natural gas injection system that injected the gas through the blowpipes and a natural gas injection system to enrich the stove gas. Following the furnace reline, natural gas has been used in three ways: tuyere level control; combination injection; and stove gas enrichment. Coke consumption rate has also decreased per NTHM.

  19. Clean engineered steels -- Progress at the end of the twentieth century

    SciTech Connect (OSTI)

    Eckel, J.A.; Glaws, P.C.; Wolfe, J.O.; Zorc, B.J.

    1999-07-01

    The Timken Company, a manufacturer of alloy steel and bearings, has developed a 15 MHz ultrasonic inspection method that correlates steel cleanness to bearing fatigue performance. It is used to qualify worldwide bearing steel suppliers for cleanness requirements, to monitor their compliance and qualify process changes. This method has permitted the appropriate steel cleanness to be selected for bearing applications. Through Continuous Improvement (CI) methodology, steelmaking productivity advancements have occurred along with advancement in steel cleanness. These efforts have led to 4 orders of magnitude steel cleanness improvement, and nearly 20 times bearing performance improvement over the past 15 years.

  20. Rolling bearing life models and steel internal cleanliness

    SciTech Connect (OSTI)

    Beswick, J.; Gabelli, A.; Ioannides, S.; Tripp, J.H.; Voskamp, A.P.

    1999-07-01

    The most widely used steel grade for rolling bearings is based on a steel composition first used almost a hundred years ago, the so-called 1C-1.5Cr steel. This steel is used either in a selective surface induction hardened conditions or in a through hardened heat treated condition, both yielding exceptional structural and contact fatigue properties. The Lundberg and Palmgren rolling bearing life prediction model, published in 1947, was the first analytical approach to bearing performance prediction, subsequently becoming a widely accepted basis for rolling bearing life calculations. At that time the fatigue life of rolling bearings was dominated by the classical sub-surface initiated failure mode. This mode results from the accumulation of micro-plastic strain at the depth of maximum Hertzian stress and is accelerated by the stress concentrations occurring at the micro internal defects. In common with all fatigue processes, rolling bearing failure is a statistical process: the failures of bearings with high inclusion content tested at high stress levels belong to the well-known family of Weibull distributions. Steady improvements in bearing steel cleanliness due, amongst other things, to the introduction of secondary metallurgy steel making techniques, have resulted in a significantly increased rolling bearing life and load carrying capacity. In recognition of this, in 1985 Ioannides and Harris introduced a new fatigue life model for rolling bearings, comprising a more widely applicable approach to the modeling of bearing life based on the relevant failure mode. Subsequently this has been extended to include effects of hardness and of micro-inclusion distributions in state-of-the-art clean bearing steel.

  1. Heavy reflector experiments in the IPEN/MB-01 reactor: Stainless steel, carbon steel and nickel

    SciTech Connect (OSTI)

    Santos, Adimir dos; Andrade e Silva, Graciete Simoes de; Jerez, Rogerio; Liambos Mura, Luis Felipe; Fuga, Rinaldo

    2013-05-06

    New experiments devoted to the measurements of physical parameters of a light water core surrounded by a heavy reflector were performed in the IPEN/MB-01 research reactor facility. These experiments comprise three sets of heavy reflector (SS-304, Carbon Steel, and Nickel) in a form of laminates around 3 mm thick. Each set was introduced individually in the west face of the core of the IPEN/MB-01 reactor. The aim here is to provide high quality experimental data for the interpretation and validation of the SS-304 heavy reflector calculation methods. The experiments of Carbon Steel, which is composed mainly of iron, and Nickel were performed to provide a consistent and an interpretative check for the SS-304 reflector experiment. The experimental results comprise critical control bank positions, temperatures and reactivities as a function of the number of the plates. Particularly to the case of Nickel, the experimental data are unique of its kind. The theoretical analysis was performed by MCNP-5 with the nuclear data library ENDF/B-VII.0. It was shown that this nuclear data library has a very good performance up to thirteen plates and overestimates the reactivity for higher number of plates independently of the type of the reflector.

  2. Active wear and failure mechanisms of TiN-coated high speed steel and TiN-coated cemented carbide tools when machining powder metallurgically made stainless steels

    SciTech Connect (OSTI)

    Jiang, L.; Haenninen, H.; Paro, J.; Kauppinen, V.

    1996-09-01

    In this study, active wear and failure mechanisms of both TiN-coated high speed steel and TiN-coated cemented carbide tools when machining stainless steels made by powder metallurgy in low and high cutting speed ranges, respectively, have been investigated. Abrasive wear mechanisms, fatigue-induced failure, and adhesive and diffusion wear mechanisms mainly affected the tool life of TiN-coated high speed steel tools at cutting speeds below 35 m/min, between 35 and 45 m/min, and over 45 m/min, respectively. Additionally, fatigue-induced failure was active at cutting speeds over 45 m/min in the low cutting speed range when machining powder metallurgically made duplex stainless steel 2205 and austenitic stainless steel 316L. In the high cutting speed range, from 100 to 250 m/min, fatigue-induced failure together with diffusion wear mechanism, affected the tool life of TiN-coated cemented carbide tools when machining both 316L and 2205 stainless steels. It was noticed that the tool life of TiN-coated high speed steel tools used in the low cutting speed range when machining 2205 steel was longer than that when machining 316L steel, whereas the tool life of TiN-coated cemented carbide tools used in the high cutting speed range when machining 316L steel was longer than that when machining 2205 steel.

  3. Steel catenary risers for semisubmersible based floating production systems

    SciTech Connect (OSTI)

    Hays, P.R.

    1996-12-31

    The DeepStar production riser committee has investigated the feasibility of using steel catenary risers (SCRs) in water depths of 3,000--6,000 ft. Using Sonat`s George Richardson as the base semisubmersible, DeepStar has examined both extreme event response and fatigue life of an SCR made of pipe sections welded end-to-end. Concepts using alternative materials were investigated. This included steel, steel with titanium and titanium catenary risers. The pros and cons of frequency domain versus time domain analysis were investigated with a commercially available analysis package. A second study outlined a definitive analysis procedure which optimized the analysis time requirements. Analyses showed that steel catenary risers are feasible for semisubmersible based floating production systems. For the DeepStar Gulf of Mexico design criteria, alternative materials are not required. The greatest fatigue damage occurs in the touchdown region of the riser. Mild sea states contribute most to fatigue damage near riser touchdown. Wave drift and wind forces provide a significant contribution to touchdown area fatigue damage. Estimated fatigue lives are unacceptable. Although the rotations of the upper end of the riser are large relative to an SCR attached to a TLP, the rotation required can probably be accommodated with existing technology. For the case of product export, steel catenary risers provide very cost effective and readily installable deep water riser alternatives.

  4. Sulfide stress cracking resistance of low-alloy nickel steels

    SciTech Connect (OSTI)

    Yoshino, Y.; Minozaki, Y.

    1986-04-01

    The sulfide stress cracking (SSC) resistance of Ni-containing low-alloy steels was studied using laboratory and commercial heats over the range of 600 to 800 MPa yield strength (700 to 900 MPa tensile strength). The results were interpreted with regard to observations by metallurgical and electrochemical analyses. In steel containing 1% Cr and 0.5% Mo, the SSC resistance is not affected by up to 2% Ni. A commercial steel with 3.7% Ni-1.8% Cr-0.4% Mo exhibits the same K/sub ISSC/ and Ni-free steels. The cracking resistance begins to deteriorate when fresh martensite exceeds 5 vol%. The lattice diffusion of hydrogen is decreased by the additional Ni, whereas the subsurface hydrogen concentration remains constant in 5% NaCl solution and decreases in NACE TM-01-77 solution up to 5% Ni. Thus, nickel has no harmful effect in terms of hydrogen absorption and diffusion. However, nickel enhances the formation of surface trenches in acidified solutions. This is intensified in the anodically polarized slow extension rate test, which results in loss in elongation. Consequently, nickel per se has no effect on the propagation of SSC unless its addition results in the formation of fresh martensite. However, it may or may not enhance crack initiation, depending on a specific combination of solution and steel, by forming surface trenches that subsequently trigger hydrogen cracking from their bottom.

  5. 2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS

    SciTech Connect (OSTI)

    Morgan, M.

    2013-01-31

    This report summarizes the research and development accomplishments during FY12 for the tritium effects on materials program. The tritium effects on materials program is designed to measure the long-term effects of tritium and its radioactive decay product, helium-3, on the structural properties of forged stainless steels which are used as the materials of construction for tritium reservoirs. The FY12 R&D accomplishments include: (1) Fabricated and Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for Future Aging Studies; (2) Developed an Experimental Plan for Measuring Cracking Thresholds of Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3) Calculated Sample Tritium Contents For Laboratory Inventory Requirements and Environmental Release Estimates; (4) Published report on Cracking Thresholds and Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless Steels; and, (5) Published report on The Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture Toughness Properties of Stainless Steels. These accomplishments are highlighted here and references given to additional reports for more detailed information.

  6. Advanced steel reheat furnaces: Research and development. Final report

    SciTech Connect (OSTI)

    Nguyen, Q.; Koppang, R.; Maly, P.; Moyeda, D.; Li, X.

    1999-01-14

    The purpose of this report is to present the results of two phases of a three-phase project to develop and evaluate an Advanced Steel Reheat Furnace (SSRF) concept which incorporates two proven and commercialized technologies, oxy-fuel enriched air (OEA) combustion and gas reburning (GR). The combined technologies aim to improve furnace productivity with higher flame radiant heat transfer in the heating zones of a steel reheat furnace while controlling potentially higher NOx emissions from these zones. The project was conducted under a contract sponsored by the Department of Energy (DOE). Specifically, this report summarizes the results of a modeling study and an experimental study to define and evaluate the issues which affect the integration and performance of the combined technologies. Section 2.0 of the report describes the technical approach uses in the development and evaluation of the advanced steel reheat furnace. Section 3.0 presents results of the modeling study applied to a model steel furnace. Experimental validation of the modeling results obtained from EER`s Fuel Evaluation Facility (FEF) pilot-scale furnace discussed in Section 4.0. Section 5.0 provides an economic evaluation on the cost effectiveness of the advanced reheat furnace concept. Section 6.0 concludes the report with recommendations on the applicability of the combined technologies of steel reheat furnaces.

  7. U.S. Department of Energy Awards a Contract to USA Repository Services for Management and Operating Contractor Support for the Yucca Mountain Project

    Broader source: Energy.gov [DOE]

    Washington, D.C. -- The U.S. Department of Energy (DOE) today awarded a $2.5 billion management and operating (M&O) contract to USA Repository Services (USA-RS), a wholly-owned subsidiary of...

  8. Woodgrain defect on tinned steel Flandres foil

    SciTech Connect (OSTI)

    Sarkis, A.M.; Robin, A. Souza, V.A.; Suzuki, P.A.

    2011-06-15

    Tin electrocoated steel strip, also referred to as Flandres foil, is largely used for manufacturing food containers. Tinplates must have good corrosion resistance, workability, weldability, as well as a bright appearance. The woodgrain defect, a not yet fully understood defect that occurs on tinplates and accounts for their high scrap rate, consists of alternate bands of bright/dull reflectivity and resembles longitudinally cut wood. Observations of the woodgrain defect by scanning electron microscopy showed that the molten tin spreads irregularly during both the melting and solidification stages. X-ray diffraction analyses showed that the metallic tin tended to crystallize in the (200) direction for coupons with and without the woodgrain defect. Nevertheless, the preferential orientation degree decreased for coupons with the woodgrain defect. The rocking curves, also known as omega-scan, showed that the tin grains were uniformly aligned parallel to the strip surface for coupons with no defects, whereas for tinplates with woodgrain, the tin grains were not uniformly oriented, probably due to the misalignment of the grains in relation to the surface. - Graphical abstract: The woodgrain defect occurs on Flandres tinplates and consists in the formation of alternate bands of different reflectivity (bright/dull), which looks like longitudinally cut wood. X-ray diffractometry showed that the typical bright surface of tinplate is associated to the uniform distribution of aligned (200) Sn grains, whereas in tinplate with the woodgrain defect, the Sn grains were not uniformly oriented, due to the misalignment of the (200) Sn planes relative to the surface. Research highlights: {yields} The bright surface of tinplate is associated to the uniform distribution of aligned (200) Sn grains. {yields} The woodgrain defect on tinplate consists in alternate bands of bright/dull appearance. {yields} In tinplate with the woodgrain defect, the Sn grains were not uniformly oriented, due

  9. LG Electronics U.S.A. v. DOE, Stipulation of Voluntary Dismissal

    Broader source: Energy.gov [DOE]

    LG Electronics U.S.A., Inc. v. U.S. Dept. of Energy, Civil Action Number 1:09-cv-02297-JDB - LG voluntarily dismissed its claims against the DOE and agrees to remove the ENERGY STAR labels from various refrigerator-freezers.

  10. Bright X-ray Stainless Steel K-shell Source Development at the...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Bright X-ray Stainless Steel K-shell Source Development at the National Ignition Facility Citation Details In-Document Search Title: Bright X-ray Stainless Steel K...

