Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

MIT Tow Tank | Open Energy Information  

Open Energy Info (EERE)

MIT Tow Tank MIT Tow Tank Overseeing Organization Massachusetts Institute of Technology Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 36.6 Beam(m) 2.4 Depth(m) 1.2 Water Type Saltwater Cost(per day) $750 Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 1.5 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.1 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 4.6 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Arbitrary spectrum Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition

2

Creating a flexible, Web-enabled learning and research facility at the M.I.T. Towing Tank  

E-Print Network [OSTI]

The M.I.T. Towing Tank has served as an invaluable research and educational platform for over 50 years. The hands-on learning experiences of towing tank tests have helped countless students to grasp the concepts and theories ...

Unger, Matthew L. (Matthew Lawrence)

2006-01-01T23:59:59.000Z

3

Ship Towing Tank | Open Energy Information  

Open Energy Info (EERE)

Towing Tank Towing Tank Jump to: navigation, search Basic Specifications Facility Name Ship Towing Tank Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Tow Tank Length(m) 100.0 Beam(m) 3.0 Depth(m) 3.0 Cost(per day) Contact POC Special Physical Features Towed 3DPIV; contactless motion tracking; free surface measurement mapping Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 3 Length of Effective Tow(m) 75.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 2.0 Maximum Wave Length(m) 6 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Fully programmable using LabView for regular or irregular waves

4

Haynes Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Haynes Tow Tank Haynes Tow Tank Jump to: navigation, search Basic Specifications Facility Name Haynes Tow Tank Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Tow Tank Length(m) 45.7 Beam(m) 3.7 Depth(m) 3.0 Water Type Freshwater Cost(per day) $150/hour (excluding labor) Special Physical Features The tank includes a 7.6m by 3.7m by 1.5m deep sediment pit. Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 1.8 Length of Effective Tow(m) 24.4 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description National Instruments LabView Number of channels 40 Cameras Yes Number of Color Cameras 6 Description of Camera Types 3 video; 3 digital

5

Ohmsett Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Ohmsett Tow Tank Ohmsett Tow Tank Jump to: navigation, search Basic Specifications Facility Name Ohmsett Tow Tank Overseeing Organization Ohmsett Hydrodynamic Testing Facility Type Tow Tank Length(m) 203.0 Beam(m) 19.8 Depth(m) 2.4 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 3.4 Length of Effective Tow(m) 155.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 4.1 Maximum Wave Length(m) 18 Wave Period Range(s) 4.1 Current Velocity Range(m/s) 3.4 Programmable Wavemaking Yes Wavemaking Description Programmable frequency Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Wave dampening at downstream end Channel/Tunnel/Flume

6

MHL Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Tow Tank Tow Tank Jump to: navigation, search Basic Specifications Facility Name MHL Tow Tank Overseeing Organization University of Michigan Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 109.7 Beam(m) 6.7 Depth(m) 3.7 Cost(per day) $2000 (+ Labor/Materials) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 6.7 Length of Effective Tow(m) 103.6 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Regular and irregular wave spectrum Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Concrete beach Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None

7

Stennis Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Stennis Tow Tank Stennis Tow Tank Jump to: navigation, search Basic Specifications Facility Name Stennis Tow Tank Overseeing Organization United States Geological Survey, HIF Hydrodynamic Testing Facility Type Tow Tank Length(m) 137.2 Beam(m) 3.7 Depth(m) 3.7 Cost(per day) $1200(+ setup charges) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 4.6 Length of Effective Tow(m) 114.3 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Fully automated data collection/carriage control computer system for mechanical current meters only. Number of channels 4 Cameras None Available Sensors Acceleration, Velocity Data Generation Capability

8

Small Towing Tank | Open Energy Information  

Open Energy Info (EERE)

Towing Tank Towing Tank Jump to: navigation, search Basic Specifications Facility Name Small Towing Tank Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Tow Tank Length(m) 3.7 Beam(m) 0.6 Depth(m) 0.8 Cost(per day) Contact POC Special Physical Features Flows up to 5 gallons per minute Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.03 Length of Effective Tow(m) 3.0 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None Available Sensors Acoustics, Thermal, Turbulence, Velocity Data Generation Capability Real-Time Yes Test Services Test Services Yes On-Site fabrication capability/equipment Machine shop, carpenter shop, welding shop, instrumentation and electronics shop

9

Maine Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Tow Tank Tow Tank Jump to: navigation, search Basic Specifications Facility Name Maine Tow Tank Overseeing Organization University of Maine Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 30.5 Beam(m) 2.4 Depth(m) 1.2 Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 3 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Simulated beach is framed with PVC/mesh. Has a 4:9 slope. Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition

10

Lakefront Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Lakefront Tow Tank Lakefront Tow Tank Jump to: navigation, search Basic Specifications Facility Name Lakefront Tow Tank Overseeing Organization University of New Orleans Hydrodynamic Testing Facility Type Tow Tank Length(m) 36.6 Beam(m) 4.9 Depth(m) 1.8 Cost(per day) $1200 Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.7 Length of Effective Tow(m) 25.9 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Length(m) 22 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Regular random and transient waves Spectra include ISSC, JONSWAP, Bretschneider, Pierson-Moskowitz and custom user-defined. Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Aluminum segmented arch

11

Davidson Laboratory Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Laboratory Tow Tank Laboratory Tow Tank Jump to: navigation, search Basic Specifications Facility Name Davidson Laboratory Tow Tank Overseeing Organization Stevens Institute of Technology Hydrodynamic Testing Facility Type Tow Tank Length(m) 97.5 Beam(m) 4.9 Depth(m) 2.0 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 18.3 Length of Effective Tow(m) 30.5 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 4.0 Maximum Wave Length(m) 15.2 Wave Period Range(s) 4.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Menu driven selection of standard spectra or user specified Wave Direction Uni-Directional Simulated Beach Yes

12

Ice Towing Tank | Open Energy Information  

Open Energy Info (EERE)

Ice Towing Tank Ice Towing Tank Jump to: navigation, search Basic Specifications Facility Name Ice Towing Tank Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Tow Tank Length(m) 21.2 Beam(m) 5.0 Depth(m) 1.3 Cost(per day) Contact POC Special Physical Features Specialized for cold regions research, room temperature can be decreased to -10°F Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.5 Length of Effective Tow(m) 15.0 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras Yes Description of Camera Types Underwater Available Sensors Acoustics, Thermal, Turbulence, Velocity Data Generation Capability

13

Alden Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Tow Tank Tow Tank Jump to: navigation, search Basic Specifications Facility Name Alden Tow Tank Overseeing Organization Alden Research Laboratory, Inc Hydrodynamic Testing Facility Type Tow Tank Length(m) 30.5 Beam(m) 1.2 Depth(m) 1.2 Water Type Freshwater Cost(per day) Depends on study Towing Capabilities Towing Capabilities Yes Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities Yes Wind Velocity Range(m/s) Designed as needed for study objectives Other Characteristics Point measurement capability Control and Data Acquisition Description Differential pressure transducers, acoustic profiling, propeller meters, load cells, computer data acquisition systems. Number of channels Designed as needed

14

Chase Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Chase Tow Tank Chase Tow Tank Jump to: navigation, search Basic Specifications Facility Name Chase Tow Tank Overseeing Organization University of New Hampshire Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 36.6 Beam(m) 3.7 Depth(m) 2.4 Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.5 Length of Effective Tow(m) 20.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.4 Maximum Wave Height(m) at Wave Period(s) 3.1 Wave Period Range(s) 3.1 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description National Instruments LabView-based data acquistion software/components. Optical measurement system for observing kinematics of a model under test in the wave mode.

15

Carderock Tow Tank 3 | Open Energy Information  

Open Energy Info (EERE)

3 3 Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing Facility Type Tow Tank Length(m) 904.6 Beam(m) 6.4 Depth(m) 4.9 Water Type Freshwater Cost(per day) Contact POC Special Physical Features Two operable carriages on this basin: Carriage 3 (max towing speed of 15.4 m/s); Carriage 5 (max towing speed of 25.8 m/s) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 25.8 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Length(m) 12.2 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Irregular waves with a spectrum resembling typical ocean wave patterns with appropriate scale reductions. Wave Direction Uni-Directional

16

Carderock Tow Tank 1 | Open Energy Information  

Open Energy Info (EERE)

1 1 Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing Facility Type Tow Tank Length(m) 271.0 Beam(m) 15.5 Depth(m) 6.7 Water Type Freshwater Cost(per day) Contact POC Special Physical Features Carriage 1 is located on this basin Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 9.3 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None Data Generation Capability Real-Time No Test Services Test Services None Special Characteristics Special Characteristics None Hydro | Hydrodynamic Testing Facilities Retrieved from "http://en.openei.org/w/index.php?title=Carderock_Tow_Tank_1&oldid=602146

17

Richmond Field Station Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Richmond Field Station Tow Tank Richmond Field Station Tow Tank Jump to: navigation, search Basic Specifications Facility Name Richmond Field Station Tow Tank Overseeing Organization University of California, Berkeley Hydrodynamic Testing Facility Type Tow Tank Length(m) 67.0 Beam(m) 2.4 Depth(m) 1.7 Water Type Freshwater Cost(per day) Contact POC Special Physical Features Glass observation station, suitable for optical access Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 5 Length of Effective Tow(m) 50.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Length(m) 2 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Waveform can be programmed Wave Direction Both

18

Carderock Tow Tank 2 | Open Energy Information  

Open Energy Info (EERE)

2 2 Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing Facility Type Tow Tank Length(m) 574.9 Beam(m) 15.5 Depth(m) 6.7 Water Type Freshwater Cost(per day) Contact POC Special Physical Features Carriage 2 is located on this basin Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 10.3 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Length(m) 12.2 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Irregular waves with a spectrum resembling typical ocean wave patterns with appropriate scale reductions Wave Direction Uni-Directional Simulated Beach Yes Description of Beach The wave absorber spans the full width of the basin at the end opposite the wavemaker dome, the absorbers are a discontinuous 12 degree slope type made up of 12 permeable layers of rectangular precast concrete bar panels resting on an impermeable concrete slab supported by a structural steel framework, the center section of the absorber is of wood construction & can be raised and lowered as a unit to provide model access to and from the fitting-out dry dock located at the end of the basin.

19

Carderock Rotating Arm Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Rotating Arm Tow Tank Rotating Arm Tow Tank Jump to: navigation, search Basic Specifications Facility Name Carderock Rotating Arm Tow Tank Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing Facility Type Tow Tank Beam(m) 79.2 Depth(m) 6.1 Water Type Freshwater Cost(per day) Contact POC Special Physical Features Rotating Arm facility is a circular indoor basin 79.2m in diameter. The arm is a bridge-like structure with a span of 39.3m and pivots on a pedestal in the center of the basin. Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 25.8 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None

20

Construct Mechanical Pike and Tow Tank Chengcheng Feng  

E-Print Network [OSTI]

Construct Mechanical Pike and Tow Tank Chengcheng Feng Faculty Mentor: Professor Yahya Modarres to study the influence of different parameters on acceleration. My second goal is to build a water tank by using a particle image velocimetry (PIV) system. This tank is a testing platform that can be utilized

Mountziaris, T. J.

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Property:Length of Effective Tow(m) | Open Energy Information  

Open Energy Info (EERE)

of Effective Tow(m) of Effective Tow(m) Jump to: navigation, search Property Name Length of Effective Tow(m) Property Type String Pages using the property "Length of Effective Tow(m)" Showing 20 pages using this property. C Chase Tow Tank + 20.0 + D Davidson Laboratory Tow Tank + 30.5 + H Haynes Tow Tank + 24.4 + I Ice Towing Tank + 15.0 + L Lakefront Tow Tank + 25.9 + M MHL Tow Tank + 103.6 + MIT Tow Tank + 27.4 + Maine Tow Tank + 27.4 + O OTRC Wave Basin + 27.4 + Ohmsett Tow Tank + 155.0 + R Richmond Field Station Tow Tank + 50.0 + S SAFL Channel + 76.0 + Sandia Lake Facility + 45.7 + Scripps Channel 1 + 7.0 + Scripps Channel 2 + 20.0 + Sheets Wave Basin + 25.0 + Ship Towing Tank + 75.0 + Small Towing Tank + 3.0 + Stennis Tow Tank + 114.3 + U University of Iowa Wave Basin + 25.0 +

22

Phase-Averaged Towed PIV Measurements for Regular Head Waves in a Model Ship Towing Tank J. Longo, J. Shao, M. Irvine, L. Gui, and F. Stern  

E-Print Network [OSTI]

J. Longo, J. Shao, M. Irvine, L. Gui, and F. Stern Iowa Institute of Hydraulic Research Institute of Hydraulic Research (IIHR) towing tank. Both CFD and EFD efforts were then initiated, and pushes a 5.5-m trailer which is used as a platform for the PIV system and point of attachment for models

Gui, Lichuan

23

Property:Towing Capabilities | Open Energy Information  

Open Energy Info (EERE)

Towing Capabilities Towing Capabilities Jump to: navigation, search Property Name Towing Capabilities Property Type String Pages using the property "Towing Capabilities" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + None + 10-ft Wave Flume Facility + None + 11-ft Wave Flume Facility + None + 2 2-ft Flume Facility + None + 3 3-ft Wave Flume Facility + None + 5 5-ft Wave Flume Facility + None + 6 6-ft Wave Flume Facility + None + A Alden Large Flume + Yes + Alden Small Flume + None + Alden Tow Tank + Yes + Alden Wave Basin + None + B Breakwater Research Facility + None + Bucknell Hydraulic Flume + Yes + C Carderock 2-ft Variable Pressure Cavitation Water Tunnel + None + Carderock 3-ft Variable Pressure Cavitation Water Tunnel + None +

24

Tow Vessel | Open Energy Information  

Open Energy Info (EERE)

Vessel Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleTowVessel&oldid596390" Category: Hydrodynamic Testing Facility Type...

25

Aufgabe 3-17: Ein 2 m-Tank enthlt zu Beginn Luft (RL = 0,287 kJ/kgK) im Zustand 1 (22C, 100 kPa, u1 = 210,49 kJ/kg). Der Tank ist ber ein Ventil mit einer Leitung verbunden.  

E-Print Network [OSTI]

�bung 6: Aufgabe 3-17: Ein 2 m³-Tank enthält zu Beginn Luft (RL = 0,287 kJ/kgK) im Zustand 1 (22°C, 100 kPa, u1 = 210,49 kJ/kg). Der Tank ist über ein Ventil mit einer Leitung verbunden. In dieser. Die Luft strömt solange in den Tank, bis im Tank derselbe Druck herrscht wie in der Leitung. Dann wird

Peters, Norbert

26

Autonomous Control of an Autonomous Underwater Vehicle Towing a Vector Sensor Array  

E-Print Network [OSTI]

Autonomous Control of an Autonomous Underwater Vehicle Towing a Vector Sensor Array Michael R,arjunab@mit.edu Abstract-- This paper is about the autonomous control of an autonomous underwater vehicle (AUV the ability to deploy large sets of autonomous mobile marine platforms over a wide area of the ocean

Schmidt, Henrik

27

Department of Industrial & Manufacturing Engineering Spring 2011 Log Splitter Tank Quality Improvement  

E-Print Network [OSTI]

PENNSTATE Department of Industrial & Manufacturing Engineering Spring 2011 Log Splitter Tank around a central hydraulic tank which acts as the base of the log splitter. The tanks can leak due to poor weld integrity, further aggravated by stresses on the tank during towing. Also, internal rust

Demirel, Melik C.

28

Property:Maximum Velocity(m/s) | Open Energy Information  

Open Energy Info (EERE)

Velocity(m/s) Velocity(m/s) Jump to: navigation, search Property Name Maximum Velocity(m/s) Property Type String Pages using the property "Maximum Velocity(m/s)" Showing 25 pages using this property. (previous 25) (next 25) A Alden Large Flume + 0.9 + B Bucknell Hydraulic Flume + 2.7 + C Carderock Maneuvering & Seakeeping Basin + 7.2 + Carderock Rotating Arm Tow Tank + 25.8 + Carderock Tow Tank 1 + 9.3 + Carderock Tow Tank 2 + 10.3 + Carderock Tow Tank 3 + 25.8 + Chase Tow Tank + 2.5 + D Davidson Laboratory Tow Tank + 18.3 + H Haynes Tow Tank + 1.8 + I Ice Towing Tank + 0.5 + L Lakefront Tow Tank + 2.7 + M MHL Free Surface Channel + 2 + MHL High Speed Cavitation + 25.9 + MHL Tow Tank + 6.7 + MIT Tow Tank + 1.5 + MMA Tugboat/ Barge/ Vessel + 5.1 + Maine Tow Tank + 3 +

29

Penn Reverberant Tank | Open Energy Information  

Open Energy Info (EERE)

Penn Reverberant Tank Penn Reverberant Tank Jump to: navigation, search Basic Specifications Facility Name Penn Reverberant Tank Overseeing Organization Pennsylvania State University Hydrodynamics Hydrodynamic Testing Facility Type Reverberant Tank Length(m) 7.9 Beam(m) 5.3 Depth(m) 5.5 Water Type Freshwater Cost(per day) Contact POC Special Physical Features Structurally isolated hydrodynamic acoustics testing. Lined with an absorber on four sides and bottom with three 0.5x0.5 meter underwater viewing ports. Mechanical oscillation of a small-scale test unit-simulation of oscillating flow for wave or tidal excitation. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities

30

Deep-towed High Resolution multichannel seismic imaging  

Science Journals Connector (OSTI)

Abstract High Resolution (220–1050 Hz) seismic acquisition performed in deep water using deep-towed systems provides unrivalled lateral resolution when compared to conventional surface seismic. The lateral resolution of these acquisitions is controlled by the width of the first Fresnel zone, taking advantage of their positions close to the sea bottom. No current existing deep towed equipment can benefit from seismic imaging processing techniques to improve this resolution as a consequence of positioning inaccuracies. The technological developments of a digital deep-towed multichannel streamer are presented with a particular attention to positioning: each hydrophone incorporates a pitch, roll and heading sensor in order to monitor the constant deformation of the streamer in operation. The sea trials took place in July 2013 in the Mediterranean Sea. Pre-stack depth migration applied to the deep-towed multichannel data illustrates the potential of this emerging methodology in terms of penetration (12 dB improvement in Signal/Noise) and lateral resolution (mean signal wavelength: 3 m) when compared with deep-towed single-channel acquisition.

B. Marsset; E. Menut; S. Ker; Y. Thomas; J.-P. Regnault; P. Leon; H. Martinossi; L. Artzner; D. Chenot; S. Dentrecolas; B. Spychalski; G. Mellier; N. Sultan

2014-01-01T23:59:59.000Z

31

Investigation of towing resistance of rectangular platform lower base  

SciTech Connect (OSTI)

The paper describes model tests with a rectangular (in plan view) lower base of an offshore platform in calm seas. The resistance-reduction exercise was aimed at improving the economical aspect of an intended long-distance towing project and resulted in designing an additional structural element forming a fixed separation zone in front of the platform and thus helping to save tug boat fuel thanks to a 15--20% reduction in the towing resistance. The test also included calm seas unsteady force evaluations for both the initial and modified design options.

Poustoshniy, A.V. [Krylov Shipbuilding Research Inst., St. Petersburg (Russian Federation)

1995-12-31T23:59:59.000Z

32

Web services @ MIT  

E-Print Network [OSTI]

There are several useful web services developed at MIT by students, faculty and researchers. However, they are scattered all over MIT. Most people at MIT are unaware of the availability of these web services and hence they ...

Tyagi, Sapna DevendraSingh, 1978-

2004-01-01T23:59:59.000Z

33

Tank Closure  

Broader source: Energy.gov (indexed) [DOE]

Closure Closure Sherri Ross Waste Removal and Tank Closure Waste Disposition Project Programs Division Savannah River Operations Office Presentation to the DOE HLW Corporate Board 2  Overview and Status of SRS Tank Closure Program  Issues/Challenges  Communications  Schedule Performance  Ceasing Waste Removal  Compliance with SC Water Protection Standards  Questions? Topics 3 Overview of SRS Tank Closure Program  Two Tank Farms - F Area and H Area  Permitted by SC as Industrial Wastewater Facilities under the Pollution Control Act  Three agency Federal Facility Agreement (FFA)  DOE, SCDHEC, and EPA  51 Tanks  24 old style tanks (Types I, II and IV)  Do not have full secondary containment  FFA commitments to close by 2022  2 closed in 1997

34

Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0: May 12, 1997 0: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks to someone by E-mail Share Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks on Facebook Tweet about Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks on Twitter Bookmark Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks on Google Bookmark Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks on Delicious Rank Vehicle Technologies Office: Fact #30: May 12, 1997 Towing Capacity for Selected 1996 Model Cars and Trucks on Digg Find More places to share Vehicle Technologies Office: Fact #30: May

35

Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0: August 4, 0: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks to someone by E-mail Share Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks on Facebook Tweet about Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks on Twitter Bookmark Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks on Google Bookmark Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks on Delicious Rank Vehicle Technologies Office: Fact #530: August 4, 2008 Towing Capacity for Selected 2008 Model Cars and Trucks on Digg Find More places to share Vehicle Technologies Office: Fact #530:

36

Dual Tank Fuel System  

DOE Patents [OSTI]

A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

Wagner, Richard William (Albion, NY); Burkhard, James Frank (Churchville, NY); Dauer, Kenneth John (Avon, NY)

1999-11-16T23:59:59.000Z

37

18 - Tanks  

Science Journals Connector (OSTI)

Publisher Summary This chapter presents various nomographs, which are based on the guidelines presented in American Petroleum Institute (API) Publication No. 2519, and used to estimate the average evaporation loss from internal floating-roof tanks. The loss determined from the charts can be used to evaluate the economies of seal conversion and to reconcile refinery, petrochemical plant, and storage terminal losses. The losses represent average standing losses only and they do not cover losses associated with the movement of product into or out of the tank. The nomographs can estimate evaporation loss for product true vapor pressures (TVP) ranging from 1.5 to 14 psia, the most commonly used seals for average and tight fit conditions, tank diameters ranging from 50-250 ft, welded and bolted designs, and both self-supporting and column-supported fixed roof designs. Typical values of the deck fitting loss factors presented as a function of tank diameters in the API Publication 2519 have been used in the preparation of these nomographs. In addition, for the calculations of the evaporation loss for the bolted deck design, a typical deck seam loss factor value of 0.2 has been assumed.

2005-01-01T23:59:59.000Z

38

Experimental Verification of Deformation Behavior of Towing Hitch by Optical Measurement Method  

Science Journals Connector (OSTI)

The paper deals with verification of stress-strain results of finite element ... towing hitch for passenger’s car by experimental measurement. For the purpose of experimental measurement a stand, which allows adj...

A. Zato?ilová; D. Koutný; D. Paloušek; J. Brandejs

2014-01-01T23:59:59.000Z

39

Feed tank transfer requirements  

SciTech Connect (OSTI)

This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

Freeman-Pollard, J.R.

1998-09-16T23:59:59.000Z

40

MIT and Energy Industries MIT Industry Brief  

E-Print Network [OSTI]

and demand, security and environmental impact. MITEI's interdisci- plinary research program focuses on: 1 of nanotechnology to solar and thermoelectric energy conversion. The mission of the MIT Photovoltaic Research synthesizes and characterizes commer- cial and next-generation photovoltaic materials and devices, engineering

Polz, Martin

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

MIT Chemical Engineering http://web.mit.edu/cheme/  

E-Print Network [OSTI]

, Executive Officer, Hoyt C. Hottel Professor whgreen@mit.edu 25 Ames St. Building 66 Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02142 web.mit.edu/cheme/ MITChemEng MITChemE #12;MIT Chemical of solar cells printed on a sheet of paper. Recent News The MIT ChemE current and emeriti faculty includes

Barton, Paul I.

42

Type I Tanks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

I Tanks I Tanks * 12 Type I tanks were built between 1951-53 * 750,000 gallon capacity; 75 feet in diameter by 24 ½ feet high * Partial secondary containment with leak detection * Contain approximately 10 percent of the waste volume * 7 Type I tanks have leaked waste into the tank annulus; the amount of waste stored in these tanks is kept below the known leak sites that have appeared over the decades of

43

AX Tank Farm tank removal study  

SciTech Connect (OSTI)

This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

SKELLY, W.A.

1998-10-14T23:59:59.000Z

44

HANFORD TANK CLEANUP UPDATE  

SciTech Connect (OSTI)

Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

BERRIOCHOA MV

2011-04-07T23:59:59.000Z

45

MIT System Design and Management Program  

E-Print Network [OSTI]

MIT System Design and Management Program MIT System Design and Management Program Leadership, innovation, systems thinking #12;MIT System Design and Management Program #12;about MIT The mission of MIT of leaders, MIT's System Design and Management Program (SDM) educates mid-career technical professionals

de Weck, Olivier L.

46

ft.... "'~l '1~--"", ~:.~..;.,MIT's  

E-Print Network [OSTI]

' group before and they were happy in their individual dorms," said Ann Orlando, Harvard Square, said hack a hack attempt gone awry. Class of 2004 Ring Committee member Amal Dorai '04.and several r In the shooting. Hack Attempt Thwarted By Theft Of Paw From MIT Beaver Costume Cambridge, Massachusetts 02139

47

Tank characterization report: Tank 241-C-109  

SciTech Connect (OSTI)

Single-shell tank 241-C-109 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in September 1992. Analyses of materials obtained from tank 241-C-109 were conducted to support the resolution of the ferrocyanide unreviewed safety question (USQ) and to support Hanford Federal Facility Agreement and consent Order (Tri- Party Agreement) Milestone M-10-00. This report describes this analysis.

Simpson, B.C.; Borshiem, G.L.; Jensen, L.

1993-09-01T23:59:59.000Z

48

Deep-tow study of magnetic anomalies in the Pacific Jurassic Quiet Zone  

E-Print Network [OSTI]

The Jurassic Quiet Zone (JQZ) is a region of low amplitude, difficult-to-correlate magnetic anomalies located over Jurassic oceanic crust. We collected 1200 km of new deep-tow magnetic anomaly profiles over the Pacific JQZ that complement 2 deep...

Tominaga, Masako

2006-10-30T23:59:59.000Z

49

Analysis of sub-surface towing of tendons and comparison of results using WINPOST and ORCAFLEX  

E-Print Network [OSTI]

During tendon towing the pipe is floating in a horizontal plane parallel to the sea-surface unlike the usual vertical slender members like risers, mooring lines, etc where the pipe/cable is perpendicular to the sea-surface. This change in projection...

Mendon, Perdoor Mukthi

2012-06-07T23:59:59.000Z

50

Septic Tanks (Oklahoma)  

Broader source: Energy.gov [DOE]

A license from the Department of Environmental Quality is required for cleaning or pumping of septic tanks or holding tanks and disposing of sewage or septage. The rules for the license are...

