National Library of Energy BETA

Sample records for mitigation action implementation

  1. Mitigation Action Implementation Network (MAIN) | Open Energy...

    Open Energy Info (EERE)

    of Nationally Appropriate Mitigation Actions (NAMAs) and Low-Carbon Development (LCD) strategies in developing countries through regionally based dialogues, web-based...

  2. Implementing mitigative actions on the Superconducting Super Collider project

    SciTech Connect (OSTI)

    Sands, T.L. )

    1993-01-01

    The Super Collider is the first project for which a Mitigation Action Plan (MAP) was prepared under a DOE Order that became effective in 1990. The policy requires a MAP for any project where environmental findings were predicated on taking mitigative actions. The MAP must be approved prior to the start of preliminary design and thus cannot be site or facility-specific because the requisite level of detail would not be available. This gap is filled by a series of environmental compliance plans (ECP) that are prepared by the architect-engineer/constructions manager under the direction of the DOE Management and Operations Contractor for the Super Collider. A given ECP identifies the environmental protection measures applicable to the respective contract package. The designated design team uses the ECP as one of its requirements documents and the environmental staff uses it during design reviews to verify compliance with the MAP. Site audits and monitoring data are used to document compliance and verify the effectiveness of mitigative actions, or identify required corrective actions. The applicability of this process to other projects falling within the scope of the National Environmental Policy Act is discussed.

  3. WREP Mitigation Action Plan

    Energy Savers [EERE]

    Electrical Interconnection of the Whistling Ridge Energy Project 1 Mitigation Action Plan June 2015 Mitigation Action Plan for the Whistling Ridge Energy Project Measure Implementation Timeline Implementation Responsibility Earth (geology, soils, topography, and geologic hazards) Prior to Project construction, confirm subsurface soil and rock types and strength properties through a detailed geotechnical investigation of the specific locations of all wind Project elements, including wind

  4. Mitigation Action Plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This Mitigation Action Plan (MAP) focuses on mitigation commitments stated in the Supplemental Environmental Impact Statement (SEIS) and the Record of Decision (ROD) for the Naval Petroleum Reserve No. 1 (NPR-1). Specific commitments and mitigation implementation actions are listed in Appendix A-Mitigation Actions, and form the central focus of this MAP. They will be updated as needed to allow for organizational, regulatory, or policy changes. It is the intent of DOE to comply with all applicable federal, state, and local environmental, safety, and health laws and regulations. Eighty-six specific commitments were identified in the SEIS and associated ROD which pertain to continued operation of NPR-1 with petroleum production at the Maximum Efficient Rate (MER). The mitigation measures proposed are expected to reduce impacts as much as feasible, however, as experience is gained in actual implementation of these measures, some changes may be warranted.

  5. Mitigation Action Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation Action Plan FutureGen 2.0 Project DOE/EIS-0460 U.S. Department of Energy National Energy Technology Laboratory March 2014 DOE/EIS-0460 FUTUREGEN 2.0 PROJECT MITIGATION ACTION PLAN INTENTIONALLY LEFT BLANK DOE/EIS-0460 FUTUREGEN 2.0 PROJECT MITIGATION ACTION PLAN TABLE OF CONTENTS Introduction ................................................................................................................................................... 1 Purpose

  6. Mitigation Action Plan

    Energy Savers [EERE]

    Mitigation Action Plan FutureGen 2.0 Project DOE/EIS-0460 U.S. Department of Energy National Energy Technology Laboratory March 2014 DOE/EIS-0460 FUTUREGEN 2.0 PROJECT MITIGATION ACTION PLAN INTENTIONALLY LEFT BLANK DOE/EIS-0460 FUTUREGEN 2.0 PROJECT MITIGATION ACTION PLAN TABLE OF CONTENTS Introduction ................................................................................................................................................... 1 Purpose

  7. EA-1508: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and dewatering, landscape engineering, borrow pits and recommended procedures for Raptors and powerline construction. Mitigation Action Plan to Implement Mitigation...

  8. EA-1628: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lignocellulosic Biorefinery, Emmetsburg, Iowa This Mitigation Action Plan specifieis the methods for implementing mitigation measures that address the potential environmental...

  9. EIS-0422: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mitigation measures and estimated time of implementation within the Mitigation Action Plan for the Central Ferry-Lower Monumental 500-kilovolt Transmission Line Project. Mitigation...

  10. EIS-0218: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EIS-0218: Mitigation Action Plan Implementation of a Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel The ...

  11. EIS-0472: Mitigation Action Plan

    Broader source: Energy.gov [DOE]

    Uranium Leasing Program Mitigation Action Plan for the Final Uranium Leasing Program Programmatic Environmental Impact Statement

  12. EIS-0486: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EIS-0486: Mitigation Action Plan Plains & Eastern Clean Line Transmission Project DOE issued a Mitigation Action Plan that explains how mitigation measures, which have been designed to mitigate adverse environmental impacts associated with the course of action directed by the Record of Decision, will be planned and implemented. For more information visit the project page: http://energy.gov/node/583039. Download Document PDF icon EIS-0486: Mitigation Action Plan More

  13. MITIGATION ACTION PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... linear facilities may cross this additional buffer land. ... when duct firing natural gas (for supplemental energy ... mitigation requirements, andor monitoring ...

  14. Mitigation Action Plans (MAP) and Related Documents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0218: Mitigation Action Plan Implementation of a Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel May 1, 1994 EIS-0186:...

  15. EIS-0323: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    approval is implemented. PDF icon Mitigation Action Plan for the Sacramento Area Voltage Support Project Prepared to Accompany The Sacramento Area Voltage Support Project...

  16. EIS-0380: Mitigation Action Plan Annual Report

    Broader source: Energy.gov [DOE]

    Los Alamos National Laboratory Site-Wide Environmental Impact Statement Fiscal Year 2012 Mitigation Action Plan Annual Report

  17. EIS-0397: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EIS-0397: Mitigation Action Plan Lyle Falls Fish Passage Project This Mitigation Action Plan identifies measures that are intended to avoid, reduce, or...

  18. EA-1934: 2014 Annual Report for Mitigation Action Plan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanford Site, Richland, Washington This annual report provides a summary of DOEEA-1934 Mitigation Action Plan implementation in calendar year 2014. PDF icon EA-1934-FEA-MAP-2014...

  19. EA-1923: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EA-1923: Mitigation Action Plan Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern Mariana Islands This Mitgation Action Plan ...

  20. EA-1934: 2015 Annual Report for Mitigation Action Plan | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2015 Annual Report for Mitigation Action Plan EA-1934: 2015 Annual Report for Mitigation Action Plan Expansion of Active Borrow Areas, Hanford Site, Richland, Washington This annual report provides a summary of DOE/EA-1934 Mitigation Action Plan implementation in calendar year 2015. For more information, see http://energy.gov/node/381343. PDF icon EA-1934_FEA_MAP_2015 More Documents & Publications EA-1934: 2014 Annual Report for Mitigation Action Plan EA-1934: Final Environmental

  1. Mitigation Action Plans and Scenarios (MAPS) | Open Energy Information

    Open Energy Info (EERE)

    Mitigation Action Plans and Scenarios (MAPS) (Redirected from CIFF-Chile-Mitigation Action Plans and Scenarios (MAPS)) Jump to: navigation, search Retrieved from "http:...

  2. Angola-Nationally Appropriate Mitigation Actions (NAMAs) in the...

    Open Energy Info (EERE)

    Angola-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Jump to: navigation, search Name Angola-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo...

  3. EIS-0464: Mitigation Action Plan | Department of Energy

    Office of Environmental Management (EM)

    Lake Charles Carbon Capture and Sequestration Project, Lake Charles, Louisiana and Brazoria County, Texas This Mitigation Action Plan (MAP) briefly describes the mitigation actions ...

  4. EA-1706: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EA-1706: Mitigation Action Plan West Tennessee Solar Farm Project Haywood County, Tennessee Based on the analyses in the Environmental Assessment, DOE...

  5. EIS-0380: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Mitigation Action Plan EIS-0380: Mitigation Action Plan Continued Operation of Los Alamos National Laboratory, Los Alamos, New Mexico PDF icon Site-Wide Environmental Impact ...

  6. EIS-0380: Fiscal Year 2011 Mitigation Action Plan Annual Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiscal Year 2011 Mitigation Action Plan Annual Report for the 2008 Los Alamos Site-Wide Environmental Impact Statement EIS-0380: Fiscal Year 2011 Mitigation Action Plan Annual ...

  7. EA-1562-SA-1: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EA-1562-SA-1: Mitigation Action Plan Construction and Operation of a Physical Sciences Facility at the Pacific Northwest National Laboratory, Richland, Washington (Mitigation Action Plan for Phase II Build Out, North Federal Campus, PNNL Site) This mitigation plan describes the compensatory mitigation and monitoring commitments under DOE resource management guidelines for the clearing and grading, and subsequent loss of mature shrub-steppe habitat associated with Phase II

  8. EIS-0473: Mitigation Action Plan | Department of Energy

    Office of Environmental Management (EM)

    EIS-0473: Mitigation Action Plan W.A. Parish Post-Combustion CO2 Capture and Sequestration Project, Fort Bend County, Texas This Mitigation Action Plan (MAP) briefly describes the ...

  9. Peru-GEF Nationally Appropriate Mitigation Actions in the Energy...

    Open Energy Info (EERE)

    (Redirected from UNDP-Peru GEF Nationally Appropriate Mitigation Actions in the Energy Generation and End-Use Sectors)...

  10. EIS-0425: Record of Decision and Mitigation Action Plan

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration Record of Decision and Mitigation Action Plan for the Mid-Columbia Restoration Project

  11. EIS-0380: Annual Mitigation Action Plan Annual Report

    Broader source: Energy.gov [DOE]

    Los Alamos National Laboratory Site-Wide Environmental Impact Statement Fiscal Year 2013 Mitigation Action Plan Annual Report

  12. EIS-0389: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Action Plan EIS-0389: Mitigation Action Plan Trinity Public Utilities District Direct Interconnection Project Western Area Power Administration (Western) proposes to...

  13. MITIGATION ACTION PLAN FOR THE PLAINS & EASTERN CLEAN LINE TRANSMISSION PROJECT

    Energy Savers [EERE]

    MITIGATION ACTION PLAN FOR THE PLAINS & EASTERN CLEAN LINE TRANSMISSION PROJECT DOE/EIS-0486 MARCH 2016 3 1 INTRODUCTION The U.S. Department of Energy (DOE) National Environmental Policy Act (NEPA) Implementing Procedures (Title 10 Code of Federal Regulations [CFR] 1021.331) require completion of a mitigation action plan (MAP) following each Environmental Impact Statement (EIS) and its associated Record of Decision (ROD) to address mitigation commitments expressed in the ROD. The DOE Notice

  14. UNEP-Ethiopia-Facilitating Implementation and Readiness for Mitigation...

    Open Energy Info (EERE)

    UNEP-Ethiopia-Facilitating Implementation and Readiness for Mitigation (FIRM) Redirect page Jump to: navigation, search REDIRECT Facilitating Implementation and Readiness for...

  15. EA-1855: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lincoln and Spokane Counties, Washington (aka DOEEA-4406) This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact for the Creston-Bell...

  16. EA-1591: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan Palisades-Goshen Transmission Line Reconstruction Project This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact (FONSI) for the...

  17. EA-1901: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    White Sturgeon and Burbot Hatcheries Project, Bonners Ferry, Boundary County, Idaho This Mitigation Action Plan (MAP) is referenced in the Finding of No Significant Impact for the...

  18. EA-1739: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    More Documents & Publications EA-1951: Finding of No Significant Impact and Mitigation Action Plan EA-1739: Finding of No Significant Impact EIS-0285-SA-117: Supplement Analysis

  19. EIS-0332: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    transmission line between Bonneville Power Administration's existing McNary and John Day substations. PDF icon Mitigation Action Plan for the McNary-John Day Transmission...

  20. EA-1858: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    boiler and a 20-megawatt steam turbine at its existing paper mill in Port Angeles, Washington. PDF icon Mitigation Action Plan for the Environmental Assessment for the...

  1. Mitigation Action Plans (MAP) and Related Documents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project, Grant and Okanogon Counties, Washington November 1, 2011 EIS-0350-S1: Mitigation Action Plan Nuclear Facility Portion of the Chemistry and Metallurgy Research Building...

  2. Mitigation Action Plans (MAP) and Related Documents | Department...

    Broader source: Energy.gov (indexed) [DOE]

    EA-1704: Mitigation Action Plan Construction and Operation of a Proposed Cellulosic Biorefinery, BlueFire Fulton Renewable Energy, LLC, Fulton, Mississippi March 10, 2010...

  3. EIS-0323: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan for the Sacramento Area Voltage Support Project which is prepared to accompany the Sacramento Area Voltage Support Project Supplement Environmental Impact...

  4. Central African Republic-Nationally Appropriate Mitigation Actions...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  5. Burundi-Nationally Appropriate Mitigation Actions (NAMAs) in...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  6. Rwanda-Nationally Appropriate Mitigation Actions (NAMAs) in the...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  7. Cameroon-Nationally Appropriate Mitigation Actions (NAMAs) in...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  8. Fiscal Year 2013 Trails Management Program Mitigation Action Plan Annual Report, October 2013

    SciTech Connect (OSTI)

    Pava, Daniel S.

    2015-03-25

    This Trails Management Program Mitigation Action Plan Annual Report (Trails MAPAR) has been prepared for the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) as part of implementing the 2003 Final Environmental Assessment for the Proposed Los Alamos National Laboratory Trails Management Program (DOE 2003). The Trails Mitigation Action Plan (MAP) is now a part of the Site-Wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (DOE/EIS 0380) Mitigation Action Plan (2008 SWEIS MAP) (DOE 2008). The MAP provides guidance for the continued implementation of the Trails Management Program at Los Alamos National Laboratory (LANL) and integration of future mitigation actions into the 2008 SWEIS MAP to decrease impacts associated with recreational trails use at LANL. This eighth MAPAR includes a summary of Trails Management Program activities and actions during Fiscal Year (FY) 2013, from October 2012 through September 2013.

  9. Southern Idaho Wildlife Mitigation Implementation 2000 Annual Report.

    SciTech Connect (OSTI)

    Bottum, Edward; Mikkelsen, Anders

    2001-03-01

    This report covers calendar year 2000 activities for the Southern Idaho Wildlife Mitigation Implementation project. This project, implemented by Idaho Department of Fish and Game and Shoshone Bannock Tribes wildlife mitigation staff, is designed to protect, enhance and maintain wildlife habitats to mitigate construction losses for Palisades, Anderson Ranch, Black Canyon and Minidoka hydroelectric projects. Additional project information is available in the quarterly reports.

  10. Southern idaho Wildlife Mitigation Implementation 1999 Annual Report.

    SciTech Connect (OSTI)

    Bottum, Edward; Mikkelsen, Anders

    2000-04-01

    This report is for the Southern Idaho Wildlife Mitigation Implementation project. This project, implemented by IDFG and SBT wildlife mitigation staff, is designed to protect, enhance and maintain wildlife habitats to mitigate construction losses for Palisades, Anderson Ranch, Black Canyon and Minidoka hydroelectric projects. Additional project information is available in the quarterly reports.

  11. EIS-0026: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0026: Mitigation Action Plan Waste Isolation Pilot Plant This MAP focuses on ... Action Plan, is the central focus of this MAP and will be updated as needed to allow for ...

  12. EA-1440-S-I: Mitigation Action Plan Completion Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy EA-1440-S-I: Mitigation Action Plan Completion Report EA-1440-S-I: Mitigation Action Plan Completion Report This report presents the U.S. Department of Energy's completion of the May 2008 Mitigation Action Plan (MAP) for the Supplement to the Final Site-Wide Environmental Assessment of the National Renewable Energy Laboratory's South Table Mountain Complex (DOE/EA-1440-S-I) . Since May 2008, DOE and the National Renewable Energy Laboratory (NREL) have implemented various traffic

  13. Hungry Horse Dam Fisheries Mitigation Implementation Plan, 1990-2003 Progress (Annual) Report.

    SciTech Connect (OSTI)

    Montana Department of Fish, Wildlife and Parks; Confederated Salish and Kootenai Tribes

    1993-03-10

    In this document the authors present mitigation implementation activities to protect and enhance resident fish and aquatic habitat affected by the construction and operation of Hungry Horse Dam. This plan only addresses non-operational actions (mitigation measures that do not affect dam operation) described in the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' (Mitigation Plan) submitted to the Northwest Power Planning Council (Council) in March 1991 and in accordance with subsequent Council action on that Mitigation Plan. Operational mitigation was deferred for consideration under the Columbia Basin System Operation Review (SOR) process. This document represents an implementation plan considered and conditionally approved by the Council in March of 1993.

  14. EA-1595: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    Mitigation Action Plan EA-1595: Mitigation Action Plan Davis-Mead 230-kV Transmission Line Reconductor Project Western Area Power Administration proposes to reconductor approximately 61 miles of 230-kV transmission line from the Davis Substation at Davis Dam near Bullhead City, Arizona, to the Mead Substation near Boulder City in southern Nevada. PDF icon Mitigation Action Plan for the Davis-Mead 230-kV Transmission Line Reconductor Project, DOE/EA-1595 (November 2007) More Documents &

  15. EA-1934: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This Mitigation Action Plan is an integral part of the Finding of No Significant Impact ... borrow source. This MAP includes all the integral elements and commitments made in the EA ...

  16. EA-1636: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Burnt Woods and Santiam-Toledo Pole Replacement Project This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact (FONSI) for the Albany-Burnt Woods and...

  17. EIS-0332: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kV transmission line between Bonneville Power Administration's existing McNary and John Day substations. PDF icon DOEEIS-0332: Mitigation Action Plan for the McNary-John Day...

  18. EIS-0460: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FutureGen 2.0 Project, Morgan County, Illinois This Mitigation Action Plan (MAP) briefly ... DOE prepared this MAP in accordance with 10 Code of Federal Regulations (CFR) 1021.331. ...

  19. EIS-0425: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Project BPA decided to implement the Proposed Action of the Mid-Columbia Coho Restoration Program as described in the Mid-Columbia Coho Restoration Program Final Environmental...

  20. DOE/EA-1915 MITIGATION ACTION PLAN PROPOSED CONVEYANCE OF LAND AT THE HANFORD SITE,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EA for Conveyance of Land at the Hanford Site, Richland, WA Page 1 of 6 September 2015 DOE/EA-1915 MITIGATION ACTION PLAN PROPOSED CONVEYANCE OF LAND AT THE HANFORD SITE, RICHLAND, WASHINGTON AGENCY: U.S. Department of Energy Richland Operations Office ACTION: Mitigation Action Plan SUMMARY: This Mitigation Action Plan (MAP) is an integral part of the Finding of No Significant Impact (FONSI) for the United States Department of Energy's (DOE) Environmental Assessment for Proposed Conveyance of

  1. EA-1950: Finding of No Significant Impact and Mitigation Action Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0: Finding of No Significant Impact and Mitigation Action Plan EA-1950: Finding of No Significant Impact and Mitigation Action Plan Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington Bonneville Power Administration issued a finding of no significant impact and a mitigation action plan for rebuilding approximately 28 miles of the Grand Coulee-Creston No. 1 115-kilovolt (kV) transmission line between Coulee Dam in Grant County and

  2. Implementation Proposal for the National Action Plan on Demand...

    Energy Savers [EERE]

    Implementation Proposal for the National Action Plan on DemandResponse - July 2011 Implementation Proposal for the National Action Plan on Demand Response - July 2011 Report to ...

  3. Mitigation Action Plan: Lease of Parcel ED-1 of the Oak Ridge Reservation by the East Tennessee Economic Council

    SciTech Connect (OSTI)

    1996-04-01

    In April 1996, the U.S. Department of Energy (DOE) completed an environmental assessment (EA) (DOE/EA-1113) for the proposed lease of 957-16 acres (Parcel ED-1) of the Oak Ridge (Tennessee) Reservation (ORR) by the East Tennessee Economic Council (ETEC) for industrial development. DOE plans to issue a Finding of No Significant Impact (FONSI) for the proposed action, conditional upon the implementation of mitigation and monitoring to protect environmental resources. According to DOE`s National Environmental Policy Act (NEPA) regulations (10 CFR 1021.322), a FONSI shall include {open_quotes}any commitments to mitigations that are essential to render the impacts of the proposed action not significant, beyond those mitigations that are integral elements of the proposed action, and a reference to the Mitigation Action Plan prepared under 10 CTR 1021.331{close_quotes}. Terms of the lease offer DOE the option of terminating the lease with ETEC should the lessee and/or sublessees fail to implement the mitigation defined in the FONSI.

  4. EIS-0419: Mitigation Action Plan | Department of Energy

    Office of Environmental Management (EM)

    Ridge Energy Project; Skamania County, Washington Bonneville Power Administration (BPA) adopted all the mitigation measures described in the Whistling Ridge Energy Project...

  5. Institutional Change Process Step 4: Implement an Action Plan | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 4: Implement an Action Plan Institutional Change Process Step 4: Implement an Action Plan Graphic showing 5 gears. They progress from Determine Goal to Identify Context-Rules, Roles and Tools to Develop Action Plan to Implement Plan to Measure and Evaluate. Process for Continuous Change Writing a good action plan is one thing; implementing it is another. Institutional change principles and methods can be incorporated into action plans (program design), but on-the-ground

  6. EAC Recommendations for DOE Action Regarding Implementing Effective...

    Broader source: Energy.gov (indexed) [DOE]

    Implementing Effective Enterprise Security Governance, approved at the March 12-13, 2014 meeting. EAC Recommendations for DOE Action Regarding Implementing Effective Enterprise...

  7. EAC Recommendations for DOE Action Regarding Implementing Effective...

    Broader source: Energy.gov (indexed) [DOE]

    Implementing Effective Enterprise Security Governance, approved at the March 12-13, 2014 meeting. EAC Recommendations for DOE Action Regarding Implementing Effective...

  8. EIS-0384: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    project designers and reviewers minimized short-term and long-term environmental and social impacts of the Proposed Action through project design, consultation with regulatory...

  9. Evaluating the implementation of environmental review mitigation in local planning and development processes

    SciTech Connect (OSTI)

    Slotterback, Carissa Schively

    2008-11-15

    The implementation of mitigation strategies and outcomes of environmental review remains a challenge for planners and regulators. While the process and content of environmental review is clearly defined, there is often little attention to what happens after the review is completed. This paper presents the results of an evaluation of the implementation of the outcomes of environmental review, specifically mitigation measures designed to respond to environmental impacts identified in the environmental impact analysis. Drawing on previous evaluations of environmental review outcomes and plan implementation, the research provides a methodology for evaluating the implementation of mitigation efforts, points to the challenges associated with implementing the mitigation outcomes of local environmental review in planning and development processes, and identifies opportunities to integrate planning and environmental review processes.

  10. NREL: Climate Neutral Research Campuses - Implementing the Climate Action

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan Implementing the Climate Action Plan When implementing climate action plans on research campuses, two important and related questions must be answered. How do we pay for climate actions? And, who will manage and oversee implementation of the plan? The answer to each question will be specific to your campus. Narrow climate action plans focus on incremental savings through low-cost and voluntary measures. This approach begs the question about what should be done after the short-term,

  11. Environmental Assessment and Finding of No Significant Impact: Implementation of the Wetland Mitigation Bank Program at the Savannah River Site

    SciTech Connect (OSTI)

    N /A

    1999-04-28

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1205) for the proposed implementation of a wetland mitigation bank program at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI) and Floodplain Statement of Findings.

  12. EIS-0506: Record of Decision and Mitigation Action Plan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BPA decided to provide funding for implementing the project to improve tributary fish ... debris for bank structure and instream fish habitat, constructing side channels and ...

  13. Argentina-The Mitigation Action Implementation Network (MAIN...

    Open Energy Info (EERE)

    Ministry of Energy Argentina Sector Climate, Energy, Land Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, - Waste to Energy, Economic Development,...

  14. Colombia-The Mitigation Action Implementation Network (MAIN)...

    Open Energy Info (EERE)

    of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and...

  15. Thailand-The Mitigation Action Implementation Network (MAIN)...

    Open Energy Info (EERE)

    of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and...

  16. India-The Mitigation Action Implementation Network (MAIN) | Open...

    Open Energy Info (EERE)

    of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and...

  17. Mexico-The Mitigation Action Implementation Network (MAIN) |...

    Open Energy Info (EERE)

    of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and...

  18. Panama-The Mitigation Action Implementation Network (MAIN) |...

    Open Energy Info (EERE)

    of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and...

  19. Costa Rica-The Mitigation Action Implementation Network (MAIN...

    Open Energy Info (EERE)

    of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and...

  20. Dominican Republic-The Mitigation Action Implementation Network...

    Open Energy Info (EERE)

    Republic, National Energy Commission Dominican Republic, Ministry of Environment and Natural Resources Dominican Republic, Ministry of Economy, Planning and Development Dominican...

  1. Indonesia-The Mitigation Action Implementation Network (MAIN...

    Open Energy Info (EERE)

    of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and...

  2. Brazil-The Mitigation Action Implementation Network (MAIN) |...

    Open Energy Info (EERE)

    of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and...

  3. Philippines-The Mitigation Action Implementation Network (MAIN...

    Open Energy Info (EERE)

    of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and...

  4. China-The Mitigation Action Implementation Network (MAIN) | Open...

    Open Energy Info (EERE)

    of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and...

  5. Vietnam-The Mitigation Action Implementation Network (MAIN) ...

    Open Energy Info (EERE)

    of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and...

  6. Malaysia-The Mitigation Action Implementation Network (MAIN)...

    Open Energy Info (EERE)

    of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and...

  7. Chile-The Mitigation Action Implementation Network (MAIN) | Open...

    Open Energy Info (EERE)

    of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and...

  8. Pakistan-The Mitigation Action Implementation Network (MAIN)...

    Open Energy Info (EERE)

    of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and...

  9. Uruguay-The Mitigation Action Implementation Network (MAIN) ...

    Open Energy Info (EERE)

    of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and...

  10. Peru-The Mitigation Action Implementation Network (MAIN) | Open...

    Open Energy Info (EERE)

    of Energy Thailand, Ministry of Industry Thailand, Ministry of Natural Resources and Environment Thailand, Pollution Control Department, Ministry of Natural Resources and...

  11. Mitigation Action Implementation Network (MAIN) Feed | Open Energy...

    Open Energy Info (EERE)

    US Savannah River National Laboratory (SRNL) UNEP-Risoe Centre on Energy, Climate and Sustainable Development United Nations Environment Programme (UNEP) United Nations...

  12. Mitigation Action Plans (MAP) and Related Documents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1021.331) that describes the plan for implementing commitments made in a DOE environmental impact statement and its associated record of decision, or, when appropriate, an EA or ...

  13. Mitigation Measures for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation Action Plans (MAP) and Related Documents Mitigation Action Plans (MAP) and Related Documents Mitigation Action Plans are documents DOE prepares in accordance with DOE NEPA regulations (10 CFR 1021.331) that describes the plan for implementing commitments made in a DOE environmental impact statement and its associated record of decision, or, when appropriate, an EA or FONSI, to mitigate adverse environmental impacts associated with an action. If you have any trouble finding a specific

  14. Step 4: Implement an Action Plan for Institutional Change

    Broader source: Energy.gov [DOE]

    Writing a good action plan is one thing; implementing it is another. Institutional change principles and methods can be incorporated into action plans (program design), but on-the-ground implementation activities must also be conducted in a manner that is suitable to the organizational context and the people in the roles being targeted.

  15. Implement an Institutional Change Action Plan for Sustainability

    Broader source: Energy.gov [DOE]

    Writing a good action plan is one thing; implementing it is another. Institutional change principles and methods can be incorporated into action plans (program design), but on-the-ground implementation activities must also be conducted in a manner that is suitable to the organizational context and the people in the roles being targeted.

  16. Institutional Change Process Step 4: Implement an Action Plan

    Broader source: Energy.gov [DOE]

    Writing a good action plan is one thing; implementing it is another. Institutional change principles and methods can be incorporated into action plans (program design), but on-the-ground implementation activities must also be conducted in a manner that is suitable to the organizational context and the people in the roles being targeted.

  17. Final environmental impact statement for the Nevada Test Site and off-site locations in the state of Nevada: Mitigation action plan

    SciTech Connect (OSTI)

    1997-02-01

    The DOE Notice of Availability for this environmental impact statement was published in the Federal Register on Friday, October 18, 1996 (61 FR 54437). The final environmental impact statement identifies potential adverse effects resulting from the four use alternatives evaluated and discusses measures that DOE considered for the mitigation of these potential adverse effects. The Secretary of Energy signed the Record of Decision on the management and operation of the Nevada Test Site and other DOE sites in the state of Nevada on December 9, 1996. These decisions will result in the continuation of the multipurpose, multi-program use of the Nevada Test Site, under which DOE will pursue a further diversification of interagency, private industry, and public-education uses while meeting its Defense Program, Waste Management, and Environmental Restoration mission requirements at the Nevada Test Site and other Nevada sites, including the Tonopah Test Range, the Project Shoal Site, the Central Nevada Test Area, and on the Nellis Air Force Range Complex. The Record of Decision also identifies specific mitigation actions beyond the routine day-to-day physical and administrative controls needed for implementation of the decisions. These specific mitigation actions are focused on the transportation of waste and on groundwater availability. This Mitigation Action Plan elaborates on these mitigation commitments.

  18. EIS-0380: Fiscal Year 2011 Mitigation Action Plan Annual Report for the 2008 Los Alamos Site-Wide Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Fiscal Year 2011 Mitigation Action Plan Annual Report for the 2008 Los Alamos Site-Wide Environmental Impact Statement

  19. Statement from Secretary Moniz on Implementation Day for the Joint Comprehensive Plan of Action

    Broader source: Energy.gov [DOE]

    Secretary Moniz's statement on Implementation Day for the Joint Comprehensive Plan of Action (the Iran Deal).

  20. Final Report. SFAA No. DEFC02-98CH10961. Technical assistance for joint implementation and other supporting mechanisms and measures for greenhouse gas emissions mitigation

    SciTech Connect (OSTI)

    Knight, Denise

    2001-10-15

    IIEC, a division of CERF, has developed an extensive base of experience implementing activities that support climate action by developing USIJI projects in transitional countries within Asia, Latin America, Central and Eastern Europe, and southern Africa. IIEC has been able to provide a range of technical and policy assistance to governments and industry in support of sustainable energy use. IIEC continues to work in key countries with local partners to develop and implement energy efficiency policies and standards, develop site-specific projects, and assist governing bodies to establish national priorities and evaluation criteria for approving GHG-mitigation projects. As part of this project, IIEC focused on promoting a series of activities in Thailand and South Africa in order to identify GHG mitigation projects and work within the national approval process of those countries. The sections of this report outline the activities conducted in each country in order to achieve that goal.

