Sample records for missions grand canyon

  1. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    SciTech Connect (OSTI)

    Hallock, K.A.; Mazurek, M.A. (Brookhaven National Lab., Upton, NY (United States)); Cass, G.R. (California Inst. of Tech., Pasadena, CA (United States). Dept. of Environmental Engineering Science)

    1992-05-01T23:59:59.000Z

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon.

  2. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Grand Canyon National Park

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort; Ian Nienhueser

    2014-08-01T23:59:59.000Z

    This report focuses on the Grand Canyon National Park (GCNP) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively PEVs) can fulfill the mission requirements.

  3. Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA

    E-Print Network [OSTI]

    Received 6 May 2005 Availble online 7 February 2006 Abstract The failure of a lava dam 165,000 yr ago dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. FailurePeak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA Cassandra R

  4. Savannah River Site's H Canyon Work Ensures Future Missions for...

    Office of Environmental Management (EM)

    process at MOX, which is now under construction, will eventually create fuel pellets for U.S. commercial reactor fuel assemblies. Savannah River Site's H Canyon Begins...

  5. Mission Canyon, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|MililaniMindanaoMinuanoIV Jump to:1980)Bay,Canyon,

  6. Toward Net Energy Buildings: Design, Construction, and Performance of the Grand Canyon House

    SciTech Connect (OSTI)

    C. Edward Hancock; Greg Barker; J. Douglas Balcomb.

    1999-06-23T23:59:59.000Z

    The Grand Canyon house is a joint project of the DOE's National Renewable Energy Laboratory and the U.S. National Park Service and is part of the International Energy Agency Solar Heating and Cooling Programme Task 13 (Advanced Solar Low-Energy Buildings). Energy consumption of the house, designed using a whole-building low-energy approach, was reduced by 75% compared to an equivalent house built in accordance with American Building Officials Model Energy Code and the Home Energy Rating System criteria.

  7. Annotated bibliography for the humpback chub (Gila cypha) with emphasis on the Grand Canyon population.

    SciTech Connect (OSTI)

    Goulet, C. T.; LaGory, K. E.; Environmental Science Division

    2009-10-05T23:59:59.000Z

    Glen Canyon Dam is a hydroelectric facility located on the Colorado River in Arizona that is operated by the U.S. Bureau of Reclamation (Reclamation) for multiple purposes including water storage, flood control, power generation, recreation, and enhancement of fish and wildlife. Glen Canyon Dam operations have been managed for the last several years to improve conditions for the humpback chub (Gila cypha) and other ecosystem components. An extensive amount of literature has been produced on the humpback chub. We developed this annotated bibliography to assist managers and researchers in the Grand Canyon as they perform assessments, refine management strategies, and develop new studies to examine the factors affecting humpback chub. The U.S. Geological Survey recently created a multispecies bibliography (including references on the humpback chub) entitled Bibliography of Native Colorado River Big Fishes (available at www.fort.usgs.gov/Products/data/COFishBib). That bibliography, while quite extensive and broader in scope than ours, is not annotated, and, therefore, does not provide any of the information in the original literature. In developing this annotated bibliography, we have attempted to assemble abstracts from relevant published literature. We present here abstracts taken unmodified from individual reports and articles except where noted. The bibliography spans references from 1976 to 2009 and is organized in five broad topical areas, including: (1) biology, (2) ecology, (3) impacts of dam operations, (4) other impacts, and (5) conservation and management, and includes twenty subcategories. Within each subcategory, we present abstracts alphabetically by author and chronologically by year. We present relevant articles not specific to either the humpback chub or Glen Canyon Dam, but cited in other included reports, under the Supporting Articles subcategory. We provide all citations in alphabetical order in Section 7.

  8. Hydrodynamic trapping in Mission Canyon Formation (Mississippian) reservoirs: Elkhorn Ranch field, North Dakota

    SciTech Connect (OSTI)

    Demis, W.D. (Marathon Oil Co., Houston, TX (United States))

    1991-03-01T23:59:59.000Z

    Hydrocarbons in Mission Canyon dolomite reservoirs in the Elkhorn Ranch field are trapped by downdip flow of formation water to the northeast. Elkhorn Ranch field is located on a north-plunging anticline with only 10 ft (3 m) of crestal closure. The Mission Canyon is a regressive, shallowing upward sequence of subtidal dolomitized mudstones and wackestones grading upward into sebkha-salina evaporites. Mission Canyon oil production is localized on the north and northeast side of the structure. Maps of porosity pinch-outs and permeability barriers defined from core data, superimposed upon the Mission Canyon structure, show that most of the oil cannot be trapped by stratigraphic facies change. Southwest-trending, updip porosity pinch-outs cross the north-plunging structural axis at an angle so low that hydrocarbons would leak out to the southwest under hydrostatic conditions. Downdip hydrodynamic flow to the northeast provides the critical trapping component. Regional maps of apparent formation water resistivity and water salinity show a region of fresher water south and southwest of the field. A regional potentiometric map constructed using Horner-plot extrapolated shut-in pressure data indicates a head gradient of about 20 ft/mi (4 m/km) to the northeast at Elkhorn Ranch field. This gradient corresponds to a calculated water-oil tilt of about 50 ft/mi (20 m/km). Observed tilt of the oil accumulation is actually about 25 ft/mi (5 m/km) to the northeast. This discrepancy might be the result of the field having not yet reached equilibrium with the invading water.

  9. Storm Water Quality in Los Alamos Canyon following the Cerro Grande Fire

    SciTech Connect (OSTI)

    M. Johansen; B. Enz; B. Gallaher; K. Mullen; D. Kraig

    2001-04-01T23:59:59.000Z

    In May 2000, the Cerro Grande Fire burned about 7400 acres of forest on the Los Alamos National Laboratory (LANL) and about 10,000 acres in watersheds above LANL on Santa Fe National Forest lands. The resulting burned landscapes raised concerns of increased storm water runoff and transport of contaminants by runoff in the canyons traversing LANL. On June 2 and 3, 2000, rain fell in the Los Alamos Canyon watershed generating storm water runoff in the canyon bottom. This event was important in that it was the first significant runoff on LANL following the fire and occurred in a canyon containing known legacy waste sites. Samples from this runoff were analyzed for radionuclide, metal, inorganic, and organic constituents. Results show radionuclide concentrations at or below previous (pre-fire) maximum levels at locations on LANL and downstream. However, greater concentrations of some fallout-associated radionuclides (cesium-137 and strontium-90) were seen arriving on LANL from upstream areas compared to pre-fire conditions. Tests indicate most of the radionuclides in the samples were bound to sediments, not dissolved in water. Most radionuclide concentrations in sediments were below LANL Screening Action Levels, with cesium-137 and strontium-90 as exceptions. Most radionuclide concentrations in samples taken at LANL's downstream boundary were greater than those taken upstream, indicating the presence of contributing sources on LANL. For comparison purposes, doses were calculated on a mrem per liter of unfiltered water basis for 11 radionuclides commonly associated with atmospheric fallout and with LANL operations. The maximum dose was 0.094 mrem per liter unfiltered water and was largely associated with plutonium-239/240. In contrast, all filtered samples had total doses less than 0.001 mrem per liter. Compared to past data, potential doses were not increased by the fire during this initial runoff event. Of the 25 metals tested for, seven were above pre-fire levels, including copper, lead, manganese, selenium, strontium, uranium, and zinc. However, dissolved metal concentrations did not exceed State livestock and wildlife standards. Of the 18 general chemistry parameters tested, eight exceeded historic norms, including calcium, potassium, total phosphorus, cyanide, and magnesium.

  10. Identification of source contributions to visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park. Interim final report

    SciTech Connect (OSTI)

    Mazurek, M.A.; Hallock, K.A.; Leach, M. [Brookhaven National Lab., Upton, NY (United States); Mason-Jones, M.; Mason-Jones, H.; Salmon, L.G.; Winner, D.A.; Cass, G.R. [California Inst. of Tech., Pasadena, CA (United States). Dept. of Environmental Engineering Science

    1993-06-01T23:59:59.000Z

    Sulfates and carbonaceous aerosols are the largest contributors to the fine particle burden in the atmosphere near Grand Canyon National Park. While the effects of sulfate particles on visibility at the Grand Canyon has been extensively studied, much less is known about the nature and origin of the carbonaceous aerosols that are present. This disparity in understanding arises from at least two causes: aerosol carbon data for the region are less plentiful and many of the sources that could contribute to that organic aerosol are both diverse and not well characterized. The objective of this present study is to examine the origin of the carbonaceous aerosol at Grand Canyon National Park during the summer season based on molecular tracer techniques applied to source and ambient samples collected specifically for this purpose.

  11. Big Stick/Four Eyes fields: structural, stratigraphic, and hydrodynamic trapping within Mission Canyon Formation, Williston basin

    SciTech Connect (OSTI)

    Breig, J.J.

    1988-07-01T23:59:59.000Z

    The Mississippian Mission Canyon formation of the Williston basin is the region's most prolific oil producing horizon. Big Stick/Four Eyes is among the most prolific of the Mission Canyon fields. Primary production from 87 wells is projected to reach 47 million bbl of oil. An additional 10-20 million bbl may be recovered through waterflooding. The complex was discovered in 1977 by the Tenneco 1-29 BN, a wildcat with primary objectives in the Devonian Duperow and Ordovician Red River Formations. A series of Mission Canyon discoveries followed in the Big Stick, Treetop, T-R, and Mystery Creek fields. Early pressure studies showed that these fields were part of an extensive common reservoir covering 44.75 mi/sup 2/ (115.91 km/sup 2/). The reservoir matrix is formed from restricted marine dolostones deposited on a low-relief ramp. Landward are algal-laminated peritidal limestones and saline and supratidal evaporites of a sabkhalike shoreline system. Open-marine limestones, rich in crinoids, brachiopods, and corals, mark the seaward limit of reservoir facies. Regressive deposition placed a blanket of anhydrite over the carbonate sequence providing a seal for the reservoir. Lateral trapping is accomplished through a combination of processes. Upper reservoir zones form belts of porosity that parallel the northeasterly trending shoreline. The trend is cut by the northward plunging Billings anticline, which provides structural closure to the north. Facies changes pinch out porosity to the south and east. Trapping along depositional strike to the southwest is only partially controlled by stratigraphic or structural factors. A gentle tilt of 25 ft per mi (5 m per km) occurs in the oil-water contact to the east-northeast, due to freshwater influx from Mississippian outcrop on the southern and southwestern basin margins.

  12. Stratigraphic and diagenetic controls on the occurrence of porosity in the Mississippian Mission Canyon Formation in the Billings Nose Area, North Dakota

    E-Print Network [OSTI]

    Beaber, Daniel Edward

    1989-01-01T23:59:59.000Z

    AND INTERPRETATION. CONCLUSIONS REFERENCES CITED APPENDICES. 70 72 74 77 VITA 86 Figure 1 LIST OF FIGURES Index map of the Williston Basin showing structure on top of the Mission Canyon Formation. Also shown are the major oil fields and structures... DAKOTA I SOUTH DAKOTA A l I I I I I I I I Figure 1. Index map of the Williston Basin showing structure on top of the Mission Canyon Formation. Also shown are the major oil fields and structures in the basin. Contour interval is 500 feet (152 m...

  13. Grande

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    breaks ground on key sediment control project November 5, 2009 Structures will limit flow of sediments toward Rio Grande Los Alamos, New Mexico, November 5, 2009- Crews broke...

  14. Glen Canyon Dam, Fluctuating Water Levels, and Riparian Breeding Birds: The Need for Management Compromise

    E-Print Network [OSTI]

    I ;'. I Glen Canyon Dam, Fluctuating Water Levels, and Riparian Breeding Birds: The Need.--Large water releases from Glen Canyon Dam in May and June are harmful to riparian breeding birds along' INTRODUCTION 100,000,.... COLORAOQ RIVER NEAR GRAND CANYON (PHANTOM RANCHi The completion of Glen Canyon Dam

  15. Hot Canyon

    ScienceCinema (OSTI)

    None

    2013-03-01T23:59:59.000Z

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  16. Savannah River Site’s H Canyon Begins 2012 with New and Continuing Missions- Transuranic waste remediation, new mission work are the focus of the nation’s only active nuclear chemical separations facility in 2012

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The Savannah River Site (SRS) is breathing new life into the H Canyon, the only active nuclear chemical separations facility still operating in the U.S.

  17. Simulation of the Impact of the SO2 Emissions from the Proposed Sithe Power Plant on the Grand Canyon and other Class I Areas

    E-Print Network [OSTI]

    Fischer, Emily V.

    Simulation of the Impact of the SO2 Emissions from the Proposed Sithe Power Plant on the Grand to simulate the proposed and existing power plant plumes during January 2001. Four-km MM5 wind fields were the region. During these stagnation events, emissions from the three simulated power plants mixed together

  18. Upper Los Alamos Canyon Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upper Los Alamos Canyon Cleanup The Upper Los Alamos Canyon Project involves cleaning up hazardous materials left over from some of the Laboratory's earliest activities. Contact...

  19. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    SciTech Connect (OSTI)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Becker, N.M.; Rodgers, J.C.; Hansen, W.R.

    1994-12-01T23:59:59.000Z

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lower Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.

  20. Sycamore Canyon Modernization

    High Performance Buildings Database

    Santee, CA The Sycamore Canyon Elementary School is one of five schools in the Santee district that has completed a modernization program. This first round of projects has helped inform the district's ongoing effort to modernize all of their facilities. The total energy use at Sycamore Canyon was successfully reduced by more than one-third, as compared to the pre-retrofit consumption. The school is currently operating with an energy use intensity of only 23 kBtu/SqFt, placing it in the top 99% of schools (per the EnergyStar rating system).

  1. Camp Pendleton Kings Canyon

    E-Print Network [OSTI]

    Hills Grass Valley Black Mountain Cleghorn Lakes North Algodones Dunes Fish Creek Mountains Coyote Death Valley Surprise Canyon Pine Creek Hauser San Gabriel Piute Cypress ISA Table Mountain San Ysidro Rockhouse A Casa Diablo Southern Inyo Scodie Symmes Creek Independence Creek Moses White Mountains Cady

  2. New York Canyon Simulation

    Broader source: Energy.gov [DOE]

    Engineered Geothermal Systems Demonstration Projects. Project objectives: To update the geologic model of New York Canyon with the assistance of state-of-the-art geophysical logs in new full-diameter wells and sub-surface microseismicmonitoring in new slim holes to be drilled in a ring around the EGS stimulation area; To create an exploitable geothermal reservoir through fracturing induced by long-term injection at moderate wellhead pressures.

  3. California Nuclear Profile - Diablo Canyon

    U.S. Energy Information Administration (EIA) Indexed Site

    Diablo Canyon" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  4. Snake Hells Canyon Subbasin Inventory

    E-Print Network [OSTI]

    Snake Hells Canyon Subbasin Inventory May 2004 Prepared for the Northwest Power and Conservation .................................................................................................................. 1 1.1 The Subbasin Inventory and the Subbasin Planning Process Subbasin Inventory i May 2004 #12;LIST OF FIGURES FIGURE 1.LAND MANAGEMENT IN THE SNAKE HELLS CANYON

  5. Canyon Facilities - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26,Computers »CafeteriasToursCancelingCanyon

  6. Post-project appraisal of Martin Canyon Creek restoration

    E-Print Network [OSTI]

    Wagner, Wayne; Roseman, Jesse

    2006-01-01T23:59:59.000Z

    Ltd. 1999. Martin Canyon Creek Stream Restoration Owner’sAppraisal of Martin Canyon Creek Restoration Final ProjectDublin, California, Martin Canyon Creek is a small tributary

  7. New York Canyon Stimulation

    SciTech Connect (OSTI)

    Raemy, B. Principal Investigator, TGP Development Company, LLC

    2012-06-21T23:59:59.000Z

    The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "����No Go"��� decision and initiate project termination in April 2012.

  8. Biological Inventory Colorado Canyons National Conservation Area

    E-Print Network [OSTI]

    Biological Inventory of the Colorado Canyons National Conservation Area Prepared by: Joe Stevens .............................. 12 Identify Targeted Inventory Areas

  9. Hydropower and the environment: A case study at Glen Canyon Dam

    SciTech Connect (OSTI)

    Wegner, D.L. [Denver Technical Service Center, Flagstaff, AZ (United States)

    1995-12-31T23:59:59.000Z

    The management of hydroelectric resources in the Colorado River requires a balancing of hydrologic, social, natural and cultural resources. The resulting management often has to deal with inherently conflicting objectives, short and long-term goals, time frames and operational flexibility. Glen Canyon Dam, AZ, on the Colorado River, controls the release of water into the Grand Canyon. The dam has been under intense public scrutiny since it was completed in 1963. An Environmental Impact Statement evaluating the future operations and options for Glen Canyon Dam was initiated by the Department of the Interior in 1989 and completed in 1995. An Adaptive Management approach to future operational management has been developed as part of the Glen Canyon Dam Environmental Impact Statement process. Future operations at Glen Canyon Dam will take into consideration the need to balance water movement and hydroelectricity development with natural, recreation, Native American and cultural needs. Future management of rivers requires acknowledgement of the dynamic nature of ecosystems and the need to link scientific information into the decision-making process. Lessons learned and programs developed at Glen Canyon Dam may be applied to other river systems.

  10. Cenozoic Landscape Evolution of the Grand Canyon Region, Arizona

    E-Print Network [OSTI]

    Lee, John

    2008-02-26T23:59:59.000Z

    The landscape evolution of the southwestern Colorado Plateau has eluded accurate description due to the scarcity of a Cenozoic rock record. However, advances in low-temperature thermochronology have shown the ability to quantitatively assess erosion...

  11. Grand Canyon Village, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas:GrahamBlanc, Michigan:

  12. Post-project appraisal of Martin Canyon Creek restoration

    E-Print Network [OSTI]

    Wagner, Wayne; Roseman, Jesse

    2006-01-01T23:59:59.000Z

    Martin Canyon Creek Stream Restoration Owner’s Manual: FinalMartin Canyon Creek Stream Restoration in project documents,important component of stream restoration projects to assess

  13. ACCELERATED PILOT PROJECT FOR U CANYON DEMOLITION

    SciTech Connect (OSTI)

    KEHLER KL

    2011-01-13T23:59:59.000Z

    At the U.S. Department of Energy's Hanford Site in southeast Washington State, CH2M HILL Plateau Remediation Company (CH2M HILL) is underway on a first-of-a-kind project with the decommissioning and demolition of the U Canyon. Following the U.S. Environmental Protection Agency's Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Record of Decision for the final remediation of the canyon, CH2M HILL is combining old and new technology and techniques to prepare U Canyon for demolition. The selected remedial action called first for consolidating and grouting equipment currently in the canyon into lower levels of the plant (openings called cells), after which the cell galleries, hot pipe trench, ventilation tunnel, drains and other voids below the operating deck and crane-way deck levels will be filled with approximately 20,000 cubic yards of grout and the canyon roof and walls demolished down to the approximate level of the canyon deck. The remaining canyon structure will then be buried beneath an engineered barrier designed to control potential contaminant migration for a 500-year life. Methods and lessons learned from this project will set the stage for the future demolition of Hanford's four other canyon-type processing facilities.

  14. Environmental analysis of Acid/middle Pueblo Canyon, Los Alamos, New Mexico

    SciTech Connect (OSTI)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Hansen, W.R.

    1982-08-01T23:59:59.000Z

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, and Pueblo Canyon found residual radioactivity at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons, all the way to the Rio Grande. The largest reservoir of radioactive material is in lower Pueblo Canyon, which is on DOE property. The only areas where residual radioactivity exceeds the proposed cleanup criteria are at the former vehicle decontamination facility, located between the former treatment plant site and Acid Canyon, around the former untreated waste outfall and for a short distance below, and in two small areas farther down in Acid Canyon. The three alternatives proposed are (1) to take no action, (2) to fence the areas where the residual radioactivity exceeds the proposed criteria (minimal action), and (3) to clean up the former vehicle decontamination facility and around the former untreated waste outfall. Calculations based on actual measurements indicate that the annual dose at the location having the greatest residual radioactivity would be about 12% of the applicable guideline. Most doses are much smaller than that. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is very small. The preferred alternative is to clean up the areas around the former vehicle decontamination facility and the untreated waste outfall. This course of action is recommended not because of any real danger associated with the residual radioactivity, but rather because the cleanup operation is a minor effort and would conform with the ALARA (as low as reasonably achievable) philosophy.

  15. Capability to Recover Plutonium-238 in H-Canyon/HB-Line - 13248

    SciTech Connect (OSTI)

    Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R. [Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29802 (United States)] [Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29802 (United States)

    2013-07-01T23:59:59.000Z

    Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site had previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np- 237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-Canyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase- 3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ?2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase- 1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material. (authors)

  16. EIS-0219: F-Canyon Plutonium Solutions

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of processing the plutonium solutions to metal form using the F-Canyon and FB-Line facilities at the Savannah River Site.

  17. Beneficial Reuse at Bodo Canyon Site

    Broader source: Energy.gov [DOE]

    The George Washington UniversityEnvironmental Resource Policy Graduate Program Capstone ProjectBeneficial Reuse at Bodo Canyon SiteFeasibility and Community Support for Photovoltaic ArrayMay 2012

  18. Grand Challenges

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat PumpJorgeAtlGrad.Employee, RetireeGrand

  19. CAPABILITY TO RECOVER PLUTONIUM-238 IN H-CANYON/HB-LINE

    SciTech Connect (OSTI)

    Fuller, K.; Smith, Robert H. Jr.; Goergen, Charles R.

    2013-01-09T23:59:59.000Z

    Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site had previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np-237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-anyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase-3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ~ 2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase-1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material.

  20. Authigenic clay minerals in sandstones of the Delaware Mountain Group: Bell Canyon and Cherry Canyon Formations, Waha Field, West Texas

    E-Print Network [OSTI]

    Walling, Suzette Denise

    1992-01-01T23:59:59.000Z

    AUTHIGENIC CLAY MINERALS IN SANDSTONES OF THE DELAWARE MOUNTAIN GROUP: BELL CANYON AND CHERRY CANYON FORMATIONS, WAHA FIELD, WEST TEXAS A Thesis by SUZETTE DENISE WALLING Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1992 Major Subject: Geology AUTHIGENIC CLAY MINERALS IN SANDSTONES OF THE DELAWARE MOUNTAIN GROUP: BELL CANYON AND CHERRY CANYON FORMATIONS, WAHA FIELD, WEST TEXAS...

  1. Landslides and other mass movements near TA-33, northern White Rock Canyon, New Mexico. Final report

    SciTech Connect (OSTI)

    Dethier, D.P.

    1993-09-01T23:59:59.000Z

    Massive slump complexes and at least two rock avalanches flank the eastern rim of the Pajarito Plateau along northern White Rock Canyon, north of TA-33. Landslides failed along mechanically weak rocks in the Santa Fe Group, within the Puye Formation, or in Pliocene alluvial and lacustrine units. The landslides are mainly of early or middle Pleistocene age. The toe area of at least,one slump complex has been active in the late Pleistocene, damming White Rock Canyon near the mouth of Water Canyon. Lacustrine sediment that filled this lake, or series of lakes, to an elevation of at least 1710 m is preserved at a number of upstream sites, including a deposit near the Buckman townsite that exposes 30 m of lacustrine sediment. Charcoal collected at several sites has been submitted for {sup 14}C dating. Landslides, however, probably do not represent a significant short-term threat to the material disposal areas at TA-33. Bedrock that lies beneath the TA-33 mesa is relatively stable, the mesa shows no signs of incipient failure, and past periods of slide activity were responses to rapid downcutting of the Rio Grande and climate change, probably over periods of several decades, at least. Rockfall and headward erosion of gullies do not represent significant decadal hazards on canyon rims near TA-33. Gully migration near MDA-K is a potential threat, but the gullies were not examined in detail. A system of north-trending faults, at least one of which displays Pleistocene activity, bisects the TA-33 mesa. If these faults are capable of producing significant seismic shaking, generalizations about landslide and rockfall hazards must be reevaluated.

  2. Mission Statement

    Broader source: Energy.gov [DOE]

    Our mission is to remove environmental legacies resulting from more than 60 years nuclear weapons development and government-sponsored nuclear energy research.

  3. Big Canyon Creek Ecological Restoration Strategy.

    SciTech Connect (OSTI)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01T23:59:59.000Z

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

  4. Hydrogeology and tritium transport in Chicken Creek Canyon, Lawrence Berkeley National Laboratory, Berkeley, California

    E-Print Network [OSTI]

    Jordan, Preston D.; Javandel, Iraj

    2007-01-01T23:59:59.000Z

    exposures in upper Chicken Creek Canyon. Figure 3-2a.Borings and test pits in Chicken Creek Canyon. Figure 3-2b.portion of upper Chicken Creek Canyon. Figure 3-2c. Borings

  5. Rio Grande Compact (Texas)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the state's entrance into the Rio Grande Compact, a joint agreement between the states of Colorado, New Mexico, and Texas. The compact is administered by the Rio Grande...

  6. White Creek and Nine Canyon wind farms Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    additional wind storage and shaping services. Since these White Creek and Nine Canyon wind farms December 2006 2 Bonne ville Power Administration DOEBP-3770 November 2006...

  7. Geothermal: Sponsored by OSTI -- New York Canyon Stimulation

    Office of Scientific and Technical Information (OSTI)

    New York Canyon Stimulation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News...