51

Onboard Storage Tank Workshop  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned...

52

E-Print Network 3.0 - auenwanden mit warmedammverbundsystemen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Development Growing a for MIT Employees Culture 12;Diversity & Inclusion at MIT: web.mit... .edudiversity Advancing Staff Diversity & Inclusion: hrweb.mit.edudiversity...

53

Tank 241-TX-105 tank characterization plan  

SciTech Connect (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-105.

Carpenter, B.C.

1995-01-01T23:59:59.000Z

54

Tank 241-T-111 tank characterization plan  

SciTech Connect (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-T-111.

Homi, C.S.

1995-01-10T23:59:59.000Z

55

Neutron and Gamma Probe Application to Hanford Tank 241-SY-101  

SciTech Connect (OSTI)

A neutron (moisture-sensitive) and gamma (in-situ radiation) probe technique has been utilized at a number of Hanford radioactive waste tanks for many years. This technology has been adapted for use in tank 241-SY-101's two Multifunction Instrument Trees (MITs) which have a hollow dry-well center opening two inches (51 cm) in diameter. These probes provide scans starting within a few inches of the tank bottom and traversing up through the top of the tank revealing a variety of waste features as a function of tank elevation. These features have been correlated with void fraction data obtained independently from two other devices, the Retained Gas Sampler (RGS) and the Void Fraction Instrument (VFI). The MIT probes offer the advantage of nearly continuous count-rate versus elevation scans and they can be operated significantly more often and at lower cost than temperature probes or the RGS or VFI devices while providing better depth resolution. The waste level in tank 241-SY-101 had been rising at higher rates than expected during 1998 and early 1999 indicating an increasing amount of trapped gas in the waste. The use of the MIT probes has assisted in evaluating changes in crust thickness and level and also in estimating relative changes in gas stored in the crust. This information is important in assuring that the tank remains in a safe configuration and will support safe waste transfer when those operations take place.

CANNON, N.S.

2000-02-01T23:59:59.000Z

56

Feed tank transfer requirements  

SciTech Connect (OSTI)

This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

Freeman-Pollard, J.R.

1998-09-16T23:59:59.000Z

57

MIT and the Electronics/Photonics Industries MIT Industry Brief  

E-Print Network [OSTI]

-quantum dot aggregate materials for solid state lighting; thin film, non-tracking solar concentrators to the knowledge, experience and resources at MIT in these fields ­ giving you the ideas to stay ahead. For more information about how the ILP can put the resources of MIT to work for you, call us at 1-617-253-2691, e

Ceder, Gerbrand

58

www.ll.mit.edu MIT Lincoln Laboratory  

E-Print Network [OSTI]

of technical innovation in critical national security technology areas such as satellite communications, airwww.ll.mit.edu MIT Lincoln Laboratory Technology in Support of National Security LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technology in Support of National Security #12;Lincoln Laboratory, located

Reuter, Martin

59

Adaption of the Magnetometer Towed Array geophysical system to meet Department of Energy needs for hazardous waste site characterization  

SciTech Connect (OSTI)

This report documents US Department of Energy (DOE)-funded activities that have adapted the US Navy`s Surface Towed Ordnance Locator System (STOLS) to meet DOE needs for a ``... better, faster, safer and cheaper ...`` system for characterizing inactive hazardous waste sites. These activities were undertaken by Sandia National Laboratories (Sandia), the Naval Research Laboratory, Geo-Centers Inc., New Mexico State University and others under the title of the Magnetometer Towed Array (MTA).

Cochran, J.R. [Sandia National Labs., Albuquerque, NM (United States); McDonald, J.R. [Naval Research Lab., Washington, DC (United States); Russell, R.J. [Geo-Centers, Inc., Newton, MA (United States); Robertson, R. [Hughes Associates, Inc., Washington, DC (United States); Hensel, E. [New Mexico State Univ., Las Cruces, NM (United States). Dept. of Mechanical Engineering

1995-10-01T23:59:59.000Z

60

Parallel Matlab MIT Lincoln Laboratory  

E-Print Network [OSTI]

Slide-1 Parallel Matlab MIT Lincoln Laboratory Parallel Matlab: The Next Generation Dr. Jeremy Lincoln LaboratorySlide-2 Parallel Matlab · Motivation · Challenges Outline · Introduction · Approach · Performance Results · Future Work and Summary #12;MIT Lincoln LaboratorySlide-3 Parallel Matlab Motivation: Do

Kepner, Jeremy

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Konzept für Hybridfahrzeug mit Vereinfachten Dieselmotoren  

Science Journals Connector (OSTI)

Das Arbeitsfeld des Forschungsvorhabens „Hybridkonzept mit Minimaldiesel“ (FVV 937) war, durch Simulationsrechnungen Möglichkeiten zu analysieren und zu beurteilen, wie sich Hybridfahrzeuge mit vereinfachten D...

Prof. Dr.-Ing. Georg Wachtmeister…

2010-05-01T23:59:59.000Z

62

Property:Number of Color Cameras | Open Energy Information  

Open Energy Info (EERE)

Color Cameras Color Cameras Jump to: navigation, search Property Name Number of Color Cameras Property Type Number Pages using the property "Number of Color Cameras" Showing 25 pages using this property. (previous 25) (next 25) A Alden Large Flume + 2 + Alden Small Flume + 2 + Alden Tow Tank + 2 + Alden Wave Basin + 2 + C Chase Tow Tank + 1 + Conte Large Flume + 5 + Conte Small Flume + 5 + D Davidson Laboratory Tow Tank + 2 + DeFrees Flume 1 + 5 + DeFrees Flume 2 + 5 + DeFrees Flume 3 + 5 + DeFrees Flume 4 + 5 + DeFrees Large Wave Basin + 5 + DeFrees Small Wave Basin + 5 + F Flood Fighting Research Facility + 1 + H Haynes Tow Tank + 6 + Haynes Wave Basin + 6 + Hinsdale Wave Basin 1 + 20 + Hinsdale Wave Basin 2 + 20 + M MIT Tow Tank + 1 + MMA Tugboat/ Barge/ Vessel + 1 +

63

Compressed/Liquid Hydrogen Tanks  

Broader source: Energy.gov [DOE]

Currently, DOE's physical hydrogen storage R&D focuses on the development of high-pressure (10,000 psi) composite tanks, cryo-compressed tanks, conformable tanks, and other advanced concepts...

64

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tank Waste Committee Page 2 Final Meeting Summary January 8, 2014 and integrity of the tanks with a focus on tank AY-102. In his presentation, Glyn noted the following points: *...

65

Hausaufgabe 6: Aufgabe 3-20: Ein 0,12 m-Tank enthlt gesttigtes R-134a bei 800 kPa. Zu Beginn sind  

E-Print Network [OSTI]

Hausaufgabe 6: Aufgabe 3-20: Ein 0,12 m³-Tank enthält gesättigtes R-134a bei 800 kPa. Zu Beginn sind 25% des Tanks mit flüssigem R-134a gefüllt. Der Rest mit gasförmigem R-134a. Ein Ventil am Boden des Tanks wird geöffnet und flüssiges Kühlmittel tritt aus. Von au�en wird dem Kühlmittel Wärme

Peters, Norbert

66

Hanford Tank Waste Residuals  

Broader source: Energy.gov (indexed) [DOE]

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

67

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... 2 Review of Responses to HAB Advice 271 Leaking Tanks and HAB Advice 273 Openness and Transparency Related to Tank Waste Treatment...

68

Reverberant Tank | Open Energy Information  

Open Energy Info (EERE)

Reverberant Tank Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleReverberantTank&oldid596388" Category: Hydrodynamic Testing Facility Type...

69

Tank characterization reference guide  

SciTech Connect (OSTI)

Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

1994-09-01T23:59:59.000Z

70

Property:Maximum Wave Length(m) | Open Energy Information  

Open Energy Info (EERE)

Wave Length(m) Wave Length(m) Jump to: navigation, search Property Name Maximum Wave Length(m) Property Type String Pages using the property "Maximum Wave Length(m)" Showing 18 pages using this property. A Alden Small Flume + Variable + Alden Wave Basin + 1.8 + C Carderock Maneuvering & Seakeeping Basin + 12.2 + Carderock Tow Tank 2 + 12.2 + Carderock Tow Tank 3 + 12.2 + D Davidson Laboratory Tow Tank + 15.2 + DeFrees Large Wave Basin + 64 + DeFrees Small Wave Basin + 30 + H Haynes Wave Basin + 10.7 + L Lakefront Tow Tank + 22 + M MIT Tow Tank + 4.6 + O OTRC Wave Basin + 25 + Ohmsett Tow Tank + 18 + R Richmond Field Station Tow Tank + 2 + S SAFL Channel + 6.6 + Sandia Lake Facility + 4.57 + Sheets Wave Basin + 10 + Ship Towing Tank + 6 + Retrieved from "http://en.openei.org/w/index.php?title=Property:Maximum_Wave_Length(m)&oldid=597351

71

Hanford Tank Waste Information Enclosure 1 Hanford Tank Waste Information  

E-Print Network [OSTI]

Hanford Tank Waste Information Enclosure 1 1 Hanford Tank Waste Information 1.0 Summary This information demonstrates the wastes in the twelve Hanford Site tanks meet the definition of transuranic (TRU. The wastes in these twelve (12) tanks are not high-level waste (HLW), and contain more than 100 nanocuries

72

Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Broader source: Energy.gov (indexed) [DOE]

- Tank Waste Treatment and Immobilization Plant - - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report This is a comprehensive review ofthe Hanford WTP estimate at completion - assessing the project scope, contract requirements, management execution plant, schedule, cost estimates, and risks. Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report More Documents & Publications TBH-0042 - In the Matter of Curtis Hall

73

Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Broader source: Energy.gov (indexed) [DOE]

ETR Tank Waste Treatment and Immobilization Plant - Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Full Document and Summary Versions are available for download Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Summary - Flowsheet for the Hanford Waste Treatment Plant More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

74

Der Anlauf- und Bremsvorgang bei Asynchronmotoren mit Wirbelstromläufer  

Science Journals Connector (OSTI)

In einem demnächst an anderer Stelle1) erscheinenden Aufsatze über „Kurzschlußläufermotoren mit veränderlichem Läufer-Scheinwiderstand“ sind die Hauptgleichungen der Motoren mit Wirbelstromläufer und der mit Dopp...

Michael Liwschitz

1925-01-01T23:59:59.000Z

75

Standard Test Methods for Properties of Continuous Filament Carbon and Graphite Fiber Tows  

E-Print Network [OSTI]

1.1 These test methods cover the preparation and tensile testing of resin-impregnated and consolidated test specimens made from continuous filament carbon and graphite yarns, rovings, and tows to determine their tensile properties. 1.2 These test methods also cover the determination of the density and mass per unit length of the yarn, roving, or tow to provide supplementary data for tensile property calculation. 1.3 These test methods include a procedure for sizing removal to provide the preferred desized fiber samples for density measurement. This procedure may also be used to determine the weight percent sizing. 1.4 These test methods include a procedure for determining the weight percent moisture adsorption of carbon or graphite fiber. 1.5 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of t...

American Society for Testing and Materials. Philadelphia

1999-01-01T23:59:59.000Z

76

Lebensräume mit Schwefelwasserstoff und Methan als Energiequellen  

Science Journals Connector (OSTI)

Früher galt, da? ausschlie?lich Sonnenenergie die Grundlage für alles Leben auf der Erde ist. Mit der Energiequelle Sonnenlicht und mit Chlorophyll wird von den Pflanzen aus Kohlendioxid und Wasser Traubenzuck...

Prof. Dr. Sebastian A. Gerlach

1994-01-01T23:59:59.000Z

77

nuclear power Update of the mit 2003  

E-Print Network [OSTI]

#12;Future of nuclear power Update of the mit 2003 PROFESSOR JOHN M.DEUTCH Institute Professor of Technology. All rights reserved. #12;Update of the MIT 2003 Future of Nuclear Power Study 3 In 2003 a group of MIT faculty issued a study on The Future of Nuclear Power.1 The study was motivated by growing concern

Reuter, Martin

78

Ferrocyanide tank waste stability  

SciTech Connect (OSTI)

Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove [sup 137]CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

Fowler, K.D.

1993-01-01T23:59:59.000Z

79

Tank Waste Strategy Update  

Broader source: Energy.gov (indexed) [DOE]

Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design Review o WTP potential improvements Report completed and briefed to DOE in September 2010 www.em.doe.gov safety performance cleanup closure E M Environmental Management 2 Report completed and briefed to DOE in September 2010 Follow-on scope for TWS identified immediately after briefing to DOE and

80

Chapter 18 - Tanks  

Science Journals Connector (OSTI)

Publisher Summary This chapter describes the tank's vapor formation rate. When sizing the vapor piping for a manifold expansion roof tank system, the rate of vapor formation must be known. While the rate of vapor formation can be computed by longhand methods, the calculation is tedious and takes much valuable time. The chapter also explains the hand-held calculator program that simplifies dike computations. Earthen dikes are widely used all over the world to contain flammable volumes of above-ground storage. They perform two vital functions: to prevent loss of fluid into the environment and to reduce the likelihood of fire spreading from one tank to another. Sizing dikes by conventional methods is a time-consuming, trial-and-error process. A complete assessment of the problem involves: applicable codes and regulations; land area available; topography of the area; soil characteristics; and the stipulated volume contained by dike and other dimensions of the dike section.

E.W. McAllister

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

TANK SPACE OPTIONS REPORT  

SciTech Connect (OSTI)

Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

WILLIS WL; AHRENDT MR

2009-08-11T23:59:59.000Z

82

High-Pressure Hydrogen Tanks  

Broader source: Energy.gov [DOE]

Presentation on High-Pressure Hydrogen Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

83

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... 1 Single Shell Tank WMA-C Resource Conservation and Recovery ActComprehensive Environmental Response, Compensation and Liability Act...

84

CURRICULUM VITAE David W. Tank  

E-Print Network [OSTI]

CURRICULUM VITAE David W. Tank Personal Birthdate: June 3, 1953 Citizenship : U.S. Address: Dept Physical Society Biophysical Society #12;Research Publications 1. Tank, D.W., Wu, E.-S., and Webb, W, 207-212 (1982). 2. Webb, W.W., Barak, L.S., Tank, D.W. and Wu, E.-S., Molecular mobility on the cell

Tank, David

85

Tanks focus area. Annual report  

SciTech Connect (OSTI)

The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

Frey, J.

1997-12-31T23:59:59.000Z

86

Tank farm nuclear criticality review  

SciTech Connect (OSTI)

The technical basis for the nuclear criticality safety of stored wastes at the Hanford Site Tank Farm Complex was reviewed by a team of senior technical personnel whose expertise covered all appropriate aspects of fissile materials chemistry and physics. The team concluded that the detailed and documented nucleonics-related studies underlying the waste tanks criticality safety basis were sound. The team concluded that, under current plutonium inventories and operating conditions, a nuclear criticality accident is incredible in any of the Hanford single-shell tanks (SST), double-shell tanks (DST), or double-contained receiver tanks (DCRTS) on the Hanford Site.

Bratzel, D.R., Westinghouse Hanford

1996-09-11T23:59:59.000Z

87

E-Print Network 3.0 - abfaelle mit vernachlaessigbarer Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Development Growing a for MIT Employees Culture 12;Diversity & Inclusion at MIT: web.mit... .edudiversity Advancing Staff Diversity & Inclusion: hrweb.mit.edudiversity...

88

Tank characterization data report: Tank 241-C-112  

SciTech Connect (OSTI)

Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. It is probable that tank 241-C-112 exceeds the 1,000 g-mol inventory criteria established for the Ferrocyanide USQ; however, extensive energetic analysis of the waste has determined a maximum exothermic value of -9 cal/g dry waste. This value is substantially below any levels of concern (-75 cal/g). In addition, an investigation of potential mechanisms to generate concentration levels of radionuclides high enough to be of concern was performed. No credible mechanism was postulated that could initiate the formation of such concentration levels in the tank. Tank 241-C-112 waste is a complex material made up primarily of water and inert salts. The insoluble solids are a mixture of phosphates, sulfates, and hydroxides in combination with aluminum, calcium, iron, nickel, and uranium. Disodium nickel ferrocyanide and sodium cesium nickel ferrocyanide probably exist in the tank; however, there appears to have been significant degradation of this material since the waste was initially settled in the tank.

Simpson, B.C.; Borsheim, G.L.; Jensen, L.

1993-04-01T23:59:59.000Z

89

Internet Explorer 7 on Windows Vista: Obtaining MIT Certificates  

E-Print Network [OSTI]

: A separate certificate password is not necessary for IE7 on Vista; the certificate is protected by your web services at MIT with IE7 on Windows Vista, three types of MIT web certificates are needed: · MIT servers · MIT Client Certificate, needed in IE7 on Vista to generate the personal certificate · MIT

Barton, Paul I.

90

Nutzungsgradketten bei der Warmwasserbereitung mit unterschiedlichen Systemen  

Science Journals Connector (OSTI)

Mit der Vielzahl heutiger Versorgungstechniken bei der Warmwasserbereitung bietet sich ein breites Spektrum zentraler und dezentraler Versorgungsmöglichkeiten. Zu ihnen zählen Systeme, bei denen die zentrale V...

B. Geiger

1987-01-01T23:59:59.000Z

91

MIT Traditional Health Plan Member Handbook 2012  

E-Print Network [OSTI]

Allergy Audiology Cardiology Community Care Center Community Wellness at MIT Medical Dental Dermatology Pediatrics Pharmacy Pulmonary Medicine Radiology Surgery Urgent Care Urology #12;4 Getting started Choosing

Polz, Martin

92

Thomas Moore creates joint invention with MIT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

which led to a seafood lunch - which led to a joint invention with colleagues from the Massachusetts Institute of Technology (MIT) that contributed to a sustainable energy...

93

Interested Parties - MIT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Interested Parties - MIT ARLobbyist9-16.pdf More Documents & Publications Interested Parties - Morgan Wright Interested Parties - Patrick Murphy Interested Parties - Nextfuels...

94

Property:Bandwidth(kHz) | Open Energy Information  

Open Energy Info (EERE)

Bandwidth(kHz) Bandwidth(kHz) Jump to: navigation, search Property Name Bandwidth(KHz) Property Type String Pages using the property "Bandwidth(kHz)" Showing 25 pages using this property. (previous 25) (next 25) C Conte Large Flume + 44 + Conte Small Flume + 44 + D Davidson Laboratory Tow Tank + .025 typical; can measure at higher frequencies if needed + DeFrees Flume 1 + 1000 + DeFrees Flume 2 + 1000 + DeFrees Flume 4 + 1000 + DeFrees Large Wave Basin + 1000 + DeFrees Small Wave Basin + 1000 + H Hinsdale Wave Basin 1 + Up to 1 MS/s + Hinsdale Wave Basin 2 + Up to 1 MS/s + M MHL 2D Wind/Wave + 20 + MHL Free Surface Channel + 20 + MHL High Speed Cavitation + 20 + MHL Student Tunnel + 20 + MHL Tow Tank + 20 + MIT Tow Tank + +/- 10V + Maine Tow Tank + 10 +

95

Savannah River Site - Tank 48 Transmittal Letter of SRS Tank...  

Office of Environmental Management (EM)

carried forward by WSRC as leading candidates for Tank 48 applications, Fluidized Bed Steam Reforming and Wet-Air Oxidation (WAO), are technically sound, are likely to prove...

96

Tank characterization data report: Tank 241-C-112  

SciTech Connect (OSTI)

Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable.

Simpson, B.C.; Borsheim, G.L.; Jensen, L.

1993-09-01T23:59:59.000Z

97

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE May 7, 2014 Richland, WA Topics in this Meeting Summary Opening ......

98

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 9, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING June 9, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions...

99

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Permit (Permit), introduced the discussion of Permit units that relate to tanks. Liz said the Permit was last available for review in 1994. There have been revisions...

100

MIT's Plasma Science Fusion Center: Tokamak Experiments Come...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tokamak Experiments Come Clean about Impurity Transport American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MIT's Plasma Science Fusion Center: Tokamak...

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Bicycle Commuting web.mit.edu/facilities/transportation/bicycling  

E-Print Network [OSTI]

Bicycle Commuting web.mit.edu/facilities/transportation/bicycling Cyclist mailing list: mitbike@mit.edu Employee Commuter Benefit Bicycle Registration Campus Bike Map Secure Bike Parking Carpooling

Polz, Martin

102

Regulated underground storage tanks  

SciTech Connect (OSTI)

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. (40 CFR 280). The guidance uses tables, flowcharts, and checklists to provide a roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

103

Regulated underground storage tanks  

SciTech Connect (OSTI)

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ``roadmap`` for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

104

Tank closure reducing grout  

SciTech Connect (OSTI)

A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr{sup 90}, the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel.

Caldwell, T.B.

1997-04-18T23:59:59.000Z

105

Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995  

SciTech Connect (OSTI)

This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement.

Haller, C.S.; Dove, T.H.

1994-11-01T23:59:59.000Z

106

The House of the Future at MIT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The House of the Future at MIT The House of the Future at MIT Speaker(s): Kent Larson Date: December 6, 2002 - 12:00pm Location: Bldg. 90 During this seminar, Professor Larson will discuss two related housing initiatives at MIT: Changing Places/Houses in The MIT Home of the Future Consortium. Change is accelerating, but the places we create are largely static and unresponsive. "Changing Places" is an MIT research consortium that explores how new technologies, materials, and strategies for design can make possible dynamic, evolving places that respond to the complexities of life. Open Source Building Alliance Providing individuals with choice creates competition and incentives for innovation. Mass-customization requires a modular component-based approach, which creates a pathway for new players to enter the $852

107

Tank Farm Area Cleanup Decision-Making  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Cleanup Decision-Making Groundwater Vadose Zone Single Shell Tank System Closure (tanks, structures and pipelines) * Washington State Hazardous Waste Management Act (Resource...

108

Organic liner for thermoset composite tank  

DOE Patents [OSTI]

A cryogenic tank that is made leak-proof under cryogenic conditions by successive layers of epoxy lining the interior of the tank.

Garvey, Raymond E. (Knoxville, TN)

1991-01-01T23:59:59.000Z

109

Estimating Waste Inventory and Waste Tank Characterization |...  

Office of Environmental Management (EM)

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

110

Independent Oversight Review, Hanford Tank Farms- November 2011  

Broader source: Energy.gov [DOE]

Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades

111

Supporting document for the Southeast Quadrant historical tank content estimate report for SY-tank farm  

SciTech Connect (OSTI)

Historical Tank Content Estimate of the Southeast Quadrant provides historical evaluations on a tank by tank basis of the radioactive mixed wastes stored in the underground double-shell tanks of the Hanford 200 East and West Areas. This report summarizes historical information such as waste history, temperature profiles, psychrometric data, tank integrity, inventory estimates and tank level history on a tank by tank basis. Tank Farm aerial photos and in-tank photos of each tank are provided. A brief description of instrumentation methods used for waste tank surveillance are included. Components of the data management effort, such as Waste Status and Transaction Record Summary, Tank Layer Model, Supernatant Mixing Model, Defined Waste Types, and Inventory Estimates which generate these tank content estimates, are also given in this report.

Brevick, C.H.; Gaddis, L.A.; Consort, S.D. [Westinghouse Hanford Co., Richland, WA (United States)

1995-12-31T23:59:59.000Z

112

Cornell University's Online Aboveground Petroleum Tank Inspection Program  

E-Print Network [OSTI]

Cornell University's Online Aboveground Petroleum Tank Inspection Program How To's What is Cornell University's Online Aboveground Petroleum Tank Inspection Program? Cornell University's Online Aboveground Petroleum Tank Inspection Program enables assigned tank inspectors to record their monthly aboveground tank

Pawlowski, Wojtek

113

Tank Waste Corporate Board | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tank Waste Corporate Board Tank Waste Corporate Board Tank Waste Corporate Board The Tank Waste Corporate Board is a chartered group of senior DOE, contractor, and laboratory managers and staff that meets approximately semi-annually to formulate and coordinate implementation of an effective and efficient national Tank Waste program. August 1, 2012 Tank Waste Corporate Board Meeting 08/01/12 The following documents are associated with the Tank Waste Corporate Board Meeting held on August 1st, 2012. November 18, 2010 Tank Waste Corporate Board Meeting 11/18/10 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 18th, 2010. July 29, 2009 Tank Waste Corporate Board Meeting 07/29/09 The following documents are associated with the Tank Waste Corporate Board

114

DOE HydrogenDOE Hydrogen Composite Tank ProgramComposite Tank Program  

E-Print Network [OSTI]

DOE HydrogenDOE Hydrogen Composite Tank ProgramComposite Tank Program Dr. Neel Sirosh DIRECTOR and validate 5,000 psi storage tanks ­ Tank efficiency: 7.5 ­ 8.5 wt% · Validate 5,000 psi in-tank-pressure regulators ­ Total storage system efficiency: 5.7 wt% · Develop and validate 10,000 psi storage tanks ­ Tank

115

Guidelines for Use MIT Libraries' 24 Hour Study Space  

E-Print Network [OSTI]

Guidelines for Use MIT Libraries' 24 Hour Study Space Access to and use of the MIT Libraries' 24://libguides.mit.edu/hours)). The following principles guide access to 24-hour spaces for all users of the MIT Libraries: Expectations Library policies Behavior Library users in the 24-hour study spaces are expected to refrain from: � Behaviors

116

Catherine Grant (MIT) Sep 21, 2009 Developing contributed software to  

E-Print Network [OSTI]

Catherine Grant (MIT) Sep 21, 2009 Developing contributed software to correct for the temperature dependence of ACIS CTI Jennifer Posson-Brown (SAO), Catherine Grant (MIT), Glenn Allen (MIT), Paul Plucinsky (SAO), Dale Graessle (SAO) and the ACIS calibration team #12;Catherine Grant (MIT) Sep 21, 2009 Summary

Grant, Catherine E.

117

FEMA Think Tank Call Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FEMA Think Tank Call Meeting FEMA Think Tank Call Meeting Minimize Date: Wednesday, September 25, 2013 Time: 1:00 - 2:30 p.m. (Eastern Time) Location: Y-12 New Hope Center, 602 Scarboro Rd, Oak Ridge, TN 37830 Overview Description: The FEMA Think Tank is a mechanism to formally collect, discuss, evaluate, and develop innovative ideas in the emergency management community - state, local, and tribal governments, as well as members of the public, including the private sector, the disability community, and volunteer groups. It ensures whole community partners and federal employees are motivated and encouraged to innovate, actively solicit and discuss ideas, and oversee the implementation of promising ideas. The FEMA Think Tank is designed to act as a forum where good ideas are shared, discussed, and become innovative solutions. There are currently two components to the think tank. The first, an online component, can be accessed at any time at, http://fema.ideascale.com. The second component is a conference call that includes both a nationwide telephone audience and an audience at the FEMA Think Tank Call site. This second component is described in more detail at the following website: http://www.fema.gov/fema-think-tank.