  1. EAC Recommendations for DOE Action Regarding Implementing Effective Enterprise Security Governance- March 2014

    Broader source: Energy.gov [DOE]

    EAC Recommendations for DOE Action Regarding Implementing Effective Enterprise Security Governance, approved at the March 12-13, 2014 meeting.

  2. EIS-0026: Annual Mitigation Report | Department of Energy

    Office of Environmental Management (EM)

    2010 Annual Mitigation Report EIS-0026: 2010 Annual Mitigation Report Waste Isolation Pilot Plant Guidance for the development of a Mitigation Action Plan (MAP) is contained in Department of Energy (DOE) Order 451.1B, National Environmental Policy Act Compliance Program, and 10 CFR 1021, National Environmental Policy Act Implementing Procedures. These documents specify that a MAP be prepared to mitigate environmental impacts resulting from the implementation of commitments made in the Record

  3. Implementation of Executive Order 12114 Environmental Effects Abroad of Major Federal Actions: Final Guideline (DOE, 1981)

    Broader source: Energy.gov [DOE]

    The Department of Energy hereby adopts final Departmental guidelines implementing Executive Order 12114-Environmental Effecrs Abroad of Major Federal Actions, whic was issued on January 4, 1979.

  4. Institutional Change Process Step 4: Implement an Action Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Use these examples to think through how to implement institutional change. IBM: Driving Operation Changes through an Energy Monitoring System U.S. Fish and Wildlife Service: ...

  5. Mitigation action plan sale of Naval Petroleum Reserve No. 1 (Elk Hills) Kern County, California

    SciTech Connect (OSTI)

    1998-01-01

    Naval Petroleum Reserve No. 1 (NPR-1, also called {open_quotes}Elk Hills{close_quotes}), a Federally-owned oil and gas production field in Kern County, California, was created by an Executive Order issued by President Taft on September 2, 1912. He signed another Executive Order on December 13, 1912, to establish Naval Petroleum Reserve No. 2 (NPR-2), located immediately south of NPR-1 and containing portions of the town of Taft, California. NPR-1 was not developed until the 1973-74 oil embargo demonstrated the nation`s vulnerability to oil supply interruptions. Following the embargo, Congress passed the Naval Petroleum Reserves Production Act of 1976 which directed that the reserve be explored and developed to its fall economic potential at the {open_quotes}maximum efficient rate{close_quotes} (MER) of production. Since Elk Hills began full production in 1976, it has functioned as a commercial operation, with total revenues to the Federal government through FY 1996 of $16.4 billion, compared to total exploration, development and production costs of $3.1 billion. In February 1996, Title 34 of the National Defense Authorization Act for Fiscal Year 1996 (P.L. 104-106), referred to as the Elk Hills Sales Statute, directed the Secretary of Energy to sell NPR-1 by February 10, 1998.The Secretary was also directed to study options for enhancing the value of the other Naval Petroleum and Oil Shale Reserve properties such as NPR-2, located adjacent to NPR-1 in Kern County- Naval Petroleum Reserve No. 3 (NPR-3) located in Natrona County, Wyoming; Naval Oil Shale Reserves No. 1 and No. 3 (NOSR-1 and NOSR-3) located in Garfield County, Colorado; and Naval Oil Shale Reserve No. 2 (NOSR-2) located in Uintah and Carbon Counties, Utah. The purpose of these actions was to remove the Federal government from the inherently non-Federal function of operating commercial oil fields while making sure that the public would obtain the maximum value from the reserves.

  6. Experimental Investigation of the Root Cause Mechanism and Effectiveness of Mitigating Actions for Axial Offset Anomaly in Pressurized Water Reactors

    SciTech Connect (OSTI)

    Said Abdel-Khalik

    2005-07-02

    Axial offset anomaly (AOA) in pressurized water reactors refers to the presence of a significantly larger measured negative axial offset deviation than predicted by core design calculations. The neutron flux depression in the upper half of high-power rods experiencing significant subcooled boiling is believed to be caused by the concentration of boron species within the crud layer formed on the cladding surface. Recent investigations of the root-cause mechanism for AOA [1,2] suggest that boron build-up on the fuel is caused by precipitation of lithium metaborate (LiBO2) within the crud in regions of subcooled boiling. Indirect evidence in support of this hypothesis was inferred from operating experience at Callaway, where lithium return and hide-out were, respectively, observed following power reductions and power increases when AOA was present. However, direct evidence of lithium metaborate precipitation within the crud has, heretofore, not been shown because of its retrograde solubility. To this end, this investigation has been undertaken in order to directly verify or refute the proposed root-cause mechanism of AOA, and examine the effectiveness of possible mitigating actions to limit its impact in high power PWR cores.

  7. Mitigation Action Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... below ground surface), which is one of the Illinois Basin's major deep saline formations. ... to generate oxygen, modifications to the power block (including a new boiler and gas ...

  8. NEPA mitigation and monitoring activities on Army installations

    SciTech Connect (OSTI)

    Reinke, D.C.; Robitaille, P.

    1995-12-01

    The Army National Environmental Policy Act (NEPA) implementation regulation AR 200-2 (Army Regulation) requires only mitigation measures that can reasonably be accompanied as part of a proposed alternative be identified in the NEPA document. Failure of the identified mitigation actions to be executed or to perform as expected leads to a required reevaluation of the project and the significance of its impacts. The USAEC has undertaken a study of mitigation and monitoring actions listed in Army NEPA documents. As part of the USAEC NEPA program the study has outlined three major tasks (1) collection of a significant sample of Army NEPA documents, (2) review environmental documentation management and retention, and (3) review in detail a subsample of documents and follow-up with site visits. Some 242 Army NEPA documents, Environmental Assessments (EA) and Environmental Impact Statements (EIS) were collected and evaluated for mitigation requirements. Ninety seven of the 242 NEPA documents committed to one or more mitigation actions. While a wide array of mitigating activities have been identified in these documents, the four most common are (1) management plans and practices, (2) training actions, (3) revegetation actions, and (4) construction practices. Site visits to selected Army installations showed that mitigation practices were for the most part being done, but were poorly documented. No installation visited had a mitigation monitoring plan in place as required by AR 200-2.

  9. EIS-0026: Annual Mitigation Report | Department of Energy

    Energy Savers [EERE]

    Annual Mitigation Report EIS-0026: Annual Mitigation Report The Waste Isolation Pilot Plant (WIPP) Mitigation Action Plan was prepared to address commitments made in the RODs for...

  10. FY 95 engineering work plan for the design reconstitution implementation action plan

    SciTech Connect (OSTI)

    Bigbee, J.D.

    1994-11-09

    Design reconstitution work is to be performed as part of an overall effort to upgrade Configuration Management (CM) at TWRS. WHC policy is to implement a program that is compliant with DOE-STD-1073-93, Guide for Operational Configuration Management Program. DOE-STD-1073 requires an adjunct program for reconstituting design information. WHC-SD-WM-CM-009, Design Reconstitution Program Plan for Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System, is the TWRS plan for meeting DOE-STD-1073 design reconstitution requirements. The design reconstitution plan is complex requiring significant time and effort for implementation. In order to control costs, and integrate the work into other TWRS activities, a Design Reconstitution Implementation Action Plan (DR IAP) will be developed, and approved by those organizations having ownership or functional interest in this activity.

  11. DOE and FERC Jointly Submit Implementation Proposal for The National Action Plan on Demand Response to Congress

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy and the Federal Energy Regulatory Commission (FERC) jointly submitted to Congress a required “Implementation Proposal for The National Action Plan on Demand Response.”

  12. Model-Predictive Cascade Mitigation in Electric Power Systems With Storage and Renewables-Part I: Theory and Implementation

    SciTech Connect (OSTI)

    Almassalkhi, MR; Hiskens, IA

    2015-01-01

    A novel model predictive control (MPC) scheme is developed for mitigating the effects of severe line-overload disturbances in electrical power systems. A piece-wise linear convex approximation of line losses is employed to model the effect of transmission line power flow on conductor temperatures. Control is achieved through a receding-horizon model predictive control (MPC) strategy which alleviates line temperature overloads and thereby prevents the propagation of outages. The MPC strategy adjusts line flows by rescheduling generation, energy storage and controllable load, while taking into account ramp-rate limits and network limitations. In Part II of this paper, the MPC strategy is illustrated through simulation of the IEEE RTS-96 network, augmented to incorporate energy storage and renewable generation.

  13. EIS-0246: Wildlife Mitigation Program, Idaho, Montana, Nevada, Washington, Oregon

    Broader source: Energy.gov [DOE]

    BPA has decided to adopt the set of prescriptions (goals, strategies, and procedural requirements) identified in the final EIS as “Alternative 6, Balanced Action (BPA’s Preferred Alternative).” This decision will standardize the planning and implementation process, while achieving balance among all decision factors: (1) meeting the biological objectives of wildlife mitigation projects, (2) achievement of cost and administrative efficiency, (3) compliance with all applicable laws and regulations, and (4) protection and improvement of other environmental resources when such actions would support wildlife mitigation.

  14. Bonneville Power Administration Wildlife Mitigation Program : Draft Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1996-08-01

    Bonneville Power Administration (BPA) is responsible for mitigating the loss of wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian Tribes, state agencies, property owners, private conservation groups, and other Federal agencies. Future wildlife mitigation actions with potential environmental impacts are expected to include land acquisition and management, water rights acquisition and management, habitat restoration and enhancement, installation of watering devices, riparian fencing, and similar wildlife conservation actions. BPA needs to ensure that individual wildlife mitigation projects are planned and managed with appropriate consistency across projects, jurisdictions, and ecosystems, as well as across time. BPA proposes to standardize the planning and implementation of individual wildlife mitigation projects funded by BPA. Alternative 1 is the No Action alternative. Five standardizing alternatives are identified to represent the range of possible strategies, goals, and procedural requirements reasonably applicable to BPA-funded projects under a standardized approach to project planning and implementation. All action alternatives are based on a single project planning process designed to resolve site-specific issues in an ecosystem context and to adapt to changing conditions and information.

  15. EIS-0026: Annual Mitigation Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Annual Mitigation Report addresses those WIPP Project-related mitigation activities undertaken from the time of submittal of the 1994 Annual Mitigation Report in July 1994 through June 2014. PDF icon EIS-0026-MAP-2014.pdf More Documents & Publications EIS-0026: Annual Mitigation Report EIS-0026: Annual Mitigation Report EIS-0026: Mitigation Action Plan

  16. Action

    National Nuclear Security Administration (NNSA)

    Register / Vol. 72, No. 39 1 Wednesday, February 28, 2007 /Notices 9037 - has requested this exemption in order to revise the October 1988 exemption to include additional combustibles such as the 480V Reactor Building Vent Boards lB, 2B, and 3B; small panels in Units 1, 2 and 3; and the one hour fire rated fire wrap (Thermo-lag) material for the 20- foot separation zones identified. Environmental Impacts of the Proposed Action The proposed action will not significantly increase the probability

  17. EA-1212: Mitigation Action Plan

    Broader source: Energy.gov [DOE]

    Lease of Land for the Development of a Research Park at Los Alamos National Laboratory, Los Alamos, NM

  18. EA-1736: Mitigation Action Plan

    Broader source: Energy.gov [DOE]

    Expansion of the Sanitary Effluent Reclamation Facility and Environmental Restoration of Reach S-2 of Sandia Canyon at Los Alamos National Laboratory, Los Alamos, Los Alamos, New Mexico

  19. EA-1617: Mitigation Action Plan

    Broader source: Energy.gov [DOE]

    Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, Big Horn and Carbon Counties, Montana

  20. EA-1704: Mitigation Action Plan

    Broader source: Energy.gov [DOE]

    Construction and Operation of a Proposed Cellulosic Biorefinery, BlueFire Fulton Renewable Energy, LLC, Fulton, Mississippi

  1. EA-1755: Mitigation Action Plan

    Broader source: Energy.gov [DOE]

    Reconstruction of the South Access Road (CR 802) in Support of the Department of Energy, Waste Isolation Pilot Plant (WIPP) in Eddy County, New Mexico

  2. EA-1456: Mitigation Action Plan

    Broader source: Energy.gov [DOE]

    Cheyenne-Miracle Mile and Ault-Cheyenne Transmission Line Rebuild Project Carbon, Albany and Laramie Counties, Wyoming and Weld County, Colorado

  3. EA-1679: Mitigation Action Plan

    Broader source: Energy.gov [DOE]

    Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project, Grant and Okanogon Counties, Washington

  4. Status Update on Action 2a: Implementation Handbook for Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by James Winter, NA-00-10. DOE Handbook: Implementing Activity-Level Work Planning & Control at Nuclear Facilities. Project Justification Statement submitted 1-29-13, with focus upon improved implementation of WP&C and activity-level work. Provides the background, project plan, and key elements of a new DOE handbook on implementing activity-level work planning and control at DOE nuclear facilities.

  5. Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds

    Broader source: Energy.gov [DOE]

    The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

  6. Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers

    Broader source: Energy.gov [DOE]

    Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers (Waste Management Conference 2010)

  7. Technical Assistance to Kansas City Plant: Mitigation of Polychlorinated Biphenyl Discharges

    SciTech Connect (OSTI)

    Looney, B.B.

    2003-04-21

    Soil and storm water discharges from the Department of Energy Kansas City Plant (KCP) contain polychlorinated biphenyls (PCBs) resulting from past spills and discharges. KCP has implemented a range of actions to mitigate the soil contamination and to reduce the measured PCB releases.

  8. Wildlife Protection, Mitigation, and Enhancement Planning Phase II, Dworshak Reservoir, Final Report.

    SciTech Connect (OSTI)

    Hansen, H. Jerome; Martin, Robert C.

    1989-11-01

    The Pacific Northwest Electric Power Planning and Conservation Act of 1980 directed that measures be implemented to protect, mitigate, and enhance fish and wildlife to the extent affected by development and operation of hydropower projects on the Columbia River System. This Act created the Northwest Power Planning Council, which in turn developed the Columbia River Basin Fish and Wildlife Program. This program established a four-part process: wildlife mitigation status reports; wildlife impact assessments; wildlife protection, mitigation, and enhancement plans; and implementation of protection, mitigation, and enhancement projects. This mitigation plan for the Dworshak Reservoir Hydroelectric Facility was developed to fulfill requirements of Sections 1003(b)(2) and (3) of the Columbia River Basin Fish and Wildlife Program. Specific objectives of wildlife protection, mitigation, and enhancement planning for Dworshak Reservoir included: quantify net impacts to target wildlife species affected by hydroelectric development and operation of Dworshak Dam and Reservoir; develop protection, mitigation, and enhancement goals and objectives for the target wildlife species; recommend protection, mitigation, and enhancement actions for the target wildlife species; and coordination of project activities. 46 refs., 4 figs., 31 tabs.

  9. The role of the U.S. Clean Coal Technology Program in implementing the objectives of the joint Canada-U.S. acid rain mitigation initiative

    SciTech Connect (OSTI)

    Baldwin, A.L.; Smith, D.N.; Mann, A.W.; McIlvried, H.G.; Russell, D.L. Sr.

    1997-12-31

    The Clean Coal Technology (CCT) Program was initiated by the US Department of Energy (DOE) in part as a response to the 1986 Joint Report of the US and Canadian Special Envoys on Acid Rain, with a particular focus on coal-burning electric power plants. The fist three solicitations of the CCT Program were aimed primarily at mitigating the potential impacts of acid rain. Subsequently, the Clean Air Act Amendments of 1990 established emission reduction targets for SO{sub 2} and No{sub x}, which influenced the goals of the last two CCT Program. This paper provides an overview of the CCT Program and reports the significant results, with emphasis on emissions reduction as well as their impact on ozone formation.

  10. Climate Action Plan | OpenEI Community

    Open Energy Info (EERE)

    actions that the administration believes will mitigate the environmental and economic costs of climate change. Obama's six Climate Action Initiatives: 1. Phasing out Fossil Fuels...

  11. EA-1731: Mitigation Acton Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan Walla Walla-Tucannon River Transmission Line Rebuild Project This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact (FONSI) for the Walla...

  12. Democratic Republic of Congo-Nationally Appropriate Mitigation...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  13. Appropriate Use of Mitigation and Monitoring and Clarifying the Appropriate

    Energy Savers [EERE]

    Use of Mitigated Findings of No Significant Impact (CEQ, 2011) | Department of Energy Appropriate Use of Mitigation and Monitoring and Clarifying the Appropriate Use of Mitigated Findings of No Significant Impact (CEQ, 2011) Appropriate Use of Mitigation and Monitoring and Clarifying the Appropriate Use of Mitigated Findings of No Significant Impact (CEQ, 2011) The Council on Environmental Quality is issuing this guidance for Federal departments and agencies on establishing, implementing,

  14. Mitigation for the Construction and Operation of Libby Dam, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2005-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana Fish, Wildlife & Parks (MFWP) uses a combination of techniques to collect physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered and threatened species, and the assessment of restoration or management activities designed to restore native fishes and their habitats.

  15. Libby Mitigation Program, 2007 Annual Progress Report: Mitigation for the Construction and Operation of Libby Dam.

    SciTech Connect (OSTI)

    Dunnigan, James; DeShazer, J.; Garrow, L.

    2009-05-26

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to 'protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to restore the fisheries and fish habitat in basin streams and lakes. 'Mitigation for the Construction and Operation of Libby Dam' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan.

  16. EIS-0350-S1: Mitigation Action Plan

    Broader source: Energy.gov [DOE]

    Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos, NM

  17. Nationally Appropriate Mitigation Actions | Open Energy Information

    Open Energy Info (EERE)

    Topics: GHG inventory, Low emission development planning Resource Type: Publications, Lessons learnedbest practices, Case studiesexamples Website: unfccc.inthomeitems...

  18. Mitigating Wildland Fires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigating Wildland Fires Mitigating Wildland Fires Our interactive wildland fire map displays the locations of wildland fire mitigation activities. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Open in Google Earth | View in Google Maps What we are doing to mitigate wildland fires Recent large wildfires in the area, including the La Mesa Fire (1977), the Dome Fire (1996), the Oso Fire (1998), the Cerro Grande Fire

  19. Neutralize & Mitigate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities » Neutralize & Mitigate Neutralize & Mitigate Scientists are developing technologies designed to mitigate the effects of IEDs, protecting personnel and equipment from the detonation effects of these and other types of explosives. v Protecting personnel and equipment from the detonation effects At Los Alamos, scientists are developing technologies designed to mitigate the effects of IEDs, protecting personnel and equipment from the detonation effects of these and other types

  20. Blue Creek Winter Range : Wildlife Mitigation Project : Final Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; United States. Bureau of Indian Affairs; Spokane Tribe of the Spokane Reservation, Washington

    1994-11-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Agreement pertaining to the Blue Creek Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Spokane Tribe, Upper Columbia United Tribes, and the Bureau of Indian Affairs (BIA). If fully implemented, the proposed action would allow the sponsors to protect and enhance 2,631 habitat units of big game winter range and riparian shrub habitat on 2,185 hectares (5,400 acres) of Spokane Tribal trust lands, and to conduct long term wildlife management activities within the Spokane Indian Reservation project area. This Final Environmental Assessment (EA) examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir.

  1. Wildlife Protection, Mitigation and Enhancement Planning for Grand Coulee Dam, Final Report.

    SciTech Connect (OSTI)

    Creveling, Jennifer

    1986-08-01

    The development and operation of Grand Coulee Dam inundated approximately 70,000 acres of wildlife habitat under the jurisdictions of the Colville Confederated Tribes, the Spokane Tribe, and the State of Washington. Under the provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, this study reviews losses to wildlife and habitat, and proposes mitigation for those losses. Wildlife loss estimates were developed from information available in the literature. Habitat losses and potential habitat gains through mitigation were estimated by a modified Habitat Evaluation Procedure. The mitigation plan proposes (1) acquisition of sufficient land or management rights to land to protect Habitat Units equivalent to those lost (approximately 73,000 acres of land would be required), (2) improvement and management of those lands to obtain and perpetuate target Habitat Units, and (3) protection and enhancement of suitable habitat for bald eagles. Mitigation is presented as four actions to be implemented over a 10-year period. A monitoring program is proposed to monitor mitigation success in terms of Habitat Units and wildlife population trends.

  2. Mitigating Greenhouse Gas Emissions: Voluntary Reporting 1996

    Reports and Publications (EIA)

    1997-01-01

    Presents information on voluntary actions to reduce greenhouse gases or remove such gases from the atmosphere in 1995. It provides an overview of participation in the Voluntary Reporting Program, a perspective on the composition of activities reported, and a review of some key issues in interpreting and evaluating achievements associated with reported emissions mitigation initiatives.

  3. Buildings Greenhouse Gas Mitigation Estimator Worksheet | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Buildings Greenhouse Gas Mitigation Estimator Worksheet Buildings Greenhouse Gas Mitigation Estimator Worksheet Excel tool helps agencies estimate the greenhouse gas (GHG) mitigation reduction from implementing energy efficiency measures across a portfolio of buildings. It is designed to be applied to groups of office buildings. For example, at a program level (regional or site) that can be summarized at the agency level. While the default savings and cost estimates apply to office

  4. Mitigation for the Construction and Operation of Libby Dam, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry

    2004-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana FWP uses a combination of diverse techniques to collect a variety of physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered, threatened species, and the assessment of restoration or management activities intended to restore native fishes and their habitats.

  5. Center for Clean Air Policy (CCAP) | Open Energy Information

    Open Energy Info (EERE)

    in the Cement Sector Mexico-The Mitigation Action Implementation Network (MAIN) Pakistan-The Mitigation Action Implementation Network (MAIN) Panama-The Mitigation Action...

  6. Hellsgate Winter Range : Wildlife Mitigation Project. Preliminary Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-01-01

    The Bonneville Power Administration proposes funding the Hellsgate Winter Range Wildlife Mitigation Project in cooperation with the Colville Convederated Tribes and Bureau of Indian Affairs. This Preliminary Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. The Propose action is intended to meet the need for mitigation of wildlife and wild life habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

  7. Independent Oversight Activity Report for Review of Corrective Actions for Findings from the Independent Oversight Review of Los Alamos National Laboratory Radiological Controls Activity-Level Implementation - February 12, 2014

    Office of Environmental Management (EM)

    HSS Independent Activity Report - Rev. 0 Report Number: HIAR LANL-2014-02-12 Site: Los Alamos National Laboratory (LANL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Review of Corrective Actions for Findings from the Independent Oversight Review of LANL Radiological Controls Activity-Level Implementation (Published November 2013) Dates of Activity : 02/12/2014 Report Preparer: Robert Freeman, Nuclear Engineer Activity

  8. Siting and Barrier Mitigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Siting and Barrier Mitigation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  9. Hungry Horse Dam Fisheries Mitigation, 1992-1993 Progress Report.

    SciTech Connect (OSTI)

    DosSantos, Joe; Vashro, Jim; Lockard, Larry

    1994-06-01

    In February of 1900, over forty agency representatives and interested citizens began development of the 1991 Mitigation Plan. This effort culminated in the 1993 Implementation Plan for mitigation of fish losses attributable to the construction and operation of Hungry Horse Dam. The primary purpose of this biennial report is to inform the public of the status of ongoing mitigation activities resulting from those planning efforts. A habitat improvement project is underway to benefit bull trout in Big Creek in the North Fork drainage of the Flathead River and work is planned in Hay Creek, another North Fork tributary. Bull trout redd counts have been expanded and experimental programs involving genetic evaluation, outmigrant monitoring, and hatchery studies have been initiated, Cutthroat mitigation efforts have focused on habitat improvements in Elliott Creek and Taylor`s Outflow and improvements have been followed by imprint plants of hatchery fish and/or eyed eggs in those streams. Rogers Lake west of Kalispell and Lion Lake, near Hungry Horse, were chemically rehabilitated. Cool and warm water fish habitat has been improved in Halfmoon Lake and Echo Lake. Public education and public interest is important to the future success of mitigation activities. As part of the mitigation team`s public awareness responsibility we have worked with numerous volunteer groups, public agencies, and private landowners to stimulate interest and awareness of mitigation activities and the aquatic ecosystem. The purpose of this biennial report is to foster public awareness of, and support for, mitigation activities as we move forward in implementing the Hungry Horse Dam Fisheries Mitigation Implementation Plan.

  10. Energy Agency Coordinators for Energy Action Month

    Broader source: Energy.gov [DOE]

    Agency coordinators serve as primary Federal agency points of contact for Energy Action Month. Contact them if you have questions about implementing an Energy Action Month campaign.

  11. The Climate Change Action Plan: Technical supplement

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This Technical Annex documents the assumptions and parameters used in developing the supporting analysis for the Climate Change Action Plan (the Plan) issued by President Clinton on October 19, 1993. The Annex is intended to meet the needs of independent energy and environmental analysts who wish to better understand the Plan, its analytical underpinnings, and the events that need to transpire for the emissions reductions called for in the Plan to be realized. The Plan documented in this Annex reflects the outcome of a wide-ranging effort by Government agencies and interested members of the public to develop and implement actions that can reduce net greenhouse gas emissions in the year 2000 to their aggregate 1990 level. Based on agency and public input, the Climate Change Mitigation Group, chaired by the White House Office on Environmental Policy, developed the Plan`s content. Many of the actions called for in the Plan are now underway, while others are in advanced planning pending congressional action on the fiscal year 1995 budget. The analysis supporting the Plan represents the results of an interagency effort. The US Department of Energy (DOE) was responsible for the integrated analysis of energy-related options, based on the analysis of individual energy-related options by DOE, the US Environmental Protection Agency (EPA), and the US Department of Transportation (DOT). EPA led in providing analysis for actions related to methane, hydrofluorocarbons, and perfluorocarbons. The US Department of Agriculture (USDA) led the analysis of carbon sequestration actions and cooperated with EPA in the analysis of actions to reduce nitrous oxide emissions.

  12. Buildings GHG Mitigation Estimator Worksheet, Version 1

    Broader source: Energy.gov [DOE]

    Xcel document describes Version 1 of the the Buildings GHG Mitigation Estimator tool. This tool assists federal agencies in estimating the greenhouse gas mitigation reduction from implementing energy efficiency measures across a portfolio of buildings. It is designed to be applied to groups of office buildings, for example, at a program level (regional or site) that can be summarized at the agency level. While the default savings and cost estimates apply to office buildings, users can define their own efficiency measures, costs, and savings estimates for inclusion in the portfolio assessment. More information on user-defined measures can be found in Step 2 of the buildings emission reduction guidance. The output of this tool is a prioritized set of activities that can help the agency to achieve its greenhouse gas reduction targets most cost-effectively.

  13. Corrective Action Program Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-03-02

    This Guide was developed to assist the Department of Energy (DOE) organizations and contractors in the development, implementation, and followup of corrective action programs utilizing the feedback and improvement core safety function within DOE's Integrated Safety Management System. This Guide outlines some of the basic principles, concepts, and lessons learned that DOE managers and contractors might consider when implementing corrective action programs based on their specific needs. Canceled by DOE G 414.1-2B. Does not cancel other directives.

  14. Implementation of Executive Order 12114 Environmental Effects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation of Executive Order 12114 Environmental Effects Abroad of Major Federal Actions: Final Guideline (DOE, 1981) Implementation of Executive Order 12114 Environmental ...

  15. Albeni Falls Wildlife Mitigation Project, 2008 Annual Report.

    SciTech Connect (OSTI)

    Soults, Scott

    2009-08-05

    The Albeni Falls Interagency Work Group (AFIWG) was actively involved in implementing wildlife mitigation activities in late 2007, but due to internal conflicts, the AFIWG members has fractionated into a smaller group. Implementation of the monitoring and evaluation program continued across protected lands. As of 2008, The Albeni Falls Interagency Work Group (Work Group) is a coalition comprised of wildlife managers from three tribal entities (Kalispel Tribe, Kootenai Tribe, Coeur d Alene Tribe) and the US Army Corps of Engineers. The Work Group directs where wildlife mitigation implementation occurs in the Kootenai, Pend Oreille and Coeur d Alene subbasins. The Work Group is unique in the Columbia Basin. The Columbia Basin Fish and Wildlife Authority (CBFWA) wildlife managers in 1995, approved what was one of the first two project proposals to implement mitigation on a programmatic basis. The maintenance of this kind of approach through time has allowed the Work Group to implement an effective and responsive habitat protection program by reducing administrative costs associated with site-specific project proposals. The core mitigation entities maintain approximately 9,335 acres of wetland/riparian habitats in 2008.

  16. Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-01-01

    The Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (Y/ER-301) was prepared (1) to safely, cost-effectively, and efficiently evaluate the environmental impact of solid material in the two debris areas in the context of industrial land uses (as defined in the Bear Creek Valley Feasibility Study) to support the Engineering Evaluation/Cost Assessment and (2) to evaluate, define, and implement the actions to mitigate these impacts. This work was performed under Work Breakdown Structure 1.x.01.20.01.08.

  17. Peaking of world oil production: Impacts, mitigation, & risk management

    SciTech Connect (OSTI)

    Hirsch, R.L.; Bezdek, Roger; Wendling, Robert

    2005-02-01

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  18. Preparing for Project Implementation during an Energy Assessment

    Broader source: Energy.gov [DOE]

    This presentation discusses actions to take during the energy assessment to encourage project implementation.

  19. EA-1917: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    environmental review process, DOE determined, via consultations with the National Marine Fisheries Service (NMFS) that there may be potential environmental impacts from the...

  20. EA-1440: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact for the National Renewable Energy Laboratory's South Table Mountain Complex, DOEEA-1440-S-1 (May 2008) More Documents & Publications EA-1440-S2: Final ...

  1. EA-1440-S1: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Renewable Energy Laboratory's South Table Mountain Complex, Golden, Colorado ThIs ... office building or multi-building office complex; Installation of Phase 1 of planned Site ...

  2. EIS-0186: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Healy Clean Coal Project In response to a Program Opportunity Notice issued in May 1989 by the Department of Energy (DOE) for the third solicitation of the Clean Coal...