  8. Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  9. 20140430_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  10. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  11. Green Machine Florida Canyon Hourly Data 20130731

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  12. 20140430_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-05-05T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  13. Green Machine Florida Canyon Hourly Data 20130731

    SciTech Connect (OSTI)

    Vanderhoff, Alex

    2013-08-30T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  14. 20130416_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Vanderhoff, Alex

    2013-04-24T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  15. Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Vanderhoff, Alex

    2013-07-15T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  16. Bayo Canyon, New Mexico, Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111A Lithologic and MonitorBayo Canyon, New

  17. Red Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:bJumpRed Bank, New Jersey: EnergyCanyon

  18. Bear Canyon Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France:Barstow,Bayport Biomass FacilityBear Canyon

  19. Spring Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp JumpsourceSouthlake,AeHJump to:Spring Canyon

  20. Three Mile Canyon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe yearThermalSoulOaks,Mile Canyon Jump to:

  1. Ruby Canyon Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont: Energy Resources JumpRuby Canyon

  2. Canyon Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen EnergyCallaway ElectricCambridgeCanneltonCanyon Industries

  3. Mission Statement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Revised:7,A Search4Mission &Mission

  4. Marble Canyon 1/sup 0/ x 2/sup 0/ NTMS area Arizona: data report

    SciTech Connect (OSTI)

    Heffner, J.D.

    1980-07-01T23:59:59.000Z

    Results of ground water and stream/surface sediment reconnaissance (HSSR) in the National Topographic Map Series (NTMS) Marble Canyon 1/sup 0/ x 2/sup 0/ quadrangle are presented. The target sampling density for all media collected was one site per 12 square kilometers. This resulted in 884 sediment samples being collected; however, dry conditions and sparse population resulted in the collection of only 2 ground water samples. Grand Canyon National Park, Glen Canyon National Recreation Area, and much Indian tribal land in the southern half of the quadrangle were not sampled. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Mass spectrometry results are given for helium in ground water. Field measurements for sediment samples are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. Data from ground water include: water chemistry measurements (pH, conductivity, and alkalinity); physical measurements (water temperature, and scintillometer readings); and elemental analyses (U, Al, Br, Cl, Dy, F, He, Mg, Mn, Na, and V). Data from sediment sites include: water chemistry measurements (where available) for pH, conductivity, and alkalinity; and elemental analyses(U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are also tabulated. Histograms, cumulative frequency, and areal distribution plots for most elements; Log U/Th, Log U/Hf, and Log U/(Th + Hf) ratios; and scintillometer readings are included.

  5. The Characterization of Biotic and Abiotic Media Upgradient and Downgradient of the Los Alamos Canyon Weir

    SciTech Connect (OSTI)

    P.R. Fresquez

    2006-01-15T23:59:59.000Z

    As per the Mitigation Action Plan for the Special Environmental Analysis of the actions taken in response to the Cerro Grande Fire, sediments, vegetation, and small mammals were collected directly up- and downgradient of the Los Alamos Canyon weir, a low-head sediment control structure located on the northeastern boundary of Los Alamos National Laboratory, to determine contaminant impacts, if any. All radionuclides ({sup 3}H, {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu, {sup 90}Sr, {sup 241}Am, {sup 234}U, {sup 235}U and {sup 238}U) and trace elements (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl) in these media were low and most were below regional upper level background concentrations (mean plus three sigma). The very few constituents that were above regional background concentrations were far below screening levels (set from State and Federal standards) for the protection of the human food chain and the terrestrial environment.

  6. Depositional environment and reservoir morphology of Canyon sandstones, Central Midland Basin, Texas 

    E-Print Network [OSTI]

    Jones, James Winston

    1980-01-01T23:59:59.000Z

    and Irion Counties indicate that Canyon sandstones in Irion County are younger than Canyon sandstones at Jameson field. Canyon sandstones at Brooks field in eastern Irion County (Fig. I) occur above the Fli ppen basinal shale "marker" (Elton, Rodgers... with the underly1ng shale is sharp; 7017 ft. 25 Fig. 9 Sedimentary structures in Canyon "A" sandstones, Union Texas Petroleum Sugg 4-1, Burnt Rock field, Lucky Canyon area, Irion County, Texas. Boldface letters (lower left) refer to photographs; small...

  7. Cerro Grande Fire Impact to Water Quality and Stream Flow near Los Alamos National Laboratory: Results of Four Years of Monitoring

    SciTech Connect (OSTI)

    B.M. Gallaher; R.J. Koch

    2004-09-15T23:59:59.000Z

    In May 2000, the Cerro Grande fire burned about 7400 acres of mixed conifer forest on the Los Alamos National Laboratory (LANL), and much of the 10,000 acres of mountainside draining onto LANL was severely burned. The resulting burned landscapes raised concerns of increased storm runoff and transport of contaminants by runoff in the canyons traversing LANL. The first storms after the fire produced runoff peaks that were more than 200 times greater than prefire levels. Total runoff volume for the year 2000 increased 50% over prefire years, despite a decline in total precipitation of 13% below normal and a general decrease in the number of monsoonal thunderstorms. The majority of runoff in 2000 occurred in the canyons at LANL south of Pueblo Canyon (70%), where the highest runoff volume occurred in Water Canyon and the peak discharge occurred in Pajarito Canyon. This report describes the observed effects of the Cerro Grande fire and related environmental impacts to watersheds at and near Los Alamos National Laboratory (LANL) for the first four runoff seasons after the fire, from 2000 through 2003. Spatial and temporal trends in radiological and chemical constituents that were identified as being associated with the Cerro Grande fire and those that were identified as being associated with historic LANL discharges are evaluated with regard to impacts to the Rio Grande and area reservoirs downstream of LANL. The results of environmental sampling performed by LANL, the New Mexico Environment Department (NMED), and U.S. Geological Survey (USGS) after the Cerro Grande fire are included in the evaluation. Effects are described for storm runoff, baseflow, stream sediments, and area regional reservoir sediment.

  8. Geology of the Florida Canyon gold deposit, Pershing County,...

    Open Energy Info (EERE)

    Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology of the Florida Canyon gold deposit, Pershing County, Nevada, in: Gold and Silver...

  9. H CANYON PROCESSING IN CORRELATION WITH FH ANALYTICAL LABS

    SciTech Connect (OSTI)

    Weinheimer, E.

    2012-08-06T23:59:59.000Z

    Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at the labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial number of samples being sent to F/H Labs. All analyses of these samples are imperative to safe and efficient processing. The important campaigns to occur would be impossible without feedback from analyses such as chemical makeup of solutions, concentrations of dissolution acids and nuclear material, as well as nuclear isotopic data. The necessity of analysis for radiochemical processing is evident. Processing devoid of F/H Lab's feedback would go against the ideals of a safety-conscious and highly accomplished processing facility such as H Canyon.

  10. Structural fabric of the Palisades Monocline: a study of positive inversion, Grand Canyon, Arizona

    E-Print Network [OSTI]

    Orofino, James Cory

    2005-08-29T23:59:59.000Z

    of positive inversion to test model results and improve understanding of inversion processes. The N40W 90 oriented Palisades fault underlying the monocline has experienced northeast-southwest Precambrian extension and subsequent northeastsouthwest Laramide...

  11. 2015 Race to Zero Competition Grand Winner and Grand Winner Finalist...

    Office of Environmental Management (EM)

    Grand Winner and Grand Winner Finalist Team Submissions 2015 Race to Zero Competition Grand Winner and Grand Winner Finalist Team Submissions Read the team submissions for the...

  12. Review of the Diablo Canyon probabilistic risk assessment

    SciTech Connect (OSTI)

    Bozoki, G.E.; Fitzpatrick, R.G.; Bohn, M.P. [Sandia National Lab., Albuquerque, NM (United States); Sabek, M.G. [Atomic Energy Authority, Nuclear Regulatory and Safety Center, Cairo (Egypt); Ravindra, M.K.; Johnson, J.J. [EQE Engineering, San Francisco, CA (United States)

    1994-08-01T23:59:59.000Z

    This report details the review of the Diablo Canyon Probabilistic Risk Assessment (DCPRA). The study was performed under contract from the Probabilistic Risk Analysis Branch, Office of Nuclear Reactor Research, USNRC by Brookhaven National Laboratory. The DCPRA is a full scope Level I effort and although the review touched on all aspects of the PRA, the internal events and seismic events received the vast majority of the review effort. The report includes a number of independent systems analyses sensitivity studies, importance analyses as well as conclusions on the adequacy of the DCPRA for use in the Diablo Canyon Long Term Seismic Program.

  13. DARWIN mission proposal to ESA

    E-Print Network [OSTI]

    Alain Leger; Tom Herbst

    2007-07-23T23:59:59.000Z

    The discovery of extra-solar planets is one of the greatest achievements of modern astronomy. There are now more than 200 such objects known, and the recent detection of planets with masses approximately 5 times that of Earth demonstrates that extra-solar planets of low mass exist. In addition to providing a wealth of scientific information on the formation and structure of planetary systems, these discoveries capture the interest of both scientists and the wider public with the profound prospect of the search for life in the Universe. We propose an L-type mission, called Darwin, whose primary goal is the study of terrestrial extrasolar planets and the search for life on them. By its very nature, Darwin advances the first Grand Theme of ESA Cosmic Vision. Accomplishing the mission objectives will require collaborative science across disciplines ranging from planet formation and atmospheres to chemistry and biology, and these disciplines will reap profound rewards from their contributions to the Darwin mission.

  14. REDUCTIONS WITHOUT REGRET: AVOIDING WRONG TURNS, ROACH MOTELS, AND BOX CANYONS

    SciTech Connect (OSTI)

    Swegle, J.; Tincher, D.

    2013-09-11T23:59:59.000Z

    This is the third of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as some closing thoughts for the future. In this paper, we provide one example each of our judgments on what constitutes a box canyon, a roach motel, and a wrong turn: ? Wrong Turn: The Reliable Replacement Warhead ? Roach Motel: SRAM T vs the B61 ? A Possible Box Canyon: A Low-Yield Version of the W76 SLBM Warhead Recognizing that new nuclear missions or weapons are not demanded by current circumstances ? a development path that yields future capabilities similar to those of today, which are adequate if not always ideal, and a broader national-security strategy that supports nonproliferation and arms control by reducing the role for, and numbers, of nuclear weapons ? we briefly consider alternate, less desirable futures, and their possible effect on the complex problem of regional deterrence. In this regard, we discuss the issues posed by, and possible responses to, three example regional deterrence challenges: in-country defensive use of nuclear weapons by an adversary; reassurance of U.S. allies with limited strategic depth threatened by an emergent nuclear power; and extraterritorial, non-strategic offensive use of nuclear weapons by an adversary in support of limited military objectives against a U.S. ally.

  15. Rio Grande project partnerships

    E-Print Network [OSTI]

    Supercinski, Danielle

    2008-01-01T23:59:59.000Z

    for supporting hydrologic analysis and modeling. The information will help develop bi-national cooperation between Mexico and the United States concerning water in the Rio Grande Basin. It will also provide accurate and reli- able data necessary for analysis... municipal demands. With the population expected to double in the next 50 years, the urban water demands will increase proportionately. Story by Danielle Supercinski At the Cameron County Irrigation District No. 2 in San Benito, sluice gates inside...

  16. Rio Grande project partnerships 

    E-Print Network [OSTI]

    Supercinski, Danielle

    2008-01-01T23:59:59.000Z

    ? financial and economic aspects to provide a life-cycle cost value that allows an accurate comparison with other desalination plants analyzed with the same technique and other water sources as well. With the success of RGBI, various partner- ships have... Rio Grande Valley agricultural producers to begin a large- scale, 10-year Agricultural Water Conservation Demonstration Initiative (ADI). Funded by the Texas Water Development Board, ADI gathers gathers comprehensive data to evaluate the impact...

  17. Financial Analysis of Experimental Releases Conducted at Glen Canyon Dam

    E-Print Network [OSTI]

    Kemner, Ken

    Department of Energy Western Area Power Administration #12;ii FOREWORD This report was prepared by Argonne Canyon Dam (GCD) conducted for the U.S. Department of Energy's Western Area Power Administration (Western. The facilities known collectively as the Salt Lake City Area Integrated Projects include dams equipped for power

  18. Thirty-five years at Pajarito Canyon Site

    SciTech Connect (OSTI)

    Paxton, H.C.

    1981-05-01T23:59:59.000Z

    A history of the research activities performed at the Pajarito Canyon Site from 1946 to 1981 is presented. Critical assemblies described include: the Topsy assembly; Lady Godiva; Godiva 2; Jezebel; Flattop; the Honeycomb assembly for Rover studies; Kiwi-TNT; PARKA reactor; Big Ten; and Plasma Cavity Assembly.

  19. Canyon incision and knickpoint propagation recorded by apatite He thermochronometry

    E-Print Network [OSTI]

    Shuster, David L.

    low- temperature cooling histories that are consistent with the observed data. Derived cooling, Karl-Liebknecht-Str. 24-25, Haus 27, 14476 Potsdam, Germany b Berkeley Geochronology Center, 2455 Ridge over geological timescales. We analyzed four samples from the Cotahuasi­Ocoña canyon system

  20. Rock-water interactions of the Madison Aquifer, Mission Canyon Formation, Williston Basin, North Dakota

    E-Print Network [OSTI]

    Spicer, James Frank

    1994-01-01T23:59:59.000Z

    The Williston Basin is located in the northern Great Plains of the United States. This area includes eastern Montana, northwestern South Dakota, and western North Dakota. The stratigraphy and geologic history of this basin are well understood...

  1. Hydrodynamics of the Mission Canyon Formation in the Billings Nose area, North Dakota

    E-Print Network [OSTI]

    Mitsdarffer, Alan Ray

    1985-01-01T23:59:59.000Z

    and associated highlands of central Montana (Fish and Kinard, 1959). Hydrodynamic flow was considered as a possible cause for the observed tilted oil-water contact for the Nottingham field in Saskatchewan, but the direction of tilt was opposite to flow... conditions with low gradients similiar to that depicted by the regional map. The present hydrodynamic conditions result from the recent invasion of the field area by the fresher ~ster lens. The oil accumulation will eventually be flushed from the area...

  2. Rock-water interactions of the Madison Aquifer, Mission Canyon Formation, Williston Basin, North Dakota 

    E-Print Network [OSTI]

    Spicer, James Frank

    1994-01-01T23:59:59.000Z

    and provide an excellent framework in which to study rockwater interactions in highly saline aquifers. Geochemical speciation was coupled with data visualization interpretations in order to understand specific rock-water interactions that occur...

  3. ewly discovered at the bottom of the Hudson Canyon, the largest submarine canyon off the eastern United States, is

    E-Print Network [OSTI]

    Garfunkel, Eric

    also have implications in alternative energy and global warming, continues Rona, who likens methane, it is a potent greenhouse gas that contributes to global warming." Rona and his colleagues discovered the pits the canyon revealed abnormally high levels of methane, while sonar data collected by the free

  4. The Dissolution of Desicooler Residues in H-Canyon Dissolvers

    SciTech Connect (OSTI)

    Gray, J.H.

    2003-06-23T23:59:59.000Z

    A series of dissolution and characterization studies has been performed to determine if FB-Line residues stored in desicooler containers will dissolve using a modified H-Canyon processing flowsheet. Samples of desicooler materials were used to evaluate dissolving characteristics in the low-molar nitric acid solutions used in H-Canyon dissolvers. The selection for the H-Canyon dissolution of desicooler residues was based on their high-enriched uranium content and trace levels of plutonium. Test results showed that almost all of the enriched uranium will dissolve from the desicooler materials after extended boiling in one molar nitric acid solutions. The residue that contained uranium after completion of the extended boiling cycle consisted of brown solids that had agglomerated into large pieces and were floating on top of the dissolver solution. Addition of tenth molar fluoride to a three molar nitric acid solution containing boron did not dissolve remaining uranium from the brown solids. Only after boiling in an eight molar nitric acid-tenth molar fluoride solution without boron did remaining uranium and aluminum dissolve from the brown solids. The amount of uranium associated with brown solids would be approximately 1.4 percent of the total uranium content of the desicooler materials. The brown solids that remain in the First Uranium Cycle feed will accumulate at the organic/aqueous interface during solvent extraction operations. Most of the undissolved white residue that remained after extended boiling was aluminum oxide containing additional trace quantities of impurities. However, the presence of mercury used in H-Canyon dissolvers should complete the dissolution of these aluminum compounds.

  5. A review of proposed Glen Canyon Dam interim operating criteria

    SciTech Connect (OSTI)

    LaGory, K.; Hlohowskyj, I.; Tomasko, D.; Hayse, J.; Durham, L.

    1992-04-01T23:59:59.000Z

    Three sets of interim operating criteria for Glen Canyon Dam on the Colorado River have been proposed for the period of November 1991, to the completion of the record of decision for the Glen Canyon Dam environmental impact statement (about 1993). These criteria set specific limits on dam releases, including maximum and minimum flows, up-ramp and down-ramp rates, and maximum daily fluctuation. Under the proposed interim criteria, all of these parameters would be reduced relative to historical operating criteria to protect downstream natural resources, including sediment deposits, threatened and endangered fishes, trout, the aquatic food base, and riparian plant communities. The scientific bases of the three sets of proposed operating criteria are evaluated in the present report:(1) criteria proposed by the Research/Scientific Group, associated with the Glen Canyon Environmental Studies (GCES); (2) criteria proposed state and federal officials charged with managing downstream resources; and (3) test criteria imposed from July 1991, to November 1991. Data from Phase 1 of the GCES and other sources established that the targeted natural resources are affected by dam operations, but the specific interim criteria chosen were not supported by any existing studies. It is unlikely that irreversible changes to any of the resources would occur over the interim period if historical operating criteria remained in place. It is likely that adoption of any of the sets of proposed interim operating criteria would reduce the levels of sediment transport and erosion below Glen Canyon Dam; however, these interim criteria could result in some adverse effects, including the accumulation of debris at tributary mouths, a shift of new high-water-zone vegetation into more flood-prone areas, and further declines in vegetation in the old high water zone.

  6. 40Ar/39Ar Dating of the Bandelier Tuff and San Diego Canyon Ignimbrite...

    Open Energy Info (EERE)

    Canyon Ignimbrites, Jemez Mountains, New Mexico- Temporal Constraints on Magmatic Evolution Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  7. SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-05-27T23:59:59.000Z

    For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

  8. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 8 Grand Challenge Portfolio: Driving Innovations in...

  9. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 9 grandchallengesportfoliopg9.pdf More Documents & Publications Grand...

  10. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 6 grandchallengesportfoliopg6.pdf More Documents & Publications Grand...

  11. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 - pg 8 grandchallengesportfoliopg8.pdf More Documents & Publications Grand...

  12. Mission | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeek JoinMission Mission The missionMission

  13. Mission | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeek JoinMission Mission TheMission Mission

  14. Cross-shelf Exchange Driven by Oscillatory Barotropic Currents over an Isolated Coastal Canyon: Equilibrium Circulation and Dynamics

    E-Print Network [OSTI]

    boundary layer in three distinct horizontal locations: along the upstream limb of the canyon (flux offCross-shelf Exchange Driven by Oscillatory Barotropic Currents over an Isolated Coastal Canyon of dense water by oscillatory barotropic currents incident upon an isolated coastal canyon. The physical

  15. INFLUENCE OF GEOMETRY ON THE MEAN FLOW WITHIN URBAN STREET CANYONS A COMPARISON OF WIND TUNNEL

    E-Print Network [OSTI]

    Savory, Eric

    the canyon, the smaller the wind speed close to the cavity ground, giving increasingly poor ventilation, ventilation, vortex Nomenclature d = Displacement height (m); H, W = Height and width of canyon (m); k on the local pollutant transport. There have been many full-scale studies, such as De- Paul and Sheih (1986

  16. Ice Climbing in Clear Creek Canyon A climbing trip report by Glenn Murray

    E-Print Network [OSTI]

    Ice Climbing in Clear Creek Canyon A climbing trip report by Glenn Murray SUMMARY: I climb ice in to ask about local climbing. The guys there told me there was ice nearby, in Clear Creek Canyon. I. Four pitches? Five? It was time to find a partner. The only ice climber I knew in Denver was a friend

  17. Effect of the open roof on low frequency acoustic propagation in street canyons

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Effect of the open roof on low frequency acoustic propagation in street canyons O. Richoux, C of the effect of open roof on acoustic propagation along a 3D urban canyon. The experimental study is led Domain approach adapted to take into account the acoustic radiation losses due to the street open roof

  18. ORIGINAL RESEARCH PAPER Canyon-infilling and gas hydrate occurrences in the frontal fold

    E-Print Network [OSTI]

    Lin, Andrew Tien-Shun

    ORIGINAL RESEARCH PAPER Canyon-infilling and gas hydrate occurrences in the frontal fold to infer the canyon-infilling, fold uplift, and gas hydrate occurrences beneath the frontal fold at the toe simu- lating reflector (BSR) on seismic sections indicates the base of gas hydrate stability zone

  19. Nuclear Proliferation and Grand Challenges

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28T23:59:59.000Z

    Nuclear engineer Dr. Kathy McCarthy leads systems analysis. She talks about proliferation and the grand challenges of nuclear R&D. For more information about INL energy research, visit http://www.facebook.com/idahonationallaboratory.

  20. Small mammal study of Sandia Canyon, 1994 and 1995

    SciTech Connect (OSTI)

    Bennett, K.; Biggs, J.

    1996-11-01T23:59:59.000Z

    A wide range of plant and wildlife species utilize water discharged from facilities at Los Alamos National Laboratory (LANL). The purpose of this study was to gather baseline data of small mammal populations and compare small mammal characteristics within three areas of Sandia Canyon, which receives outfall effluents from multiple sources. Three small mammal trapping webs were placed in the upper portion of Sandia Canyon, the first two were centered in a cattail-dominated marsh with a ponderosa pine overstory and the third web was placed in a much drier transition area with a ponderosa pine overstory. Webs 1 and 2 had the highest species diversity indices with deer mice the most commonly captured species in all webs. However, at Web 1, voles, shrews, and harvest mice, species more commonly found in moist habitats, made up a much greater overall percentage (65.6%) than did deer mice and brush mice (34.5%). The highest densities and biomass of animals were found in Web 1 with a continual decrease in density estimates in each web downstream. There is no statistical difference between the mean body weights of deer mice and brush mice between sites. Mean body length was also determined not to be statistically different between the webs (GLM [deer mouse], F = 0.89, p = 0.4117; GLM [brush mouse], F = 2.49, p = 0.0999). Furthermore, no statistical difference between webs was found for the mean lean body masses of deer and brush mice (GLM [deer mouse], F = 2.54, p = 0.0838; GLM [brush mouse], F = 1.60, p = 0.2229). Additional monitoring studies should be conducted in Sandia Canyon so comparisons over time can be made. In addition, rodent tissues should be sampled for contaminants and then compared to background or control populations elsewhere at the Laboratory or at an off-site location.

  1. 20140501-0531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

  2. 20140201-0228_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.

  3. 20131201-1231_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.

  4. 20140601-0630_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

  5. 20131101-1130_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

  6. 20130801-0831_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.

  7. 20130501-20130531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013

  8. 20131001-1031_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

  9. 20140701-0731_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

  10. 20140301-0331_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.

  11. 20140101-0131_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

  12. 20130901-0930_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

  13. The kinematics of debris flow transport down a canyon

    E-Print Network [OSTI]

    Santi, Paul M.

    1988-01-01T23:59:59.000Z

    follows the style of 113 W 112 W Great Salt Lake I ayton E. Layton Farmington Centerville Bountiful ~v~ vv v Wasatch Mountains 41 N Study Area 10 miles Salt Lake City II II ll ( 1 km Figure t. Location of study area. Ughtning Canyon... of October (Warburton, 1987). Geologic Conditions The central geologic feature of the region is the normal Wasatch Fault, whose upthrown side is the Wasatch mountains (to the East) and whose downthrown side is the basin containing the Great Salt Lake (to...

  14. 20131101-1130_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2013-12-02T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

  15. 20140501-0531_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-06-02T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

  16. 20131001-1031_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2013-11-05T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

  17. 20130901-0930_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2013-10-25T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

  18. 20140101-0131_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-02-03T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

  19. 20140701-0731_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-07-31T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

  20. 20140601-0630_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-06-30T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

  1. 20130501-20130531_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Vanderhoff, Alex

    2013-06-18T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013

  2. 20131201-1231_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-01-08T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.

  3. 20140201-0228_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-03-03T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.

  4. 20130801-0831_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Vanderhoff, Alex

    2013-09-10T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.

  5. 20140301-0331_Green Machine Florida Canyon Hourly Data

    SciTech Connect (OSTI)

    Thibedeau, Joe

    2014-04-07T23:59:59.000Z

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.

  6. American Canyon Power Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to:Almo, Idaho: EnergyAltenCanyon Power Plant

  7. Installation of the Monitoring Site at the Los Alamos Canyon Low-Head Weir

    SciTech Connect (OSTI)

    W.J.Stone; D.L.Newell

    2002-08-01T23:59:59.000Z

    The Cerro Grande fire of 2000 had an enormously adverse impact on and around Los Alamos National Laboratory (LANL). Immediately there were concerns about the potential for enhanced runoff/offsite transport of contaminant-laden sediments because of watershed damage. In response to this concern, the U.S. Army Corps of Engineers installed a low-head weir in Los Alamos Canyon near the White Rock ''Y.'' However, the occurrence of fractured basalt at the surface and ponding of runoff behind the weir enhance the possibility of downward migration of contaminants. Therefore, three boreholes were drilled on the south bank of the channel by LANL to provide a means of monitoring the impact of the Cerro Grande fire and of the weir on water quality beneath the canyon. The boreholes and associated instrumentation are referred to as the Los Alamos Weir Site (LAWS). The three boreholes include a vertical hole and two angled holes (one at approximately 45{sup o} and one at approximately 30{sup o}). Since the basalt is highly fractured, the holes would not stay open. Plans called for inserting flexible liners into all holes. However, using liners in such unstable ground was problematic and, in the angled holes, required deployment through scalloped or perforated polyvinyl chloride (PVC) shield. The vertical hole (LAWS-01), drilled to a total depth of 281.5 ft below ground surface (bgs), was completed as a 278-ft deep monitoring well with four screens: one targeting shallow perched water encountered at 80 ft, two in what may correspond to the upper perched zone at regional groundwater characterization well R-9i (1/4 mi. to the west), and one in what may correspond to the lower perched zone at R-9i. A Water FLUTe{trademark} system deployed in the well isolates the screened intervals; associated transducers and sampling ports permit monitoring head and water quality in the screened intervals. The second hole (LAWS-02), drilled at an angle of 43{sup o} from horizontal, is 156 ft long and bottoms at a depth of 106 ft bgs. The shallow perched water seen at LAWS-01 (at 80 ft) was not encountered. A scalloped PVC shield was installed to keep the hole open while permitting flexible liners to contact the borehole wall. It was initially instrumented with a color-reactive liner to locate water-producing fractures. That was later replaced by an absorbent liner to collect water from the vadose zone. The third hole (LAWS-03), drilled at an angle of 34{sup o} from horizontal, initially had a length of 136 ft and bottomed at a depth of 76 ft bgs. However, the PVC shield rotated during installation such that scallops were at the top and rock debris repeatedly fell in, preventing liner insertion. While pulling the scalloped PVC to replace it with a perforated PVC shield that did not require orientation, the scalloped PVC broke and only 85 ft was recovered. The hole was blocked at that position and could not be drilled out with the equipment available. Thus, LAWS-03 was completed at a length of 85 ft and a depth of 40 ft bgs. An absorbent liner was installed at the outset in preparation for the 2002 summer monsoon season. The entire monitoring site is enclosed inside a locked, 8-ft-high chainlink fence for security. The liners used in the angled boreholes carry electrical wire pairs to detect soil-moisture changes. Surface-water data are provided by stream gages above and below the weir site. Depth of ponding behind the weir is provided by a gage installed just behind the structure.