  11. ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting Operations

    Office of Energy Efficiency and Renewable Energy (EERE)

    In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly

  12. DOE - Office of Legacy Management -- U S Steel Co National Tube...

    Office of Legacy Management (LM)

    Steel Co National Tube Div Christy Park Works - PA 35 FUSRAP Considered Sites Site: U. S. STEEL CO., NATIONAL TUBE DIV., CHRISTY PARK WORKS (PA.35) Eliminated from further ...

  13. Effect of stainless steel weld overlay cladding on the structural integrity of flawed steel plates in bending. Series 1

    SciTech Connect (OSTI)

    Corwin, W.R.; Robinson, G.C.; Nanstad, R.K.; Merkle, J.G.; Berggren, R.G.; Goodwin, G.M.; Swain, R.L.; Owings, T.D.

    1985-04-01

    The Heavy-Section Steel Technology (HSST) Stainless Steel Cladding Evaluations were undertaken to study the interaction of stainless steel cladding on the inside surface of a reactor pressure vessel with flaws initiating and propagating in base metal. With the more recent focus of safety studies on overcooling type transients, for which the behavior of small flaws is important, stainless steel cladding may have a key role in controlling the propagation and/or arrest of propagating flaws. A complicating factor in understanding the role of stainless steel cladding in this setting is the scarcity of data on its fracture toughness as a function of radiation dose and the fabrication process. The initial phase of the HSST evaluations addresses this question by testing the response of 51-mm-thick flawed plates clad with single-wire, submerged-arc weld overlays of different toughness levels. The tests completed indicate that cladding of moderate toughness had a limited ability to enhance the structural arrest toughness of a beam in bending. The specimen design and fabrication techniques employed for this first completed series of tests resulted in flaw and specimen configurations that prevented adequate control of the stress state at pop-in of the hydrogen-charged electron-beam welds. As a result, analyses of the tests by two approximate techniques and by the ORMGEN-ADINA-ORVIRT finite-element programs were not completely consistent.

  14. Dry film lubricant for difficult drawing applications of galvanized steels

    SciTech Connect (OSTI)

    Wakano, Shigeru; Sakane, Tadashi; Hirose, Yozou . Iron and Steel Research Lab.); Matsuda, Naomichi; Onodera, Show . Oleo Chemicals Research Lab.)

    1993-09-01

    Press formability of metals sheets is considered to depend on surface lubricity, press forming condition and mechanical properties of the metal sheets. In Zn and Zn-alloy plated steel sheets with heavy coatings, surface lubricity is the most important property. This is because the low melting temperature and low hardness of the plated layer occasionally cause microscopic galling through deformation at the beads of dies which may, consequently, result in sheet breakage. Press formability of Zn and Zn-alloy plated steel sheets with heavy coating weight has been improved by the use of a high viscosity lubricant oil and a Fe-Zn alloy flash-plating on galvannealed steel. However, the use of high viscosity lubricant oils created problems with oil staining and removal before painting. An alloy flash plating results in appreciably higher production costs. This article describes the characteristics of a thin film dry lubricant, Super S-coat, as a new countermeasure, which will overcome these problems.

  15. Friction Stir Welding of ODS and RAFM Steels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; Tan, Lizhen; Sokolov, Mikhail A.

    2015-09-14

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this paper, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW onmore » grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Finally, post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.« less

  16. Practical handbook of stainless steels and nickel alloys

    SciTech Connect (OSTI)

    Lamb, S.

    1999-07-01

    This new handbook is an up-to-date technical guide to the grades, properties, fabrication characteristics, and applications of stainless steels and nickel alloys. The individual chapters were written by industry experts and focus on the key properties and alloy characteristics important in material selection and specification as well as the practical factors that influence the development and application of these materials. The contents include: alloy grades and their welding and fabrication characteristics and their application; monel metal; iron-based and nickel-based alloys; ferritic, austenitic, superaustenitic, and martensitic stainless steels; hastelloys; alloys 20, G, and 825; AOD and new refining technology; duplex stainless steels; 6-Mo alloys; corrosion-resistant castings; specification cross-reference tables; trade names; hardness conversions; list of common abbreviations.

  17. Friction Stir Welding of ODS and RAFM Steels

    SciTech Connect (OSTI)

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; Tan, Lizhen; Sokolov, Mikhail A.

    2015-09-14

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this paper, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW on grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Finally, post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.

  18. Cyclic corrosion crack resistance curves of certain vessel steels

    SciTech Connect (OSTI)

    Panasyuk, V.V.; Fedorova, V.A.; Pusyak, S.A.; Ratych, L.V.; Timofeev, L.V.; Zuezdin, Y.I.

    1985-11-01

    Results are presented of investigations of 15Kh2MFA and 15Kh2NMFA steels. In the first stage of the investigations, the cyclic corrosion crack resistance characteristics were determined with limiting values of the various factors: loading frequency, loading cycle stress ratio, temperature and length of service. An intense flow of ionizing radiation may markedly change the mechanical properties in 30-40 years; this acts on the reactor vessel. The experimental data for strength categories KP-45 and KP-90 of both vessel steels lies in a quite narrow band of spread, which provides a basis for representing it by a single generalized curve, presented here. The result of cyclic corrosion crack resistance tests of disk specimens of 15Kh2MFA and 15Kh2NMFA vessel steels in boric acid controlled reactor water solution in distilled water with the addition of KOH to pH 8 was established.

  19. Energy and materials flows in the iron and steel industry

    SciTech Connect (OSTI)

    Sparrow, F.T.

    1983-06-01

    Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

  20. Metallic sheathing for protection of steel in seawater

    SciTech Connect (OSTI)

    Kirk, W.W.

    1987-09-01

    A review of 37 years of experience with metallic sheathing to protect the splash and tidal zones of structural steel in seawater is presented. Variations in the corrosivity of the environment from zone to zone on a vertical structure and the interdependence among them are discussed. Corrosion-resistant alloys for sheathing include Monel (NiCu) Alloy 400, copper-nickel alloys, and stainless steel. The advantages and disadvantages of these noble alloys are compared with those of other protective materials such as paint coatings, concrete, polymers, and steel itself. Adequate protection of hot risers is critical and quite easily provided through proper design and sheathing attachment. The use of 90:10 copper-nickel Alloy C70600 is gaining visibility with progressive technology to provide biofouling control as well as corrosion protection.

  1. Electrical resistance tomography from measurements inside a steel cased borehole

    DOE Patents [OSTI]

    Daily, William D.; Schenkel, Clifford; Ramirez, Abelardo L.

    2000-01-01

    Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.

  2. Wear-Resistant NanoCompositeStainless Steel Coatings and Bits

    Broader source: Energy.gov [DOE]

    Project objective: To develop ultra-hard and wear resistant nanocompositestainless steel coatings and bulk components for geothermal drilling applications.

  3. Manufacturing Energy and Carbon Footprint- Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input

  4. Bandwidth Study U.S. Iron and Steel Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iron and Steel Manufacturing Bandwidth Study U.S. Iron and Steel Manufacturing Bandwidth Study U.S. Iron and Steel Manufacturing Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel manufacturing. The study relies on multiple sources to estimate the energy used in

  5. Effect of neutron irradiation on mechanical properties of ferritic steels

    SciTech Connect (OSTI)

    Kass, S.B.; Murty, K.L.

    1995-12-31

    Effect of neutron radiation exposure was investigated in various ferritic steels with the main emphasis being the effects of thermal neutrons on radiation hardening. Pure iron of varied grain sizes was also used for characterizing the grain size effects on the source hardening before and after neutron irradiation. While many steels are considered in the overall study, the results on 1020, A516 and A588 steels are emphasized. Radiation hardening due to fast neutrons was seen to be sensitive to the composition of the steels with A354 being the least resistant and A490 the least sensitive. Majority of the radiation hardening stems from friction hardening, and source hardening term decreased with exposure to neutron radiation apparently due to the interaction of interstitial impurities with radiation produced defects. Inclusion of thermal neutrons along with fast resulted in further decrease in the source hardening with a slight increase in the friction hardening which revealed a critical grain size below which exposure to total (fast and thermal) neutron spectrum resulted in a slight reduction in the yield stress compared to the exposure to only fast neutrons. This is the first time such a grain size effect is reported and this is shown to be consistent with known radiation effects on friction and source hardening terms along with the observation that low energy neutrons have a nonnegligible effect on the mechanical properties of steels. In ferritic steels, however, despite their small grain size, exposure to total neutron spectrum yielded higher strengths than exposure to only fast neutrons. This behavior is consistent with the fact that the source hardening is small in these alloys and radiation effect is due only to friction stress.

  6. Surface cracking in resistance seam welding of coated steels

    SciTech Connect (OSTI)

    Adonyi, Y.; Kimchi, M.

    1994-12-31

    In this experimental work, the focus was on the understanding the electrode-wheel/coated steel surface phenomena by building operational lobes and by correlating the weld quality with static-and dynamic-contact-resistance variation during welding. Conventional AC, DC, and electrode-wire resistance-seam weldability of printed zinc-coated and hot-dipped tin-coated steel was performed in this work, as compared with traditional lead-tin (terne) coating used as reference material. Variables included steel substrate type, welding equipment type, electrode-wheel cleaning practice, and electrode-wire geometry. Optic and electron microscopy were used for the evaluation of specimens extracted from longitudinal cross-sections of representative welds. The size and morphology of surface cracks was characterized and correlated with variations in the above-mentioned parameters. It was found that the tin-coated (unpainted) steel sheet had a superior all-together performance to the zinc-coated steel and terne-coated steel, both in terms of wider weldability lobes and lesser surface cracking. The extent of surface cracking was greatly reduced by using the electrode-wire seam welding process using a longitudinally grooved wire profile, which also widened the corresponding weldability lobes. It was also found that the extent of cracking depended on the electrode knurl geometry, substrate type, and the presence of conductive paint applied on top of the metallic coating. An attempt was made to characterize the specific mechanisms governing the LME phenomenon for the lead-, zinc and tin-based coating systems and to assess the potential for crack propagation in the welds. The dynamic contact resistance was found to be a good measure of the welding process stability and an indicator of defect formation. It was found that the ratio between the static and dynamic contact resistances of the tin-coated sheet was considerably lower than similar ratios for bare and zinc-coated sheet.

  7. Reliability-based condition assessment of steel containment and liners

    SciTech Connect (OSTI)

    Ellingwood, B.; Bhattacharya, B.; Zheng, R.

    1996-11-01

    Steel containments and liners in nuclear power plants may be exposed to aggressive environments that may cause their strength and stiffness to decrease during the plant service life. Among the factors recognized as having the potential to cause structural deterioration are uniform, pitting or crevice corrosion; fatigue, including crack initiation and propagation to fracture; elevated temperature; and irradiation. The evaluation of steel containments and liners for continued service must provide assurance that they are able to withstand future extreme loads during the service period with a level of reliability that is sufficient for public safety. Rational methodologies to provide such assurances can be developed using modern structural reliability analysis principles that take uncertainties in loading, strength, and degradation resulting from environmental factors into account. The research described in this report is in support of the Steel Containments and Liners Program being conducted for the US Nuclear Regulatory Commission by the Oak Ridge National Laboratory. The research demonstrates the feasibility of using reliability analysis as a tool for performing condition assessments and service life predictions of steel containments and liners. Mathematical models that describe time-dependent changes in steel due to aggressive environmental factors are identified, and statistical data supporting the use of these models in time-dependent reliability analysis are summarized. The analysis of steel containment fragility is described, and simple illustrations of the impact on reliability of structural degradation are provided. The role of nondestructive evaluation in time-dependent reliability analysis, both in terms of defect detection and sizing, is examined. A Markov model provides a tool for accounting for time-dependent changes in damage condition of a structural component or system. 151 refs.

  8. Mr. Frank Archer President Niagara Cold Drawn Steel Corporation

    Office of Legacy Management (LM)

    Department of Energy Washington, DC 20585 FEB 2 1 1991 ' i-. 1,; ' -, f ' + \ 1 : , .J p- * c - Mr. Frank Archer President Niagara Cold Drawn Steel Corporation 110 Hopkins Street P.O. Box 399 Buffalo, NY 14240 Dear Mr. Archer: I have executed the consent forms for the performance of a radiological survey of the Niagara Cold Drawn Steel Corporation's property under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the U.S. Department of Energy (DOE). I enclose a copy of the consent

  9. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect (OSTI)

    Hovanski, Yuri; Santella, M. L.; Grant, Glenn J.

    2009-12-28

    Friction stir spot welding was used to join two advanced high-strength steels using polycrystalline cubic boron nitride tooling. Numerous tool designs were employed to study the influence of tool geometry on weld joints produced in both DP780 and a hot-stamp boron steel. Tool designs included conventional, concave shouldered pin tools with several pin configurations; a number of shoulderless designs; and a convex, scrolled shoulder tool. Weld quality was assessed based on lap shear strength, microstructure, microhardness, and bonded area. Mechanical properties were functionally related to bonded area and joint microstructure, demonstrating the necessity to characterize processing windows based on tool geometry.