  3. EA-1974: Finding of No Significant Impact and Mitigation Action...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bonneville Power Administration issued a finding of no significant impact (FONSI) for the proposed restoration of a tidal marsh in the Columbia River Estuary, near Astoria in ...

  4. EA-1946: Finding of No Significant Impact and Mitigation Action...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon EA-1946-FONSI-MAP-2014.pdf More Documents & Publications EA-1946: Draft Environmental Assessment EA-1946: Final Environmental Assessment EIS-0285-SA-140: Supplement ...

  5. EA-1973: Finding of No Significant Impact and Mitigation Action...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the project webpage. PDF icon EA-1973-FONSI-MAP-2015 More Documents & Publications EA-1973: Draft Environmental Assessment EA-1901: Finding of No Significant Impact EA-1518: Final

  6. EA-1941: Mitigation Action Plan (MAP) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Transmission Line. PDF icon EA-1941-MAP-2014.pdf More Documents & Publications EA-1941: Finding of No Significant Impact (FONSI) EA-1941: Final Environmental Assessment EA-1941

  7. EA-1931: Finding of No Significant Impact and Mitigation Action...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bonneville Power Administration issued a finding of no significant impact and a ... More Documents & Publications EA-1931: Draft Environmental Assessment EA-1931: Final ...

  8. EA-1915: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    icon EA-1915-MAP-2015.pdf More Documents & Publications EA-1915: Final Environmental Assessment EA-1915: Draft Environmental Assessment EA-1915: Finding of No Significant Impact

  9. EA-1891: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    adverse environmental impacts. PDF icon EA-1891-MAP-2014.pdf More Documents & Publications EA-1891: Finding of No Significant Impact EA-1891: Draft Environmental Assessment EA-1891

  10. EIS-0421: Record of Decision and Mitigation Action Plan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FEIS for this project, the Bonneville Power Administration has decided to construct the Big Eddy-Knight Transmission Project in Wasco County, Oregon and Klickitat County,...

  11. Peru-Mitigation Action Plans and Scenarios (MAPS) | Open Energy...

    Open Energy Info (EERE)

    in an effort to build best practice, share tools and research and to create a growing body of knowledge, from a developing country perspective, that is accessible to the...

  12. Argentina-Mitigation Action Plans and Scenarios (MAPS) | Open...

    Open Energy Info (EERE)

    in an effort to build best practice, share tools and research and to create a growing body of knowledge, from a developing country perspective, that is accessible to the...

  13. South Africa-Mitigation Action Plans and Scenarios (MAPS) | Open...

    Open Energy Info (EERE)

    in an effort to build best practice, share tools and research and to create a growing body of knowledge, from a developing country perspective, that is accessible to the...

  14. Brazil-Mitigation Action Plans and Scenarios (MAPS) | Open Energy...

    Open Energy Info (EERE)

    in an effort to build best practice, share tools and research and to create a growing body of knowledge, from a developing country perspective, that is accessible to the...

  15. Chile-Mitigation Action Plans and Scenarios (MAPS) | Open Energy...

    Open Energy Info (EERE)

    in an effort to build best practice, share tools and research and to create a growing body of knowledge, from a developing country perspective, that is accessible to the...

  16. Colombia-Mitigation Action Plans and Scenarios (MAPS) | Open...

    Open Energy Info (EERE)

    in an effort to build best practice, share tools and research and to create a growing body of knowledge, from a developing country perspective, that is accessible to the...

  17. EA-1912: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Midway-Benton No. 1 transmission line and approximately 11 miles of the 115-kV Benton-Othello No. 1 transmission line between the existing Midway and Benton Substations, located...

  18. EIS-0380: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Sections 1.2 and 2.0. Additionally, both SWEIS RODs included commitments to Santa Clara Pueblo as part of ongoing government-to-government relations regarding the 2008 ...

  19. Microsoft Word - Final Mitigated Action Plan - CNMI.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... In addition, an initial report will be submitted six months after turbine operations begins. 6 | P a g e Dead Marian swiftlets found under a wind turbine will be collected by ...

  20. DOE Uranium Leasing Program 2015 Mitigation Action Plan Activity Summary

    Energy Savers [EERE]

    Department of Energy DOE Ups the Ante for Diversity and Inclusion at the Department of Energy DOE Ups the Ante for Diversity and Inclusion at the Department of Energy April 17, 2012 - 8:25am Addthis DOE Ups the Ante for Diversity and Inclusion at the Department of Energy Bill Valdez Bill Valdez Director of Workforce Management "We will treat our people as our greatest asset." This phrase is not only one of DOE's management principles, but it is also the rock behind our new

  1. EA-1611: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    LLC applied to Western Area Power Administration to interconnect a 90-megawatt wind power facility with Western's existing Sterling-Frenchman Creek 115-kV transmission line....

  2. EA-1782: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to aid its decision whether to provide funding for the University of Delaware's construction and operation of a 2-megawatt wind turbine adjacent to the University's...

  3. EIS-0409: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Draft Environmental Impact Statement EIS-0409: Final Environmental Impact Statement Successful Field-Scale In Situ Thermal NAPL Remediation at the Young - Rainey STAR Center...

  4. EA-1870: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    could be suitable for production of clean fuels such as substitute natural gas, sulfur-free Fischer-Tropsch diesel, jet fuel, dimethyl ether, and methane. This MAP identifies...

  5. MITIGATION ACTION PLAN FOR THE PLAINS & EASTERN CLEAN LINE TRANSMISSIO...

    Energy Savers [EERE]

    ... or aquatic insects which may provide forage, adverse effects to aquatic resources will be minimized through strict adherence to the Stormwater Pollution Prevention Plan (SWPPP). ...

  6. EA-1592: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    NNSA's Kansas City Plant Based on the analysis in the Environmental Assessment prepared for the proposal by the GSA and NNSA, neither the construction nor operation of the selected...

  7. Viresco-Mitigation-Action-Plan12-20-11.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  8. Ecofys-Nationally Appropriate Mitigation Actions: Insights from...

    Open Energy Info (EERE)

    Topics: Low emission development planning, Policiesdeployment programs Resource Type: Lessons learnedbest practices Website: www.ecofys.comcompublications...

  9. Technologies for Climate Change Mitigation: Transport Sector...

    Open Energy Info (EERE)

    Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector...

  10. UNEP-Facilitating Implementation and Readiness for Mitigation...

    Open Energy Info (EERE)

    focus will be on reducing emissions of greenhouse gases in ways that also contribute to national development goals, such as creating jobs, enhancing energy security, and reducing...

  11. Costa Rica-Facilitating Implementation and Readiness for Mitigation...

    Open Energy Info (EERE)

    six to eight developing countries to strengthen their national low carbon development strategies and get a "quick start" on NAMAs. The focus will be on reducing emissions of...

  12. Morocco-Facilitating Implementation and Readiness for Mitigation...

    Open Energy Info (EERE)

    six to eight developing countries to strengthen their national low carbon development strategies and get a "quick start" on NAMAs. The focus will be on reducing emissions of...

  13. Ghana-Facilitating Implementation and Readiness for Mitigation...

    Open Energy Info (EERE)

    six to eight developing countries to strengthen their national low carbon development strategies and get a "quick start" on NAMAs. The focus will be on reducing emissions of...

  14. Vietnam-Facilitating Implementation and Readiness for Mitigation...

    Open Energy Info (EERE)

    six to eight developing countries to strengthen their national low carbon development strategies and get a "quick start" on NAMAs. The focus will be on reducing emissions of...

  15. South Africa-Facilitating Implementation and Readiness for Mitigation...

    Open Energy Info (EERE)

    six to eight developing countries to strengthen their national low carbon development strategies and get a "quick start" on NAMAs. The focus will be on reducing emissions of...

  16. Indonesia-Facilitating Implementation and Readiness for Mitigation...

    Open Energy Info (EERE)

    six to eight developing countries to strengthen their national low carbon development strategies and get a "quick start" on NAMAs. The focus will be on reducing emissions of...

  17. Mexico-Facilitating Implementation and Readiness for Mitigation...

    Open Energy Info (EERE)

    six to eight developing countries to strengthen their national low carbon development strategies and get a "quick start" on NAMAs. The focus will be on reducing emissions of...

  18. Senegal-Facilitating Implementation and Readiness for Mitigation...

    Open Energy Info (EERE)

    six to eight developing countries to strengthen their national low carbon development strategies and get a "quick start" on NAMAs. The focus will be on reducing emissions of...

  19. Ethiopia-Facilitating Implementation and Readiness for Mitigation...

    Open Energy Info (EERE)

    six to eight developing countries to strengthen their national low carbon development strategies and get a "quick start" on NAMAs. The focus will be on reducing emissions of...

  20. Wildlife mitigation and monitoring report Gunnison, Colorado, site

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project is administered by the U.S. Department of Energy (DOE); its purpose is to cleanup uranium mill tailings and other contaminated material at 24 UMTRA Project sites in 10 states. This report summarizes the wildlife mitigation and monitoring program under way at the Gunnison UMTRA Project, Gunnison, Colorado. Remedial action at the Gunnison site was completed in December 1995 and is described in detail in the Gunnison completion report. The impacts of this activity were analyzed in the Gunnison environmental assessment (EA). These impacts included two important game species: the pronghorn antelope (Antilocapra americans) and sage grouse (Wentrocerus urophasianus). Haul truck traffic was predicted to limit antelope access to water sources north of the Tenderfoot Mountain haul road and that truck traffic along this and other haul roads could result in antelope road kills. Clearing land at the disposal cell, haul road and borrow site activities, and the associated human activities also were predicted to negatively impact (directly and indirectly) sage grouse breeding, nesting, loafing, and wintering habitat. As a result, an extensive mitigation and monitoring plan began in 1992. Most of the monitoring studies are complete and the results of these studies, written by different authors, appear in numerous reports. This report will: (1) Analyze existing impacts and compare them to predicted impacts. (2) Summarize mitigation measures. (3) Summarize all existing monitoring data in one report. (4) Analyze the effectiveness of the mitigation measures.

  1. Mitigation Options in Forestry, Land-Use, Change and Biomass Burning in Africa

    SciTech Connect (OSTI)

    Makundi, Willy R.

    1998-06-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are describe in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct a baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land and in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those, which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries .

  2. Blue Creek Winter Range : Wildlife Mitigation Project : Preliminary Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; United States. Bureau of Indian Affairs; Spokane Tribe of the Spokane Reservation, Washington

    1994-11-01

    This preliminary Environmental Assessment examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities are analyzed: Habitat protection; Habitat enhancement; Operation and maintenance; and Monitoring and evaluation. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir.

  3. U.S. Mayor's Climate Protection Agreement: Climate Action Handbook...

    Open Energy Info (EERE)

    Action Handbook offers examples of actions that local governments can take to reduce global warming emissions and implement the commitments for climate protection called out...

  4. Estimating the potential of greenhouse gas mitigation in Kazakhstan

    SciTech Connect (OSTI)

    Monacrovich, E.; Pilifosova, O.; Danchuck, D.

    1996-09-01

    As part of the studies related to the obligations of the UN Framework Convention on Climate Change, the Republic of Kazakhstan started activities to inventory greenhouse gas (GHG) emissions and assess of GHG mitigation options, The objective of this paper is to present an estimate of the possibility of mitigating GHG emissions and determine the mitigation priorities. It presents a compilation of the possible options and their assessment in terms of major criteria and implementation feasibility. Taking into account the structure of GHG emissions in Kazakhstan in 1990, preliminary estimates of the potential for mitigation are presented for eight options for the energy sector and agriculture and forestry sector. The reference scenario prepared by expert assessments assumes a reduction of CO{sub 2} emissions in 1996-1998 by about 26% from the 1990 level due to general economic decline, but then emissions increase. It is estimated that the total potential for the mitigation of CO{sub 2} emissions for the year 2000 is 3% of the CO{sub 2} emissions in the reference scenario. The annual reduction in methane emissions due to the estimated options can amount to 5%-6% of the 1990 level. 10 refs., 1 fig., 4 tabs.

  5. Action Items

    Office of Environmental Management (EM)

    ACTION ITEMS Presentation to the DOE High Level Waste Corporate Board July 29, 2009 Kurt Gerdes Office of Waste Processing DOE-EM Office of Engineering & Technology 2 ACTION ITEMS...

  6. Hungry Horse Mitigation; Flathead Lake, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Hansen, Barry; Evarts, Les

    2005-06-01

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Objective 1 in the workplan is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of Objectives 2-8.

  7. Generalized Comprehensive Mitigation Assessment Process (GCOMAP...

    Open Energy Info (EERE)

    Generalized Comprehensive Mitigation Assessment Process (GCOMAP) (Redirected from GCOMAP) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Generalized Comprehensive...

  8. Generalized Comprehensive Mitigation Assessment Process (GCOMAP...

    Open Energy Info (EERE)

    search Tool Summary LAUNCH TOOL Name: Generalized Comprehensive Mitigation Assessment Process (GCOMAP) AgencyCompany Organization: Lawrence Berkeley National Laboratory...

  9. Appropriate Use of Mitigation and Monitoring and Clarifying the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appropriate Use of Mitigation and Monitoring and Clarifying the Appropriate Use of Mitigated Findings of No Significant Impact Appropriate Use of Mitigation and Monitoring and ...

  10. EIS-0026: 2009 Annual Mitigation Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Annual Mitigation Report (AMR) addresses those WIPP-related mitigation activities undertaken from the time of submittal of the 1994 Annual Mitigation Report in July 1994 through...

  11. EIS-0026: Annual Mitigation Report | Department of Energy

    Office of Environmental Management (EM)

    7 Annual Mitigation Report (2007 AMR) addresses those WIPP- related mitigation activities undertaken from the time of submittal of the 1994 Annual Mitigation Report in July 1994...

  12. EIS-0026: Annual Mitigation Report | Department of Energy

    Office of Environmental Management (EM)

    8 Annual Mitigation Report (AMR) addresses those WIPP-related mitigation activities undertaken from the time of submittal of the 1994 Annual Mitigation Report in July 1994 through...

  13. A greenhouse-gas information system monitoring and validating emissions reporting and mitigation

    SciTech Connect (OSTI)

    Jonietz, Karl K; Dimotakis, Paul E; Walker, Bruce C

    2011-09-26

    Current GHG-mitigating regimes, whether internationally agreed or self-imposed, rely on the aggregation of self-reported data, with limited checks for consistency and accuracy, for monitoring. As nations commit to more stringent GHG emissions-mitigation actions and as economic rewards or penalties are attached to emission levels, self-reported data will require independent confirmation that they are accurate and reliable, if they are to provide the basis for critical choices and actions that may be required. Supporting emissions-mitigation efforts and agreements, as well as monitoring energy- and fossil-fuel intensive national and global activities would be best achieved by a process of: (1) monitoring of emissions and emission-mitigation actions, based, in part, on, (2) (self-) reporting of pertinent bottom-up inventory data, (3) verification that reported data derive from and are consistent with agreed-upon processes and procedures, and (4) validation that reported emissions and emissions-mitigation action data are correct, based on independent measurements (top-down) derived from a suite of sensors in space, air, land, and, possibly, sea, used to deduce and attribute anthropogenic emissions. These data would be assessed and used to deduce and attribute measured GHG concentrations to anthropogenic emissions, attributed geographically and, to the extent possible, by economic sector. The validation element is needed to provide independent assurance that emissions are in accord with reported values, and should be considered as an important addition to the accepted MRV process, leading to a MRV&V process. This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a system that meets specifications derived from imposed requirements; the need for rigorous calibration, verification, and validation (CV&V) standards, processes, and records for all measurement and modeling/data-inversion data; the need to develop and adopt an uncertainty-quantification (UQ) regimen for all measurement and modeling data; and the requirement that GHGIS products can be subjected to third-party questioning and scientific scrutiny. This report examines and assesses presently available capabilities that could contribute to a future GHGIS. These capabilities include sensors and measurement technologies; data analysis and data uncertainty quantification (UQ) practices and methods; and model-based data-inversion practices, methods, and their associated UQ. The report further examines the need for traceable calibration, verification, and validation processes and attached metadata; differences between present science-/research-oriented needs and those that would be required for an operational GHGIS; the development, operation, and maintenance of a GHGIS missions-operations center (GMOC); and the complex systems engineering and integration that would be required to develop, operate, and evolve a future GHGIS. Present monitoring systems would be heavily relied on in any GHGIS implementation at the outset and would likely continue to provide valuable future contributions to GHGIS. However, present monitoring systems were developed to serve science/research purposes. This study concludes that no component or capability presently available is at the level of technological maturity and readiness required for implementation in an operational GHGIS today. However, purpose-designed and -built components could be developed and implemented in support of a future GHGIS. The study concludes that it is possible to develop and provide a capability-driven prototype GHGIS, as part of a Phase-1 effort, within three years from project-funding start, that would make use of and integrate existing sensing and system capabilities. As part of a Phase-2 effort, a requirements-driven, operational GHGIS could be developed, within ten years from project funding start. That schedule is driven by the development and long lead-times for some system components. The two efforts would be focused on different deliverables but could commence concurrently, to save time, if that was deemed desirable. We note that, developing and supporting an operational GHGIS will require a new approach and management, sustained funding and other support, as well as technical advances and development of purpose-built components that meet the requisite specifications. A functioning GHGIS will provide the basis for reasoned choices on how best to respond to rising GHG levels, especially when proposed U.S. actions are compared with or conditioned on the actions of other nations.

  14. ACTION PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plan is to establish the overall plan for hazardous waste permitting, meeting closure and postclosure requirements, and remedial action under the Federal Resource Conservation ...

  15. Greenhouse gas mitigation options for Washington State

    SciTech Connect (OSTI)

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  16. Mitigation of Syngas Cooler Plugging and Fouling

    SciTech Connect (OSTI)

    Bockelie, Michael J.

    2015-06-29

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling of the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better understanding of deposit formation mechanisms; • performing Techno-Economic-Analysis for a representative IGCC plant to investigate the impact on plant economics, in particular the impacts on the Cost of Electricity (COE), due to plant shutdowns caused by syngas cooler plugging and fouling and potential benefits to plant economics of developing strategies to mitigate syngas cooler fouling; and • performing modeling and pilot scale tests to investigate the potential benefits of using a sorbent (fuel additive) to capture the vaporized metals that result in syngas cooler fouling. All project milestones for BP 1 and BP 2 were achieved. DOE was provided a briefing on our accomplishments in BP1 and BP2 and our proposed plans for Budget Period 3 (BP 3). Based on our research the mitigation technology selected to investigate in BP 3 was the use of a sorbent that can be injected into the gasifier with the fuel slurry to capture vaporized metals that lead to the deposit formation in the syngas cooler. The work effort proposed for BP 3 would have focused on addressing concerns raised by gasification industry personnel for the impacts on gasifier performance of sorbent injection, so that at the end of BP 3 the use of sorbent injection would be at “pre-commercial” stage and ready for use in a Field Demonstration that could be funded by industry or DOE. A Budget Continuation Application (BCA) was submitted to obtain funding for BP3 DOE but DOE chose to not fund the proposed BP3 effort.

  17. Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and NonNuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-28

    This document provides guidance in implementing the Natural Phenomena Hazard (NPH) mitigation requirements of DOE O 420.1, Facility Safety, Section 4.4, "Natural Phenomena Hazards Mitigation." This Guide does not establish or invoke any new requirements. Any apparent conflicts arising from the NPH guidance would defer to the requirements in DOE O 420.1. No cancellation.

  18. Mitigation for the Construction and Operation of Libby Dam, 2000 Annual Report.

    SciTech Connect (OSTI)

    Hoffman, Greg; Marotz, Brian L.; Dunnigan, James

    2002-09-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power Planning Council's resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness.

  19. Unconventional Nuclear Warfare Defense (UNWD) containment and mitigation subtask.

    SciTech Connect (OSTI)

    Wente, William Baker

    2005-06-01

    The objective of this subtask of the Unconventional Nuclear Warfare Design project was to demonstrate mitigation technologies for radiological material dispersal and to assist planners with incorporation of the technologies into a concept of operations. The High Consequence Assessment and Technology department at Sandia National Laboratories (SNL) has studied aqueous foam's ability to mitigate the effects of an explosively disseminated radiological dispersal device (RDD). These benefits include particle capture of respirable radiological particles, attenuation of blast overpressure, and reduction of plume buoyancy. To better convey the aqueous foam attributes, SNL conducted a study using the Explosive Release Atmospheric Dispersion model, comparing the effects of a mitigated and unmitigated explosive RDD release. Results from this study compared health effects and land contamination between the two scenarios in terms of distances of effect, population exposure, and remediation costs. Incorporating aqueous foam technology, SNL created a conceptual design for a stationary containment area to be located at a facility entrance with equipment that could minimize the effects from the detonation of a vehicle transported RDD. The containment design was evaluated against several criteria, including mitigation ability (both respirable and large fragment particle capture as well as blast overpressure suppression), speed of implementation, cost, simplicity, and required space. A mock-up of the conceptual idea was constructed at SNL's 9920 explosive test site to demonstrate the containment design.

  20. Albeni Falls Wildlife Mitigation Project; Idaho Department of Fish and Game 2007 Final Annual Report.

    SciTech Connect (OSTI)

    Cousins, Katherine

    2009-04-03

    The Idaho Department of Fish and Game maintained a total of about 2,743 acres of wildlife mitigation habitat in 2007, and protected another 921 acres. The total wildlife habitat mitigation debt has been reduced by approximately two percent (598.22 HU) through the Department's mitigation activities in 2007. Implementation of the vegetative monitoring and evaluation program continued across protected lands. For the next funding cycle, the IDFG is considering a package of restoration projects and habitat improvements, conservation easements, and land acquisitions in the project area.

  1. White House Highlights Climate Action Champions' Achievements

    Broader source: Energy.gov [DOE]

    After a competitive application process, the Department of Energy designated 16 communities as Climate Action Champions, including two tribes: the Sault Ste. Marie Tribe of Chippewa Indians (Michigan) and the Blue Lake Rancheria Tribe (California). These tribes were selected for their local leadership in climate mitigation and adaptation.

  2. Hungry Horse Mitigation Plan; Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam, 1990-2003 Technical Report.

    SciTech Connect (OSTI)

    Fraley, John J.; Marotz, Brian L.; DosSantos, Joseph M.

    2003-04-01

    In this document we present fisheries losses, mitigation alternatives, and recommendations to protect, mitigate, and enhance resident fish and aquatic habitat affected by the construction and operation of Hungry Horse Dam. This plan addresses six separate program measures in the 1987 Columbia Basin Fish and Wildlife Program. We designed the plan to be closely coordinated in terms of dam operations, funding, and activities with the Kerr Mitigation Plan presently before the Federal Energy Regulatory Commission. This document represents a mitigation plan for consideration by the Northwest Power Planning Council process; it is not an implementation plan. Flathead Lake is one of the cleanest lakes of its size in the world. The exceptional water quality and unique native fisheries make the Flathead Lake/River system extremely valuable to the economy and quality of life in the basin. The recreational fishery in Flathead Lake has an estimated value of nearly eight million dollars annually. This mitigation process represents our best opportunity to reduce the impacts of hydropower in this valuable aquatic system and increase angling opportunity. We based loss estimates and mitigation alternatives on an extensive data base, agency reports, nationally and internationally peer-reviewed scientific articles, and an innovative biological model for Hungry Horse Reservoir and the Flathead River. We conducted an extensive, 14-month scoping and consultation process with agency representatives, representatives of citizen groups, and the general public. This consultation process helped identify issues, areas of agreement, areas of conflict, and advantages and disadvantages of mitigation alternatives. The results of the scoping and consultation process helped shape our mitigation plan. Our recommended plan is based firmly on principles of adaptive management and recognition of biological uncertainty. After we receive direction from the NPPC, we will add more detailed hypotheses and other features necessary for a long-term implementation plan.

  3. EIS-0026: Annual Mitigation Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Annual Mitigation Report addresses those WIPP Project-related mitigation activities undertaken from the time of submittal of the 1994 Annual Mitigation Report in July 1994 through June 2013. PDF icon EIS-0026-AMR-2013.pdf More Documents & Publications EIS-0026: Annual Mitigation Report EIS-0026: 2010 Annual Mitigation Report EIS-0026: Annual Mitigation Report

  4. Corrective Action

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Corrective Action Complete is demonstrated by one of the following: Eliminate Exposure (11 SMAs, 16 Sites) SMA SITE Submittal Date Document 2M-SMA-2.2 03-003(k) September...

  5. National climate change action plans: Interim report for developing and transition countries

    SciTech Connect (OSTI)

    Benioff, R.; Ness, E.; Hirst, J.

    1997-10-01

    Under its Support for National Action Plans (SNAP) initiative, the U.S. Country Studies Program is providing financial and technical assistance to 18 countries for the development of climate change action plans. Although most of the countries have not yet completed their plans, the important lessons learned thus far are valuable and should be shared with other countries and international institutions that have an interest in the process of action plan development. This interim report describes the experience of 11 countries that are the furthest along in their planning activity and who have offered to share their results to date with the larger community of interested nations. These action plans delineate specific mitigation and adaptation measures that the countries will implement and integrate into their ongoing development programs. This report focuses on the measures the countries have selected and the methods they used to prepare their action plans. This executive summary presents key lessons and common themes using a structure similar to that used in the individual country chapters.

  6. L-325 Sagebrush Habitat Mitigation Project: Final Compensation Area Monitoring Report

    SciTech Connect (OSTI)

    Durham, Robin E.; Becker, James M.

    2013-09-26

    This document provides a review and status of activities conducted in support of the Fluor Daniel Hanford Company (Fluor), now Mission Support Alliance (MSA), Mitigation Action Plan (MAP) for Project L-325, Electrical Utility Upgrades (2007). Three plantings have been installed on a 4.5-hectare mitigation area to date. This review provides a description and chronology of events, monitoring results, and mitigative actions through fiscal year (FY) 2012. Also provided is a review of the monitoring methods, transect layout, and FY 2012 monitoring activities and results for all planting years. Planting densities and performance criteria stipulated in the MAP were aimed at a desired future condition (DFC) of 10 percent mature sagebrush (Artemisia tridentata ssp wyomingensis) cover. Current recommendations for yielding this DFC are based upon a conceptual model planting of 1000 plants/ha (400/ac) exhibiting a 60-percent survival rate after 5 monitoring years (DOE 2003). Accordingly, a DFC after 5 monitoring years would not be less than 600 plants/ha (240/ac). To date, about 8700 sagebrush plants have been grown and transplanted onto the mitigation site. Harsh site conditions and low seedling survival have resulted in an estimated 489 transplants/ha on the mitigation site, which is 111 plants/ha short of the target DFC. Despite this apparent shortcoming, 71, 91, and 24 percent of the surviving seedlings planted in FY 2007 and FY 2008 and FY 2010, respectively, showed signs of blooming in FY 2012. Blooming status may be a positive indication of future sagebrush recruitment, and is therefore a potential source for reaching the target DFC of 600 plants/ha on this mitigation site over time. Because of the difficulty establishing small transplants on this site, we propose that no additional plantings be considered for this mitigation area and to rely upon the potential recruitment by established seedlings to achieve the mitigation commitment set forth in the MAP of 600 plants/ha.

  7. Environmental Mitigation Technology (Innovative System Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Alden Hydropower Fish-Friendly Turbine Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine ...

  8. Implantation, Activation, Characterization and Prevention/Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Internal Short Circuits in Lithium-Ion Cells Implantation, Activation, Characterization and PreventionMitigation of Internal Short Circuits in Lithium-Ion Cells 2012 ...

  9. Progress Continues on Mitigation of Radiological Contamination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 13, 2015 Progress Continues on Mitigation of Radiological Contamination This week, WIPP personnel will complete the installation of the brattice cloth and salt barrier on a...

  10. Level maintenance for Tank 101-SY mitigation-by-mixing test

    SciTech Connect (OSTI)

    Sobocinski, R.G.

    1994-11-16

    This document provides the procedure to be followed to implement the requirements of the Mixer Pump Long-Term Operations Plan for Tank 241-SY-101 Mitigation, WHC-SD-WM-PLN-081. The test is divided into 2 distinct sequences, named Single Position Pump Run and Tank Sweep. Instructions for all sequences are defined within the procedure. All safety requirements as defined in LA-UR-92-3196, A Safety Assessment for Proposed Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-101-SY have been implemented into this procedure.

  11. Mitigation Measures for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation Measures for Distributed Interconnection" Michael Coddington with National Renewable Energy Laboratory and Robert Broderick with Sandia National Laboratories July 9, 2014 2 Speakers Michael Coddington Principal Investigator Distributed Grid Integration NREL Robert Broderick Technical Lead Distributed Grid Integration Programs Sandia National Laboratories Kristen Ardani Solar Analyst, (today's moderator) NREL 3 INTERCONNECTION, SCREENING & MITIGATION PRACTICES OF 21 UTILITIES

  12. Hellsgate Winter Range : Wildlife Mitigation Project. Final Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-03-01

    Bonneville Power Administration (BPA) proposes to fund the Hellsgate Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Colville Confederated Tribes and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities within the boundaries of the Colville Indian Reservation. This Final Environmental Assessment (EA) examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. This area consists of several separated land parcels, of which 2,000 hectares (4,943 acres) have been purchased by BPA and an additional 4,640 hectares (11,466 acres) have been identified by the Colville Confederated Tribes for inclusion in the Project. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

  13. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States

    SciTech Connect (OSTI)

    Bojda, Nicholas; Ke, Jing; de la Rue du Can, Stephane; E. Letschert, Virginie; E. McMahon, James; McNeil, Michael A.

    2011-06-01

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption in the most cost-effective way. A major difference between the current study and some others is that we focus on individual equipment types that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. The approach of the study is to assess the impact of short-term actions on long-term impacts. Short term market transformation is assumed to occur by 2015, while long-term energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. The 15-year time frame is significant for many products however, indicating that delay of implementation postpones impacts such as net economic savings and mitigation of emissions of carbon dioxide. Such delays would result in putting in place energy-wasting technologies, postponing improvement until the end of their service life, or potentially resulting in expensive investment either in additional energy supplies or in early replacement to achieve future energy or emissions reduction targets.

  14. Defining the no action alternative for NEPA document of continuing actions

    SciTech Connect (OSTI)

    McCold, L.N.; Saulsbury, J.W.