  8. Economics Department Mission Statement

    E-Print Network [OSTI]

    Jiang, Huiqiang

    Economics Department Mission Statement The mission of the Economics Department at the University of Pittsburgh at Johnstown is to develop the ability of our students to understand economic concepts, and in public policy. The central goals of an education in economics are to acquire: -- an understanding of how

  9. Mission | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeek JoinMission Mission The mission of the

  10. Mission | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeek JoinMission Mission The mission of

  11. Mission | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeek JoinMission Mission The mission

  12. Mission | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625DataNeutrino modeMission5-1MissionAboutMission

  13. The Epidemiology of Search and Rescue Incidents in the Grand Canyon National Park: Are Preventive Measures Making a Difference?

    E-Print Network [OSTI]

    Yee, Kandra; Iserson, Kenneth V

    2008-01-01T23:59:59.000Z

    the clothing even after decontamination. Additionally, whileon the skin before decontamination, we found significanton the skin after decontamination. Showering the person

  14. Mars mission safety

    SciTech Connect (OSTI)

    Buden, D. (EG G Idaho, Idaho Falls (USA))

    1989-06-01T23:59:59.000Z

    Precautions that need to be taken to assure safety on a manned Mars mission with nuclear thermal propulsion are briefly considered. What has been learned from the 1955 SNAP-10A operation of a nuclear reactor in space and from the Rover/NERVA project is reviewed. The ways that radiation hazards can be dealt with at various stages of a Mars mission are examined.

  15. F. MISSION CENTER BUILDING F. MISSION CENTER BUILDING

    E-Print Network [OSTI]

    Mullins, Dyche

    F. MISSION CENTER BUILDING 153 F. MISSION CENTER BUILDING BACKGROUND The 3.06 acre Mission Center Building site is located in the northeast portion of San Francisco's Mission District on the southern half of the block bounded by 14th, Harrison, 15th and Folsom Streets. The site contains a six-story brick building

  16. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    E-Print Network [OSTI]

    Li, Xian-Xiang

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification ...

  17. Depositional environment and facies relationships of the Canyon sandstone, Val Verde Basin, Texas

    E-Print Network [OSTI]

    Mitchell, Michael Harold

    1975-01-01T23:59:59.000Z

    units of the Bouma turbi- dit. e sequence. The sequence of sedimentary structures and change in grain size indicate that the Canyon sandstone was deposited from a turbidity current flow. Complete bed sets are present within the cored interval...

  18. Seismic stratigraphy and salt tectonics of the Alaminos Canyon area, Gulf of Mexico.

    E-Print Network [OSTI]

    Mechler, Suzanne Marie

    1994-01-01T23:59:59.000Z

    morphology, salt structure, and suprasalt sediments indicate the majority of the slope is covered by a shallow salt canopy. The salt structure map indicates that the Alaminos Canyon study area represents a transition from a semi-continuous salt sheet...

  19. Explaining the relationship between prehistoric agriculture and environment at Chaco Canyon, New Mexico 

    E-Print Network [OSTI]

    Gang, G-Young

    1993-01-01T23:59:59.000Z

    reached the peak of its cultural development and experienced great increase in population. After this period, lowered moisture on the Colorado Plateau coincided with depopulation and the cessation of building activities at 21 Chaco Canyon. Finally...

  20. Miocene unroofing of the Canyon Range during extension along the Sevier Desert Detachment, west central Utah

    E-Print Network [OSTI]

    Stockli, Daniel F.; Linn, Jonathan K.; Walker, J. Douglas; Dumitru, Trevor A.

    2001-06-01T23:59:59.000Z

    Apatite fission track results from Neoproterozoic and Lower Cambrian quartzites collected from the Canyon Range in west central Utah reveal a significant early to middle Miocene cooling event (?19–15 Ma). Preextensional temperatures estimated from...

  1. Internal structure of the Kern Canyon Fault, California: a deeply exhumed strike-slip fault

    E-Print Network [OSTI]

    Neal, Leslie Ann

    2002-01-01T23:59:59.000Z

    Deformation and mineral alteration adjacent to a 2 km long segment of the Kern Canyon fault near Lake Isabella, California are studied to characterize the internal structure of the fault zone and to understand the development of fault structure...

  2. Integrated Project Management Planning for the Deactivation of the Savannah River Site F-Canyon Complex

    SciTech Connect (OSTI)

    Clark, T.G.

    2000-12-01T23:59:59.000Z

    This paper explains the planning process that is being utilized by the Westinghouse Savannah River Company to take the F-Canyon Complex facilities from operations to a deactivated condition awaiting final decommissioning.

  3. Theta13 Neutrino Experiment at the Diablo Canyon Power Plant, LBNL Engineering Summary Report

    E-Print Network [OSTI]

    Oshatz, Daryl

    2004-01-01T23:59:59.000Z

    LBNL/PUB-5505 Neutrino Experiment atDiablo Canyon Power Plant LBNL Engineering Summary Report*DE-AC03-76SF00098 ? 13 LBNL Engineering Summary Report,

  4. Fire modeling for Building 221-T - T Plant Canyon Deck and Railroad Tunnel

    SciTech Connect (OSTI)

    Oar, D.L.

    1994-09-29T23:59:59.000Z

    This report was prepared by Hughes Associates, Inc. to document the results of fire models for building 221-T Canyon Deck and Railroad Tunnel. Backup data is contained in document No. WHC-SD-CP-ANAL-010, Rev. 0.

  5. Microsoft Word - CX-Franklin-BadgerCanyonGrandview-RedMtnsDisconnectSw...

    Broader source: Energy.gov (indexed) [DOE]

    8, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Franklin-Badger Canyon and Grandview-Red...

  6. Hydrogeology and tritium transport in Chicken Creek Canyon, Lawrence Berkeley National Laboratory, Berkeley, California

    E-Print Network [OSTI]

    Jordan, Preston D.; Javandel, Iraj

    2007-01-01T23:59:59.000Z

    2-1. Location of the tritium plume based upon 3rd quarter,locations shown. Figure 3-5. Tritium activities (pCi/L) inCanyon. "ND" indicates no tritium detected. Figure 3-6.

  7. EIS-0480: Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam

    Broader source: Energy.gov [DOE]

    Two agencies of the Department of the Interior, Bureau of Reclamation and National Park Service, are jointly preparing a Long-Term Experimental and Management Plan for the Glen Canyon Dam and an EIS for adoption of the Plan. The Glen Canyon Dam, on the Colorado River in northern, Arizona, generates hydroelectric power that is marketed by DOE's Western Area Power Administration, a cooperating agency.

  8. Depositional environment and reservoir morphology of Canyon sandstones, Central Midland Basin, Texas

    E-Print Network [OSTI]

    Jones, James Winston

    1980-01-01T23:59:59.000Z

    -1, Burnt Rock field. Letters at right of center column indicate turbi dite divisions . . . . . . . . . . 35 14. Grain size, compostion, and bedding types in Canyon sandstones, 7296-7299 feet, Phillips Petroleum Munn 1-A, Jameson field. Letters at right... divisions. . . . . . . . . . . 37 16. Grain size, composition, and bedding types in Canyon sandstones, 7377-7381 feet, Phillips Petroleum Munn 1-A, Jameson field. Letters at right of center column indicate turbi dite divisions...

  9. Depositional environment of Canyon (Cisco) sandstones, North Jameson field Mitchell County, Texas 

    E-Print Network [OSTI]

    Dally, David Jesse

    1983-01-01T23:59:59.000Z

    in the lower shale; 6236 ft (1900. 7 m). Figure 7. Sedimentary structures in Canyon (Cisco) sand- stones, Sun McCa, be B-5, Jameson (North) Strawn field, Mitchell County, Texas. Boldface letters (lower left) refer to photographs; small capital letters...DEPOSITIONAL ENVIRONMENT OF CANYON (CISCO) SANDSTONES, NORTH JAMESON FIELD MITCHELL COUNTY, TEXAS A Thesis DAVID JESSE DALLY Submitted to the Graduate College of' Texas A&M University in partial fulfillment of the requirement for the degree...

  10. Grand Rip and Grand Bang/Crunch cosmological singularities

    E-Print Network [OSTI]

    L. Fernández-Jambrina

    2015-01-26T23:59:59.000Z

    The present accelerated expansion of the universe has enriched the list of possible scenarios for its fate, singular or not. In this paper a unifying framework for analyzing such behaviors is proposed, based on generalized power and asymptotic expansions of the barotropic index $w$, or equivalently of the deceleration parameter $q$, in terms of the time coordinate. Besides well known singular and non-singular future behaviors, other types of strong singularities appear around the phantom divide in flat models, with features similar to those of big rip or big bang/crunch, which we have dubbed grand rip and grand bang/crunch respectively, since energy density and pressure diverge faster than $t^{-2}$ in coordinate time. In addition to this, the scale factor does not admit convergent generalized power series around these singularities with a finite number of terms with negative powers.

  11. Mission, Vision, Values

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture in theInformationMissionMission,

  12. Mission | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeek JoinMission Mission The

  13. Mission | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EM SSAB ChairsMission Mission

  14. Mission | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EM SSAB ChairsMissionMission

  15. Mission | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EM SSABMission MissionMission

  16. Mission | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EM SSABMissionMission Mission To

  17. Mission | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EM SSABMissionMission Mission

  18. Mission | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EM SSABMissionMissionMission

  19. Mission | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EMMission Mission TheMission

  20. Mission | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625DataNeutrino modeMission5-1MissionAbout »

  1. Analyzing the connectivity potential of landscape geomorphic systems: a radar remote sensing and GIS approach, Estufa Canyon, Texas, USA

    E-Print Network [OSTI]

    Ibrahim, ElSayed Ali Hermas

    2005-11-01T23:59:59.000Z

    of Estufa Canyon????????????. 70 19 The landscape gradient of Estufa Canyon?????????????... 74 20 A graph showing the rate of changes in the landscape gradients in the downstream direction of Estufa Canyon??????????????.. 77 21 A graph... steep slopes whereas fine surfaces occur in lower elevations and have low slopes. A surface of high elevation and with a steep slope (high surface roughness) is characterized by a high potential for mass movement. A surface of low elevation and a 21...

  2. Grande

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat PumpJorgeAtlGrad.Employee,Dedication

  3. H-CANYON AIR EXHAUST TUNNEL INSPECTION VEHICLE DEVELOPMENT

    SciTech Connect (OSTI)

    Minichan, R.; Fogle, R.; Marzolf, A.

    2011-05-24T23:59:59.000Z

    The H-Canyon at Savannah River Site is a large concrete structure designed for chemical separation processes of radioactive material. The facility requires a large ventilation system to maintain negative pressure in process areas for radioactive contamination control and personnel protection. The ventilation exhaust is directed through a concrete tunnel under the facility which is approximately five feet wide and 8 feet tall that leads to a sand filter and stack. Acidic vapors in the exhaust have had a degrading effect on the surface of the concrete tunnels. Some areas have been inspected; however, the condition of other areas is unknown. Experience from historical inspections with remote controlled vehicles will be discussed along with the current challenge of inspecting levels below available access points. The area of interest in the exhaust tunnel must be accessed through a 14 X 14 inch concrete plug in the floor of the hot gang valve corridor. The purpose for the inspection is to determine the condition of the inside of the air tunnel and establish if there are any structural concerns. Various landmarks, pipe hangers and exposed rebar are used as reference points for the structural engineers when evaluating the current integrity of the air tunnel.

  4. The Bayo Canyon/radioactive lanthanum (RaLa) program

    SciTech Connect (OSTI)

    Dummer, J.E.; Taschner, J.C.; Courtright, C.C.

    1996-04-01T23:59:59.000Z

    LANL conducted 254 radioactive lanthanum (RaLa) implosion experiments Sept. 1944-March 1962, in order to test implosion designs for nuclear weapons. High explosives surrounding common metals (surrogates for Pu) and a radioactive source containing up to several thousand curies of La, were involved in each experiment. The resulting cloud was deposited as fallout, often to distances of several miles. This report was prepared to summarize existing records as an aid in evaluating the off-site impact, if any, of this 18-year program. The report provides a historical setting for the program, which was conducted in Technical Area 10, Bayo Canyon about 3 miles east of Los Alamos. A description of the site is followed by a discussion of collateral experiments conducted in 1950 by US Air Force for developing an airborne detector for tracking atmospheric nuclear weapons tests. All known off-site data from the RaLa program are tabulated and discussed. Besides the radiolanthanum, other potential trace radioactive material that may have been present in the fallout is discussed and amounts estimated. Off-site safety considerations are discussed; a preliminary off-site dose assessment is made. Bibliographical data on 33 persons important to the program are presented as footnotes.

  5. Savings Along the Rio Grande

    E-Print Network [OSTI]

    Supercinski, Danielle

    2007-01-01T23:59:59.000Z

    -feet of water per year from canal replacement, lining and/or seepage- loss testing. In addition, technical support from Extension engineers have saved districts more than $180,000 on engineering services. On-farm studies resulted in an average 25 percent...tx H2O | pg. 22 Conserving water is vital for the Rio GrandeBasin, one of the most productive agriculturalareas in the United States. Irrigated agricul- ture claims 85 percent of its water, and urban water use is expected to double in the next 50...

  6. Mississippi Nuclear Profile - Grand Gulf

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals6,992 6,895Vehicle FuelFeet) DecadetotalGrand

  7. An In Situ Radiological Survey of Three Canyons at the Los Alamos National Laboratory

    SciTech Connect (OSTI)

    R.J. Maurer

    1999-06-01T23:59:59.000Z

    An in situ radiological survey of Mortandad, Ten Site, and DP Canyons at the Los Alamos National Laboratory was conducted during August 19-30, 1996. The purpose of this survey was to measure the quantities of radionuclides that remain in the canyons from past laboratory operations. A total of 65 in situ measurements were conducted using high-resolution gamma radiation detectors at 1 meter above the ground. The measurements were obtained in the streambeds of the canyons beginning near the water-release points at the laboratories and extending to the ends of the canyons. Three man-made gamma-emitting radionuclides were detected in the canyons: americium-241 ({sup 241}Am), cesium-137 ({sup 137}Cs), and cobalt-60 ({sup 60}Co). Estimated contamination levels ranged from 13.3-290.4 picocuries per gram (pCi/g)for {sup 241}Am, 4.4-327.8 pCi/g for {sup 137}Cs, and 0.4-2.6 pCi/g for {sup 60}Co.

  8. RESEARCH AND DEVELOPMENT ACTIVITIES AT SAVANNAH RIVER SITE'S H CANYON FACILITY

    SciTech Connect (OSTI)

    Sexton, L.; Fuller, Kenneth

    2013-07-09T23:59:59.000Z

    The Savannah River Site's (SRS) H Canyon Facility is the only large scale, heavily shielded, nuclear chemical separations plant still in operation in the U.S. The facility's operations historically recovered uranium-235 (U-235) and neptunium-237 (Np-237) from aluminum-clad, enriched-uranium fuel tubes from Site nuclear reactors and other domestic and foreign research reactors. Today the facility, in conjunction with HB Line, is working to provide the initial feed material to the Mixed Oxide Facility also located on SRS. Many additional campaigns are also in the planning process. Furthermore, the facility has started to integrate collaborative research and development (R&D) projects into its schedule. H Canyon can serve as the appropriate testing location for many technologies focused on monitoring the back end of the fuel cycle, due to the nature of the facility and continued operation. H Canyon, in collaboration with the Savannah River National Laboratory (SRNL), has been working with several groups in the DOE complex to conduct testing demonstrations of novel technologies at the facility. The purpose of conducting these demonstrations at H Canyon will be to demonstrate the capabilities of the emerging technologies in an operational environment. This paper will summarize R&D testing activities currently taking place in H Canyon and discuss the possibilities for future collaborations.

  9. Long-term surveillance plan for the Burro Canyon disposal cell, Slick Rock, Colorado

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the US Department of Energy (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. The US Nuclear Regulatory Commission (NRC) developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Burro Canyon disposal cell. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete at the Burro Canyon disposal cell and the NRC formally accepts this LTSP. Attachment 1 contains the concurrence letters from NRC. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. Ground water monitoring will not be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low yield from the uppermost aquifer.

  10. Skylab: the forgotten missions

    E-Print Network [OSTI]

    Johnson, Michael P

    2013-02-22T23:59:59.000Z

    . ASTRONAUT BACKGROUNDS. . 14 FROM APOLLO TO SKYLAB . . TRAINING . . 19 . 23 SKYLABI . . 27 SKYLABII. . 31 SKYLAB III. . . 36 SKYLABIV. SENSATIONS . . . 40 . 48 FROM SKYLAB TO THE SHUTTLE . 53 LESSONS LEARNED. CONCLUSION. . 56 . 59 NOTES..., but for the most part NASA used them only as a precursor to Apollo. In fact, the space agency specifically aimed most of the goals in those missions at making sure that everything could be accomplished successfully to reach the Moon. On May 25, 1961, President...

  11. Salt Creek Canyon, Canyonlands, Utah, May 2010 One week after the fact, at the tail-end of the weekend, I'm sitting down to write

    E-Print Network [OSTI]

    Bardsley, John

    Salt Creek Canyon, Canyonlands, Utah, May 2010 One week after the fact, at the tail the week following UM's graduation, and reserving backcountry camp sites in Canyonlands' Salt Creek Canyon. The itinerary would take us from the south end of Salt Creek Canyon to the Needles' District visitor center

  12. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Office of Environmental Management (EM)

    Charging Infrastructure Enabling Flexible EV Design EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design Presentation given at the EV Everywhere...

  13. Safety analysis -- 200 Area Savannah River Plant, F-Canyon Operations. Supplement 4

    SciTech Connect (OSTI)

    Beary, M.M.; Collier, C.D.; Fairobent, L.A.; Graham, R.F.; Mason, C.L.; McDuffee, W.T.; Owen, T.L.; Walker, D.H.

    1986-02-01T23:59:59.000Z

    The F-Canyon facility is located in the 200 Separations Area and uses the Purex process to recover plutonium from reactor-irradiated uranium. The irradiated uranium is normally in the form of solid or hollow cylinders called slugs. These slugs are encased in aluminum cladding and are sent to the F-Canyon from the Savannah River Plant (SRP) reactor areas or from the Receiving Basin for Offsite Fuels (RBOF). This Safety Analysis Report (SAR) documents an analysis of the F-Canyon operations and is an update to a section of a previous SAR. The previous SAR documented an analysis of the entire 200 Separations Area operations. This SAR documents an analysis of the F-Canyon and is one of a series of documents for the Separations Area as specified in the Savannah River Implementation Plans. A substantial amount of the information supporting the conclusions of this SAR is found in the Systems Analysis. Some F-Canyon equipment has been updated during the time between the Systems Analysis and this SAR and a complete description of this equipment is included in this report. The primary purpose of the analysis was to demonstrate that the F-Canyon can be operated without undue risk to onsite or offsite populations and to the environment. In this report, risk is defined as the expected frequency of an accident, multiplied by the resulting radiological consequence in person-rem. The units of risk for radiological dose are person-rem/year. Maximum individual exposure values have also been calculated and reported.

  14. Mission and Programs | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture in theInformationMission and

  15. Mission | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture in theInformationMission

  16. Mission | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EM SSAB Chairs BudgetMission

  17. Mission | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EM SSAB ChairsMission

  18. Mission | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EM SSABMission Mission The

  19. Mission | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EM SSABMission Mission

  20. Mission | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EM SSABMissionMission

  1. Mission | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EMMission Mission The Office of

  2. Mission | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EMMission Mission The Office

  3. Mission | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EMMission Mission The

  4. Mission Support Alliance, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625DataNeutrino modeMission Driven andStatements,

  5. Sandia Energy - Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration Permalink Gallery Mesa delMission Home

  6. Cyber Security Grand Challenges and Prognosis

    E-Print Network [OSTI]

    Sandhu, Ravi

    Cyber Security Grand Challenges and Prognosis Prof. Ravi Sandhu Executive Director and Institute for Cyber Security Executive Director and Endowed Chair ravi.sandhu@utsa.edu www.profsandhu.com www.ics.utsa.edu © Ravi Sandhu World-Leading Research with Real Cyber Security Grand Challenges and Prognosis Prof. Ravi

  7. Proton Hexality in Local Grand Unification

    E-Print Network [OSTI]

    Stefan Forste; Hans Peter Nilles; Saul Ramos-Sanchez; Patrick K. S. Vaudrevange

    2010-09-03T23:59:59.000Z

    Proton hexality is a discrete symmetry that avoids the problem of too fast proton decay in the supersymmetric extension of the standard model. Unfortunately it is inconsistent with conventional grand unification. We show that proton hexality can be incorporated in the scheme of "Local Grand Unification" discussed in the framework of model building in (heterotic) string theory.

  8. Mission | APS Engineering Support Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Engineering Support Division (AES) Search Button About Welcome Overview Visiting the APS Mission & Goals Find People Organization Charts Committees Job Openings User...

  9. LABORATORY-NUMERICAL MODEL COMPARISONS OF CANYON FLOWS: A PARAMETER STUDY.

    E-Print Network [OSTI]

    , but the enhanced viscosities needed to obtain numerical stability give boundary layers that are too wide along length scales, one the fluid depth and another a more narrow boundary-layer-like thickness [O(RoBu-1 is the interaction of an oscillatory, along-slope background current with an isolated canyon incised in an otherwise

  10. EA-1980: Spar Canyon-Round Valley Access Road System Improvements, Custer County, Idaho

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess potential environmental impacts of proposed improvements to the access road system for its existing Spar Canyon-Round Valley Transmission Line located on Bureau of Land Management land in Custer County, Idaho.

  11. Air quality monitoring and modelling techniques for street canyons: the Paris

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2000-37 Air quality monitoring and modelling techniques for street canyons: the Paris experience S of developing efficient air quality monitoring and modelling methodologies to cover the needs of public health, published in "Air Pollution Conference 2000, Cambridge : United Kingdom (2000)" #12;1 Introduction In recent

  12. Functional design criteria, Project W-059, B Plant Canyon ventilation upgrade

    SciTech Connect (OSTI)

    Roege, P.E.

    1995-03-02T23:59:59.000Z

    This document outlines the essential functions and requirements to be included in the design of the proposed B Plant canyon exhaust system upgrade. The project will provide a new exhaust air filter system and isolate the old filters from the airstream.

  13. Mission & Vision The mission of University Health Services

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    #12;Mission & Vision The mission of University Health Services (UHS) is to enhance learning and student success by promoting, protecting, and restoring health and well-being. As the comprehensive campus in their own right, we are focused on promoting health essential to a campus environment that facilitates

  14. The XEUS Mission

    E-Print Network [OSTI]

    Johan Bleeker; Mariano Mendez

    2002-07-12T23:59:59.000Z

    XEUS, the X-ray Evolving Universe Spectroscopy mission, is at present an ESA-ISAS initiative for the study of the evolution of the hot Universe in the post-Chandra/XMM-Newton era. The key science objectives of XEUS are: Search for the origin, and subsequent study of growth, of the first massive black holes in the early Universe; assessment of the formation of the first gravitationally bound dark matter dominated systems and their evolution; study of the evolution of metal synthesis up till the present epoch; characterization of the true intergalactic medium. To reach these ambitious science goals the two salient characteristics of the XEUS observatory entail: (1) Its effective spectroscopic grasp, combining a sensitive area > 20 m^2 below 2 keV with a spectral resolution better than 2 eV. This allows significant detection of the most prominent X-ray emission lines (e.g. O-VII, Si-XIII and Fe-XXV) in cosmologically distant sources against the sky background; (2) Its angular resolving power, between 2 and 5 arc seconds, to minimize source confusion as well as noise due to the galactic X-ray foreground emission. To accommodate these instrument requirements a mission concept has been developed featuring an X-ray telescope of 50-m focal length, comprising two laser-locked (separate) mirror and detector spacecraft's. The telescope is injected in a low earth orbit with an inclination commensurate with the ISS. At present an on-orbit growth of the mirror spacecraft is foreseen with the aid of the ISS, raising the mirror diameter from 4.5 to 10 m. The detector spacecraft will be replaced at 5 year intervals after run-out of consumables with an associated upgrade of the focal plane package.