118

Das Potenzial aufgeladener Ottomotoren mit Direkteinspritzung  

Science Journals Connector (OSTI)

Die Volkswagen-Konzernforschung hat die Potenziale der strahlgeführten Benzin-Direkteinspritzung an einem 2,0-l-Turbo-FSI-Ottomotor mit einer zentralen Anordnung von Injektor und Zündkerze analysiert. Die lang...

Dipl.-Ing. Jürgen Willand; Dr.-Ing. Kay Schintzel…

2009-02-01T23:59:59.000Z

119

People | MIT-Harvard Center for Excitonics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(617) 253-3653 office: 13-2017 MIT Prof. Jarillo-Herrero's group works on the optoelectronic and energy harvesting properties of novel 2-dimensional materials, such as...

120

Energy consumption metrics of MIT buildings  

E-Print Network [OSTI]

With world energy demand on the rise and greenhouse gas levels breaking new records each year, lowering energy consumption and improving energy efficiency has become vital. MIT, in a mission to help improve the global ...

Schmidt, Justin David

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank |  

Broader source: Energy.gov (indexed) [DOE]

Determines Double-Shell Tank Leaked Waste From Inner Tank Determines Double-Shell Tank Leaked Waste From Inner Tank Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank October 22, 2012 - 12:00pm Addthis Media Contacts Lori Gamache, ORP 509-372-9130 John Britton, WRPS 509-376-5561 RICHLAND - The Department of Energy's Office of River Protection (ORP), working with its Hanford tank operations contractor Washington River Protection Solutions, has determined that there is a slow leak of chemical and radioactive waste into the annulus space in Tank AY-102, the approximately 30-inch area between the inner primary tank and the outer tank that serves as the secondary containment for these types of tanks. This is the first time a double-shell tank (DST) leak from the primary tank into the annulus has been identified. There is no indication of waste in

122

Monthly Tank Inspection Log Name of Campus  

E-Print Network [OSTI]

Monthly Tank Inspection Log Name of Campus Street Address of Campus City, State, and Zip Code of Campus 1 of 2 1. Facility PBS Registration Number 6. DISTRIBUTE TO : 2. Tank Number 3. Tank Registered(S) Satisfactory Repair or Adjustment Required Not Applicable Additional Comments Attached ABOVEGROUND STORAGE TANK

Rosen, Jay

123

Tips For Residential Heating Oil Tank Owners  

E-Print Network [OSTI]

· · · · · · · · · · · · · · · · · · · · · · Tips For Residential Heating Oil Tank Owners Source: DEP Fact Sheet Residential heating oil tanks are used to store fuel for furnaces or boilers to heat homes. The tanks can either be aboveground tanks, normally located in basements or utility rooms

Maroncelli, Mark

124

Cornell University's Online Aboveground Petroleum Tank  

E-Print Network [OSTI]

Cornell University's Online Aboveground Petroleum Tank Inspection Program How To's Petroleum Bulk-material-storage/petroleum-bulk-storage/Documents/Inspect_GD.pdf What is Cornell University's Online Aboveground Petroleum Tank Inspection Program? Cornell University's Online Aboveground Petroleum Tank Inspection Program enables assigned tank inspectors to record

Pawlowski, Wojtek

125

Buffer Tank Design for Acceptable Control Performance  

E-Print Network [OSTI]

Buffer Tank Design for Acceptable Control Performance Audun Faanes and Sigurd Skogestad for the design of buffer tanks. We consider mainly the case where the objective of the buffer tank is to dampen- trol system. We consider separately design procedures for (I) mixing tanks to dampen quality

Skogestad, Sigurd

126

DOE Vehicular Tank Workshop Sandia National Laboratories  

E-Print Network [OSTI]

DOE Vehicular Tank Workshop Sandia National Laboratories Livermore, CA April 29, 2010 Thursday the deployment of hydrogen storage tanks in early market fuel cell applications for vehicles Workshop Objectives at the first workshop in more detail, including Type 4 tank and PRD testing, tank service life and tracking

127

High-Pressure Hydrogen Tanks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 8 February 8 th , 2005 Mark J. Warner, P.E. Principal Engineer Quantum Technologies, Inc. Irvine, CA Low Cost, High Efficiency, Low Cost, High Efficiency, High Pressure Hydrogen Storage High Pressure Hydrogen Storage This presentation does not contain any proprietary or confidential information. 70 MPa Composite Tanks Vent Line Ports Defueling Port (optional) Fill Port Filter Check Valve Vehicle Interface Bracket with Stone Shield In Tank Regulator with Solenoid Lock-off Pressure Relief Device Manual Valve Compressed Hydrogen Storage System In-Tank Regulator Pressure Sensor (not visible here) Pressure Relief Device (thermal) In Tank Gas Temperature Sensor Carbon Composite Shell (structural) Impact Resistant Outer Shell (damage resistant) Gas Outlet Solenoid Foam Dome (impact protection)

128

Enhanced Integrity LNG Storage Tanks  

Science Journals Connector (OSTI)

In recent years close attention has been given to increasing the integrity of LNG storage tanks. The M.W. Kellogg Company is a participant in four major LNG projects that incorporate enhanced integrity LNG storag...

W. S. Jacobs; S. E. Handman

1986-01-01T23:59:59.000Z

129

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 13, 2011 Report, which includes the use of in-tank RMF and small column ion exchange. SRNL's testing is being done on a 25 disc rotary system which would be similar to...

130

Light Duty Vehicle CNG Tanks  

Broader source: Energy.gov (indexed) [DOE]

Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing...

131

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of a PA is to examine the final waste disposition at Hanford, such as waste in the tanks at C-Farm. Vince said the quest is to model waste movement over 10,000 years,...

132

DOE Vehicular Tank Workshop Agenda  

Broader source: Energy.gov (indexed) [DOE]

Vehicular Tank Workshop Sandia National Laboratories Livermore, CA April 29, 2010 Thursday April 29: (312) 878-0222, Access code: 621-488-137 https:www1.gotomeeting.comregister...

133

Investigating leaking underground storage tanks  

E-Print Network [OSTI]

INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989... Major Subject: Geology INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Approved as to sty)e and content by: P. A, Domenico (Chair of Committee) jj K. W. Brown (Member) C. C Mathewson (Member) J. H. S ng Head...

Upton, David Thompson

1989-01-01T23:59:59.000Z

134

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

West, B.; Waltz, R.

2010-06-21T23:59:59.000Z

135

VII. ELECTRON CYCLOTRON HEATING M. POFtKOLAB (MIT), P. T. BONOLI (MIT), R. C. ENGLADE (MIT), A. KRITZ (Hunter College),  

E-Print Network [OSTI]

VII. ELECTRON CYCLOTRON HEATING M. POFtKOLAB (MIT), P. T. BONOLI (MIT), R. C. ENGLADE (MIT), A resonance heating (ECH) in BPX is planned as a possible upgrade to sup- plement the baseline ion cyclotron. KRITZ (Hunter College), R. PRATER (GA), and G. R. SMITH (LLNL) WA. INTRODUCTION Electron cyclotron

136

Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford Tank Initiative: Applications to the AX tank farm  

SciTech Connect (OSTI)

This report investigates five technical areas for stabilization of decommissioned waste tanks and contaminated soils at the Hanford Site AX Farm. The investigations are part of a preliminary evacuation of end-state options for closure of the AX Tanks. The five technical areas investigated are: (1) emplacement of cementations grouts and/or other materials; (2) injection of chemicals into contaminated soils surrounding tanks (soil mixing); (3) emplacement of grout barriers under and around the tanks; (4) the explicit recognition that natural attenuation processes do occur; and (5) combined geochemical and hydrological modeling. Research topics are identified in support of key areas of technical uncertainty, in each of the five areas. Detailed cost-benefit analyses of the technologies are not provided. This investigation was conducted by Sandia National Laboratories, Albuquerque, New Mexico, during FY 1997 by tank Focus Area (EM-50) funding.

Becker, D.L.

1997-11-03T23:59:59.000Z

137

ROBOTIC TANK INSPECTION END EFFECTOR  

SciTech Connect (OSTI)

The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original intent of the contract, the focus remains on the RTIEE.

Rachel Landry

1999-10-01T23:59:59.000Z

138

Hanford Site C Tank Farm Meeting Summary - February 2009 | Department...  

Office of Environmental Management (EM)

February 2009 Hanford Site C Tank Farm Meeting Summary - February 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank...

139

Hanford Site C Tank Farm Meeting Summary - May 2011 | Department...  

Office of Environmental Management (EM)

1 Hanford Site C Tank Farm Meeting Summary - May 2011 Hanford Site C Tank Farm Meeting Summary More Documents & Publications Hanford Site C Tank Farm Meeting Summary - September...

140

High-Pressure Hydrogen Tank Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tank Testing High-Pressure Hydrogen Tank Testing Many types of compressed hydrogen tanks have been certified worldwide and demonstrated in several prototype fuel cell...

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

-1 -RECOMMENDATIONS FROM THINK TANK CONVENORS December 7, 2011  

E-Print Network [OSTI]

- 1 - RECOMMENDATIONS FROM THINK TANK CONVENORS of our expert think tank 'Managing for Uncertainty: Pathogens and Disease Wildlife in Canada (COSEWIC), Australia's Invitational Scientists' Think Tank Managing

142

Independent Activity Report, Hanford Tank Farms - April 2013...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

tour the Hanford Tank Farms, observe video inspection of single shell and double shell tanks, and observe Tank Farm project and staff meetings. Independent Activity Report,...

143

Acoustic Method for Fish Counting and Fish Sizing in Tanks  

E-Print Network [OSTI]

Counting and Fish Sizing in Tanks W.A. Kuperman and Philippedistributed among its 97 tanks to maximize feed-conversionrequires inventory- ing tanks regularly. Currently, this is

Kuperman, William A.; Roux, Philippe

2004-01-01T23:59:59.000Z

144

A Cost Benefit Analysis of California's Leaking Underground Fuel Tanks  

E-Print Network [OSTI]

s Leaking Underground Fuel Tanks (LUFTs)”. Submitted to theCalifornia’s Underground Storage Tank Program”. Submitted tos Leaking Underground Fuel Tanks” by Samantha Carrington

Carrington-Crouch, Robert

1996-01-01T23:59:59.000Z

145

Acoustic Method for Fish Counting and Fish Sizing in Tanks  

E-Print Network [OSTI]

measurements in an echoic tank. ICES Journal of Marineto fish counting in a tank. Journal of the Acousticaland materials of the cylindrical tanks for the experiments.

Roux, Philippe; Conti, Stéphane; Demer, David; Maurer, Benjamin D.

2005-01-01T23:59:59.000Z

146

DOE Selects Washington River Protection Solutions, LLC for Tank...  

Energy Savers [EERE]

Plateau. The scope of the tank operations contract includes base operations of the tanks, analytical laboratory support, single-shell tank retrieval and closure, Waste...

147

241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity  

SciTech Connect (OSTI)

This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

Barnes, Travis J.; Gunter, Jason R.

2013-08-26T23:59:59.000Z

148

241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity  

SciTech Connect (OSTI)

This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

2014-04-04T23:59:59.000Z

149

Evaluation of Tank 241-T-111 Level Data and In-Tank Video Inspection  

SciTech Connect (OSTI)

This document summarizes the status of tank T-111 as of January 1, 2014 and estimates a leak rate and post-1994 leak volume for the tank.

Schofield, John S. [Columbia Energy and Environmental Services (United States); Feero, Amie J. [Washington River Protection Solutions, LLC (United States)

2014-03-17T23:59:59.000Z

150

TANK48 CFD MODELING ANALYSIS  

SciTech Connect (OSTI)

The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.

Lee, S.

2011-05-17T23:59:59.000Z

151

In-tank recirculating arsenic treatment system  

DOE Patents [OSTI]

A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

Brady, Patrick V. (Albuquerque, NM); Dwyer, Brian P. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM); Chwirka, Joseph D. (Tijeras, NM)

2009-04-07T23:59:59.000Z

152

Tank Waste Disposal Program redefinition  

SciTech Connect (OSTI)

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

153

MIT- Electrochemical Energy Laboratory | Open Energy Information  

Open Energy Info (EERE)

MIT- Electrochemical Energy Laboratory MIT- Electrochemical Energy Laboratory Jump to: navigation, search Name MIT- Electrochemical Energy Laboratory Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Region Greater Boston Area Coordinates 42.359089°, -71.093412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.359089,"lon":-71.093412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

MIT- Earth Resources Laboratory | Open Energy Information  

Open Energy Info (EERE)

MIT- Earth Resources Laboratory MIT- Earth Resources Laboratory Name MIT- Earth Resources Laboratory Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Region Greater Boston Area Coordinates 42.359089°, -71.093412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.359089,"lon":-71.093412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

Property:Testing Facilities Overseen | Open Energy Information  

Open Energy Info (EERE)

Testing Facilities Overseen Testing Facilities Overseen Jump to: navigation, search This is a property of type Page and uses the Testing Facility form Pages using the property "Testing Facilities Overseen" Showing 25 pages using this property. A Alden Research Laboratory, Inc + Alden Tow Tank +, Alden Wave Basin +, Alden Small Flume +, ... B Bucknell University + Bucknell Hydraulic Flume + C Cornell University Hydrodynamics + DeFrees Flume 1 +, DeFrees Flume 2 +, DeFrees Flume 3 +, ... M Massachusetts Institute of Technology Hydrodynamics + MIT Tow Tank + O Ohmsett + Ohmsett Tow Tank + Oregon State University Hydrodynamics + Hinsdale Wave Basin 1 +, Hinsdale Wave Basin 2 + P Pennsylvania State University Hydrodynamics + Penn Reverberant Tank +, Penn Small Water Tunnel +, Penn Large Water Tunnel +

156

Alcator (en) Alcator (en) http://www.psfc.mit.edu/favicon.ico  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(en) Alcator (en) http:www.psfc.mit.edufavicon.ico http:www.psfc.mit.eduresearchalcatorcmodwikiindex.phpSpecial:Search...

157

Tank 241-BY-103 Tank Characterization Plan. Revision 1  

SciTech Connect (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-BY-103.

Schreiber, R.D.

1995-02-27T23:59:59.000Z

158

Comparative safety analysis of LNG storage tanks  

SciTech Connect (OSTI)

LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

1982-07-01T23:59:59.000Z

159

High-Pressure Tube Trailers and Tanks  

Broader source: Energy.gov [DOE]

Presentation on High-Pressure Tube Trailers and Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

160

Underground Storage Tanks: New Fuels and Compatibility  

Broader source: Energy.gov [DOE]

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Disposal of Hanford Site Tank Wastes  

Science Journals Connector (OSTI)

Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at ...

M. J. Kupfer

1994-01-01T23:59:59.000Z

162

Technical requirements specification for tank waste retrieval  

SciTech Connect (OSTI)

This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

Lamberd, D.L.

1996-09-26T23:59:59.000Z

163

Milagro Tank Temperature Study: w/ and w/o Tank Insulation  

E-Print Network [OSTI]

Milagro Tank Temperature Study: w/ and w/o Tank Insulation John A.J. Matthews and Bill Miller johnm/24 #12;Tank Temperature Study for Northern Auger · Auger North site (Colorado) is colder than Auger South. · Sept 2006: instrument Milargo outrigger tank to study freezing issues (Left photo) (Milagro experiment

164

Savannah River Site- Tank 48 Briefing on SRS Tank 48 Independent Technical Review  

Broader source: Energy.gov [DOE]

This presentation outlines the SRS Tank 48 ITR listing observations, conclusions, and TPB processing.

165

The Fuel Tank Consider a cylindrical fuel tank of radius r and length L, that is  

E-Print Network [OSTI]

The Fuel Tank Question Consider a cylindrical fuel tank of radius r and length L, that is lying on its side. Suppose that fuel is being pumped into the tank at a rate q. At what rate is the fuel level rising? r L Solution Here is an end view of the tank. The shaded part of the circle is filled with fuel

Feldman, Joel

166

Catherine Grant (MIT) Oct 31, 2005 ACIS: Instrument Status and  

E-Print Network [OSTI]

Catherine Grant (MIT) Oct 31, 2005 ACIS: Instrument Status and Performance Evolution Catherine Grant for the ACIS Instrument Team #12;ACIS Instrument Status Catherine Grant (MIT) Oct 31, 2005 Summary Catherine Grant (MIT) Oct 31, 2005 Monitoring Radiation Damage · Radiation damage can ­ Increase density

Grant, Catherine E.

167

Catherine Grant (MIT) Oct 25, 2004 Evolution of ACIS Performance  

E-Print Network [OSTI]

Catherine Grant (MIT) Oct 25, 2004 Evolution of ACIS Performance Catherine Grant for the ACIS Instrument Team #12;ACIS Performance Evolution Catherine Grant (MIT) Oct 25, 2004 Summary · Slow gradual gain ­ October 2003 solar activity #12;ACIS Performance Evolution Catherine Grant (MIT) Oct 25, 2004

Grant, Catherine E.

168

Zugriff auf Firebird-Datenbanken mit PHP Daniel de West  

E-Print Network [OSTI]

Zugriff auf Firebird-Datenbanken mit PHP Daniel de West DB-Campus-Treffen 15. Januar 2004 #12;15.01.04 daniel.de.west@rrze.uni-erlangen.de 2Firebird-Zugriff mit PHP Inhalt PHP und Firebird Die wichtigsten von Stored Procedures mit und ohne Ergebnis �berblick über Interbase/Firebird-Befehle in PHP

Fiebig, Peter

169

Tank 241-BY-104 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

Tank 241-BY-104 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-104 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

Huckaby, J.L.

1995-05-31T23:59:59.000Z

170

Tank 241-BY-103 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank 241-BY-103 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-103 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

Huckaby, J.L.

1995-05-05T23:59:59.000Z

171

Tank 241-BY-108 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

Tank 241-BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in ``Program Plan for the Resolution of Tank Vapor Issues`` (Osborne and Huckaby 1994). Tank 241-BY-108 was vapor sampled in accordance with ``Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution (Osborne et al., 1994).

Huckaby, J.L.

1995-05-31T23:59:59.000Z

172

Tank 241-BY-105 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

Tank 241-BY-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-105 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

Huckaby, J.L.

1995-05-31T23:59:59.000Z

173

Tank 241-BY-107 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

Huckaby, J.L.

1995-05-31T23:59:59.000Z

174

Tank 241-BY-107 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues{close_quotes}. Tank 241-BY-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution{close_quotes}.

Huckaby, J.L.

1995-05-05T23:59:59.000Z

175

Tank 241-BY-106 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

Tank 241-BY-106 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-106 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

Huckaby, J.L.

1995-05-31T23:59:59.000Z

176

Hanford Communities Issue Briefing on Tank Farms  

Broader source: Energy.gov [DOE]

Department of Energy Office of River Protection representatives Stacy Charboneau (Deputy Manager) and Tom Fletcher (Tank Farms Assistant Manager) and Washington State Department of Ecology's Suzanne Dahl (Tank Waste Section Manager) discuss Hanford's complex tank waste retrieval mission with members of the community.

177

Onsite Wastewater Treatment Systems: Pump Tank  

E-Print Network [OSTI]

Pump tanks are concrete, fiberglass or polyethylene containers that collect wastewater to be dosed into the soil at intervals. This publication explains the design and maintenance of pump tanks, and it offers advice on what to do if a pump tank...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

178

Above Ground Storage Tank (AST) Inspection Form  

E-Print Network [OSTI]

Above Ground Storage Tank (AST) Inspection Form Petroleum Bulk Storage Form Facility Name: ______________________ Tank No:_______________ Date:_____________ Inspection Parameter Result Comments/Corrective Actions 1. Is there leaking in the interstitial space (not DRY)? YES/NO/NA 2. Tank surface shows signs of leakage? YES/NO/NA 3

Pawlowski, Wojtek

179

EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review |  

Broader source: Energy.gov (indexed) [DOE]

Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Environmental Management Advisory Board EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Report Number TWS #003 EMAB EM-TWS SRS / Hanford Tank Waste June 23, 2011 This is the second report of the Environmental Management Tank Waste Subcommittee (EMTWS) of the Environmental Management Advisory Board (EMAB). The first report was submitted and accepted by the Assistant Secretary for Environmental Management (EM-1) in September 2010. The EM-TWS responded to three charges from EM-1 regarding the Waste Treatment and Immobilization Plant at Hanford (WTP) under construction in Richland, Washington. EM's responses were timely, and efforts have been

180

Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent Technical Review  

Broader source: Energy.gov (indexed) [DOE]

Tank 48 Tank 48 Independent Technical Review August 2006 2 SRS Tank 48 ITR SRS Tank 48 ITR Key ITR Observation Two distinct problems: Removing tetraphenylborate (TPB) waste and then cleaning the tank sufficiently to support return to service Processing contents to eliminate TPB hazard August 2006 3 SRS Tank 48 ITR SRS Tank 48 ITR Overarching ITR Conclusions 1. TPB Processing is on the right track - DOE/WSRC have selected the most promising candidates - Fluidized Bed Steam Reforming (FBSR) is the most technically attractive and mature of the candidate processes August 2006 4 SRS Tank 48 ITR SRS Tank 48 ITR Overarching Conclusions (continued) 2. Heel removal and tank cleanout will be a very challenging task. Compounding issues: - Physical difficulties in cleanout (access, congestion, etc.)

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

MIT Lincoln Laboratory Plasma and Ions-1  

E-Print Network [OSTI]

them anions · Fire, lightning, fluorescent lamps, and the Sun and stars all contain plasma ­ In fact include fluorescent lamps, neon signs, plasma globes, plasma TVs ­ They easily form at room temperature lightning carbon arc nuclear blast #12;MIT Lincoln LaboratoryPlasma and Ions-4 A. Siegel 5/12/07 How Does

Wurtman, Richard

182

Rutherford Scattering MIT Department of Physics  

E-Print Network [OSTI]

Rutherford Scattering MIT Department of Physics (Dated: September 1, 2013) This is an experiment on the web site. SUGGESTED PROGRESS CHECK FOR END OF 2nd SESSION Plot the rate of alpha particle observations, an alpha particle traversing a thin gold film should experience many small angle deflections as it passes

Seager, Sara

183

MIT Nuclear Space Research Andrew C. Kadak  

E-Print Network [OSTI]

SELENE MIT Nuclear Space Research Andrew C. Kadak Professor of the Practice Nuclear Science with Nuclear Energy ­ Selene - Sodium-Cooled Epithermal Long-term Exploration Nuclear Engine (MS thesis) ­ The Martian Surface Reactor: An Advanced Nuclear Power Station for Manned Extraterrestrial Exploration

184

MIT EL 00-007 Energy Laboratory  

E-Print Network [OSTI]

of Diesel: Scientific Issues 2000 Air Pollution Symposium December 2000 #12;SYMPOSIUM SUMMARY The Future of Diesel: Scientific Issues 2000 Air Pollution Symposium Symposium Chair: Dr. Robert Slott, MIT Program...........................................................................................................................................................................7 3.1.1 Reducing the Impact of Diesels on Air Quality and Public Health: Tom Cackette, CARB

185

Tank Farms and Waste Feed Delivery - 12507  

SciTech Connect (OSTI)

The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

186

A Comparison of Immersive HMD, Fish Tank VR and Fish Tank with Haptics Displays for Volume Visualization  

E-Print Network [OSTI]

A Comparison of Immersive HMD, Fish Tank VR and Fish Tank with Haptics Displays for Volume: (1) head-mounted display (HMD); (2) fish tank VR (fish tank); and (3) fish tank VR augmented its structure. Fish tank and haptic participants saw the entire volume on-screen and rotated

Healey, Christopher G.

187

Princeton Plasma Physics Lab - Massachusetts Institute of Technology (MIT)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

massachusetts-institute-technology-mit massachusetts-institute-technology-mit Massachusetts Institute of Technology (MIT) en Applying physics, teamwork to fusion energy science http://www.pppl.gov/node/1410

American Fusion News Category: 
188

Life Extension of Aging High-Level Waste Tanks  

SciTech Connect (OSTI)

The Double Shell Tanks (DSTs) play a critical role in the Hanford High-Level Waste Treatment Complex, and therefore activities are underway to protect and better understand these tanks. The DST Life Extension Program is focused on both tank life extension and on evaluation of tank integrity. Tank life extension activities focus on understanding tank failure modes and have produced key chemistry and operations controls to minimize tank corrosion and extend useful tank life. Tank integrity program activities have developed and applied key technologies to evaluate the condition of the tank structure and predict useful tank life. Program results to date indicate that DST useful life can be extended well beyond the original design life and allow the existing tanks to fill a critical function within the Hanford High-Level Waste Treatment Complex. In addition the tank life may now be more reliably predicted, facilitating improved planning for the use and possible future replacement of these tanks.

Bryson, D.; Callahan, V.; Ostrom, M.; Bryan, W.; Berman, H.

2002-02-26T23:59:59.000Z

189

High Pressure Hydrogen Tank Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workshop Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane® bus. Awarded patent for integrated module including in-tank regulator * Developed high efficiency H 2 fuel storage systems for DOE Future Truck programs Developed H 2 storage and metering system for Toyota's FCEV platform. First to certify 10,000 psi systems in Japan

190

Enhanced Tank Waste Strategy Update  

Broader source: Energy.gov (indexed) [DOE]

Reduce the life-cycle costs and accelerate the cleanup of the Cold War environmental legacy www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 cleanup of the Cold War environmental legacy Shirley J. Olinger Associate Principal Deputy for Corporate Operations EMAB Presentation June 23, 2011 EM Priorities: Activities to maintain a safe, secure, and compliant posture in the EM complex Radioactive tank waste stabilization, treatment, and disposal Spent (used) nuclear fuel storage, receipt, and disposition "To-Go Life-Cycle Costs" ($185B - $218B as of the FY 2012 Request) Programmatic support activities* 10% Radioactive tank waste stabilization, treatment and disposal 38% Excess facilities decontamination and decommissioning

191

241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity  

SciTech Connect (OSTI)

This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

2013-07-30T23:59:59.000Z

192

Chemical composition of Hanford Tank SY-102  

SciTech Connect (OSTI)

The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the radioactive waste, both current and future, stored in double-shell and single-shell tanks at the Hanford sites. One major program element in TWRS is pretreatment which was established to process the waste prior to disposal using the Hanford Waste Vitrification Plant. In support of this program, Los Alamos National Laboratory has developed a conceptual process flow sheet which will remediate the entire contents of a selected double-shelled underground waste tank, including supernatant and sludge, into forms that allow storage and final disposal in a safe, cost-effective and environmentally sound manner. The specific tank selected for remediation is 241-SY-102 located in the 200 West Area. As part of the flow sheet development effort, the composition of the tank was defined and documented. This database was built by examining the history of liquid waste transfers to the tank and by performing careful analysis of all of the analytical data that have been gathered during the tank`s lifetime. In order to more completely understand the variances in analytical results, material and charge balances were done to help define the chemistry of the various components in the tank. This methodology of defining the tank composition and the final results are documented in this report.