    1995-12-01

    Environmental professionals today must address many issues that might not have been foreseen by developers of the National Environmental Policy Act of 1969 (NEPA) or the President`s Council on Environmental Quality (CEQ) regulations for implementing NEPA. One issue is the definition of the no action alternative for NEPA documentation of continuing actions. The CEQ regulations do not define the no action alternative, but merely state that NEPA analyses shall {open_quotes}include the alternative of no action{close_quotes}. For NEPA analyses of newly proposed actions, the practical definition of the no action alternative is clear (i.e., the agency will not implement the proposed action or alternative actions). However, the practical definition for NEPA analyses of continuing actions is not so clear. To clarify the definition of the no action alternative for continuing actions, particularly those that involve agency decisions about relicensing existing projects or continuing to operate existing programs or facilities. In trying to clarify the definition of the no action alternative for continuing actions, this paper examines the function of the no action alternative for NEPA analyses in general. Pertinent issues include how the definition of the no action alternative affects the selection of the baseline for environmental analysis and whether inclusion of the no action alternative really forces agencies to consider no action as a realistic alternative. To address these issues, this paper begins with a discussion of relevant legal decisions involving the no action alternative in NEPA analyses. The paper then examines some agency NEPA regulations and recent NEPA documents to provide examples of how some agencies address the no action alternative for continuing actions. Finally, the paper suggests definitions of the no action alternative for continuing actions and methods for addressing no action as a realistic alternative.

  15. Implementation Manual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links BPA Energy Efficiency Plan BPA Post-2011 EE Role Implementation Manual Archives IM Document Library Interim Solution 2.0 Files Low Income Efficiency...

  16. Comprehensive mitigation assessment process (COMAP) - Description and instruction manual

    SciTech Connect (OSTI)

    Makundi, Willy; Sathaye, Jayant

    2001-11-09

    In order to prepare policies and plans to reduce GHG emissions, national policy-makers need information on the costs and benefits of different mitigation options in addition to their carbon implications. Policy-makers must weigh the costs, benefits, and impacts of climate change mitigation and adaptation options, in the face of competition for limited resources. The policy goal for mitigation options in the land use sector is to identify which mix of options is likely to best achieve the desired forestry service and production objectives at the least cost, while attempting to maximize economic and social benefits, and minimize negative environmental and social impacts. Improved national-level cost estimates of response options in the land use sector can be generated by estimating the costs and benefits of different forest management practices appropriate for specific country conditions which can be undertaken within the constraint of land availability and its opportunity cost. These co st and land use estimates can be combined to develop cost curves, which would assist policy-makers in constructing policies and programs to implement forest responses.

  17. U.S. Postal Service radon assessment and mitigation program. Progress report, September 1993--November 1994

    SciTech Connect (OSTI)

    Velazquez, L.E.; Petty, J.L. Jr.

    1994-12-31

    In 1992, the US Postal Service (USPS) entered into an Interagency Agreement with the Department of Energy (DOE) whereby DOE would provide technical assistance in support of the USPS Radon Assessment and Mitigation Program. To aid in this effort, DOE tasked the Hazardous Waste Remedial Actions Program (HAZWRAP), which is managed by Martin Marietta Energy Systems, Inc., for DOE under contract AC05-84OR21400. Since that time, HAZWRAP has developed and finalized the sampling protocol, mitigation diagnostic protocol, and the quality assurance and quality control procedures. These procedures were validated during the Protocol Validation (1992-1993) and Pilot Study (1993-1994) phases of the program. To date, HAZWRAP has performed approximately 16,000 radon measurements in 250 USPS buildings. Mitigation diagnostics have been performed in 27 buildings. Thus far, 13% of the measurements have been above the Environmental Protection Agency action level of 4 pCi/L. This report summarizes the pilot program radon testing data and mitigation diagnostic data for 22 sites and contains recommendations for mitigation diagnostics.

  18. A wedge-based approach to estimating health co-benefits of climate change mitigation activities in the United States

    SciTech Connect (OSTI)

    Balbus, John M.; Greenblatt, Jeffery B.; Chari, Ramya; Millstein, Dev; Ebi, Kristie L.

    2015-02-01

    While it has been recognized that actions reducing greenhouse gas (GHG) emissions can have significant positive and negative impacts on human health through reductions in ambient fine particulate matter (PM2.5) concentrations, these impacts are rarely taken into account when analyzing specific policies. This study presents a new framework for estimating the change in health outcomes resulting from implementation of specific carbon dioxide (CO2) reduction activities, allowing comparison of different sectors and options for climate mitigation activities. Our estimates suggest that in the year 2020, the reductions in adverse health outcomes from lessened exposure to PM2.5 would yield economic benefits in the range of $6 to $14 billion (in 2008 USD), depending on the specific activity. This equates to between $40 and $93 per metric ton of CO2 in health benefits. Specific climate interventions will vary in the health co-benefits they provide as well as in potential harms that may result from their implementation. Rigorous assessment of these health impacts is essential for guiding policy decisions as efforts to reduce GHG emissions increase in scope and intensity.

  19. Corrective Action Plan for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    Bechtel Nevada

    1998-08-31

    This corrective action plan provides the closure implementation methods for the Area 3 Landfill Complex, Corrective Action Unit (CAU) 424, located at the Tonopah Test Range. The Area 3 Landfill Complex consists of 8 landfill sites, each designated as a separate corrective action site.

  20. Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Workshops » Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop The Advanced Manufacturing Office (AMO) at the U.S. Department of Energy (DOE)'s Office of Energy Efficiency and Renewable Energy and the Office of Fossil Energy (FE) hosted a workshop, November 12-13, 2014, in Coraopolis, Pennsylvania, as a follow-up to the President's Climate Action Plan and the DOE

  1. 2009 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    C. T. Lindsey; K. A. Gano; R. D. Teel

    2009-09-30

    This document details the results of revegetation and mitigation monitoring conducted in 2009, including 25 revegetation/restoration projects, one revegetation/mitigation project, and three bat mitigation projects.

  2. Earned Value Management System (EVMS) Corrective Action Standard Operating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procedure | Department of Energy (EVMS) Corrective Action Standard Operating Procedure Earned Value Management System (EVMS) Corrective Action Standard Operating Procedure This EVMS Corrective Action Standard Operating Procedure (ECASOP) serves as PM's primary reference for development of Corrective Action Requests (CARs) and Continuous Improvement Opportunities (CIOs), as well as the assessment of contractors procedures and implementation associated with Variance Analysis Reports (VARs) and

  3. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada, Rev. No.: 3 with Errata Sheet

    SciTech Connect (OSTI)

    Tim Echelard

    2006-03-01

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for Corrective Action Unit (CAU) 447, Project Shoal Area (PSA)-Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 447 is located in the Sand Springs Mountains in Churchill County, Nevada, approximately 48 kilometers (30 miles) southeast of Fallon, Nevada. The CADD/CAP combines the decision document (CADD) with the Corrective Action Plan (CAP) and provides or references the specific information necessary to recommend corrective actions for CAU 447, as provided in the FFACO. Corrective Action Unit 447 consists of two corrective action sites (CASs): CAS 57-49-01, Emplacement Shaft, and CAS 57-57-001, Cavity. The emplacement shaft (CAS-57-49-01) was backfilled and plugged in 1996 and will not be evaluated further. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at PSA. To achieve this, the following tasks were required: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (5) Recommend a preferred corrective action alternative for the subsurface at PSA. The original Corrective Action Investigation Plan (CAIP) for the PSA was approved in September 1996 and described a plan to drill and test four characterization wells, followed by flow and transport modeling (DOE/NV, 1996). The resultant drilling is described in a data report (DOE/NV, 1998e) and the data analysis and modeling in an interim modeling report (Pohll et al., 1998). After considering the results of the modeling effort, the U.S. Department of Energy (DOE) determined that the degree of uncertainty in transport predictions for PSA remained unacceptably large. As a result, a second CAIP was developed by DOE and approved by the Nevada Division of Environmental Protection (NDEP) in December 1998 (DOE/NV, 1998a). This plan prescribed a rigorous analysis of uncertainty in the Shoal model and quantification of methods of reducing uncertainty through data collection. This analysis is termed a Data Decision Analysis (Pohll et al., 1999a) and formed the basis for a second major characterization effort at PSA (Pohll et al., 1999b). The details for this second field effort are presented in an Addendum to the CAIP, which was approved by NDEP in April 1999 (DOE/NV, 1999a). Four additional characterization wells were drilled at PSA during summer and fall of 1999; details of the drilling and well installation are in IT Corporation (2000), with testing reported in Mihevc et al. (2000). A key component of the second field program was a tracer test between two of the new wells (Carroll et al., 2000; Reimus et al., 2003). Based on the potential exposure pathways, two corrective action objectives were identified for CAU 447: Prevent or mitigate exposure to groundwater contaminants of concern at concentrations exceeding regulatory maximum contaminant levels or risk-based levels; and Reduce the risk to human health and the environment to the extent practicable. Based on the review of existing data, the results of the modeling, future use, and current operations at PSA, the following alternatives have been developed for consideration at CAU 447: Alternative 1--No Further Action; Alternative 2--Proof-of-Concept and Monitoring with Institutional Controls; and Alternative 3--Contaminant Control. The corrective action alternatives were evaluated based on the approach outlined in the ''Focused Evaluation of Selected Remedial Alternatives for the Underground Test Area'' (DOE/NV, 1998b). Each alternative was assessed against nine evaluation criteria. These criteria include overall protection of human health and the environment; compliance with appropriate requirements; long-term effectiveness; reduction of the toxicity, mobility, or volume of contamination; short-term effectiveness; implementability; cost; state acceptance; and community acceptance. Based on the results of this evaluation, the preferred alternative for CAU 447 is Alternative 2, Proof-of-Concept and Monitoring with Institutional Controls. The preferred corrective action alternative was chosen for its technical implementability, focusing on performance, reliability, feasibility, safety, and cost. Alternative 2 was judged to meet all requirements for the technical components evaluated and will control inadvertent exposure to contaminated groundwater at CAU 447.

  4. Procedures for Interagency Consultation to Avoid or Mitigate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or Mitigate Adverse Effects on Rivers in the Nationwide Inventory (CEQ, 1980) Procedures for Interagency Consultation to Avoid or Mitigate Adverse Effects on Rivers in the ...

  5. Improving Department of Energy Capabilities for Mitigating Beyond...

    Energy Savers [EERE]

    Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events April...

  6. National integrated mitigation planning in agriculture: A review...

    Open Energy Info (EERE)

    National integrated mitigation planning in agriculture: A review paper This review of national greenhouse gas (GHG) mitigation planning in the agriculture sector has two...

  7. Mitigating Breakdown in High Energy Density Perovskite Polymer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors 2012 ...

  8. Property:Environmental Monitoring and Mitigation Efforts | Open...

    Open Energy Info (EERE)

    Environmental Monitoring and Mitigation Efforts Jump to: navigation, search Property Name Environmental Monitoring and Mitigation Efforts Property Type String Retrieved from...

  9. National and Sectoral GHG Mitigation Potential: A Comparison...

    Open Energy Info (EERE)

    and Sectoral GHG Mitigation Potential: A Comparison Across Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National and Sectoral GHG Mitigation Potential: A...

  10. Korea's Green Growth Strategy: Mitigating Climate Change and...

    Open Energy Info (EERE)

    Korea's Green Growth Strategy: Mitigating Climate Change and Developing New Growth Engines Jump to: navigation, search Name Korea's Green Growth Strategy: Mitigating Climate Change...

  11. Financing Global Climate Change Mitigation | Open Energy Information

    Open Energy Info (EERE)

    Global Climate Change Mitigation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financing Global Climate Change Mitigation AgencyCompany Organization: United Nations...

  12. Recent Diesel Engine Emission Mitigation Activities of the Maritime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime ...

  13. Development of Micro-structural Mitigation Strategies for PEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Micro-structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulation and Experimental Approaches Development of Micro-structural Mitigation Strategies for PEM Fuel ...

  14. EA-1923: Mitigated Finding of No Significant Impact | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigated Finding of No Significant Impact EA-1923: Mitigated Finding of No Significant Impact Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern ...

  15. Nanoparticles to Mitigate Biofilm Growth. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Nanoparticles to Mitigate Biofilm Growth. Citation Details In-Document Search Title: Nanoparticles to Mitigate Biofilm Growth. Abstract not provided. Authors: Altman, Susan Jeanne ...

  16. Oregon Fish and Wildlife Mitigation Policy | Open Energy Information

    Open Energy Info (EERE)

    Fish and Wildlife Mitigation Policy Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Oregon Fish and Wildlife Mitigation Policy Published Publisher Not...

  17. Mitigations for Security Vulnerabilities Found in Control System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigations for Security Vulnerabilities Found in Control System Networks Mitigations for Security Vulnerabilities Found in Control System Networks Industry is aware of the need ...

  18. Information Needs for Energy Mitigation and Siting

    Broader source: Energy.gov (indexed) [DOE]

    esources University o f W yoming QUADRENNIAL ENERGY REVIEW - Aug. 21,2014 1. A shared language 2. Solid baseline data to guide planning and siting 3. Mitigation best practices -...

  19. Mitigating the Impacts of Glint and Glare

    SciTech Connect (OSTI)

    Hillesheim, Michael; Kandt, Alicen; Phillips, Steven

    2015-09-01

    The National Renewable Energy Laboratory, supporting the Department of the Navy Renewable Energy Program Office, has developed an innovative glint/glare analysis and visualization methodology to understand and mitigate the possible impacts of light reflecting off solar photovoltaic arrays.

  20. Corrective Action Tracking System (CATS) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The CATS web-based database is used to enter, track, and report the status of corrective actions developed and implemented in the DOE Corrective Action Management Program (CAMP) to...

  1. A comparison of the RCRA Corrective Action and CERCLA Remedial Action Processes

    SciTech Connect (OSTI)

    Traceski, Thomas T.

    1994-02-01

    This document provides a comprehensive side-by-side comparison of the RCRA corrective action and the CERCLA remedial action processes. On the even-numbered pages a discussion of the RCRA corrective action process is presented and on the odd-numbered pages a comparative discussion of the CERCLA remedial action process can be found. Because the two programs have a difference structure, there is not always a direct correlation between the two throughout the document. This document serves as an informative reference for Departmental and contractor personnel responsible for oversight or implementation of RCRA corrective action and CERCLA remedial action activities at DOE environmental restoration sites.

  2. After Action Report: Specific Manufacturing Capability 2014 Evaluated Drill October 29, 2014

    SciTech Connect (OSTI)

    V. Scott Barnes

    2014-12-01

    On October 29, 2014, the Specific Manufacturing Capability (SMC) facility located at the Idaho National Laboratory (INL) conducted its annual evaluated emergency drill. As a result, this after action report is required by DOE O 151.1C, “Comprehensive Emergency Management System.” The SMC facility, in coordination with other onsite organizations, and the Department of Energy Idaho Operations Office (DOE ID) conducted an annual facility emergency drill to demonstrate the ability to implement the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.” The INL contractor, Battelle Energy Alliance, LLC (BEA) in coordination with other onsite organizations, conducted operations and demonstrated proper response measures to mitigate an event and protect the health and safety of onsite personnel, the environment, and property. Report data was collected from multiple sources, including documentation generated during drill response, critiques conducted immediately after terminating the drill, and evaluation critiques.

  3. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    SciTech Connect (OSTI)

    1995-04-01

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

  4. Environmental Effects Abroad of Major Federal Actions (CEQ, 1979...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation of Executive Order 12114 Environmental Effects Abroad of Major Federal Actions: Final Guideline (DOE, 1981) EO 12114: Environmental Effects Abroad of Major Federal ...

  5. Advanced Mitigating Measures for the Cell Internal Short Risk (Presentation)

    SciTech Connect (OSTI)

    Darcy, E.; Smith, K.

    2010-04-01

    This presentation describes mitigation measures for internal short circuits in lithium-ion battery cells.

  6. Platelet composite coatings for tin whisker mitigation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rohwer, Lauren E. S.; Martin, James E.

    2015-09-14

    In this study, reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results formore » several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.« less

  7. Disruption mitigation using high pressure gas jets

    SciTech Connect (OSTI)

    Dennis G. Whyte

    2007-10-11

    The goal of this research is to establish credible disruption mitigation scenarios based on the technique of massive gas injection. Disruption mitigation seeks to minimize or eliminate damage to internal components that can occur due to the rapid dissipation of thermal and magnetic energy during a tokamak disruption. In particular, the focus of present research is extrapolating mitigation techniques to burning plasma experiments such as ITER, where disruption-caused damage poses a serious threat to the lifetime of internal vessel components. A majority of effort has focused on national and international collaborative research with large tokamaks: DIII-D, Alcator C-Mod, JET, and ASDEX Upgrade. The research was oriented towards empirical trials of gas-jet mitigation on several tokamaks, with the goal of developing and applying cohesive models to the data across devices. Disruption mitigation using gas jet injection has proven to be a viable candidate for avoiding or minimizing damage to internal components in burning plasma experiments like ITER. The physics understanding is progress towards a technological design for the required gas injection system in ITER.

  8. Platelet composite coatings for tin whisker mitigation

    SciTech Connect (OSTI)

    Rohwer, Lauren E. S.; Martin, James E.

    2015-09-14

    In this study, reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results for several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.

  9. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  10. FTCP Corrective Action Plan - Revision 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corrective Action Plan - Revision 2 FTCP Corrective Action Plan - Revision 2 FTCP Corrective Action Plan, Revision 2, which is Deliverable B for Commitment 13 in the Department of Energy (DOE) Implementation Plan to Improve Oversight of Nuclear Operations, issued in response to Defense Nuclear Facilities Safety Board Recommendation 2004-1, Oversight of Complex, High-Hazard Nuclear Operations PDF icon FTCP Corrective Action Plan Revision 2 More Documents & Publications FTCP Corrective Action

  11. Defining the no-action alternative for National Environmental Policy Act analyses of continuing actions

    SciTech Connect (OSTI)

    McCold, L.N.; Saulsbury, J.W.

    1998-01-01

    The Council on Environmental Quality (CEQ) regulations for implementing the National Environmental Policy Act of 1969 (NEPA) do not define the no-action alternative, stating only that EPA analyses shall include the alternative of no action. The definition of the no-action alternative for newly proposed actions seems clear. However, for continuing actions, the meaning of the no-action alternative is ambiguous. This article examines the overall function of the no-action alternative for NEPA analyses of continuing actions. It begins with a discussion of the conflicting definitions of the no-action alternative for continuing activities, including CEQ regulations and guidelines related to the no-action alternative and legal decisions that have helped establish precedence for defining no action. A review of NEPA regulations and guidelines of 10 federal agencies shows how different agencies define no-action for continuing actions. Review of six recent NEPA documents on continuing actions reveals how their definition of the no-action alternative promote or impede informed decision-making.

  12. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect (OSTI)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-01-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/3/2001 through 1/02/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Our research team has made significant progress towards completion of our Phase I objectives, and our current efforts remain focused on fulfilling these research objectives in accordance with the project timeline. Overall, we believe that we are on schedule to complete Phase I activities by 10/2002, which is the milestone date from the original project timeline. Specific results and accomplishments for the fourth quarter of 2001 include: (1) New procedures and protocols have been developed to increase the chances of successful implementation in the bioreactor of organisms that perform well in the lab. The new procedures include pre-screening of organisms for adhesion characteristics and a focus on identifying the organisms with maximum growth rate potential. (2) Preliminary results show an increase in adhesion to glass and a decrease in overall growth rates when using growth media prepared with tap water rather than distilled water. (3) Several of the organisms collected from Yellowstone National Park using the new procedures are currently being cultured in preparation for bioreactor tests. (4) One important result from a test of growth surface temperature distribution as a function of gas stream and drip-fluid temperatures showed a high dependence of membrane temperature on fluid temperature, with gas stream temperature having minimal effect. This result indicates that bioreactor growth surface temperatures can be controlled using fluid delivery temperature. The possible implications for implementation of the bioreactor concept are encouraging, since it may be possible to use the bioreactor with very high gas stream temperatures by controlling the temperature of the organisms with the fluid temperature. (5) Investigation of growth surface materials continues, with Omnisil and Scotch Brite emerging as the leading candidates. More investigation of these and other material types is still needed to determine the best material for particular combinations of organisms and harvesting methods. (6) Tests of harvesting methods and harvesting system designs have shown that desirable levels of ''percentage algae removal'' can be achieved for particular organisms and growth surface materials, for example Cyanidium on polyester felt. Additional testing continues to better characterize sensitivity of the ''percentage removal'' to various system design parameters, but these tests have been delayed due to the lack of suitable organisms for the tests. (7) The solar collectors and the pilot-scale bioreactor light distribution panels for the deep-penetration hybrid solar lighting system have been designed. One solar lighting system (solar collector tracking unit, fiber optic light transmission cables, light distribution panels) is almost completely prepared for installation during the next quarter in the pilot scale bioreactor system. (8) Pressure drop results from tests on the enhanced mass transfer CO{sub 2} absorption technique (the translating slug flow reactor) are encouraging, with reasonable values of 2.5 psi maximum over an 11.48 meter distance between pressure taps for test conditions of 0.6 m/sec slug velocity and approximately 10 m/sec gas velocity. Preparations are under way for CO{sub 2} scrubbing tests.

  13. Energy Management System Implementation … First Webinar- Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * ISO 9001, ISO 14001, ISO 50001 Lead auditor, implementation and integration * DOE ... Baseline - Action Plans * Web 3 - Communication - Monitoring and Measurement - ...

  14. Energy Management System Implementation … Do and Check

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * ISO 9001, ISO 14001, ISO 50001 Lead auditor, implementation and integration * DOE ... Baseline - Action Plans * Web 3 - Communication - Monitoring and Measurement - ...

  15. Gas powered fluid gun with recoil mitigation

    DOE Patents [OSTI]

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  16. Mitigating PQ Problems in Legacy Data Centers

    SciTech Connect (OSTI)

    Ilinets, Boris; /SLAC

    2011-06-01

    The conclusions of this presentation are: (1) Problems with PQ in legacy data centers still exist and need to be mitigated; (2) Harmonics generated by non-linear IT load can be lowered by passive, active and hybrid cancellation methods; (3) Harmonic study is necessary to find the best way to treat PQ problems; (4) AHF's and harmonic cancellation transformers proved to be very efficient in mitigating PQ problems; and (5) It is important that IT leaders partner with electrical engineering to appropriate ROI statements, justifying many of these expenditures.

  17. Gas powered fluid gun with recoil mitigation

    DOE Patents [OSTI]

    Grubelich, Mark C.; Yonas, Gerold

    2016-03-01

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  18. Guide to the Successful Implementation of State Combined Heat and Power Policies

    SciTech Connect (OSTI)

    Industrial Energy Efficiency and Combined Heat and Power Working Group

    2013-03-11

    Provides utility regulators and other policymakers with actionable information based on effective state strategies for implementing CHP policies

  19. CORRECTIVE ACTION DECISION DOCUMENT FOR THE AREA 3 LANDFILL COMPLEX, TONOPAH TEST RANGE, CAU 424, REVISION 0, MARCH 1998

    SciTech Connect (OSTI)

    DOE /NV

    1998-03-03

    This Corrective Action Decision Document (CADD) has been prepared for the Area 3 Landfill Complex (Corrective Action Unit [CAU] 424) in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Corrective Action Unit 424 is located at the Tonopah Test Range (TTR) and is comprised of the following Corrective Action Sites (CASs), each an individual landfill located around and within the perimeter of the Area 3 Compound (DOE/NV, 1996a): (1) Landfill A3-1 is CAS No. 03-08-001-A301. (2) Landfill A3-2 is CAS No. 03-08-002-A302. (3) Landfill A3-3 is CAS No. 03-08-002-A303. (4) Landfill A3-4 is CAS No. 03-08-002-A304. (5) Landfill A3-5 is CAS No. 03-08-002-A305. (6) Landfill A3-6 is CAS No. 03-08-002-A306. (7) Landfill A3-7 is CAS No. 03-08-002-A307. (8) Landfill A3-8 is CAS No. 03-08-002-A308. The purpose of this CADD is to identify and provide a rationale for the selection of a recommended corrective action alternative for each CAS. The scope of this CADD consists of the following: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (6) Recommend and justify a preferred corrective action alternative for each CAS. In June and July 1997, a corrective action investigation was performed as set forth in the Corrective Action Investigation Plan (CAIP) for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada (DOE/NV, 1997). Details can be found in Appendix A of this document. The results indicated four groupings of site characteristics as shown in Table ES-1. Based on the potential exposure pathways, the following corrective action objectives have been identified for CAU No. 424: (1) Prevent or mitigate human exposure to subsurface soils containing waste. (2) Remediate the site per applicable state and federal regulations (NAC, 1996c). (3) Prevent adverse impacts to groundwater quality. Based on the review of existing data, future land use, and current operations at the TTR, the following alternatives were developed for consideration at the Area 3 Landfill Complex CAU: Alternative 1 - No Action; Alternative 2 - Administrative Closure; Alternative 3 - Partial Excavation, Backfill, and Recontouring The corrective action alternatives were evaluated based on four general corrective action standards and five remedy-selection decision factors. Based on the results of this evaluation, preferred alternatives were selected for each CAS as indicated in Table ES-2. The preferred corrective action alternatives were evaluated on their technical merits, focusing on performance, reliability, feasibility, and safety. The alternatives were judged to meet all requirements for the technical components evaluated. These alternatives meet all applicable state and federal regulations for closure of the site and will reduce potential future exposure pathways to the contents of the landfills. During corrective action implementation, these alternatives will present minimal potential threat to site workers who come in contact with the waste. However, procedures will be developed and implemented to ensure worker health and safety.

  20. Guam Energy Action Plan

    SciTech Connect (OSTI)

    Conrad, M. D.; Ness, J. E.

    2013-07-01

    Describes the four near-term strategies selected by the Guam Energy Task Force during action planning workshops conducted in March 2013, and outlines the steps being taken to implement those strategies. Each strategy addresses one of the energy sectors identified in the earlier Guam strategic energy plan as being an essential component of diversifying Guam's fuel sources and reducing fossil energy consumption 20% by 2020. The four energy strategies selected are: (1) expanding public outreach on energy efficiency and conservation, (2) establishing a demand-side management revolving loan program, (3) exploring waste-to-energy options, and (4) influencing the transportation sector via anti-idling legislation, vehicle registration fees, and electric vehicles.

  1. Highly concentrated foam formulation for blast mitigation

    DOE Patents [OSTI]

    Tucker, Mark D.; Gao, Huizhen

    2010-12-14

    A highly concentrated foam formulation for blast suppression and dispersion mitigation for use in responding to a terrorism incident involving a radiological dispersion device. The foam formulation is more concentrated and more stable than the current blast suppression foam (AFC-380), which reduces the logistics burden on the user.

  2. Step 4: Project Implementation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... expected * Technology O&M Assumed low, mitigable or allocatable Sources: Adapted from Holland & Hart, RE Project Development & Finance & Infocast, Advanced RE Project Finance & ...

  3. RCRA corrective action determination of no further action

    SciTech Connect (OSTI)

    1996-06-01

    On July 27, 1990, the U.S. Environmental Protection Agency (EPA) proposed a regulatory framework (55 FR 30798) for responding to releases of hazardous waste and hazardous constituents from solid waste management units (SWMUs) at facilities seeking permits or permitted under the Resource Conservation and Recovery Act (RCRA). The proposed rule, `Corrective Action for Solid Waste Management Units at Hazardous Waste Facilities`, would create a new Subpart S under the 40 CFR 264 regulations, and outlines requirements for conducting RCRA Facility Investigations, evaluating potential remedies, and selecting and implementing remedies (i.e., corrective measures) at RCRA facilities. EPA anticipates instances where releases or suspected releases of hazardous wastes or constituents from SWMUs identified in a RCRA Facility Assessment, and subsequently addressed as part of required RCRA Facility Investigations, will be found to be non-existent or non-threatening to human health or the environment. Such releases may require no further action. For such situations, EPA proposed a mechanism for making a determination that no further corrective action is needed. This mechanism is known as a Determination of No Further Action (DNFA) (55 FR 30875). This information Brief describes what a DNFA is and discusses the mechanism for making a DNFA. This is one of a series of Information Briefs on RCRA corrective action.

  4. Mitigating Wind-Radar Interference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigating Wind-Radar Interference Mitigating Wind-Radar Interference April 1, 2013 - 12:54pm Addthis This is an excerpt from the First Quarter 2013 edition of the Wind Program R&D ...

  5. Mitigation and Remediation of Mercury Contamination at the Y...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Full Document and ...

  6. Market-Based Wildlife Mitigation in Wyoming | Open Energy Information

    Open Energy Info (EERE)

    in Wyoming Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Market-Based Wildlife Mitigation in Wyoming Abstract Covers the basics of mitigation...

  7. 2008 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    C. T. Lindsey; K. A. Gano

    2008-09-30

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2008 and includes 22 revegetation/restoration projects, one revegetation/mitigation project, and two bat habitat mitigation projects.

  8. 2007 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    K. A. Gano; C. T. Lindsey

    2007-09-27

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2007 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 3 bat habitat mitigation projects.

  9. Building Actionable Climate Action Plans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Actionable Climate Action Plans Building Actionable Climate Action Plans Transcript PDF icon Presentation More Documents & Publications Partnering with Utilities Part 2: ...

  10. 300 Area Building Retention Evaluation Mitigation Plan

    SciTech Connect (OSTI)

    D. J. McBride

    2007-07-03

    Evaluate the long-term retention of several facilities associated with the PNNL Capability Replacement Laboratory and other Hanfor mission needs. WCH prepared a mitigation plan for three scenarios with different release dates for specific buildings. The evaluations present a proposed plan for providing utility services to retained facilities in support of a long-term (+20 year) lifespan in addition to temporary services to buildings with specified delayed release dates.

  11. Explosive parcel containment and blast mitigation container

    DOE Patents [OSTI]

    Sparks, Michael H.

    2001-06-12

    The present invention relates to a containment structure for containing and mitigating explosions. The containment structure is installed in the wall of the building and has interior and exterior doors for placing suspicious packages into the containment structure and retrieving them from the exterior of the building. The containment structure has a blast deflection chute and a blowout panel to direct over pressure from explosions away from the building, surrounding structures and people.

  12. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    SciTech Connect (OSTI)

    Brooks, William; Basso, Thomas; Coddington, Michael

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  13. Preparing for Project Implementation Financing Project Implementation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Project Implementation Save Energy Now LEADER Web Conference Project Implementation Seminar Series Save Energy Now LEADER Web Conference Agenda Seminar Series ...