  10. Phase transformations in steels: Processing, microstructure, and performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gibbs, Paul J.

    2014-04-03

    In this study, contemporary steel research is revealing new processing avenues to tailor microstructure and properties that, until recently, were only imaginable. Much of the technological versatility facilitating this development is provided by the understanding and utilization of the complex phase transformation sequences available in ferrous alloys. Today we have the opportunity to explore the diverse phenomena displayed by steels with specialized analytical and experimental tools. Advances in multi-scale characterization techniques provide a fresh perspective into microstructural relationships at the macro- and micro-scale, enabling a fundamental understanding of the role of phase transformations during processing and subsequent deformation.

  11. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2005 HYDROGEN EMBRITTLEMENT OF PIPELINE STEELS: CAUSES AND REMEDIATION P. Sofronis, I. Robertson, D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline R&D Project Review Meeting Oak Ridge National Laboratory, Oak Ridge TN January 5-6, 2005 2 January 2005 Hydrogen Embrittlement: Long History M.L. Cailletet (1868) in Comptes Rendus, 68, 847-850 W. H. Johnson (1875) On some remarkable changes produced in iron and steels by the action of hydrogen acids. Proc. R. Soc.

  12. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    SciTech Connect (OSTI)

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  13. Creep of A508/533 Pressure Vessel Steel

    SciTech Connect (OSTI)

    Richard Wright

    2014-08-01

    ABSTRACT Evaluation of potential Reactor Pressure Vessel (RPV) steels has been carried out as part of the pre-conceptual Very High Temperature Reactor (VHTR) design studies. These design studies have generally focused on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Initially, three candidate materials were identified by this process: conventional light water reactor (LWR) RPV steels A508 and A533, 2¼Cr-1Mo in the annealed condition, and Grade 91 steel. The low strength of 2¼Cr-1Mo at elevated temperature has eliminated this steel from serious consideration as the VHTR RPV candidate material. Discussions with the very few vendors that can potentially produce large forgings for nuclear pressure vessels indicate a strong preference for conventional LWR steels. This preference is based in part on extensive experience with forging these steels for nuclear components. It is also based on the inability to cast large ingots of the Grade 91 steel due to segregation during ingot solidification, thus restricting the possible mass of forging components and increasing the amount of welding required for completion of the RPV. Grade 91 steel is also prone to weld cracking and must be post-weld heat treated to ensure adequate high-temperature strength. There are also questions about the ability to produce, and very importantly, verify the through thickness properties of thick sections of Grade 91 material. The availability of large components, ease of fabrication, and nuclear service experience with the A508 and A533 steels strongly favor their use in the RPV for the VHTR. Lowering the gas outlet temperature for the VHTR to 750°C from 950 to 1000°C, proposed in early concept studies, further strengthens the justification for this material selection. This steel is allowed in the ASME Boiler and Pressure Vessel Code for nuclear service up to 371°C (700°F); certain excursions above that temperature are

  14. Final Scientific Report - "Novel Steels for High Temperature Carburizing"

    SciTech Connect (OSTI)

    McKimpson, Marvin G.; Liu, Tianjun; Maniruzzaman, Md

    2012-07-27

    This program was undertaken to develop a microalloy-modified grade of standard carburizing steel that can successfully exploit the high temperature carburizing capabilities of current commercial low pressure (i.e. 'vacuum') carburizing systems. Such steels can lower the amount of energy required for commercial carburizing operations by reducing the time required for deep-case carburizing operations. The specific technical objective of the work was to demonstrate a carburizing steel composition capable of maintaining a prior austenite grain size no larger than ASTM grain size number 5 after exposure to simulated carburizing conditions of 1050 C for 8 hr. Such thermal exposure should be adequate for producing carburized case depths up to about 2 mm. Such carburizing steels are expected to be attractive for use across a wide range of industries, including the petroleum, chemical, forest products, automotive, mining and industrial equipment industries. They have potential for reducing energy usage during low pressure carburizing by more than 25%, as well as reducing cycle times and process costs substantially. They also have potential for reducing greenhouse gas emissions from existing low pressure carburizing furnaces by more than 25%. High temperature carburizing can be done in most modern low pressure carburizing systems with no additional capital investment. Accordingly, implementing this technology on carburizing furnaces will provide a return on investment significantly greater than 10%. If disseminated throughout the domestic carburizing community, the technology has potential for saving on the order of 23 to 34 trillion BTU/year in industrial energy usage. Under the program, two compositions of microalloyed, coarsening-resistant low alloy carburizing steels were developed, produced and evaluated. After vacuum annealing at 1050oC for 8 hrs and high pressure gas quenching, both steels exhibited a prior austenite ASTM grain size number of 5.0 or finer. For

  15. Low Temperature Surface Carburization of Stainless Steels

    SciTech Connect (OSTI)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  16. Microalloying of steels. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The bibliography contains citations concerning production techniques, performance, and applications of microalloyed steels. Various microalloying materials are examined including niobium, vanadium, titanium, niobium/vanadium, aluminum, boron, molybdenum, and zirconium. Microalloying effects on the mechanical properties, corrosion resistance, metallurgical properties, and hot plasticity of steels are presented. Applications of microalloyed steels in the construction steel industry, physical properties of microalloyed steels, low-temperature service behavior, weldability, formability, and resistance to corrosion are discussed. (Contains a minimum of 190 citations and includes a subject term index and title list.)

  17. Microalloying of steels. (Latest citations from the Compendex database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The bibliography contains citations concerning production techniques, performance, and applications of microalloyed steels. Various microalloying materials are examined including niobium, vanadium, titanium, niobium/vanadium, aluminum, boron, molybdenum, and zirconium. Microalloying effects on the mechanical properties, corrosion resistance, metallurgical properties, and hot plasticity of steels are presented. Applications of microalloyed steels in the construction steel industry, physical properties of microalloyed steels, low-temperature service behavior, weldability, formability, and resistance to corrosion are discussed. (Contains a minimum of 186 citations and includes a subject term index and title list.)

  18. Microalloying of steels. (Latest citations from the EI compendex*plus database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The bibliography contains citations concerning production techniques, performance, and applications of microalloyed steels. Various microalloying materials are examined including niobium, vanadium, titanium, niobium/vanadium, aluminum, boron, molybdenum, and zirconium. Microalloying effects on the mechanical properties, corrosion resistance, metallurgical properties, and hot plasticity of steels are presented. Applications of microalloyed steels in the construction steel industry, physical properties of microalloyed steels, low-temperature service behavior, weldability, formability, and resistance to corrosion are discussed. (Contains a minimum of 193 citations and includes a subject term index and title list.)

  19. Microalloying of steels. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect (OSTI)

    1996-03-01

    The bibliography contains citations concerning production techniques, performance, and applications of microalloyed steels. Various microalloying materials are examined including niobium, vanadium, titanium, niobium/vanadium, aluminum, boron, molybdenum, and zirconium. Microalloying effects on the mechanical properties, corrosion resistance, metallurgical properties, and hot plasticity of steels are presented. Applications of microalloyed steels in the construction steel industry, physical properties of microalloyed steels, low-temperature service behavior, weldability, formability, and resistance to corrosion are discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. DEVELOPMENT OF ELECTROMAGNETIC TECHNIQUES FOR HYDROGEN CONTENT ASSESSMENT IN COATED LINEPIPE STEEL

    SciTech Connect (OSTI)

    Lasseigne-Jackson, A. N.; Anton, J.; Jackson, J. E.; Olson, D. L.; Mishra, B.

    2008-02-28

    With the introduction of new higher strength steels operating at higher pressure, the need for characterization of hydrogen content in high strength steel pipelines is timely for the pipeline industry. The higher-strength steel pipelines have higher susceptibility to hydrogen damage. Through the use of low-frequency induced current impedance measurements, a new non-contact sensor has been developed for real-time determination of diffusible hydrogen content in coated pipeline steel. A measurement scheme to separate variables associated with pipelines is discussed. This electromagnetic technique allows for a rapid, non-destructive assessment of hydrogen accumulation in coated steel line pipe and thus an evaluation of the pipeline integrity.

  1. Field weldability of high strength pipeline steels: Final report

    SciTech Connect (OSTI)

    Noble, D.N.; Pargeter, R.J.

    1988-03-04

    This document reports on small scale weldability tests on two X80 grade steels and presents mechanical property data on full-size circumferential girth welds. This publication is available from the American Gas Association Order Processing Department, 1515 Wilson Boulevard, Arlington, Virginia 22209-2470 (703/841-8558). 6 refs. (JL)

  2. Mechanical properties of four RSP stainless steel alloys

    SciTech Connect (OSTI)

    Korth, G.E.

    1996-12-01

    Four austenitic stainless steel alloys were processed by consolidating rapidly solidified gas atomized power using hot extrusion. These materials were characterized by measuring grain growth, hardness, tensile properties from 24 to 800{degrees}C, and creep-rupture at 600{degrees}C.

  3. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) hpwgw_embrittlementsteels_sofronis.pdf (675.35 KB) More Documents & Publications Webinar: I2CNER: An International Collaboration to Enable a Carbon-Neutral Energy Economy Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation Hydrogen permeability and Integrity of hydrogen transfer pipelines

  4. Oscillation and chaos in pitting corrosion of steel

    SciTech Connect (OSTI)

    Hernandez, M.A.; Rodriguez, F.J.; Garcia, E.; Boerio, F.J.

    1999-11-01

    The potential and current oscillations during pitting corrosion of steel in NaCl solution were studied. Detailed analysis using numerical diagnostics developed to characterize complex time series clearly shows that the irregularity in these time series corresponds to deterministic chaos, rather than to random noise. The chaotic oscillations were characterized by power spectral densities, phase space and Lyapunov exponents.

  5. Electrical resistance tomography using steel cased boreholes as long electrodes

    SciTech Connect (OSTI)

    Daily, W; Newmark, R L; Ramirez, A

    1999-07-20

    Electrical resistance tomography (ERT) using multiple electrodes installed in boreholes has been shown to be useful for both site characterization and process monitoring. In some cases, however, installing multiple downhole electrodes is too costly (e.g., deep targets) or risky (e.g., contaminated sites). For these cases we have examined the possibility of using the steel casings of existing boreholes as electrodes. Several possibilities can be considered. The first case we investigated uses an array of steel casings as electrodes. This results in very few data and thus requires additional constraints to limit the domain of possible inverse solutions. Simulations indicate that the spatial resolution and sensitivity are understandably low but it is possible to coarsely map the lateral extent of subsurface processes such as steam floods. The second case uses an array of traditional point borehole electrodes combined with long-conductor electrodes (steel casings). Although this arrangement provides more data, in many cases it results in poor reconstructions of test targets. Results indicate that this method may hold promise for low resolution imaging where steel casings can be used as electrodes but the merits depend strongly on details of each application. Field tests using these configurations are currently being conducted.

  6. Electrical resistance tomography using steel cased boreholes as electrodes

    SciTech Connect (OSTI)

    Newmark, R L; Daily, W; Ramirez, A

    1999-03-22

    Electrical resistance tomography (ERT) using multiple electrodes installed in boreholes has been shown to be useful for both site characterization and process monitoring. In some cases, however, installing multiple downhole electrodes is too costly (e.g., deep targets) or risky (e.g., contaminated sites). For these cases we have examined the possibility of using the steel casings of existing boreholes as electrodes. The first case we investigated used an array of steel casings as electrodes. This results in very few data and thus requires additional constraints to limit the domain of possible inverse solutions. Simulations indicate that the spatial resolution and sensitivity are understandably low but it is possible to coarsely map the lateral extent of subsurface processes such as steam floods. A hybrid case uses traditional point electrode arrays combined with long-conductor electrodes (steel casings). Although this arrangement provides more data, in many cases it results in poor reconstructions of test targets. Results indicate that this method may hold promise for low resolution imaging where steel casings can be used as electrodes.

  7. Carbon distribution in bainitic steel subjected to deformation

    SciTech Connect (OSTI)

    Ivanov, Yu. F.; Nikitina, E. N. Gromov, V. E.

    2015-10-27

    Analysis of the formation and evolution of carbide phase in medium carbon steel with a bainitic structure during compressive deformation was performed by means of transmission electron diffraction microscopy. Qualitative transformations in carbide phase medium size particles, their density and volume concentration depended on the degree of deformation.

  8. Electrical resistance tomography using steel cased boreholes as electrodes

    DOE Patents [OSTI]

    Daily, W.D.; Ramirez, A.L.

    1999-06-22

    An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.

  9. Battery and fuel cell electrodes containing stainless steel charging additive

    DOE Patents [OSTI]

    Zuckerbrod, David; Gibney, Ann

    1984-01-01

    An electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer comprises a hydrophilic composite which includes: (i) carbon particles; (ii) stainless steel particles; (iii) a nonwetting agent; and (iv) a catalyst, where at least one current collector contacts said composite.

  10. Electrical resistance tomography using steel cased boreholes as electrodes

    DOE Patents [OSTI]

    Daily, William D.; Ramirez, Abelardo L.

    1999-01-01

    An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.