  15. Final Technical Report - Modernization of the Boulder Canyon Hydroelectric Project

    SciTech Connect (OSTI)

    Joe Taddeucci, P E

    2013-03-29T23:59:59.000Z

    The Boulder Canyon Hydroelectric Project (BCH) was purchased by the City of Boulder, CO (the city) in 2001. Project facilities were originally constructed in 1910 and upgraded in the 1930s and 1940s. By 2009, the two 10 MW turbine/generators had reached or were nearing the end of their useful lives. One generator had grounded out and was beyond repair, reducing plant capacity to 10 MW. The remaining 10 MW unit was expected to fail at any time. When the BCH power plant was originally constructed, a sizeable water supply was available for the sole purpose of hydroelectric power generation. Between 1950 and 2001, that water supply had gradually been converted to municipal water supply by the city. By 2001, the water available for hydroelectric power generation at BCH could not support even one 10 MW unit. Boulder lacked the financial resources to modernize the facilities, and Boulder anticipated that when the single, operational historical unit failed, the project would cease operation. In 2009, the City of Boulder applied for and received a U.S. Department of Energy (DOE) grant for $1.18 million toward a total estimated project cost of $5.155 million to modernize BCH. The federal funding allowed Boulder to move forward with plant modifications that would ensure BCH would continue operation. Federal funding was made available through the American Recovery and Reinvestment Act (ARRA) of 2009. Boulder determined that a single 5 MW turbine/generator would be the most appropriate capacity, given the reduced water supply to the plant. Average annual BCH generation with the old 10 MW unit had been about 8,500 MW-hr, whereas annual generation with a new, efficient turbine could average 11,000 to 12,000 MW-hr. The incremental change in annual generation represents a 30% increase in generation over pre-project conditions. The old turbine/generator was a single nozzle Pelton turbine with a 5-to-1 flow turndown and a maximum turbine/generator efficiency of 82%. The new unit is a double nozzle Pelton turbine with a 10-to-1 flow turndown and a maximum turbine/generator efficiency of 88%. This alone represents a 6% increase in overall efficiency. The old turbine operated at low efficiencies due to age and non-optimal sizing of the turbine for the water flow available to the unit. It was shut down whenever water flow dropped to less than 4-5 cfs, and at that flow, efficiency was 55 to 60%. The new turbine will operate in the range of 70 to 88% efficiency through a large portion of the existing flow range and would only have to be shut down at flow rates less than 3.7 cfs. Efficiency is expected to increase by 15-30%, depending on flow. In addition to the installation of new equipment, other goals for the project included: �¢���¢ Increasing safety at Boulder Canyon Hydro �¢���¢ Increasing protection of the Boulder Creek environment �¢���¢ Modernizing and integrating control equipment into Boulder�¢����s municipal water supply system, and �¢���¢ Preserving significant historical engineering information prior to power plant modernization. From January 1, 2010 through December 31, 2012, combined consultant and contractor personnel hours paid for by both the city and the federal government have totaled approximately 40,000. This equates roughly to seven people working full time on the project from January 2010 through December 2012. This project also involved considerable material expense (steel pipe, a variety of valves, electrical equipment, and the various components of the turbine and generator), which were not accounted for in terms of hours spent on the project. However, the material expense related to this project did help to create or preserve manufacturing/industrial jobs throughout the United States. As required by ARRA, the various components of the hydroelectric project were manufactured or substantially transformed in the U.S. BCH is eligible for nomination to

  16. Analysis of F-Canyon Effluents During the Dissolution Cycle with a Fourier Transform Infrared Spectrometer/Multipath Cell

    SciTech Connect (OSTI)

    Villa, E.

    1999-07-28T23:59:59.000Z

    Air samples from F-Canyon effluents were collected at the F-Canyon stack and transported to a laboratory at the Savannah River Technology Center (SRTC) for analysis using a Fourier transform infrared spectrometer in conjunction with a multipath cell. Air samples were collected during the decladding and acid cuts of the dissolution of the irradiated aluminum-cladded slugs. The FTIR analyses of the air samples show the presence of NO2, NO, HNO2, N2O, SF6, and 85Kr during the dissolution cycle. The concentration time profiles of these effluents corresponded with expected release rates from the F-Canyon operations.

  17. Long-term surveillance plan for the Burro Canyon disposal cell Slick Rock, Colorado

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Burro Canyon disposal cell. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete at the Burro Canyon disposal cell and the NRC formally accepts this LTSP. Attachment 1 contains the concurrence letters from NRC. This LTSP describes the long-term surveillance program the DOE has implemented to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. Ground water monitoring will not be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low yield from the uppermost aquifer. The LTSP is based on the UMTRA Project`s long-term surveillance program guidance and meets the requirements of 10 CFR 40.27(b) and 40 CFR 192.03.

  18. UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE TELECOM PARISTECH

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE TELECOM PARISTECH METAMATERIAL INSPIRED IMPROVED #12;i UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE TELECOM PARISTECH Metamaterial Inspired Improved

  19. Grand Challenge for Basic and Applied Research in Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage: Statement of Objectives Grand Challenge for Basic and Applied Research in Hydrogen Storage: Statement of Objectives Statement of objectives for the Grand Challenge for...

  20. 'Grand Challenge' for Basic and Applied Research in Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    'Grand Challenge' for Basic and Applied Research in Hydrogen Storage Solicitation 'Grand Challenge' for Basic and Applied Research in Hydrogen Storage Solicitation DOE is issuing a...

  1. EV Everywhere EV Everywhere Grand Challenge - Electric Drive...

    Energy Savers [EERE]

    EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power...

  2. EV Everywhere Grand Challenge - Electric Drive (Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Drive Workshop EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop Agenda EV Everywhere Grand Challenge - Battery...

  3. EV Everywhere Grand Challenge - Battery Workshop attendees list...

    Office of Environmental Management (EM)

    More Documents & Publications EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop EV Everywhere Grand Challenge Overview EV...

  4. Mission Overview Mars Science Laboratory

    E-Print Network [OSTI]

    thermoelectric generator produces This long-lived power supply gives the mission an operating of electrical power Curiosity to to travel up to about 200 meters (660 feet) per day on Martian - mission radioisotope to operate the rover's instruments, robotic generator's excess heat are plumbed throughout the rover to keep

  5. Liquid Effluents Program mission analysis

    SciTech Connect (OSTI)

    Lowe, S.S.

    1994-09-27T23:59:59.000Z

    Systems engineering is being used to identify work to cleanup the Hanford Site. The systems engineering process transforms an identified mission need into a set of performance parameters and a preferred system configuration. Mission analysis is the first step in the process. Mission analysis supports early decision-making by clearly defining the program objectives, and evaluating the feasibility and risks associated with achieving those objectives. The results of the mission analysis provide a consistent basis for subsequent systems engineering work. A mission analysis was performed earlier for the overall Hanford Site. This work was continued by a ``capstone`` team which developed a top-level functional analysis. Continuing in a top-down manner, systems engineering is now being applied at the program and project levels. A mission analysis was conducted for the Liquid Effluents Program. The results are described herein. This report identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and sources of constraints, estimates the resources to carry out the mission, and establishes measures of success. The mission analysis reflects current program planning for the Liquid Effluents Program as described in Liquid Effluents FY 1995 Multi-Year Program Plan.

  6. Supersymmetry and supergravity: Phenomenology and grand unification

    SciTech Connect (OSTI)

    Arnowitt, R. [Texas A& M Univ., College Station, TX (United States)]|[Superconducting Super Collider Lab., Dallas, TX (United States); Nath, P. [Northeastern Univ., Boston, MA (United States). Dept. of Physics

    1993-12-31T23:59:59.000Z

    A survey is given of supersymmetry and supergravity and their phenomenology. Some of the topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of SU(2) {times} U(1), proton decay, cosmological constraints, and predictions of supergravity grand unified models. While the number of detailed derivations are necessarily limited, a sufficient number of results are given so that a reader can get a working knowledge of this field.

  7. Grand Coulee Transmission Line Replacement Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Bureau of Reclamation to design and construct six new 500-kV overhead transmission lines at Grand Coulee Dam. BPA will replace the existing underground transmission...

  8. Draft Mission Plan Amendment

    SciTech Connect (OSTI)

    NONE

    1991-09-01T23:59:59.000Z

    The Department of Energy`s Office Civilian Radioactive Waste Management has prepared this document to report plans for the Civilian Radioactive Waste Management Program, whose mission is to manage and dispose of the nation`s spent fuel and high-level radioactive waste in a manner that protects the health and safety of the public and of workers and the quality of the environment. The Congress established this program through the Nuclear Waste Policy Act of 1982. Specifically, the Congress directed us to isolate these wastes in geologic repositories constructed in suitable rock formations deep beneath the surface of the earth. In the Nuclear Waste Policy Amendments Act of 1987, the Congress mandated that only one repository was to be developed at present and that only the Yucca Mountain candidate site in Nevada was to be characterized at this time. The Amendments Act also authorized the construction of a facility for monitored retrievable storage (MRS) and established the Office of the Nuclear Waste Negotiator and the Nuclear Waste Technical Review Board. After a reassessment in 1989, the Secretary of Energy restructured the program, focusing the repository effort scientific evaluations of the Yucca Mountain candidate site, deciding to proceed with the development of an MRS facility, and strengthening the management of the program. 48 refs., 32 figs.

  9. Lateral Continuity of the Eagle Ford Group Strata in Lozier Canyon and Antonio Creek, Terrell County, Texas

    E-Print Network [OSTI]

    Gardner, Rand D

    2013-09-24T23:59:59.000Z

    simplistic assumptions about relevant horizontal reservoir heterogeneities can lead to sub-optimal or uneconomical exploitation. High-resolution correlation of individual beds in the Eagle Ford Group over several miles in Lozier Canyon and Antonio Creek...

  10. Laboratory Experiments on the Interaction of a Buoyant Coastal Current with a Canyon: Application to the East Greenland Current

    E-Print Network [OSTI]

    Sutherland, David A.

    This paper presents a set of laboratory experiments focused on how a buoyant coastal current flowing over a sloping bottom interacts with a canyon and what controls the separation, if any, of the current from the upstream ...

  11. DOE Selects Mission Support Alliance, LLC for Mission Support...

    Office of Environmental Management (EM)

    Hanford Site September 3, 2008 - 3:20pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the Mission Support Alliance, LLC has been selected as the...

  12. Decontamination of Savannah River Plant H-Area hot-canyon crane

    SciTech Connect (OSTI)

    Rankin, W N; Sims, J R

    1985-01-01T23:59:59.000Z

    Decontamination techniques applicable to the remotely operated bridge cranes in canyon buildings at the Savannah River Plant (SRP) were identified and were evaluated in laboratory-scale tests. High pressure Freon blasting was found to be the most attractive process available for this application. Strippable coatings were selected as an alternative technique in selected applications. The ability of high pressure Freon blasting plus two strippable coatings (Quadcoat 100 and Alara 1146) to remove the type of contamination expected on SRP cranes was demonstrated in laboratory-scale tests. Quadrex HPS was given a contract to decontaminate the H-Area hot canyon crane. Decontamination operations were successfully carried out within the specified time-frame window. The radiation level goals specified by SRP were met and decontamination was accomplished with 85% less personnel exposure than estimated by SRP before the job started. This reduction is attributed to the increased efficiency of the new decontamination techniques used. 6 refs., 1 tab.

  13. Modelling air pollution abatement in deep street canyons by means of air scrubbers

    E-Print Network [OSTI]

    De Giovanni, Marina; Avveduto, Alessandro; Pace, Lorenzo; Salisburgo, Cesare Dari; Giammaria, Franco; Monaco, Alessio; Spanto, Giuseppe; Tripodi, Paolo

    2015-01-01T23:59:59.000Z

    Deep street canyons are characterized by weak ventilation and recirculation of air. In such environment, the exposure to particulate matter and other air pollutants is enhanced, with a consequent worsening of both safety and health. The main solution adopted by the international community is aimed at the reduction of the emissions. In this theoretical study, we test a new solution: the removal of air pollutants close to their sources by a network of Air Pollution Abatement (APA) devices. The APA technology depletes gaseous and particulate air pollutants by a portable and low-consuming scrubbing system, that mimics the processes of wet and dry deposition. We estimate the potential pollutant abatement efficacy of a single absorber by Computational Fluid Dynamics (CFD) method. The presence of the scrubber effectively creates an additional sink at the bottom of the canyon, accelerating its cleaning process by up to 70%, when an almost perfect scrubber (90% efficiency) is simulated. The efficacy of absorber is not...

  14. Klondike III/Biglow Canyon Wind Integration Project; Record of Decision, October 25, 2006.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration

    2006-10-25T23:59:59.000Z

    The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE)1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects, BPA will build and operate a 12-mile long, 230-kilovolt (kV) double-circuit transmission line between the wind projects and BPA's new 230-kV John Day Substation in Sherman County, Oregon. BPA will also expand its existing 500-kV John Day Substation.

  15. Deformation of a basement corner, Crazy Woman Canyon, northeastern Bighorn Mountains, Wyoming

    E-Print Network [OSTI]

    Smith, Gretchen Louise

    1989-01-01T23:59:59.000Z

    , structures, and fractures and sample collecting in the field area were done during the summers of 1987-1988. Laboratory analysis was accomplished using the facilities of the Center for Tectonophysics and the Department of Geology at Texas ADAM University... the Bighorn Mountain front. Analysis of fracture, foliation, and calcite strain data, and deformation mechanisms suggest that the structures in Crazy Woman Canyon are locally controlled by pre-existing structures in the Precambrian basement. Interpreting...

  16. Operational Readiness Review Final Report For F-Canyon Restart. Phase 1

    SciTech Connect (OSTI)

    McFarlane, A.F.; Spangler, J.B.

    1995-04-05T23:59:59.000Z

    An independent WSRC Operational Readiness Review was performed for the restart of Phase 1 processing in F-Canyon, Building 221-F. Readiness to restart the Second Plutonium Cycle process and solvent recovery was assessed. The ORR was conducted by an ORR board of ten members with the support of a subject matter expert. The chairman and four members were drawn from the Operational Safety Evaluation Department, ESH& QA Division; additional members were drawn from other WSRC divisions, independent of the F-Canyon operating division (NMPD). Based on the results of the readiness verification assessments performed according to the ORR plan and the validation of pre-restart corrective actions, the WSRC independent ORR Board has concluded that the facility has achieved the state of readiness committed to in the Restart Plan. Also, based on the scope of the ORR, it is the opinion of the board that F-Canyon Phase 1 processes can be restarted without undue risk to the safety of the public and onsite workers and without undue risk to the environment.

  17. LETTER REPORT SUMMARY RESULTS OF THE NRC TEAM INTERACTION SKILLS STUDY AT DIABLO CANYON POWER PLANT

    SciTech Connect (OSTI)

    Hauth, J. T.; Toquam, J. L.; Bramwell, A. T.; Fleming, T. E.

    1990-12-01T23:59:59.000Z

    This report presents information to participants in the Team Interaction Skills study conducted at Diablo Canyon Power Plant from September to November 1989. A study was conducted to develop and assess measures of team interaction skills of nuclear power plant control room crews in simulated emergency conditions. Data were collected at a boiling water reactor (BWR) and pressurized water reactor (PWA) using three sets of rating scales; Behaviorally Anchored Rating Scales (BARS), Behavioral Frequency rating scales, and Technical Performance rating scales. Diablo Canyon Power Plant agreed to serve as the PWR plant in the study. Obse!Vers consisting of contract license examiners, Diablo Canyon Power Plant training instructors, and project staff used the rating scales to provide assessments of team interaction skills and technical skills of control room crews during emerg-3ncy scenarios as part of license requalification training. Crew members were also asked to providH self-ratings of their performance to gather information regarding crew responses to the Team Interactions Skills rating scales.

  18. Memorandum, Approval of a Permanent Variance Regarding Sprinklers and Fire Boundaries in Selected Areas of 22 1-H Canyon at the Savannah River Site

    Broader source: Energy.gov [DOE]

    Approval of a Permanent Variance Regarding Fire Safety in Selected Areas of 221-H Canyon at the Savannah River Site UNDER SECRETARY OF ENERGY

  19. Memorandum Approval of a Permanent Variance Regarding Sprinklers and Fire Boundaries in Selected Areas of 22 1-H Canyon at the Savannah River Site

    Broader source: Energy.gov [DOE]

    Approval of a Permanent Variance Regarding Sprinklers and Fire Boundaries in Selected Areas of 22 1 -H Canyon at the Savannah River Site

  20. 309 Building deactivation mission analysis report

    SciTech Connect (OSTI)

    Lund, D.P.

    1995-05-24T23:59:59.000Z

    This report presents the results of the 309 Building (Plutonium Fuels Utilization Program) Deactivation Project mission analysis. Hanford systems engineering (SE) procedures call for a mission analysis. The mission analysis is an important first step in the SE process. The functions and requirements to successfully accomplish this mission, the selected alternatives and products will later be defined using the SE process.

  1. 308 Building deactivation mission analysis report

    SciTech Connect (OSTI)

    Lund, D.P.

    1995-05-24T23:59:59.000Z

    This report presents the results of the 308 Building (Fuels Development Laboratory) Deactivation Project mission analysis. Hanford systems engineering (SE) procedures call for a mission analysis. The mission analysis is an important first step in the SE process. The functions and requirements to successfully accomplish this mission, the selected alternatives and products will later be defined using the SE process.

  2. Mission Overview Mars Science Laboratory

    E-Print Network [OSTI]

    Christian, Eric

    radioisotope power generator. The multi- mission radioisotope thermoelectric generator produces electricity an operating lifespan on Mars' surface of a full Mars year (687 Earth days) or more. At launch, the generator, computers and radio. Warm fluids heated by the generator's excess heat are plumbed throughout the rover

  3. Fusion Energy Sciences Program Mission

    E-Print Network [OSTI]

    Fusion Energy Sciences Program Mission The Fusion Energy Sciences (FES) program leads the national for an economically and environmentally attractive fusion energy source. The National Energy Policy states that fusion-heated) plasma, and the Fusion Energy Sciences Advisory Committee (FESAC) has concluded that the fusion program

  4. GLOBAL LEADERSHIP PROGRAM MISSION STATEMENT

    E-Print Network [OSTI]

    Saidak, Filip

    GLOBAL LEADERSHIP PROGRAM MISSION STATEMENT The Global Leadership Program at UNCG will afford. Leadership, citizenship and cross-cultural understanding have taken on new meanings and have become essential for the successful citizen of the new globalized world. The Global Leadership Program (GLP) is open to all domestic

  5. alto rio grande: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 MALE RIO GRANDE WILD TURKEY Environmental Sciences and Ecology Websites Summary: 217 MALE RIO GRANDE WILD TURKEY...

  6. Winning the Future: Grand Ronde Solar Projects Reduce Pollution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs Winning the Future: Grand Ronde Solar Projects Reduce Pollution, Cut Costs October 20, 2014 - 5:00pm...

  7. Energy Secretary Steven Chu to Attend Grand Opening of Recovery...

    Office of Environmental Management (EM)

    to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant...

  8. Odyssey: a Solar System Mission

    E-Print Network [OSTI]

    B. Christophe; P. H. Andersen; J. D. Anderson; S. Asmar; Ph. Bério; O. Bertolami; R. Bingham; F. Bondu; Ph. Bouyer; S. Bremer; J. -M. Courty; H. Dittus; B. Foulon; P. Gil; U. Johann; J. F. Jordan; B. Kent; C. Lämmerzahl; A. Lévy; G. Métris; O. Olsen; J. Pàramos; J. D. Prestage; S. V. Progrebenko; E. Rasel; A. Rathke; S. Reynaud; B. Rievers; E. Samain; T. J. Sumner; S. Theil; P. Touboul; S. Turyshev; P. Vrancken; P. Wolf; N. Yu

    2008-01-18T23:59:59.000Z

    The Solar System Odyssey mission uses modern-day high-precision experimental techniques to test the laws of fundamental physics which determine dynamics in the solar system. It could lead to major discoveries by using demonstrated technologies. The mission proposes to perform a set of precision gravitation experiments from the vicinity of Earth to the outer Solar System. Its scientific objectives can be summarized as follows: i) test of the gravity force law in the Solar System up to and beyond the orbit of Saturn; ii) precise investigation of navigation anomalies at the fly-bys; iii) measurement of Eddington's parameter at occultations; iv) mapping of gravity field in the outer solar system and study of the Kuiper belt. To this aim, the Odyssey mission is built up on a main spacecraft, designed to fly up to 13 AU, with the following components: a) a high-precision accelerometer, with bias-rejection system, measuring the deviation of the trajectory from the geodesics; b) Ka-band transponders, as for Cassini, for a precise range and Doppler measurement up to 13 AU, with additional VLBI equipment; c) optional laser equipment, which would allow one to improve the range and Doppler measurement. In this baseline concept, the main spacecraft is designed to operate beyond the Saturn orbit, up to 13 AU. It experiences multiple planetary fly-bys at Earth, Mars or Venus, and Jupiter. The cruise and fly-by phases allow the mission to achieve its baseline scientific objectives (i) to iii) in the above list). In addition to this baseline concept, the Odyssey mission proposes the release of the Enigma radio-beacon at Saturn, allowing one to extend the deep space gravity test up to at least 50 AU, while achieving the scientific objective of a mapping of gravity field in the outer Solar System.

  9. Unsaturated Groundwater Flow Beneath Upper Mortandad Canyon, Los Alamos, New Mexico

    SciTech Connect (OSTI)

    Dander, D.C.

    1998-10-15T23:59:59.000Z

    Mortandad Canyon is a discharge site for treated industrial effluents containing radionuclides and other chemicals at Los Alamos National Laboratory, New Mexico. This study was conducted to develop an understanding of the unsaturated hydrologic behavior below the canyon floor. The main goal of this study was to evaluate the hypothetical performance of the vadose zone above the water table. Numerical simulations of unsaturated groundwater flow at the site were conducted using the Finite Element Heat and Mass Transfer (FEHM) code. A two-dimensional cross-section along the canyon's axis was used to model flow between an alluvial groundwater system and the regional aquifer approximately 300 m below. Using recharge estimated from a water budget developed in 1967, the simulations showed waters from the perched water table reaching the regional aquifer in 13.8 years, much faster than previously thought. Additionally, simulations indicate that saturation is occurring in the Guaje pumice bed an d that the Tshirege Unit 1B is near saturation. Lithologic boundaries between the eight materials play an important role in flow and solute transport within the system. Horizontal flow is shown to occur in three thin zones above capillary barriers; however, vertical flow dominates the system. Other simulations were conducted to examine the effects of changing system parameters such as varying recharge inputs, varying the distribution of recharge, and bypassing fast-path fractured basalt of uncertain extent and properties. System sensitivity was also explored by changing model parameters with respect to size and types of grids and domains, and the presence of dipping stratigraphy.

  10. Seismic stratigraphy and salt tectonics along the Sigsbee Escarpment, southeastern Green Canyon region

    E-Print Network [OSTI]

    Swiercz, Alan Mark

    1986-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE December 1986 Major Subject: Geophysics SEISItllC STRATIGHAPHY AND SALT TECTONICS ALONG THE 'ilGSHEL' L'SCARPMENT. SOI. THEASTERX GREEN CANYON RFGION A Thesis ALAN MARK SWIERCZ Approved as to style and content by: Earl... R. Hoskins (Chairman of Committee) Robert J. McCabe (Member) Gr M. arberg (Member) AVilliam R. Bryant ('Member) j~/ Earl R. Hoskins (Head of Department) December 1986 ABSTRAC'T Seismic Stratigraphy and Salt Tectonics along the Sigsbee...

  11. Geological control of springs and seeps in the Farmington Canyon Complex, Davis County, Utah

    E-Print Network [OSTI]

    Skelton, Robyn Kaye

    1991-01-01T23:59:59.000Z

    of the Precambrian (Eardley, 1939). Hintze (1982) divided the Phanerozoic into six phases as illustrated in Figure 7. By the end of the Precambrian, the Northern Utah Highland was uplifted north and northwest of present day Salt Lake City (Figure 8). According... Ho ro tt lbrook Canyon 4 esslons e? Gt e. bbte ci o \\ Creek City SALT LAKE COUNTY Mrs Mill Creek I 5 10 KILOMETERS Figure 1. Geography of Wasatch Mountains (from Bryant, 1988). of the snowpack to remain high. Once melting started, high...

  12. Sediment transport in the Mississippi Canyon: the role of currents and storm events on optical variability

    E-Print Network [OSTI]

    Burden, Cheryl A

    1999-01-01T23:59:59.000Z

    on the Louisiana continental shelf varied both spatially and temporally. Surface nepheloid layers (SNL) and bottom nepheloid layers (BNL) were observed on the shelf, slope, and within the canyon. Intermediate nepheloid layers (INL) were observed within..., for bottom waters were cooler and surface water warmer in October 1994 than in May 1998. I I l (@ 1' (l* 338 Q 1$ DkStSBM (kNt) 88 b b 9 460 In October 1994 (Figure 5), a SNL and BNL, both with c, values & 0. 5 m ', were observed...

  13. EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to expand and upgrade the U.S. Department of Energy's Grand Junction Projects Office facilities and operations in Grand Junction, Colorado.

  14. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Murphy, M.B.

    1999-02-01T23:59:59.000Z

    Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

  15. Workflow Behavior Auditing for Mission Centric Collaboration

    E-Print Network [OSTI]

    Pecarina, John Matthew

    2013-10-25T23:59:59.000Z

    exists in process mining. However, process mining is not adequate to provide mission situational awareness in the battle rhythm environment since event logs may contain dynamic mission states, noise and timestamp inaccuracy. Therefore, we address a...

  16. Introduction ....................................2 College of Pharmacy Mission........................2

    E-Print Network [OSTI]

    Amin, S. Massoud

    .............................................................3 Commitment to Diversity .............................3 Services for Students with Disabilities Training Requirement .......................25 Health Insurance Requirement ..................25 Health the health of the people of Minnesota and society. Professional Program Mission Statement-- The mission

  17. Urban Water Conservation along the Rio Grande

    E-Print Network [OSTI]

    Silvey, Valeen; Kaiser, Ronald; Lesikar, Bruce; Runyan, Craig

    2004-01-01T23:59:59.000Z

    Urban Water Conservation along the Rio Grande THE TEXAS A&M UNIVERSITY SYSTEM NEW MEXICO STATE UNIVERSITY An Inventory of Water Conservation Programs TR 269 SP 201 Valeen Silvy, 1 Ronald Kaiser, 2 Bruce Lesikar 3 and Craig Runyan... water running into the streets from irrigation systems. Urban water conservation incorporates water- saving measures and incentives for the home, on the landscape and throughout the city water distribution system. It is easy to differentiate be...