  14. Update on Common-Cause Failure Experience and Mitigation Practices

    SciTech Connect (OSTI)

    Wood, Richard Thomas; Muhlheim, Michael David; Pullum, Laura L; Smith, Cyrus M; Holcomb, David Eugene; Korsah, Kofi

    2014-04-01

    Experience in other industries has shown that digital technology can provide substantial benefits in terms of performance and reliability. However, the U.S. nuclear power industry has been slow to adopt the technology extensively in its instrumentation and control (I&C) applications because of inhibiting factors such as regulatory uncertainty, insufficient technological experience base, implementation complexity, limited availability of nuclear-qualified products and vendors, and inadequate definition of modernization cost recapture. Although there have been examples of digital technology usage in the nuclear power industry, challenges to the qualification of digital technology for high-integrity nuclear power plant (NPP) applications have severely constrained more widespread progress in achieving the benefits that are possible through the transition to digital. The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) established the Advanced Sensors and Instrumentation (ASI) technology area under the Nuclear Energy Enabling Technologies (NEET) Program to coordinate the instrumentation and controls (I&C) research across DOE NE and to identify and lead efforts to address common needs. As part of the NEET ASI research program, the Digital Technology Qualification project was established. Under this project, the Oak Ridge National Laboratory (ORNL) is leading the investigation into mitigation of digital common-cause failure (CCF) vulnerabilities for nuclear-qualified applications. This technical report documents updated and expanded findings from research activities by ORNL. Specifically, the report describes CCF experience in the nuclear and nonnuclear industries, identifies the state of the practice for CCF mitigation through key examples, and presents conclusions from the determination of knowledge gaps.

  15. System design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    SciTech Connect (OSTI)

    Truitt, R.W.; Pounds, T.S.; Smith, S.O.

    1994-08-24

    This document describes the hardware subsystems of the data acquisition and control system (DACS) used in mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los Alamos National Laboratory (LANL) and supplied to Westinghouse Hanford Company (WHC). The mitigation testing uses a pump immersed in the waste tank, directed at certain angles and operated at different speeds and time durations. The SY-101 tank has experienced recurrent periodic gas releases of hydrogen, nitrous oxide, ammonia, and (recently discovered) methane. The hydrogen gas represents a danger, as some of the releases are in amounts above the lower flammability limit (LFL). These large gas releases must be mitigated. Several instruments have been added to the tank to monitor the gas compositions, the tank level, the tank temperature, and other parameters. A mixer pump has been developed to stir the tank waste to cause the gases to be released at a slow rate. It is the function of the DACS to monitor those instruments and to control the mixer pump in a safe manner. During FY93 and FY94 the mixer pump was installed with associated testing operations support equipment and a mitigation test project plan was implemented. These activities successfully demonstrated the mixer pump`s ability to mitigate the SY-101 tank hydrogen gas hazard.

  16. Corrective Actions Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community, Environment » Environmental Stewardship » Environmental Cleanup » Corrective Actions Corrective Actions Process The general process for evaluating and remediating potential release sites is called the corrective action process. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Corrective actions The Laboratory's corrective actions process refers to the way in which the Laboratory investigates, stabilizes,

  17. UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE

    SciTech Connect (OSTI)

    Ishkov, A.; Akopova, Gretta; Evans, Meredydd; Yulkin, Grigory; Roshchanka, Volha; Waltzer, Suzie; Romanov, K.; Picard, David; Stepanenko, O.; Neretin, D.

    2011-10-01

    This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trends as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses. Depending on the value of gas, simple, low-cost measures, such as adjusting leaking equipment components, or larger-scale measures, such as installing dry seals on compressors, can be applied.

  18. Industrial Energy Efficiency and Climate Change Mitigation

    SciTech Connect (OSTI)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  19. Security Informatics Research Challenges for Mitigating Cyber Friendly Fire

    SciTech Connect (OSTI)

    Carroll, Thomas E.; Greitzer, Frank L.; Roberts, Adam D.

    2014-09-30

    This paper addresses cognitive implications and research needs surrounding the problem of cyber friendly re (FF). We dene cyber FF as intentional o*ensive or defensive cyber/electronic actions intended to protect cyber systems against enemy forces or to attack enemy cyber systems, which unintentionally harms the mission e*ectiveness of friendly or neutral forces. We describe examples of cyber FF and discuss how it ts within a general conceptual framework for cyber security failures. Because it involves human failure, cyber FF may be considered to belong to a sub-class of cyber security failures characterized as unintentional insider threats. Cyber FF is closely related to combat friendly re in that maintaining situation awareness (SA) is paramount to avoiding unintended consequences. Cyber SA concerns knowledge of a system's topology (connectedness and relationships of the nodes in a system), and critical knowledge elements such as the characteristics and vulnerabilities of the components that comprise the system and its nodes, the nature of the activities or work performed, and the available defensive and o*ensive countermeasures that may be applied to thwart network attacks. We describe a test bed designed to support empirical research on factors a*ecting cyber FF. Finally, we discuss mitigation strategies to combat cyber FF, including both training concepts and suggestions for decision aids and visualization approaches.

  20. Mitigation of Severe Accident Consequences Using Inherent Safety Principles

    SciTech Connect (OSTI)

    R. A. Wigeland; J. E. Cahalan

    2009-12-01

    Sodium-cooled fast reactors are designed to have a high level of safety. Events of high probability of occurrence are typically handled without consequence through reliable engineering systems and good design practices. For accidents of lower probability, the initiating events are characterized by larger and more numerous challenges to the reactor system, such as failure of one or more major engineered systems and can also include a failure to scram the reactor in response. As the initiating conditions become more severe, they have the potential for creating serious consequences of potential safety significance, including fuel melting, fuel pin disruption and recriticality. If the progression of such accidents is not mitigated by design features of the reactor, energetic events and dispersal of radioactive materials may result. For severe accidents, there are several approaches that can be used to mitigate the consequences of such severe accident initiators, which typically include fuel pin failures and core disruption. One approach is to increase the reliability of the reactor protection system so that the probability of an ATWS event is reduced to less than 1 x 10-6 per reactor year, where larger accident consequences are allowed, meeting the U.S. NRC goal of relegating such accident consequences as core disruption to these extremely low probabilities. The main difficulty with this approach is to convincingly test and guarantee such increased reliability. Another approach is to increase the redundancy of the reactor scram system, which can also reduce the probability of an ATWS event to a frequency of less than 1 x 10-6 per reactor year or lower. The issues with this approach are more related to reactor core design, with the need for a greater number of control rod positions in the reactor core and the associated increase in complexity of the reactor protection system. A third approach is to use the inherent reactivity feedback that occurs in a fast reactor to automatically respond to the change in reactor conditions and to result in a benign response to these events. This approach has the advantage of being relatively simple to implement, and does not face the issue of reliability since only fundamental physical phenomena are used in a passive manner, not active engineered systems. However, the challenge is to present a convincing case that such passive means can be implemented and used. The purpose of this paper is to describe this third approach in detail, the technical basis and experimental validation for the approach, and the resulting reactor performance that can be achieved for ATWS events.

  1. HANFORD TANK FARM RESOURCE CONVERVATION & RECOVERY ACT (RCRA) CORRECTIVE ACTION PROGRAM

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.

    2007-01-15

    As a consequence of producing special nuclear material for the nation's defense, large amounts of extremely hazardous radioactive waste was created at the US Department of Energy's (DOE) Hanford Site in south central Washington State. A little over 50 million gallons of this waste is now stored in 177 large, underground tanks on Hanford's Central Plateau in tank farms regulated under the Atomic Energy Act and the Resource, Conservation, and Recovery Act (RCRA). Over 60 tanks and associated infrastructure have released or are presumed to have released waste in the vadose zone. In 1998, DOE's Office of River Protection established the Hanford Tank Farm RCRA Corrective Action Program (RCAP) to: (1) characterize the distribution and extent of the existing vadose zone contamination; (2) determine how the contamination will move in the future; (3) estimate the impacts of this contamination on groundwater and other media; (4) develop and implement mitigative measures; and (5) develop corrective measures to be implemented as part of the final closure of the tank farm facilities. Since its creation, RCAP has made major advances in each of these areas, which will be discussed in this paper.

  2. Implementation Proposal for the National Action Plan on Demand Response -

    Energy Savers [EERE]

    Imperial Valley Renewable Energy Summit Imperial Valley Renewable Energy Summit The Energy Department's Geothermal Technologies Office presented on major funding initiatives in 2015 at the eighth annual Imperial Valley Renewable Energy Summit, in southern California in March. Laura Garchar - science and technology policy fellow through DOE's Institute for Science and Education at Oak Ridge, Tennessee (ORISE) - presented. click below for the full presentation PDF icon IVRES

  3. Step 4: Project Implementation

    Energy Savers [EERE]

    Process Step 4: Project Implementation Presentation Agenda * Step 4: Project Implementation - Pre-construction - Contract execution - Interconnection - Project construction - Commissioning * Project Example 2 1/28/2016 2 1 Potential 3 Refinement 5 Operations & Maintenance 2 Options 4 Implementation 4 Implementation 3 Potential Options Refinement Implementation Operations & Maintenance Step 4: Implementation 4 Purpose: Contract and begin physical construction of project Tasks: * Finalize

  4. Global climate change and the mitigation challenge

    SciTech Connect (OSTI)

    Frank Princiotta

    2009-10-15

    Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO{sub 2}), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8{sup o}C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO{sub 2} emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5{sup o}C in 2100, the recent annual 3% CO{sub 2} emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required. 20 refs., 18 figs., 4 tabs.

  5. 2014 Joint Action Workshop

    Broader source: Energy.gov [DOE]

    The Joint Action Workshop is an annual event for joint action agencies and their members to meet informally and discuss emerging policy, regulatory, and power supply issues, and other topics...

  6. Safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-101-SY: Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Lentsch, J.W., Westinghouse Hanford

    1996-05-16

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101, which is located within the Hanford Site, Richland, Washington. The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  7. A safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-SY-101: Hanford Site,Richland, Washington

    SciTech Connect (OSTI)

    Lentsch, J.W.

    1996-07-01

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101,which is located within the Hanford Site, Richland, Washington.The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  8. DOE/EA-1915 MITIGATION ACTION PLAN PROPOSED CONVEYANCE OF LAND...

    Office of Environmental Management (EM)

    ... existing landfills and disposal facilities, the deed will limit the location of stormwater drainage facilities. meters) north of the centerline of Horn Rapids Road, and (b) ...

  9. EA-1951: Finding of No Significant Impact and Mitigation Action Plan

    Broader source: Energy.gov [DOE]

    Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line Project; Benton and Yakima Counties, Washington

  10. Webinar: Micro-Structural Mitigation Strategies for PEM Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Micro-Structural Mitigation Strategies for PEM Fuel Cells Webinar: Micro-Structural Mitigation Strategies for PEM Fuel Cells Above is the webinar recording for the Fuel Cell Technologies Office webinar, "Micro-Structural Mitigation Strategies for PEM Fuel Cells," originally presented on November 19, 2013. In addition to this recording, you can access the presentation slides. A text version of this recording will be available soon

  11. Federal Interagency Wind Turbine Radar Interference Mitigation Strategy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Interagency Wind Turbine Radar Interference Mitigation Strategy Federal Interagency Wind Turbine Radar Interference Mitigation Strategy Cover of the Federal Interagency Wind Turbine Radar Interference Mitigation Strategy report Wind development located within the line of sight of radar systems can cause clutter and interference, which at some radars has resulted in significant performance degradation. As wind turbines continue to be installed, and as advances in wind

  12. TOP 10 VULNERABILITIES OF CONTROL SYSTEMS AND THEIR ASSOCIATED MITIGATIONS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy TOP 10 VULNERABILITIES OF CONTROL SYSTEMS AND THEIR ASSOCIATED MITIGATIONS TOP 10 VULNERABILITIES OF CONTROL SYSTEMS AND THEIR ASSOCIATED MITIGATIONS This document provides practices that can help mitigate the potential risks that can occur to some electricity sector organizations. Each organization decides for itself the risks it can accept and the practices it deems appropriate to manage those risks. PDF icon TOP 10 VULNERABILITIES OF CONTROL SYSTEMS AND THEIR

  13. FTCP Corrective Action Plan- Revision 1

    Broader source: Energy.gov [DOE]

    January 2007 FTCP Corrective Action Plan, Revision 1, which is Deliverable B for Commitment 13 in the Department of Energy (DOE) Implementation Plan to Improve Oversight of Nuclear Operations, issued in response to Defense Nuclear Facilities Safety Board Recommendation 2004- 1, Oversight of Complex, High-Hazard Nuclear Operations

  14. Burlington Bottoms Wildlife Mitigation Project. Final Environmental Assessment/Management Plan and Finding of No Significant Impact.

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    Bonneville Power Administration (BPA) proposes to fund wildlife management and enhancement activities for the Burlington bottoms wetlands mitigation site. Acquired by BPA in 1991, wildlife habitat at Burlington bottoms would contribute toward the goal of mitigation for wildlife losses and inundation of wildlife habitat due to the construction of Federal dams in the lower Columbia and Willamette River Basins. Target wildlife species identified for mitigation purposes are yellow warbler, great blue heron, black-capped chickadee, red-tailed hawk, valley quail, spotted sandpiper, wood duck, and beaver. The Draft Management Plan/Environmental Assessment (EA) describes alternatives for managing the Burlington Bottoms area, and evaluates the potential environmental impacts of the alternatives. Included in the Draft Management Plan/EA is an implementation schedule, and a monitoring and evaluation program, both of which are subject to further review pending determination of final ownership of the Burlington Bottoms property.

  15. International perspectives on mitigating laboratory biorisks.

    SciTech Connect (OSTI)

    Pinard, William J.; Salazar, Carlos A.

    2010-11-01

    The International Perspectives on Mitigating Laboratory Biorisks workshop, held at the Renaissance Polat Istanbul Hotel in Istanbul, Republic of Turkey, from October 25 to 27, 2010, sought to promote discussion between experts and stakeholders from around the world on issues related to the management of biological risk in laboratories. The event was organized by Sandia National Laboratories International Biological Threat Reduction program, on behalf of the US Department of State Biosecurity Engagement Program and the US Department of Defense Cooperative Biological Engagement Program. The workshop came about as a response to US Under Secretary of State Ellen O. Tauscher's statements in Geneva on December 9, 2009, during the Annual Meeting of the States Parties to the Biological Weapons Convention (BWC). Pursuant to those remarks, the workshop was intended to provide a forum for interested countries to share information on biorisk management training, standards, and needs. Over the course of the meeting's three days, participants discussed diverse topics such as the role of risk assessment in laboratory biorisk management, strategies for mitigating risk, measurement of performance and upkeep, international standards, training and building workforce competence, and the important role of government and regulation. The meeting concluded with affirmations of the utility of international cooperation in this sphere and recognition of positive prospects for the future. The workshop was organized as a series of short presentations by international experts on the field of biorisk management, followed by breakout sessions in which participants were divided into four groups and urged to discuss a particular topic with the aid of a facilitator and a set of guiding questions. Rapporteurs were present during the plenary session as well as breakout sessions and in particular were tasked with taking notes during discussions and reporting back to the assembled participants a brief summary of points discussed. The presentations and breakout sessions were divided into five topic areas: 'Challenges in Biorisk Management,' 'Risk Assessment and Mitigation Measures,' 'Biorisk Management System Performance,' 'Training,' and 'National Oversight and Regulations.' The topics and questions were chosen by the organizers through consultation with US Government sponsors. The Chattham House Rule on non-attribution was in effect during question and answer periods and breakout session discussions.

  16. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...

    Open Energy Info (EERE)

    the MAGHG project is to support developing countries assess and report their greenhouse gas (GHG) emissions from agriculture, including assessment of mitigation options for...

  17. MCA 22-3-430 - Montana Antiquities Avoidance and Mitigation ...

    Open Energy Info (EERE)

    MCA 22-3-430 - Montana Antiquities Avoidance and MitigationLegal Abstract Sets forth a principle of preferred avoidance of heritage properties or paleontological remains,...

  18. Wildfire Mitigation at Los Alamos National Laboratory | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Laboratory's Fire Management posts daily Fire Danger Ratings on their website. PDF icon Wildfire-Mitigation-at-Los-Alamos-National-Laboratory.pdf More Documents & Publications ...

  19. RAPID/Best Practices/Landscape-Scale Mitigation | Open Energy...

    Open Energy Info (EERE)

    features that minimize impacts (for example, the best types of materials and structure types for visual mitigation or avian-safe structure design) would have been identified...

  20. Climate Change Adaptation and Mitigation in the Tourism Sector...

    Open Energy Info (EERE)

    their decision making processes and operations. It presents an overview of the current science and policy of climate change, followed by self-guidance material on mitigation and...

  1. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...

    Open Energy Info (EERE)

    Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture) Jump to: navigation, search Logo: Monitoring and Assessment of Greenhouse Gas...

  2. Microsoft PowerPoint - Financial Plan Risk Mitigation Master...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    within acceptable bounds BPA Financial Plan Workshop 5 Financial Plan Risk Metrics Agenda Origin of the Risk Metrics Issue History of risk mitigation measures and origin of...

  3. Greenhouse Gas Training Program for Inventory and Mitigation...

    Open Energy Info (EERE)

    divisionsfuture-perfect Country: South Korea Eastern Asia Language: English References: Greenhouse Gas Training Program for Inventory and Mitigation Modeling1...

  4. Chile-Climate Change Mitigation and Agriculture in Latin America...

    Open Energy Info (EERE)

    Agriculture in Latin America and the Caribbean Jump to: navigation, search Logo: Chile-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Name...

  5. Climate Change Mitigation in the Energy and Forestry Sectors...

    Open Energy Info (EERE)

    of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation in the Energy and Forestry Sectors of Developing Countries...

  6. Development based climate change adaptation and mitigation-conceptual...

    Open Energy Info (EERE)

    based climate change adaptation and mitigation-conceptual issues and lessons learned in studies in developing countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  7. Agricultural Technologies for Climate Change Mitigation and Adaptation...

    Open Energy Info (EERE)

    Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovations and Technology Diffusion Jump to: navigation, search Tool Summary...

  8. Characterizing Uncertainty for Regional Climate Change Mitigation and Adaptation Decisions

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Moss, Richard H.; Rice, Jennie S.; Scott, Michael J.

    2011-09-30

    This white paper describes the results of new research to develop an uncertainty characterization process to help address the challenges of regional climate change mitigation and adaptation decisions.

  9. Natural Gas Infrastructure R&D and Methane Mitigation Woekshop...

    Energy Savers [EERE]

    engine retrofits reduce emissions & increase efficiency * ... Infrastructure R&D and Methane Mitigation Workshop - Nov. ... type) ** not common in upstream applications (low hanging ...

  10. Urban Surfaces and Heat Island Mitigation Potentials (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Urban Surfaces and Heat Island Mitigation Potentials Citation Details ... and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city. ...

  11. Oregon Willamette River Basin Mitigation Agreement | Open Energy...

    Open Energy Info (EERE)

    River Basin Mitigation Agreement Author State of Oregon Recipient Bonneville Power Administration Published Publisher Not Provided, 10222010 DOI Not Provided Check for DOI...

  12. Property:NEPA Resource Imposed Mitigation | Open Energy Information

    Open Energy Info (EERE)

    Protection) for applicable mitigation measures. Antelope Valley NesetNEPAImpactwithAirQuality + See http:ww2.wapa.govsiteswesternbusinesssellingDocuments...

  13. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mitigation of Vehicle Fast ... AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  14. International Partnership on Mitigation and MRV | Open Energy...

    Open Energy Info (EERE)

    climate experts from a variety of countries, the Partnership seeks to: foster mutual learning between peers identify best practices establish a shared mitigation-related knowledge...

  15. Mitigation of radiation induced surface contamination

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Stulen, Richard H.

    2003-01-01

    A process for mitigating or eliminating contamination and/or degradation of surfaces having common, adventitious atmospheric contaminants adsorbed thereon and exposed to radiation. A gas or a mixture of gases is introduced into the environment of a surface(s) to be protected. The choice of the gaseous species to be introduced (typically a hydrocarbon gas, water vapor, or oxygen or mixtures thereof) is dependent upon the contaminant as well as the ability of the gaseous species to bind to the surface to be protected. When the surface and associated bound species are exposed to radiation reactive species are formed that react with surface contaminants such as carbon or oxide films to form volatile products (e.g., CO, CO.sub.2) which desorb from the surface.

  16. Develop an Institutional Change Action Plan for Sustainability

    Broader source: Energy.gov [DOE]

    After establishing a goal and assessing the rules, roles, and tools, federal agencies can develop an action plan (select the strategies that will be implemented over time to achieve and maintain energy and sustainability goals).

  17. National Action Plan Vision for 2025: A Framework for Change

    SciTech Connect (OSTI)

    National Action Plan for Energy Efficiency

    2008-11-01

    Establishes a goal of achieving all cost-effective energy efficiency by 2025 and presents 10 implementation goals as a framework for advancing the National Action Plans key policy recommendations.

  18. Institutional Change Process Step 3: Develop an Action Plan

    Broader source: Energy.gov [DOE]

    After establishing a goal and assessing the rules, roles, and tools, federal agencies can develop an action plan (select the strategies that will be implemented over time to achieve and maintain energy and sustainability goals).

  19. Institutional Change Process Step 3: Develop an Action Plan | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 3: Develop an Action Plan Institutional Change Process Step 3: Develop an Action Plan Graphic showing 5 gears. They progress from Determine Goal to Identify Context-Rules, Roles and Tools to Develop Action Plan to Implement Plan to Measure and Evaluate. Process for Continuous Change After establishing goals and assessing the rules, roles, and tools, you can develop an action plan (select the strategies that will be implemented over time to achieve and maintain energy and

  20. Action Item Review and Status

    Office of Environmental Management (EM)

    Board Action Items Action Item Resolution Action Item Strategic Planning Initiative Optimization Study Resolution Presentation by S. Schneider (HLW System Integrated Project...

  1. Distributed generation implementation guidelines

    SciTech Connect (OSTI)

    Guzy, L.; O`Sullivan, J.B.; Jacobs, K.; Major, W.

    1999-11-01

    The overall economics of a distributed generation project is based on cost elements which include: Equipment and financing, fuel, displaced electricity cost, operation and maintenance. Of critical importance is how the facility is managed, including adequate provision for a comprehensive operator training program. Proper equipment maintenance and fuel procurement policy will also lead to greater system availability and optimal system economics. Various utility tariffs are available which may be economically attractive, with an added benefit to the utility of providing a peak shaving resource during peak periods. Changing modes of operation of the distributed generation system may affect staff readiness, require retraining and could affect maintenance costs. The degree of control and oversight that is provided during a project`s implementation and construction phases will impact subsequent maintenance and operating costs. The long term effect of siting impacts, such as building facades that restrict turbine inlet airflow will affect subsequent operations and require supplemental maintenance action. It is possible to site a variety of distributed generation technologies in settings which vary from urban to remote unattended locations with successful results from both an economic and operational perspective.

  2. Stream Classification Tool User Manual: For Use in Applications in Hydropower-Related Evironmental Mitigation

    SciTech Connect (OSTI)

    McManamay, Ryan A.; Troia, Matthew J.; DeRolph, Christopher R.; Samu, Nicole M.

    2016-01-01

    Stream classifications are an inventory of different types of streams. Classifications help us explore similarities and differences among different types of streams, make inferences regarding stream ecosystem behavior, and communicate the complexities of ecosystems. We developed a nested, layered, and spatially contiguous stream classification to characterize the biophysical settings of stream reaches within the Eastern United States (~ 900,000 reaches). The classification is composed of five natural characteristics (hydrology, temperature, size, confinement, and substrate) along with several disturbance regime layers, and each was selected because of their relevance to hydropower mitigation. We developed the classification at the stream reach level using the National Hydrography Dataset Plus Version 1 (1:100k scale). The stream classification is useful to environmental mitigation for hydropower dams in multiple ways. First, it creates efficiency in the regulatory process by creating an objective and data-rich means to address meaningful mitigation actions. Secondly, the SCT addresses data gaps as it quickly provides an inventory of hydrology, temperature, morphology, and ecological communities for the immediate project area, but also surrounding streams. This includes identifying potential reference streams as those that are proximate to the hydropower facility and fall within the same class. These streams can potentially be used to identify ideal environmental conditions or identify desired ecological communities. In doing so, the stream provides some context for how streams may function, respond to dam regulation, and an overview of specific mitigation needs. Herein, we describe the methodology in developing each stream classification layer and provide a tutorial to guide applications of the classification (and associated data) in regulatory settings, such as hydropower (re)licensing.

  3. Hellsgate Winter Range Mitigation Project; Long-term Management Plan, Project Report 1993, Final Draft.

    SciTech Connect (OSTI)

    Berger, Matthew T.

    1994-01-01

    A study was conducted on the Hellsgate Winter Range Mitigation Project area, a 4,943 acre ranch purchased for mitigating some habitat losses associated with the original construction of Grand Coulee Dam and innundation of habitat by Lake Roosevelt. A Habitat Evaluation Procedure (HEP) study was used to determine habitat quality and quantity baseline data and future projections. Target species used in the study were sharp-tailed grouse (Tympanuchus phasianellus), mule deer (Odocoileus hemoinus), mink (Mustela vison), spotted sandpiper (Actiius colchicus), bobcat (Felis reufs), blue grouse (Dendragapus obscurus), and mourning dove (Zenaida macroura). From field data collected, limiting life values or HSI's (Habitat Suitability Index's) for each indicator species was determined for existing habitats on project lands. From this data a long term management plan was developed. This report is designed to provide guidance for the management of project lands in relation to the habitat cover types discussed and the indicator species used to evaluate these cover types. In addition, the plan discusses management actions, habitat enhancements, and tools that will be used to enhance, protect and restore habitats to desired conditions. Through planned management actions biodiversity and vegetative structure can be optimized over time to reduce or eliminate, limiting HSI values for selected wildlife on project lands.

  4. Proactive DSA application and implementation

    SciTech Connect (OSTI)

    Draelos, T.; Hamilton, V.; Istrail, G.

    1998-05-03

    Data authentication as provided by digital signatures is a well known technique for verifying data sent via untrusted network links. Recent work has extended digital signatures to allow jointly generated signatures using threshold techniques. In addition, new proactive mechanisms have been developed to protect the joint private key over long periods of time and to allow each of the parties involved to verify the actions of the other parties. In this paper, the authors describe an application in which proactive digital signature techniques are a particularly valuable tool. They describe the proactive DSA protocol and discuss the underlying software tools that they found valuable in developing an implementation. Finally, the authors briefly describe the protocol and note difficulties they experienced and continue to experience in implementing this complex cryptographic protocol.

  5. Action Plan - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreement Action Plan Tri-Party Agreement The Agreement Action Plan Announcements List of Approved Changes TPA Project Manager's Lists Modifications for Public Comment Data Management MP-14 WIDS Information Hanford Site Waste Management Units Report Hanford Public Involvement Plan Administrative Record (AR) Related Links Action Plan Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Executive Summary 1.0 Introduction 1.1 Purpose 1.2 Regulatory Authorities 1.3

  6. Status of Corrective Actions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP AIB Report » Status of Corrective Actions Status of Corrective Actions at LANL Department of Energy Issues Accident Investigation Board (AIB) Report on February 14 Incident at the Waste Isolation Pilot Project in Carlsbad, New Mexico April 12, 2012 x x Contact Communication Office (505) 667-7000 Corrective Actions Undertaken by Los Alamos National Laboratory though a collaborative effort led by the Associate Director for Environmental Safety and Health (ADESH), the Associate Director for

  7. Energy Efficiency Financing Program Implementation Primer

    Broader source: Energy.gov [DOE]

    This primer provides an overview of key considerations for state and local policymakers, utility energy efficiency program administrators, and program partners such as financial institutions and contractors in designing and implementing successful energy efficiency financing programs for existing buildings in the residential and commercial sectors. Author: State and Local Energy Efficiency Action Network

  8. SEAB Climate Action Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    A presentation on the Climate Action Plan presented by Dr. Jonathan Pershing, Deputy Assistant Secretary for Climate Change at the U.S. Department of Energy.

  9. Climate Action Champions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Florida Regional Climate Compact 10 - Cities 4 - CountiesRegional Collaborative ... Technology transfer of smart grid advances to support the White House actions to respond ...

  10. Notes and Action Items

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rick Kendall, Tom Kitchens, Horst Simon SubCommittee on Visualization and Graphics Software Responsibility: JN Leboeuf, Judy Giarrusso, Steve Jardin, and Steve Lau Actions:...

  11. Remedial Action Performed

    Office of Legacy Management (LM)

    ... action, e.g., for inclusion in local land records. ... safety, and health, including requirements of DOE orders. ... petroleum and natural gas products that preexist in ...

  12. ARM - Status and Actions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status and Actions Campaign Details News Field Participants Resources Status and Actions ARM Data Discovery Browse Data Status and Actions For up-to-date campaign action, please see News 28.JUN.07 Requests for all field participants: Please place your preliminary data on the CHAPS ftp site no later than December. Connor Flynn has worked with ARM colleagues to give us a password protected FTP site. If you haven't received the instructions already from Connor regarding how to access the site,

  13. Protective Actions and Reentry

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume defines appropriate protective actions and reentry of a site following an emergency. Canceled by DOE G 151.1-4.

  14. A hot-cracking mitigation technique for welding high-strength aluminum alloy

    SciTech Connect (OSTI)

    Yang, Y.P.; Dong, P.; Zhang, J.; Tian, X.

    2000-01-01

    A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weld pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).

  15. Financing Project Implementation

    Broader source: Energy.gov [DOE]

    This presentation covers typical sources of financing to implement energy efficiency projects in industry.

  16. Mitigation potential and cost in tropical forestry - relative role for agroforestry

    SciTech Connect (OSTI)

    Makundi, Willy R.; Sathaye, Jayant A.