  11. Factory Brings Solar Energy Jobs to Former Steel Town

    Broader source: Energy.gov [DOE]

    Fairless Hills, like many Pennsylvania towns, has a long history with manufacturing. It is home to the Keystone Industrial Port Complex, a manufacturing and industrial site that was once the location of a U.S. Steel plant. So when AE Polysilicon was looking for a site suitable for its polycrystalline silicon plant, the Port Complex seemed like a natural choice.

  12. Superplastic Forming of Duplex Stainless Steel for Aerospace Part

    SciTech Connect (OSTI)

    Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo

    2011-08-22

    In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 deg. C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.

  13. Study on tempering behaviour of AISI 410 stainless steel

    SciTech Connect (OSTI)

    Chakraborty, Gopa; Das, C.R.; Albert, S.K.; Bhaduri, A.K.; Thomas Paul, V.; Panneerselvam, G.; Dasgupta, Arup

    2015-02-15

    Martensitic stainless steels find extensive applications due to their optimum combination of strength, hardness and wear-resistance in tempered condition. However, this class of steels is susceptible to embrittlement during tempering if it is carried out in a specific temperature range resulting in significant reduction in toughness. Embrittlement of as-normalised AISI 410 martensitic stainless steel, subjected to tempering treatment in the temperature range of 673–923 K was studied using Charpy impact tests followed by metallurgical investigations using field emission scanning electron and transmission electron microscopes. Carbides precipitated during tempering were extracted by electrochemical dissolution of the matrix and identified by X-ray diffraction. Studies indicated that temper embrittlement is highest when the steel is tempered at 823 K. Mostly iron rich carbides are present in the steel subjected to tempering at low temperatures of around 723 K, whereas chromium rich carbides (M{sub 23}C{sub 6}) dominate precipitation at high temperature tempering. The range 773–823 K is the transition temperature range for the precipitates, with both Fe{sub 2}C and M{sub 23}C{sub 6} types of carbides coexisting in the material. The nucleation of Fe{sub 2}C within the martensite lath, during low temperature tempering, has a definite role in the embrittlement of this steel. Embrittlement is not observed at high temperature tempering because of precipitation of M{sub 23}C{sub 6} carbides, instead of Fe{sub 2}C, preferentially along the lath and prior austenite boundaries. Segregation of S and P, which is widely reported as one of the causes for temper embrittlement, could not be detected in the material even through Auger electron spectroscopy studies. - Highlights: • Tempering behaviour of AISI 410 steel is studied within 673–923 K temperature range. • Temperature regime of maximum embrittlement is identified as 773–848 K. • Results show that type of

  14. Bulk Nanostructured FCC Steels With Enhanced Radiation Tolerance

    SciTech Connect (OSTI)

    Zhang, Xinghang; Hartwig, K. Ted; Allen, Todd; Yang, Yong

    2012-10-27

    The objective of this project is to increase radiation tolerance in austenitic steels through optimization of grain size and grain boundary (GB) characteristics. The focus will be on nanocrystalline austenitic Fe-Cr-Ni alloys with an fcc crystal structure. The long-term goal is to design and develop bulk nanostructured austenitic steels with enhanced void swelling resistance and substantial ductility, and to enhance their creep resistance at elevated temperatures via GB engineering. The combination of grain refinement and grain boundary engineering approaches allows us to tailor the material strength, ductility, and resistance to swelling by 1) changing the sink strength for point defects, 2) by increasing the nucleation barriers for bubble formation at GBs, and 3) by changing the precipitate distributions at boundaries. Compared to ferritic/martensitic steels, austenitic stainless steels (SS) possess good creep and fatigue resistance at elevated temperatures, and better toughness at low temperature. However, a major disadvantage of austenitic SS is that they are vulnerable to significant void swelling in nuclear reactors, especially at the temperatures and doses anticipated in the Advanced Burner Reactor. The lack of resistance to void swelling in austenitic alloys led to the switch to ferritic/martensitic steels as the preferred material for the fast reactor cladding application. Recently a type of austenitic stainless steel, HT-UPS, was developed at ORNL, and is expected to show enhanced void swelling resistance through the trapping of point defects at nanometersized carbides. Reducing the grain size and increasing the fraction of low energy grain boundaries should reduce the available radiation-produced point defects (due to the increased sink area of the grain boundaries), should make bubble nucleation at the boundaries less likely (by reducing the fraction of high-energy boundaries), and improve the strength and ductility under radiation by producing a higher

  15. CLEAN CAST STEEL TECHNOLOGY: DETERMINATION OF TRANSFORMATION DIAGRAMS FOR DUPLEX STAINLESS STEEL.

    SciTech Connect (OSTI)

    Chumbley. L., S.

    2005-09-18

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma (???????????????¯??????????????????????????????³) and chi (???????????????¯??????????????????????????????£) can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling- transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe 22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (???????????????¯??????????????????????????????³ + ???????????????¯??????????????????????????????£) formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations, The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents

  16. HSLA-100 steels: Influence of aging heat treatment on microstructure and properties

    SciTech Connect (OSTI)

    Mujahid, M.; Lis, A.K.; Garcia, C.I.; deArdo, A.J.

    1998-04-01

    The structural steels used in critical construction applications have traditionally been heat-treated low-alloy steels. These normalized and/or quenched and tempered steels derive strength from their carbon contents. Carbon is a very efficient and cost-effective element for increasing strength in ferrite-pearlite or tempered martensitic structures, but it is associated with poor notch toughness. Furthermore, it is well known that both the overall weldability and weldment toughness are inversely related to the carbon equivalent values, especially at high carbon contents. The stringent control needed for the welding of these traditional steels is one of the major causes of high fabrication costs. In order to reduce fabrication cost while simultaneously improving the quality of structural steels, a new family of high-strength low-alloy steels with copper additions (HSLA-100) has been developed. The alloy design philosophy of the new steels includes a reduction in the carbon content, which improves toughness and weldability.

  17. Evolution of carbides in cold-work tool steels

    SciTech Connect (OSTI)

    Kim, Hoyoung; Kang, Jun-Yun; Son, Dongmin; Lee, Tae-Ho; Cho, Kyung-Mox

    2015-09-15

    This study aimed to present the complete history of carbide evolution in a cold-work tool steel along its full processing route for fabrication and application. A sequence of processes from cast to final hardening heat treatment was conducted on an 8% Cr-steel to reproduce a typical commercial processing route in a small scale. The carbides found at each process step were then identified by electron diffraction with energy dispersive spectroscopy in a scanning or transmission electron microscope. After solidification, MC, M{sub 7}C{sub 3} and M{sub 2}C carbides were identified and the last one dissolved during hot compression at 1180 °C. In a subsequent annealing at 870 °C followed by slow cooling, M{sub 6}C and M{sub 23}C{sub 6} were added, while they were dissolved in the following austenitization at 1030 °C. After the final tempering at 520 °C, fine M{sub 23}C{sub 6} precipitated again, thus the final microstructure was the tempered martensite with MC, M{sub 7}C{sub 3} and M{sub 23}C{sub 6} carbide. The transient M{sub 2}C and M{sub 6}C originated from the segregation of Mo and finally disappeared due to attenuated segregation and the consequent thermodynamic instability. - Highlights: • The full processing route of a cold-work tool steel was simulated in a small scale. • The carbides in the tool steel were identified by chemical–crystallographic analyses. • MC, M{sub 7}C{sub 3}, M{sub 2}C, M{sub 6}C and M{sub 23}C{sub 6} carbides were found during the processing of the steel. • M{sub 2}C and M{sub 6}C finally disappeared due to thermodynamic instability.

  18. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt001_es_koo_2012_p.pdf (2.94 MB) More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  19. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Andrew Fowler

    2016-02-10

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  20. Webinar May 12: Overview of Station Analysis Tools Developed in Support of H2USA

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar entitled "Overview of Station Analysis Tools Developed in Support of H2USA" on Tuesday, May 12, from 12 to 1 p.m. Eastern Daylight Time. This webinar will provide a basic introduction to two new models—the Hydrogen Refueling Station Analysis Model (HRSAM) and the Hydrogen Financial Analysis Scenario Tool (H2FAST)—developed by Argonne National Laboratory and the National Renewable Energy Laboratory, respectively.

  1. C. Benedetti BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficient modeling of laser-plasma accelerators using the ponderomotive-based code INF&RNO C. Benedetti BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Laser plasma accelerators (LPAs) can produce accelerating gradients on the order of tens to hundreds of GV/m, making them attractive as compact particle accelerators for radiation production or as drivers for future high-energy colliders. [1, 2] In a laser plasma accelerator, a short and intense laser

  2. Bear Head LNG Corporation and Bear Head LNG (USA), LLC- FE Dkt No. 15-14-NG

    Broader source: Energy.gov [DOE]

    On January 23, 2015, Bear Head LNG Corporation and Bear Head LNG (USA), LLC (together, “Bear Head LNG”), filed an application for long-term, multi-contract authorization to engage in imports from,...

  3. Energy Efficiency is Beautiful! L'Oréal USA Joins Better Plants with Aggressive Energy Efficiency Commitment

    Broader source: Energy.gov [DOE]

    The Department of Energy welcomed L'Oréal USA to the Better Buildings, Better Plants Program (Better Plants) and it is a beautiful partnership. As the nation’s largest cosmetics manufacturer, L...

  4. Estimates of the Global Indirect Energy-Use Emission Impacts of USA Biofuel Policy

    SciTech Connect (OSTI)

    Oladosu, Gbadebo A

    2012-01-01

    This paper evaluates the indirect energy-use emission implications of increases in the use of biofuels in the USA between 2001 and 2010 as mandates within a dynamic global computable general equilibrium model. The study incorporates explicit markets for biofuels, petroleum and other fossil fuels, and accounts for interactions among all sectors of an 18-region global economy. It considers bilateral trade, as well as the dynamics of capital allocation and investment. Simulation results show that the biofuel mandates in the USA generate an overall reduction in global energy use and emissions over the simulation period from 2001 to 2030. Consequently, the indirect energy-use emission change or emission leakage under the mandate is negative. That is, global emission reductions are larger than the direct emission savings from replacing petroleum with biofuels under the USA RFS2 over the last decade. Under our principal scenario this enhanced the direct emission reduction from biofuels by about 66%. The global change in lifecycle energy-use emissions for this scenario was estimated to be about 93 million tons of CO2e in 2010, 45 million tons of CO2e in 2020, and an increase of 5 million tons of CO2e in 2030, relative to the baseline scenario. Sensitivity results of six alternative scenarios provided additional insights into the pattern of the regional and global effects of biofuel mandates on energy-use emissions.

  5. Recovery Act: Waste Energy Project at AK Steel Corporation Middletown

    SciTech Connect (OSTI)

    Joyce, Jeffrey

    2012-06-30

    In 2008, Air Products and Chemicals, Inc. (Air Products) began development of a project to beneficially utilize waste blast furnace topgas generated in the course of the iron-making process at AK Steel Corporations Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

  6. Evaluation of zircon brick for steel ladle slag lines

    SciTech Connect (OSTI)

    Brezny, B.; Engel, R.

    1984-07-01

    Six zircon-containing brick were evaluated for steel ladle slag line application. The following physical properties were studied: density, porosity, creep, slag resistance, thermal expansion, thermal shock resistance and thermal conductivity, and compared to a high-purity 70% Al/sub 2/O/sub 3/ containing ladle brick. The data, in particular a zircon refractory's resistance to slag erosion, indicated they should give better performance than the presently used 70% Al/sub 2/O/sub 3/ refractories. Two field trials were run in steel ladle slag lines. Inspections of the ladles during and after service showed no difference in performance between zircon and 70% Al/sub 2/O/sub 3/-containing refractories.

  7. Monitoring microstructural evolution in irradiated steel with second harmonic generation

    SciTech Connect (OSTI)

    Matlack, Kathryn H.; Kim, Jin-Yeon; Jacobs, Laurence J.; Wall, James J.; Qu, Jianmin

    2015-03-31

    Material damage in structural components is driven by microstructural evolution that occurs at low length scales and begins early in component life. In metals, these microstructural features are known to cause measurable changes in the acoustic nonlinearity parameter. Physically, the interaction of a monochromatic ultrasonic wave with microstructural features such as dislocations, precipitates, and vacancies, generates a second harmonic wave that is proportional to the acoustic nonlinearity parameter. These nonlinear ultrasonic techniques thus have the capability to evaluate initial material damage, particularly before crack initiation and propagation occur. This paper discusses how the nonlinear ultrasonic technique of second harmonic generation can be used as a nondestructive evaluation tool to monitor microstructural changes in steel, focusing on characterizing neutron radiation embrittlement in nuclear reactor pressure vessel steels. Current experimental evidence and analytical models linking microstructural evolution with changes in the acoustic nonlinearity parameter are summarized.

  8. Technique to eliminate helium induced weld cracking in stainless steels

    SciTech Connect (OSTI)

    Chin-An Wang; Chin, B.A.; Grossbeck, M.L.