Birnbaum, E.; Agnew, S.; Jarvinen, G.; Yarbro, S.

1993-12-01T23:59:59.000Z

193

Storage Tanks (Arkansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Tanks (Arkansas) Storage Tanks (Arkansas) Storage Tanks (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters of the State of Arkansas. They are promulgated pursuant to Arkansas Code Annotated 8-7-801 and the Petroleum Storage Trust Fund Act 8-7-901. It covers all storage tanks, above (AST) and underground (UST). Most importantly these regulations establish that all owners and operators of storage tanks must

194

Tank characterization report for single-shell tank 241-U-110  

SciTech Connect (OSTI)

This tank characterization report for Tank 241-U-110 was initially released as WHC-EP-0643. This document is now being released as WHC- SD-WM-ER-551 in order to accommodate internet publishing.

Brown, T.M., Westinghouse Hanford

1996-05-23T23:59:59.000Z

195

Optimal Tank Farm Operation Sebastian Terrazas-Moreno  

E-Print Network [OSTI]

Optimal Tank Farm Operation Sebastian Terrazas-Moreno Ignacio E. Grossmann John M. Wassick EWOIn collaboration with The Dow Chemical Company #12;A tank farm is a set of storage tanks that hold finished product until it is shipped Each tank can only hold one Loading of product takes place only from storage tanks

Grossmann, Ignacio E.

196

DEPARTMENf OF NUCLEAR PHYSICS TANK OPENING REPORT NO 62  

E-Print Network [OSTI]

DEPARTMENf OF NUCLEAR PHYSICS TANK OPENING REPORT NO 62 This report covers three tank openings; 2 history. We were plagued throughout these tank openings by poor beam transmission and spent most of our have, were manufactured and installed. The first tank opening2 May t.o 6 May 1988. This tank opening

Chen, Ying

197

What's Next for Nuclear Energy? MIT Students Discuss Path Forward |  

Broader source: Energy.gov (indexed) [DOE]

Next for Nuclear Energy? MIT Students Discuss Path Forward Next for Nuclear Energy? MIT Students Discuss Path Forward What's Next for Nuclear Energy? MIT Students Discuss Path Forward June 19, 2012 - 10:41am Addthis Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. What does this project do? The Nuclear Energy University Program, has provided MIT and 78 other schools with $220 million in research grants and related support. Investing in the next generation isn't just about technology -- it's

198

MIT Emissions Prediction and Policy Analysis (EPPA) Model | Open Energy  

Open Energy Info (EERE)

MIT Emissions Prediction and Policy Analysis (EPPA) Model MIT Emissions Prediction and Policy Analysis (EPPA) Model Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: MIT Emissions Prediction and Policy Analysis (EPPA) Model Agency/Company /Organization: Massachusetts Institute of Technology (MIT) Topics: Analysis Tools Complexity/Ease of Use: Not Available Website: dspace.mit.edu/handle/1721.1/29790 Cost: Free Related Tools IGES GHG Calculator For Solid Waste Energy and Power Evaluation Program (ENPEP) Regional Economic Models, Inc. (REMI) Model ... further results The part of the MIT Integrated Global Systems Model (IGSM) that represents human systems; a recursive-dynamic multi-regional general equilibrium model

199

What's Next for Nuclear Energy? MIT Students Discuss Path Forward |  

Broader source: Energy.gov (indexed) [DOE]

What's Next for Nuclear Energy? MIT Students Discuss Path Forward What's Next for Nuclear Energy? MIT Students Discuss Path Forward What's Next for Nuclear Energy? MIT Students Discuss Path Forward June 19, 2012 - 10:41am Addthis Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. Dr. Peter Lyons, Assistant Secretary for Nuclear Energy met with students at MIT during an informal roundtable to talk what's next for nuclear energy and for the nuclear power industry. | Photo courtesy of Jake Dewitt. What does this project do? The Nuclear Energy University Program, has provided MIT and 78 other schools with $220 million in research grants and related support.

200

FY 1996 Tank waste analysis plan  

SciTech Connect (OSTI)

This Tank Waste Analysis Plan (TWAP) describes the activities of the Tank Waste Remediation System (TWRS) Characterization Project to plan, schedule, obtain, and document characterization information on Hanford waste tanks. This information is required to meet several commitments of Programmatic End-Users and the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement. This TWAP applies to the activities scheduled to be completed in fiscal year 1996.

Homi, C.S.

1996-09-18T23:59:59.000Z

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

West, B.; Waltz, R.

2011-06-23T23:59:59.000Z

202

Tank 241-C-107 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-107. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

203

Tank 241-TY-103 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-TY-103. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

204

Tank 241-T-107 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-T-107. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

205

Tank 241-C-105 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-105. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

206

Tank 241-C-102 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-102. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

207

Tank 241-C-106 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

208

Tank 241-B-103 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-B-103. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

209

Tank 241-BX-104 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-BX-104. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

210

Tank 241-C-109 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-109. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

211

Tank 241-C-111 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-111. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

212

Tank 241-C-110 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-110. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

213

Tank 241-BY-110 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-BY-110. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to the tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

214

Underground Storage Tank Regulations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

215

High-Pressure Tube Trailers and Tanks  

Broader source: Energy.gov (indexed) [DOE]

bending stress: continuous fiber vessels and vessels made of replicants Conformable tanks require internal stiffeners (ribs) to efficiently support the pressure and minimize...

216

Supporting document for the historical tank content estimate for A-Tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on A-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

Brevick, C.H.

1996-06-28T23:59:59.000Z

217

Supporting document for the historical tank content estimate for the S-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on S-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

Brevick, C.H., Fluor Daniel Hanford

1997-02-25T23:59:59.000Z

218

Supporting document for the historical tank content estimate for C-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on C-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

Brevick, C.H.

1996-06-28T23:59:59.000Z

219

Supporting document for the historical tank content estimate for AY-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford, Fluor Daniel Hanford

1997-03-12T23:59:59.000Z

220

Supporting document for the historical tank content estimate for the SX-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on SX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

Brevick, C.H., Fluor Daniel Hanford

1997-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Supporting document for the historical tank content estimate for B-Tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on B-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

Brevick, C.H.

1996-06-28T23:59:59.000Z

222

Supporting document for the historical tank content estimate of U-tank fram  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on U-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

Brevick, C.H., Fluor Daniel Hanford

1997-02-26T23:59:59.000Z

223

Supporting document for the historical tank content estimate for AP-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

1997-03-06T23:59:59.000Z

224

Supporting document for the historical tank content estimate for AW-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

Brevick, C.H., Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

1997-03-06T23:59:59.000Z

225

Supporting document for the historical tank content estimate for BY-Tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on BY-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

Brevick, C.H.

1996-06-28T23:59:59.000Z

226

Supporting document for the historical tank content estimate for AX-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on AX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

Brevick, C.H., Westinghouse Hanford

1996-06-28T23:59:59.000Z

227

Supporting document for the historical tank content estimate for BX-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on BX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

Brevick, C.H.

1996-06-28T23:59:59.000Z

228

Supporting document for the historical tank content estimate for AN-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on AN-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

1997-03-06T23:59:59.000Z

229

Supporting document for the historical tank content estimate for S tank farm  

SciTech Connect (OSTI)

This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

1994-06-01T23:59:59.000Z

230

Tank 241-C-101 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank C-101 headspace gas and vapor samples were collected and analyzed to help determine the potential risks of fugitive emissions to tank farm workers. Gas and vapor samples from the Tank C-101 headspace were collected on July 7, 1994 using the in situ sampling (ISS) method, and again on September 1, 1994 using the more robust vapor sampling system (VSS). Gas and vapor concentrations in Tank C-101 are influenced by its connections to other tanks and its ventilation pathways. At issue is whether the organic vapors in Tank C-101 are from the waste in that tank, or from Tanks C-102 or C-103. Tank C-103 is on the Organic Watch List; the other two are not. Air from the Tank C-101 headspace was withdrawn via a 7.9-m long heated sampling probe mounted in riser 8, and transferred via heated tubing to the VSS sampling manifold. The tank headspace temperature was determined to be 34.0 C, and all heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks provided by the laboratories.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

231

Math 315 Exam #3 Solutions in Brief 1. (20 points) Two tanks contain 10 liters of water each. Initially tank  

E-Print Network [OSTI]

Math 315 Exam #3 Solutions in Brief 1. (20 points) Two tanks contain 10 liters of water each. Initially tank 1 contains no salt and tank 2 contains 246 grams of salt. Water con- taining 50 grams of salt per liter is added to tank 1 at the rate 2 liters/minute. Water containing no salt is added to tank 2

232

Klassisches Verfahren zur Ermittlung des Regelvorganges mit Hilfe der Differentialgleichung  

Science Journals Connector (OSTI)

Das sogenannte klassische Verfahren zur Ermittlung des Regelvorganges arbeitet nur mit den Differentialgleichungen des Systems. Aus den verschiedenen, gleichzeitig gültigen simultanen Differentialgleichungen —...

A. Leonhard

1962-01-01T23:59:59.000Z

233

30 Mercedes-Benz-Omnibusse mit Brennstoffzelle im Flottenversuch  

Science Journals Connector (OSTI)

DaimlerChrysler betreibt seit 1990 die Anwendung der Brennstoffzellentechnik für Straßenfahrzeuge. Höhepunkt der Entwicklung ist der Bau von 30 Stadtlinienbussen mit Brennstoffzelle bei dem Tochterunternehmen Evo...

Erich Hoepke

2003-06-01T23:59:59.000Z

234

Temporäre Arthrodese des Hüftgelenkes mit Fixateur externe bei osteolytischer Beckenmetastase  

Science Journals Connector (OSTI)

Es wird über einen Patienten mit ausgedehnter osteolytischer Beckenmetastasierung in die Region des linken Hüftgelenkes bei primärem Nierenkarzinom berichtet. Eine einfach auszuführende Fixateur-externe-Montage z...

OA Dr. W. Schüz; S. Pfandl; B. Kirschsieper

1990-01-01T23:59:59.000Z

235

Hanford Site C Tank Farm Meeting Summary - September 2010 | Department...  

Office of Environmental Management (EM)

10 Hanford Site C Tank Farm Meeting Summary - September 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm Meeting...

236

Hanford Site C Tank Farm Meeting Summary - September 2009 | Department...  

Office of Environmental Management (EM)

09 Hanford Site C Tank Farm Meeting Summary - September 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm Meeting...

237

Hanford Site C Tank Farm Meeting Summary - January 2011 | Department...  

Office of Environmental Management (EM)

January 2011 Hanford Site C Tank Farm Meeting Summary - January 2011 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm...

238

Hanford Site C Tank Farm Meeting Summary - May 2009 | Department...  

Office of Environmental Management (EM)

Hanford Site C Tank Farm Meeting Summary - May 2009 Hanford Site C Tank Farm Meeting Summary - May 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance...

239

Hanford Site C Tank Farm Meeting Summary - July 2010 | Department...  

Office of Environmental Management (EM)

July 2010 Hanford Site C Tank Farm Meeting Summary - July 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm...

240

Independent Oversight Activity Report, Hanford Tank Farms - March...  

Broader source: Energy.gov (indexed) [DOE]

Tank Farms - March 10-12, 2014 Independent Oversight Activity Report, Hanford Tank Farms - March 10-12, 2014 March 10-12, 2014 Hanford Tank Farm Operations HIAR-HANFORD-2014-03-10...

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hanford Site C Tank Farm Meeting Summary - May 2010 | Department...  

Office of Environmental Management (EM)

0 Hanford Site C Tank Farm Meeting Summary - May 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm Meeting...

242

Hanford Site C Tank Farm Meeting Summary - October 2009 | Department...  

Office of Environmental Management (EM)

October 2009 Hanford Site C Tank Farm Meeting Summary - October 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm...

243

Hanford Site C Tank Farm Meeting Summary - January 2010 | Department...  

Office of Environmental Management (EM)

January 2010 Hanford Site C Tank Farm Meeting Summary - January 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm...

244

Hydrogen Tank Testing R&D | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Tank Testing R&D Hydrogen Tank Testing R&D These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. hydrogentanktestingostw.pdf More Documents...

245

Environmental Goals for MIT MIT will become a leader in environmentally responsible operations, development of  

E-Print Network [OSTI]

: · Conserve energy, seeking continuous reductions in our per capita energy consumption · Reduce campus air a minimum standard and support progress toward these general environmental goals, MIT has determined the recycling and conservation of materials · Increase the use of recycled-content products · Reduce the volume

Leiserson, Charles E.

246

Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak  

SciTech Connect (OSTI)

As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances of the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.

Girardot, Crystal L. [Washington River Protection Solutions, Richland, WA (United States); Washenfelder, Dennis J. [Washington River Protection Solutions, Richland, WA (United States); Johnson, Jeremy M. [USDOE Office of River Protection, Richland, WA (United States); Engeman, Jason K. [Washington River Protection Solutions, Richland, WA (United States)

2013-11-14T23:59:59.000Z

247

Tanks Focus Area annual report FY2000  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

None

2000-12-01T23:59:59.000Z

248

Phase Chemistry of Tank Sludge Residual Components  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate nearby groundwaters with radionuclides and RCRA metals. Performance assessment (PA) calculations must be carried out prior to closing the tanks. This requires developing radionuclide release models from the sludges so that the PA calculations can be based on credible source terms. These efforts continued to be hindered by uncertainties regarding the actual nature of the tank contents and the distribution of radionuclides among the various phases. In particular, it is of vital importance to know what radionuclides are associated with solid sludge components. Experimentation on actual tank sludges can be difficult, dangerous and prohibitively expensive. The research funded under this grant for the past three years was intended to provide a cost-effective method for developing the needed radionuclide release models using non-radioactive artificial sludges. Insights gained from this work will also have more immediate applications in understanding the processes responsible for heel development in the tanks and in developing effective technologies for removing wastes from the tanks.

J.L. Krumhansl

2002-04-02T23:59:59.000Z

249

Application of infrared imaging in ferrocyanide tanks  

SciTech Connect (OSTI)

This report analyzes the feasibility of using infrared imaging techniques and scanning equipment to detect potential hot spots within ferrocyanide waste tanks at the Hanford Site. A hot spot is defined as a volumetric region within a waste tank with an excessively warm temperature that is generated by radioactive isotopes. The thermal image of a hot spot was modeled by computer. this model determined the image an IR system must detect. Laboratory and field tests of the imaging system are described, and conclusions based on laboratory and field data are presented. The report shows that infrared imaging is capable of detecting hot spots in ferrocyanide waste tanks with depths of up to 3.94 m (155 in.). The infrared imaging system is a useful technology for initial evaluation and assessment of hot spots in the majority of ferrocyanide waste tanks at the Hanford Site. The system will not allow an exact hot spot and temperature determination, but it will provide the necessary information to determine the worst-case hot spot detected in temperature patterns. Ferrocyanide tanks are one type of storage tank on the Watch List. These tanks are identified as priority 1 Hanford Site Tank farm Safety Issues.

Morris, K.L.; Mailhot, R.B. Jr.; McLaren, J.M.; Morris, K.L.

1994-09-28T23:59:59.000Z

250

Annual radioactive waste tank inspection program: 1995  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1995 to evaluate these vessels and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

McNatt, F.G. Sr.

1996-04-01T23:59:59.000Z

251

Fuel Cell Technologies Office: Onboard Storage Tank Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Onboard Storage Tank Onboard Storage Tank Workshop to someone by E-mail Share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Facebook Tweet about Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Twitter Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Google Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Delicious Rank Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Digg Find More places to share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

252

Utah Underground Storage Tank Installation Permit | Open Energy...  

Open Energy Info (EERE)

Underground Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type...

253

Independent Oversight Review, Hanford Site Tank Farms - February...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- February 2014 Independent Oversight Review, Hanford Site Tank Farms - February 2014 February 2014 Review of the Hanford Tank Farms Safety Management Program Implementation for...

254

Hanford Site C Tank Farm Meeting Summary - March 2010 | Department...  

Office of Environmental Management (EM)

March 2010 Hanford Site C Tank Farm Meeting Summary - March 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Meeting Summary for...

255

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

which includes disposition of the SSTs, ancillary equipment, and soils. The SST (149 tanks) and DST (28 tanks) systems contain both hazardous and radioactive waste (mixed...

256

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Retrieval, Treatment, and Disposal of Tank Waste and Closure of Single-Shell Tanks at the Hanford Site, Richland, Washington" and "Environmental Impact Statement for the...

257

Progress Continues Toward Closure of Two Underground Waste Tanks...  

Office of Environmental Management (EM)

Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site...

258

Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

259

Bonfire Tests of High Pressure Hydrogen Storage Tanks | Department...  

Broader source: Energy.gov (indexed) [DOE]

Bonfire Tests of High Pressure Hydrogen Storage Tanks Bonfire Tests of High Pressure Hydrogen Storage Tanks These slides were presented at the International Hydrogen Fuel and...

260

Pump targets hydrogen risk in nuclear waste tank  

Science Journals Connector (OSTI)

Pump targets hydrogen risk in nuclear waste tank ... Researchers believe that thermal and radiolytic breakdown of organic compounds in the tank's wastes produces the hydrogen. ...

DEBORAH ILLMAN

1993-07-12T23:59:59.000Z

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Technical Assessment of Compressed Hydrogen Storage Tank Systems...  

Broader source: Energy.gov (indexed) [DOE]

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive...

262

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank...  

Broader source: Energy.gov (indexed) [DOE]

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for...

263

Hydrogen Tank Testing R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

04.29.2010 | Presented by Joe Wong, P.Eng. 04.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop Hydrogen Tank Safety Testing 1 POWERTECH - Hydrogen & CNG Services  Certification testing of individual high pressure components  Design Verification, Performance, End-of-Life testing of complete fuel systems  Design, construction, and operation of Hydrogen Fill Stations  Safety Studies  Standards Development 2 PRESENTATION  Discuss CNG Field Performance Data  Discuss Safety Testing of Type 4 Tanks  Current work to support Codes & Standards Development 3 Storage Tank Technologies 4 basic types of tank designs  Type 1 - all metal  Type 2 - metal liner with hoop wrapped composite  Type 3 - metal liner with fully wrapped composite  Type 4 - Plastic liner with

264

E-Print Network 3.0 - aboveground storage tanks Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tanks Search Powered by Explorit Topic List Advanced Search Sample search results for: aboveground storage tanks...

265

Mangan-zink-ferrite mit hoher sättigungspolarisation  

Science Journals Connector (OSTI)

Zusammenfassung Mangan-Zink-Ferrite für Transformatoren und Drosseln erfordern im Hinblick auf die Schaltungsauslegung entweder niedrige Verluste oder grosse magnetische Flussdichten. Eine Betrachtung der Abhängigkeit der Sättingungspolarisation, der magnetokristallinen Anisotropie und der Magnetostriktion von der Zusammensentzung führt auf die gegenwärtig am meisten verwendete Zusammensetzung mit Spitzeninduktionen von 330 mT bei Feldstärken von 250 A/m und einer Temperatur von 100°C. Wegen ihrer geringen Verluste sind diese Ferrite am besten für symmetrisch angesteuerte Transformatoren geeignet. Grössere Flussdichten (z.B. 370 mT) kann man mit eisenreichen Ferriten erhalten, deren Anisotropy durch Nickelsubstitutionen verbessert wurde. Diese neuen Ferrite sind sehr gut für unipolar betriebene und durch Gleichstrom vorbelastete Transformatoren und Drosseln geeignet. Manganese-zinc ferrites used for transformers and reactors in switched mode power supplies either call for low losses or for high flux density values, depending on the circuitry. An analysis of the compositional dependence of the saturation polarisation, the magneto-crystalline anisotropy and the magnetostriction leads to the today most used composition with a peak flux density of 330 mT at a field of 250 A/m and a temperature of 100°C. Because of their low losses these ferrites are best suitable for balanced load transformers. Higher flux densities (e.g. 370 mT) are obtained by using compositions with higher iron contents and by improving the anisotropy by nickel substitutions. These new ferrites offer advantages in unipolar and d.c.-biased modes of operation.

U König

1978-01-01T23:59:59.000Z

266

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron  

E-Print Network [OSTI]

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron Ein: Ingenieurin (w/m) der Elektrotechnik für die Leitung der Elektronikfertigung DESY Das Deutsche Elektronen mit Angabe der Kennziffer, auch per E-Mail: Deutsches Elektronen-Synchrotron DESY Personalabteilung

267

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron  

E-Print Network [OSTI]

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron Ein Produktdesignerin (w/m) DESY Das Deutsche Elektronen-Synchrotron DESY ist eines der weltweit führenden uns auf Ihre Bewerbung mit Angabe der Kennziffer, auch per E-Mail: Deutsches Elektronen

268

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron  

E-Print Network [OSTI]

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron Ein: Studentische IT-Hilfskräfte (w/m) 1st-Level-Support DESY Das Deutsche Elektronen-Synchrotron DESY ist eines der uns auf Ihre Bewerbung mit Angabe der Kennziffer, auch per E-Mail: Deutsches Elektronen

269

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron  

E-Print Network [OSTI]

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron Ein Beamline Ingenieurin (w/m) DESY Das Deutsche Elektronen-Synchrotron DESY ist eines der weltweit führenden mit Angabe der Kennziffer, auch per E-Mail: Deutsches Elektronen-Synchrotron DESY Personalabteilung

270

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron  

E-Print Network [OSTI]

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron Ein: Sachbearbeiterin Kreditoren (w/m) DESY Das Deutsche Elektronen-Synchrotron DESY ist eines der weltweit führenden Kindergarten. Wir freuen uns auf Ihre Bewerbung mit Angabe der Kennziffer, auch per E-Mail: Deutsches

271

MIT Department of Nuclear Engineering 1 Digital Instrumentation and Control  

E-Print Network [OSTI]

1 MIT Department of Nuclear Engineering 1 Digital Instrumentation and Control Issues in Nuclear Engineering 2 Nuclear Power Plant #12;2 MIT Department of Nuclear Engineering 3 Major Protection Functions Engineering 4 Background · Analog electro-mechanical systems in existing nuclear power plants are aging

Schweik, Charles M.

272

Mit Wasserstoff in die Zukunft — der BMW 750hL  

Science Journals Connector (OSTI)

Wasserstoff (H2), produziert aus Wasser mit Hilfe erneuerbarer Energien, ist der sauberste Energieträger überhaupt. Bei seiner Verbrennung mit Luftsauerstoff entsteht wieder das Ausgangsprodukt Wasser. Angesichts...

Dipl.-Ing. Klaus Pehr…

2002-02-01T23:59:59.000Z

273

Tank characterization report for single-shell tank 241-BY-104  

SciTech Connect (OSTI)

This characterization report summarizes the available information on the historical uses, current status, and the sampling and analysis results of waste contained in underground storage tank 241-BY-104. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09. Tank 241-BY-104 is one of 12 single-shell tanks located in the BY-Tank Farm in the 200 East Area of the Hanford Site. Tank 241-BY-104 entered service in the first quarter of 1950 with a transfer of metal waste from an unknown source. Through cascading, the tank was full of metal waste by the second quarter of 1951. The waste was sluiced in the second quarter of 1954. Uranium recovery (tributyl phosphate) waste was sent from tank 241-BY-107 during the second quarter of 1955 and from tank 241-BY-110 during the third quarter of 1955. Most of this waste was sent to a crib during the fourth quarter of 1955. During the third and fourth quarters of 1956 and the second and third quarters of 1957, the tank received waste from the in-plant ferrocyanide scavenging process (PFeCN2) from tanks 241-BY-106, -107, -108, and -110. This waste type is predicted to compose the bottom layer of waste currently in the tank. The tank received PUREX cladding waste (CWP) periodically from 1961 to 1968. Ion-exchange waste from cesium recovery operations was received from tank 241-BX-104 during the second and third quarters of 1968. Tank 241-BY-104 received evaporator bottoms waste from the in-tank solidification process that was conducted in the BY-Tank Farm 0247from tanks 241 -BY- 109 and 241 -BY- 1 12 from 1970 to 1974. The upper portion of tank waste is predicted to be composed of BY saltcake. Tank 241-BY-104 was declared inactive in 1977. Waste was saltwell pumped from the tank during the third quarter of 1982 and the fourth quarter of 1985. Table ES-1 and Figure ES-1 describe tank 241-BY-104 and its status. The tank has an operating capacity of 2,869 kL and presently contains an estimated 1,234 kL of noncomplexed waste. Of this total volume, 568 kL are estimated to be sludge and 666 kL are estimated to be saltcake. The Hanlon values are not used because they are inconsistent with waste surface level measurements, and they will not be updated until the tank level stabilizes and the new surface photos are taken. This report summarizes the collection and analysis of two rotary-mode core samples obtained in October and November 1995 and reported in the Final Report for Tank 241-BY-104, Rotary Mode Cores 116 and 117. Cores 116 and 117 were obtained from risers 5 and IIA, respectively. The sampling event was performed to satisfy the requirements listed in the following documents: Tank Safety Screening Data Quality Objective , Data Requirements for the Ferrocyanide Safety Issue Developed through the Data Quality Objective Process, Data Quality Objective to Support Resolution of the Organic Fuel Rich Tank Safety Issue, Test Plan for Samples from Hanford Waste Tanks 241-BY-103, BY-104, BY-105, BY-106, BY-108, BY-110, YY-103, U-105, U-107, U-108, and U-109.

Benar, C.J.