  18. Networking with Clinical Nurses: Fusing Magnet & Organizational Missions

    E-Print Network [OSTI]

    Wickline, Mary

    2009-01-01T23:59:59.000Z

    Nurses: Fusing Magnet & Organizational Missions © MaryFusing Magnet & Organizational Missions Mary Wickline, MLIS,Nurses: Fusing Magnet & Organizational Missions © Mary

  19. The transition from operational availability to mission

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    THALES The transition from operational availability to mission availability Case study Unclassified The transition from operational availability to mission availability Case Study I Preface The results of my from operational availability to mission availability J.L. Schmal Management summary Thales is planning

  20. Source Characterization of the August 6, 2007 Crandall Canyon Mine Seismic Event in Central Utah

    SciTech Connect (OSTI)

    Ford, S R; Dreger, D S; Walter, W R

    2008-07-01T23:59:59.000Z

    On August 6, 2007 a local magnitude 3.9 seismic event occurred at 08:48:40 UTC in central Utah. The epicenter is within the boundaries of the Crandall Canyon coal mine (c.f. Pechmann et al., this volume). We performed a moment tensor analysis with complete, three-component seismic recordings from stations operated by the USGS, the University of Utah, and EarthScope. The analysis method inverts the seismic records to retrieve the full seismic moment tensor, which allows for interpretation of both shearing (e.g., earthquakes) and volume-changing (e.g., explosions and collapses) seismic events. The results show that most of the recorded seismic wave energy is consistent with an underground collapse in the mine. We contrast the waveforms and moment tensor results of the Crandall Canyon Mine seismic event to a similar sized tectonic earthquake about 200 km away near Tremonton, Utah, that occurred on September 1, 2007. Our study does not address the actual cause of the mine collapse.

  1. Radionuclide contaminant analysis of small mammels, plants and sediments within Mortandad Canyon, 1994

    SciTech Connect (OSTI)

    Bennett, K.; Biggs, J.; Fresquez, P.

    1996-01-01T23:59:59.000Z

    Small mammals, plants and sediments were sampled at one upstream location (Site 1) and two downstream locations (Site 2 and Site 3) from the National Pollution Discharge Elimination System outfall {number_sign}051-051 in Mortandad Canyon, Los Alamos County, New Mexico. The purpose of the sampling was to identify radionuclides potentially present, to quantitatively estimate and compare the amount of radionuclide uptake at specific locations (Site 2 and Site 3) within Mortandad Canyon to an upstream site (Site 1), and to identify the primary mode (inhalation ingestion, or surface contact) of contamination to small mammals. Three composite samples of at least five animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. In addition, three composite samples were also collected for plants and sediments at each site. Samples were analyzed for {sup 241}Am, {sup 90}Sr, {sup 238}Pu, {sup 239}Pu, and total U. With the exception of total U, all mean radionuclide concentrations in small mammal carcasses and sediments were significantly higher at Site 2 than Site 1 or Site 3. No differences were detected in the mean radionuclide concentration of plant samples between sites. However, some radionuclide concentrations found at all three sites were higher than regional background. No differences were found between mean carcass radionuclide concentrations and mean pelt radionuclide concentrations, indicating that the two primary modes of contamination may be equally occurring.

  2. Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture in theInformation System

  3. THE TURBULENT EXCHANGE WITHIN AN URBAN STREET CANYON Ian N. Harman*, Janet F. Barlow*, Stephen E. Belcher*

    E-Print Network [OSTI]

    Reading, University of

    represents a complex challenge for both observational and modelling studies of the surface energy balance for a range of canyon geometries. The model incorporates ideas on the flow and turbulence both above energy balance of an urban area are relatively well understood. However, the influence of building

  4. Challenges When Predicting Reservoir Quality in the Subsalt K2/K2-North Field, Green Canyon, Gulf of Mexico

    E-Print Network [OSTI]

    Greene, Todd J.

    of Mexico Todd J. Greene1 , Brian E. O'Neill2 , Richard E. Drumheller2 , Todd Butaud2 , and Arnold Rodriguez in the K2/ K2-North Field, Green Canyon, Gulf of Mexico, presents many challenges for planning primary and secondary oil recovery. An overlying thick salt canopy prevents adequate seismic imaging at reservoir levels

  5. Vegetation patterns of Pine Canyon, Big Bend National Park, Texas, in relation to elevation and slope aspect

    E-Print Network [OSTI]

    Harris, Bryan Joseph

    1997-01-01T23:59:59.000Z

    Data on the woody vegetation of Pine Canyon, Big Bend National Park, Texas was gathered on an elevational gradient from 1250 m to 2000 m elevation using the point-centered quarter method. Sampling was conducted at 12 sites at 1250 m, 1500 m, 1625 m...

  6. Habitat Suitability Model for Bighorn Sheep and Wild Horses in Bighorn Canyon and the Pryor Mountain Wild Horse Range

    E-Print Network [OSTI]

    MacDonald, Lee

    1 Habitat Suitability Model for Bighorn Sheep and Wild Horses in Bighorn Canyon and the Pryor Mountain Wild Horse Range October 6, 2003 Gary Wockner1 , Francis Singer2 , Kate Schoenecker2 1 Natural a tool that will help managers and other researchers better manage bighorn sheep and wild horses

  7. Networking with Clinical Nurses: Fusing Magnet and Organizational Missions

    E-Print Network [OSTI]

    Wickline, Mary

    2009-01-01T23:59:59.000Z

    Fusing Magnet and Organizational Missions W by University ofPro- gram: with organizational mission statements. Mary

  8. Mission, Mandate and Advisory Board Structure Approved July 17, 2008

    E-Print Network [OSTI]

    Oyet, Alwell

    in Happy Valley-Goose Bay and Labrador West. Mission Statement: It is the mission of the Labrador Institute

  9. Grand Unification and Enhanced Quantum Gravitational Effects

    SciTech Connect (OSTI)

    Calmet, Xavier [Catholic University of Louvain, Center for Particle Physics and Phenomenology, 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Hsu, Stephen D. H.; Reeb, David [Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403 (United States)

    2008-10-24T23:59:59.000Z

    In grand unified theories with large numbers of fields, renormalization effects significantly modify the scale at which quantum gravity becomes strong. This in turn can modify the boundary conditions for coupling constant unification, if higher dimensional operators induced by gravity are taken into consideration. We show that the generic size of, and the uncertainty in, these effects from gravity can be larger than the two-loop corrections typically considered in renormalization group analyses of unification. In some cases, gravitational effects of modest size can render unification impossible.

  10. Grand Meadow Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation, searchGoodyear,GouldDakotaCouleeGrand

  11. Grand Junction Office Founder Honored at the

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral Guidance onGlennNEPAofUpdate Workshop4 Grand

  12. Grand Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas:GrahamBlanc,Grand Electric Coop,

  13. CMI Grand Challenge Problems | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES Home HomeDevelopsEducation andGrand

  14. Grand Junction, Colorado, Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 s %GrandD D&D

  15. Comets and the Stardust Mission

    ScienceCinema (OSTI)

    LLNL - University of California Television

    2009-09-01T23:59:59.000Z

    The occasional appearance of comets has awed humans throughout history. But how much do we really know about comets? Did a comet kill the dinosaurs? And, what can comets tell us about our own ancient history? With comet dust from NASA's Stardust mission, scientists like Hope Ishii, a Research Scientist at Lawrence Livermore National Laboratory, are beginning to answer these questions. She and high school teacher Tom Shefler look at how comets formed, their role in the Earth's history and the clues about what happened over 4 billion years ago. Series: Science on Saturday [5/2008] [Science] [Show ID: 14492

  16. Mission Support Contract Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625DataNeutrino modeMission Driven andStatements,

  17. Our Mission | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeedingthisOurMission Creating Materials

  18. PNNL: About - Mission and Vision

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize832Department ofAt PNNL, our mission is to

  19. Fermilab Folk Club Mission Statement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. CategoryFebruaryFebruaryInThe Julia Set:SmallLife atClub Mission

  20. Mission Support Alliance - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Revised:7,A Search4Mission

  1. Preliminary Thermal Modeling of HI-STORM 100 Storage Modules at Diablo Canyon Power Plant ISFSI

    SciTech Connect (OSTI)

    Cuta, Judith M.; Adkins, Harold E.

    2014-04-17T23:59:59.000Z

    Thermal analysis is being undertaken at Pacific Northwest National Laboratory (PNNL) in support of inspections of selected storage modules at various locations around the United States, as part of the Used Fuel Disposition Campaign of the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development. This report documents pre-inspection predictions of temperatures for two modules at the Diablo Canyon Power Plant ISFSI identified as candidates for inspection. These are HI-STORM 100 modules of a site-specific design for storing PWR 17x17 fuel in MPC-32 canisters. The temperature predictions reported in this document were obtained with detailed COBRA-SFS models of these storage systems, with the following boundary conditions and assumptions. • storage module overpack configuration based on FSAR documentation of HI-STORM100S-218, Version B; due to unavailability of site-specific design data for Diablo Canyon ISFSI modules • Individual assembly and total decay heat loadings for each canister, based on at-loading values provided by PG&E, “aged” to time of inspection using ORIGEN modeling o Special Note: there is an inherent conservatism of unquantified magnitude – informally estimated as up to approximately 20% -- in the utility-supplied values for at-loading assembly decay heat values • Axial decay heat distributions based on a bounding generic profile for PWR fuel. • Axial location of beginning of fuel assumed same as WE 17x17 OFA fuel, due to unavailability of specific data for WE17x17 STD and WE 17x17 Vantage 5 fuel designs • Ambient conditions of still air at 50°F (10°C) assumed for base-case evaluations o Wind conditions at the Diablo Canyon site are unquantified, due to unavailability of site meteorological data o additional still-air evaluations performed at 70°F (21°C), 60°F (16°C), and 40°F (4°C), to cover a range of possible conditions at the time of the inspection. (Calculations were also performed at 80°F (27°C), for comparison with design basis assumptions.) All calculations are for steady-state conditions, on the assumption that the surfaces of the module that are accessible for temperature measurements during the inspection will tend to follow ambient temperature changes relatively closely. Comparisons to the results of the inspections, and post-inspection evaluations of temperature measurements obtained in the specific modules, will be documented in a separate follow-on report, to be issued in a timely manner after the inspection has been performed.

  2. Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2003.

    SciTech Connect (OSTI)

    McLeod, Bruce

    2004-01-01T23:59:59.000Z

    Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, were located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, was located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving delisting goals established by National Marine Fisheries Service (NMFS or NOAA Fisheries) and ultimately to provide fall Chinook adults through the Lower Snake River Compensation Plan program as mitigation for construction and operation of the four lower Snake River dams. Complete adult returns (all age classes) for all three acclimation facilities occurred in the year 2002. Progeny (which would then be natural origin fish) would be counted towards achieving Endangered Species Act delisting criteria. In 2003, a total of 2,138,391 fish weighing 66,201 pounds were released from the three acclimation facilities. The total includes 437,633 yearling fish weighing 44,330 pounds and 1,700,758 sub-yearling fish weighing 21,871 pounds.

  3. REMOVAL OF SOLIDS FROM HIGHLY ENRICHED URANIUM SOLUTIONS USING THE H-CANYON CENTRIFUGE

    SciTech Connect (OSTI)

    Rudisill, T; Fernando Fondeur, F

    2009-01-15T23:59:59.000Z

    Prior to the dissolution of Pu-containing materials in HB-Line, highly enriched uranium (HEU) solutions stored in Tanks 11.1 and 12.2 of H-Canyon must be transferred to provide storage space. The proposed plan is to centrifuge the solutions to remove solids which may present downstream criticality concerns or cause operational problems with the 1st Cycle solvent extraction due to the formation of stable emulsions. An evaluation of the efficiency of the H-Canyon centrifuge concluded that a sufficient amount (> 90%) of the solids in the Tank 11.1 and 12.2 solutions will be removed to prevent any problems. We based this conclusion on the particle size distribution of the solids isolated from samples of the solutions and the calculation of particle settling times in the centrifuge. The particle size distributions were calculated from images generated by scanning electron microscopy (SEM). The mean particle diameters for the distributions were 1-3 {micro}m. A significant fraction (30-50%) of the particles had diameters which were < 1 {micro}m; however, the mass of these solids is insignificant (< 1% of the total solids mass) when compared to particles with larger diameters. It is also probable that the number of submicron particles was overestimated by the software used to generate the particle distribution due to the morphology of the filter paper used to isolate the solids. The settling times calculated for the H-Canyon centrifuge showed that particles with diameters less than 1 to 0.5 {micro}m will not have sufficient time to settle. For this reason, we recommend the use of a gelatin strike to coagulate the submicron particles and facilitate their removal from the solution; although we have no experimental basis to estimate the level of improvement. Incomplete removal of particles with diameters < 1 {micro}m should not cause problems during purification of the HEU in the 1st Cycle solvent extraction. Particles with diameters > 1 {micro}m account for > 99% of the solid mass and will be efficiently removed by the centrifuge; therefore, the formation of emulsions during solvent extraction operations is not an issue. Under the current processing plan, the solutions from Tanks 11.1 and 12.2 will be transferred to the enriched uranium storage (EUS) tank following centrifugation. The solution from Tanks 11.1 and 12.2 may remain in the EUS tank for an extended time prior to purification. The effects of extended storage on the solution were not evaluated as part of this study.

  4. A Grand Challenge for Planetary Nebulae

    E-Print Network [OSTI]

    Adam Frank; Orsola De Marco; Eric Blackman; Bruce Balick

    2007-12-12T23:59:59.000Z

    The study of PN has been confronting a growing list of dilemmas which have yet to find coherent resolution. These issues are both observational and theoretical and can be stated as a series of "facts" which can not, as of yet, be accounted for via a single framework. We review these facts and propose a skeleton framework for developing a new understanding post-AGB stars, PPN and PN. Our framework represents an attempt to articulate a a global perspective on the late stages of stellar evolution that can embrace both the nature of the central engine and the outflows they produce. Our framework focuses on interacting binary central stars which drive collimated outflows through MHD processes. We propose that the field of AGB/PN studies now faces a "Grand Challenge" in articulating the observational systematics of these objects in a way that can address issues related to binarity and magnetic shaping. A theoretical Grand Challenge is also faced in the form of integrated studies which can explicate the highly non-linear processes associated with MHD outflows driven by interacting binaries. These issues include the generation of magnetic fields via dynamo processes, the creation of accretion disks, the dynamics of Common Envelope ejection and the creation of magnetized jets.

  5. Citrus Production in the Lower Rio Grande Valley of Texas.

    E-Print Network [OSTI]

    Traub, Hamilton Paul; Friend, W. H. (William Heartsill)

    1930-01-01T23:59:59.000Z

    LIE?ARY, A t r: COLLEGE, CAvrus. TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS - BULLETIN NO. 419 DIVISION OF HORTICULTURE Citrus Production in the Lower Rio Grande Valley of Texas... of Agriculture. . Citrus fruit production in the Lower Rio Grande Valley, especially grapefruit, has increased at a rather rapid rate dur- ing the past few years. More than 5,000,000 citrus trees were set in orchard form in the Lower Rio Grande Valley up...

  6. SunShot Grand Challenge Summit Breakout Sessions Announced |...

    Broader source: Energy.gov (indexed) [DOE]

    leaders and subject matter experts across 17 breakout sessions will provide insights and perspectives on the "grand challenges" to meeting the SunShot 2020 affordability goal in...

  7. Grand Challenge for Basic and Applied Research in Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Grand Challenge for Basic and Applied Research in Hydrogen Storage Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC....

  8. City of Grand Rapids- Green Building Requirements for Municipal Buildings

    Broader source: Energy.gov [DOE]

    In January 2006, the City of Grand Rapids approved a resolution detailing the city's sustainability policy for public buildings. The resolution directed city personnel to implement the principles...

  9. ,"Grand Island, NY Natural Gas Pipeline Imports From Canada ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Grand Island,...

  10. Dermatology Grand Rounds "AJCC Melanoma Staging Update: Impact on Diagnostic

    E-Print Network [OSTI]

    Bar, Moshe

    Dermatology Grand Rounds "AJCC Melanoma Staging Update: Impact on Diagnostic Reporting in primary melanoma Explain the decision making process in offering sentinel lymph node mapping Date

  11. Petrogenesis of Valle Grande Member Rhyolites, Valles Caldera...

    Open Energy Info (EERE)

    of Valle Grande Member Rhyolites, Valles Caldera, New Mexico- Implications for Evolution of the Jemez Mountains Magmatic System Jump to: navigation, search OpenEI Reference...

  12. Sandia National Laboratories: Grand Challenge Laboratory-Directed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Challenge Laboratory-Directed Research and Development project Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments On March 3, 2015, in...

  13. EV Everywhere Grand Challenge - Battery Status and Cost Reduction...

    Energy Savers [EERE]

    Status and Cost Reduction Prospects EV Everywhere Grand Challenge - Battery Status and Cost Reduction Prospects Presentation given by technology manager David Howell at the EV...

  14. EV Everywhere Grand Challenge Introduction for Electric Drive...

    Energy Savers [EERE]

    David Danielson at the EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare,...

  15. Statement by Energy Secretary Steven Chu on Today's Grand Opening...

    Office of Environmental Management (EM)

    Steven Chu issued the following statement on today's grand opening of the Nordex wind turbine manufacturing facility in Jonesboro. The facility was supported with funding from the...

  16. Ex post power economic analysis of record of decision operational restrictions at Glen Canyon Dam.

    SciTech Connect (OSTI)

    Veselka, T. D.; Poch, L. A.; Palmer, C. S.; Loftin, S.; Osiek, B; Decision and Information Sciences; Western Area Power Administration

    2010-07-31T23:59:59.000Z

    On October 9, 1996, Bruce Babbitt, then-Secretary of the U.S. Department of the Interior signed the Record of Decision (ROD) on operating criteria for the Glen Canyon Dam (GCD). Criteria selected were based on the Modified Low Fluctuating Flow (MLFF) Alternative as described in the Operation of Glen Canyon Dam, Colorado River Storage Project, Arizona, Final Environmental Impact Statement (EIS) (Reclamation 1995). These restrictions reduced the operating flexibility of the hydroelectric power plant and therefore its economic value. The EIS provided impact information to support the ROD, including an analysis of operating criteria alternatives on power system economics. This ex post study reevaluates ROD power economic impacts and compares these results to the economic analysis performed prior (ex ante) to the ROD for the MLFF Alternative. On the basis of the methodology used in the ex ante analysis, anticipated annual economic impacts of the ROD were estimated to range from approximately $15.1 million to $44.2 million in terms of 1991 dollars ($1991). This ex post analysis incorporates historical events that took place between 1997 and 2005, including the evolution of power markets in the Western Electricity Coordinating Council as reflected in market prices for capacity and energy. Prompted by ROD operational restrictions, this analysis also incorporates a decision made by the Western Area Power Administration to modify commitments that it made to its customers. Simulated operations of GCD were based on the premise that hourly production patterns would maximize the economic value of the hydropower resource. On the basis of this assumption, it was estimated that economic impacts were on average $26.3 million in $1991, or $39 million in $2009.

  17. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    SciTech Connect (OSTI)

    Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

    2009-07-15T23:59:59.000Z

    A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

  18. Simulating infiltration tests in fractured basalt at the Box Canyon Site, Idaho

    SciTech Connect (OSTI)

    Unger, Andre J.A.; Faybishenko, Boris; Bodvarsson, Gudmundur S.; Simmons, Ardyth M.

    2003-04-01T23:59:59.000Z

    The results of a series of ponded infiltration tests in variably saturated fractured basalt at Box Canyon, Idaho, were used to build confidence in conceptual and numerical modeling approaches used to simulate infiltration in fractured rock. Specifically, we constructed a dual-permeability model using TOUGH2 to represent both the matrix and fracture continua of the upper basalt flow at the Box Canyon site. A consistent set of hydrogeological parameters was obtained by calibrating the model to infiltration front arrival times in the fracture continuum as inferred from bromide samples collected from fracture/borehole intersections observed during the infiltrating tests. These parameters included the permeability of the fracture and matrix continua, the interfacial area between the fracture and matrix continua, and the porosity of the fracture continuum. To calibrate the model, we multiplied the fracture-matrix interfacial area by a factor between 0.1 and 0.01 to reduce imbibition of water from the fracture continuum into the matrix continuum during the infiltration tests. Furthermore, the porosity of the fracture continuum, as calculated using the fracture aperture inferred from pneumatic-test permeabilities, was increased by a factor of 50 yielding porosity values for the upper basalt flow in the range of 0.01 to 0.02. The fracture-continuum porosity was a highly sensitive parameter controlling the arrival times of the simulated infiltration fronts. Porosity values are consistent with those determined during the Large-Scale Aquifer Pumping and Infiltration Test at the Idaho National Engineering and Environmental Laboratory.

  19. Golden Field Office Mission and Functions Statement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    its mission, Golden works in partnership with industry and DOE's national laboratories on joint R&D projects in such areas as photovoltaics (solar cells), wind energy, biomass,...

  20. Equal Employment Opportunity: Collaborating for Mission Success

    National Nuclear Security Administration (NNSA)

    2012 Equal Employment Opportunity: Collaborating for Mission Success U.S. DEPARTMENT OF ENERGY National Nuclear Security Administration 2012 EEO Report of Accomplishment 2012...

  1. Tank waste remediation system (TWRS) mission analysis

    SciTech Connect (OSTI)

    Rieck, R.H.

    1996-10-03T23:59:59.000Z

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  2. Small Business Support of DOE Mission

    Broader source: Energy.gov [DOE]

    Our Program Offices, National Laboratories, Power Marketing Administration, and Operations Offices have unique roles in meeting the Energy Department's critical mission.

  3. Predicting spatial distribution of critical pore types and their influence on reservoir quality, Canyon (Pennsylvanian) Reef reservoir, Diamond M field, Texas

    E-Print Network [OSTI]

    Fisher, Aaron Jay

    2007-04-25T23:59:59.000Z

    Subject: Geology iii ABSTRACT Predicting Spatial Distribution of Critical Pore Types and Their Influence on Reservoir Quality, Canyon (Pennsylvanian) Reef Reservoir, Diamond M Field, Texas... scale. Ultimately slice maps of reservoir quality at a 10 ft interval for a 150 ft section of the Canyon Reef reservoir were developed. These iv reservoir quality maps will provide a useful tool for the design and implementation of accurate...

  4. Human Interactive Mission Manager : an autonomous mission manager for human cooperative systems

    E-Print Network [OSTI]

    Furtado, Jason M. (Jason Manuel)

    2008-01-01T23:59:59.000Z

    Facilitating low level human supervisory control of mission management is highly challenging because of concerns regarding system stability and performance. Previous implementations of mission managers based on C. S. Draper ...

  5. Lessons Learned: The Grand Junction Office Site Transfer to Private Ownership

    SciTech Connect (OSTI)

    none,

    2001-02-01T23:59:59.000Z

    The U.S. Department of Energy Grand Junction Office (DOE?GJO) in Grand Junction, Colorado, has played an integral role within the DOE complex for many years. GJO has a reputation for outstanding quality in the performance of complex environmental restoration projects, utilizing state-of-the-art technology. Many of the GJO missions have been completed in recent years. In 1998, DOE Headquarters directed GJO to reduce its mortgage costs by transferring ownership of the site and to lease space at a reasonable rate for its ongoing work. A local community group and GJO have entered into a sales contract; signing of the Quitclaim Deed is planned for February 16, 2001. Site transfer tasks were organized as a project with a critical-path schedule to track activities and a Site Transition Decision Plan was prepared that included a decision process flow chart, key tasks, and responsibilities. Specifically, GJO identified the end state with affected parties early on, successfully dealt with site contamination issues, and negotiated a lease-back arrangement, resulting in an estimated savings of more than 60 percent of facility maintenance costs annually. Lessons learned regarding these transition activities could be beneficial to many other sites.

  6. Recent Results from Kascade-Grande

    E-Print Network [OSTI]

    Kampert, K H; Ainsley, C; Åkesson, P F; Alexander, G; Anagnostou, G; Anderson, K J; Asai, S; Axen, D; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brown, R M; Burckhart, H J; Campana, S; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, A; Cuani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, K; Dienes, B; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, F; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, J; Gruwé, M; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Herten, G; Heuer, R D; Hill, J C; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanzaki, J; Karlen, D; Kawagoe, K; Kawamoto, T; Keeler, R K; Kellogg, R G; Kennedy, B W; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krasznahorkay, A; Krieger, P; Von Krogh, J; Kühl, T; Kupper, M; Laerty, G D; Landsman, H; Lanske, D; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Mashimo, T; Mättig, P; McKenna, J; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, A; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rossi, A M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Schar-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L; Kampert, Karl-Heinz

    2006-01-01T23:59:59.000Z

    KASCADE-Grande is a new extensive air shower experiment co-located to the KASCADE site at Forschungszentrum Karlsruhe. The multi-detector system allows to investigate the energy spectrum, composition, and anisotropies of cosmic rays with unprecedented prevision in the energy range from 10^{14}-10^{18} eV. The primary goals besides investigating the origin of the knee at E ~ 3 * 10^{15} eV, are to verify the existence of the second knee at E ~ 10^{17} eV and to measure the composition in the expected transition region of galactic to extragalactic cosmic rays. The performance of the apparatus and shower reconstruction methods will be discussed on the basis of detailed Monte Carlo simulations and first data. First results based on slightly more than a year of data taking are presented.

  7. Stratigraphic and diagenetic controls on the occurrence of porosity in the Mississippian Mission Canyon Formation in the Billings Nose Area, North Dakota 

    E-Print Network [OSTI]

    Beaber, Daniel Edward

    1989-01-01T23:59:59.000Z

    , intercrystalline and dissolution, were identified. Intercrystalline porosity formed as the result of partial dolomitization of the dominantly lime mud matrix. Dissolution preferentially removed the limestone grains. Depositional facies controlled... the distribution of grains and, therefore, the distribution of dissolution to some extent. Stratigraphic location controlled the degree of dolomitization. The stratigraphically higher A and B zones were in closer proximity to the dolomitizing fluids from...