    1992-12-31

    Experiments have shown that Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 Mpa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

  9. Electrochemical Corrosion Testing of Borated Stainless Steel Alloys

    SciTech Connect (OSTI)

    lister, tedd e; Mizia, Ronald E

    2007-05-01

    The Department of Energy Office of Civilian Radioactive Waste Management has specified borated stainless steel manufactured to the requirements of ASTM A 887-89, Grade A, UNS S30464, to be the material used for the fabrication of the fuel basket internals of the preliminary transportation, aging, and disposal canister system preliminary design. The long-term corrosion resistance performance of this class of borated materials must be verified when exposed to expected YMP repository conditions after a waste package breach. Electrochemical corrosion tests were performed on crevice corrosion coupons of Type 304 B4 and Type 304 B5 borated stainless steels exposed to single postulated in-package chemistry at 60C. The results show low corrosion rates for the test period

  10. Guidelines for Stretch Flanging Advanced High Strength Steels

    SciTech Connect (OSTI)

    Sriram, S.; Chintamani, J.

    2005-08-05

    Advanced High Strength Steels (AHSS) are currently being considered for use in closure and structural panels in the automotive industry because of their high potential for affordable weight reduction and improved performance. AHSS such as dual phase steels are currently being used in some vehicle platforms. From a manufacturing perspective, stretch flanging during stamping is an important deformation mode requiring careful consideration of geometry and the die process. This paper presents some geometric and process guidelines for stretch flanging AHSS. Hole expansion experiments were conducted to determine the failure limit for a sheared edge condition. Effects of punching clearance, prestrain and prior strain path on hole expansion were explored in these experiments. In addition, dynamic explicit FE calculations using LS-DYNA were also conducted for a typical stretch flange by varying some key geometric parameters. The experimental and FEA results were then analyzed to yield process and geometric guidelines to enable successful stretch flanging of AHSS.

  11. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    SciTech Connect (OSTI)

    Zaleski, T M

    2008-10-23

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  12. Brooklyn Union develops tool for replacing steel, cast iron mains

    SciTech Connect (OSTI)

    Marazzo, J.J. )

    1994-12-01

    Over the last 10 years, Brooklyn Union Gas Co. has undergone significant changes in the methods it has used to install gas service and gas main systems. Recently, Brooklyn Union engineers developed a user friendly method of replacing steel and cast iron gas mains and service lines with same size or larger polyethylene pipe without using conventional trench excavation. The system, known as the ''Bullet'' pipe replacement system, involves splitting steel and cast iron pipe using a series of rolling cutter wheels. After consecutive cutting wheels completely penetrate both pipe and fittings, both pipe and soil are spread with an expander and new polyethylene pipe is inserted. The ''Bullet'' pipe splitting system for 1[1/4] in. (32 mm) through 6 in. (150 mm) diameter has been developed.

  13. Corrosion behavior of stainless steel-zirconium alloy waste forms.

    SciTech Connect (OSTI)

    Abraham, D. P.

    1999-01-13

    Stainless steel-zirconium (SS-Zr) alloys are being considered as waste forms for the disposal of metallic waste generated during the electrometallurgical treatment of spent nuclear fuel. The baseline waste form for spent fuels from the EBR-II reactor is a stainless steel-15 wt.% zirconium (SS-15Zr) alloy. This article briefly reviews the microstructure of various SS-Zr waste form alloys and presents results of immersion corrosion and electrochemical corrosion tests performed on these alloys. The electrochemical tests show that the corrosion behavior of SS-Zr alloys is comparable to those of other alloys being considered for the Yucca Mountain geologic repository. The immersion tests demonstrate that the SS-Zr alloys are resistant to selective leaching of fission product elements and, hence, suitable as candidates for high-level nuclear waste forms.

  14. Aluminium Electroplating on Steel from a Fused Bromide Electrolyte

    SciTech Connect (OSTI)

    Prabhat Tripathy; Laura Wurth; Eric Dufek; Toni Y. Gutknecht; Natalie Gese; Paula Hahn; Steven Frank; Guy Fredrickson; J Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBr-KBr-CsBr-AlBr3) was used to electro-coat aluminium on steel substrates. The electrolyte was prepared by the addition of AlBr3 into the eutectic LiBr-KBr-CsBr melt. A smooth, thick, adherent and shiny aluminium coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminium coverage. Both salt immersion and open circuit potential measurement suggest that the coatings did display good corrosion-resistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminium coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminium coating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  15. Secondary hardening steel having improved combination of hardness and toughness

    DOE Patents [OSTI]

    Parker, Earl R.; Zackay, Victor F.; Bhat, Manjeshwar S.; Garrison, Jr., Warren M.

    1979-01-01

    A secondary hardening alloy steel composition consisting essentially of about 0.25-0.5% carbon, about 0.5-1.0% manganese, about 1.5-3.0% nickel, about 0-1.0% chromium, about 1.75-2.5% molybdenum, about 0-0.4% vanadium, and an additive selected from about 1-3% aluminum and a combination of at least about 1% aluminum and at least about 1% silicon for a combined Al+Si content of about 2-4%, the balance being iron and impurity elements. The present steel composition has the following characteristics: it exhibits a flat tempering response, it is hardenable upon tempering to a Rockwell C hardness of at least 50, and it has an improved combination of hardness vs. toughness properties after tempering in the secondary hardening range. A method of preparation is also described.

  16. Aluminum electroplating on steel from a fused bromide electrolyte

    SciTech Connect (OSTI)

    Prabhat K. Tripathy; Laura A. Wurth; Eric J. Dufek; Toni Y. Gutknecht; Natalie J. Gese; Paula Hahn; Steven M. Frank; Guy L. Frederickson; J. Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBrKBrCsBrAlBr3) was used to electro-coat aluminum on steel substrates. The electrolytewas prepared by the addition of AlBr3 into the eutectic LiBrKBrCsBr melt. A smooth, thick, adherent and shiny aluminum coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminum coverage. Both salt immersion and open circuit potential measurement suggested that the coatings did display a good corrosionresistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminum coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminumcoating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  17. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    SciTech Connect (OSTI)

    Cao, Guoping; Yang, Yong

    2013-12-19

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-matallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved, 1) To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pin end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug. 2) investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys. 3) Simulate the irradiation effects on the PWM weldments using ion irradiation.

  18. Final Scientific Report Steel Foundry Refractory Lining Optimization

    SciTech Connect (OSTI)

    Smith, J.D.; Peaslee, K.D.

    2002-12-02

    The overall objective of the program was to optimize refractory materials and foundry processing used in casting steel. This objective was to be met by completing the following: (1) Surveying the steel foundries both through paper/electronic surveys sent to North American steel foundries as well as plant visits to participants. Information concerning refractory selection and performance as well as refractory and steelmaking practices provides a baseline for future comparison and to identify opportunities for substantial improvement in energy efficiency. (2) Conducting post-mortem analysis of materials from existing refractory/steelmaking practices to determine wear/failure mechanisms. (3) Identify areas for research on developing refractories for use in steel foundry furnaces, adjusting steelmaking practices to improve efficiency and modifying slag practices to improve refractory performance. The overall objective of the steel foundry refractory lining optimization program was to review established refractory and steelmaking practices to identify opportunities for improvements that would yield substantial energy savings for steel foundries. Energy savings were expected to arise from improved efficiency of the electric arc furnaces and from reductions in the post-casting welding and grinding that are normally required. Ancillary energy savings related to a reduction in the amount of refractories currently produced to meet the needs of the steel foundry industry, and a shift from pre-fired materials (shaped refractories) to monolithic refractories that are heat treated ''in situ'' were anticipated. A review of the complete program results indicates that techniques for achieving the overall goal were demonstrated. The main difference between the predicted and the actual achievements relates to the areas from which actual energy savings could be realized. Although reductions in furnace tap temperature would result in a reduction in the power required for melting, such

  19. STAINLESS STEEL INTERACTIONS WITH SALT CONTAINING PLUTONIUM OXIDES

    SciTech Connect (OSTI)

    Nelson, Z.; Chandler, G.; Dunn, K.; Stefek, T.; Summer, M.

    2010-02-01

    Salt containing plutonium oxide materials are treated, packaged and stored within nested, stainless steel containers based on requirements established in the DOE 3013 Standard. The moisture limit for the stored materials is less than 0.5 weight %. Surveillance activities which are conducted to assess the condition of the containers and assure continuing 3013 container integrity include the destructive examination of a select number of containers to determine whether corrosion attack has occurred as a result of stainless steel interactions with salt containing plutonium oxides. To date, some corrosion has been observed on the innermost containers, however, no corrosion has been noted on the outer containers and the integrity of the 3013 container systems is not expected to be compromised over a 50 year storage lifetime.

  20. Sensitization and IGSCC susceptibility prediction in stainless steel pipe weldments

    SciTech Connect (OSTI)

    Atteridge, D.G.; Simmons, J.W.; Li, Ming ); Bruemmer, S.M. )

    1991-11-01

    An analytical model, based on prediction of chromium depletion, has been developed for predicting thermomechanical effects on austenitic stainless steel intergranular stress corrosion cracking (IGSCC) susceptibility. Model development and validation is based on sensitization development analysis of over 30 Type 316 and 304 stainless steel heats. The data base included analysis of deformation effects on resultant sensitization development. Continuous Cooling sensitization behavior is examined and modelled with and without strain. Gas tungsten are (GTA) girth pipe weldments are also characterized by experimental measurements of heat affected zone (HAZ) temperatures, strains and sensitization during/after each pass; pass by pass thermal histories are also predicted. The model is then used to assess pipe chemistry changes on IGSCC resistance.

  1. Manganese-stabilized austenitic stainless steels for fusion applications

    DOE Patents [OSTI]

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-08-07

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  2. Wrought Cr--W--V bainitic/ferritic steel compositions

    DOE Patents [OSTI]

    Klueh, Ronald L.; Maziasz, Philip J.; Sikka, Vinod Kumar; Santella, Michael L.; Babu, Sudarsanam Suresh; Jawad, Maan H.

    2006-07-11

    A high-strength, high-toughness steel alloy includes, generally, about 2.5% to about 4% chromium, about 1.5% to about 3.5% tungsten, about 0.1% to about 0.5% vanadium, and about 0.05% to 0.25% carbon with the balance iron, wherein the percentages are by total weight of the composition, wherein the alloy is heated to an austenitizing temperature and then cooled to produce an austenite transformation product.

  3. Sulfide stress cracking resistance of nitrogen-strengthened stainless steel

    SciTech Connect (OSTI)

    Gaugh, R.R.

    1981-01-01

    The paper describes sulfide stress cracking tests performed on a number of these alloys. Most were found to be somewhat susceptible to cracking, depending on the stress level. It was determined that this was due to their high manganese content. The mechanism responsible for cracking was not firmly established. One commercial nitrogen-strengthened stainless steel, XM19, was highly resistant to sulfide stress cracking despite a manganese content of 5%. This difference is attributed to the superior corrosion resistance of the alloy.

  4. Highly alloyed stainless steels for sea water applications

    SciTech Connect (OSTI)

    Audouard, J.P.; Verneau, M.

    1996-10-01

    Natural sea water is known as a very aggressive environment which generates pitting and crevice corrosion on stainless steels. High chromium grades with sufficient molybdenum and nitrogen additions (PREN > 40) are generally recognized as resistant materials in natural sea water bu the material selection criteria must be improved to take into account the effect of climatic conditions and of biocide treatments which are widely used as anti-fouling agents in sea water circuits. The paper deals with the localized corrosion properties of conventional stainless steels (SS), duplex and superaustenitic alloys. The results of laboratory investigations conducted in more or less oxidizing chloride containing media are discussed. Then, immersion tests carried out in natural sea waters in different climatic conditions are presented and discussed. Finally, the effect of biocide addition on fouling and its consequences on corrosion is investigated. The results are interpreted taking into account the chemical composition of the stainless steels and biofilm criteria. The results showed the Mediterranean Sea to be slightly more aggressive than other European seas but a PREN value higher than 40 is sufficient for stainless steels to withstand localized corrosion in European natural sea waters. A residual chlorine level around 0.3--0.4 ppm was found to be very effective to limit the fouling and to avoid localized corrosion on SS. Nevertheless, due to difficulties in monitoring chlorine addition, PREN values higher than 50 are recommended to withstand localized corrosion in treated sea waters. As an example, the new super-austenitic grade 25Cr-22Ni-5.8Mo-1.5Cu-2W-0.45N with a PRENW value of 54 was found to be perfectly resistant to crevice corrosion with 0.5 ppm free chlorine at ambient temperature.

  5. Versatility of superaustenitic stainless steels in marine applications

    SciTech Connect (OSTI)

    Latha, G.; Rajeswari, S.

    1996-10-01

    Corrosion of construction materials in marine applications is a major problem. The frequent variations in chloride ion concentration and temperature experienced by a system pose a serious threat. This investigation evaluated the performance of superaustenitic stainless steels in marine applications by potentiodynamic anodic polarization studies. The concentrations of metal ions such as iron, chromium, and nickel at different impressed potentials were analyzed by inductively coupled plasma spectrometry, which revealed little tendency for leaching of metal ions.