1996-09-26T23:59:59.000Z

274

ELIAS Towe, Center Director  

E-Print Network [OSTI]

the generation of hydrogen as a fuel for fuel cells, novel fuel cell technologies, and spectrally broadband photovoltaic cells for solar energy conversion. The secondary focus of the Center is on nano

Goldstein, Seth Copen

275

Savannah River Tank Waste Residuals  

Broader source: Energy.gov (indexed) [DOE]

Savannah Savannah River Savannah River Tank Waste Residuals HLW Corporate Board November 6, 2008 1 November 6, 2008 Presentation By Sherri R. Ross Department of Energy Savannah River Operations Office The Issue * How clean is clean? * Ultimate Challenge - Justify highly radioactive radionuclides have been removed to the maximum extent practical? 2 removed to the maximum extent practical? - Building compelling regulatory documentation that will withstand intense scrutiny §3116 Requirements 1. Does not require disposal in deep geological repository 2. Highly radioactive radionuclides removed to the maximum extent practical 3. Meet the performance objectives in 10 CFR Part 3 3. Meet the performance objectives in 10 CFR Part 61, Subpart C 4. Waste disposed pursuant to a State-approved closure plan or permit Note: If it is anticipated that Class C disposal limits will be exceeded, additional

276

TANK MIXING STUDY WITH FLOW RECIRCULATION  

SciTech Connect (OSTI)

The primary objective of this work is to quantify the mixing time when two miscible fluids are mixed by one recirculation pump and to evaluate adequacy of 2.5 hours of pump recirculation to be considered well mixed in SRS tanks, JT-71/72. The work scope described here consists of two modeling analyses. They are the steady state flow pattern analysis during pump recirculation operation of the tank liquid and transient species transport calculations based on the initial steady state flow patterns. The modeling calculations for the mixing time are performed by using the 99% homogeneity criterion for the entire domain of the tank contents.

Lee, S.

2014-06-25T23:59:59.000Z

277

Tank 241-BY-104 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank BY-104 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-104 using the vapor sampling system (VSS) on June 24, 1994 by WHC Sampling and Mobile Laboratories. Air from the tank BY-104 headspace was withdrawn via a heated sampling probe mounted in riser 10A, and transferred via heated tubing to the VSS sampling manifold. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

278

CHEN 3650 -Lab 6 -Interacting Tanks Part A Computer Exercise  

E-Print Network [OSTI]

CHEN 3650 - Lab 6 - Interacting Tanks Part A ­ Computer Exercise This laboratory exercise units. Consider the train of tanks as depicted in Fig. 1. You may have seen similar tanks before, the area of tank 3 is also zero. Therefore, you may wish to start your simulation at steady state. Part B

Ashurst, W. Robert

279

CHEN 3650 SP14 -Lab 2 Two Tanks in Series  

E-Print Network [OSTI]

CHEN 3650 SP14 - Lab 2 Two Tanks in Series Part A ­ Computer Exercise This laboratory exercise is related to the classical system consisting of two tanks in series. That is, the output of one tank is the input to another tank. Usually, this problem is encountered in a process control class

Ashurst, W. Robert

280

The Boeing Company Project Fuel Tank Design Project Recap  

E-Print Network [OSTI]

The Boeing Company Project Fuel Tank Design Project Recap The Boeing Company came. Using solid baffles helps to separate the tank into separate and smaller sub tanks which helps to distribute and minimize the force of the slosh on the fuel tank. The problem in using solid baffles

Demirel, Melik C.

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Global Intermodal Tank Container Management for the Chemical Industry  

E-Print Network [OSTI]

Global Intermodal Tank Container Management for the Chemical Industry Alan L. Erera, Juan C on asset management problems faced by tank container operators, and formulates an operational tank modes: pipeline, bulk tankers, parcel tankers, tank containers, or drums. Pipeline and bulk tankers

Erera, Alan

282

August 2012 Who Are Our Dirt Tanks Named After?  

E-Print Network [OSTI]

August 2012 Who Are Our Dirt Tanks Named After? Jornada Experimental Range Maxwell Tank In 2001 as coordinator and pilot. Maxwell Tank was named in her honor in 2002. Although Maxwell enjoys the notoriety of having a dirt tank named after her, she has yet to see her namesake. F. N. Ares F.W. Engholm K

283

THINK TANK Online Data Privacy Policy Personal Information  

E-Print Network [OSTI]

THINK TANK Online Data Privacy Policy Personal Information The THINK TANK at the University and Guidelines Security When users submit personally identifiable information via the THINK TANK Web Site, the information is protected both online and off-line. All personally identifiable information the THINK TANK

Ziurys, Lucy M.

284

Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Promulgation of Promulgation of Renewable Fuel Storage Tank Regulations to someone by E-mail Share Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Facebook Tweet about Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Twitter Bookmark Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Google Bookmark Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Delicious Rank Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Digg Find More places to share Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on AddThis.com... More in this section... Federal

285

Alternative Fuels Data Center: Filling CNG Fuel Tanks  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Filling CNG Fuel Tanks Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Fuel System & Cylinders Fuel Safety Traffic Accident Filling CNG Tanks Laws & Incentives Filling CNG Fuel Tanks Unlike liquid fuel, which consistently holds about the same volume of fuel

286

Tank characterization report for single-shell tank 241-BY-110  

SciTech Connect (OSTI)

This characterization report summarizes information on the historical uses, current status, and sampling and analysis results of waste stored in tank 241-BY-110.

Schreiber, R.D.

1996-09-16T23:59:59.000Z

287

Buckling of oil storage tanks in SPPL tank farm during the 1979 Imperial Valley earthquake  

SciTech Connect (OSTI)

An oil storage tank that suffered damage during the 1979 Imperial Valley earthquake is studied using a laboratory model. The tank is unanchored and includes a floating roof. The tank is subjected to a single horizontal axis base excitation. Buckling is studied under both harmonic and simulated earthquake base motion. The model buckling results are in reasonable agreement with the field observations. It was also found that the floating roof has no effect on the buckling behavior. Comparison with the API design provisions shows that the empirical model used as the basis of the code for both tip-over and bucking have little resemblance to the actual tank behavior.

Shih, C.F.; Babcock, C.D.

1987-05-01T23:59:59.000Z

288

Buckling of oil storage tanks in sppl tank farm during the 1979 Imperial Valley earthquake  

SciTech Connect (OSTI)

An oil storage tank that suffered damage during the 1979 Imperial Valley earthquake is studied using a laboratory model. The tank is unanchored and includes a floating roof. The tank is subjected to a single horizontal axis base excitation. Buckling is studied under both harmonic and simulated earthquake base motion. The model buckling results are in reasonable agreement with the field observations. It was also found that the floating roof has no effect on the buckling behavior. Comparison with the API design provisions shows that the empirical model used for both tip-over and buckling have little resemblance to the actual tank behavior

Shih, C.F.; Babcock, C.D.

1984-06-01T23:59:59.000Z

289

EM Tank Waste Subcommittee Report for SRS and Hanford Tank Waste...  

Office of Environmental Management (EM)

liability. EM estimates that retrieval and processing of waste contained within these tanks will be completed between the years 2050 and 2062. A number of strategies are being...

290

Savannah River Site- Tank 48 Transmittal Letter of SRS Tank 48 Review  

Broader source: Energy.gov [DOE]

This letter reviews the Path Forward for Savannah River Site Tank 48 and outlines best judgement on all issues and recommendations on how to procede.

291

The Hanford Story: Tank Waste Cleanup  

Broader source: Energy.gov [DOE]

This fourth chapter of The Hanford Story explains how the DOE Office of River Protection will use the Waste Treatment Plant to treat the 56 million gallons of radioactive waste in the Tank Farms.

292

Underground Storage Tank Management (District of Columbia)  

Broader source: Energy.gov [DOE]

The  installation, upgrade and operation of any petroleum UST (>110 gallons) or hazardous substance UST System, including heating oil tanks over 1,100 gallons capacity in the District requires a...

293

Vitrification technology for Hanford Site tank waste  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Hanford Site has an inventory of 217,000 m{sup 3} of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing.

Weber, E.T.; Calmus, R.B.; Wilson, C.N.

1995-04-01T23:59:59.000Z

294

Vapor characterization of Tank 241-C-103  

SciTech Connect (OSTI)

The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program.

Huckaby, J.L. [Westinghouse Hanford Co., Richland, WA (United States); Story, M.S. [Northwest Instrument Systems, Inc. Richland, WA (United States)

1994-06-01T23:59:59.000Z

295

Double shell tank waste analysis plan  

SciTech Connect (OSTI)

Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations.

Mulkey, C.H.; Jones, J.M.

1994-12-15T23:59:59.000Z

296

Chemical Stabilization of Hanford Tank Residual Waste  

SciTech Connect (OSTI)

Three different chemical treatment methods were tested for their ability to stabilize residual waste from Hanford tank C-202 for reducing contaminant release (Tc, Cr, and U in particular). The three treatment methods tested were lime addition [Ca(OH)2], an in-situ Ceramicrete waste form based on chemically bonded phosphate ceramics, and a ferrous iron/goethite treatment. These approaches rely on formation of insoluble forms of the contaminants of concern (lime addition and ceramicrete) and chemical reduction followed by co-precipitation (ferrous iron/goethite incorporation treatment). The results have demonstrated that release of the three most significant mobile contaminants of concern from tank residual wastes can be dramatically reduced after treatment compared to contact with simulated grout porewater without treatment. For uranium, all three treatments methods reduced the leachable uranium concentrations by well over three orders of magnitude. In the case of uranium and technetium, released concentrations were well below their respective MCLs for the wastes tested. For tank C-202 residual waste, chromium release concentrations were above the MCL but were considerably reduced relative to untreated tank waste. This innovative approach has the potential to revolutionize Hanford’s tank retrieval process, by allowing larger volumes of residual waste to be left in tanks while providing an acceptably low level of risk with respect to contaminant release that is protective of the environment and human health. Such an approach could enable DOE to realize significant cost savings through streamlined retrieval and closure operations.

Cantrell, Kirk J.; Um, Wooyong; Williams, Benjamin D.; Bowden, Mark E.; Gartman, Brandy N.; Lukens, Wayne W.; Buck, Edgar C.; Mausolf, Edward J.

2014-03-01T23:59:59.000Z

297

RECENT PROGRESS IN DOE WASTE TANK CLOSURE  

SciTech Connect (OSTI)

The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

Langton, C

2008-02-01T23:59:59.000Z

298

Tank farms criticality safety manual  

SciTech Connect (OSTI)

This document defines the Tank Farms Contractor (TFC) criticality safety program, as required by Title 10 Code of Federal Regulations (CFR), Subpart 830.204(b)(6), ''Documented Safety Analysis'' (10 CFR 830.204 (b)(6)), and US Department of Energy (DOE) 0 420.1A, Facility Safety, Section 4.3, ''Criticality Safety.'' In addition, this document contains certain best management practices, adopted by TFC management based on successful Hanford Site facility practices. Requirements in this manual are based on the contractor requirements document (CRD) found in Attachment 2 of DOE 0 420.1A, Section 4.3, ''Nuclear Criticality Safety,'' and the cited revisions of applicable standards published jointly by the American National Standards Institute (ANSI) and the American Nuclear Society (ANS) as listed in Appendix A. As an informational device, requirements directly imposed by the CRD or ANSI/ANS Standards are shown in boldface. Requirements developed as best management practices through experience and maintained consistent with Hanford Site practice are shown in italics. Recommendations and explanatory material are provided in plain type.

FORT, L.A.

2003-03-27T23:59:59.000Z

299

Meeting the Next Generation of Energy Entrepreneurs at MIT Showcase |  

Broader source: Energy.gov (indexed) [DOE]

Meeting the Next Generation of Energy Entrepreneurs at MIT Showcase Meeting the Next Generation of Energy Entrepreneurs at MIT Showcase Meeting the Next Generation of Energy Entrepreneurs at MIT Showcase May 6, 2011 - 12:50pm Addthis David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy Tuesday afternoon I had the honor of sharing the MIT Clean Energy Prize Showcase floor with 25 teams of America's most promising entrepreneurs. Representing the best in class from an initial field of 80, the finalists competing for this year's $200,000 grand prize exemplify the combination of technical prowess and passion for problem-solving that have consistently made the United States the world's innovation engine. Ever ready to rev that engine, the Department of Energy is a proud founding sponsor of this contest. A student-run, national business plan competition

300

MIT- Center for Transportation and Logistics | Open Energy Information  

Open Energy Info (EERE)

MIT- Center for Transportation and Logistics MIT- Center for Transportation and Logistics Jump to: navigation, search Logo: MIT- Center for Transportation and Logistics Name MIT- Center for Transportation and Logistics Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Region Greater Boston Area Coordinates 42.359089°, -71.093412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.359089,"lon":-71.093412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Significant Roles Paid by Mit Solar House IV  

Science Journals Connector (OSTI)

Experiences at the solar energy project of Massachusetts Institute of Technology with MIT Solar House IV during the two years period ... by this project for the later period of solar energy research are described...

Ken-ichi Kimura

2009-01-01T23:59:59.000Z

302

WRF-Var implementation for data assimilation experimentation at MIT  

E-Print Network [OSTI]

The goal of this Masters project is to implement the WRF model with 3D variational assimilation (3DVAR) at MIT. A working version of WRF extends the scope of experimentation to mesoscale problems in both real and idealized ...

Williams, John K. (John Kenneth)

2008-01-01T23:59:59.000Z

303

E-Print Network 3.0 - abfallverbrennungsanlage mit rostfeuerung...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Occasional Parking n Smart... Way Elite Discount n Visitor Parking n Event Parking n Motorcycle Parking Shuttle Services http:web.mit... Lab Wellesley College M2 MBTA Pass...

304

E-Print Network 3.0 - austenitischen rohrleitungsnaehten mit...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Occasional Parking n Smart... Way Elite Discount n Visitor Parking n Event Parking n Motorcycle Parking Shuttle Services http:web.mit... Lab Wellesley College M2 MBTA Pass...

305

Durch die CO2-freie Strom-erzeugung mit erneuerbaren  

E-Print Network [OSTI]

Offshore-Anteil von 6.800 MW in Nord- und Ost- see gerechnet. Für 2030 wer- den sogar 25.000 MW im Off Gleichstromkabel Strom in das Hochspannungsnetz einspei- sen. Die Errichtung und der Betrieb küstenferner Wind- parks in Wassertiefen bis 30 m mit Anlagen, deren Gondel zusammen mit den Rotor- blättern mehr als 400

Vollmer, Heribert

306

Supporting document for the historical tank content estimate for SY-tank farm  

SciTech Connect (OSTI)

The purpose of this historical characterization document is to present the synthesized summaries of the historical records concerning the physical characteristics, radiological, and chemical composition of mixed wastes stored in underground double-shell tanks and the physical condition of these tanks. The double-shell tanks are located on the United States Department of Energy`s Hanford Site, approximately 25 miles northwest or Richland, Washington. The document will be used to assist in characterizing the waste in the tanks in conjunction with the current program of sampling and analyzing the tank wastes. Los Alamos National Laboratory (LANL) developed computer models that used the historical data to attempt to characterize the wastes and to generate estimates of each tank`s inventory. A historical review of the tanks may reveal anomalies or unusual contents that could be critical to characterization and post characterization activities. This document was developed by reviewing the operating plant process histories, waste transfer data, and available physical and chemical data from numerous resources. These resources were generated by numerous contractors from 1945 to the present. Waste characterization, the process of describing the character or quality of a waste, is required by Federal law (Resource Conservation and Recovery Act [RCRA]) and state law (Washington Administrative Code [WAC] 173-303, Dangerous Waste Regulations). Characterizing the waste is necessary to determine methods to safely retrieve, transport, and/or treat the wastes.

Brevick, C.H.

1997-08-12T23:59:59.000Z

307

Tank 241-BY-110 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank BY-110 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-110 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-110 using the vapor sampling system (VSS) on November 11, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 27 C. Air from the Tank BY-110 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 12B, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

308

Tank 241-BY-108 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-108 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-108 using the vapor sampling system (VSS) on october 27, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 25.7 C. Air from the Tank BY-108 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 1, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

309

Tank 241-BY-105 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank BY-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-105 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-105 using the vapor sampling system (VSS) on July 7, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 26 C. Air from the Tank BY-105 headspace was withdrawn via a heated sampling probe mounted in riser 10A, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 65 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

310

Tank 241-BY-106 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank BY-106 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-106 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-106 using the vapor sampling system (VSS) on July 8, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 27 C. Air from the Tank BY-106 headspace was withdrawn via a heated sampling probe mounted in riser 10B, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 65 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

311

Stress evaluation of the primary tank of a double-shell underground storage tank facility  

SciTech Connect (OSTI)

A facility called the Multi-Function Waste Tank Facility (MWTF) is being designed at the Department of Energy`s Hanford site. The MWTF is expected to be completed in 1998 and will consist of six underground double-shell waste storage tanks and associated systems. These tanks will provide safe and environmentally acceptable storage capacity to handle waste generated during single-shell and double-shell tank safety mitigation and remediation activities. This paper summarizes the analysis and qualification of the primary tank structure of the MWTF, as performed by ICF Kaiser Hanford during the latter phase of Title 1 (Preliminary) design. Both computer finite element analysis (FEA) and hand calculations methods based on the so-called Tank Seismic Experts Panel (TSEP) Guidelines were used to perform the analysis and evaluation. Based on the evaluations summarized in this paper, it is concluded that the primary tank structure of the MWTF satisfies the project design requirements. In addition, the hand calculations performed using the methodologies provided in the TSEP Guidelines demonstrate that, except for slosh height, the capacities exceed the demand. The design accounts for the adverse effect of the excessive slosh height demand, i.e., inadequate freeboard, by increasing the hydrodynamic wall and roof pressures appropriately, and designing the tank for such increased pressures.

Atalay, M.B. [ICF Kaiser Engineers, Inc., Oakland, CA (United States); Stine, M.D. [ICF Kaiser Hanford Co., Richland, WA (United States); Farnworth, S.K. [Westinghouse Hanford Co., Richland, WA (United States)

1994-12-01T23:59:59.000Z

312

Tank 241-C-106 in-tank imaging system operational test report  

SciTech Connect (OSTI)

This document presents the results of operational testing of the 241-C-106 In-Tank Video Camera Imaging System. This imaging system was installed as a component of Project W-320 to monitor sluicing and waste retrieval activities in Tank 241-C-106.

Pedersen, L.T.

1998-07-07T23:59:59.000Z

313

E-Print Network 3.0 - automated tank calibrations Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Reviewed 809) Summary: Safe Operating Procedure (Reviewed 809) UNDERGROUND STORAGE TANKS - AUTOMATIC TANK GAUGING... tank gauging (ATG) system requirements for Underground...

314

A Comparison of Popular Remedial Technologies for Petroleum Contaminated Soils from Leaking Underground Storage Tanks  

E-Print Network [OSTI]

Underground Storage Tanks. Chelsea: Lewis Publishers.and Underground Storage Tank Sites. Database on-line.Michigan Underground Storage Tank Rules. Database on-line.

Kujat, Jonathon D.

1999-01-01T23:59:59.000Z

315

E-Print Network 3.0 - ax tank farm Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In collaboration with The Dow Chemical Company 12;A tank farm is a set of storage tanks that hold finished product... product Dedicated Tanks Without available storage ......

316

Evaluation of TANK water heater simulation model as embedded in HWSim  

E-Print Network [OSTI]

this scheme for operating TANK with HWSim is successful.LBNL # Evaluation of TANK water heater simulation model asCalifornia. Evaluation of TANK water heater simulation model

Lutz, Jim

2012-01-01T23:59:59.000Z

317

E-Print Network 3.0 - alcohol tank installed Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND ENVIRONMENTAL SCIENCES Summary: inspection. Risers should be installed on all new tanks and can even be retrofitted for existing tanks. All... that the septic tank needs...

318

Regulation of Leaky Underground Fuel Tanks: An Anatomy of Regulatory Failure  

E-Print Network [OSTI]

any leaks. (b) Most storage tank owners have only vagueaddition, regulations for tanks installed prior to Januarypertaining to existing tanks are more appropriately termed

White, Christen Carlson

1995-01-01T23:59:59.000Z

319

Assessing the Effectiveness of California's Underground Storage Tank Annual Inspection Rate Requirements  

E-Print Network [OSTI]

Leaks from Underground Storage Tanks by Media Affected Soilfrom Underground Storage Tank Facilities Cities CountiesCities Counties Leaks per Underground Storage Tank Facility

Cutter, W. Bowman

2008-01-01T23:59:59.000Z

320

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

E-Print Network [OSTI]

Survey of Electric Storage Tank Water Heater Efficiency andSurvey of Electric Storage Tank Water Heater Efficiency andby electric resistance storage tank water heaters (geysers),

Johnson, Alissa

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Tank Waste Corporate Board Meeting 08/01/12 | Department of Energy  

Office of Environmental Management (EM)

80112 Tank Waste Corporate Board Meeting 080112 The following documents are associated with the Tank Waste Corporate Board Meeting held on August 1st, 2012. Tank Waste...

322

Microsoft Word - Tank Waste Report 9-30-05.doc  

Broader source: Energy.gov (indexed) [DOE]

Accelerated Tank Waste Retrieval Accelerated Tank Waste Retrieval Activities at the Hanford Site DOE/IG-0706 October 2005 REPORT ON THE ACCELERATED TANK WASTE RETRIEVAL ACTIVITIES AT THE HANFORD SITE TABLE OF CONTENTS Tank Waste Retrieval Details of Finding 1 Recommendations and Comments 4 Appendices Objective, Scope, and Methodology 6 Prior Reports 7 Management Comments 8 Tank Waste Retrieval Page 1 Details of Finding Tank Waste The Department will not meet Tri-Party Agreement (Agreement) Retrieval Activities milestones for the retrieval of waste from the single-shell tanks located at the C-Tank Farm within schedule and cost. Based on the current C-Tank Farm retrieval schedule and the amount of waste retrieved to date, the Department will not accomplish its

323

Independent Activity Report, Hanford Tank Farms - April 2013 | Department  

Broader source: Energy.gov (indexed) [DOE]

Tank Farms - April 2013 Tank Farms - April 2013 Independent Activity Report, Hanford Tank Farms - April 2013 April 2013 Operational Awareness at the Hanford Tank Farms [HIAR-HANFORD-2013-04-15] The Office of Health, Safety and Security (HSS) Office of Safety and Emergency Management Evaluations (HS-45) Site Lead conducted an operational awareness visit to the Office of River Protection (ORP) to tour the Hanford Tank Farms, observe video inspection of single shell and double shell tanks, and observe Tank Farm project and staff meetings. Independent Activity Report, Hanford Tank Farms - April 2013 More Documents & Publications Independent Oversight Activity Report, Office of River Protection - May 2013 Independent Oversight Activity Report, Hanford Tank Farms - June 2013 Independent Activity Report, Office of River Protection Waste Treatment

324

Savings Project: Insulate Your Water Heater Tank | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Addthis Project Level medium Energy Savings $20-$45 annually Time to Complete 1.5 hours Overall Cost $30 Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Just like insulating your walls or roof, insulating your hot water tank is an easy and inexpensive way to improve energy efficiency and save you money each month. If your water tank is new, it is likely already insulated. If you have an older hot water tank, check to see if it has insulation with an R-value of at least 24. If not, consider insulating your water tank, which

325

Independent Oversight Review, Hanford Tank Farms - November 2011 |  

Broader source: Energy.gov (indexed) [DOE]

Review, Hanford Tank Farms - November 2011 Review, Hanford Tank Farms - November 2011 Independent Oversight Review, Hanford Tank Farms - November 2011 November 2011 Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an independent oversight review of the draft amendment to the Hanford Tank Farms safety basis for upgrading the double-shell tank (DST) primary tank ventilation (PTV) systems to safety-significant designation. The Tank Farms are Hazard Category 2 DOE nuclear facilities. The review was performed during the period July 25 - August 12, 2011 by the HSS Office of Enforcement and Oversight's Office of Safety and Emergency Management

326

System for removing liquid waste from a tank  

DOE Patents [OSTI]

A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid there through. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank. 2 figures.

Meneely, T.K.; Sherbine, C.A.

1994-04-26T23:59:59.000Z

327

System for removing liquid waste from a tank  

DOE Patents [OSTI]

A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid therethrough. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank.

Meneely, Timothy K. (Penn Hills, PA); Sherbine, Catherine A. (N. Versailles Township, Allegheny County, PA)

1994-01-01T23:59:59.000Z

328

Resources to Help Cope in Times of Crisis List created by the MIT Work-Life Center to support the MIT community in the wake of recent violent  

E-Print Network [OSTI]

Resources to Help Cope in Times of Crisis List created by the MIT Work-Life Center to support Work-Life Center http://hrweb.mit.edu/worklife/welcome Services to help balance professional work://together.mit.edu/ Online portal to support resources for students in need of advice, help, and support. Ombuds Office http

Polz, Martin

329

Ferrocyanide tank waste stability. Supplement 2  

SciTech Connect (OSTI)

Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove {sup 137}CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

Fowler, K.D.

1993-01-01T23:59:59.000Z

330

Tank Waste System Integrated Project Team  

Broader source: Energy.gov (indexed) [DOE]

Decisional Draft Decisional Draft 1 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained. Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve Schneider Office of Engineering and Technology Tank Waste Corporate Board July 29, 2009 2 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary

331

Hanford Single-Shell Tank Integrity Program  

Broader source: Energy.gov (indexed) [DOE]

Operations Contract Hanford Single Hanford Single- -Shell Shell Hanford Single Hanford Single Shell Shell Tank Integrity Tank Integrity Program Program Herbert S Berman Herbert S Berman Herbert S. Berman Herbert S. Berman July 29, 2009 July 29, 2009 1 Page 1 Tank Operations Contract Introduction * The Hanford site's principle historic mission was plutonium production for the manufacture of nuclear weapons. * Between 1944 and 1988, the site operated nine graphite- moderated light-water production reactors to irradiate moderated, light-water, production reactors to irradiate fuel and produce plutonium. * Four large chemical separations plants were run to extract plutonium from the fuel, and a variety of laboratories, support facilities, and related infrastructure to support production

332

Tank Stabilization September 30, 1999 Summary  

Broader source: Energy.gov (indexed) [DOE]

United States Court Easter District of Washington United States Court Easter District of Washington Consent Decree (as amended on September 19, 2000.) State Washington Agreement Type Consent Decree Legal Driver(s) RCRA Scope Summary Renegotiate a schedule to pump liquid radioactive hazardous waste from single-shell tanks to double-shell tanks Parties DOE; State of Washington, Department of Ecology Date 09/30/1999; Amended 09/19/2000 SCOPE * Address DOE's obligations to the State of Washington, Department of Ecology concerning missed and remaining milestones under the Hanford Federal Facility Agreement (HFFACO) and Consent Order of May 15, 1989. * Establish a judicially enforceable schedule for pumping radioactive hazardous waste from single-shell to double-shell tanks. ESTABLISHING MILESTONES

333

Double Shell Tank (DST) Utilities Specification  

SciTech Connect (OSTI)

This specification establishes the performance requirements and provides the references to the requisite codes and standards to he applied during the design of the Double-Shell Tank (DST) Utilities Subsystems that support the first phase of waste feed delivery (WFD). The DST Utilities Subsystems provide electrical power, raw/potable water, and service/instrument air to the equipment and structures used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. The DST Utilities Subsystems also support the equipment and structures used to deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where the waste will be immobilized. This specification is intended to be the basis for new projects/installations. This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program.