  8. New Applications of the Image Grand Tour Jrgen Symanzik

    E-Print Network [OSTI]

    Symanzik, Jürgen

    . Wegman George Mason University, Center for Computational Statistics Fairfax, VA 22030-4444 e data analysts find very helpful. Wegman (1992) discussed a form of the grand tour for general k-dimensional space, k d. The algorithms for computing a grand tour are relatively computationally intensive. Wegman

  9. 39 Geographic Information Science: The Grand Challenges MICHAEL F. GOODCHILD

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    39 Geographic Information Science: The Grand Challenges MICHAEL F. GOODCHILD Many chapters; and the lack of awareness of such issues as #12;3 Geographic Information Science: The Grand Challenges scale technology; in essence the science behind the systems. Over the past twelve years there have been various

  10. DAPRPA Grand Challenge, Unfinished Business, November 1, 2005 Back & Forth

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    DAPRPA Grand Challenge, Unfinished Business, November 1, 2005 Back & Forth Return to Beer Bottle Pass Route to/from Beer Bottle Pass from Start of 2005 GC Course #12;DAPRPA Grand Challenge, Unfinished Business, November 1, 2005 Return to Beer Bottle Pass GPS tracks of route to/from Beer Bottle Pass #12

  11. Integrated Water Management for Environmental Flows in the Rio Grande

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    flows; Reservoir reoperation; Integrated water management; Adaptive management; Rio Grande. IntroductionIntegrated Water Management for Environmental Flows in the Rio Grande S. Sandoval-Solis, A.M.ASCE1 the environment. This paper presents an integrated water management approach to meet current and future water

  12. Testing General Relativity with the ACES Mission

    E-Print Network [OSTI]

    C. Le Poncin-Lafitte; S. Lambert

    2006-10-16T23:59:59.000Z

    The new generation of atomic clocks will reach unprecedented uncertainties in frequency of $10^{-18}$. In order to prepare space missions such as ACES, we compute all relativistic frequency shifts detectable during this mission in the case of a clock aboard the International Space Station.

  13. High-Resolution Carbon Isotope Stratigraphy, Pennsylvanian Snaky Canyon Formation, East-Central Idaho: Implications for Regional and Global Correlations

    E-Print Network [OSTI]

    Jolley, Casey

    2012-07-16T23:59:59.000Z

    of Committee, Michael C. Pope Committee Members, Ethan L. Grossman Debbie J. Thomas Head of Department, Rick Giardino May 2012 Major Subject: Geology iii ABSTRACT High-Resolution Carbon Isotope Stratigraphy, Pennsylvanian Snaky Canyon..., and my committee members, Dr. Ethan Grossman and Dr. Debbie Thomas, for their time and guidance. Special thanks goes to my primary advisor, Dr. Pope, for his extra guidance and time away from family collecting samples. Additionally, I?d like to thank...

  14. Genetic Pore Types and Their Relationship to Reservoir Quality: Canyon Formation (Pennsylvanian), Diamond M Field, Scurry County, Texas

    E-Print Network [OSTI]

    Barry, Travis

    2012-02-14T23:59:59.000Z

    of Committee, Wayne M. Ahr Committee Members, Michael Pope David S. Schechter Head of Department, John R. Giardino December 2011 Major Subject: Geology iii ABSTRACT Genetic Pore Types and Their Relationship to Reservoir Quality: Canyon... units were established on the basis of combined porosity and permeability values from core analysis. A cut off criterion for iv porosity and permeability was established to separate good and poor flow units. Ultimately cross sections were created...

  15. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.

    SciTech Connect (OSTI)

    Bryan, Charles R.; Enos, David George

    2014-07-01T23:59:59.000Z

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  16. Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2002.

    SciTech Connect (OSTI)

    McLeod, Bruce

    2003-01-01T23:59:59.000Z

    Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving delisting goals established by National Marine Fisheries Service (NMFS or NOAA Fisheries) and ultimately to provide fall Chinook adults through the Lower Snake River Compensation Plan program as mitigation for construction and operation of the four lower Snake River dams. Complete adult returns (all age classes) for all three acclimation facilities occurred in the year 2002. Progeny (which would then be natural origin fish) would be counted towards achieving Endangered Species Act delisting criteria. In 2002, a total of 2,877,437 fish weighing 47,347 pounds were released from the three acclimation facilities. The total includes 479,358 yearling fish weighing 33,930 pounds and 2,398,079 sub-yearling fish weighing 19,115 pounds. This is the largest number of fish ever released in one year from the acclimation facilities.

  17. Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration

    2006-09-01T23:59:59.000Z

    BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with other proposed wind projects in the region. The low to high impacts to visual resources reflect the effect that the transmission line and the turbine strings from both wind projects would have on viewers in the local area, but this impact diminishes with distance from the project.

  18. Advanced nuclear rocket engine mission analysis

    SciTech Connect (OSTI)

    Ramsthaler, J.; Farbman, G.; Sulmeisters, T.; Buden, D.; Harris, P.

    1987-12-01T23:59:59.000Z

    The use of a derivative of the NERVA engine developed from 1955 to 1973 was evluated for potential application to Air Force orbital transfer and maneuvering missions in the time period 1995 to 2020. The NERVA stge was found to have lower life cycle costs (LCC) than an advanced chemical stage for performing low earth orbit (LEO) to geosynchronous orbit (GEO0 missions at any level of activity greater than three missions per year. It had lower life cycle costs than a high performance nuclear electric engine at any level of LEO to GEO mission activity. An examination of all unmanned orbital transfer and maneuvering missions from the Space Transportation Architecture study (STAS 111-3) indicated a LCC advantage for the NERVA stage over the advanced chemical stage of fifteen million dollars. The cost advanced accured from both the orbital transfer and maneuvering missions. Parametric analyses showed that the specific impulse of the NERVA stage and the cost of delivering material to low earth orbit were the most significant factors in the LCC advantage over the chemical stage. Lower development costs and a higher thrust gave the NERVA engine an LCC advantage over the nuclear electric stage. An examination of technical data from the Rover/NERVA program indicated that development of the NERVA stage has a low technical risk, and the potential for high reliability and safe operation. The data indicated the NERVA engine had a great flexibility which would permit a single stage to perform all Air Force missions.

  19. Optical Payload for the STARE Mission

    SciTech Connect (OSTI)

    Simms, L; Riot, V; De Vries, W; Olivier, S S; Pertica, A; Bauman, B J; Phillion, D; Nikolaev, S

    2011-03-13T23:59:59.000Z

    Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) is a nano-sat based mission designed to better determine the trajectory of satellites and space debris in orbit around earth. In this paper, we give a brief overview of the mission and its place in the larger context of Space Situational Awareness (SSA). We then describe the details of the central optical payload, touching on the optical design and characterization of the on-board image sensor used in our Cubesat based prototype. Finally, we discuss the on-board star and satellite track detection algorithm central to the success of the mission.

  20. Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico

    SciTech Connect (OSTI)

    Dunbar, John

    2012-12-31T23:59:59.000Z

    Electrical methods offer a geophysical approach for determining the sub-bottom distribution of hydrate in deep marine environments. Methane hydrate is essentially non-conductive. Hence, sediments containing hydrate are more resistive than sediments without hydrates. To date, the controlled source electromagnetic (CSEM) method has been used in marine hydrates studies. This project evaluated an alternative electrical method, direct current resistivity (DCR), for detecting marine hydrates. DCR involves the injection of direct current between two source electrodes and the simultaneous measurement of the electric potential (voltage) between multiple receiver electrodes. The DCR method provides subsurface information comparable to that produced by the CSEM method, but with less sophisticated instrumentation. Because the receivers are simple electrodes, large numbers can be deployed to achieve higher spatial resolution. In this project a prototype seafloor DCR system was developed and used to conduct a reconnaissance survey at a site of known hydrate occurrence in Mississippi Canyon Block 118. The resulting images of sub-bottom resistivities indicate that high-concentration hydrates at the site occur only in the upper 50 m, where deep-seated faults intersect the seafloor. Overall, there was evidence for much less hydrate at the site than previously thought based on available seismic and CSEM data alone.

  1. Effect of the open roof on low frequency acoustic propagation in street canyons

    E-Print Network [OSTI]

    Richoux, Olivier; Pelat, Adrien; Félix, Simon; Lihoreau, Bertrand

    2009-01-01T23:59:59.000Z

    This paper presents an experimental, numerical and analytical study of the effect of open roof on acoustic propagation along a 3D urban canyon. The experimental study is led by means of a street scale model. The numerical results are performed with a 2D Finite Difference in Time Domain approach adapted to take into account the acoustic radiation losses due to the street open roof. An analytical model, based on the modal decomposition of the pressure field in a horizontal plane mixed with a 2D image sources model to describe the attenuation along the street, is also proposed. Results are given for several frequencies in the low frequency domain (1000-2500 Hz). The comparison of the three approaches shows a good agreement until f=100 Hz at full scale, the analytical model and the 2D numerical simulation adapted to 3D permit to modelize the acoustic propagation along a street. For higher frequency, experimental results show that the leakeage, due to the street open roof, is not anymore uniformly distributed on a...

  2. POTENTIAL IMPACT OF TANK F FLUSH SOLUTION ON H-CANYON EVAPORATOR OPERATION

    SciTech Connect (OSTI)

    Kyser, E.; Fondeur, F.; Fink, S.

    2010-09-13T23:59:59.000Z

    Previous chemical analysis of a sample from the liquid heel found in Tank F of the High Activity Drain (HAD) system in F/H laboratory revealed the presence of n-paraffin, tributyl phosphate (TBP), Modifier from the Modular Caustic-Side Solvent Extraction Unit (MCU) process and a vinyl ester resin that is very similar to the protective lining on Tank F. Subsequent analyses detected the presence of a small amount of diisopropylnaphthalene (DIN) (major component of Ultima Gold{trademark} AB liquid scintillation cocktail). Indications are that both vinyl ester resin and DIN are present in small amounts in the flush solution. The flush solution currently in the LR-56S trailer likely has an emulsion which is believed to contain a mixture of the reported organic species dominated by TBP. An acid treatment similar to that proposed to clear the HAD tank heel in F/H laboratory was found to allow separation of an organic phase from the cloudy sample tested by SRNL. Mixing of that clear sample did re-introduce some cloudiness that did not immediately clear but that cloudiness is attributed to the DIN in the matrix. An organic phase does quickly separate from the cloudy matrix allowing separation by a box decanter in H-Canyon prior to transfer to the evaporator feed tank. This separation should proceed normally as long as the emulsion is broken-up by acidification.

  3. A statistical comparison of impact and ambient testing results from the Alamosa Canyon Bridge

    SciTech Connect (OSTI)

    Doebling, S.W.; Farrar, C.R. [Los Alamos National Lab., NM (United States); Cornwell, P. [Rose Hulman Inst. of Tech., Terre Haute, IN (United States)

    1996-12-31T23:59:59.000Z

    In this paper, the modal properties of the Alamosa Canyon Bridge obtained using ambient data are compared to those obtained from impact hammer vibration tests. Using ambient sources of excitation to determine the modal characteristics of large civil engineering structures is desirable for several reasons. The forced vibration testing of such structures generally requires a large amount of specialized equipment and trained personnel making the tests quite expensive. Also, an automated health monitoring system for a large civil structure will most likely use ambient excitation. A modal identification procedure based on a statistical Monte Carlo analysis using the Eigensystem Realization Algorithm is used to compute the modal parameters and their statistics. The results show that for most of the measured modes, the differences between the modal frequencies of the ambient and hammer data sets are statistically significant. However, the differences between the corresponding damping ratio results are not statistically significant. Also, one of the modes identified from the hammer test data was not identifiable from the ambient data set.

  4. austere human missions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RRT for UAV mission path planning MIT - DSpace Summary: Future envisioned Unmanned Aerial Vehicle (UAV) missions will be carried out in dynamic and complex environments....

  5. Early science runs prepare Sequoia for national security missions...

    National Nuclear Security Administration (NNSA)

    Early science runs prepare Sequoia for national security missions | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  6. A brief history of Sandia's National security missions.

    SciTech Connect (OSTI)

    Drewien, Celeste A.; O'Canna, Myra Lynn; Stikar, John Anthony.

    2014-09-01T23:59:59.000Z

    To help members of the workforce understand what factors contribute to Sandia National Laboratories national security mission, the authors describe the evolution of Sandias core mission and its other mission components. The mission of Sandia first as a division of Los Alamos and later as Sandia Corporation underlies our core nuclear weapon mission of today. Sandias mission changed in 1963 and twice more in the 1970s. This report should help staff and management appreciate the need for mission evolution. A clear definition and communication of a consistent corporate mission statement is still needed.

  7. New Horizons Mission Powered by Space Radioisotope Power Systems...

    Energy Savers [EERE]

    New Horizons Mission Powered by Space Radioisotope Power Systems New Horizons Mission Powered by Space Radioisotope Power Systems January 30, 2008 - 6:47pm Addthis Artist's concept...

  8. The Mission of the Mars Exploration Rovers

    ScienceCinema (OSTI)

    John Grant

    2010-01-08T23:59:59.000Z

    The Mars Exploration Rover mission was expected to last 3 months, but has continued for more than 4 years. The major science results from both rovers will be summarized.

  9. Technology Support Strategic Plan MISSION STATEMENT

    E-Print Network [OSTI]

    Westfall, Peter H.

    1 Technology Support Strategic Plan MISSION STATEMENT Through collaboration and professionalism, the Technology Support Department provides the highest possible quality Information Technology (IT) services, support, and assistance to the University community. VISION STATEMENT Technology Support

  10. Environmental Science and Management Mission Statement

    E-Print Network [OSTI]

    Environmental Science and Management Mission Statement Approved by the faculty November 29, 2006 Environmental Science and Management is the study of the interactions between society. Environmental Science and Management at PSU focuses on processes that link terrestrial and aquatic ecosystems

  11. A UAV MISSION HIERARCHY C. E. NEHME

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    Surveillance Payload Delivery Electronic warfare Target Designation Static Target Dynamic Target Dynamic Target* UAV Missions Intelligence/ Reconnaissance SurveillanceInsertion Electronic Attack Electronic) and can include, for example, the rendering of facilities inoperable (electronic jamming

  12. Risk perspectives for TOPAZ II flight mission

    SciTech Connect (OSTI)

    Payne, A.C. Jr. [Sandia National Labs., Albuquerque, NM (United States); Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering

    1993-11-01T23:59:59.000Z

    The purpose of this paper is to present a preliminary estimate of the nuclear-related public health risk presented by launching and operating the Russian TOPAZ II space reactor as part of the Nuclear Electric Propulsion Space Test Program (NEPSTP). This risk is then compared to the risks from the operation of commercial nuclear power reactors and previously planned and/or launched space nuclear power missions. For the current mission profile, the initial estimate of the risk posed by launching and operating TOPAZ II is significantly less (at least two orders of magnitude) than that estimated for prior space nuclear missions. Even allowing for the large uncertainties in this estimate, it does not appear that the NEPSTP mission will present a significant health risk to the public.

  13. The Soil Moisture Active Passive (SMAP) Mission

    E-Print Network [OSTI]

    Entekhabi, Dara

    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey. SMAP will make global measurements of ...

  14. Integrated Reservoir Characterization: Offshore Louisiana, Grand Isle Blocks 32 & 33 

    E-Print Network [OSTI]

    Casey, Michael Chase

    2011-08-08T23:59:59.000Z

    several areas that are shaled-out effectively creating a flow barrier within reservoir compartments. Due to the barrier in the PM-1 reservoir compartment, an area of potentially recoverable hydrocarbons remains. In Grand Isle 33, the middle QH sand...

  15. Geothermal Resources of Rifts- a Comparison of the Rio Grande...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Resources of Rifts- a Comparison of the Rio Grande Rift and the Salton Trough Abstract The Rio...

  16. Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial...

    Office of Environmental Management (EM)

    its grand opening on October 17, 2014, in Hugoton, Kansas. The Abengoa Bioenergy Biomass of Kansas (ABBK) facility is the first of its kind to use a proprietary enzymatic...

  17. Integrated Reservoir Characterization: Offshore Louisiana, Grand Isle Blocks 32 & 33

    E-Print Network [OSTI]

    Casey, Michael Chase

    2011-08-08T23:59:59.000Z

    several areas that are shaled-out effectively creating a flow barrier within reservoir compartments. Due to the barrier in the PM-1 reservoir compartment, an area of potentially recoverable hydrocarbons remains. In Grand Isle 33, the middle QH sand...

  18. EA-1037: Uranium Lease Management Program, Grand Junction, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Grand Junction Projects Office's proposal to maintain and preserve the nation's immediately accessible supply of...

  19. Evaluation of Geothermal Potential of Rio Grande Rift and Basin...

    Open Energy Info (EERE)

    and Range Province, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Evaluation of Geothermal Potential of Rio Grande Rift and Basin and Range...

  20. City of Grand Rapids- Green Power Purchasing Policy

    Broader source: Energy.gov [DOE]

    In 2005, the City of Grand Rapids established a goal of purchasing 20% of its municipal power demand from renewable energy by 2008. In November 2007, the city signed a three-year agreement with a...

  1. agudos grandes granite: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Rio GrandeBasin, one of the most productive agriculturalareas in the United States. Irrigated agricul- ture claims 85 percent of its water, and urban water use is...

  2. EA-1338: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed transfer of real and personal property at the U.S. Department of Energy's Grand Junction Office to non-DOE ownership.

  3. Financial analysis of experimental releases conducted at Glen Canyon Dam during water year 2011

    SciTech Connect (OSTI)

    Poch, L. A.; Veselka, T. D.; Palmer, C. S.; Loftin, S.; Osiek, B. (Decision and Information Sciences); (Western Area Power Administration)

    2012-07-16T23:59:59.000Z

    This report examines the financial implications of experimental flows conducted at the Glen Canyon Dam (GCD) in water year 2011. It is the third report in a series examining financial implications of experimental flows conducted since the Record of Decision (ROD) was adopted in February 1997 (Reclamation 1996). A report released in January 2011 examined water years 1997 to 2005 (Veselka et al. 2011), and a report released in August 2011 examined water years 2006 to 2010 (Poch et al. 2011). An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes both that operations comply with the ROD operating criteria and the experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP powerplant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases conducted in water year 2011 resulted only in financial costs; the total cost of all experimental releases was about $622,000.

  4. EXPERIMENTAL STUDY TO EVALUATE CORROSION OF THE F-CANYON DISSOLVER DURING THEUNIRRADIATED MARK-42 CAMPAIGN

    SciTech Connect (OSTI)

    Mickalonis, J; Kerry Dunn, K

    1999-08-01T23:59:59.000Z

    Unirradiated Mark 42 fuel tubes are to be dissolved in an upcoming campaign in F-canyon. Savannah River Technology Center (SRTC)/Chemical & Hydrogen Technology Section (CHTS) identified a flow sheet for the dissolution of these Mark 42 fuel tubes which required a more aggressive dissolver solution than previously required for irradiated Mark 42 fuel tubes. Subsequently, SRTC/MTS was requested to develop and perform a corrosion testing program to assess the impact of new flow sheets on corrosion of the dissolver wall. The two primary variables evaluated were the fluoride and aluminum concentrations of the dissolver solution. Fluoride was added as Calcium Fluoride (CaF{sub 2}) while the aluminum was added either as metallic aluminum, which was subsequently dissolved, or as the chemical aluminum nitrate (Al(NO{sub 3}){sub 3}). The dissolved aluminum metal was used to simulate the dissolution of the aluminum from the Mark 42 cladding and fuel matrix. Solution composition for the corrosion tests bracketed the flow sheet for the Mark 42. Corrosion rates of AISI Type 304 stainless steel coupons, both welded and non-welded coupons, were calculated from measured weight losses and post-test concentrations of soluble Fe, Cr and Ni. The corrosion rates, which ranged between 2.7 and 32.5 mpy, were calculated from both the one day and the one week weight losses. These corrosion rates indicated a relatively mild corrosion on the dissolver vessel. The welded coupons consistently had a higher corrosion rate than the non-welded coupons. The difference between the two decreased as the solution aggressiveness decreased. In these test solutions, aggressiveness corresponded with the fluoride concentration. Based on the results of this study, any corrosion occurring during the Mark 42 Campaign is not expected to have a deleterious effect on the dissolver vessel.

  5. Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2001 Annual Report.

    SciTech Connect (OSTI)

    Connor, Jason M. (Kalispell Department of Natural Resources, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA); O'Connor, Dick (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-01-01T23:59:59.000Z

    In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power Planning Council (NPPC). The NPPC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPPC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area and the Columbia Basin Blocked Area Management Plan (1998). The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. In 1999, 2000, and 2001 the project began addressing some of the identified data gaps throughout the Blocked Area. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of seven streams and four lakes on the Spokane Indian Reservation were completed by 2000. Assessments of the Little Spokane River and its tributaries, tributaries to the Pend Oreille River, small lakes in southern Pend Oreille County, and water bodies within and near the Spokane Indian Reservation were conducted in 2001. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

  6. Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Connor, Jason M. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife); Butler, Chris (Spokane Tribe of Indians, Wellpinit, WA)

    2006-02-01T23:59:59.000Z

    In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. The project began addressing identified data gaps throughout the Blocked Area in 1999. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, Spokane River below Spokane Falls, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002 and 2003. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

  7. Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Connor, Jason M. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Olympia, WA); Butler, Chris (Spokane Tribe of Indians, Wellpinit, WA)

    2005-11-01T23:59:59.000Z

    In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. The project began addressing identified data gaps throughout the Blocked Area in 1999. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, Spokane River below Spokane Falls, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002 and 2003. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

  8. Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2002 Annual Report.

    SciTech Connect (OSTI)

    Connor, Jason M. (Kalispel Department of Natural Resources, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA); Butler, Chris (Spokane Tribe of Indians, Department of Natural Resources, Wellpinit, WA)

    2003-09-01T23:59:59.000Z

    In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. In 1999, 2000, and 2001 the project began addressing some of the identified data gaps throughout the Blocked Area. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

  9. Temporary Housing Mission Overview Temporary Housing is a highly visible mission.

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Temporary Housing Mission Overview · Temporary Housing is a highly visible mission. · Success requires teamwork (FEMA/COE/State/Local) and advanced planning. · FEMA's steps to providing housing relief assistance (home repair limits, rental limits, self-help Manufactured Housing Units (MHU) on private sites

  10. Semi-Immersive Space Mission Design and Visualization: Case Study of the "Terrestrial Planet Finder" Mission.

    E-Print Network [OSTI]

    Semi-Immersive Space Mission Design and Visualization: Case Study of the "Terrestrial Planet Finder of Technology Pasadena, CA 91125 Abstract This paper addresses visualization issues of the Terrestrial Planet the visualization of the Terrestrial Planet Finder Mission (TPF) as a case study to identify and analyze

  11. Nuclear propulsion system options for Mars missions

    SciTech Connect (OSTI)

    Emrich, W.J. Jr.; Young, A.C. (NASA, Marshall Space Flight Center, Huntsville, AL (United States))

    1992-03-01T23:59:59.000Z

    This paper focuses on the use of a nuclear thermal rocket to accomplish a variety of space missions with emphasis on the manned Mars mission. The particle-bed-reactor type nuclear engine was chosen as the baseline engine because of its perceived versatility over other nuclear propulsion systems in conducting a wide variety of tasks. This study indicates that the particle-bed-reactor engine with its high engine thrust-to-weight ratio (about 20) and high specific impulse (about 950 to 1050 sec) offers distinct advantages over the larger and heavier NERVA-type nuclear engines.

  12. Floodplain Assessment for the Proposed Engineered Erosion Controls at TA-72 in Lower Sandia Canyon, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Hathcock, Charles D. [Los Alamos National Laboratory

    2012-08-27T23:59:59.000Z

    Los Alamos National Laboratory (LANL) is preparing to implement engineering controls in Sandia Canyon at Technical Area (TA) 72. Los Alamos National Security (LANS) biologists conducted a floodplain determination and this project is located within a 100-year floodplain. The proposed project is to rehabilitate the degraded channel in lower Sandia Canyon where it crosses through the outdoor firing range at TA-72 to limit the loss of sediment and dissipate floodwater leaving LANL property (Figure 1). The proposed construction of these engineered controls is part of the New Mexico Environment Department's (NMED) approved LANL Individual Storm Water Permit. The purpose of this project is to install storm water controls at Sandia Watershed Site Monitoring Area 6 (S-SMA-6). Storm water controls will be designed and installed to meet the requirements of NPDES Permit No. NM0030759, commonly referred to as the LANL Individual Storm Water Permit (IP). The storm water control measures address storm water mitigation for the area within the boundary of Area of Concern (AOC) 72-001. This action meets the requirements of the IP for S-SMA-6 for storm water controls by a combination of: preventing exposure of upstream storm water and storm water generated within the channel to the AOC and totally retaining storm water falling outside the channel but within the AOC.

  13. Environmental Audit of the Grand Junction Projects Office

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    The Grand Junction Projects Office (GJPO) is located in Mesa County, Colorado, immediately south and west of the Grand Junction city limits. The US Atomic Energy Commission (AEC) established the Colorado Raw Materials Office at the present-day Grand Junction Projects Office in 1947, to aid in the development of a viable domestic uranium industry. Activities at the site included sampling uranium concentrate; pilot-plant milling research, including testing and processing of uranium ores; and operation of a uranium mill pilot plant from 1954 to 1958. The last shipment of uranium concentrate was sent from GJPO in January, 1975. Since that time the site has been utilized to support various DOE programs, such as the former National Uranium Resource Evaluation (NURE) Program, the Uranium Mill Tailings Remedial Action Project (UMTRAP), the Surplus Facilities Management Program (SFMP), and the Technical Measurements Center (TMC). All known contamination at GJPO is believed to be the result of the past uranium milling, analyses, and storage activities. Hazards associated with the wastes impounded at GJPO include surface and ground-water contamination and potential radon and gamma-radiation exposure. This report documents the results of the Baseline Environmental Audit conducted at Grand Junction Projects Office (GJPO) located in Grand Junction, Colorado. The Grand Junction Baseline Environmental Audit was conducted from May 28 to June 12, 1991, by the Office of Environmental Audit (EH-24). This Audit evaluated environmental programs and activities at GJPO, as well as GJPO activities at the State-Owned Temporary Repository. 4 figs., 12 tabs.