    2004-01-01

    This paper summarizes studies of carbon mitigation potential (MP) and costs of forestry options in seven developing countries with a focus on the role of agroforestry. A common methodological approach known as comprehensive mitigation assessment process (COMAP) was used in each study to estimate the potential and costs between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios derived from the demand for forest products and forestland for other uses such as agriculture and pasture. By using data on estimated carbon sequestration, emission avoidance, costs and benefits, the model enables one to estimate cost effectiveness indicators based on monetary benefit per t C, as well as estimates of total mitigation costs and potential when the activities are implemented at equilibrium level. The results show that about half the MP of 6.9 Gt C (an average of 223 Mt C per year) between 2000 and 2030 in the seven countries could be achieved at a negative cost, and the other half at costs not exceeding $100 per t C. Negative cost indicates that non-carbon revenue is sufficient to offset direct costs of about half of the options. The agroforestry options analyzed bear a significant proportion of the potential at medium to low cost per t C when compared to other options. The role of agroforestry in these countries varied between 6% and 21% of the MP, though the options are much more cost effective than most due to the low wage or opportunity cost of rural labor. Agroforestry options are attractive due to the large number of people and potential area currently engaged in agriculture, but they pose unique challenges for carbon and cost accounting due to the dispersed nature of agricultural activities in the tropics, as well as specific difficulties arising from requirements for monitoring, verification, leakage assessment and the establishment of credible baselines.

  17. Modeling the dynamic crush of impact mitigating materials

    SciTech Connect (OSTI)

    Logan, R.W.; McMichael, L.D.

    1995-05-12

    Crushable materials are commonly utilized in the design of structural components to absorb energy and mitigate shock during the dynamic impact of a complex structure, such as an automobile chassis or drum-type shipping container. The development and application of several finite-element material models which have been developed at various times at LLNL for DYNA3D will be discussed. Between the models, they are able to account for several of the predominant mechanisms which typically influence the dynamic mechanical behavior of crushable materials. One issue we addressed was that no single existing model would account for the entire gambit of constitutive features which are important for crushable materials. Thus, we describe the implementation and use of an additional material model which attempts to provide a more comprehensive model of the mechanics of crushable material behavior. This model combines features of the pre-existing DYNA models and incorporates some new features as well in an invariant large-strain formulation. In addition to examining the behavior of a unit cell in uniaxial compression, two cases were chosen to evaluate the capabilities and accuracy of the various material models in DYNA. In the first case, a model for foam filled box beams was developed and compared to test data from a 4-point bend test. The model was subsequently used to study its effectiveness in energy absorption in an aluminum extrusion, spaceframe, vehicle chassis. The second case examined the response of the AT-400A shipping container and the performance of the overpack material during accident environments selected from 10CFR71 and IAEA regulations.

  18. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards: November 2012 - October 2013

    SciTech Connect (OSTI)

    Brooks, William

    2015-02-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  19. Insider Threat - Material Control and Accountability Mitigation

    SciTech Connect (OSTI)

    Powell, Danny H; Elwood Jr, Robert H; Roche, Charles T

    2011-01-01

    The technical objectives of nuclear safeguards are (1) the timely detection of diversion of significant quantities of nuclear material from peaceful uses to the manufacture of nuclear weapons or other nuclear explosive devices or for purposes unknown and (2) the deterrence of such diversion by the risk of early detection. The safeguards and security program must address both outsider threats and insider threats. Outsider threats are primarily addressed by the physical protection system. Insider threats can be any level of personnel at the site including passive or active insiders that could attempt protracted or abrupt diversion. This could occur by an individual acting alone or by collusion between an individual with material control and accountability (MC&A) responsibilities and another individual who has responsibility or control within both the physical protection and the MC&A systems. The insider threat is one that must be understood and incorporated into the safeguards posture. There have been more than 18 documented cases of theft or loss of plutonium or highly enriched uranium. The insider has access, authority, and knowledge, as well as a set of attributes, that make him/her difficult to detect. An integrated safeguards program is designed as a defense-in-depth system that seeks to prevent the unauthorized removal of nuclear material, to provide early detection of any unauthorized attempt to remove nuclear material, and to rapidly respond to any attempted removal of nuclear material. The program is also designed to support protection against sabotage, espionage, unauthorized access, compromise, and other hostile acts that may cause unacceptable adverse impacts on national security, program continuity, the health and safety of employees, the public, or the environment. Nuclear MC&A play an essential role in the capabilities of an integrated safeguards system to deter and detect theft or diversion of nuclear material. An integrated safeguards system with compensating mitigation can decrease the risk of an insider performing a malicious act without detection.

  20. Mitigating greenhouse gas emissions: Voluntary reporting

    SciTech Connect (OSTI)

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  1. Testing Controls to Mitigate Fatigue Loads in the Controls Advanced Research Turbine

    SciTech Connect (OSTI)

    Wright, A. D.; Fingersh, L. J.; Stol, K. A.

    2009-01-01

    Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines is nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated three-dimensional (3D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory are designing, implementing, and testing advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on a linear model of the turbine that is generated by specialized modeling software. This paper describes testing of a control algorithm to mitigate blade, tower, and drivetrain loads using advanced state-space control methods. The controller uses independent blade pitch to regulate the turbine's speed in Region 3, mitigate the effects of shear across the rotor disk, and add active damping to the tower's first fore-aft bending mode. Additionally, a separate generator torque control loop is designed to add active damping to the tower's first side-side mode and the first drivetraintorsion mode. This paper discusses preliminary implementation and field tests of this controller in the Controls Advanced Research Turbine at the National Renewable Energy Laboratory. Also included are preliminary comparisons of the performance of this controller to results from a typical baseline Proportional-Integral-Derivative controller designed with just Region 3 speed regulation as the goal.

  2. Wildlife and Wildlife Habitat Mitigation Plan for Libby Hydroelectric Project, Final Report.

    SciTech Connect (OSTI)

    Mundinger, John

    1985-01-01

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Libby hydroelectric project. Mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. The report describes mitigation that has already taken place and 8 recommended mitigation projects designed to complete total wildlife mitigation. 8 refs., 2 figs., 12 tabs.

  3. Global climate change mitigation and sustainable forest management--The challenge of monitoring and verification

    SciTech Connect (OSTI)

    Makundi, Willy R.

    1997-12-31

    In this paper, sustainable forest management is discussed within the historical and theoretical framework of the sustainable development debate. The various criteria and indicators for sustainable forest management put forth by different institutions are critically explored. Specific types of climate change mitigation policies/projects in the forest sector are identified and examined in the light of the general criteria for sustainable forest management. Areas of compatibility and contradiction between the climate mitigation objectives and the minimum criteria for sustainable forest management are identified and discussed. Emphasis is put on the problems of monitoring and verifying carbon benefits associated with such projects given their impacts on pre-existing policy objectives on sustainable forest management. The implications of such policy interactions on assignment of carbon credits from forest projects under Joint Implementation/Activities Implemented Jointly initiatives are discussed. The paper concludes that a comprehensive monitoring and verification regime must include an impact assessment on the criteria covered under other agreements such as the Biodiversity and/or Desertification Conventions. The actual carbon credit assigned to a specific project should at least take into account the negative impacts on the criteria for sustainable forest management. The value of the impacts and/or the procedure to evaluate them need to be established by interested parties such as the Councils of the respective Conventions.

  4. National Mitigation Planning in Agriculture: Review and Guidelines...

    Open Energy Info (EERE)

    Simple Website: www.fao.orgdocrep017i3237ei3237e.pdf Language: English This review of national greenhouse gas (GHG) mitigation planning in the agriculture sector provides...

  5. Introduction to Administrative Programs that Mitigate the Insider Threat

    SciTech Connect (OSTI)

    Gerke, Gretchen K.; Rogers, Erin; Landers, John; DeCastro, Kara

    2012-09-01

    This presentation begins with the reality of the insider threat, then elaborates on these tools to mitigate the insider threat: Human Reliability Program (HRP); Nuclear Security Culture (NSC) Program; Employee Assistance Program (EAP).

  6. EA-1096: Washington Wildlife Mitigation Projects (Programmatic), Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy Bonneville Power Administration to fund the portion of the Washington Wildlife Mitigation Agreement...

  7. Market-based Wildlife Mitigation in Wyoming: A Primer | Open...

    Open Energy Info (EERE)

    A Primer Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Market-based Wildlife Mitigation in Wyoming: A Primer Abstract Covers the basics of...

  8. Gearbox Typical Failure Modes, Detection, and Mitigation Methods (Presentation)

    SciTech Connect (OSTI)

    Sheng, S.

    2014-01-01

    This presentation was given at the AWEA Operations & Maintenance and Safety Seminar and focused on what the typical gearbox failure modes are, how to detect them using detection techniques, and strategies that help mitigate these failures.

  9. Wind Turbine Radar Interference Mitigation Working Group Releases New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy Wind Turbine Radar Interference Mitigation Working Group Releases New Report Wind Turbine Radar Interference Mitigation Working Group Releases New Report February 10, 2016 - 2:48pm Addthis While wind energy presents many benefits, spinning wind turbines can interfere with weather, air traffic control, and air surveillance radar systems. As advances in wind technology enable turbines to be deployed in new regions of the country, the probability for wind

  10. EERE Success Story-Mitigating Potential Environmental Impacts of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Mitigating Potential Environmental Impacts of Energy Development EERE Success Story-Mitigating Potential Environmental Impacts of Energy Development April 15, 2013 - 12:00am Addthis Partnering with EERE, Normandeau Associates of Bedford, New Hampshire, developed a tool that characterizes the risk for bird and bat species that may be susceptible to collisions with wind turbines. This tool will be used in environmental decision-making for the planning,

  11. Passive injection: A strategy for mitigating reservoir pressurization,

    Office of Scientific and Technical Information (OSTI)

    induced seismicity and brine migration in geologic CO2 storage (Journal Article) | SciTech Connect Journal Article: Passive injection: A strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic CO2 storage Citation Details In-Document Search Title: Passive injection: A strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic CO2 storage Authors: Dempsey, David ; Kelkar, Sharad ; Pawar, Rajesh Publication

  12. 2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    West, W. J.; Lucas, J. G.; Gano, K. A.

    2011-11-14

    This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractors revegetation and mitigation areas on the Hanford Site.

  13. 2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    C. T. Lindsey, A. L. Johnson

    2010-09-30

    This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contracts revegetation and mitigation areas on the Hanford Site.

  14. Advanced Technology Development and Mitigation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Advanced Technology Development and Mitigation The Advanced Technology Development and Mitigation (ATDM) subprogram includes laboratory code and computer engineering and science projects that pursue long-term simulation and computing goals relevant to the broad national security missions of the NNSA. It addresses the need to adapt current integrated design codes and build new codes that are attuned to emerging computing technologies. Performing this work within the scope of

  15. Mitigation of cache memory using an embedded hard-core PPC440 processor in a Virtex-5 Field Programmable Gate Array.

    SciTech Connect (OSTI)

    Learn, Mark Walter

    2010-02-01

    Sandia National Laboratories is currently developing new processing and data communication architectures for use in future satellite payloads. These architectures will leverage the flexibility and performance of state-of-the-art static-random-access-memory-based Field Programmable Gate Arrays (FPGAs). One such FPGA is the radiation-hardened version of the Virtex-5 being developed by Xilinx. However, not all features of this FPGA are being radiation-hardened by design and could still be susceptible to on-orbit upsets. One such feature is the embedded hard-core PPC440 processor. Since this processor is implemented in the FPGA as a hard-core, traditional mitigation approaches such as Triple Modular Redundancy (TMR) are not available to improve the processor's on-orbit reliability. The goal of this work is to investigate techniques that can help mitigate the embedded hard-core PPC440 processor within the Virtex-5 FPGA other than TMR. Implementing various mitigation schemes reliably within the PPC440 offers a powerful reconfigurable computing resource to these node-based processing architectures. This document summarizes the work done on the cache mitigation scheme for the embedded hard-core PPC440 processor within the Virtex-5 FPGAs, and describes in detail the design of the cache mitigation scheme and the testing conducted at the radiation effects facility on the Texas A&M campus.

  16. Status of Corrective Actions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report on February 14 Incident at the Waste Isolation Pilot Project in Carlsbad, New Mexico April 12, 2012 x x Contact Communication Office (505) 667-7000 Corrective Actions...

  17. Notices ACTION: Notice.

    Office of Environmental Management (EM)

    8867 Federal Register Vol. 80, No. 215 Friday, November 6, 2015 Notices ACTION: Notice. SUMMARY: This notice announces EPA's receipt of an application 91163-EUP-R from Texas...

  18. Notices ACTION: Notice.

    Energy Savers [EERE]

    867 Federal Register Vol. 80, No. 215 Friday, November 6, 2015 Notices ACTION: Notice. SUMMARY: This notice announces EPA's receipt of an application 91163-EUP-R from Texas...

  19. RCRA corrective action program guide (Interim)

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The US Department of Energy (DOE) is responsible for compliance with an increasingly complex spectrum of environmental regulations. One of the most complex programs is the corrective action program proposed by the US Environmental Protection Agency (EPA) under the authority of the Resource Conservation and Recovery Act (RCRA) as amended by the Hazardous and Solid Waste Amendments (HSWA). The proposed regulations were published on July 27, 1990. The proposed Subpart S rule creates a comprehensive program for investigating and remediating releases of hazardous wastes and hazardous waste constituents from solid waste management units (SWMUs) at facilities permitted to treat, store, or dispose of hazardous wastes. This proposed rule directly impacts many DOE facilities which conduct such activities. This guidance document explains the entire RCRA Corrective Action process as outlined by the proposed Subpart S rule, and provides guidance intended to assist those persons responsible for implementing RCRA Corrective Action at DOE facilities.

  20. Implementing HB 3672

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ten Year Energy Action Plan Goal 1: Meet 100 percent of new electric load growth through energy efficiency and conservation Goal 2: Remove barriers to developing clean energy...

  1. Climate Action Champion: Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    betterbuildings Climate Action Champion: Technical Assistance to the City of Seattle Planning for Seattle's new Building Energy Code Overview The City of Seattle, identified as a Climate Action Champion (CAC) by the Department of Energy (DOE), is revising its 2012 Energy Code, already one of the most progressive in the country. Seattle has made a pledge to be carbon neutral by 2050. Seattle received technical assistance from the Pacific Northwest National Laboratory in order to develop a

  2. A statistical approach to designing mitigation for induced ac voltages

    SciTech Connect (OSTI)

    Dabkowski, J. [Electro Sciences, Inc., Crystal Lake, IL (United States)

    1996-08-01

    Induced voltage levels on buried pipelines collocated with overhead electric power transmission lines are usually mitigated by means of grounding the pipeline. Maximum effectiveness is obtained when grounds are placed at discrete locations along the pipeline where the peak induced voltages occur. The degree of mitigation achieved is dependent upon the local soil resistivity at these locations. On occasion it may be necessary to employ an extensive distributed grounding system, for example, a parallel buried wire connected to the pipe at periodic intervals. In this situation the a priori calculation of mitigated voltage levels is sometimes made assuming an average value for the soil resistivity. Over long distances, however, the soil resistivity generally varies as a log-normally distributed random variable. The effect of this variability upon the predicted mitigated voltage levels is examined. It is found that the predicted levels exhibit a statistical variability which precludes a precise determination of the mitigated voltage levels. Thus, post commissioning testing of the emplaced mitigation system is advisable.

  3. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 1

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-01-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  4. Carbon mitigation potential and costs of forestry options in Brazil, China, India, Indonesia, Mexico, the Philippines and Tanzania

    SciTech Connect (OSTI)

    Sathaye, J.; Makundi, W.; Andrasko, K.; Boer, R.; Ravindranath, N.; Sudha, P.; Rao, S.; Lasco, R.; Pulhin, F.; Masera, O.; Ceron, A.; Ordonez, J.; Deying, X.; Zhang, X.; Zuomin, S.

    2001-01-01

    This paper summarizes studies of carbon (C) mitigation potential and costs of about 40 forestry options in seven developing countries. Each study uses the same methodological approach - Comprehensive Mitigation Assessment Process (COMAP) - to estimate the above parameters between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios. Coupled with data on a per ha basis on C sequestration or avoidance, and costs and benefits, it allows the estimation of monetary benefit per Mg C, and the total costs and carbon potential. The results show that about half (3.0 Pg C) the cumulative mitigation potential of 6.2 Petagram (Pg) C between 2000 and 2030 in the seven countries (about 200 x 106 Mg C yr-1) could be achieved at a negative cost and the remainder at costs ranging up to $100 Mg C-1. About 5 Pg C could be achieved, at a cost less than $20 per Mg C. Negative cost potential indicates that non-carbon revenue is sufficient to offset direct costs of these options. The achievable potential is likely to be smaller, however, due to market, institutional, and sociocultural barriers that can delay or prevent the implementation of the analyzed options.

  5. Blackout 2003: Blackout Final Implementation Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blackout Final Implementation Report Blackout 2003: Blackout Final Implementation Report Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations PDF icon Blackout Final Implementation Report More Documents & Publications Blackout 2003: The August 14, 2003 Blackout One Year Later: Actions Taken in the United States and Canada To Reduce Blackout Risk D:\0myfiles\Blackout Progress\Blackout-Progress.vp U.S. - Canada Power System Outage Task Force:

  6. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  7. Corrective Action Plan for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-04-30

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 562, Waste Systems, in accordance with the Federal Facility Agreement and Consent Order (1996; as amended March 2010). CAU 562 consists of 13 Corrective Action Sites (CASs) located in Areas 2, 23, and 25 of the Nevada National Security Site. Site characterization activities were performed in 2009 and 2010, and the results are presented in Appendix A of the Corrective Action Decision Document for CAU 562. The scope of work required to implement the recommended closure alternatives is summarized. (1) CAS 02-26-11, Lead Shot, will be clean closed by removing shot. (2) CAS 02-44-02, Paint Spills and French Drain, will be clean closed by removing paint and contaminated soil. As a best management practice (BMP), asbestos tile will be removed. (3) CAS 02-59-01, Septic System, will be clean closed by removing septic tank contents. As a BMP, the septic tank will be removed. (4) CAS 02-60-01, Concrete Drain, contains no contaminants of concern (COCs) above action levels. No further action is required; however, as a BMP, the concrete drain will be removed. (5) CAS 02-60-02, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. As a BMP, the drain grates and drain pipe will be removed. (6) CAS 02-60-03, Steam Cleaning Drain, will be clean closed by removing contaminated soil. As a BMP, the steam cleaning sump grate and outfall pipe will be removed. (7) CAS 02-60-04, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. (8) CAS 02-60-05, French Drain, will be clean closed by removing contaminated soil. (9) CAS 02-60-06, French Drain, contains no COCs above action levels. No further action is required. (10) CAS 02-60-07, French Drain, requires no further action. The french drain identified in historical documentation was not located during corrective action investigation activities. (11) CAS 23-60-01, Mud Trap Drain and Outfall, will be clean closed by removing sediment from the mud trap. As a BMP, the mud trap and outfall pipe will be removed. (12) CAS 23-99-06, Grease Trap, will be clean closed by removing sediment from the grease trap and backfilling the grease trap with grout. (13) CAS 25-60-04, Building 3123 Outfalls, will be clean closed by removing contaminated soil and the sludge-containing outfall pipe.

  8. ES H action plan

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This document contains planned actions to correct the deficiencies identified in the Pre-Tiger Team Self-Assessment (PTTSA), January 1991, of Sandia National Laboratories (SNL -- Albuquerque, New Mexico; Tonopah, Nevada; and Kauai, Hawaii). The Self-Assessment was conducted by a Self-Assessment Working Group consisting of 19 department managers, with support from Environment, Safety, and Health (ES H) professionals, from October through December 1990. Findings from other past audits, dating back to 1985, were reviewed and compared with the PTTSA findings to determine if additional findings, key findings, or root causes were warranted. The resulting ES H Action Plan and individual planned actions were prepared by the ES H Action Plan Project Group with assistance from the Program owners/authors during February and March 1991. The plan was reviewed by SNL Management in April 1991. This document serves as a planning instrument for the Laboratories to aid in the scoping and sizing of activities related to ES H compliance for the coming five years. It will be modified as required to ensure a workload/funding balance and to address the findings resulting from the Tiger Team assessment at SNL, Albuquerque. The process of producing this document has served well to prepare SNL, Albuquerque, for the coming task of producing the required post-Tiger Team action plan document. 8 tabs.

  9. Hellsgate Big Game Winter Range Wildlife Mitigation Site Specific Management Plan for the Hellsgate Project.

    SciTech Connect (OSTI)

    Berger, Matthew T.; Judd, Steven L.

    1999-01-01

    This report contains a detailed site-specific management plan for the Hellsgate Winter Range Wildlife Mitigation Project. The report provides background information about the mitigation process, the review process, mitigation acquisitions, Habitat Evaluation Procedures (HEP) and mitigation crediting, current habitat conditions, desired future habitat conditions, restoration/enhancements efforts and maps.

  10. Appendix VI Corrective Action Strategy

    National Nuclear Security Administration (NNSA)

    ......... 15 3.0 Underground Test Area............ 13 3-1 Underground Test Area Corrective Action ...

  11. Unveiling the Implementation Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge National Laboratory www.ornl.gov Unveiling the Implementation Guide October 11, 2011 Michaela Martin Program Manager Residential, Commercial, and Industrial Energy ...

  12. Status of research toward the ITER disruption mitigation system

    SciTech Connect (OSTI)

    Hollmann, E. M.; Izzo, V. A.; Aleynikov, P. B.; Lehnen, M.; Snipes, J. A.; Flp, T.; Humphreys, D. A.; Lukash, V. E.; Papp, G.; Pautasso, G.; Saint-Laurent, F.

    2015-02-15

    An overview of the present status of research toward the final design of the ITER disruption mitigation system (DMS) is given. The ITER DMS is based on massive injection of impurities, in order to radiate the plasma stored energy and mitigate the potentially damaging effects of disruptions. The design of this system will be extremely challenging due to many physics and engineering constraints such as limitations on port access and the amount and species of injected impurities. Additionally, many physics questions relevant to the design of the ITER disruption mitigation system remain unsolved such as the mechanisms for mixing and assimilation of injected impurities during the rapid shutdown and the mechanisms for the subsequent formation and dissipation of runaway electron current.

  13. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    SciTech Connect (OSTI)

    Storey, John Morse; Theiss, Timothy J; Kass, Michael D; FINNEY, Charles E A; Lewis, Samuel; Kaul, Brian C; Besmann, Theodore M; Thomas, John F; Rogers, Hiram; Sepaniak, Michael

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  14. Climate Action Champions: Blue Lake Rancheria Tribe, CA | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Blue Lake Rancheria Tribe, CA Climate Action Champions: Blue Lake Rancheria Tribe, CA The Blue Lake Rancheria, California, a federally recognized Native American tribal Government and community, is located on over 100 acres of land spanning the scenic Mad River in northwestern California. In its operational strategy, the Tribe has implemented the ‘seven generations’ philosophy, where actions taken today will have a positive impact for seven generations to come. This results

  15. Overview of the State and Local Energy Efficiency Action Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEE Action Update for the State and Local Energy Advisory Board Johanna Zetterberg SEE Action Network Coordinator March 12, 2013 www.seeaction.energy.gov * Executive Group met Jan 30 th (Washington DC) to review Working Group plans for this year * New guidance documents were published - Energy Efficiency Program Impact Evaluation Guide - Guide for Regulators on Data Access and Privacy - Guide to the Successful Implementation of State Combined Heat and Power (CHP) Policies * New events were held

  16. Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.

    SciTech Connect (OSTI)

    Childs, Allen

    2002-03-01

    This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.

  17. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China

    SciTech Connect (OSTI)

    McNeil, Michael A.; Bojda, Nicholas; Ke, Jing; Qin, Yining; de la Rue du Can, Stephane; Fridley, David; Letschert, Virginie E.; McMahon, James E.

    2011-08-18

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption cost-effectively. We focus on individual end use equipment types (hereafter referred to as appliance groups) that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. As the study title suggests, the high efficiency or Business Case scenario is constructed around a model of cost-effective efficiency improvement. Our analysis demonstrates that a significant reduction in energy consumption and emissions is achievable at net negative cost, that is, as a profitable investment for consumers. Net savings are calculated assuming no additional costs to energy consumption such as carbon taxes. Savings relative to the base case as calculated in this way is often referred to as 'economic savings potential'. Chinese energy demand has grown dramatically over the last few decades. While heavy industry still plays a dominant role in greenhouse gas emissions, demand from residential and commercial buildings has also seen rapid growth in percentage terms. In the residential sector this growth is driven by internal migration from the countryside to cities. Meanwhile, income in both urban and rural subsectors allows ownership of major appliances. While residences are still relatively small by U.S. or European standards, nearly all households own a refrigerator, a television and an air conditioner. In the future, ownership rates are not expected to grow as much as in other developing countries, because they are already close to saturation. However, the gradual turnover of equipment in the world's largest consumer market provides a huge opportunity for greenhouse gas mitigation. In addition to residences, commercial floor space has expanded rapidly in recent years, and construction continues at a rapid pace. Growth in this sector means that commercial lighting and HVAC will play an increasingly important role in energy demand in China. The outlook for efficiency improvement in China is encouraging, since the Chinese national and local governments have implemented significant policies to contain energy intensity and announced their intention to continue and accelerate these. In particular, the Chinese appliance standards program, first established in 1989, was significantly strengthened and modernized after the passage of the Energy Conservation Law of 1997. Since then, the program has expanded to encompass over 30 equipment types (including motor vehicles). The current study suggests that, in spite of these efforts, there is significant savings to be captured through wide adoption of technologies already available on the Chinese market. The approach of the study is to assess the impact of short-term actions on long-term impacts. 'Short-term' market transformation is assumed to occur by 2015, while 'long-term' energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. Early in 2011, the Chinese government announced a plan to reduce carbon dioxide emissions intensity (per unit GDP) by 16% by 2015 as part of the 12th five year plan. These targets are consistent with longer term goals to reduce emissions intensity 40-45% relative to 2005 levels by 2020. The efforts of the 12th FYP focus on short-term gains to meet the four-year targets, and concentrate mainly in industry. Implementation of cost-effective technologies for all new equipment in the buildings sector thus is largely complementary to the 12th FYP goals, and would provide a mechanism to sustain intensity reductions in the medium and long term. The 15-year time frame is significant for many products, in the sense that delay of implementation postpones economic benefits and mitigation of emissions of carbon dioxide. Such delays would result in putting in place energy-wasting technologies, postponing improvement until the end of their service life, or potentially resulting in expensive investment either in additional energy supplies or in early replacement to achieve future energy or emissions reduction targets.

  18. Corrective Action Decision Document/Closure Report for Corrective Action Unit 567: Miscellaneous Soil Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-12-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 567: Miscellaneous Soil Sites, Nevada National Security Site, Nevada. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 567 based on the implementation of the corrective actions. The corrective actions implemented at CAU 567 were developed based on an evaluation of analytical data from the CAI, the assumed presence of COCs at specific locations, and the detailed and comparative analysis of the CAAs. The CAAs were selected on technical merit focusing on performance, reliability, feasibility, safety, and cost. The implemented corrective actions meet all requirements for the technical components evaluated. The CAAs meet all applicable federal and state regulations for closure of the site. Based on the implementation of these corrective actions, the DOE, National Nuclear Security Administration Nevada Field Office provides the following recommendations: • No further corrective actions are necessary for CAU 567. • The Nevada Division of Environmental Protection issue a Notice of Completion to the DOE, National Nuclear Security Administration Nevada Field Office for closure of CAU 567. • CAU 567 be moved from Appendix III to Appendix IV of the FFACO.

  19. The lifetime of carbon capture and storage as a climate-change mitigation technology

    SciTech Connect (OSTI)

    Juanes, Ruben

    2013-12-30

    In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geologic storage capacities and sustainable injection rates, which has contributed to the absence of concerted government policy. Here, we clarify the potential of CCS to mitigate emissions in the United States by developing a storage-capacity supply curve that, unlike current large-scale capacity estimates, is derived from the fluid mechanics of CO2 injection and trapping and incorporates injection-rate constraints. We show that storage supply is a dynamic quantity that grows with the duration of CCS, and we interpret the lifetime of CCS as the time for which the storage supply curve exceeds the storage demand curve from CO2 production. We show that in the United States, if CO2 production from power generation continues to rise at recent rates, then CCS can store enough CO2 to stabilize emissions at current levels for at least 100 years. This result suggests that the large-scale implementation of CCS is a geologically viable climate-change mitigation option in the United States over the next century.

  20. Making the Most of Mitigation | Department of Energy

    Energy Savers [EERE]

    Making the Most of Mitigation Making the Most of Mitigation September 2, 2014 - 1:41pm Addthis The current site-wide approach for long-term protection of LANL’s threatened and endangered species originated from the 1995 discovery of a nesting pair of Mexican spotted owls near a proposed explosives testing facility. (See LLQR, June 1999, page 1.) (Photo: Chuck Hathcock, Wildlife Biologist, LANL Environmental Protection Division) The current site-wide approach for long-term protection of

  1. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, R.P.

    1996-12-24

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water. 3 figs.

  2. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, Rusi P.

    1996-01-01

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water.

  3. Toroidally resolved radiation dynamics during a gas jet mitigated

    Office of Scientific and Technical Information (OSTI)

    disruption on Alcator C-Mod (Journal Article) | SciTech Connect Toroidally resolved radiation dynamics during a gas jet mitigated disruption on Alcator C-Mod Citation Details In-Document Search Title: Toroidally resolved radiation dynamics during a gas jet mitigated disruption on Alcator C-Mod Measurements of the radiation dynamics during an Alcator C-Mod disruption induced by a high pressure He/Ar gas jet are presented. Data are analysed from four 22-channel Absolute eXtreme UltraViolet

  4. Independent Review of Mitigating System Performance Indicator Reporting in the EPIX Database

    SciTech Connect (OSTI)

    Wierman, Thomas Edward

    2009-05-01

    This report summarizes work done to verify the component, failure mode, and method of detection information provided in the Equipment Performance Information Exchange (EPIX) to support implementation of Mitigating Systems Performance Indices. This task is to select reports from EPIX and determine if their categorization as MSPI or non-MSPI failures is consistent with the development of unreliability baseline failure rates, and whether this significantly affects estimates of plant risk. This review is of all MSPI devices in EPIX that were reported as failures. The components include emergency generators; motor-driven, turbine-driven, and enginedriven pumps; and air and motor-operated valves. The date range for this report includes all MSPI device reported failures from 2003 to the most current EPIX data at the INL (up to the 3rd quarter 2008).

  5. EERE Announces Next Steps on President's Climate Action Plan

    Broader source: Energy.gov [DOE]

    On Friday, June 28, the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy hosted a webinar on the energy efficiency aspects of the President's Climate Action Plan. Rick Duke, Associate Director of the White House Council on Environmental Quality and the Domestic Policy Council, provided an overview of President Obama's comprehensive Climate Action Plan to cut the carbon pollution that causes climate change and threatens our health. The Department of Energy's Deputy Assistant Secretary for Energy Efficiency, Kathleen Hogan, provided a deeper dive into how EERE will implement the plan's action steps to cut energy waste in our homes, businesses, and factories. See the webinar slides.