SUSIENE, W.T.

2000-04-27T23:59:59.000Z

334

Tank characterization report for single-shell tank 241-C-106  

SciTech Connect (OSTI)

This tank characterization report summarizes information on the historical uses, current status, and sampling and analysis results of waste stored in single-shell underground tank 241-C-106. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09 (Ecology et al. 1996). Tank 241-C-106 is the only tank on the High-Heat Load Watch List. As a result of the analyses addressed by this report, the supernate and upper 60 percent of the sludge in the tank do not pose any safety concerns in addition to the high-heat load issue based on the decision limits of the safety screening data quality objective (DQO) (Dukelow et al. 1995). The lower 40 percent of the sludge was not sampled; therefore, no statements regarding the safety of this waste can be made. A portion of the tank sludge is scheduled to be retrieved in fiscal year 1997 in order to mitigate the high-heat load in the tank.

Schreiber, R.D.

1996-09-25T23:59:59.000Z

335

E-Print Network 3.0 - actual hanford tank Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

T. M. Poston Summary: -West Areas on the Hanford Site. The tank farms house 177 tanks (149 single-shell tanks and 28 double... Hanford's tank waste). Hanford At A Glance...

336

High-Pressure Tube Trailers and Tanks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Berry Berry Salvador M. Aceves Lawrence Livermore National Laboratory (925) 422-0864 saceves@LLNL.GOV DOE Delivery Tech Team Presentation Chicago, Illinois February 8, 2005 Inexpensive delivery of compressed hydrogen with ambient temperature or cryogenic compatible vessels * Pressure vessel research at LLNL Conformable (continuous fiber and replicants) Cryo-compressed * Overview of delivery options * The thermodynamics of compressed and cryo-compressed hydrogen storage * Proposed analysis activities * Conclusions Outline We are investigating two techniques for reduced bending stress: continuous fiber vessels and vessels made of replicants Conformable tanks require internal stiffeners (ribs) to efficiently support the pressure and minimize bending stresses Spherical and cylindrical tanks

337

Drift Tube Linac Conditioning of Tank1  

E-Print Network [OSTI]

Tank1 of the Drift Tube Linac (DTL) of the Linac4 has been conditioned at the Linac4 tunnel. The tank was tuned for resonance at 352.2 MHz, and stable operation has been achieved with 725 µs long RF pulses at a repetition rate of 1 Hz. The maximum RF level that has been reached is 810 kW with a pulse width of 600 µs. Since this was the first RF structure exclusively conditioned in the Linac4 tunnel with the operation and control software of Linac4, some related issues and limitations had to be taken into account.

Shafqat, N; Toor, W A

2014-01-01T23:59:59.000Z

338

Tank Remote Repair System Conceptual Design  

SciTech Connect (OSTI)

This document describes two conceptual designs for a Tank Remote Repair System to perform leak site repairs of double shell waste tank walls (Types I, II, III, and IIIA) from the annulus space. The first concept uses a magnetic wall crawler and an epoxy patch system and the second concept uses a magnetic wall crawler and a magnetic patch system. The recommended concept uses the magnetic patch system, since it is simpler to deliver, easier to apply, and has a higher probability of stopping an active leak.

Kriikku, E.

2002-12-06T23:59:59.000Z

339

Hanford tanks initiative alternatives generation and analysis plan for AX tank farm closure basis  

SciTech Connect (OSTI)

The purpose of this document is: (1) to review the HTI Mission Analysis and related documents to determine their suitability for use in developing performance measures for AX Tank Farm closure, (2) to determine the completeness and representativeness of selected alternative closure scenarios, (3) to determine the completeness of current plans for development of tank end-state criteria, and (4) to analyze the activities that are necessary and sufficient to recommend the end-state criteria and performance measures for the AX Tank Farm and recommend activities not currently planned to support establishment of its end-state criteria.

Schaus, P.S., Westinghouse Hanford, Richland, WA

1997-10-22T23:59:59.000Z

340

Tank characterization report for double-shell tank 241-AW-105  

SciTech Connect (OSTI)

One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which addresses one of the requirements specified in the safety screening DQO. The statistical analysis and numerical manipulation of data used in issue resolution are reported in Appendix C. Appendix D contains the evaluation to establish the best basis for the inventory estimate and the statistical analysis performed for this evaluation. A bibliography that resulted from an in-depth literature search of all known information sources applicable to tank 241-AW-105 and its respective waste types is contained in Appendix E. A majority of the documents listed in Appendix E may be found in the Tank Characterization and Safety Resource Center.

Sasaki, L.M.

1997-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Independent Oversight Activity Report, Hanford Tank Farms - June 2013 |  

Broader source: Energy.gov (indexed) [DOE]

Oversight Activity Report, Hanford Tank Farms - June Oversight Activity Report, Hanford Tank Farms - June 2013 Independent Oversight Activity Report, Hanford Tank Farms - June 2013 June 2013 Office of River Protection Assessment of Contractor Quality Assurance, Operational Awareness at the Hanford Tank Farms [HIAR NNSS-2012-12-03] The Office of Health, Safety and Security (HSS), Office of Safety and Emergency Management Evaluations (Independent Oversight) Site Lead conducted an operational awareness visit to the ORP Hanford Tank Farms, observed a Tank Farms morning meeting, toured the C Tank Farm, and observed a heavy (34,000 pound) lift. Independent Oversight Activity Report, Hanford Tank Farms - June 2013 More Documents & Publications Independent Activity Report, Office of River Protection Waste Treatment

342

Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Publications » Technology Bulletins Publications » Technology Bulletins Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory to someone by E-mail Share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Facebook Tweet about Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Twitter Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Google Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Delicious Rank Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Digg Find More places to share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on AddThis.com... Propane Tank Overfill Safety Advisory

343

High-Level Liquid Waste Tank Integrity Workshop - 2008  

Broader source: Energy.gov (indexed) [DOE]

Liquid Waste Tank Integrity Liquid Waste Tank Integrity Workshop - 2008 Karthik Subramanian Bruce Wiersma November 2008 High Level Waste Corporate Board Meeting karthik.subramanian@srnl.doe.gov bruce.wiersma@srnl.doe.gov 2 Acknowledgements * Bruce Wiersma (SRNL) * Kayle Boomer (Hanford) * Michael T. Terry (Facilitator) * SRS - Liquid Waste Organization * Hanford Tank Farms * DOE-EM 3 Background * High level radioactive waste (HLW) tanks provide critical interim confinement for waste prior to processing and permanent disposal * Maintaining structural integrity (SI) of the tanks is a critical component of operations 4 Tank Integrity Workshop - 2008 * Discuss the HLW tank integrity technology needs based upon the evolving waste processing and tank closure requirements along with its continued storage mission

344

Independent Oversight Review, Hanford Tank Farms - April 2013...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

April 2013 Independent Oversight Review, Hanford Tank Farms - April 2013 April 2013 Review of Management of Safety Systems at the Hanford Tank Farms The U.S. Department of Energy...

345

H-Tank Farm Waste Determination | Department of Energy  

Office of Environmental Management (EM)

(SRS) in South Carolina to complete cleanup and closure of the underground liquid waste tanks in the H Tank Farm as they are emptied and cleaned. The action marked a major...

346

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

three key areas: 1. Retrieval, treatment, and disposal of waste from 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) and closure of the SST system. In this TC & WM...

347

Independent Oversight Review of the Hanford Tank Farms Safety...  

Energy Savers [EERE]

of liquid or semi-solid radioactive and chemical waste stored in 177 underground tanks at the Hanford Site. ORP serves as DOE line management for two functions: the Tank...

348

FULL FUEL CYCLE ASSESSMENT TANK TO WHEELS EMISSIONS  

E-Print Network [OSTI]

FULL FUEL CYCLE ASSESSMENT TANK TO WHEELS EMISSIONS AND ENERGY CONSUMPTION Prepared For: California to Tank, Criteria Pollutants, Multi-media impacts, EMFAC #12;#12;vii Table of Contents Acknowledgements

349

Alaska Underground Storage Tanks Website | Open Energy Information  

Open Energy Info (EERE)

Tanks Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Underground Storage Tanks Website Author Division of Spill Prevention and Response...

350

NMAC 20.5 Petroleum Storage Tanks | Open Energy Information  

Open Energy Info (EERE)

Petroleum Storage Tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 20.5 Petroleum Storage TanksLegal Abstract...

351

DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project...  

Broader source: Energy.gov (indexed) [DOE]

Delivery High-Pressure Tanks and Analysis Project Review Meeting DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting On February 8-9, 2005, the Department...

352

Idaho DEQ Storage Tanks Webpage | Open Energy Information  

Open Energy Info (EERE)

Tanks Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho DEQ Storage Tanks Webpage Abstract This webpage provides an overview of the...

353

Notification for Underground Storage Tanks (EPA Form 7530-1)...  

Open Energy Info (EERE)

Notification for Underground Storage Tanks (EPA Form 7530-1) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Notification for Underground Storage Tanks...

354

241-SY Tank Farm Construction Extent of Condition Review for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tank farm has been reviewed to identify any concerns for the long-term integrity of the tanks. This initial review was prompted by construction issues identified during the formal...

355

TANK FARM INTERIM SURFACE BARRIER MATERIALS AND RUNOFF ALTERNATIVES STUDY  

SciTech Connect (OSTI)

This report identifies candidate materials and concepts for interim surface barriers in the single-shell tank farms. An analysis of these materials for application to the TY tank farm is also provided.

HOLM MJ

2009-06-25T23:59:59.000Z

356

NMED Petroleum Storage Tank Bureau webpage | Open Energy Information  

Open Energy Info (EERE)

Tank Bureau webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: NMED Petroleum Storage Tank Bureau webpage Abstract This is the website for the...

357

Authorization basis status report (miscellaneous TWRS facilities, tanks and components)  

SciTech Connect (OSTI)

This report presents the results of a systematic evaluation conducted to identify miscellaneous TWRS facilities, tanks and components with potential needed authorization basis upgrades. It provides the Authorization Basis upgrade plan for those miscellaneous TWRS facilities, tanks and components identified.

Stickney, R.G.

1998-04-29T23:59:59.000Z

358

Waste Treatment Plant and Tank Farm Program | Department of Energy  

Office of Environmental Management (EM)

Plant and Tank Farm Program Waste Treatment Plant and Tank Farm Program This photo shows the Pretreatment Facility control room building pad at the Office of River Protection at...

359

STATUS OF CHEMICAL CLEANING OF WASTE TANKS AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT - 9114  

SciTech Connect (OSTI)

Chemical Cleaning is currently in progress for Tanks 5 and 6 at the Savannah River Site. The Chemical Cleaning process is being utilized to remove the residual waste heel remaining after completion of Mechanical Sludge Removal. This work is required to prepare the tanks for closure. Tanks 5 and 6 are 1950s vintage carbon steel waste tanks that do not meet current containment standards. These tanks are 22.9 meters (75 feet) in diameter, 7.5 meters (24.5 feet) in height, and have a capacity of 2.84E+6 liters (750,000 gallons). Chemical Cleaning adds 8 wt % oxalic acid to the carbon steel tank to dissolve the remaining sludge heel. The resulting acidic waste solution is transferred to Tank 7 where it is pH adjusted to minimize corrosion of the carbon steel tank. The Chemical Cleaning flowsheet includes multiple strikes of acid in each tank. Acid is delivered by tanker truck and is added to the tanks through a hose assembly connected to a pipe penetration through the tank top. The flowsheet also includes spray washing with acid and water. This paper includes an overview of the configuration required for Chemical Cleaning, the planned flowsheet, and an overview of technical concerns associated with the process. In addition, the current status of the Chemical Cleaning process in Tanks 5 and 6, lessons learned from the execution of the process, and the path forward for completion of cleaning in Tanks 5 and 6 will also be discussed.

Thaxton, D; Geoff Clendenen, G; Willie Gordon, W; Samuel Fink, S; Michael Poirier, M

2008-12-31T23:59:59.000Z

360

GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN  

SciTech Connect (OSTI)

This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

CANTRELL KJ; CONNELLY MP

2010-03-09T23:59:59.000Z

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Marine engine with water cooled fuel line from remote tank  

SciTech Connect (OSTI)

This patent describes a marine propulsion system. It comprises: a water cooled internal combustion engine, a remote fuel tank, a conduit connected between the fuel tank and the engine, the conduit having a first passage supplying fuel from the tank to the engine, the conduit having a second passage supplying cooling water from the engine towards the tank, the conduit having a third passage returning water from the second passage back to the engine.

Arms, J.F.

1990-07-10T23:59:59.000Z

362

Treatment options for tank farms long-length contaminated equipment  

SciTech Connect (OSTI)

This study evaluated a variety of treatment and disposal technologies for mixed waste (MW) meeting the following criteria: 1. Single-Shell and Double-Shell Tank System (tank farms) equipment and other debris; 2. length greater than 12 feet; and contaminated with listed MW from the tank farms. This waste stream, commonly referred to as tank farms long-length contaminated equipment (LLCE), poses a unique and costly set of challenges during all phases of the waste management lifecycle.

Josephson, W.S.

1995-10-16T23:59:59.000Z

363

Catch tank inhibitor addition 200-East and 200-West Areas  

SciTech Connect (OSTI)

Reported is the study of 11 catch tanks in the 200-East Area and the 7 catch tanks in the 200-West Area listed as active. The location, capacity, material of construction, annual total accumulation, annual rain intrusion, waste transfer rate, and access for chemical injection in these tanks are documented. The present and future utilization and isolation plans for the catch tanks are established.

Palit, A.N.

1996-06-21T23:59:59.000Z

364

Double Shell Tank AY-102 Radioactive Waste Leak Investigation  

SciTech Connect (OSTI)

PowerPoint. The objectives of this presentation are to: Describe Effort to Determine Whether Tank AY-102 Leaked; Review Probable Causes of the Tank AY-102 Leak; and, Discuss Influence of Leak on Hanford’s Double-Shell Tank Integrity Program.

Washenfelder, Dennis J.

2014-04-10T23:59:59.000Z

365

Enhancing Fish Tank VR Jurriaan D. Mulder, Robert van Liere  

E-Print Network [OSTI]

Enhancing Fish Tank VR Jurriaan D. Mulder, Robert van Liere Center for Mathematics and Computer Science CWI Amsterdam, the Netherlands mullie¡ robertl¢ @cwi.nl Abstract Fish tank VR systems provide that resides at a fixed location. Therefore, fish tank VR systems provide only a limited virtual workspace

Liere, Robert van

366

STUDENT APPLICATION ACADEMIC THINK TANK: REFUGEE RESETTLEMENT IN THE TRIAD  

E-Print Network [OSTI]

STUDENT APPLICATION ACADEMIC THINK TANK: REFUGEE RESETTLEMENT IN THE TRIAD Please print growth, the Resettling Refugees in the Triad Think Tank will ask students to learn from and contribute and to better assist those who seek safety in Greensboro. APPLICATION REQUIREMENTS Admission to the Think Tank

Saidak, Filip

367

Page 1 of 2 Yellow Tank Operation Short version  

E-Print Network [OSTI]

Page 1 of 2 Yellow Tank Operation ­ Short version Pressure Gauge Accuracy: Note that the pressure gauge (Alcatel 74009 ACC 1009) on the yellow tank is accurate to 30% of the value read, so readings have downstairs): 1. Make sure Yellow Tank is completely sealed, fire vent closed. Main door bolts should

368

Introduction Hall and Tank (2005) present estimates of ecosystem metab-  

E-Print Network [OSTI]

213 Introduction Hall and Tank (2005) present estimates of ecosystem metab- olism for Giltner in the estimation of ecosystem metabolism by open-channel methods (McCutchan et al. 2002; Hall and Tank 2005). To estimate metabolism in Giltner Spring Creek, Hall and Tank (2005) employ a mass-balance equation

Lewis Jr., William M.

369

ECOSYSTEM COMPONENT CHARACTERIZATION 461 Failing or nearby septic tank systems  

E-Print Network [OSTI]

ECOSYSTEM COMPONENT CHARACTERIZATION 461 · Failing or nearby septic tank systems · Exfiltration from sanitary sewers in poor repair · Leaking underground storage tanks and pipes · Landfill seepage or natural environment Leaks from underground storage tanks and pipes are a common source of soil

Pitt, Robert E.

370

Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing  

E-Print Network [OSTI]

Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel for integrated module including in-tank regulator · Developed high efficiency H2 fuel storage systems for DOE tank efficiency, the highest weight efficiency ever demonstrated, in partnership with Lawrence

371

FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS,  

E-Print Network [OSTI]

FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS Prepared For be divided into two parts: · Well-to-Tank (WTT) Feedstock extraction, transport, storage, processing, distribution, transport, and storage · Tank-to-Wheels (TTW) Refueling, consumption and evaporation The full

372

Microfluidic Facility, Harvard Medical School LIQUID NITROGEN TANK HANDLING  

E-Print Network [OSTI]

Microfluidic Facility, Harvard Medical School LIQUID NITROGEN TANK HANDLING HMS microfluidics/microfabrication facility has one high pressure liquid nitrogen tank which supplies the nitrogen for some equipment normal operation. In case the liquid nitrogen tank is malfunctioning and requires to be shut down or replaced make

Paulsson, Johan

373

Mineral formation during simulated leaks of Hanford waste tanks  

E-Print Network [OSTI]

Mineral formation during simulated leaks of Hanford waste tanks Youjun Deng a , James B. Harsh a handling by M. Gascoyne Abstract Highly-alkaline waste solutions have leaked from underground tanks mimicking tank leak conditions at the US DOE Hanford Site. In batch experiments, Si-rich solutions

Flury, Markus

374

A Systematic Approach to the Design of Buffer Tanks  

E-Print Network [OSTI]

#12;A Systematic Approach to the Design of Buffer Tanks Audun Faanes £ ½ Sigurd Skogestad Abstract: Buffer tanks are often designed and implemented for control purposes, yet control theory is rarely used when sizing and designing buffer tanks and their control system. Instead, rules of thumb

Skogestad, Sigurd

375

14 UD Tank Opening Report July 31st  

E-Print Network [OSTI]

14 UD Tank Opening Report #123 8th July ­ 31st July 2014 Team leader N. Lobanov Report compiled by P. Linardakis, G. Crook, J, Heighway, N. Lobanov Tank crew G. Crook, J. Heighway, P. Linardakis, N 2 3 Contents 1 Reason for tank opening

Chen, Ying

376

A Systematic Approach to the Design of Buffer Tanks  

E-Print Network [OSTI]

#12; A Systematic Approach to the Design of Buffer Tanks Audun Faanes #3;;1 Sigurd Skogestad #3 Trondheim, NORWAY Abstract: Buffer tanks are often designed and implemented for control purposes, yet control theory is rarely used when sizing and designing buffer tanks and their control system. Instead

Skogestad, Sigurd

377

PRESSURIZATION OF FIXED ROOF STORAGE TANKS DUE TO EXTERNAL FIRES  

E-Print Network [OSTI]

PRESSURIZATION OF FIXED ROOF STORAGE TANKS DUE TO EXTERNAL FIRES Fabien FouiHen, INERIS, Parc. Reflections led on this accident have pushed to consider the phenomenon of tank pressurization as a potential initiating event of the fire ball observed. In concrete terms, when a fixed roof storage tank is surrounded

Paris-Sud XI, Université de

378

Microsoft PowerPoint - DOE Tank Removal Study Vinces presentation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sketch Deep Soil Excavation Page 3-3 of RPP-RPT-47167 Soil removal to 5 feet below tanks Soil removal to 5 feet below tanks 5 5 19,700 Ci Cs 137 5 feet below tank 25,100 Ci Cs...

379

Potential for criticality in Hanford tanks resulting from retrieval of tank waste  

SciTech Connect (OSTI)

This report assesses the potential during retrieval operations for segregation and concentration of fissile material to result in a criticality. The sluicing retrieval of C-106 sludge to AY-102 and the operation of mixer pumps in SY-102 are examined in some detail. These two tanks (C-106, SY-102) were selected because of the near term plans for retrieval of these tanks and their high plutonium inventories relative to other tanks. Although all underground storage tanks are subcritical by a wide margin if assumed to be uniform in composition, the possibility retrieval operations could preferentially segregate the plutonium and locally concentrate it sufficiently to result in criticality was a concern. This report examines the potential for this segregation to occur.

Whyatt, G.A.; Sterne, R.J.; Mattigod, S.V. [and others

1996-09-01T23:59:59.000Z

380

Tank characterization report for single-shell tank 241-BX-106  

SciTech Connect (OSTI)

This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in tank 241-BX-106. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

Sasaki, L.M.

1996-06-12T23:59:59.000Z

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Tank characterization report for single-shell tank 241-C-103  

SciTech Connect (OSTI)

This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-C-103. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

Winters, W.I., Westinghouse Hanford

1996-06-26T23:59:59.000Z

382

Massachusetts Institute of Technology MIT | Open Energy Information  

Open Energy Info (EERE)

Technology MIT Technology MIT Jump to: navigation, search Name Massachusetts Institute of Technology (MIT) Place Cambridge, Massachusetts Zip 02139 4307 Product Private research university located in Cambridge, Massachusetts. Coordinates 43.003745°, -89.017499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.003745,"lon":-89.017499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

SLUDGE BATCH 7 PREPARATION TANK 4 AND 12 CHARACTERIZATION  

SciTech Connect (OSTI)

Samples of PUREX sludge from Tank 4 and HM sludge from Tank 12 were characterized in preparation for Sludge Batch 7 (SB7) formulation in Tank 51. SRNL analyses on Tank 4 and Tank 12 were requested in separate Technical Assistance Requests (TAR). The Tank 4 samples were pulled on January 19, 2010 following slurry operations by F-Tank Farm. The Tank 12 samples were pulled on February 9, 2010 following slurry operations by H-Tank Farm. At the Savannah River National Laboratory (SRNL), two 200 mL dip samples of Tank 4 and two 200 mL dip samples of Tank 12 were received in the SRNL Shielded Cells. Each tank's samples were composited into clean 500 mL polyethylene storage bottles and weighed. The composited Tank 4 sample was 428.27 g and the composited Tank 12 sample was 502.15 g. As expected there are distinct compositional differences between Tank 4 and Tank 12 sludges. The Tank 12 slurry is much higher in Al, Hg, Mn, and Th, and much lower in Fe, Ni, S, and U than the Tank 4 slurry. The Tank 4 sludge definitely makes the more significant contribution of S to any sludge batch blend. This S, like that observed during SB6 washing, is best monitored by looking at the total S measured by digesting the sample and analyzing by inductively coupled plasma - atomic emission spectroscopy (ICPAES). Alternatively, one can measure the soluble S by ICP-AES and adjust the value upward by approximately 15% to have a pretty good estimate of the total S in the slurry. Soluble sulfate measurements by ion chromatography (IC) will be biased considerably lower than the actual total S, the difference being due to the non-sulfate soluble S and the undissolved S. Tank 12 sludge is enriched in U-235, and hence samples transferred into SRNL from the Tank Farm will need to be placed on the reportable special nuclear material inventory and tracked for total U per SRNL procedure requirements.

Bannochie, C.; Click, D.; Pareizs, J.

2010-05-21T23:59:59.000Z

384

DOE Vehicular Tank Workshop Sandia National Laboratories  

E-Print Network [OSTI]

DOE Vehicular Tank Workshop Sandia National Laboratories Livermore, CA Nondestructive Evaluation for Ultrasonic Testing of Flat Panel Composites and Sandwich Core Materials Used in Aerospace Applications ­ E2581-07 Std Practice for Shearography of Polymer Matrix Composites, Sandwich Core Materials

385

Explosion proof vehicle for tank inspection  

DOE Patents [OSTI]

An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

Zollinger, William T. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Bauer, Scott G. (Idaho Falls, ID)

2012-02-28T23:59:59.000Z

386

Uncertainty and sampling issues in tank characterization  

SciTech Connect (OSTI)

A defensible characterization strategy must recognize that uncertainties are inherent in any measurement or estimate of interest and must employ statistical methods for quantifying and managing those uncertainties. Estimates of risk and therefore key decisions must incorporate knowledge about uncertainty. This report focuses statistical methods that should be employed to ensure confident decision making and appropriate management of uncertainty. Sampling is a major source of uncertainty that deserves special consideration in the tank characterization strategy. The question of whether sampling will ever provide the reliable information needed to resolve safety issues is explored. The issue of sample representativeness must be resolved before sample information is reliable. Representativeness is a relative term but can be defined in terms of bias and precision. Currently, precision can be quantified and managed through an effective sampling and statistical analysis program. Quantifying bias is more difficult and is not being addressed under the current sampling strategies. Bias could be bounded by (1) employing new sampling methods that can obtain samples from other areas in the tanks, (2) putting in new risers on some worst case tanks and comparing the results from existing risers with new risers, or (3) sampling tanks through risers under which no disturbance or activity has previously occurred. With some bound on bias and estimates of precision, various sampling strategies could be determined and shown to be either cost-effective or infeasible.

Liebetrau, A.M.; Pulsipher, B.A.; Kashporenko, D.M. [and others

1997-06-01T23:59:59.000Z

387

TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS  

SciTech Connect (OSTI)

The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tank toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.

Tamburello, D; Richard Dimenna, R; Si Lee, S

2009-01-27T23:59:59.000Z

388

Tank 26 Evaporator Feed Pump Transfer Analysis  

SciTech Connect (OSTI)

The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.

Tamburello, David; Dimenna, Richard; Lee, Si

2009-02-11T23:59:59.000Z

389

Flow from a Tank Consider water flowing from a tank with water through a hole in its bottom. Denote  

E-Print Network [OSTI]

Flow from a Tank Consider water flowing from a tank with water through a hole in its bottom. Denote by h(t) the height of water in the tank at time t, v(t) the speed of the water leaving through the hole at time t, A(h) the cross-sectional area of the tank at height h and a the cross- sectional area

Feldman, Joel

390

Acceptance test report for the Tank 241-C-106 in-tank imaging system  

SciTech Connect (OSTI)

This document presents the results of Acceptance Testing of the 241-C-106 in-tank video camera imaging system. The purpose of this imaging system is to monitor the Project W-320 sluicing of Tank 241-C-106. The objective of acceptance testing of the 241-C-106 video camera system was to verify that all equipment and components function in accordance with procurement specification requirements and original equipment manufacturer`s (OEM) specifications. This document reports the results of the testing.