  6. Manganese-stabilized austenitic stainless steels for fusion applications

    DOE Patents [OSTI]

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-01-01

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  7. Corrosion Testing of Stainless Steel Fuel Cell Hardware

    SciTech Connect (OSTI)

    Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.

    1998-11-01

    Metal hardware is gaining increasing interest in polymer electrolyte fuel cell (PEFC) development as a possible alternative to machined graphite hardware because of its potential for low-cost manufacturing combined with its intrinsic high conductivity, minimal permeability and advantageous mechanical properties. A major barrier to more widespread use of metal hardware has been the susceptibility of various metals to corrosion. Few pure metals can withstand the relatively aggressive environment of a fuel cell and thus the choices for hardware are quite limited. Precious metals such as platinum or gold are prohibitively expensive and so tend to be utilized as coatings on inexpensive substrates such as aluminum or stainless steel. The main challenge with coatings has been to achieve pin-hole free surfaces that will remain so after years of use. Titanium has been used to some extent and though it is very corrosion-resistant, it is also relatively expensive and often still requires some manner of surface coating to prevent the formation of a poorly conducting oxide layer. In contrast, metal alloys may hold promise as potentially low-cost, corrosion-resistant materials for bipolar plates. The dozens of commercially available stainless steel and nickel based alloys have been specifically formulated to offer a particular advantage depending upon their application. In the case of austenitic stainless steels, for example, 316 SS contains molybdenum and a higher chromium content than its more common counterpart, 304 SS, that makes it more noble and increases its corrosion resistance. Likewise, 316L SS contains less carbon than 316 SS to make it easier to weld. A number of promising corrosion-resistant, highly noble alloys such as Hastelloy{trademark} or Duplex{trademark} (a stainless steel developed for seawater service) are available commercially, but are expensive and difficult to obtain in various forms (i.e. wire screen, foil, etc.) or in small amounts for R and D

  8. Distribution of radionuclides during melting of carbon steel

    SciTech Connect (OSTI)

    Thurber, W.C.; MacKinney, J.

    1997-02-01

    During the melting of steel with radioactive contamination, radionuclides may be distributed among the metal product, the home scrap, the slag, the furnace lining and the off-gas collection system. In addition, some radionuclides will pass through the furnace system and vent to the atmosphere. To estimate radiological impacts of recycling radioactive scrap steel, it is essential to understand how radionuclides are distributed within the furnace system. For example, an isotope of a gaseous element (e.g., radon) will exhaust directly from the furnace system into the atmosphere while a relatively non-volatile element (e.g., manganese) can be distributed among all the other possible media. This distribution of radioactive contaminants is a complex process that can be influenced by numerous chemical and physical factors, including composition of the steel bath, chemistry of the slag, vapor pressure of the particular element of interest, solubility of the element in molten iron, density of the oxide(s), steel melting temperature and melting practice (e.g., furnace type and size, melting time, method of carbon adjustment and method of alloy additions). This paper discusses the distribution of various elements with particular reference to electric arc furnace steelmaking. The first two sections consider the calculation of partition ratios for elements between metal and slag based on thermodynamic considerations. The third section presents laboratory and production measurements of the distribution of various elements among slag, metal, and the off-gas collection system; and the final section provides recommendations for the assumed distribution of each element of interest.

  9. Sodium sulfide slagging for removing copper from scrap steel

    SciTech Connect (OSTI)

    Leis, J.R.; Sanghvi, S.M.; Steinberg, R.M.

    1982-10-01

    Fundamental studies of sodium sulfide slagging for removing copper from scrap steel indicate that the copper distribution coefficient is 10, and that if 30 wt % FeS exists in the slag phase, no iron will be transferred to the slag from the metal phase. This process can be used commercially as an added fluxing step with minimal modifications to current electric-furnace steelmaking operations. Preliminary economic analysis shows an incremental return on investment equal to 100% per year.

  10. Attack polish for nickel-base alloys and stainless steels

    DOE Patents [OSTI]

    Steeves, Arthur F.; Buono, Donald P.

    1983-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  11. Attack polish for nickel-base alloys and stainless steels

    DOE Patents [OSTI]

    Not Available

    1980-05-28

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels is described. The chemical attack polich comprises FeNO/sub 3/, concentrated CH/sub 3/COOH, concentrated H/sub 2/SO/sub 4/ and H/sub 2/O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  12. Hydrogen trapping, diffusion, and recombination in austenitic stainless steels

    SciTech Connect (OSTI)

    Langley, R.A.

    1984-01-01

    Trapping, diffusion, and recombination of hydrogen in austenitic stainless steels are reviewed. It is suggested that since all of these processes are strongly interdependent and since the measured recombination rates are found to vary four orders of magnitude at any temperature, the data analysis techniques used to date are insufficient. A two-region diffusion model with surface recombination is proposed in which the surface layer is characterized by a smaller diffusion coefficient than the bulk.

  13. Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement U.S. Department of Energy Fuel Cell Technologies Office January 12 th , 2016 Presenters: Joe Ronevich (presenter) and Brian Somerday Sandia National Laboratories DOE Host: Neha Rustagi - Technology Manager, Hydrogen Production and Delivery Program 2 | Fuel Cell Technologies Office eere.energy.gov Question and Answer * Please type your questions into the question box 2 3 | Fuel Cell Technologies Office eere.energy.gov

  14. Acoustic emission monitoring for assessment of steel bridge details

    SciTech Connect (OSTI)

    Kosnik, D. E.; Corr, D. J.; Hopwood, T.

    2011-06-23

    Acoustic emission (AE) testing was deployed on details of two large steel Interstate Highway bridges: one cantilever through-truss and one trapezoidal box girder bridge. Quantitative measurements of activity levels at known and suspected crack locations were made by monitoring AE under normal service loads (e.g., live traffic and wind). AE indications were used to direct application of radiography, resulting in identification of a previously unknown flaw, and to inform selection of a retrofit detail.

  15. Monolithic torpedo bottle lining at Weirton Steel Corporation

    SciTech Connect (OSTI)

    Baker, R.; Griffith, E.

    1996-12-31

    In late 1992 and early 1993 Weirton Steel burned through three torpedo bottles in a three-month period. To determine the cause of the burn throughs, a thorough review of bottle maintenance practices was initiated. Upon identification of contributing factors, changes in operating practices were made. In an effort to increase bottle reliability, lining trials were initiated. Among the trials, a monolithic lining was installed and this paper will discuss results of the lining to date.

  16. Evaluation of steel furnace slags as cement additives

    SciTech Connect (OSTI)

    Tuefekci, M.; Demirbas, A.; Genc, H.

    1997-11-01

    Chemical and physical properties and strength development have been studied for six granulated steel furnace slags from the normal steelmaking process. This paper reports results of research performed to develop cement mixture proportions using these slags. The influence of slag proportions, specific surface, and water demand on compressive strength and bulk density of cement blends are presented in this paper. The different test results, which were compared with the Turkish Standards, in general, were found to be within the limits.

  17. Optimization and testing results of Zr-bearing ferritic steels

    SciTech Connect (OSTI)

    Tan, Lizhen; Yang, Ying; Tyburska-Puschel, Beata; Sridharan, K.

    2014-09-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional

  18. Method of polishing nickel-base alloys and stainless steels

    DOE Patents [OSTI]

    Steeves, Arthur F.; Buono, Donald P.

    1981-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  19. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group Workshop Augusta, GA, August 30, 2005 Funding and Duration * Timeline - Project start date: 7/20/05 - Project end date: 7/19/09 - Percent complete: 0.1% * Budget: Total project funding: 300k/yr * DOE share: 75% * Contractor share: 25% * Barriers - Hydrogen embrittlement of pipelines and remediation (mixing with water

  20. The retention of iodine in stainless steel sample lines

    SciTech Connect (OSTI)

    Evans, G.J.; Deir, C.; Ball, J.M.

    1995-02-01

    Following an accident in a multi-unit CANDU nuclear generating station, decontamination of air vented from containment would play a critical role in minimizing the release of iodine to the environment. The concentration of gas phase iodine in containment air would be measured using the post accident radiation monitoring system, requiring that air samples be passed through a considerable length of tubing to a remote location where the desired measurements could safely be made. A significant loss of iodine, due to adsorption on the sample line surfaces, could greatly distort the measurement. In this study, the retention of I{sub 2}(g) on stainless steel was evaluated in bench scale experiments in order to evaluate, and if possible minimise, the extent of any such line losses. Experiments at the University of Toronto were performed using 6 inch lengths of 1/4 inch stainless steel tubing. Air, containing I-131 labelled I{sub 2}(g), ranging in concentration from 10{sup {minus}10} to 10{sup {minus}6} mol/dm{sup 3} and relative humidity (:RH) from 20 to 90 %, was passed through tubing samples maintained at temperatures ranging from 25 to 90{degrees}C. Adsorption at low gas phase iodine concentrations differed substantially from that at higher concentrations. The rate of deposition was proportional to the gas phase concentration, giving support to the concept of a first order deposition velocity. The surface loading increased with increasing relative humidity, particularly at low RH values, while the deposition rate decreased with increasing temperature. Surface water on the steel may play an important role in the deposition process. The chemisorbed iodine was located primarily in areas of corrosion. Furthermore, water used to wash the steel contained Fe, Mn and iodine in the form of iodide, suggesting that I{sub 2} reacted to form metal iodides. The deposition of I{sub 2} was also found to depend on the initial surface condition.

  1. Development of a thin steel strip casting process. Final report

    SciTech Connect (OSTI)

    Williams, R.S.

    1994-04-01

    This is a comprehensive effort to develop direct strip casting to the point where a pilot scale program for casting carbon steel strip could be initiated. All important aspects of the technology were being investigated, however the program was terminated early due to a change in the business strategy of the primary contractor, Armco Inc. (focus to be directed at specialty steels, not low carbon steel). At termination, the project was on target on all milestones and under budget. Major part was casting of strip at the experiment casting facility. A new caster, capable of producing direct cast strip of up to 12 in. wide in heats of 1000 and 3000 lb, was used. A total of 81 1000-1200 lb heats were cast as well as one test heat of 3000 lb. Most produced strip of from 0.016 to 0.085 in. thick. Process reliability was excellent for short casting times; quality was generally poor from modern hot strip mill standards, but the practices necessary for good surface quality were identified.

  2. Welding techniques for high alloy austenitic stainless steel

    SciTech Connect (OSTI)

    Gooch, T.G.; Woollin, P.

    1996-11-01

    Factors controlling corrosion resistance of weldments in high alloy austenitic stainless steel are described, with emphasis on microsegregation, intermetallic phase precipitation and nitrogen loss from the molten pool. The application is considered of a range of welding processes, both fusion and solid state. Autogenous fusion weldments have corrosion resistance below that of the parent, but low arc energy, high travel speed and use of N{sub 2}-bearing shielding gas are recommended for best properties. Conventional fusion welding practice is to use an overalloyed nickel-base filler metal to avoid preferential weld metal corrosion, and attention is given to the effects of consumable composition and level of weldpool dilution by base steel. With non-matching consumables, overall joint corrosion resistance may be limited by the presence of a fusion boundary unmixed zone: better performance may be obtained using solid state friction welding, given appropriate component geometry. Overall, the effects of welding on superaustenitic steels are understood, and the materials have given excellent service in welded fabrications. The paper summarizes recommendations on preferred welding procedure.

  3. Laser beam surface melting of high alloy austenitic stainless steel

    SciTech Connect (OSTI)

    Woollin, P.

    1996-12-31

    The welding of high alloy austenitic stainless steels is generally accompanied by a substantial reduction in pitting corrosion resistance relative to the parent, due to microsegregation of Mo and Cr. This prevents the exploitation of the full potential of these steels. Processing to achieve remelting and rapid solidification offers a means of reducing microsegregation levels and improving corrosion resistance. Surface melting of parent UNS S31254 steel by laser beam has been demonstrated as a successful means of producing fine, as-solidified structures with pitting resistance similar to that of the parent, provided that an appropriate minimum beam travel speed is exceeded. The use of N{sub 2} laser trail gas increased the pitting resistance of the surface melted layer. Application of the technique to gas tungsten arc (GTA) melt runs has shown the ability to raise the pitting resistance significantly. Indeed, the use of optimized beam conditions, N{sub 2} trail gas and appropriate surface preparation prior to laser treatment increased the pitting resistance of GTA melt runs to a level approaching that of the parent material.

  4. Waste streams that preferentially corrode 55-gallon steel storage drums

    SciTech Connect (OSTI)

    Zirker, L.R.; Beitel, G.A.; Reece, C.M.