  14. Financial analysis of experimental releases conducted at Glen Canyon Dam during water years 2006 through 2010.

    SciTech Connect (OSTI)

    Poch, L. A.; Veselka, T. D.; Palmer, C. S.; Loftin, S.; Osiek, B. (Decision and Information Sciences); (Western Area Power Administration, Colorado River Storage Project Management Center)

    2011-08-22T23:59:59.000Z

    Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. A report released in January 2011 examined the financial implications of the experimental flows that were conducted at the GCD from 1997 to 2005. This report continues the analysis and examines the financial implications of the experimental flows conducted at the GCD from 2006 to 2010. An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes both that operations comply with the ROD operating criteria and the experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP powerplant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases in some water years resulted in financial benefits to Western while others resulted in financial costs. During the study period, the total financial costs of all experimental releases were more than $4.8 million.

  15. Financial analysis of experimental releases conducted at Glen Canyon Dam during water years 1997 through 2005.

    SciTech Connect (OSTI)

    Veselka, T. D.; Poch, L. A.; Palmer, C. S.; Loftin, S.; Osiek, B.; Decision and Information Sciences; Western Area Power Administration

    2010-04-21T23:59:59.000Z

    Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. This paper examines the financial implications of the experimental flows that were conducted at the GCD from 1997 to 2005. An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes operations comply with the ROD operating criteria and experimental releases that actually took place during the study period, and (2) a ''without experiments'' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP power plant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases in some water years resulted in financial benefits to Western while others resulted in financial costs. During the study period, the total financial costs of all experimental releases were $11.9 million.

  16. City of Grand Marais, Minnesota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity ofCity ofCityCity ofGrandCity of Grand

  17. Autonomy for Aurora's Mars Missions Mark Woods,

    E-Print Network [OSTI]

    Fisher, Michael

    Autonomy for Aurora's Mars Missions Mark Woods, SciSys Ltd., Clothier Road, Bristol, UK BS4 5SS Email: mark.woods@scisys.co.uk Tel: +44 117 9717251 ESA's Aurora programme incorporates a strategy for European involvement in future robotic and human exploration of our Solar System. The Aurora roadmap calls

  18. Draft Strategic Laboratory Missions Plan. Volume II

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This volume described in detail the Department`s research and technology development activities and their funding at the Department`s laboratories. It includes 166 Mission Activity Profiles, organized by major mission area, with each representing a discrete budget function called a Budget and Reporting (B & R) Code. The activities profiled here encompass the total research and technology development funding of the laboratories from the Department. Each profile includes a description of the activity and shows how the funding for that activity is distributed among the DOE laboratories as well as universities and industry. The profiles also indicate the principal laboratories for each activity, as well as which other laboratories are involved. The information in this volume is at the core of the Strategic Laboratory Mission Plan. It enables a reader to follow funds from the Department`s appropriation to a specific activity description and to specific R & D performing institutions. This information will enable the Department, along with the Laboratory Operations Board and Congress, to review the distribution of R & D performers chosen to execute the Department`s missions.

  19. Solar composition from the Genesis Discovery Mission

    E-Print Network [OSTI]

    Solar composition from the Genesis Discovery Mission D. S. Burnett1 and Genesis Science Team2: the isoto- pic compositions of O, N, and noble gases differ in the Sun from other inner solar system objects in the noble gas data from solar wind implanted in lunar soils. (ii) The most advanced analytical instruments

  20. Energy Research Made Easy Our Mission

    E-Print Network [OSTI]

    Collins, Gary S.

    Energy Research Made Easy Our Mission To advance environmental and economic well-being by providing unmatched energy services, products, education and information based on world-class research. Overview Our staff of approximately 100 people (energy engineers, energy specialists, technical experts, soft- ware

  1. THE MISSION OF THE ITALIAN ACADEMY

    E-Print Network [OSTI]

    Qian, Ning

    THE MISSION OF THE ITALIAN ACADEMY Founded in 1991 on the basis of an agreement between Columbia University and the Republic of Italy, the Academy sponsors advanced research in all areas relating to Italian academic, cultural and scientific exchange at the highest level. ABOUT THE ACADEMY At the core

  2. SWOT Satellite Mission: Combined State Parameter Estimation

    E-Print Network [OSTI]

    Washington at Seattle, University of

    -parameter estimation problem Data assimilation experiments ­ Water depth ­ Discharge ­ Channel width ­ Roughness coefficient #12;3 Need for a surface water mission Importance to hydrology ­ gauge measurements insufficient hydraulics Amazon Siberia Ohio #12;4 Global gauge measurements #12;5 SWOT Technology These surface water

  3. EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of updating the vegetation management and right-of-way maintenance program for Western’s Glen Canyon to Pinnacle Peak 345-kV transmission lines, which cross the Coconino National Forest, Coconino County, Arizona.

  4. Upper Plio-Pleistocene salt tectonics and seismic stratigraphy on the lower continental slope, Mississippi Canyon OCS Area, Gulf of Mexico

    E-Print Network [OSTI]

    Liu, Jia-Yuh

    1993-01-01T23:59:59.000Z

    of sequence E, which represents the late Wisconsinan glacial. Salt generally occurs as tongues or sheets, and forms continuous masses in the basinward part of the canyon at water depths of about 1300 m (4300 ft). Areas without salt are near the "spur...

  5. Citrus Variety Trends in the Lower Rio Grande Valley.

    E-Print Network [OSTI]

    Alderman, D. C. (DeForest Charles)

    1951-01-01T23:59:59.000Z

    Citrus Variety Trends in the Lower Rio Grande Valley CONTENTS ......................................................................................................... Digest ...... 3... thousands of citrus trees and the growers were faced with a tremendous replanting program, which, in turn, had focused interest on varieties. Fruit production figures, yields per acre, and monetary returns per acre for five varieties of grapefruit...

  6. Data Mining: Data Analysis on a Grand Scale? Padhraic Smyth

    E-Print Network [OSTI]

    Smyth, Padhraic

    Data Mining: Data Analysis on a Grand Scale? Padhraic Smyth Information and Computer Science for Statistical Methods in Medical Research, September 2000 1 #12;Abstract Modern data mininghas evolvedlargelyas aresult ofe orts bycomputer scientists to address the needs of data owners" in extracting useful

  7. A Grand Challenge for Computing Research: a mathematical assistant

    E-Print Network [OSTI]

    Walsh, Toby

    A Grand Challenge for Computing Research: a mathematical assistant Toby Walsh 1 Cork Constraint Computation Centre, University College Cork, Ireland. tw@4c.ucc.ie The mathematical assistant Scientists to make excellent mathematical assistants. Indeed, in specialized domains, computers already are useful

  8. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS 

    E-Print Network [OSTI]

    Hernandez, Manuel

    2011-05-06T23:59:59.000Z

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called ?colonias...

  9. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS 

    E-Print Network [OSTI]

    Garcia, Bianca 1989-

    2011-05-06T23:59:59.000Z

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called colonias...

  10. EMPLOYMENT SUMMARY FOR 2011 GRADUATES Grand Forks, ND 58202

    E-Print Network [OSTI]

    Delene, David J.

    EMPLOYMENT SUMMARY FOR 2011 GRADUATES Grand Forks, ND 58202 Website : www.law.und.edu Phone : 701 Date Deferred 0 Total graduates 81 Unemployed - Not Seeking 0 Employment Status Unknown 2 Unemployed - Seeking 9 Employed - Undeterminable * 0 0 0 0 0 Employed - Bar Passage Required 40 0 1 0 41 Pursuing

  11. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS

    E-Print Network [OSTI]

    Hernandez, Manuel

    2011-05-06T23:59:59.000Z

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called ?colonias...

  12. WATER COMMODIFICATION IN THE LOWER RIO GRANDE VALLEY, TEXAS

    E-Print Network [OSTI]

    Garcia, Bianca 1989-

    2011-05-06T23:59:59.000Z

    The lower Rio Grande Valley of Texas is one of the poorest regions with the largest population lacking suitable water supply in the entire United States. The region is characterized by low-income, rural and peri-urban communities called colonias...

  13. Workshop and conference on Grand Challenges applications and software technology

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    On May 4--7, 1993, nine federal agencies sponsored a four-day meeting on Grand Challenge applications and software technology. The objective was to bring High-Performance Computing and Communications (HPCC) Grand Challenge applications research groups supported under the federal HPCC program together with HPCC software technologists to: discuss multidisciplinary computational science research issues and approaches, identify major technology challenges facing users and providers, and refine software technology requirements for Grand Challenge applications research. The first day and a half focused on applications. Presentations were given by speakers from universities, national laboratories, and government agencies actively involved in Grand Challenge research. Five areas of research were covered: environmental and earth sciences; computational physics; computational biology, chemistry, and materials sciences; computational fluid and plasma dynamics; and applications of artificial intelligence. The next day and a half was spent in working groups in which the applications researchers were joined by software technologists. Nine breakout sessions took place: I/0, Data, and File Systems; Parallel Programming Paradigms; Performance Characterization and Evaluation of Massively Parallel Processing Applications; Program Development Tools; Building Multidisciplinary Applications; Algorithm and Libraries I; Algorithms and Libraries II; Graphics and Visualization; and National HPCC Infrastructure.

  14. The Stephen and Nancy GrandThe Stephen and Nancy GrandThe Stephen and Nancy GrandThe Stephen and Nancy Grand Water ResearchWater ResearchWater ResearchWater Research

    E-Print Network [OSTI]

    Climate Change with Focus over the Mediterranean 9:55-10:20 Jan W. Hopmans, University of California: Global Climate Change, Environmental Risks and Water Scarcity #12;2 Monday, March 2Monday, March 2Monday, Director of the Stephen and Nancy Grand Water Research Institute, Technion Session 1 Global Climate Change

  15. Rio Grande Wild Turkey in Texas: Biology and Management

    E-Print Network [OSTI]

    Cathey, James; Melton, Kyle; Dreibelbis, Justin; Cavney, Bob; Locke, Shawn; DeMaso, Stephen; Schwertner, T. Wayne; Collier, Bret

    2007-09-11T23:59:59.000Z

    for the economy of Texas each year and money spent in the counties to which hunters travel is important to many townships (Fig. 14). Habitat Requirements Food It is not surprising to find that the diets of Rio Grande wild turkeys are broad, given...

  16. MISSION AND NEED FOR A FUSION NUCLEAR SCIENCE FACILITY

    E-Print Network [OSTI]

    MISSION AND NEED FOR A FUSION NUCLEAR SCIENCE FACILITY Mission Gerald Navratil Need Mohamed Abdou (Deputy Chair, Oak Ridge National Laboratory) Ron Stambaugh (Deputy Chair, General Atomics) Mohamed Abdou

  17. Sandia National Laboratories: Defense Mission (S&T)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tagged with: BATLab * batteries * Batteries & Energy Storage * Batteries and Energy Storage * Battery Abuse Testing Laboratory * Defense Mission * Department of Defense *...

  18. Nota Bene ~ News ~ Centenary of the Day Missions Library

    E-Print Network [OSTI]

    in practica l skills. Day envisioned a Library of Foreign Missions con- taining six types of materialNota Bene ~ News ~ Centenary of the Day Missions Library In the spring of 1891, Professor George Edward Day proposed to the "Friends of Christian Missions" the establishment of a new library at Yale

  19. Underground Infrastructure Impacts Due to a Surface Burst Nuclear Device in an Urban Canyon Environment

    SciTech Connect (OSTI)

    Bos, Randall J. [Los Alamos National Laboratory; Dey, Thomas N. [Los Alamos National Laboratory; Runnels, Scott R. [Los Alamos National Laboratory

    2012-07-03T23:59:59.000Z

    Investigation of the effects of a nuclear device exploded in a urban environment such as the Chicago studied for this particular report have shown the importance on the effects from the urban canyons so typical of today's urban environment as compared to nuclear test event effects observed at the Nevada Test Site (NTS) and the Pacific Testing Area on which many of the typical legacy empirical codes are based on. This report first looks at the some of the data from nuclear testing that can give an indication of the damage levels that might be experienced due to a nuclear event. While it is well known that a above ground blast, even a ground burst, very poorly transmits energy into the ground ( < 1%) and the experimental results discussed here are for fully coupled detonations, these results do indicate a useful measure of the damage that might be expected. The second part of the report looks at effects of layering of different materials that typically would make up the near ground below surface environment that a shock would propagate through. As these simulations support and is widely known in the community, the effects of different material compositions in these layers modify the shock behavior and especially modify the energy dispersal and coupling into the basement structures. The third part of the report looks at the modification of the underground shock effects from a surface burst 1 KT device due to the presence of basements under the Chicago buildings. Without direct knowledge of the basement structure, a simulated footprint of a uniform 20m depth was assumed underneath each of the NGI defined buildings in the above ground environment. In the above ground case, the underground basement structures channel the energy along the line of site streets keeping the shock levels from falling off as rapidly as has been observed in unobstructed detonations. These simulations indicate a falloff of factors of 2 per scaled length as compared to 10 for the unobstructed case. Again, as in the above ground case, the basements create significant shielding causing the shock profile to become more square and reducing the potential for damage diagonal to the line of sight streets. The results for a 1KT device is that the heavily damaged zone (complete destruction) will extend out to 50m from the detonation ({approx}100m for 10KT). The heavily to moderately damaged zone will extend out to 100m ({approx}200m for 10KT). Since the destruction will depend on geometric angle from the detonation and also the variability of response for various critical infrastructure, for planning purposes the area out to 100m from the detonation should be assumed to be non-operational. Specifically for subway tunnels, while not operational, they could be human passable for human egress in the moderately damaged area. The results of the simulations presented in this report indicate only the general underground infrastructure impact. Simulations done with the actual basement geometry would be an important improvement. Equally as important or even more so, knowing the actual underground material configurations and material composition would be critical information to refine the calculations. Coupling of the shock data into structural codes would help inform the emergency planning and first response communities on the impact to underground structures and the state of buildings after the detonation.

  20. A small RTG for future planetary missions

    SciTech Connect (OSTI)

    Cockfield, R.D.; Kull, R.A. [Lockheed Martin Missiles Space P.O. Box 8555 Philadelphia, Pennsylvania19101 (United States)

    1997-01-01T23:59:59.000Z

    A design study was conducted to characterize conceptual designs for a small Radioisotope Thermoelectric Generator (RTG), one that might be suitable for future planetary missions. Conceptual design configurations were derived from the General Purpose Heat Source{emdash}RTG (GPHS-RTG), with the design goal of providing 70 watts of electrical power at the end of a ten year mission life. Design improvements for mass minimization were evaluated, considering also the technical risk of the corresponding engineering development required. It was concluded that an RTG mass of 18 kg could be achieved with moderate risk. Further studies are recommended to define in detail the testing and other development activities that would be required to bring the conceptual design for such an RTG to reality. {copyright} {ital 1997 American Institute of Physics.}

  1. Charging Up For Formula Sun Grand Prix By Jonathan Nutzmann, Project Manager

    E-Print Network [OSTI]

    Janssen, Michel

    Charging Up For Formula Sun Grand Prix By Jonathan Nutzmann, Project Manager The team is currently busy with training for our next race, Formula Sun Grand Prix, which is com- ing up May 2nd-7th

  2. Efficient Irrigation for Water conservation in the Rio Grande Basin: 2010-2011 Progress and Accomplishments 

    E-Print Network [OSTI]

    Kalisek, D.; Harris, B.L.; Runyan, C.; DeMouche, L.

    2011-06-21T23:59:59.000Z

    Since 2001, the Efficient Irrigation for Water Conservation in the Rio Grande Basin Federal Initiative— known as the Rio Grande Basin Initiative (RGBI)—has saved more than 5 million acre-feet of water. Researchers, Extension specialists, and county...

  3. Solar Community Comes Out in Full Force for SunShot Grand Challenge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit Solar Community Comes Out in Full Force for SunShot Grand Challenge Summit May 22, 2014 - 9:58am Addthis...

  4. UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE UNIVERSIT DU SUD TOULON / VAR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE UNIVERSITÉ DU SUD ­ TOULON / VAR PROGRAMA DE PÓS Federal do Rio Grande do Norte em Co-tutela com o Institut Materiaux Microelectronique et Nanosciences de

  5. Estimating commuter rail demand to Kendall Square along the Grand Junction Corridor

    E-Print Network [OSTI]

    Bockelie, Adam

    2012-01-01T23:59:59.000Z

    Since acquiring the Grand Junction Railroad in June 2010 from CSX, the Massachusetts Bay Transit Authority (MBTA) has explored the possibility of using the line for commuter rail service. In addition the Grand Junction ...

  6. An applied paleoecology case study: Bahia Grande, Texas prior to construction of the Brownsville Ship Channel 

    E-Print Network [OSTI]

    Lichlyter, Stephen Alvah

    2006-08-16T23:59:59.000Z

    Bahia Grande is a large lagoon located within Laguna Atascosa National Wildlife Refuge in Cameron County, Texas. When the Brownsville Ship Channel was built along the southern end of the lagoon in 1936, Bahia Grande was ...

  7. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2005-09-30T23:59:59.000Z

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

  8. RTGs Options for Pluto Fast Flyby Mission

    SciTech Connect (OSTI)

    Schock, Alfred

    1993-10-01T23:59:59.000Z

    A small spacecraft design for the Pluto Fast Flyby (PFF) Mission is under study by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration (NASA), for a possible launch as early as 1998. JPL's 1992 baseline design calls for a power source able to furnish an energy output of 3963 kWh and a power output of 69 watts(e) at the end of the 9.2-year mission. Satisfying those demands is made difficult because NASA management has set a goal of reducing the spacecraft mass from a baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for the power source. To support the ongoing NASA/JPL studies, the Department of Energy's Office of Special Applications (DOE/OSA) commissioned Fairchild Space to prepare and analyze conceptual designs of radioisotope power systems for the PFF mission. Thus far, a total of eight options employing essentially the same radioisotope heat source modules were designed and subjected to thermal, electrical, structural, and mass analyses by Fairchild. Five of these - employing thermoelectric converters - are described in the present paper, and three - employing free-piston Stirling converters - are described in the companion paper presented next. The system masses of the thermoelectric options ranged from 19.3 kg to 10.2 kg. In general, the options requiring least development are the heaviest, and the lighter options require more development with greater programmatic risk. There are four duplicate copies

  9. Microsats for On-Orbit Support Missions

    SciTech Connect (OSTI)

    Ledebuhr, A G

    2001-03-15T23:59:59.000Z

    I appreciate the opportunity to address this conference and describe some of our work and plans for future space missions and capabilities. My presentation will consist of a short overview of our program, some potential missions and enabling technologies, as well as, a description of some of our test vehicles and ongoing docking experiments. The Micro-Satellite Technology Program at Lawrence Livermore National Laboratory is developing technologies for a new generation of a very highly capable autonomous microsats. A microsat is defined here as a vehicle that's less than 100 kilograms in mass. We're looking at a number of different microsat design configurations, between 0.5 to 1 meter in length and less than 40 kg in mass. You'll see several ground-test vehicles that we have been building that are modeled after potential future on-orbit systems. In order to have very aggressive missions, these microsats will require new integrated proximity operation sensors, advanced propulsion, avionics and guidance systems. Then to make this dream a reality a new approach to high fidelity ''hardware-in-the-loop'' ground testing, will be discussed that allows repeated tests with the same vehicle multiple times. This will enable you to ''get it right'' before going into space. I'll also show some examples of our preliminary docking work completed as of today.

  10. DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS WITH TANK 40 AND H CANYON NEPTUNIUM

    SciTech Connect (OSTI)

    Pareizs, J; Bradley Pickenheim, B; Cj Bannochie, C; Michael Stone, M

    2009-04-28T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) is currently processing Sludge Batch 5 (SB5) from Tank 40. SB5 contains the contents of Tank 51 from November 2008, qualified by the Savannah River National Laboratory (SRNL) and the heel in Tank 40 remaining from Sludge Batch 4. Current Liquid Waste Operations (LWO) plans are to (1) decant supernatant from Tank 40 to remove excess liquid caused by a leaking slurry pump and (2) receive a Np stream from H Canyon It should be noted that the Np stream contains significant nitrate requiring addition of nitrite to Tank 40 to maintain a high nitrite to nitrate ratio for corrosion control. SRNL has been requested to qualify the proposed changes; determine the impact on DWPF processability in terms of hydrogen generation, rheology, etc.; evaluate antifoam addition strategy; and evaluate mercury stripping. Therefore, SRNL received a 3 L sample of Tank 40 following the transfer of Tank 51 to Tank 40 (Tank Farm Sample HTF-40-08-157 to be used in testing and to perform the required Waste Acceptance Product Specifications radionuclide analyses). Based on Tank Farm projections, SRNL decanted a portion* of the sample, added sodium nitrite, and added a Np solution from H Canyon representative of the Np to be dispositioned to Tank 40 (neutralized to 0.6 M excess hydroxide). The resulting material was used in a DWPF Chemical Process Cell (CPC) demonstration -- a Sludge Receipt and Adjustment Tank (SRAT) cycle and a Slurry Mix Evaporator (SME) cycle. Preliminary data from the demonstration has been reported previously. This report includes discussion of these results and additional results, including comparisons to Tank Farm projections and the SB5 demonstration.

  11. Grand Traverse Band Renewable Energy Feasibility Study in Wind, Biomass and Solar

    SciTech Connect (OSTI)

    Suzanne McSawby, Project Director

    2008-12-31T23:59:59.000Z

    Renewable Energy Feasibility Study for wind, biomass, solar on the Grand Traverse Band tribal lands from 2005 - 2008

  12. City of Grand Rapids Building Solar Roof Demonstration

    SciTech Connect (OSTI)

    DeClercq, Mark; Martinez, Imelda

    2012-08-31T23:59:59.000Z

    Grand Rapids, Michigan is striving to reduce it environmental footprint. The municipal government organization has established environmental sustainability policies with the goal of securing 100% of its energy from renewable sources by 2020. This report describes the process by which the City of Grand Rapids evaluated, selected and installed solar panels on the Water/Environmental Services Building. The solar panels are the first to be placed on a municipal building. Its new power monitoring system provides output data to assess energy efficiency and utilization. It is expected to generate enough clean solar energy to power 25 percent of the building. The benefit to the public includes the economic savings from reduced operational costs for the building; an improved environmentally sustainable area in which to live and work; and increased knowledge about the use of solar energy. It will serve as a model for future energy saving applications.

  13. The Origin of Families and $SO(18)$ Grand Unification

    E-Print Network [OSTI]

    BenTov, Yoni

    2015-01-01T23:59:59.000Z

    We exploit a recent advance in the study of topological superconductors to propose a solution to the nagging family puzzle of particle physics in the context of SO(18) (or more correctly, Spin(18)) grand unification. We argue that Yukawa couplings of intermediate strength may allow the mirror matter and extra families to decouple at arbitrarily high energies. As was clear from the existing literature, we have to go beyond the Higgs mechanism in order to solve the family puzzle. A pattern of symmetry breaking which results in the SU(5) grand unified theory with horizontal or family symmetry USp(4) = Spin(5) (or more loosely, SO(5)) leaves exactly three light families of matter and seems particularly appealing. We comment briefly on an alternative scheme involving discrete non-abelian family symmetries. In a few lengthy appendices we review some of the pertinent condensed matter theory.

  14. Citrus Varieties for the Lower Rio Grande Valley.

    E-Print Network [OSTI]

    Wood, J. F. (John Fielding); Friend, W. H. (William Heartsill)

    1941-01-01T23:59:59.000Z

    Lf BRARY, /A & NI COLLEGE, b TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR, College Station, Texas CITRUS VARIETIES FOR THE LOWER RIO GRANDE VALLEY Mr. H. FRIEND AND J. F. WOOD Division of Horticulture LIBRARY \\gxict... perishable nature of this type of fruit. Limes and lemons may be grown by persons who are financially able to equip their orchards with heaters. There are many types of citrus fruits that may be grown as ornamentals or for special purposes, but none...

  15. A Saturn Ring Observer Mission Using Multi-Mission Radioisotope Power Systems

    SciTech Connect (OSTI)

    Abelson, Robert D.; Spilker, Thomas R.; Shirley, James H. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 301-445W, Pasadena, CA 91109-8099 (United States)

    2006-01-20T23:59:59.000Z

    Saturn remains one of the most fascinating planets within the solar system. To better understand the complex ring structure of this planet, a conceptual Saturn Ring Observer (SRO) mission is presented that would spend one year in close proximity to Saturn's A and B rings, and perform detailed observations and measurements of the ring particles and electric and magnetic fields. The primary objective of the mission would be to understand ring dynamics, including the microphysics of individual particles and small scale (meters to a few kilometers) phenomena such as particle agglomeration behavior. This would be accomplished by multispectral imaging of the rings at multiple key locations within the A and B rings, and by ring-particle imaging at an unprecedented resolution of 0.5 cm/pixel. The SRO spacecraft would use a Venus-Earth-Earth-Jupiter Gravity Assist (VEEJGA) and be aerocaptured into Saturn orbit using an advanced aeroshell design to minimize propellant mass. Once in orbit, the SRO would stand off from the ring plane 1 to 1.4 km using chemical thrusters to provide short propulsive maneuvers four times per revolution, effectively causing the SRO vehicle to 'hop' above the ring plane. The conceptual SRO spacecraft would be enabled by the use of a new generation of multi-mission Radioisotope Power Systems (RPSs) currently being developed by NASA and DOE. These RPSs include the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Stirling Radioisotope Generator (SRG). The RPSs would generate all necessary electrical power ({>=}330 We at beginning of life) during the 10-year cruise and 1-year science mission ({approx}11 years total). The RPS heat would be used to maintain the vehicle's operating and survival temperatures, minimizing the need for electrical heaters. Such a mission could potentially launch in the 2015-2020 timeframe, with operations at Saturn commencing in approximately 2030.