Pedersen, L.T.

1998-05-22T23:59:59.000Z

391

Tank characterization report for single-shell tank 241-BX-110  

SciTech Connect (OSTI)

A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-BX-110. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-BX-110 waste, and (2) to provide a standard characterization of the waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations about the tank's safety status and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for 1998.''

RASMUSSEN, J.H.

1999-02-23T23:59:59.000Z

392

Setting up the Blossom Gulch Aquarium, Oct 20, 2007 Richard Emlet Please note that each tank design has it's own considerations. Your school tank might have  

E-Print Network [OSTI]

Setting up the Blossom Gulch Aquarium, Oct 20, 2007 Richard Emlet Please note that each tank design has it's own considerations. Your school tank might have different valves, filters, etc. However, much of the following information is relevant to other school tanks. I. Setting up a tank Stage 1: Readying the tank

393

MIT's Plasma Science Fusion Center: I-Mode Powers Up on Alcator...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

I-Mode Powers Up on Alcator C-Mod Tokamak American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MIT's Plasma Science Fusion Center: I-Mode Powers Up on...

394

E-Print Network 3.0 - atlas-endkappen-kalorimeter mit hilfe Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Schlusselstrom um mit Hilfe... Shiftr Bits Shift ic r Bitsr Bits rn n r n n r r Der CFB-Mode 1 Dies ist mit Hilfe der Abbildung leicht... entsprechend der Graphik unten...

395

E-Print Network 3.0 - anti ppi-pi- mit Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ppi-pi- mit Search Powered by Explorit Topic List Advanced Search Sample search results for: anti ppi-pi- mit Page: << < 1 2 3 4 5 > >> 1 Mitteilung fr die Medien Mitteilung fr die...

396

E-Print Network 3.0 - anti nue mit Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nue mit Search Powered by Explorit Topic List Advanced Search Sample search results for: anti nue mit Page: << < 1 2 3 4 5 > >> 1 Histone Methylation by NUE, a Novel Nuclear...

397

E-Print Network 3.0 - anti nul mit Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nul mit Search Powered by Explorit Topic List Advanced Search Sample search results for: anti nul mit Page: << < 1 2 3 4 5 > >> 1 Mitteilung fr die Medien Mitteilung fr die Medien...

398

Radiometrische Bestimmung des Wasserstoff- und Sauerstoffgehaltes organischer Verbindungen mit Kohlenstoff-14.I  

Science Journals Connector (OSTI)

Zur Gewinnung des markierten Kohlenstoffes wurde in dem ersten Reaktionsschritt aus Ba14CO3 Kohlendioxid erzeugt und mit Wasserstoff zu Methan umgesetzt. Im zweiten Schritt wurde das radioaktive Methan mit inakti...

S. Mlinkó; I. Gács

1969-01-01T23:59:59.000Z

399

Sea Grant — The MIT Sea Grant Marine Industry collegium: A partnership of industry, government and academia  

Science Journals Connector (OSTI)

The Collegium has fostered interaction and technology transfer between MIT and the Marine Industry for five years, resulting in early utilization of the fruits of marine research at MIT and valuable guidance for ...

Dr. Norman Doelling

1982-01-01T23:59:59.000Z

400

Harvard-MIT Division of Health Sciences and Technology Contract for Technical Qualifying Exam (TQE)  

E-Print Network [OSTI]

Electrical Engineering Computer Science Physics Chemistry Aeronautics & Astronautics Nuclear Science & Engineering Electrical Engineering Computer Science Physics Chemistry Nuclear Science & Engineering Stultz, cmstultz@csail.mit.edu Chemistry: Collin Stultz, cmstultz@csail.mit.edu Nuclear Engineering

Bhatia, Sangeeta

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

MIT Joint Program on the Science and Policy of Global Change  

E-Print Network [OSTI]

: (617) 253-9845 E-mail: globalchange@mit.edu Web site: http://web.mit.edu/globalchange/www/ Printed in their rates of heat uptake by the deep ocean. In this study, these properties are constrained by comparing

402

E-Print Network 3.0 - agev mit hades Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mit hades Search Powered by Explorit Topic List Advanced Search Sample search results for: agev mit hades Page: << < 1 2 3 4 5 > >> 1 Vol. 35 (2004) ACTA PHYSICA POLONICA B No 3...

403

Criticality Safety Evaluation of Hanford Tank Farms Facility  

SciTech Connect (OSTI)

Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

WEISS, E.V.

2000-12-15T23:59:59.000Z

404

Underground Storage Tank Regulations for the Certification of Persons Who  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tank Regulations for the Certification of Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

405

MIT Research using High-Energy Density Plasmas at OMEGA and the NIF  

E-Print Network [OSTI]

HEDP division at MIT performs cutting-edge research using laser-generated plasmas · Recent research

406

Status of tank 241-SY-101 data analyses  

SciTech Connect (OSTI)

The Waste Tank Flammable Gas Stabilization Program was established in 1990 to provide for resolution of a major safety issue identified for 23 of the high-level waste tanks at the Hanford Site. The safety issue involves the production, accumulation, and periodic release from these tanks of flammable gases in concentrations exceeding the lower flammability limits. This document deals primarily with tank 241-SY-101 from the SY Tank Farm. The flammable gas condition has existed for this tank since the tank was first filled in the time period from 1977 to 1980. During a general review of waste tank chemical stability in 1988--1989, this situation was re-examined and, in March 1990, the condition was declared to be an unreviewed safety question. Tank 241-SY-101 was placed under special operating restrictions, and a program of investigation was begun to evaluate the condition and determine appropriate courses of action. This report summarizes the data that have become available on tank 241-SY-101 since it was declared as an unreviewed safety question and updates the information reported in an earlier document (WHC-EP-0517). The report provides a technical basis for use in the evaluation of safety risks of the tank and subsequent resolution of the unreviewed safety question.

Anantatmula, R.P.

1992-09-01T23:59:59.000Z

407

Historical tank content estimate for the northwest quadrant ofthe Hanford 200 west area  

SciTech Connect (OSTI)

The Historical Tank Content Estimate for the Quadrant provides historical information on a tank-by-tank basis of the radioactive mixed wastes stored in the underground single-shell tanks for the Hanford 200 West Area. This report summarized historical information such as waste history, level history, temperature history, riser configuration, tank integrity, and inventory estimates on a tank-by-tank basis. Tank farm aerial photographs and interior tank montages are also provided for each tank. A description of the development of data for the document of the inventory estimates provided by Los Alamos National Labo1368ratory are also given in this report.

Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

1997-03-06T23:59:59.000Z

408

Historical tank content estimate for the southwest quadrant of the Hanford 200 west area  

SciTech Connect (OSTI)

The Historical Tank Content Estimate for the Quadrant provides historical information on a tank-by-tank basis of the radioactive mixed wastes stored in the underground single-shell tanks for the Hanford 200 West Area. This report summarized historical information such as waste history, level history, temperature history, riser configuration, tank integrity, and inventory estimates on a tank- by-tank basis. Tank farm aerial photographs and interior tank montages are also provided for each tank. A description of the development of data for the document of the inventory estimates provided by Los Alamos National Laboratory are also given in this report.

Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

1997-03-06T23:59:59.000Z

409

Historical tank content estimate for the southeast quadrant of the Hanford 200 area  

SciTech Connect (OSTI)

The Historical Tank Content Estimate for the Quadrant provides historical information on a tank-by-tank basis of the radioactive mixed wastes stored in the underground single-shell tanks for the Hanford 200 Areas. This report summarized historical information such as waste history, level history, temperature history, riser configuration, tank integrity, and inventory estimates on a tank- by-tank basis. Tank farm aerial photographs and interior tank montages are also provided for each tank. A description of the development of data for the document of the inventory estimates provided by Los Alamos National Laboratory are also given in this report.

Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

1997-03-14T23:59:59.000Z

410

Summary - Tank 48 at the Savannah River Site  

Broader source: Energy.gov (indexed) [DOE]

Tank 48 Tank 48 ETR Report Date: August 2006 ETR-2 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Tank 48 at the Savannah River Site (SRS) Why DOE-EM Did This Review Tank 48 is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system that will play a very important role in removal and processing of high-level waste (HLW) in the years ahead. However, the tank is currently isolated from the system and unavailable for use, because its contents. It contains approximately 250,000 gallons of salt solution containing Cesium-137 and other radioisotopes which are contaminated with significant quantities of tetraphenylborate (TPB), a material which

411

Hanford Tank Waste Retrieval, Treatment and Disposition Framework |  

Broader source: Energy.gov (indexed) [DOE]

Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and High-Level Waste Facilities. Hanford Tank Waste Retrieval, Treatment and Disposition Framework More Documents & Publications EIS-0391: Draft Environmental Impact Statement Waste Treatment Plant and Tank Farm Program EIS-0356: Notice of Intent to Prepare an Environmental Impact Statement

412

Hanford Tank Waste Retrieval, Treatment and Disposition Framework |  

Broader source: Energy.gov (indexed) [DOE]

Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and High-Level Waste Facilities. Hanford Tank Waste Retrieval, Treatment and Disposition Framework More Documents & Publications EIS-0391: Draft Environmental Impact Statement Waste Treatment Plant and Tank Farm Program EIS-0356: Notice of Intent to Prepare an Environmental Impact Statement

413

Remedial Alternative Selection for the F Area Tank Farm,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Notice of Availability: Notice of Availability: Explanation of Significant Difference for Incorporating Tanks 18 and 19 into Revision 1 Interim Record Of Decision Remedial Alternative Selection for the F Area Tank Farm, Waste Tanks 17 and 20 at the Savannah River Site The Explanation of Significant Difference for Incorporating Tanks 18 and 19 into Revision 1 Interim Record of Decision Remedial Alternative Selection for the F Area Tank Farm, (hereafter referred to as the Tank 18 and 19 ESD) is being issued by the U.S. Department of Energy (DOE), the lead agency for the Savannah River Site (SRS), with concurrence by the U.S. Environmental Protection Agency - Region 4 (EPA), and South Carolina Department of Health and Environmental Control (SCDHEC). The Tank 18 and 19 ESD modifies

414

Light duty utility arm deployment in Hanford tank T-106  

SciTech Connect (OSTI)

An existing gap in the technology for the remediation of underground waste storage tanks filled by the Light Duty Utility Arm (LDUA) System. On September 27 and 30, 1996, the LDUA System was deployed in underground storage tank T-106 at Hanford. The system performed successfully, satisfying all objectives of the in-tank operational test (hot test); performing close-up video inspection of features of tank dome, risers, and wall; and grasping and repositioning in-tank debris. The successful completion of hot testing at Hanford means that areas of tank structure and waste surface that were previously inaccessible are now within reach of remote tools for inspection, waste analysis, and small-scale retrieval. The LDUA System has become a new addition to the arsenal of technologies being applied to solve tank waste remediation challenges.

Kiebel, G.R.

1997-07-01T23:59:59.000Z

415

EIS-0189: Tank Waste Remediation System (TWRS), Richland, WA (Programmatic)  

Broader source: Energy.gov [DOE]

This environmental impact statement evaluates the Department of Energy (DOE)'s, in cooperation with the Washington State Department of Ecology (Ecology), decisions on how to properly manage and dispose of Hanford Site tank waste and encapsulated cesium and strontium to reduce existing and potential future risk to the public, Site workers, and the environment. The waste includes radioactive, hazardous, and mixed waste currently stored in 177 underground storage tanks, approximately 60 other smaller active and inactive miscellaneous underground storage tanks (MUSTs), and additional Site waste likely to be added to the tank waste, which is part of the tank farm system. In addition, DOE proposes to manage and dispose of approximately 1,930 cesium and strontium capsules that are by-products of tank waste. The tank waste and capsules are located in the 200 Areas of the Hanford Site near Richland, Washington.

416

Lagrange-und Hamilton-Formalismus Hamilton-Formalismus mit Nebenbedingungen  

E-Print Network [OSTI]

Lagrange- und Hamilton-Formalismus Hamilton-Formalismus mit Nebenbedingungen Anwendung des Literatur Hamilton-Systeme mit Nebenbedingungen Jan Michael Kimmich Institut f¨ur Physik Humboldt-Universit¨at zu Berlin 03.02.2010 1 / 29 #12;Lagrange- und Hamilton-Formalismus Hamilton-Formalismus mit

417

CSER 2007 Shah, Rhodes, Hastings 2007 MIT Slide 1 Systems of Systems and  

E-Print Network [OSTI]

CSER 2007 Shah, Rhodes, Hastings © 2007 MIT Slide 1 Systems of Systems and Emergent System Context MIT Slide 2 Agenda · What is a system of systems (SOS)? · What is the context of a system? · What;CSER 2007 Shah, Rhodes, Hastings © 2007 MIT Slide 3 What is a systems of systems? Much greater

de Weck, Olivier L.

418

MIT - Center for Advanced Nuclear Energy Systems | Open Energy Information  

Open Energy Info (EERE)

MIT - Center for Advanced Nuclear Energy Systems MIT - Center for Advanced Nuclear Energy Systems Jump to: navigation, search Logo: MIT - Center for Advanced Nuclear Energy Systems Name MIT - Center for Advanced Nuclear Energy Systems Address 77 Massachusetts Avenue, 24-215 Place Cambridge, Massachusetts Zip 02139-4307 Phone number (617) 452-2660 Coordinates 42.3613041°, -71.0967653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3613041,"lon":-71.0967653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron  

E-Print Network [OSTI]

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron Ein: Wissenschaftliche Mitarbeiterin (w/m) in Teilzeit (27,3 Std./W.) DESY Das Deutsche Elektronen-Synchrotron DESY ist E-Mail: Deutsches Elektronen-Synchrotron DESY Personalabteilung | Kennziffer: EM124/2014 NotkestraÃ?e

420

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron  

E-Print Network [OSTI]

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron Ein Engineer (w/m) DESY Das Deutsche Elektronen-Synchrotron DESY ist eines der weltweit führenden Zentren Angabe der Kennziffer, auch per E-Mail: Deutsches Elektronen-Synchrotron DESY Personalabteilung

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron  

E-Print Network [OSTI]

Beschleuniger | Forschung mit Photonen | Teilchenphysik Deutsches Elektronen-Synchrotron Ein/m) NanoLab (SEM/Mikroskopie) DESY Das Deutsche Elektronen-Synchrotron DESY ist eines der weltweit Angabe der Kennziffer, auch per E-Mail: Deutsches Elektronen-Synchrotron DESY Personalabteilung

422

Enhancing Organizational Communication using Sociometric Badges MIT Media Laboratory  

E-Print Network [OSTI]

gathered from the Sociometric badge to provide individual feedback to enhance efficiency in organizationalEnhancing Organizational Communication using Sociometric Badges Taemie Kim MIT Media Laboratory 20 feedback to encourage increased efficiency in com- munication. To visualize the feedback we have

423

Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics  

E-Print Network [OSTI]

Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics (Dated: February 5, 2014) In this experiment, the phenomenon of Nuclear Magnetic Resonance (NMR) is used to determine the magnetic moments-factor in atomic spectroscopy and is given by g = (µ/µN )/I, (2) and µN is the nuclear magneton, e /2mp

Seager, Sara

424

MIT Center for Transportation & Logistics Distinguished Speakers Series  

E-Print Network [OSTI]

MIT Center for Transportation & Logistics Distinguished Speakers Series Richard A. Davey MBTA;Transportation Reform ­ Moving Forward Transportation Reform Governance & Oversight · MBTA Board reconfigured mirroring the MassDOT's Five (5) member Board. · MBTA remains a separate legal entity from MassDOT. · MBTA

Entekhabi, Dara

425

Report on Workshop for Interdisciplinary Global Engineers at MIT (2013)  

E-Print Network [OSTI]

:32 Arrival at Boston Logan Airport 18:30 Arrival at the Boston Park Plaza Hotel September, 9th 09:00 MIT to this program next year. Furthermore, we hope as many students as possible will be active internationally. (From Airport 13:55 Arrival at Detroit Metropolitan Airport 15:30 Departure from Detroit Metropolitan Airport 17

Yamamoto, Hirosuke

426

Optical Spectroscopy of Hydrogenic Atoms MIT Department of Physics  

E-Print Network [OSTI]

Optical Spectroscopy of Hydrogenic Atoms MIT Department of Physics (Dated: September 1, 2013) This experiment is an exercise in optical spectroscopy in a study of the spectra of "hydrogenic" atoms, i.e. atoms with one "optical" electron outside a closed shell of other electrons. Measurements include finding

Seager, Sara

427

U. S. Department of Energy Savannah River Operations Office - F and H Tank  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

F and H Tank Farm Closure Documents F and H Tank Farm Closure Documents F and H Tank Farm Closure Documents F Tank Farm Closure Documents F Tank Farm Performance Assessment F Tank Farm Performance Assessment -- Revision 1 Tank 18/Tank 19 Special Analysis Industrial Wastewater General Closure Plan for F-Area Waste Tank System -- Final Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 DOE agreement to cease waste removal SC approval to Closure Module and agreement to cease waste removal EPA agreement to cease waste removal Tanks 17 and 20 Closure Errata Industrial Wastewater Closure Module for the High-Level Waste Tank 17 System Industrial Wastewater Closure Module for the High-Level Waste Tank 20 System Draft Basis for Section 3116 Determination for Closure of F Tank Farm at SRS

428

Category:Hydrodynamic Testing Facility Type | Open Energy Information  

Open Energy Info (EERE)

9 pages are in this category, out of 9 total. C Channel F Flow Table Flume O Offshore Berth R Reverberant Tank T Tow Tank T cont. Tow Vessel Tunnel W Wave Basin Retrieved...

429

TANK DEIS TITLE PG.psd  

Broader source: Energy.gov (indexed) [DOE]

Cover Sheet Cover Sheet iii COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Savannah River Site High-Level Waste Tank Closure Environmental Impact Statement (DOE/EIS-0303), Aiken, South Carolina CONTACT: For additional information on this environmental impact statement (EIS), write or call: Andrew R. Grainger, NEPA Compliance Officer U.S. Department of Energy, Savannah River Operations Office Building 730B, Room 2418 Aiken, South Carolina 29802 Attention: Tank Closure EIS Local and Nationwide Telephone: (800) 881-7292 Email: nepa@srs.gov For general information on DOE's National Environmental Policy Act (NEPA), write or call: Ms. Carol M. Borgstrom, Director Office of NEPA Policy and Compliance, EH-42 U.S. Department of Energy 1000 Independence Avenue, S.W.

430

Hanford Site C Tank Farm Meeting Summary  

Broader source: Energy.gov (indexed) [DOE]

Summary Notes from 24- 25 February 2009 Office of River Protection Waste Management Area C Performance Assessment Input Meeting Attendees: Representatives from Department of Energy-Office of River Protection (DOE-ORP), DOE Richland Operations Office (DOE-RL), DOE-Headquarters (DOE-HQ), the Washington State Department of Ecology (Ecology), and the U.S. Nuclear Regulatory Commission (NRC), met at the Ecology offices in Richland, Washington on 24 & 25 February 2009. EPA Region X staff participated on 25 February 2009 via teleconference. Discussion: DOE is pursuing closure of Waste Management Area C (WMA-C) located at the Hanford Site. At some point in the future, DOE and NRC will consult on waste determinations for these tank closures; additionally these tanks will be closed in coordination with EPA and

431

Hanford Site C Tank Farm Meeting Summary  

Broader source: Energy.gov (indexed) [DOE]

3622, Rev. 0 3622, Rev. 0 Summary Notes from 1 - 3 September 2009 Office of River Protection Waste Management Area C Tank Farm Performance Assessment Input Meeting MP Connelly Washington River Protection Solutions LLC Richland, WA 99352 U.S. Department of Energy Contract DE-AC27-08RV1 4800 EDT/ECN: DRF UC: Cost Center: Charge Code: B&R Code: Total Pages: 13 Key Words: Waste Management Area C, Performance Assessment, tank closure, waste inventory Abstract: Summary of meeting between DOE-ORP and Hanford Site regulators/stakeholders regarding Waste Management Area C performance assessment TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

432

TANK DEIS SUMMARY TITLE PG.psd  

Broader source: Energy.gov (indexed) [DOE]

Summary Summary S-iii COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Savannah River Site High-Level Waste Tank Closure Environmental Impact Statement (DOE/EIS-0303), Aiken, South Carolina. CONTACT: For additional information on this environmental impact statement (EIS), write or call: Andrew R. Grainger, NEPA Compliance Officer U.S. Department of Energy, Savannah River Operations Office Building 730B, Room 2418 Aiken, South Carolina 29802 Attention: Tank Closure EIS Local and Nationwide Telephone: (800) 881-7292 Email: nepa@srs.gov For general information on DOE's National Environmental Policy Act (NEPA) process, write or call: Ms. Carol M. Borgstrom, Director Office of NEPA Policy and Compliance, EH-42 U.S. Department of Energy 1000 Independence Avenue, S.W.

433

Hanford Site C Tank Farm Meeting Summary  

Broader source: Energy.gov (indexed) [DOE]

1878, Rev. 0 1878, Rev. 0 Summary Notes from 5 - 7 May 2009 Office of River Protection Waste Management Area C Tank Farm Performance Assessment Input Meeting MP Connelly Washington River Protection Solutions LLC Richland, WA 99352 U.S. Department of Energy Contract DE-AC27-08RV14800 EDT/EON: DRF UC: Cost Center: Charge Code: B&R Code: Total Pages: 15 Key Words: Waste Management Area C, Performance Assessment, tank closure, waste inventory Abstract: Summary of meeting between DOE-ORP and Hanford Site regulators/stakeholders regarding Waste Management Area C performance assessment TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

434

Annual report of tank waste treatability  

SciTech Connect (OSTI)

This report has been prepared as part of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) and constitutes completion of Tri-Party Agreement milestone M-04-00C for fiscal year 1992. This report provides a summary of treatment activities for newly generated waste, existing double-shell tank waste, and existing single-shell tank waste, as well as a summary of grout disposal feasibility, glass disposal feasibility, alternate methods for disposal, and safety issues which may impact the treatment and disposal of existing defense nuclear wastes. This report is an update of the 1991 report and is intended to provide traceability for the documentation of the areas listed above by statusing the studies, activities, and issues which occurred in these areas over the period of March 1, 1991, through February 29, 1992.

Barker, S.A. (Westinghouse Hanford Co., Richland, WA (United States)); Lane, A.G. (Los Alamos Technical Associates, Inc., NM (United States))

1992-09-01T23:59:59.000Z

435

Annual report of tank waste treatability  

SciTech Connect (OSTI)

This report has been prepared as part of the Hanford Federal Facility Agreement and Consent Order* (Tri-Party Agreement) and constitutes completion of Tri-Party Agreement milestone M-04-00D for fiscal year 1993. This report provides a summary of treatment activities for newly generated waste, existing double-shell tank waste, and existing single-shell tank waste, as well as a summary of grout disposal feasibility, glass disposal feasibility, alternate methods for disposal, and safety issues which may impact the treatment and disposal of existing defense nuclear wastes. This report is an update of the 1992 report and is intended to provide traceability for the documentation by statusing the studies, activities, and issues which occurred in these areas listed above over the period of March 1, 1992, through February 28, 1993. Therefore, ongoing studies, activities, and issues which were documented in the previous (1992) report are addressed in this (1993) report.

Lane, A.G. [Los Alamos Technical Associates, Inc., NM (United States); Kirkbride, R.A. [Westinghouse Hanford Co., Richland, WA (United States)

1993-09-01T23:59:59.000Z

436

Think Tank: Delaware Department of Natural Resources  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Spring 2009 Number 58 Spring 2009 Number 58 UST Regulations Revision Update Jill Hall The Tank Management Branch (TMB) conducted 3 public workshops in October 2008 to roll out changes to the Delaware Regulations Governing Underground Storage Tanks (UST Regulations). The UST Regulations were completely re- vamped last year and became effective January 11, 2008. Changes were made last year for 2 reasons: (1) the UST Reg- ulations were woefully out of date with regards to technological changes, and (2) the Federal Energy Policy Act (EPACT) dictated that states make several chang- es to their UST programs. The changes required by EPACT have deadlines rang- ing from 2008 to August 2009. Delaware could not make all the required changes by January 11, 2008 because the United States Environmental Protection Agency

437

Tank characterization report for single-shell tank 241-C-110. Revision 1  

SciTech Connect (OSTI)

One of the major functions of the Tank Waste Remediation System (IWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-C-110. The objectives of this report are to use characterization data in response to technical issues associated with 241-C-110 waste and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Supporting data and information are contained in the appendixes. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. While only the results from recent sample events will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-C-110 are provided included surveillance information, records pertaining to waste transfers and tank operations, and1124 expected tank contents derived from a process knowledge model. The sampling events are listed, as well as sample data obtained before 1989. The results of the 1992 sampling events are also reported in the data package. The statistical analysis and numerical manipulation of data used in issue resolution are reported in Appendix C. Appendix D contains the evaluation to establish the best basis for the inventory estimate and the statistical analysis performed for this evaluation. A bibliography that resulted from an in-depth literature search of all known information sources applicable to tank 241-C-110 and its respective waste types is contained in Appendix E. The reports listed in Appendix E may be found in the Lockheed Martin Hanford Corporation Tank Characterization and Safety Resource Center.

Benar, C.J.

1997-06-14T23:59:59.000Z

438

HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS  

SciTech Connect (OSTI)

M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste.

MACKEY, T.C.

2006-03-17T23:59:59.000Z

439

Tank Farm Operations Surveillance Automation Analysis  

SciTech Connect (OSTI)

The Nuclear Operations Project Services identified the need to improve manual tank farm surveillance data collection, review, distribution and storage practices often referred to as Operator Rounds. This document provides the analysis in terms of feasibility to improve the manual data collection methods by using handheld computer units, barcode technology, a database for storage and acquisitions, associated software, and operational procedures to increase the efficiency of Operator Rounds associated with surveillance activities.

MARQUEZ, D.L.

2000-12-21T23:59:59.000Z

440

Organic Tanks Safety Program: Waste aging studies  

SciTech Connect (OSTI)

The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year`s findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to {gamma} radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H{sub 2}. Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs.

Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Tank characterization report for single-shell tank 241-S-111  

SciTech Connect (OSTI)

One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.

Conner, J.M.

1997-04-28T23:59:59.000Z

442

Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102  

SciTech Connect (OSTI)

Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

SHULTZ, M.V.