  6. Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program

    SciTech Connect (OSTI)

    McNeil, Michael A; Letschert, Virginie E.; de la Rue du Can, Stephane; Egan, Christine

    2009-05-29

    This paper presents an analysis of the potential impacts of an international initiative designed to support and promote the development and implementation of appliances standards and labelling programs throughout the world. As part of previous research efforts, LBNL developed the Bottom Up Energy Analysis System (BUENAS), an analysis framework that estimates impact potentials of energy efficiency policies on a global scale. In this paper, we apply this framework to an initiative that would result in the successful implementation of programs focused on high priority regions and product types, thus evaluating the potential impacts of such an initiative in terms of electricity savings and carbon mitigation in 2030. In order to model the likely parameters of such a program, we limit impacts to a five year period starting in 2009, but assume that the first 5 years of a program will result in implementation of 'best practice' minimum efficiency performance standards by 2014. The 'high priority' regions considered are: Brazil, China, the European Union,India, Mexico and the United States. The products considered are: refrigerators, air conditioners, lighting (both fluorescent and incandescent), standby power (for consumer electronics) and televisions in the residential sector, and air conditioning and lighting in commercial buildings. In 2020, these regions and enduses account for about 37percent of global residential electricity and 29percent of electricity in commercial buildings. We find that 850Mt of CO2 could be saved in buildings by 2030 compared to the baseline forecast.

  7. Environmental Assessment - Proposed Actions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    availability of Waste Isolation Pilot Plant (WIPP) facilities and infrastructure to scientists who wish to conduct experiments there. DOE would allow these experiments if they can be conducted without interfering with the WIPP's primary transuranic waste disposal mission and if they reflect contemporary budget priorities. This fact sheet presents questions and answers about the proposed action and its alternative. The deep geologic repository at the WIPP could provide a favorable environment for

  8. Interim Action Determination

    Energy Savers [EERE]

    Interim Action Determination Processing of Plutonium Materials from the DOE Standard 3013 Surveillance Program in H-Canyon at the Savannah River Site The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS, DOE/EIS-0283-S2). DOE is evaluating alternatives for disposition of non-pit plutonium that is surplus to the national security needs of the United States. Although the Deputy Secretary of Energy approved Critical

  9. Description of Proposed Action

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RECORD OF CATEGORICAL EXCLUSION DETERMINATION 1 Description of Proposed Action Performance of a three-dimensional seismic survey line on approximately 2,409 acres contained within the WIPP Land Withdrawal Area as part of a larger survey to determine whether hydrocarbons are present in the region in quantities that warrant extraction and development. Number and Title of Applicable Categorical Exclusion B3.1 Site Characterization/Environmental Monitoring Activities covered by this Categorical

  10. February 2007 Standards Actions

    Energy Savers [EERE]

    DOE Technical Standards Posted in RevCom for TSP 1 DOE Technical Standards in Reaffirmation 1 DOE Technical Standards Change Notices 1 DOE Technical Standards Published1 Non-Government Standards Actions 2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2 Publication Staff Roster 2 DOE Technical Standards Program Document Status 01-26-2007 Activity

  11. April 2008 Standards Actions

    Energy Savers [EERE]

    Apps for Vehicles Challenge Finalists Announced Apps for Vehicles Challenge Finalists Announced February 5, 2013 - 12:14pm Addthis Apps for Vehicles Finalists Apps for Vehicles Finalists Ian Kalin Director of the Energy Data Initiative What does this project do? The Apps for Vehicles competition challenges entrepreneurs to use vehicle open data to make cars and drivers safer and more efficient. American innovators have once again responded to a national call to action. Nearly 40 teams submitted

  12. August 2006 Standards Actions

    Energy Savers [EERE]

    DOE Technical Standards Posted in RevCom for TSP 1 DOE Technical Standards in Reaffirmation 1 DOE Technical Standards Change Notices 1 DOE Technical Standards Published 1 Non-Government Standards Actions 2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection Association (NFPA) 2 DOE Technical Standards Program Document Status 07-26-2006 Activity Summary In Conversion - 4 In

  13. Planning Tools For Seismic Risk Mitigation. Rules And Applications

    SciTech Connect (OSTI)

    De Paoli, Rosa Grazia

    2008-07-08

    Recently, Italian urban planning research in the field of seismic risk mitigation are renewing. In particular, it promotes strategies that integrate urban rehabilitation and aseismic objectives, and also politicizes that are directed to revitalizes urban systems, coupling physical renewal and socio-economic development.In Italy the first law concerning planning for seismic mitigation dates back 1974, the law n. 64 'Regulation for buildings with particular rules for the seismic areas' where the rules for buildings in seismic areas concerning also the local hazard. This law, in fact, forced the municipalities to acquire, during the formation of the plans, a preventive opinion of compatibility between planning conditions and geomorphology conditions of the territory. From this date the conviction that the seismic risk must be considered inside the territorial planning especially in terms of strategies of mitigation has been strengthened.The town planners have started to take an interest in seismic risk in the [80]s when the Irpinia's earthquake took place. The researches developed after this earthquake have established that the principal cause of the collapse of buildings are due to from the wrong location of urban settlements (on slopes or crowns) After Irpinia's earthquake the first researches on seismic risk mitigation, in particular on the aspects related to the hazards and to the urban vulnerability were made.

  14. Exploring Complex Systems Aspects of Blackout Risk and Mitigation

    SciTech Connect (OSTI)

    Newman, David E [University of Alaska; Carreras, Benjamin A [ORNL; Lynch, Vickie E [ORNL; Dobson, Ian [University of Wisconsin, Madison

    2011-01-01

    Electric power transmission systems are a key infrastructure, and blackouts of these systems have major consequences for the economy and national security. Analyses of blackout data suggest that blackout size distributions have a power law form over much of their range. This result is an indication that blackouts behave as a complex dynamical system. We use a simulation of an upgrading power transmission system to investigate how these complex system dynamics impact the assessment and mitigation of blackout risk. The mitigation of failures in complex systems needs to be approached with care. The mitigation efforts can move the system to a new dynamic equilibrium while remaining near criticality and preserving the power law region. Thus, while the absolute frequency of blackouts of all sizes may be reduced, the underlying forces can still cause the relative frequency of large blackouts to small blackouts to remain the same. Moreover, in some cases, efforts to mitigate small blackouts can even increase the frequency of large blackouts. This result occurs because the large and small blackouts are not mutually independent, but are strongly coupled by the complex dynamics.

  15. DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION

    SciTech Connect (OSTI)

    WHYTE, DG; JERNIGAN, TC; HUMPHREYS, DA; HYATT, AW; LASNIER, CJ; PARKS, PB; EVANS, TE; TAYLOR, PL; KELLMAN, AG; GRAY, DS; HOLLMANN, EM

    2002-10-01

    OAK A271 DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION. High-pressure gas jets of neon and argon are used to mitigate the three principal damaging effects of tokamak disruptions: thermal loading of the divertor surfaces, vessel stress from poloidal halo currents and the buildup and loss of relativistic electrons to the wall. The gas jet penetrates as a neutral species through to the central plasma at its sonic velocity. The injected gas atoms increase up to 500 times the total electron inventory in the plasma volume, resulting in a relatively benign radiative dissipation of >95% of the plasma stored energy. The rapid cooling and the slow movement of the plasma to the wall reduce poloidal halo currents during the current decay. The thermally collapsed plasma is very cold ({approx} 1-2 eV) and the impurity charge distribution can include > 50% fraction neutral species. If a sufficient quantity of gas is injected, the neutrals inhibit runaway electrons. A physical model of radiative cooling is developed and validated against DIII-D experiments. The model shows that gas jet mitigation, including runaway suppression, extrapolates favorably to burning plasmas where disruption damage will be more severe. Initial results of real-time disruption detection triggering gas jet injection for mitigation are shown.

  16. Sensitivity of climate mitigation strategies to natural disturbances

    SciTech Connect (OSTI)

    Le Page, Yannick LB; Hurtt, George; Thomson, Allison M.; Bond-Lamberty, Benjamin; Patel, Pralit L.; Wise, Marshall A.; Calvin, Katherine V.; Kyle, G. Page; Clarke, Leon E.; Edmonds, James A.; Janetos, Anthony C.

    2013-02-19

    The present and future concentration of atmospheric carbon dioxide depends on both anthropogenic and natural sources and sinks of carbon. Most proposed climate mitigation strategies rely on a progressive transition to carbon12 efficient technologies to reduce industrial emissions, substantially supported by policies to maintain or enhance the terrestrial carbon stock in forests and other ecosystems. This strategy may be challenged if terrestrial sequestration capacity is affected by future climate feedbacks, but how and to what extent is little understood. Here, we show that climate mitigation strategies are highly sensitive to future natural disturbance rates (e.g. fires, hurricanes, droughts), because of potential effect of disturbances on the terrestrial carbon balance. Generally, altered disturbance rates affect the pace of societal and technological transitions required to achieve the mitigation target, with substantial consequences on the energy sector and on the global economy. Understanding the future dynamics and consequences of natural disturbances on terrestrial carbon balance is thus essential for developing robust climate mitigation strategies and policies

  17. Corrective Action Decision Document/Closure Report for Corrective Action Unit 571: Area 9 Yucca Flat Plutonium Dispersion Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-08-01

    The purpose of this CADD/CR is to provide documentation and justification that no further corrective action is needed for the closure of CAU 571 based on the implementation of corrective actions. This includes a description of investigation activities, an evaluation of the data, and a description of corrective actions that were performed. The CAIP provides information relating to the scope and planning of the investigation. Therefore, that information will not be repeated in this document.

  18. Group action in topos quantum physics

    SciTech Connect (OSTI)

    Flori, C.

    2013-03-15

    Topos theory has been suggested first by Isham and Butterfield, and then by Isham and Doering, as an alternative mathematical structure within which to formulate physical theories. In particular, it has been used to reformulate standard quantum mechanics in such a way that a novel type of logic is used to represent propositions. In this paper, we extend this formulation to include the notion of a group and group transformation in such a way that we overcome the problem of twisted presheaves. In order to implement this we need to change the type of topos involved, so as to render the notion of continuity of the group action meaningful.

  19. Cylinder yard inspections and corrective actions

    SciTech Connect (OSTI)

    Barlow, C.R.; Ziehlke, K.T.; Pryor, W.A.

    1990-07-31

    Inspection of valves on stored uranium hexafluoride (UF{sub 6}) cylinders was initiated at the three diffusion plant sites in Oak Ridge, Tennessee, Paducah, Kentucky, and Portsmouth, Ohio as the result of the discovery of valve defects and evidence of valve leaks at the Oak Ridge K-25 plant. The coordinated inspection culminated in the identification of additional factors related to long-term safe storage of UF{sub 6}, and plans for correction of such deficiencies are presently being developed and implemented. These corrective actions supplement existing programs aimed at assurance of safe storage as summarized in the report.

  20. PICs Implementation Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE/WIPP 04-2301 Passive Institutional Controls Implementation Plan August 19, 2004 United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico DOE/WIPP 04-2301 Passive Institutional Controls Implementation Plan Waste Isolation Pilot Plant Carlsbad, New Mexico August 19, 2004 Prepared for: Washington Regulatory and Environmental Services an affiliate of Washington TRU Solutions, LLC P.O. Box 2078 Carlsbad, New Mexico 88221 Prepared by: John Hart and

  1. Permanent Markers Implementation Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE/WIPP 04-3302 Permanent Markers Implementation Plan August 19, 2004 United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico DOE/WIPP 04-3302 ii Permanent Markers Implementation Plan Waste Isolation Pilot Plant Carlsbad, New Mexico August 19, 2004 Prepared for: Washington Regulatory and Environmental Services an affiliate of Washington TRU Solutions, LLC P.O. Box 2078 Carlsbad, New Mexico 88221 Prepared by: John Hart and Associates, P.A. 2815

  2. ORISE: Policy Implementation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy Implementation The Oak Ridge Institute for Science and Education (ORISE) assists the U.S. Department of Energy (DOE) Office of Science in the implementation of its program directed at ensuring compliance with federal and DOE regulations pertaining to the protection of human subjects participating in research. The Federal Policy for the Protection of Human Subjects was adopted by DOE on June 18, 1991, as Title 10 Code of Federal Regulations 745, Protection of Human Subjects, and expressed

  3. Blackout Final Implementation Report

    Energy Savers [EERE]

    Final Report on the Implementation of the Task Force Recommendations U.S.-Canada Power System Outage Task Force Natural Resources Canada U.S. Department of Energy September 2006 Final Report on the Implementation of the Task Force Recommendations U.S.-Canada Power System Outage Task Force September 2006 Natural Resources Canada U.S. Department of Energy Acknowledgments This document was prepared by staff of Natural Resources Canada and the U.S. Department of Energy. The principal contributors

  4. ALFAL 2010-04- Congressional Notification of Pending Contract or Financial Assistance Actions in Excess of $1 Million

    Broader source: Energy.gov [DOE]

    ALIFAL 20 10-03 implements statutory and non-statutory Congressional notification of pending award of a contract action, announcement of selected applications for negotiation of financial assistance awards, or to award a financial assistance action in excess of $1 million. The ALIFAL implements the General Provision Section 3 11 of the Energy and Water Development and Related Agencies Appropriations Act, 201 0.

  5. Untitled Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy Act Implementing Procedures Specify that a mitigation action ... implementation of commitments made in the record of decision for an environmental impact statement. ...

  6. 3RS action plan

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The goal of the Solid Waste Interim Steering Committee (SWISC) process is to develop a long-term waste management system for the Greater Toronto Area (GTA), to be in place by 1996, which is environmentally, socially, economically and technically sound. This background report is being released to the public and member Regional Councils to facilitate input to the SWISC planning process. The report documents current reduction, reuse and recycling initiatives in the GTA, identifies opportunities for coordination and collaboration among the GTA communities, and develops an action plan for improving the effectiveness of the reduction, reuse and recycling efforts within the GTA.

  7. Notices ACTION: Notice.

    Energy Savers [EERE]

    867 Federal Register / Vol. 80, No. 215 / Friday, November 6, 2015 / Notices ACTION: Notice. SUMMARY: This notice announces EPA's receipt of an application 91163-EUP-R from Texas Corn Producers Board requesting an experimental use permit (EUP) for the Aspergillus flavus strains TC16F, TC35C, TC38B, and TC46G. The Agency has determined that the permit may be of regional and national significance. Therefore, because of the potential significance, EPA is seeking comments on this application. DATES:

  8. RCRA corrective action and closure

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This information brief explains how RCRA corrective action and closure processes affect one another. It examines the similarities and differences between corrective action and closure, regulators` interests in RCRA facilities undergoing closure, and how the need to perform corrective action affects the closure of DOE`s permitted facilities and interim status facilities.

  9. Corrective Action Plan for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    SciTech Connect (OSTI)

    K. Campbell

    2000-04-01

    This Corrective Action Plan provides methods for implementing the approved corrective action alternative as provided in the Corrective Action Decision Document for the Central Nevada Test Area (CNTA), Corrective Action Unit (CAU) 417 (DOE/NV, 1999). The CNTA is located in the Hot Creek Valley in Nye County, Nevada, approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. CAU 417 consists of 34 Corrective Action Sites (CASs). Results of the investigation activities completed in 1998 are presented in Appendix D of the Corrective Action Decision Document (DOE/NV, 1999). According to the results, the only Constituent of Concern at the CNTA is total petroleum hydrocarbons (TPH). Of the 34 CASs, corrective action was proposed for 16 sites in 13 CASs. In fiscal year 1999, a Phase I Work Plan was prepared for the construction of a cover on the UC-4 Mud Pit C to gather information on cover constructibility and to perform site management activities. With Nevada Division of Environmental Protection concurrence, the Phase I field activities began in August 1999. A multi-layered cover using a Geosynthetic Clay Liner as an infiltration barrier was constructed over the UC-4 Mud Pit. Some TPH impacted material was relocated, concrete monuments were installed at nine sites, signs warning of site conditions were posted at seven sites, and subsidence markers were installed on the UC-4 Mud Pit C cover. Results from the field activities indicated that the UC-4 Mud Pit C cover design was constructable and could be used at the UC-1 Central Mud Pit (CMP). However, because of the size of the UC-1 CMP this design would be extremely costly. An alternative cover design, a vegetated cover, is proposed for the UC-1 CMP.

  10. Remedial design/remedial action strategy report

    SciTech Connect (OSTI)

    Dieffenbacher, R.G.

    1994-06-30

    This draft Regulatory Compliance Strategy (RCS) report will aid the ER program in developing and implementing Remedial Design/Remedial Action (RD/RA) projects. The intent of the RCS is to provide guidance for the implementation of project management requirements and to allow the implementation of a flexible, graded approach to design requirements depending on the complexity, magnitude, schedule, risk, and cost for any project. The RCS provides a functional management-level guidance document for the identification, classification, and implementation of the managerial and regulatory aspects of an ER project. The RCS has been written from the perspective of the ER Design Manager and provides guidance for the overall management of design processes and elements. The RCS does not address the project engineering or specification level of detail. Topics such as project initiation, funding, or construction are presented only in the context in which these items are important as sources of information or necessary process elements that relate to the design project phases.

  11. Annual Report on Wildlife Activities, September 1985-April 1986, Action Item 40.1, Columbia River Basin Fish and Wildlife Program.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1986-04-01

    This annual report addresses the status of wildlife projects Bonneville Power Administration (BPA) has implemented from September 1985 to April 1986. This report provides a brief synopsis, review, and discussion of wildlife activities BPA has undertaken. BPA's effort has gone towards implementing wildlife planning. This includes measure 1004 (b)(2), loss statements and measure 1004 (b)(3), mitigation plans. Loss statements have been completed for 14 facilities in the Basin with 4 additional ones to be completed shortly. Mitigation plans have been completed for 5 hydroelectric facilities in Montana. The Northwest Power Planning Council is presently considering two mitigation plans (Hungry Horse and Libby) for amendment into the Program. Currently, mitigation plans are being prepared for the 8 Federal hydroelectric facilities in the Willamette River Basin in Oregon, Grand Coulee Dam in the state of Washington, and Palisades Dam on the Snake River in Idaho.

  12. Habitat Evaluation Procedures (HEP) Report : Grand Coulee Dam Mitigation, 1996-1999 Technical Report.

    SciTech Connect (OSTI)

    Kieffer, B.; Singer, Kelly; Abrahamson, Twa-le

    1999-07-01

    The purpose of this Habitat Evaluation Procedures (HEP) study was to determine baseline habitat units and to estimate future habitat units for Bonneville Power Administration (BPA) mitigation projects on the Spokane Indian Reservation. The mitigation between BPA and the Spokane Tribe of Indians (STOI) is for wildlife habitat losses on account of the construction of Grand Coulee Dam. Analysis of the HEP survey data will assist in mitigation crediting and appropriate management of the mitigation lands.

  13. Micro-Structural Mitigation Strategies for PEM Fuel Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Micro-Structural Mitigation Strategies for PEM Fuel Cells Micro-Structural Mitigation Strategies for PEM Fuel Cells Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Micro-Structural Mitigation Strategies for PEM Fuel Cells" held on November 19, 2013. PDF icon Micro-Structural Mitigation Strategies for PEM Fuel Cells Webinar Slides More Documents & Publications 2012 Fuel Cell Technologies Market Report 2011 Fuel Cell Technologies Market

  14. Implementation of subsidence control regulatory requirements

    SciTech Connect (OSTI)

    Barkley, D.

    1999-07-01

    Underground coal mining in Illinois has shown an increasing percentage of total coal mined relative to surface mining. In the past 20 years, the percentage of underground to surface mine production has steadily increased. Underground mining is expected to continue to dominate Illinois coal production into the 21st century. The drive for higher production and lower operating costs should increase the number of longwall and high extraction retreat mines. This will be achieved through conversion of existing room and pillar mines or initiation of new underground mining operations. The environmental regulations that govern the mitigation of surface impacts have evolved at both the state and federal level. Federal regulations passed in 1995 modifying the Surface Mining Control and Reclamation Act mandated additional restrictions and regulatory requirements beyond those adopted in 1977. State regulatory bodies that implement the regulations are now working to bring their regulations and procedures into compliance with the oversight federal counterpart. many states have raised concerns over the practical application of certain aspects of the new permitting requirements. This paper describes past and present subsidence regulations in Illinois, their impact on the coal industry and on the landowners above underground coal mining. Potential problems in implementation of the new regulatory requirements as well as additional burdens placed on coal companies to comply with the regulations are explored.

  15. Ocean Fertilization and Other Climate Change Mitigation Strategies: An Overview

    SciTech Connect (OSTI)

    Huesemann, Michael H.

    2008-07-29

    In order to evaluate ocean fertilization in the larger context of other proposed strategies for reducing the threat of the global warming, a wide range of different climate change mitigation approaches are compared in terms of their long-term potential, stage of development, relative costs and potential risks, as well as public acceptance. This broad comparative analysis is carried out for the following climate change mitigation strategies: supply-side and end-use efficiency improvements, terrestrial and geological carbon sequestration, CO2 ocean disposal and iron fertilization, nuclear power, and renewable energy generation from biomass, passive solar, solar thermal, photovoltaics, hydroelectric and wind. In addition, because of the inherent problems of conducting an objective comparative cost-benefit analysis, two non-technological solutions to global warming are also discussed: curbing population growth and transitioning to a steady-state economy.

  16. U.S.-Canada Clean Energy Dialogue (CED) Action Plan II

    Broader source: Energy.gov [DOE]

    Action Plan II describes initiatives that the U.S.-Canada Clean Energy Dialogue Working Groups plan to implement under Phase II of the CED to further progress toward a low-carbon economy that...

  17. Experts assemble at PPPL to discuss mitigation of tokamak disruptions |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Experts assemble at PPPL to discuss mitigation of tokamak disruptions By John Greenwald July 15, 2014 Tweet Widget Google Plus One Share on Facebook Amitava Bhattacharjee, left, and John Mandrekas, a program manager in the U.S. Department of Energy's office of Fusion Energy Sciences. (Photo by Elle Starkman/Princeton Office of Communications ) Amitava Bhattacharjee, left, and John Mandrekas, a program manager in the U.S. Department of Energy's office of Fusion

  18. Experts assemble at PPPL to discuss mitigation of tokamak disruptions |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Experts assemble at PPPL to discuss mitigation of tokamak disruptions By John Greenwald July 15, 2014 Tweet Widget Google Plus One Share on Facebook Amitava Bhattacharjee, left, and John Mandrekas, a program manager in the U.S. Department of Energy's office of Fusion Energy Sciences. (Photo by Elle Starkman/Princeton Office of Communications ) Amitava Bhattacharjee, left, and John Mandrekas, a program manager in the U.S. Department of Energy's office of Fusion

  19. Federal Interagency Wind Turbine Radar Interference Mitigation Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Wind Turbine Radar Interference Mitigation Strategy January 2016 This report is being disseminated by the U.S. Department of Energy (DOE). As such, this document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for fiscal year 2001 (public law 106-554) and information quality guidelines issued by DOE. Though this report does not constitute "influential" information, as that term is defined in DOE's information quality

  20. Multifunctional Platelet Composites for Tin Whisker Mitigation - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Multifunctional Platelet Composites for Tin Whisker Mitigation Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (555 KB) <br type="_moz" /> SEM image showing in-plane orientation of platelets in Sandia&#39;s multifunctional platelet composite SEM image showing in-plane orientation of platelets in Sandia's multifunctional platelet composite Technology Marketing Summary In order to comply

  1. Microsoft Word - MitigationsForVulnerabilitiesInCSNetworks.doc

    Energy Savers [EERE]

    6 by ISA - The Instrumentation, Systems and Automation Society. Presented at 16th Annual Joint ISA POWID/EPRI Controls and Instrumentation Conference; http://www.isa.org Mitigations for Security Vulnerabilities Found in Control System Networks May Permann John Hammer Computer Security Researcher Computer Security Researcher Communications & Cyber Security Communications & Cyber Security Idaho National Laboratory Idaho National Laboratory Idaho Falls, ID 83415 Idaho Falls, ID 83415 Kathy

  2. Can land management and biomass utilization help mitigate global warming?

    SciTech Connect (OSTI)

    Schlamadinger, B.; Lauer, M.

    1996-12-31

    With rising concern about the increase of the CO{sub 2} concentration in the earth`s atmosphere there is considerable interest in various land-use based mitigation options, like afforestation of surplus agricultural land with or without subsequent harvest; improved forest management; strategies that rely on wood plantations managed in short rotation or agricultural crops with high yields to produce bioenergy, timber and other biomass products. In the first step of this study, the net carbon benefits of such strategies will be calculated per unit of land, i.e., per hectare, because it is assumed that land is the limiting resource for such strategies in the future, and thus, the benefits per unit land need to be optimized. For these calculations a computer model has been developed. The results take into account the time dependence of carbon storage in the biosphere and are shown graphically both for land and for plantation systems with constant output of biomass over time. In the second step, these results will be combined with data on available land for Austria. The potential contribution of each of the above strategies towards mitigating the Austrian CO{sub 2} emissions will be demonstrated. A comparison to other renewable mitigation options, like solar thermal or photovoltaics, will be drawn in terms of available land resources and overall CO{sub 2} reductions.

  3. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This reduction in capacity was observed to be independent of the amount of charge/discharge cycles except for the composites containing siloxane, which showed less of an impact on hydrogen storage capacity as it was cycled further. While the reason for this is not clear, it may be due to a chemically stabilizing effect of the siloxane on the metal hydride. Flow-through calorimetry was used to characterize the mitigating effectiveness of the different composites relative to the neat (no polymer) material. The composites were found to be initially effective at reducing the amount of heat released during oxidation, and the best performing material was the siloxane-containing composite which reduced the heat release to less than 50% of the value of the neat material. However, upon cycling the composites, all mitigating behavior was lost. The combined results of the flow-through calorimetry, hydrogen capacity, and thermogravimetric analysis tests lead to the proposed conclusion that while the polymer composites have mitigating potential and are physically robust under cycling, they undergo a chemical change upon cycling that makes them ineffective at mitigating heat release upon oxidation of the metal hydride.

  4. IPv6 Implementation Checklist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IPv6 Implementation Checklist Engineering Services The Network OSCARS Fasterdata IPv6 Network IPv6 Implementation Checklist ESnet IPv6 Mirror Servers ESnet IPv6 History ESnet supports Sandia and APNIC IPv6 Background Radiation research Network Performance Tools The ESnet Engineering Team Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback:

  5. Climate Action Tracker | Open Energy Information

    Open Energy Info (EERE)

    References: Climate Action Tracker1 "This "Climate Action Tracker" is an independent science-based assessment, which tracks the emission commitments and actions of countries. The...

  6. Emergencies and Emergency Actions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Emergency Actions Emergencies and Emergency Actions Selected documents on the topic of Emergencies and Emergency Actions under NEPA. May 12, 2010 Memorandum for Heads of...

  7. N Springs expedited response action proposal

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    Since signing the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in 1989, the parties to the agreement have recognized the need to modify the approach to conducting investigations, studies, and cleanup actions at Hanford. To implement this approach, the parties have jointly developed the Hanford Past-Practice Strategy. The strategy defines a non-time-critical expedited response action (ERA) as a response action ``needed to abate a threat to human health or welfare or the environment where sufficient time exists for formal planning prior to initiation of response. In accordance with the past-practice strategy, DOE proposes to conduct an ERA at the N Springs, located in the Hanford 100 N Area, to substantially reduce the strontium-90 transport into the river through the groundwater pathway. The purpose of this ERA proposal is to provide sufficient information to select a preferred alternative at N Springs. The nature of an ERA requires that alternatives developed for the ERA be field ready; therefore, all the technologies proposed for the ERA should be capable of addressing the circumstances at N Springs. A comparison of these alternatives is made based on protectiveness, cost, technical feasibility, and institutional considerations to arrive at a preferred alternative. Following the selection of an alternative, a design phase will be conducted; the design phase will include a detailed look at design parameters, performance specifications, and costs of the selected alternative. Testing will be conducted as required to generate design data.

  8. Criticality Safety Controls Implementation, May 31, 2013 (HSS CRAD 45-18, Rev. 1)

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) has set expectations for implementing criticality safety controls that are selected to provide preventive and/or mitigative functions for specific potential accident scenarios. There are additional expectations for criticality safety controls that are also designated as Specific Administrative Controls (see HSS CRAD 64-32). The following provides a set of criteria and typical activities with representative lines of inquiry to assess criticality control implementation as an integral part of the review of the core functions and implementation of integrated safety management.

  9. Transition Implementation Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-04-24

    This Guide was prepared to aid in the development, planning, and implementation of requirements and activities during the transition phase at Department of Energy (DOE) facilities that have been declared or are forecast to become excess to any future mission requirements.

  10. Plans, Implementation, and Results

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office carries out technology research, development, and deployment through an ongoing process of planning and analysis, implementation, and review. This Web page includes links to documents that support and document the program management process, and the results and public benefits that derive from it.

  11. Foreign Obligations Implementation Status Presentation

    National Nuclear Security Administration (NNSA)

    January 13, 2004 Obligations Accounting Implementation Workshop January 13, 2 Obligations Accounting Implementation Workshop January 13, 2004 Crowne Plaza Ravinia Atlanta, GA 004 ...

  12. Implementing Equipment Based Obligations Presentation

    National Nuclear Security Administration (NNSA)

    Implementation Workshop January 13, 2 Obligations Accounting Implementation Workshop January 13, 2004 004 Crowne Crowne Plaza Plaza Ravinia Ravinia Atlanta, GA Atlanta, GA page ...