    1995-06-01

    When 55-gal steel drum waste containers fail in service, i.e., leak, corrode or breach, the standard fix has been to overpack the drum. When a drum fails and is overpacked into an 83-gal overpack drum, there are several negative consequences. Identifying waste streams that preferentially corrode steel drums is essential to the pollution prevention philosophy that ``an ounce of prevention is worth a pound of cure.`` It is essential that facilities perform pollution prevention measures at the front end of processes to reduce pollution on the back end. If these waste streams can be identified before they are packaged, the initial drum packaging system could be fortified or increased to eliminate future drum failures, breaches, clean-ups, and the plethora of other consequences. Therefore, a survey was conducted throughout the US Department of Energy complex for information concerning waste streams that have demonstrated preferential corrosion of 55-gal steel drums. From 21 site contacts, 21 waste streams were so identified. The major components of these waste streams include acids, salts, and solvent liquids, sludges, and still bottoms. The solvent-based waste streams typically had the shortest time to failure, 0.5 to 2 years. This report provides the results of this survey and research.

  5. TENSILE TESTING OF CARBON STEEL IN HIGH PRESSURE HYDROGEN

    SciTech Connect (OSTI)

    Duncan, A; Thad Adams, T; Ps Lam, P

    2007-05-02

    An infrastructure of new and existing pipelines and systems will be required to carry and to deliver hydrogen as an alternative energy source under the hydrogen economy. Carbon and low alloy steels of moderate strength are currently used in hydrogen delivery systems as well as in the existing natural gas systems. It is critical to understand the material response of these standard pipeline materials when they are subjected to pressurized hydrogen environments. The methods and results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (10.34 MPa or 1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels.

  6. MECHANICAL TESTING OF CARBON STEEL IN HIGH PRESSURE HYDROGEN

    SciTech Connect (OSTI)

    Duncan, A

    2006-05-11

    The methods and interim results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. The scope is carbon steels commonly used for natural gas pipelines in the United States that are candidates for hydrogen service in the hydrogen economy. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in 1500 psig hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test program will continue with tests to quantify the fracture behavior in terms of J-R curves for these materials at air and hydrogen pressure conditions.

  7. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    SciTech Connect (OSTI)

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  8. Chlorine induced corrosion of steels in fossil fuel power plants

    SciTech Connect (OSTI)

    Spiegel, M.; Grabke, H.J.

    1998-12-31

    The corrosion of steels in power plants (coal combustion, waste incineration) is mainly due to condensed chlorides in the ash deposited on the boiler tubes. These chlorides are stabilized by HCl in the combustion gas. In the case of coal as a fuel, chlorine is present as chloride minerals in the raw material which is converted to HCl during the combustion process. Corrosion of steels in chlorine containing environments occurs by the active oxidation mechanism, which is a self-sustaining accelerated oxidation process, catalyzed by chlorine. This study shows that solid chlorides react with the oxide scale of the steels to form chlorine, which initiates active oxidation. In order to prevent chlorine induced corrosion, the deposition of chlorides on the tubes within the coal ash must be avoided. This is possible by the presence of SO{sub 2}, which is present in the combustion gas, converting the chlorides to sulfates in the gas phase. The paper presents an example of a failure case in a coal fired plant in Germany. In this plant, chlorine induced corrosion was observed after effective removal of SO{sub 2} by additions of CaO. From thermodynamic calculations it can be shown that a certain amount of SO{sub 2} is necessary in order to avoid deposition of chlorides and to prevent corrosion.

  9. Kinetics of steel slag leaching: Batch tests and modeling

    SciTech Connect (OSTI)

    De Windt, Laurent; Chaurand, Perrine; Rose, Jerome

    2011-02-15

    Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can be used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.

  10. Weirton Steel Corporation logistics and integrated scheduling. Final report

    SciTech Connect (OSTI)

    Guzzetta, M.B.

    1996-06-01

    In order to remain competitive in the changing steel market, US steel producers restructured by taking on foreign and domestic partners, closing facilities and/or trimming work forces, and modernizing their steel making facilities. However, very little was done to develop production management technology to complement these changes. The Logistics and Integrated Scheduling program (LIS) was undertaken to address this issue. LIS is an information management system that delivers better customer service, better quality materials, and a just-in-time delivery system. It involves three major components: (1) material marking and sensing: advanced R&D applied to determining cost effective, feasible solutions to passive inventory; (2) material inventory and tracking: advanced technology applied to managing inventory movement; (3) planning and scheduling: beginning with annual production plans, order management, and operational constraints, the ability to build integrated schedules capable of pull through and push through scheduling for various plant capability levels and location configurations with rapid turnaround capability. LIS provides accurate, automated tracking of material flows throughout the mill, the collection and analysis of production data, and automated schedule optimization.

  11. Processing and mechanical behavior of hypereutectoid steel wires

    SciTech Connect (OSTI)

    Lesuer, D.R.; Syn, C.K.; Sherby, O.D.; Kim, D.K.

    1996-06-25

    Hypereutectoid steels have the potential for dramatically increasing the strength of wire used in tire cord and in other high strength wire applications. The basis for this possible breakthrough is the elimination of a brittle proeutectoid network that can form along grain boundaries if appropriate processing procedures and alloy additions are used. A review is made of work done by Japanese and other researchers on eutectoid and mildly hypereutectoid wires. A linear extrapolation of the tensile strength of fine wires predicts higher strengths at higher carbon contents. The influence of processing, alloy additions and carbon content in optimizing the strength, ductility and fracture behavior of hypereutectoid steels is presented. It is proposed that the tensile strength of pearlitic wires is dictated by the fracture strength of the carbide lamella at grain boundary locations in the carbide. Methods to improve the strength of carbide grain boundaries and to decrease the carbide plate thickness will contribute to enhancing the ultrahigh strength obtainable in hypereutectoid steel wires. 23 refs., 13 figs., 1 tab.

  12. Impact Testing of Stainless Steel Material at Cold Temperatures

    SciTech Connect (OSTI)

    Spencer D. Snow; D. Keith Morton; Robert K. Blandford

    2008-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern are not well documented. However, a previous paper [1] reported on impact testing and analysis results performed at the Idaho National Laboratory using 304/304L and 316/316L stainless steel base material specimens at room and elevated temperatures. The goal of the work presented herein is to add recently completed impact tensile testing results at -20 degrees F conditions for dual-marked 304/304L and 316/316L stainless steel material specimens (hereafter referred to as 304L and 316L, respectively). Recently completed welded material impact testing at -20 degrees F, room, 300 degrees F, and 600 degrees F is also reported. Utilizing a drop-weight impact test machine and 1/4-inch to 1/2-inch thick dog-bone shaped test specimens, the impact tests achieved strain rates in the 4 to 40 per second range, depending upon the material temperature. Elevated true stress-strain curves for these materials reflecting varying strain rates and temperatures are presented herein.

  13. Ammonia removal process upgrade to the Acme Steel Coke Plant

    SciTech Connect (OSTI)

    Harris, J.L.

    1995-12-01

    The need to upgrade the ammonia removal process at the Acme Steel Coke Plant developed with the installation of the benzene NESHAP (National Emission Standard for Hazardous Air Pollutants) equipment, specifically the replacement of the final cooler. At Acme Steel it was decided to replace the existing open cooling tower type final cooler with a closed loop direct spray tar/water final cooler. This new cooler has greatly reduced the emissions of benzene, ammonia, hydrogen sulfide and hydrogen cyanide to the atmosphere, bringing them into environmental compliance. At the time of its installation it was not fully recognized as to the effect this would have on the coke oven gas composition. In the late seventies the decision had been made at Acme Steel to stop the production of ammonia sulfate salt crystals. The direction chosen was to make a liquid ammonia sulfate solution. This product was used as a pickle liquor at first and then as a liquid fertilizer as more markets were developed. In the fall of 1986 the ammonia still was brought on line. The vapors generated from the operation of the stripping still are directed to the inlet of the ammonia absorber. At that point in time it was decided that an improvement to the cyclical ammonia removal process was needed. The improvements made were minimal yet allowed the circulation of solution through the ammonia absorber on a continuous basis. The paper describes the original batch process and the modifications made which allowed continuous removal.

  14. Radiation effects in the stainless steel primary coolant supply adapter

    SciTech Connect (OSTI)

    Farrell, K.

    1995-09-01

    The primary coolant supply adapter (PCSA) is a flanged, cylindrical collar of 316NG stainless steel that is part of the primary pressure boundary of the Advanced Neutron Source. The radiation fluxes on the PCSA are dominated by thermal neutrons. During its intended 40-year service life, the PCSA will receive a thermal neutron fluence of 1.8 {times} 10{sup 26} m{sup {minus}2} in its upper sections at a temperature of <1OO{degree}C. The PCSA will suffer radiation damage, caused primarily by the interaction of thermal neutrons with the 14% nickel in the steel, which will generate helium by the sequential reactions {sup 58}Ni (n,y){sup 59}Ni (n,{alpha}){sup 56}Fe and will concurrently produce significant atomic displacements per atom (dpa) from the {sup 59}Ni (n,{alpha}){sup 56}Fe recoils. It is estimated that the helium concentration and total atomic displacements in the upper parts of the PCSA will be about 430 atomic parts per million and 1 dpa, respectively. From newly compiled trend curves of tensile properties and fracture toughness data versus atomic displacements for 316 steel, it is deduced that the irradiated PCSA will retain at least 20% uniform tensile elongation and a fracture toughness of more than 200 Mpa{radical}m, which are judged adequate to resist brittle failure. Tberefore, employment of a neutron shield around the PCSA is unnecessary.

  15. Electrochemical and microelectrode studies of stainless steel ennoblement

    SciTech Connect (OSTI)

    Dickinson, W.; Lewandowski, Z.

    1995-12-01

    Ennobled open-circuit potential (E{sub corr}) for stainless steel exposed to fresh river water is investigated using microelectrodes to measure dissolved oxygen, hydrogen peroxide, and local E{sub corr} within the biofilm. Results indicate the biofilm is uniformly aerobic and does not contain elevated levels of cathodic depolarizers. Development of ennobled potential is observed to correlate with E{sub corr} near beginning of exposure and occurs on surfaces exhibiting as little as 20% biofilm coverage. Galvanostatic measurements of coupon capacitance reveal a strong correlation between capacitance and E{sub corr} as the latter increases during microbial colonization. Cathodic reduction measurements indicate that an increase in surface Fe{sub 2}O{sub 3} content occurs for stainless steel samples that develop ennobled potential. Results suggest an ennoblement mechanism involving modifications of the metal-oxide surface. A new interpretation of cathodic polarization behavior for ennobled stainless steel is given based on proposed changes in cathodic reaction rates that occur on the microbially modified oxide surface during polarization.

  16. POLYETHERSULFONE COATING FOR MITIGATING CORROSION OF STEEL IN GEOTHERMAL ENVIRONMENT.

    SciTech Connect (OSTI)

    SUGAMA, T.

    2005-06-01

    Emphasis was directed toward evaluating the usefulness of a polyethersulfone (PES)-dissolved N-methyl pyrrolidone (NMP) solvent precursor as a low-temperature film-forming anti-corrosion coating for carbon steel in simulated geothermal environments at brine temperatures up to 300 C. A {approx} 75 {micro}m thick PES coating performed well in protecting the steel against corrosion in brine at 200 C. However, at {>=} 250 C, the PES underwent severe hydrothermal oxidation that caused the cleavage of sulfone- and ether-linkages, and the opening of phenyl rings. These, in turn, led to sulfone {yields} benzosulfonic acid and ether {yields} benzophenol-type oxidation derivative transformations, and the formation of carbonyl-attached open rings, thereby resulting in the incorporation of the functional groups, hydroxyl and carbonyl, into the coating. The presence of these functional groups raised concerns about the diminutions in water-shedding and water-repellent properties that are important properties of the anti-corrosion coatings; such changes were reflected in an enhancement of the magnitude of susceptibility of the coatings surfaces to moisture. Consequently, the disintegration of the PES structure by hydrothermal oxidation was detrimental to the maximum efficacy of the coating in protecting the steel against corrosion, allowing the corrosive electrolytes to infiltrate easily through it.

  17. Interaction of titanium-chromium diboride with carbon steels under glos discharge conditions

    SciTech Connect (OSTI)

    Globa, L.V.; Serebryakova, T.I.; Mukha, I.M.; Kholoptseva, T.V.

    1986-08-01

    This report is a continuation of the cycle of work on studying the conditions and processes of formation of the structures and phase composition in the zones of diffusion interaction of transition metal borides with carbon steels. An attempt was made to establish the rules of occurrence of diffusion processes in the zones of titanium-chromium diboride-carbon steels in a glow discharge. In connection with the significant difficulties in studying the structural and phase transformations in the thin layers of refractory coatings with the matrix the investigation was made of the zones of interaction of compact boride specimens with the corresponding steels, iron, and Armco iron. An analysis of the microstructures and the width of the zones of diffusion interaction of the titanium-chromium boride with the carbons steels and also the relationship of the microhardnesses in the (Ti, Cr) B/sub 2/-steel contact zone to the carbon content in the steel is shown.

  18. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    DOE Patents [OSTI]

    Buck, R.F.

    1994-05-10

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05--0.1 C, 8--12 Cr, 1--5 Co, 0.5--2.0 Ni, 0.41--1.0 Mo, 0.1--0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels. 2 figures.

  19. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    DOE Patents [OSTI]

    Buck, Robert F.