1999-04-05T23:59:59.000Z

443

Houdini: Reconfigurable in-tank robot  

SciTech Connect (OSTI)

RedZone Robotics, Inc. and Carnegie Mellon University (CMU) are developing a tethered mobile robot, Houdini, to work inside waste storage tanks in support of the Department of Energy`s Environmental Restoration and Waste Management (EM) Program. This project is funded by the DOE`s Environmental Management Office of Technology Development through the Morgantown Energy Technology Center (METC). Our goal is to develop technology that is useful for in-tank operations throughout the DOE`s EM program. The first application of the Houdini system is to support the waste retrieval action planned for the final remediation of the Fernald site`s waste silos. RedZone and CMU have discussed potential applications for the system with personnel from several other DOE sites, and have found that the system would be widely useful in the DOE complex for tasks both inside and outside of waste storage tanks. We are tailoring the first implementation of the Houdini system to the specific needs of the Fernald silo remediation. The Fernald application-specific design constraints are primarily interface issues and should not interfere with the utility of the system at other sites. In addition, DOE personnel at the Oak Ridge National Laboratories (ORNL) have expressed a strong interest in the Houdini system. They have a target application scheduled for mid-1996. This program represents a unique opportunity to develop a new technology that has immediate application in two CERCLA cleanup actions; the proposed applications at Fernald and ORNL support Federal Facility compliance agreements.

White, D.W.; Slifko, A.D.; Thompson, B.R.; Fisher, C.G.

1995-12-31T23:59:59.000Z

444

Tanks focus area multiyear program plan FY97-FY99  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) continues to face a major tank remediation problem with approximately 332 tanks storing over 378,000 ml of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Most of the tanks have significantly exceeded their life spans. Approximately 90 tanks across the DOE complex are known or assumed to have leaked. Some of the tank contents are potentially explosive. These tanks must be remediated and made safe. How- ever, regulatory drivers are more ambitious than baseline technologies and budgets will support. Therefore, the Tanks Focus Area (TFA) began operation in October 1994. The focus area manages, coordinates, and leverages technology development to provide integrated solutions to remediate problems that will accelerate safe and cost-effective cleanup and closure of DOE`s national tank system. The TFA is responsible for technology development to support DOE`s four major tank sites: Hanford Site (Washington), INEL (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: safety, characterization, retrieval, pretreatment, immobilization, and closure.

NONE

1996-08-01T23:59:59.000Z

445

Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank  

SciTech Connect (OSTI)

The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

Bhatia, P.K.

1995-01-31T23:59:59.000Z

446

Savannah River Site - Tank 48 SRS Review Report  

Broader source: Energy.gov (indexed) [DOE]

ETR-2 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Tank 48 at the Savannah River Site (SRS) Why DOE-EM Did This Review Tank 48 is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system that will play a very important role in removal and processing of high-level waste (HLW) in the years ahead. However, the tank is currently isolated from the system and unavailable for use, because its contents. It contains approximately 250,000 gallons of salt solution containing Cesium-137 and other radioisotopes which are contaminated with significant quantities of tetraphenylborate (TPB), a material which can release benzene vapor to the tank head space in

447

Tank Farms at the Savannah River Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tank Farms at the Savannah River Site Tank Farms at the Savannah River Site Tank Farms at the Savannah River Site Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set forth in Section 3116. A Waste Determination Basis (WD Basis) provides the analysis to document the Secretary's determination to manage the residuals as low-level radioactive waste. The Savannah River Site has several facilities managed under Section 3116. The F-Area Tank Farm (FTF) WD Basis covers 20 tanks remaining to be closed in the FTF and the H-Area Tank Farm (HTF) WD Basis will cover all 29 HTF

448

EIS-0391: Hanford Tank Closure and Waste Management, Richland, Washington |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

391: Hanford Tank Closure and Waste Management, Richland, 391: Hanford Tank Closure and Waste Management, Richland, Washington EIS-0391: Hanford Tank Closure and Waste Management, Richland, Washington Summary This EIS evaluates the environmental impacts for the following three key areas: (1) retrieval, treatment, and disposal of waste from 149 single-shell tanks (SSTs) and 28 double-shell tanks and closure of the SST system, (2) decommissioning of the Fast Flux Test Facility, a nuclear test reactor, and (3) disposal of Hanford's waste and other DOE sites' low-level and mixed low-level radioactive waste. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download December 13, 2013 EIS-0391: Record of Decision Final Tank Closure and Waste Management Environmental Impact Statement for

449

DOE Selects Washington River Protection Solutions, LLC for Tank Operations  

Broader source: Energy.gov (indexed) [DOE]

DOE Selects Washington River Protection Solutions, LLC for Tank DOE Selects Washington River Protection Solutions, LLC for Tank Operations Contract at Hanford Site DOE Selects Washington River Protection Solutions, LLC for Tank Operations Contract at Hanford Site May 29, 2008 - 12:51pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Washington River Protection Solutions (WRPS), LLC has been selected as the tank operations contractor to store, retrieve and treat Hanford tank waste and close the tank farms at DOE's Hanford Site in southeastern Washington State. The contract is a cost-plus award-fee contract valued at approximately $7.1 billion over ten years (a five-year base period with options to extend it for up to five years). WRPS is a limited liability company comprised of Washington Group

450

200-Area plateau inactive miscellaneous underground storage tanks locations  

SciTech Connect (OSTI)

Fluor Daniel Northwest (FDNW) has been tasked by Lockheed Martin Hanford Corporation (LMHC) to incorporate current location data for 64 of the 200-Area plateau inactive miscellaneous underground storage tanks (IMUST) into the centralized mapping computer database for the Hanford facilities. The IMUST coordinate locations and tank names for the tanks currently assigned to the Hanford Site contractors are listed in Appendix A. The IMUST are inactive tanks installed in underground vaults or buried directly in the ground within the 200-East and 200-West Areas of the Hanford Site. The tanks are categorized as tanks with a capacity of less than 190,000 liters (50,000 gal). Some of the IMUST have been stabilized, pumped dry, filled with grout, or may contain an inventory or radioactive and/or hazardous materials. The IMUST have been out of service for at least 12 years.

Brevick, C.H.

1997-12-01T23:59:59.000Z

451

Analysis of Enriched Uranyl Nitrate in Nested Annular Tank Array  

SciTech Connect (OSTI)

Two series of experiments were performed at the Rocky Flats Critical Mass Laboratory during the 1980s using highly enriched (93%) uranyl nitrate solution in annular tanks. [1, 2] Tanks were of typical sizes found in nuclear production plants. Experiments looked at tanks of varying radii in a co-located set of nested tanks, a 1 by 2 array, and a 1 by 3 array. The co-located set of tanks had been analyzed previously [3] as a benchmark for inclusion within the International Handbook of Evaluated Criticality Safety Benchmark Experiments. [4] The current study represents the benchmark analysis of the 1 by 3 array of a series of nested annular tanks. Of the seventeen configurations performed in this set of experiments, twelve were evaluated and nine were judged as acceptable benchmarks.

John D. Bess; James D. Cleaver

2009-06-01T23:59:59.000Z

452

DOE Selects Washington River Protection Solutions, LLC for Tank Operations  

Broader source: Energy.gov (indexed) [DOE]

Selects Washington River Protection Solutions, LLC for Tank Selects Washington River Protection Solutions, LLC for Tank Operations Contract at Hanford Site DOE Selects Washington River Protection Solutions, LLC for Tank Operations Contract at Hanford Site May 29, 2008 - 12:51pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Washington River Protection Solutions (WRPS), LLC has been selected as the tank operations contractor to store, retrieve and treat Hanford tank waste and close the tank farms at DOE's Hanford Site in southeastern Washington State. The contract is a cost-plus award-fee contract valued at approximately $7.1 billion over ten years (a five-year base period with options to extend it for up to five years). WRPS is a limited liability company comprised of Washington Group

453

BEHAVIOUR OF A HIGHLY PRESSURISED TANK OF GHz, SUBMITTED TO A THERMAL OR MECHANICAL IMPACT  

E-Print Network [OSTI]

2000-41 BEHAVIOUR OF A HIGHLY PRESSURISED TANK OF GHz, SUBMITTED TO A THERMAL OR MECHANICAL IMPACT will significantly reduce the volume of the necessary tank(s). Whatever this pressure and whatever the volume of the tank(s), the storage System must be designed in such a way that the consequences of an accident

Paris-Sud XI, Université de

454

004.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop  

E-Print Network [OSTI]

004.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop Hydrogen Tank Safety Testing Discuss CNG Field Performance Data Discuss Safety Testing of Type 4 Tanks Current work to support Codes & Standards Development #12;3 Storage Tank Technologies 4 basic types of tank designs Type 1 ­ all metal

455

Double-Shell Tank Construction: Extent of Condition  

SciTech Connect (OSTI)

This presentation covers: quick recap of Hanford DSTs and the contribution of construction difficulties which led to the leak in tank AY-102; approach to Extent of Condition reviews; typical DST construction sequence; presentation of construction information resulting from extent of condition reviews of other DST farms with comparison to tank AY-102; and overall conclusion and impact of issues on the other DST tank farms.

Venetz, Theodore J.; Gunter, Jason R.

2014-05-13T23:59:59.000Z

456

Heat exchanger and water tank arrangement for passive cooling system  

DOE Patents [OSTI]

A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

Gillett, James E. (Greensburg, PA); Johnson, F. Thomas (Baldwin Boro, PA); Orr, Richard S. (Pittsburgh, PA); Schulz, Terry L. (Murrysville Boro, PA)

1993-01-01T23:59:59.000Z

457

Georgia Underground Storage Tank Act (Georgia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tank Act (Georgia) Underground Storage Tank Act (Georgia) Georgia Underground Storage Tank Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks

458

Underground Storage Tanks (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tanks (West Virginia) Tanks (West Virginia) Underground Storage Tanks (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install, repair, retrofit,

459

Independent Oversight Review, Hanford Tank Farms - December 2012...  

Broader source: Energy.gov (indexed) [DOE]

This targeted review was performed at the Hanford Site during the period of October 22-26, 2012. Independent Oversight Review, Hanford Tank Farms - December 2012 More Documents...

460

Systems Engineering Management Plan for the Tank Farm Contractor  

SciTech Connect (OSTI)

This plan describes the systems engineering process to develop and manage the technical baseline. It defines the documents, interfaces, and procedures used by the Tank Farm Contractor.

O'TOOLE, S.M.

2000-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or opinions given. Examination of this document cannot equal or replace attendance and public participation. Opening Dirk Dunning, Tank Waste Committee (TWC) chair, welcomed the...

462

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

provides information on the basis for the chemical and radionuclide composition in the tanks, as well as equipment, soils, and waste forms. These data, along with information...

463

SRS Reaches Significant Milestone with Waste Tank Closure  

Broader source: Energy.gov [DOE]

The Savannah River Site (SRS) achieved a significant milestone with the operational closure of tanks 18 and 19, meeting a federal agreement before the December 31, 2012, deadline.

464

Secretary's Honor Awards Recognize EM's Tank Cleanup, Closure...  

Broader source: Energy.gov (indexed) [DOE]

honored EM for achievements in its work to close high-level radioactive waste tanks as part of the annual Secretarial Honor Awards Ceremony Monday. The Honor Awards...

465

Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

throughout the United States. There has been some concern over reported cases of fuel tanks on propane vehicles being overfilled, potentially resulting in emissions from pressure...

466

All of Hanford's underground waste tanks generate hydrogen gas...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Hanford's underground waste tanks generate hydrogen gas to some degree since the radioactivity in the waste releases hydrogen from basic nuclear reactions. The routine release...

467

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

due to releases of radionuclides and chemicals from the high-level radioactive waste tanks, Fast Flux Test Facility decommissioning, and waste management activities over long...

468

Hawaii Department of Health Underground Storage Tank Webpage...  

Open Energy Info (EERE)

Abstract This webpage provides information on the regulation of underground storage tanks. Author State of Hawaii Department of Health Published State of Hawaii, Date Not...

469

Bonfire Tests of High Pressure Hydrogen Storage Tanks  

Broader source: Energy.gov (indexed) [DOE]

Bonfire Tests of High Pressure Hydrogen Storage Tanks International Hydrogen Fuel and Pressure Vessel Forum 2010Beijing, P.R. China September 27, 2010 Bonfire Tests of High...

470

Independent Oversight Activity Report, Hanford Waste Tank Farms...  

Office of Environmental Management (EM)

Previously Identified Items Regarding Positive Ventilation of Hanford Underground Waste Tanks HIAR-HANFORD-2013-10-28 This Independent Oversight Activity Report documents an...

471

Independent Oversight Activity Report, Hanford Tank Farms- June 2013  

Broader source: Energy.gov [DOE]

Office of River Protection Assessment of Contractor Quality Assurance, Operational Awareness at the Hanford Tank Farms [HIAR NNSS-2012-12-03

472

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

V RECHARGE SENSITIVITY ANALYSIS In the Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Draft TC & WM EIS),...

473

SRS Tank 48H Waste Treatment Project Technology Readiness Assessment...  

Office of Environmental Management (EM)

Project More Documents & Publications Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation...

474

Technical Assessment of Compressed Hydrogen Storage Tank Systems...  

Broader source: Energy.gov (indexed) [DOE]

metrics include the off-board Well-to-Tank (WTT) energy efficiency and greenhouse gas (GHG) emissions. Cost metrics include the refueling costs and combined fuel system...

475

Radionuclide Releases During Normal Operations for Ventilated Tanks  

SciTech Connect (OSTI)

This calculation estimates the design emissions of radionuclides from Ventilated Tanks used by various facilities. The calculation includes emissions due to processing and storage of radionuclide material.

Blunt, B.

2001-09-24T23:59:59.000Z

476

Tank Monitoring and Control System (TMACS) Acceptance Test Procedure  

SciTech Connect (OSTI)

This document is used to validate Revision 13.0 of the Tank Monitor and Control System (TMACS) and verify it functions as intended by design.

BARNES, D.A.

2000-12-14T23:59:59.000Z

477

Hanford tanks initiative (HTI) work breakdown structure (WBS)dictionary  

SciTech Connect (OSTI)

This dictionary lists the scope, deliverables, and interfaces for the various work elements of the Hanford Tanks Initiative. Cost detail is included for information only.

Mckinney, K.E.

1997-03-31T23:59:59.000Z

478

Underground Storage Tanks (New Jersey) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State New Jersey Program Type Safety and Operational Guidelines This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and the environment

479

Sandia National Laboratories: dedicated wave-tank experiments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dedicated wave-tank experiments WEC-Sim Code Development Meeting at the National Renewable Energy Laboratory On April 29, 2014, in Computational Modeling & Simulation, Energy,...

480

MIT- Energy Science and Engineering Laboratory | Open Energy Information  

Open Energy Info (EERE)

Energy Science and Engineering Laboratory Energy Science and Engineering Laboratory Jump to: navigation, search Logo: MIT- Energy Science and Engineering Laboratory Name MIT- Energy Science and Engineering Laboratory Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Region Greater Boston Area Coordinates 42.359089°, -71.093412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.359089,"lon":-71.093412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "mit tow tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

MIT- Deshpande Center for Technological Innovation | Open Energy  

Open Energy Info (EERE)

Deshpande Center for Technological Innovation Deshpande Center for Technological Innovation Jump to: navigation, search Logo: MIT- Deshpande Center for Technological Innovation Name MIT- Deshpande Center for Technological Innovation Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Region Greater Boston Area Coordinates 42.359089°, -71.093412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.359089,"lon":-71.093412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

482

MIT LMFBR blanket research project. Final summary report  

SciTech Connect (OSTI)

This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at MIT in the period 1969 to 1983. During this span of time, work was carried out on a wide range of subtasks, ranging from neutronic and photonic measurements in mockups of blankets using the Blanket Test Facility at the MIT Research Reactor, to analytic/numerical investigations of blanket design and economics. The main function of this report is to serve as a resource document which will permit ready reference to the more detailed topical reports and theses issued over the years on the various aspects of project activities. In addition, one aspect of work completed during the final year of the project, on doubly-heterogeneous blanket configurations, is documented for the record.

Driscoll, M.J.

1983-08-01T23:59:59.000Z

483

MIT-Alliance for Global Sustainability | Open Energy Information  

Open Energy Info (EERE)

Global Sustainability Global Sustainability Jump to: navigation, search Logo: MIT-Alliance for Global Sustainability Name MIT-Alliance for Global Sustainability Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Region Greater Boston Area Coordinates 42.359089°, -71.093412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.359089,"lon":-71.093412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

484

this issue features an editorial on "MIT and the Nation After 9/11" (page 3); the introduction of a new feature, "MIT Profiles" featuring Roe  

E-Print Network [OSTI]

that the existing MIT model for providing health care and health insurance has performed well historically/December 2005 AFTER MORE THAN A year of work, the Task Force on Medical Care for the MIT Community released its final report in early November. The Task Force exam- ined all aspects of medical care, medical insurance

de Weck, Olivier L.

485

Selection of AT-Tank Analysis Equipment for Determining Completion of Mixing and Particle Concentration in Hanford Waste Tanks  

SciTech Connect (OSTI)

This document will describe the functions and requirements of the at-tank analysis system concept developed by the Robotics Technology Development Program (RTDP) and Berkeley Instruments. It will discuss commercially available at-tank analysis equipment, and compare those that meet the stated functions and requirements. This is followed by a discussion of the considerations used in the selection of instrumentation for the concept design, and an overall description of the proposed at-tank analysis system.

Dodson, M.G.; Ozanich, R.M.; Bailey, S.A.

1999-06-10T23:59:59.000Z

486

Tank characterization report for single-shell tank 241-BY-109  

SciTech Connect (OSTI)

This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-BY-109. This report supports the requirements of the Tri-Party Agreement Milestone M-44-15B.

Jo, J.

1998-04-14T23:59:59.000Z

487

CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315  

SciTech Connect (OSTI)

In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.

Langton, C.; Burns, H.; Stefanko, D.

2012-01-10T23:59:59.000Z

488

Assessment of performing an MST strike in Tank 21H  

SciTech Connect (OSTI)

Previous Savannah River National Laboratory (SRNL) tank mixing studies performed for the Small Column Ion Exchange (SCIX) project have shown that 3 Submersible Mixer Pumps (SMPs) installed in Tank 41 are sufficient to support actinide removal by MST sorption as well as subsequent resuspension and removal of settled solids. Savannah River Remediation (SRR) is pursuing MST addition into Tank 21 as part of the Large Tank Strike (LTS) project. The preliminary scope for LTS involves the use of three standard slurry pumps (installed in N, SE, and SW risers) in a Type IV tank. Due to the differences in tank size, internal interferences, and pump design, a separate mixing evaluation is required to determine if the proposed configuration will allow for MST suspension and strontium and actinide sorption. The author performed the analysis by reviewing drawings for Tank 21 [W231023] and determining the required cleaning radius or zone of influence for the pumps. This requirement was compared with previous pilot-scale MST suspension data collected for SCIX that determined the cleaning radius, or zone of influence, as a function of pump operating parameters. The author also reviewed a previous Tank 50 mixing analysis that examined the ability of standard slurry pumps to suspend sludge particles. Based on a review of the pilot-scale SCIX mixing tests and Tank 50 pump operating experience, three standard slurry pumps should be able to suspend sludge and MST to effectively sorb strontium and actinides onto the MST. Using the SCIX data requires an assumption about the impact of cooling coils on slurry pump mixing. The basis for this assumption is described in this report. Using the Tank 50 operating experience shows three standard slurry pumps should be able to suspend solids if the shear strength of the settled solids is less than 160 Pa. Because Tank 21 does not contain cooling coils, the shear strength could be larger.

Poirier, Michael R.

2014-09-29T23:59:59.000Z

489

Underground storage tank 291-D1U1: Closure plan  

SciTech Connect (OSTI)

The 291-D1U1 tank system was installed in 1983 on the north side of Building 291. It supplies diesel fuel to the Building 291 emergency generator and air compressor. The emergency generator and air compressor are located southwest and southeast, respectively, of the tank (see Appendix B, Figure 2). The tank system consists of a single-walled, 2,000- gallon, fiberglass tank and a fuel pump system, fill pipe, vent pipe, electrical conduit, and fuel supply and return piping. The area to be excavated is paved with asphalt and concrete. It is not known whether a concrete anchor pad is associated with this tank. Additionally, this closure plan assumes that the diesel tank is below the fill pad. The emergency generator and air compressor for Building 291 and its associated UST, 291-D1U1, are currently in use. The generator and air compressor will be supplied by a temporary above-ground fuel tank prior to the removal of 291-D1U1. An above-ground fuel tank will be installed as a permanent replacement for 291-D1U1. The system was registered with the State Water Resources Control Board on June 27, 1984, as 291-41D and has subsequently been renamed 291-D1U1. Figure 1 (see Appendix B) shows the location of the 291-D1U1 tank system in relation to the Lawrence Livermore National Laboratory (LLNL). Figure 2 (see Appendix B) shows the 291-D1U1 tank system in relation to Building 291. Figure 3 (see Appendix B) shows a plan view of the 291-D1U1 tank system.

Mancieri, S.; Giuntoli, N.

1993-09-01T23:59:59.000Z

490

Examination of Uranium(VI) Leaching During Ligand Promoted Dissolution of Waste Tank Sludge Surrogates  

E-Print Network [OSTI]

speciation in Hanford waste tank sludge simulants. J. Nucl.and Sr(II) from simulated tank waste sludges. Sep. Sci.Promoted Dissolution of Waste Tank Sludge Surrogates. In

Powell, Brian A.

2008-01-01T23:59:59.000Z

491

SLOSHING OF LIQUIDS IN RIGID ANNULAR CYLINDRICAL AND TORUS TANKS DUE TO SEISMIC GROUND MOTIONS  

E-Print Network [OSTI]

response of water in annular tank model of water = 1 underof Fixed-Base Liquid Storage Tank,'' U.S. , Japan Seminar onSloshing in Axisymmetric Tanks, 11 Ph.D. Dissertation,

Aslam, M.

2013-01-01T23:59:59.000Z

492

Quantifying the Reactive Uptake of OH by Organic Aerosols in a Continuous Flow Stirred Tank Reactor  

E-Print Network [OSTI]

in a Continuous Flow Stirred Tank Reactor Dung L. Che, 1,2a continuous flow stirred tank reactor. This approach isa continuous flow stirred tank reactor (CFSTR) at lower OH

Che, Dung L.

2010-01-01T23:59:59.000Z

493

E-Print Network 3.0 - active catch tanks Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

catch tanks Search Powered by Explorit Topic List Advanced Search Sample search results for: active catch tanks Page: << < 1 2 3 4 5 > >> 1 Tips For Residential Heating Oil Tank...

494

The Detection of Light and Heavy Mesotrons Outside the Tank of the 184-inch Cyclotron  

E-Print Network [OSTI]

Heavy Mesotrons Outside the Tank of the 184 00 Oyolotron byHeavy Mesotrons Outside the Tank of the 184" Cyclotron byexperiments outside the tank. Thus far only photographic

Panofsky, Wolfgang

2010-01-01T23:59:59.000Z

495

Thermal buckling of metal oil tanks subject to an adjacent fire   

E-Print Network [OSTI]

Fire is one of the main hazards associated with storage tanks containing flammable liquids. These tanks are usually closely spaced and in large groups, so where a petroleum fire occurs, adjacent tanks are susceptible to ...

Liu, Ying

2011-01-01T23:59:59.000Z

496

Thermal buckling of metal oil tanks subject to an adjacent fire   

E-Print Network [OSTI]

Fire is one of the main hazards associated with storage tanks containing flammable liquids. These tanks are usually closely spaced and in large groups, so where a petroleum fire occurs, adjacent tanks are susceptible to ...

Liu, Ying

2011-11-22T23:59:59.000Z

497

Behavior of Uranium(VI) during HEDPA Leaching for Aluminum Dissolution in Tank Waste Sludges  

E-Print Network [OSTI]

Aluminum Dissolution in Tank Waste Sludges Brian A. PowellThe underground storage tanks at the Hanford site containtime, the material in the tanks has stratified to produce a

Powell, Brian A.; Rao, Linfeng; Nash, Kenneth L.; Martin, Leigh

2006-01-01T23:59:59.000Z

498

Examination of Uranium(VI) Leaching During Ligand Promoted Dissolution of Waste Tank Sludge Surrogates  

E-Print Network [OSTI]

in Hanford waste tank sludge simulants. J. Nucl. Sci.from simulated tank waste sludges. Sep. Sci. Tech. 38(2),Dissolution of Waste Tank Sludge Surrogates. In preparation,

Powell, Brian A.

2008-01-01T23:59:59.000Z

499

Forms of Al in Hanford Tank Waste  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Actual Waste Testing Actual Waste Testing Lanée Snow Sandra Fiskum Rick Shimskey Reid Peterson 4/9/09 2 Tested > 75% of sludge waste types Sludge Sources Bi-Phosphate waste Redox Purex Cladding TBP FeCN sludge Redox Cladding Zirc Cladding Purex waste Misc NA 4/9/09 3 Tested > 75% of saltcake waste types Saltcake fractions Bi-phosphate saltcake S A B R NA Tested 8 groups of tank waste types Group ID Type Al Cr PO 4 3- Oxalate Sulfate Fluoride 1 Bi Phosphate sludge 3% 3% 21% 2% 6% 12% 2 Bi Phosphate saltcake (BY, T) 18% 25% 36% 36% 43% 36% 3 PUREX Cladding Waste sludge 12% 1% 3% 1% 1% 3% 4 REDOX Cladding Waste sludge 8% 1% 0% 0% 0% 2% 5 REDOX sludge 26% 8% 1% 3% 1% 2% 6 S - Saltcake (S) 11% 38% 12% 24% 14% 3% 7 TBP Waste sludge 1% 1% 8% 0% 2% 1% 8 FeCN sludge 2% 1% 4% 1% 1% 1% *Percentages reflect % of total inventory of species in the tank farm. *Discussion will focus on those that make up the largest fraction of the Al

500

Annual report of tank waste treatability  

SciTech Connect (OSTI)

This report has been prepared as part of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) and constitutes completion of Tri-Party Agreement Milestone M-04-00 for fiscal year 1991. This report provides a summary of treatment activities for newly generated waste, existing double-shell tank waste, and existing single-shell tank waste, as well as a summary of grout disposal feasibility, glass disposal feasibility, alternate methods of disposal, and safety issues which may impact the treatment and disposal of existing defense nuclear wastes. This report is an update of the 1990 report and is intended to provide traceability for the documentation of the areas listed above by statusing the studies, activities, and issues which occurred in these areas over the period of March 1, 1990, through February 28, 1991. Therefore, ongoing studies, activities, and issues which were documented in the previous (1990) report are addressed in this subsequent (1991) report. 40 refs., 4 figs., 3 tabs.

Giese, K.A.

1991-09-01T23:59:59.000Z