  13. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect (OSTI)

    Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

    2008-12-01

    The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

  14. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2011-09-01

    The purpose of this CADD/CAP is to present the corrective action alternatives (CAAs) evaluated for CAU 547, provide justification for selection of the recommended alternative, and describe the plan for implementing the selected alternative. Corrective Action Unit 547 consists of the following three corrective action sites (CASs): (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; and(3) CAS 09-99-06, Gas Sampling Assembly. The gas sampling assemblies consist of inactive process piping, equipment, and instrumentation that were left in place after completion of underground safety experiments. The purpose of these safety experiments was to confirm that a nuclear explosion would not occur in the case of an accidental detonation of the high-explosive component of the device. The gas sampling assemblies allowed for the direct sampling of the gases and particulates produced by the safety experiments. Corrective Action Site 02-37-02 is located in Area 2 of the Nevada National Security Site (NNSS) and is associated with the Mullet safety experiment conducted in emplacement borehole U2ag on October 17, 1963. Corrective Action Site 03-99-19 is located in Area 3 of the NNSS and is associated with the Tejon safety experiment conducted in emplacement borehole U3cg on May 17, 1963. Corrective Action Site 09-99-06 is located in Area 9 of the NNSS and is associated with the Player safety experiment conducted in emplacement borehole U9cc on August 27, 1964. The CAU 547 CASs were investigated in accordance with the data quality objectives (DQOs) developed by representatives of the Nevada Division of Environmental Protection (NDEP) and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAU 547. Existing radiological survey data and historical knowledge of the CASs were sufficient to meet the DQOs and evaluate CAAs without additional investigation. As a result, further investigation of the CAU 547 CASs was not required. The following CAAs were identified for the gas sampling assemblies: (1) clean closure, (2) closure in place, (3) modified closure in place, (4) no further action (with administrative controls), and (5) no further action. Based on the CAAs evaluation, the recommended corrective action for the three CASs in CAU 547 is closure in place. This corrective action will involve construction of a soil cover on top of the gas sampling assembly components and establishment of use restrictions at each site. The closure in place alternative was selected as the best and most appropriate corrective action for the CASs at CAU 547 based on the following factors: (1) Provides long-term protection of human health and the environment; (2) Minimizes short-term risk to site workers in implementing corrective action; (3) Is easily implemented using existing technology; (4) Complies with regulatory requirements; (5) Fulfills FFACO requirements for site closure; (6) Does not generate transuranic waste requiring offsite disposal; (7) Is consistent with anticipated future land use of the areas (i.e., testing and support activities); and (8) Is consistent with other NNSS site closures where contamination was left in place.

  15. Expansion of Borrow Areas on the Hanford Site-Mitigation Action Plan for DOE-EA-1934.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  16. Implications of simultaneously mitigating and adapting to climate change: Initial experiments using GCAM

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Wise, Marshall A.; Clarke, Leon E.; Edmonds, James A.; Kyle, G. Page; Luckow, Patrick W.; Thomson, Allison M.

    2013-04-01

    Historically climate impacts research and climate mitigation research have been two separate and independent domains of inquiry. Climate mitigation research has investigated greenhouse gas emissions assuming that climate is unchanging. At the same time climate mitigation research has investigated the implications of climate change on the assumption that climate mitigation will proceed without affecting the degree of climate impacts or the ability of human and natural systems to adapt. The Global Change Assessment Model (GCAM) has largely been employed to study climate mitigation. Here we explore the development of capabilities to assess climate change impacts and adaptation within the GCAM model. These capabilities are being developed so as to be able to simultaneously reconcile the joint implications of climate change mitigation, impacts and adaptive potential. This is an important step forward in that it enables direct comparison between climate mitigation activities and climate impacts and the opportunity to understand interactions between the two.

  17. International Program Action Table - October 2012 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Communication & Engagement International Programs International Program Action Table - October 2012 International Program Action Table - October 2012 International Program ...

  18. Corrective Action Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    D. L. Gustafason

    2001-02-01

    This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order of 1996. This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 2000). The CAU includes two Corrective Action Sites (CASs): 25-23-09, Contaminated Waste Dump Number 1; and 25-23-03, Contaminated Waste Dump Number 2. Investigation of CAU 143 was conducted in 1999. Analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine constituents of concern for CAU 143. Radionuclide concentrations in disposal pit soil samples associated with the Reactor Maintenance, Assembly, and Disassembly Facility West Trenches, the Reactor Maintenance, Assembly, and Disassembly Facility East Trestle Pit, and the Engine Maintenance, Assembly, and Disassembly Facility Trench are greater than normal background concentrations. These constituents are identified as constituents of concern for their respective CASs. Closure-in-place with administrative controls involves use restrictions to minimize access and prevent unauthorized intrusive activities, earthwork to fill depressions to original grade, placing additional clean cover material over the previously filled portion of some of the trenches, and placing secondary or diversion berm around pertinent areas to divert storm water run-on potential.

  19. Implementing Bayesian Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementing Bayesian Statistics and a Full Systematic Uncertainty Propagation with the Soft X-Ray Tomography Diagnostic on the Madison Symmetric Torus by Jay Johnson A thesis submitted in partial fulfillment of the requirements for the degree of Bachelors of Science (Physics) at the University of Wisconsin - Madison 2013 i Abstract The Madison Symmetric Torus uses multiple diagnostics to measure electron temper- ature (T e ). The soft x-ray (SXR) diagnostic measures T e from x-ray emission in

  20. Tank waste remediation system configuration management implementation plan

    SciTech Connect (OSTI)

    Vann, J.M.

    1998-03-31

    The Tank Waste Remediation System (TWRS) Configuration Management Implementation Plan describes the actions that will be taken by Project Hanford Management Contract Team to implement the TWRS Configuration Management program defined in HNF 1900, TWRS Configuration Management Plan. Over the next 25 years, the TWRS Project will transition from a safe storage mission to an aggressive retrieval, storage, and disposal mission in which substantial Engineering, Construction, and Operations activities must be performed. This mission, as defined, will require a consolidated configuration management approach to engineering, design, construction, as-building, and operating in accordance with the technical baselines that emerge from the life cycles. This Configuration Management Implementation Plan addresses the actions that will be taken to strengthen the TWRS Configuration Management program.

  1. EIS-0026: 2010 Annual Mitigation Report | Department of Energy

    Energy Savers [EERE]

    and 10 CFR 1021, National Environmental Policy Act Implementing Procedures. ... of commitments made in the Record of Decision (ROD) for an Environmental Impact Statement (EIS). ...

  2. Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided...

    Open Energy Info (EERE)

    Value Areas AgencyCompany Organization Government of Costa Rica, Peace with Nature Sector Land Focus Area Forestry Topics Co-benefits assessment, Implementation,...

  3. FAO Global Inventory of Agricultural Mitigation Projects in Developing...

    Open Energy Info (EERE)

    emissions can be reduced and sinks created in biomass and soils while increasing resilience and productivity. The project will contribute to ongoing research and implementation...

  4. Tritium Formation and Mitigation in High-Temperature Reactor Systems

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots; Hans A. Schmutz

    2013-03-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  5. Tritium Formation and Mitigation in High-Temperature Reactors

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots

    2012-10-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  6. Taxonomy for Common-Cause Failure Vulnerability and Mitigation

    SciTech Connect (OSTI)

    Wood, Richard Thomas; Korsah, Kofi; Mullens, James Allen; Pullum, Laura L.

    2015-09-01

    Applying current guidance and practices for common-cause failure (CCF) mitigation to digital instrumentation and control (I&C) systems has proven problematic, and the regulatory environment has been unpredictable. The potential for CCF vulnerability inhibits I&C modernization, thereby challenging the long-term sustainability of existing plants. For new plants and advanced reactor concepts, concern about CCF vulnerability in highly integrated digital I&C systems imposes a design burden that results in higher costs and increased complexity. The regulatory uncertainty in determining which mitigation strategies will be acceptable (e.g., what diversity is needed and how much is sufficient) drives designers to adopt complicated, costly solutions devised for existing plants. To address the conditions that constrain the transition to digital I&C technology by the US nuclear industry, crosscutting research is needed to resolve uncertainty, demonstrate necessary characteristics, and establish an objective basis for qualification of digital technology for nuclear power plant (NPP) I&C applications. To fulfill this research need, Oak Ridge National Laboratory is investigating mitigation of CCF vulnerability for nuclear-qualified applications. The outcome of this research is expected to contribute to a fundamentally sound, comprehensive basis to qualify digital technology for nuclear power applications. This report documents the development of a CCF taxonomy. The basis for the CCF taxonomy was generated by determining consistent terminology and establishing a classification approach. The terminology is based on definitions from standards, guides, and relevant nuclear power industry technical reports. The classification approach is derived from identified classification schemes focused on I&C systems and key characteristics, including failure modes. The CCF taxonomy provides the basis for a systematic organization of key systems aspects relevant to analyzing the potential for CCF vulnerability and the suitability of mitigation techniques. Development of an effective CCF taxonomy will help to provide a framework for establishing the objective analysis and assessment capabilities desired to facilitate rigorous identification of fault types and triggers that are the fundamental elements of CCF.

  7. PPPL successfully tests system for mitigating instabilities called

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "ELMs" | Princeton Plasma Physics Lab PPPL successfully tests system for mitigating instabilities called "ELMs" By John Greenwald September 29, 2014 Tweet Widget Google Plus One Share on Facebook Close-up view of the high-speed propellor inside the injector. (Photo by Elle Starkman/Princeton Office of Communications ) Close-up view of the high-speed propellor inside the injector. PPPL has successfully tested a Laboratory-designed device to be used to diminish the size of

  8. PPPL successfully tests system for mitigating instabilities called

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "ELMs" | Princeton Plasma Physics Lab PPPL successfully tests system for mitigating instabilities called "ELMs" By John Greenwald September 29, 2014 Tweet Widget Google Plus One Share on Facebook Close-up view of the high-speed propellor inside the injector. (Photo by Elle Starkman/Princeton Office of Communications ) Close-up view of the high-speed propellor inside the injector. PPPL has successfully tested a Laboratory-designed device to be used to diminish the size of

  9. Combination pipe rupture mitigator and in-vessel core catcher

    DOE Patents [OSTI]

    Tilbrook, Roger W.; Markowski, Franz J.

    1983-01-01

    A device which mitigates against the effects of a failed coolant loop in a nuclear reactor by restricting the outflow of coolant from the reactor through the failed loop and by retaining any particulated debris from a molten core which may result from coolant loss or other cause. The device reduces the reverse pressure drop through the failed loop by limiting the access of coolant in the reactor to the inlet of the failed loop. The device also spreads any particulated core debris over a large area to promote cooling.

  10. Climate Mitigation Policy Implications for Global Irrigation Water Demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.

    2013-08-22

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of alternative land-use emissions mitigation policy options—one which values terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to lead to increased demand for water for agricultural systems (+200%), even in the absence of climate change. In general policies to mitigate climate change will increase agricultural demands for water, regardless of whether or not terrestrial carbon is valued or not. Burgeoning demands for water are driven by the demand for bioenergy in response to emissions mitigation policies. We also find that the policy matters. Increases in the demand for water when terrestrial carbon emissions go un-prices are vastly larger than when terrestrial system carbon emissions are prices at the same rate as fossil fuel and industrial emissions. Our estimates for increased water demands when terrestrial carbon systems go un-priced are larger than earlier studies. We find that the deployment of improved irrigation delivery systems could mitigate some of the increase in water demands, but cannot reverse the increases in water demands when terrestrial carbon emissions go un-priced. Finally we estimates that the geospatial pattern of water demands could stress some parts of the world, e.g. China, India and other countries in south and east Asia, earlier and more intensely than in other parts of the world, e.g. North America.

  11. CO2 emissions mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    SciTech Connect (OSTI)

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine V.; Wada, Kenichi; Van Vuuren, Detlef

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher and decrease with mitigation. A first deviation from the optimal transition pathway relaxes global emission targets until 2030, in accordance with the Copenhagen pledges and regionally-specific low-carbon technology targets. Fossil fuel markets revert back to the no-policy case: though coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger - twice and more - than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear cut across models, as we find carbon leakage effects ranging from positive to negative because leakage and substitution patterns of coal, oil, and gas differ. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.

  12. Emissions Scenarios, Costs, and Implementation Considerations of REDD Programs

    SciTech Connect (OSTI)

    Sathaye, Jayant; Andrasko, Ken; Chan, Peter

    2011-04-11

    Greenhouse gas emissions from the forestry sector are estimated to be 8.4 GtCO2-eq./year or about 17percent of the global emissions. We estimate that the cost forreducing deforestation is low in Africa and several times higher in Latin America and Southeast Asia. These cost estimates are sensitive to the uncertainties of how muchunsustainable high-revenue logging occurs, little understood transaction and program implementation costs, and barriers to implementation including governance issues. Due to lack of capacity in the affected countries, achieving reduction or avoidance of carbon emissions will require extensive REDD-plus programs. Preliminary REDD-plus Readiness cost estimates and program descriptions for Indonesia, Democratic Republic of the Congo, Ghana, Guyana and Mexico show that roughly one-third of potential REDD-plus mitigation benefits might come from avoided deforestation and the rest from avoided forest degradation and other REDD-plus activities.

  13. Remedial Action Assessment System

    Energy Science and Technology Software Center (OSTI)

    1997-02-01

    RAAS1.1 is a software-based system designed to assist remediation professionals at each stage of the environmental analysis process. RAAS1.1 provides a template for environmental restoration analysis, and provides the user with key results at each step in the analysis. RAAS1.1 assists the user to develop a coherent and consistent site description, estimate baseline and residual risk to public health from the contaminated site, identify applicable environmental restoration technologies, and formulate feasible remedial response alternatives. Inmore » addition, the RAAS1.1 methodology allows the user to then assess and compare those remedial response alternatives across EPA criteria, including: compliance with objectives; short-term and long-term effectiveness; extent of treatment; and implementability of the technologies. The analytic methodology is segmented and presented in a standardized, concise, easy-to-use format that can be viewed on the personal computer screen, saved and further manipulated, or printed for later use. Each screen and analytic step is accessed via a user-friendly personal computer graphical interface. Intuitively-designed buttons, menus, and lists help the user focus in on the particular information and analysis component of interest; the corresponding results are presented in a format that facilitates their use in decision-making.« less

  14. After Action Report: Advanced Test Reactor Complex 2015 Evaluated Drill October 6, 2015

    SciTech Connect (OSTI)

    Holmes, Forest Howard

    2015-11-01

    The Advanced Test Reactor (ATR) Complex, operated by Battelle Energy Alliance, LLC, at the Idaho National Laboratory (INL) conducted an evaluated drill on October 6, 2015, to allow the ATR Complex emergency response organization (ERO) to demonstrate the ability to respond to and mitigate an emergency by implementing the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.”

  15. Reasons and strategies for more effective NEPA implementation

    SciTech Connect (OSTI)

    Ensminger, J.T. ); McLean, R.B. )

    1993-01-01

    The National Environmental Policy Act (NEPA) calls for an integrated approach to planning by federal agencies, with environmental issues being emphasized along with other types of planning concerns (i.e., financial, technical, and political). Because of NEPA, federal agencies have become more aware that environmental concerns must be addressed in their planning processes. However, a recent survey of NEPA practitioners indicated that many members of this group believe that deficiencies exist in the NEPA implementation processes of some federal agencies. According to the survey responses, the principal deficiencies are: (1) the tendency to use environmental impact statements as decision-implementation rather than decision-making documents; (2) the lack of effective planning and follow-up concerning mitigation measures identified by the NEPA process; and (3) NEPA overkill, particularly in the preparation of extensively detailed environmental assessments. As a result, NEPA may be addressed only cursorily as an afterthought, or the procedural aspects of NEPA document preparation may be overemphasized. Neither approach is conducive to serious planning and follow-up for impact mitigation measures. The results of the survey are discussed, as are the causes and possible solutions of these problems.

  16. Small Business Administration Recovery Act Implementation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation PDF icon Small ...

  17. Greenhouse gases mitigation options and strategies for Tanzania

    SciTech Connect (OSTI)

    Mwandosya, M.J.; Meena, H.E.

    1996-12-31

    Tanzania became a party to the United Nations Framework on Climate Change (UN FCCC) when she ratified the Convention in March, 1996. Now that Tanzania and other developing countries are Parties to the UN FCCC, compliance with its provisions is mandatory. The legal requirements therefore provide a basis for their participation in climate change studies and policy formulation. All parties to the Convention are required by Article 4.1 of the United Nations Convention on Climate Change (UN FCCC) to develop, periodically update, publish, and make available national inventories of anthropogenic emissions and removal of greenhouse gases that are not controlled by the Montreal Protocol. This study on possible options for the mitigation of greenhouse gases in Tanzania is a preliminary effort towards the fulfilment of the obligation. In order to fulfil their obligations under the UN FCCC and have a meaningful mitigation assessment, identification and quantification of anthropogenic sources of atmospheric emissions of greenhouse gases in the country was undertaken. In this respect, the study of anthropogenic emissions by source and removals by sink of GHGs in Tanzania was done with the main objective of increasing the quantity and quality of base-line data available in order to further scientific understanding of the relationship of greenhouse gas emissions to climate change. Furthermore, the study facilitated identification of national policy and technological options that could reduce the level of emissions in the country.

  18. Enforcement actions: Significant actions resolved individual actions. Semiannual progress report, January 1996--June 1996

    SciTech Connect (OSTI)

    1996-08-01

    This document summarizes significant enforcement actions that have been resolved during the period of January-June 1996. The report includes copies of Orders and Notices of Violations sent by the Nuclear Regulatory Commission to individuals with respect to the enforcement actions.

  19. CO{sub 2}-mitigation measures through reduction of fossil fuel burning in power utilities. Which road to go?

    SciTech Connect (OSTI)

    Kaupp, A.

    1996-12-31

    Five conditions, at minimum, should be examined in the comparative analysis of CO{sub 2}-mitigation options for the power sector. Under the continuing constraint of scarce financial resources for any private or public investment in the power sector, the following combination of requirements characterise a successful CO{sub 2}-mitigation project: (1) Financial attractiveness for private or public investors. (2) Low, or even negative, long range marginal costs per ton of `CO{sub 2} saved`. (3) High impact on CO{sub 2}-mitigation, which indicates a large market potential for the measure. (4) The number of individual investments required to achieve the impact is relatively small. In other words, logistical difficulties in project implementation are minimised. (5) The projects are `socially fair` and have minimal negative impact on any segment of the society. This paper deals with options to reduce carbonaceous fuel burning in the power sector. Part I explains how projects should be selected and classified. Part II describes the technical options. Since reduction of carbonaceous fuel burning may be achieved through Demand Side Management (DSM) and Supply Side Management (SSM) both are treated. Within the context of this paper SSM does not mean to expand power supply as demand grows. It means to economically generate and distribute power as efficiently as possible. In too many instances DSM has degenerated into efficient lighting programs and utility managed incentives and rebate programs. To what extent this is a desirable situation for utilities in Developing Countries that face totally different problems as their counterparts in highly industrialised countries remains to be seen. Which road to go is the topic of this paper.

  20. Vernacular design based on sustainable disasters mitigation communication and education strategy

    SciTech Connect (OSTI)

    Mansoor, Alvanov Zpalanzani E-mail: alvanov@fsrd.itb.ac.id

    2015-04-24

    Indonesia is located between three active tectonic plates, which are prone to natural disasters such as earthquake, volcanic eruption, and also giant tidal wave-tsunami. Adequate infrastructure plays an important role in disaster mitigation, yet without good public awareness, the mitigation process wont be succeeded. The absence of awareness can lead to infrastructure mistreatment. Several reports on lack of understanding or misinterpretation of disaster mitigation especially from rural and coastal communities need to be solved, especially from communication aspects. This is an interdisciplinary study on disaster mitigation communication design and education strategy from visual communication design studies paradigm. This paper depicts research results which applying vernacular design base to elaborate sustainable mitigation communication and education strategy on various visual media and social campaigns. This paper also describes several design approaches which may becomes way to elaborate sustainable awareness and understanding on disaster mitigation among rural and coastal communities in Indonesia.

  1. RCRA corrective action: Work plans

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This Information Brief describes the work plans that owners/operators may have to prepare in conjunction with the performance of corrective action for compliance with RCRA guidelines. In general, the more complicated the performance of corrective action appears from the remedial investigation and other analyses, the more likely it is that the regulator will impose work plan requirements. In any case, most owner/operators will prepare work plans in conjunction with the performance of corrective action processes as a matter of best engineering management practices.

  2. Bonneville’s “Balanced Scorecard” Approach to Mitigation, Monitoring, and Adaptive Management

    Broader source: Energy.gov [DOE]

    This year Bonneville Power Administration (BPA), DOE’s power marketing organization in the Pacific Northwest, will spend more than $300 million on mitigation projects to meet its mandate under the 1980 Northwest Power Act to “protect, mitigate and enhance” fish and wildlife affected by construction and operation of the Federal Columbia River Power System. How is BPA meeting its responsibility to ratepayers to ensure that these mitigation funds are spent effectively?

  3. Peru mitigation assessment of greenhouse gases: Sector -- Energy. Peru climate change country study; Final report

    SciTech Connect (OSTI)

    1996-08-01

    The aim of this study is to determine the Inventory and propose Greenhouse Gases Mitigation alternatives in order to face the future development of the country in a clean environmental setting without delaying the development process required to improve Peruvian standard of living. The main idea of this executive abstract is to show concisely the results of the Greenhouse Gases Mitigation for Peru in the period 1990--2015. The studies about mitigation for the Energy Sector are shown in this summary.

  4. Recruiting a Local and Diverse Workforce and Mitigating Barriers to Entry |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Recruiting a Local and Diverse Workforce and Mitigating Barriers to Entry Recruiting a Local and Diverse Workforce and Mitigating Barriers to Entry Better Buildings Neighborhood Program Workforce Peer Exchange Call: Recruiting a Local and Diverse Workforce and Mitigating Barriers to Entry, Call Slides and Discussion Summary, August 25, 2011. PDF icon Call Slides and Discussion Summary More Documents & Publications Better Buildings Workforce Peer Exchange Call:

  5. Corrective Action Decision Document/Closure Report for Corrective Action Unit 371: Johnnie Boy Crater and Pin Stripe Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2010-07-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit 371, Johnnie Boy Crater and Pin Stripe, located within Areas 11 and 18 at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit (CAU) 371 comprises two corrective action sites (CASs): 11-23-05, Pin Stripe Contamination Area 18-45-01, U-18j-2 Crater (Johnnie Boy) The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 371 based on the implementation of corrective actions. The corrective action of closure in place with administrative controls was implemented at both CASs. Corrective action investigation (CAI) activities were performed from January 8, 2009, through February 16, 2010, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 371: Johnnie Boy Crater and Pin Stripe. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides and investigation of other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 371 dataset of investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. Radiological doses exceeding the FAL of 25 millirem per year were not found to be present in the surface soil. However, it was assumed that radionuclides are present in subsurface media within the Johnnie Boy crater and the fissure at Pin Stripe. Due to the assumption of radiological dose exceeding the FAL, corrective actions were undertaken that consist of implementing a use restriction and posting warning signs at each site. These use restrictions were recorded in the FFACO database; the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Facility Information Management System; and the NNSA/NSO CAU/CAS files. Therefore, NNSA/NSO provides the following recommendations: No further corrective actions are necessary for CAU 371. A Notice of Completion to NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 371. Corrective Action Unit 371 should be moved from Appendix III to Appendix IV of the FFACO.

  6. Implementation of CAA amendments: The federal perspective

    SciTech Connect (OSTI)

    Nichols, M.

    1995-12-01

    The Clean Air Act Amendments of 1990 established a rigorous timetable for EPA to develop and implement an unprecedented number of regulatory and policy initiatives. EPA has made great progress in meeting these mandates; however, much remains to be done if the Act`s health and environmental goals are to be achieved. EPA must issue dozens of additional regulations, guidance documents, and studies and reports over the next several years. The largest group of remaining rulemakings will be those controlling air toxics emissions. Other significant actions will include final rulemakings on emission standards for non-road engines, emissions standards for municipal and medical waste combustion, enhanced emissions monitoring, Federal operating permits, and newsource review simplification. EPA also must accelerate and expand a host of activities to ensure that the Agency and the States are implementing and enforcing the Act effectively. For example, EPA must assess hundreds of SIP revisions, as well as 120 State and local permit programs, and provide technical assistance to States and sources. Ms. Nichols will present EPA`s will present EPA`s plans for implementing these activities over the next several years. She will present a summary of the Agency`s current achievements under the 1990 amendments and EPA`s framework for completing the challenging tasks that lie ahead.

  7. 324 Building fire hazards analysis implementation plan

    SciTech Connect (OSTI)

    BARILO, N.F.

    1999-05-10

    In March 1998, the 324 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the U S. Department of Energy, Richland Operations Office (DOE-RL) for implementation by B and W Hanford Company (BWHC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in six areas and provided 20 recommendations to bring the 324 Building into compliance with DOE Order 5480 7A. Additionally, one observation was provided. A status is provided for each recommendation in this document. The actions for recommendations associated with the safety related part of the 324 Building and operation of the cells and support areas were evaluated using the Unreviewed Safety Question (USQ) process BWHC will use this Implementation Plan to bring the 324 Building and its operation into compliance with DOE Order 5480 7A and RLID 5480.7.

  8. The potential of wetlands for mitigating adverse effects of agricultural drainage

    SciTech Connect (OSTI)

    Silverman, G.S.

    1995-12-01

    Agricultural runoff has been clearly identified as a major contributor to the failure of much of the surface water in the United States to meet designated use objectives. Control of agricultural drainage is very problematic. The agriculture industry strongly resists mandated controls, and warns of potential catastrophic consequences in food shortages should production methods be altered. Yet concern grows over the long and short term impact of a variety of contaminants - particularly sediments, nutrients, and pesticides - released to our waters as part of normal agricultural practices. For quite some time, wetlands have been explored for their potential in treating sewage (from both municipal and private systems) and acid mine drainage. Much less work has been done looking at the potential for wetlands to treat agricultural drainage. yet, wetlands may offer tremendous potential for mitigating problems of agricultural runoff while offering farmers desirable (or at least acceptable) uses of marginal land. This paper has two objectives. First, the opportunities for wetlands to be used as agricultural drainage treatment facilities are described. Processes are identified which trap or degrade pollutants, with particular attention given to long-term environmental fate. Second, an experimental wetlands system recently developed in Northwest Ohio is used as an example of system implementation. Emphasis will be given to how the system was developed to optimize pollutant removal within the physical constraints of the site. Preliminary performance data with respect to water quality changes will also be presented.

  9. Malheur River Wildlife Mitigation Project, Annual Report 2003.

    SciTech Connect (OSTI)

    Ashley, Paul

    2004-01-01

    Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project proposals are subjected to a rigorous review process prior to receiving final approval. An eleven-member panel of scientists referred to as the Independent Scientific Review Panel (ISRP) examines project proposals. The ISRP recommends project approval based on scientific merit. The Bonneville Power Administration (BPA), the Columbia Basin Fish and Wildlife Authority (CBFWA), Council staff, the U.S. Fish and Wildlife Service (USFWS), the National Oceanic and Atmospheric Administration (NOAA), and subbasin groups also review project proposals to ensure each project meets regional and subbasin goals and objectives. The Program also includes a public involvement component that gives the public an opportunity to provide meaningful input on management proposals. After a thorough review, the Burns Paiute Tribe (BPT) acquired the Malheur River Mitigation Project (Project) with BPA funds to compensate, in part, for the loss of fish and wildlife resources in the Columbia and Snake River Basins and to address a portion of the mitigation goals identified in the Council's Program (NPPC 2000).

  10. Environmental Implementation Plan

    SciTech Connect (OSTI)

    Not Available

    1993-03-15

    The purpose of the Environmental Implementation Plan (EIP) is to show the current and future (five years) environmental plans from individual site organizations and divisions, as well as site environmental programs and initiatives which are designed to protect the environment and meet or exceed changing environmental/regulatory requirements. Communicating with site organizations, departments, and committees is essential in making the site's environmental-planning process work. The EIP gives the site the what, when, how, and why for environmental requirements. Through teamwork and proactive planning, a partnership for environmental excellence is formed to achieve the site vision for SRS to become the recognized model for Environmental Excellence in the Department of Energy's Nuclear Weapons Complex.

  11. Environmental Implementation Plan

    SciTech Connect (OSTI)

    Not Available

    1993-03-15

    The purpose of the Environmental Implementation Plan (EIP) is to show the current and future (five years) environmental plans from individual site organizations and divisions, as well as site environmental programs and initiatives which are designed to protect the environment and meet or exceed changing environmental/regulatory requirements. Communicating with site organizations, departments, and committees is essential in making the site`s environmental-planning process work. The EIP gives the site the what, when, how, and why for environmental requirements. Through teamwork and proactive planning, a partnership for environmental excellence is formed to achieve the site vision for SRS to become the recognized model for Environmental Excellence in the Department of Energy`s Nuclear Weapons Complex.

  12. Peru-Bringing a Range of Supported Mitigation Activities in Selected...

    Open Energy Info (EERE)

    ECN and Ecofys on supported mitigation activities such as NAMAs, low carbon development (LCD) strategies and technology innovation centers to bring a portfolio of projects from the...

  13. Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events

    Broader source: Energy.gov [DOE]

    This is a level 1 operating experience document providing direction for Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events. [OE-1: 2013-01

  14. Climate Change Mitigation Through Land-Use Measures in the Agriculture...

    Open Energy Info (EERE)

    and Forestry Sectors Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation Through Land-Use Measures in the Agriculture and Forestry...

  15. JICA's Assistance for Mitigation to Climate Change - The Co-Benefits...

    Open Energy Info (EERE)

    JICA's Assistance for Mitigation to Climate Change - The Co-Benefits Approach to Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: JICA's Assistance for...

  16. Thailand-National Energy Efficiency Plan and Evidence-based Mitigation...

    Open Energy Info (EERE)

    National Energy Efficiency Plan and Evidence-based Mitigation Strategy Jump to: navigation, search Name GIZ-Thailand-National energy efficiency plan as a core element for an...

  17. Upcoming Webinar November 19: Micro-Structural Mitigation Strategies for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    On November 19, the Energy Department will present a webinar on micro-structural mitigation strategies for PEM fuel cells focusing on morphological simulations and experimental approaches.

  18. Statement by Secretary Moniz on IPCC's Working Group Report on Climate Change Mitigation

    Broader source: Energy.gov [DOE]

    Energy Secretary Ernest Moniz issued a statement on the Intergovernmental Panel on Climate Change's Working Group report on climate change mitigation.

  19. Mitigation of the Impact of Pt Contamination on Cu-Zeolite SCR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Impact of Pt Contamination on Cu-Zeolite SCR Catalyst Performance Mitigation of the Impact of Pt Contamination on Cu-Zeolite SCR Catalyst Performance Investigates operating ...

  20. South Africa-Integrating Sub-national Actors into National Mitigation...

    Open Energy Info (EERE)

    Actors into National Mitigation Strategies Through Vertically Integrated NAMAs (V-NAMAs) Jump to: navigation, search Name South Africa-Integrating Sub-national Actors...