    1994-01-01

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05-0.1 C, 8-12 Cr, 1-5 Co, 0.5-2.0 Ni, 0.41-1.0 Mo, 0.1-0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels.

  20. Irradiation effects in low-alloy reactor pressure vessel steels (Heavy-Section Steel Technology Program Series 4 and 5)

    SciTech Connect (OSTI)

    Berggren, R.G.; McGowan, J.J.; Menke, B.H.; Nanstad, R.K.; Thoms, K.R.

    1984-01-01

    Multiple testing is done at two laboratories of typical nuclear pressure vessel materials (both irradiated and unirradiated) and statistical analyses of the test results. Multiple tests are conducted at each of several test temperatures for each material, standard deviations are determined, and results from the two laboratories are compared. The Fourth Heavy-Section Steel Technology (HSST) Irradiation Series, almost completed, was aimed at elastic-plastic and fully plastic fracture toughness of low-copper weldments (current practice welds). A typical nuclear pressure vessel plate steel was included for statistical purposes. The Fifth HSST Irradiation Series, now in progress, is aimed at determining the shape of the K/sub IR/ curve after significant radiation-induced shift of the transition temperatures. This series includes irradiated test specimens of thicknesses up to 100 mm and weldment compositions typical of early nuclear power reactor pressure vessel welds.

  1. Method to Improve Steel Creep Strength by Alloy Design and Heat Treatment -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Method to Improve Steel Creep Strength by Alloy Design and Heat Treatment National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication PON-13-003-improve-steel-creep-strength.pdf (265 KB) Technology Marketing Summary The current invention describes a steel formulation and manufacturing approach that produces USC creep capable, high Cr

  2. Webinar January 12: Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Assessing Steel Pipeline and Weld Susceptibility to Hydrogen Embrittlement” on Tuesday, January 12, from 12 to 1 p.m. EST. This webinar will discuss the breadth of testing performed at Sandia National Laboratories focused on the effects of hydrogen gas on steel pipelines and welds, and demonstrate how measured fatigue crack growth laws can be applied to calculate minimum wall thickness needed for steel hydrogen pipelines.

  3. Surface modification to improve fireside corrosion resistance of Fe-Cr ferritic steels

    DOE Patents [OSTI]

    Park, Jong-Hee; Natesan, Krishnamurti; Rink, David L.

    2010-03-16

    An article of manufacture and a method for providing an Fe--Cr ferritic steel article of manufacture having a surface layer modification for corrosion resistance. Fe--Cr ferritic steels can be modified to enhance their corrosion resistance to liquid coal ash and other chemical environments, which have chlorides or sulfates containing active species. The steel is modified to form an aluminide/silicide passivating layer to reduce such corrosion.

  4. WM2015 Conference, March, 15-19, 2015, Phoenix, Arizona, USA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March, 15-19, 2015, Phoenix, Arizona, USA † Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy. Impacts of an Additional Exhaust Shaft on WIPP

  5. Overview of Station Analysis Tools Developed in Support of H2USA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5/12/2015 U.S. DEPARTMENT OF ENERGY FUEL CELL TECHNOLOGIES OFFICE Overview of Station Analysis Tools Developed in Support of H2USA Presenter(s): Amgad Elgowainy, PhD Marc Melaina, PhD 5/12/2015 Fuel Cell Technologies Office | 2 5/12/2015 Question and Answer * Please type your questions into the question box hydrogenandfuelcells.energy.gov Fuel Cell Technologies Office | 3 5/12/2015 * Welcome and House Keeping - 5 minutes * Hydrogen Refueling Station Analysis Model (HRSAM) - 20 minutes - Amgad

  6. Secretary Moniz Joins President Obama in Visit to Cleveland High-Strength Steel Factory

    Office of Energy Efficiency and Renewable Energy (EERE)

    Secretary Moniz and President Obama toured a high-strength steel plant in Cleveland, Ohio where the President spoke about manufacturing, the economy, renewable energy and energy efficiency.

  7. Considerations for the Weldability of Types 304L and 316L Stainless Steel

    SciTech Connect (OSTI)

    Korinko, P.S.

    2001-06-28

    The susceptibility of austenitic stainless steels to solidification cracking and lack of penetration, two distinct weld characteristics related to the chemical composition of the base material is reviewed.

  8. An overview of bar and seamless tubular microalloyed steels for structural application

    SciTech Connect (OSTI)

    Aloi, N.E. Jr.; Luksa, J.E.

    1995-12-31

    Medium-carbon (0.15 to 0.40 wt.% C) vanadium microalloyed steels produced as large-diameter bar and seamless tubular long products have been successfully applied to structural applications. Microalloyed steels such as WMA-65 and WMA-80 are designed to replace either quenched-and-tempered or hot-rolled carbon steels. Incentives for converting to microalloyed steels include reduced material and processing costs or allowance for smaller, lighter components through increased strength realized through microalloying. Structural steels that require good weldability are restricted to lower carbon and alloy levels and thus are excellent candidates for microalloyed steels. Processing of high-strength vanadium-carbonitride precipitation-strengthened ferrite/pearlite microalloyed steel long products includes controlling bar rolling of sizes from 50 mm (2 in.) to 305 mm (12 in.) OD, or tube piercing of sizes from 38 mm (1.5 in.) to 320 mm (12.5 in.) OD, and air cooling at the steel mill. Bar products may be subsequently forged where controlled processing must also be performed to meet the desired properties. Both bar and tubing products are described. Chemical composition, mechanical properties, and weldability of the processed microalloyed steels are also discussed.

  9. Qualification of welded super 13%Cr martensitic stainless steels for sour service applications

    SciTech Connect (OSTI)

    Enerhaug, J.; Eliassen, S.L.; Kvaale, P.E.

    1997-08-01

    A test program has been carried out to qualify welded super 13%Cr stainless steels for sour service applications. The test program included weldability trials, weld simulations, mechanical testing and corrosion testing of 13%Cr steels from five different steel mills. Two of the tested steels have been qualified for use as flowline materials in some parts of new sour service fields. The result shows excellent weldability properties and acceptable corrosion properties. Post weld heat treatment (PWHT) of the welds improved the resistance towards sulfide stress corrosion cracking significantly.

  10. Compressed Air System Upgrade Generates Significant Energy Savings at a Steel Mill

    SciTech Connect (OSTI)

    2010-06-25

    In 1996, U.S. Steel completed a project in which the main compressed air system at their Edgar Thomson plant in Braddock, Pennsylvania was overhauled.

  11. Properties of Galvanized and Galvannealed Advanced High Strength Hot Rolled Steels

    SciTech Connect (OSTI)

    V.Y. Guertsman; E. Essadiqi; S. Dionne; O. Dremmailova; R. Bouchard; B. Voyzelle; J. McDermid; R. Fourmentin

    2008-04-01

    The objectives of the project were (i) to develop the coating process information to achieve good quality coatings on 3 advanced high strength hot rolled steels while retaining target mechanical properties, (ii) to obtain precise knowledge of the behavior of these steels in the various forming operations and (iii) to establish accurate user property data in the coated conditions. Three steel substrates (HSLA, DP, TRIP) with compositions providing yield strengths in the range of 400-620 MPa were selected. Only HSLA steel was found to be suitable for galnaizing and galvannealing in the hot rolled condition.

  12. Wear-Resistant NanoCompositeStainless Steel Coatings and Bits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and bulk components for geothermal drilling applications. highpeternanocompositebits.pdf (945.84 KB) More Documents & Publications Wear-Resistant, Nano-Composite Steel Coatings

  13. Martensitic/ferritic steels as container materials for liquid mercury target of ESS

    SciTech Connect (OSTI)

    Dai, Y.

    1996-06-01

    In the previous report, the suitability of steels as the ESS liquid mercury target container material was discussed on the basis of the existing database on conventional austenitic and martensitic/ferritic steels, especially on their representatives, solution annealed 316 stainless steel (SA 316) and Sandvik HT-9 martensitic steel (HT-9). Compared to solution annealed austenitic stainless steels, martensitic/ferritic steels have superior properties in terms of strength, thermal conductivity, thermal expansion, mercury corrosion resistance, void swelling and irradiation creep resistance. The main limitation for conventional martensitic/ferritic steels (CMFS) is embrittlement after low temperature ({le}380{degrees}C) irradiation. The ductile-brittle transition temperature (DBTT) can increase as much as 250 to 300{degrees}C and the upper-shelf energy (USE), at the same time, reduce more than 50%. This makes the application temperature range of CMFS is likely between 300{degrees}C to 500{degrees}C. For the present target design concept, the temperature at the container will be likely controlled in a temperature range between 180{degrees}C to 330{degrees}C. Hence, CMFS seem to be difficult to apply. However, solution annealed austenitic stainless steels are also difficult to apply as the maximum stress level at the container will be higher than the design stress. The solution to the problem is very likely to use advanced low-activation martensitic/ferritic steels (LAMS) developed by the fusion materials community though the present database on the materials is still very limited.

  14. Method of producing titanium-modified austenitic steel having improved swelling resistance

    DOE Patents [OSTI]

    Megusar, Janez; Grant, Nicholas J.

    1989-01-01

    A process for improving the swelling resistance of a titanium-modified austenitic stainless steel that involves a combination of rapid solidification and dynamic compaction techniques.

  15. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    SciTech Connect (OSTI)

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-09-25

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  16. Structural integrity assessment of type 201LN stainless steel cryogenic pressure vessels

    SciTech Connect (OSTI)

    Rana, M.D.; Zawierucha, R.

    1995-12-01

    The ASME Boiler and Pressure Vessel Code Committee approved the Code Case 2123 in 1992 which allows the use of Type 201LN stainless steel in the construction of ASME Section VIII, Division 1 and Division 2 pressure vessels for -320{degrees}F applications. Type 201LN stainless steel is a nitrogen strengthened modified version of ASTM A240, Type 201 stainless steel with a restricted chemistry. The Code allowable design stresses for Type 201LN for Division 1 vessels are approximately 27% higher than Type 304 stainless steel and equal to that of the 5 Ni and 9 Ni steels. This paper discusses the important features of the Code Case 2123 and the structural integrity assessment of Type 201LN stainless steel cryogenic vessels. Tensile, Charpy-V-notch and fracture properties have been obtained on several heats of this steel including weldments. A linear-elastic fracture mechanics analysis has been conducted to assess the expected fracture mode and the fracture-critical crack sizes. The results have been compared with Type 304 stainless steel, 5 Ni and 9 Ni steel vessels.

  17. Energy use and carbon dioxide emissions in the steel sector in key developing countries

    SciTech Connect (OSTI)

    Price, L.K.; Phylipsen, G.J.M.; Worrell, E.

    2001-04-01

    Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop and as demand for steel products such as materials, automobiles, and appliances increases. In this report, we describe the key steel processes, discuss typical energy-intensity values for these processes, review historical trends in iron and steel production by process in five key developing countries, describe the steel industry in each of the five key developing countries, present international comparisons of energy use and carbon dioxide emissions among these countries, and provide our assessment of the technical potential to reduce these emissions based on best-practice benchmarking. Using a best practice benchmark, we find that significant savings, in the range of 33% to 49% of total primary energy used to produce steel, are technically possible in these countries. Similarly, we find that the technical potential for reducing intensities of carbon dioxide emissions ranges between 26% and 49% of total carbon dioxide emissions from steel production in these countries.

  18. Results of charpy V-notch impact testing of structural steel...

    Office of Scientific and Technical Information (OSTI)

    MATERIALS SCIENCE; FERRITIC STEELS; PHYSICAL RADIATION EFFECTS; TENSILE PROPERTIES; IRRADIATION; CHARPY TEST A capsule containing Charpy V-notch (CVN) and mini-tensile specimens...

  19. Iron and Steel Sector (NAICS 3311 and 3312) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    99 2.6 IRON AND STEEL SECTOR (NAICS 3311, 3312) 2.6.1. Overview of the Iron and Steel Manufacturing Sector The iron and steel sector is an essential part of the U.S. manufacturing sector, providing the necessary raw material for the extensive industrial supply chain. U.S. infrastructure is heavily reliant on the U.S. iron and steel sector, as it provides the foundation for construction (bridges, buildings), transportation systems (railroads, cars, trucks), utility systems (municipal water

  20. USA National Phenology Network: Plant and Animal Life-Cycle Data Related to Climate Change

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Phenology refers to recurring plant and animal life cycle stages, such as leafing and flowering, maturation of agricultural plants, emergence of insects, and migration of birds. It is also the study of these recurring plant and animal life cycle stages, especially their timing and relationships with weather and climate. Phenology affects nearly all aspects of the environment, including the abundance and diversity of organisms, their interactions with one another, their functions in food webs, and their seasonable behavior, and global-scale cycles of water, carbon, and other chemical elements. Phenology records can help us understand plant and animal responses to climate change; it is a key indicator. The USA-NPN brings together citizen scientists, government agencies, non-profit groups, educators, and students of all ages to monitor the impacts of climate change on plants and animals in the United States. The network harnesses the power of people and the Internet to collect and share information, providing researchers with far more data than they could collect alone.[Extracts copied from the USA-NPN home page and from http://www.usanpn.org/about].