  16. United States Department of Energy, Grand Junction Office

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The Grand Junction Office (GJO), US Department of Energy (DOE), develops and administers programs for evaluating domestic uranium resources and the production capability of industry; for developing resource planning information for DOE; and for advancing geologic and geophysical exploration concepts and techniques. In addition, GJO administers the leasing of mineral lands under DOE control, and carries out activities relating to the environmental aspects of uranium mining and milling, including remedial programs. The Office is staffed by administrative and technical program-management personnel. Bendix Field Engineering Corporation (Bendix) is the DOE operating contractor at the Grand Junction, Colorado, Government-owned/contractor-operated (GOCO) facility. The technical staffs of both GJO and Bendix are primarily geoscience-oriented. Specifically during 1980, uranium resource assessment on 135 National Topographic Map Series (NTMS) quadrangles was completed, along with other specific studies, to yield October 1980 national resource estimates. In addition, updated uranium supply analysis and production capability projections were completed. Another key aspect of this successful program was the development of improved geophysical and geochemical equipment and techniques in support of uranium resource assessment. Much of the hardware and know-how developed was turned over to the public and to the uranium industry at large for application to uranium exploration and the assessment of uranium company resources. The Grand Junction Office also participated actively during 1980 in international cooperative research on uranium exploration techniques and on the geology of uranium deposits.

  17. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    E-Print Network [OSTI]

    McIntosh, Scott W

    2015-01-01T23:59:59.000Z

    The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a "grand minimum"? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their p...

  18. Natural regeneration in two central Idaho grand fir habitat types. Forest Service research paper

    SciTech Connect (OSTI)

    Geier-Hayes, K.

    1994-03-01T23:59:59.000Z

    Natural regeneration of five conifer species was surveyed in two central Idaho grand fir habitat types. The habitat types range from warm, dry (grand fir/white spirea) to mesic (Grand fir/Mountain Maple). Four harvest-regeneration methods and four site preparation techniques were sampled. Recommendations for obtaining natural regeneration vary primarily by habitat type. Conifer seedlings in the warm, dry grand fir white spirea habitat type require site protection for establishment. In the mesic grand fir/mountain maple habitat type, tall shrub potential can reduce the opportunity to establish early seral conifer species.

  19. The Planck Surveyor mission: astrophysical prospects

    E-Print Network [OSTI]

    G. De Zotti; L. Toffolatti; F. Argüeso; R. D. Davies; P. Mazzotta; R. B. Partridge; G. F. Smoot; N. Vittorio

    1999-03-27T23:59:59.000Z

    Although the Planck Surveyor mission is optimized to map the cosmic microwave background anisotropies, it will also provide extremely valuable information on astrophysical phenomena. We review our present understanding of Galactic and extragalactic foregrounds relevant to the mission and discuss on one side, Planck's impact on the study of their properties and, on the other side, to what extent foreground contamination may affect Planck's ability to accurately determine cosmological parameters. Planck's multifrequency surveys will be unique in their coverage of large areas of the sky (actually, of the full sky); this will extend by two or more orders of magnitude the flux density interval over which mm/sub-mm counts of extragalactic sources can be determined by instruments already available (like SCUBA) or planned for the next decade (like the LSA-MMA or the space mission FIRST), which go much deeper but over very limited areas. Planck will thus provide essential complementary information on the epoch-dependent luminosity functions. Bright radio sources will be studied over a poorly explored frequency range where spectral signatures, essential to understand the physical processes that are going on, show up. The Sunyaev-Zeldovich effect, with its extremely rich information content, will be observed in the direction of a large number of rich clusters of Galaxies. Thanks again to its all sky coverage, Planck will provide unique information on the structure and on the emission properties of the interstellar medium in the Galaxy. At the same time, the foregrounds are unlikely to substantially limit Planck's ability to measure the cosmological signals. Even measurements of polarization of the primordial Cosmic Microwave background fluctuations appear to be feasible.

  20. EnviroMission Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolisEnviroMission Ltd Jump to: navigation, search

  1. Mission, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|MililaniMindanaoMinuanoIV JumpMotors JumpMission,

  2. Mission and Goals | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLE OF CONTENTSTogether withEnergyDepartment ofMission

  3. Mars mission laser tool heads to JPL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'llMappingMariaHereldMars mission laser tool

  4. Environmental assessment of facility operations at the U.S. Department of Energy Grand Junction Projects Office, Grand Junction, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared a sitewide environmental assessment (EA) of the proposed action to continue and expand present-day activities on the DOE Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Because DOE-GJPO regularly proposes and conducts many different on-site activities, DOE decided to evaluate these activities in one sitewide EA rather than in multiple, activity-specific documents. On the basis of the information and analyses presented in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined by the National Environmental Policy Act (NEPA) of 1969. Therefore, preparation of an environmental impact statement is not required for facility operations, and DOE is issuing this Finding of No Significant Impact (FONSI).

  5. Identification of Mission Sensitivities with Mission Modeling from the One System Organization at Hanford - 13292

    SciTech Connect (OSTI)

    Belsher, Jeremy D.; Pierson, Kayla L. [Washington River Protection Solutions, LLC, Richland, WA 99352 (United States)] [Washington River Protection Solutions, LLC, Richland, WA 99352 (United States); Gimpel, Rod F. [One System - Waste Treatment Project, Richland, WA 99352 (United States)] [One System - Waste Treatment Project, Richland, WA 99352 (United States)

    2013-07-01T23:59:59.000Z

    The Hanford site in southeast Washington contains approximately 207 million liters of radioactive and hazardous waste stored in 177 underground tanks. The U.S. Department of Energy's Office of River Protection is currently managing the Hanford waste treatment mission, which includes the storage, retrieval, treatment and disposal of the tank waste. Two recent studies, employing the modeling tools managed by the One System organization, have highlighted waste cleanup mission sensitivities. The Hanford Tank Waste Operations Simulator Sensitivity Study evaluated the impact that varying 21 different parameters had on the Hanford Tank Waste Operations Simulator model. It concluded that inaccuracies in the predicted phase partitioning of a few key components can result in significant changes in the waste treatment duration and in the amount of immobilized high-level waste that is produced. In addition, reducing the efficiency with which tank waste is retrieved and staged can increase mission duration. The 2012 WTP Tank Utilization Assessment concluded that flowsheet models need to include the latest low-activity waste glass algorithms or the waste treatment mission duration and the amount of low activity waste that is produced could be significantly underestimated. (authors)

  6. Interplanetary missions with the GDM propulsion system

    SciTech Connect (OSTI)

    Kammash, T.; Emrich, W. Jr. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Marshall Space Flight Center, Huntsville, Alabama 35812 (United States)

    1998-01-15T23:59:59.000Z

    The Gasdynamic Mirror (GDM) fusion propulsion system utilizes a magnetic mirror machine in which a hot dense plasma is confined long enough to produce fusion energy while allowing a fraction of its charged particle population to escape from one end to generate thrust. The particles escaping through the opposite end have their energy converted to electric power which can be used to sustain the system in a steady state operation. With the aid of a power flow diagram the minimum demands on energy production can be established and the propulsive capability of the system can be determined by solving an appropriate set of governing equations. We apply these results to several missions within the solar system and compute the trip time by invoking a continuous burn, acceleration/deceleration type of trajectory with constant thrust and specific impulse. Ignoring gravitational effects of the planets or the sun, and neglecting the change in the Earth's position during the flight we compute the round trip time for missions from Earth to Mars, Jupiter, and Pluto using linear distances and certain payload fractions. We find that a round trip to Mars with the GDM rocket takes about 170 days while those to Jupiter and Pluto take 494 and 1566 days respectively.

  7. A simulation pipeline for the Planck mission

    E-Print Network [OSTI]

    Martin Reinecke; Klaus Dolag; Reinhard Hell; Matthias Bartelmann; Torsten Ensslin

    2005-08-24T23:59:59.000Z

    We describe an assembly of numerical tools to model the output data of the Planck satellite. These start with the generation of a CMB sky in a chosen cosmology, add in various foreground sources, convolve the sky signal with arbitrary, even non-symmetric and polarised beam patterns, derive the time ordered data streams measured by the detectors depending on the chosen satellite-scanning strategy, and include noise signals for the individual detectors and electronic systems. The simulation products are needed to develop, verify, optimise, and characterise the accuracy and performance of all data processing and scientific analysis steps of the Planck mission, including data handling, data integrity checking, calibration, map making, physical component separation, and power spectrum estimation. In addition, the simulations allow detailed studies of the impact of many stochastic and systematic effects on the scientific results. The efficient implementation of the simulation allows the build-up of extended statistics of signal variances and co-variances. Although being developed specifically for the Planck mission, it is expected that the employed framework as well as most of the simulation tools will be of use for other experiments and CMB-related science in general.

  8. INCREASING OIL RECOVERY THROUGH ADVANCED REPROCESSING OF 3D SEISMIC, GRANT CANYON AND BACON FLAT FIELDS, NYE COUNTY, NEVADA

    SciTech Connect (OSTI)

    Eric H. Johnson; Don E. French

    2001-06-01T23:59:59.000Z

    Makoil, Inc., of Orange, California, with the support of the U.S. Department of Energy has reprocessed and reinterpreted the 3D seismic survey of the Grant Canyon area, Railroad Valley, Nye County, Nevada. The project was supported by Dept. of Energy Grant DE-FG26-00BC15257. The Grant Canyon survey covers an area of 11 square miles, and includes Grant Canyon and Bacon Flat oil fields. These fields have produced over 20 million barrels of oil since 1981, from debris slides of Devonian rocks that are beneath 3,500 to 5,000 ft of Tertiary syntectonic deposits that fill the basin of Railroad Valley. High-angle and low-angle normal faults complicate the trap geometry of the fields, and there is great variability in the acoustic characteristics of the overlying valley fill. These factors combine to create an area that is challenging to interpret from seismic reflection data. A 3D seismic survey acquired in 1992-93 by the operator of the fields has been used to identify development and wildcat locations with mixed success. Makoil believed that improved techniques of processing seismic data and additional well control could enhance the interpretation enough to improve the chances of success in the survey area. The project involved the acquisition of hardware and software for survey interpretation, survey reprocessing, and reinterpretation of the survey. SeisX, published by Paradigm Geophysical Ltd., was chosen as the interpretation software, and it was installed on a Dell Precision 610 computer work station with the Windows NT operating system. The hardware and software were selected based on cost, possible addition of compatible modeling software in the future, and the experience of consulting geophysicists in the Billings area. Installation of the software and integration of the hardware into the local office network was difficult at times but was accomplished with some technical support from Paradigm and Hewlett Packard, manufacturer of some of the network equipment. A number of improvements in the processing of the survey were made compared to the original work. Pre-stack migration was employed, and some errors in muting in the original processing were found and corrected. In addition, improvements in computer hardware allowed interactive monitoring of the processing steps, so that parameters could be adjusted before completion of each step. The reprocessed survey was then loaded into SeisX, v. 3.5, for interpretation work. Interpretation was done on 2, 21-inch monitors connected to the work station. SeisX was prone to crashing, but little work was lost because of this. The program was developed for use under the Unix operating system, and some aspects of the design of the user interface betray that heritage. For example, printing is a 2-stage operation that involves creation of a graphic file using SeisX and printing the file with printer utility software. Because of problems inherent in using graphics files with different software, a significant amount of trial and error is introduced in getting printed output. Most of the interpretation work was done using vertical profiles. The interpretation tools used with time slices are limited and hard to use, but a number to tools and techniques are available to use with vertical profiles. Although this project encountered a number of delays and difficulties, some unavoidable and some self-inflicted, the result is an improved 3D survey and greater confidence in the interpretation. The experiences described in this report will be useful to those that are embarking on a 3D seismic interpretation project.

  9. Grand Challenges for Biological and Environmental Research: A Long-Term Vision

    SciTech Connect (OSTI)

    Arkin, A.; Baliga, N.; Braam, J.; Church, G.; Collins, J; Cottingham, R.; Ecker, J.; Gerstein, M.; Gilna, P.; Greenberg, J.; Handelsman, J.; Hubbard, S.; Joachimiak, A.; Liao, J.; Looger, L.; Meyerowitz, E.; Mjolness, E.; Petsko, G.; Sayler, G.; Simpson, M.; Stacey, G.; Sussman, M.; Tiedje, J.; Bader, D.; Cessi, P.; Collins, W.; Denning, S.; Dickinson, R.; Easterling, D.; Edmonds, J.; Feddema, J.; Field, C.; Fridlind, A.; Fung, I.; Held, I.; Jackson, R.; Janetos, A.; Large, W.; Leinen, M.; Leung, R.; Long, S.; Mace, G.; Masiello, C.; Meehl, G.; Ort, D.; Otto-Bliesner, B.; Penner, J.; Prather, M.; Randall, D.; Rasch, P.; Schneider, E.; Shugart, H.; Thornton, P.; Washington, W.; Wildung, R.; Wiscombe, W.; Zak, D.; Zhang, M.; Bielicki, J.; Buford, M.; Cleland, E.; Dale, V.; Duke, C.; Ehleringer, J.; Hecht, A.; Kammen, D.; Marland, G.; Pataki, D.; Riley, M. Robertson, P.; Hubbard, S.

    2010-12-01T23:59:59.000Z

    The interactions and feedbacks among plants, animals, microbes, humans, and the environment ultimately form the world in which we live. This world is now facing challenges from a growing and increasingly affluent human population whose numbers and lifestyles are driving ever greater energy demand and impacting climate. These and other contributing factors will make energy and climate sustainability extremely difficult to achieve over the 20-year time horizon that is the focus of this report. Despite these severe challenges, there is optimism that deeper understanding of our environment will enable us to mitigate detrimental effects, while also harnessing biological and climate systems to ensure a sustainable energy future. This effort is advanced by scientific inquiries in the fields of atmospheric chemistry and physics, biology, ecology, and subsurface science - all made possible by computing. The Office of Biological and Environmental Research (BER) within the Department of Energy's (DOE) Office of Science has a long history of bringing together researchers from different disciplines to address critical national needs in determining the biological and environmental impacts of energy production and use, characterizing the interplay of climate and energy, and collaborating with other agencies and DOE programs to improve the world's most powerful climate models. BER science focuses on three distinct areas: (1) What are the roles of Earth system components (atmosphere, land, oceans, sea ice, and the biosphere) in determining climate? (2) How is the information stored in a genome translated into microbial, plant, and ecosystem processes that influence biofuel production, climate feedbacks, and the natural cycling of carbon? (3) What are the biological, geochemical, and physical forces that govern the behavior of Earth's subsurface environment? Ultimately, the goal of BER science is to support experimentation and modeling that can reliably predict the outcomes and behaviors of complex biological and environmental systems, leading to robust solutions for DOE missions and strategic goals. In March 2010, the Biological and Environmental Research Advisory Committee held the Grand Challenges for Biological and Environmental Research: A Long-Term Vision workshop to identify scientific opportunities and grand challenges for BER science in the coming decades and to develop an overall strategy for drafting a long-term vision for BER. Key workshop goals included: (1) Identifying the greatest scientific challenges in biology, climate, and the environment that DOE will face over a 20-year time horizon. (2) Describing how BER should be positioned to address those challenges. (3) Determining the new and innovative tools needed to advance BER science. (4) Suggesting how the workforce of the future should be trained in integrative system science. This report lays out grand research challenges for BER - in biological systems, climate, energy sustainability, computing, and education and workforce training - that can put society on a path to achieve the scientific evidence and predictive understanding needed to inform decision making and planning to address future energy needs, climate change, water availability, and land use.

  10. MISSION INTGRE -CERTIFICATION Pulpe & Papier Plus inc. (PPP)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MISSION INT�GR�E - CERTIFICATION Pulpe & Papier Plus inc. (PPP) Papier proposé par : Richard WILSON, Strasbourg : France (2009)" #12;Pulpe & Papier Plus inc.(PPP) 1. Introduction à la mission intégrée de certification PPP 1.1 Mise en contexte Cette mission intégrée de certification découle de la volonté des membres

  11. "The Voyager Mission to the Outer Planets and Interstellar Space...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 17, 2012, 4:15pm Colloquia MBG Auditorium "The Voyager Mission to the Outer Planets and Interstellar Space", Dr. Alan C. Cummings, California Institute of Technology...

  12. Site Transition Process upon Completion of the Cleanup Mission...

    Office of Environmental Management (EM)

    218: Develop a Fact Sheet on Site Transition at On-going Mission Sites Site Transition Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy...

  13. Rover Technology Development and Mission Infusion Beyond MER

    E-Print Network [OSTI]

    Volpe, Richard

    1 Rover Technology Development and Mission Infusion Beyond MER Richard Volpe Jet Propulsion ROVER TECHNOLOGY USAGE ......3 4. ROVER TECHNOLOGY INFUSION............3 5. MTP ROVER TECHNOLOGY

  14. The JGI Mission and Programs (2009 JGI User Meeting)

    ScienceCinema (OSTI)

    Bristow, Jim

    2011-04-25T23:59:59.000Z

    Deputy Director of Programs Jim Bristow spoke about the DOE JGI's mission and programs at the 4th Annual User Meeting on March 25, 2009

  15. A mission concept for near term Lunar exploration

    SciTech Connect (OSTI)

    Purvis, J.W.

    1993-02-01T23:59:59.000Z

    A robotic precursor mission to the Lunar surface is proposed. The objective of the mission is to place six to ten 15kg micro-rovers on the planet to investigate equipment left behind during the Apollo missions and to perform other science and exploration duties. The micro-rovers are teleoperated from Earth. An equipment on the rovers is existing technology from NASA, DOE, SDIO, DoD, and industry. The mission is designed to involve several NASA centers, the National Laboratories, multiple universities and the private sector. A major long-term goal which is addressed is the educational outreach aspect of space exploration.

  16. Mission | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625DataNeutrinoMissionMission Mission The|Mission

  17. Grande Ronde Endemic Spring Chinook Project - ODFW, 2008 Annual Report.

    SciTech Connect (OSTI)

    Patterson, Scott

    2009-04-10T23:59:59.000Z

    Core activities of the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCSP) are funded through the authority of the Lower Snake River Fish and Wildlife Compensation Plan (LSRCP). The LSRCP program was approved by the Water Resources Development Act of 1976, PL 94-587, Section 102, 94th Congress substantially in accordance with the Special Report, LSRCP, June 1975 on file with the Chief of Engineers. The LSRCP was prepared and submitted in compliance with the Fish and Wildlife Coordination Act of 1958, PL 85-624, 85th Congress, August 12, 1958 to mitigate for the losses of fish and wildlife caused by the construction of dams on lower Snake River. The GRESCSP is an artificial propagation program that was initiated by Bonneville Power Administrations Fish and Wildlife program in the mid 1990's. The intent of this program was to change the mitigation aspect of the LSRCP program (harvest mitigation) to an integrated supplementation program; inasmuch as, hatchery produced fish could be experimentally used as a recovery tool and fish surplus to mitigation would be available for in-place and in-kind harvest. Fish production is still authorized by the LSRCP with the original mitigation return goal of 5,860 adult spring Chinook to the project area. The GRESCSP was developed with two primary components: (1) conventional broodstock (projects 199800702; 199800703; 199800704) and (2) captive brood (projects 199801001; 199801006). The GRESCSP relies on cooperative M&E efforts from the LSRCP including setting aside the Wenaha and Minam tributaries as natural production reserves components used for reference streams. The GRESCSP, coordinated with federal and tribal partners, identifies production levels for both propagation components and weir management strategies for each of the three supplemented tributary areas within the Grande Ronde Sub-basin. The three supplemented areas are Catherine Creek, Lostine River, and upper Grande Ronde River. Lookingglass Creek, an extirpated area, will be stocked (smolts and adults) with Catherine Creek origin salmon to initiate natural production in unseeded habitat, and to initiate future harvest opportunities. The current production levels have been incorporated into the U.S. v. Oregon Interim Management Agreement. The purpose of this contract is to integrate Bonneville Power Administration (BPA) efforts with the Lower Snake River Compensation Plan (LSRCP) program utilizing Lookingglass Hatchery as the primary rearing facility. BPA constructed an adult holding and spawning structure on the hatchery grounds; however, maintenance of this infrastructure was discontinued due to funding limitation and transferred to the LSRCP program in 2007. These integrated efforts focus on holding and spawning adults, rearing juveniles, fish health, and monitoring natural production (Redd counts) for Catherine Creek, Lostine River, and Upper Grande Ronde stocks.

  18. 6-arm blue grand design of NGC 309

    E-Print Network [OSTI]

    Chernin, A D

    2015-01-01T23:59:59.000Z

    The geometry and physics of the spiral structure of the giant Hubble type Sc galaxy NGC 309 is studied. A schematic of two patterns with three arms in each is suggested for the blue spiral. The red and blue patterns form together a grand design with two-fold symmetry. A possible gas-dynamics explanation of the phenomenon is suggested which shows how the two-arm red spiral may induce the formation of the six-arm coherent blue spiral. Key words: galaxies: individual (NGC 309) -- galaxies: spiral

  19. Methods toward improving 'Grande Rio 66' pepper seed germination

    E-Print Network [OSTI]

    Rogers, Barbara Anna

    1980-01-01T23:59:59.000Z

    . Table 8 Cumulative daily germination percentage of 'Grande Rio 66' seeds after aerating in distilled water for 12, 24, 36, and 48 hours at a temperature of 27+2oC, dried for 24 hours and compared with dry seed placed in petri dishes at the same time... pumps through a series of tubing and rubber corks. After treatment, the seeds were removed from the tubes and dried for 24 hours at a temperature of approximately 38oC. Seeds were then placed in 100 x 15 mm sterilized, d1sposable, plast1c Petri dishes...

  20. Gravitational Collapse and Radiation of Grand Unified Theory

    E-Print Network [OSTI]

    Yi-Fang Chang

    2007-10-02T23:59:59.000Z

    The infinite gravitational collapse of any supermassive stars should pass through an energy scale of the grand unified theory (GUT). After nucleon-decays, the supermassive star will convert nearly all its mass into energy, and produce the radiation of GUT. It may probably explain some ultrahigh energy puzzles in astrophysics, for example, quasars and gamma-ray bursts (GRB), etc. This is similar with a process of the Big Bang Universe with a time-reversal evolution in much smaller space scale and mass scale. In this process the star seems be a true white hole.

  1. Sugarcane Trials in the Lower Rio Grande Valley of Texas.

    E-Print Network [OSTI]

    Cowley, W. R.; Smith, B. A.

    1969-01-01T23:59:59.000Z

    for Sugarcane Planting, Hills Farm Near Harlingen, Texas", Gulf Coast Magazine, Octo- ber 1908. 7. Anon. "Big Sugar Mills on Rio Grande ----", San Antonio Express, October 10, 1910. 8. Anon. Official Methods of Analysis of the Association of Ojficial.... 21. Hebcrt, L. P. "Culture of Sugarcane for Sugar Pmdw tion in Louisiana", Agriculture Hant1l)ook No. 262, Ap cultural Research Service, USDA, June 19Gf. I: 22. Hebert, L. Y. "The 1968 Sugarcane Variety Cearu L Florida", USDA CR-80-68, Nov. 1968...

  2. EV Everywhre Grand Challenge - Battery Status and Cost Reduction Prospects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune- BatteryVehicles | EV Everywhere Grand

  3. Grand Challenges | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged In You mustGlossaryGrand

  4. Casa Grande, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreenCarrizoCarteretGrande, Arizona: Energy

  5. EV Everywhere Grand Challenge Kick-Off | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11 ENVIROISSUES ESF|Off EV Everywhere Grand

  6. Sandia Energy - Upper Rio Grande Simulation Model (URGSiM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety Home StationaryUpper Rio Grande

  7. Agropecuaria e Industrial Serra Grande | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWindcapital GmbH JumpAgroergSerra Grande Jump to:

  8. SunShot Grand Challenge Summit | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - January 16, 2015 Summary of DecisionsSun RisesSunShotSunShot Grand

  9. SunShot Grand Challenge Summit | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy8 Career Day RecapGrand

  10. City of Grand Haven, Michigan (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity ofCity ofCityCity ofGrand Haven,

  11. City of Grand Island, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity ofCity ofCityCity ofGrand Haven,City

  12. City of Grand Junction, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity ofCity ofCityCity ofGrand

  13. Grand Forks County, North Dakota: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas:GrahamBlanc,Grand Electric

  14. Grand Forks, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas:GrahamBlanc,Grand ElectricForks,

  15. Grand Haven, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas:GrahamBlanc,Grand

  16. Grand Island, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas:GrahamBlanc,GrandIsland, New York:

  17. Grand Isle County, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas:GrahamBlanc,GrandIsland, New

  18. Grand Junction, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas:GrahamBlanc,GrandIsland,

  19. Grand Ledge, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas:GrahamBlanc,GrandIsland,Ledge,

  20. Grand Valley Rrl Pwr Line, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County,Texas: Energy ResourcesGrand Valley Rrl

  1. Grand View Estates, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County,Texas: Energy ResourcesGrand Valley

  2. Grand Challenges | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L80's » George Vendryes,Grand

  3. Arroyo Grande, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansas County,Minnesota: EnergyArranjoArroyo Grande,

  4. Grand Challenges of Characterization & Modeling of Cellulose Nanomaterials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal TechnologiesGeothermalGo forDepartment ofGrand Challenges

  5. Grand Challenges: Request for Information on the Subsurface | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal TechnologiesGeothermalGo forDepartment ofGrand

  6. Grand Junction, Colorado, Processing Site and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 s %Grand

  7. Rio Grande, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze -Richton Park,RidgeviewRifton,County,Grande, New

  8. Grand Rapids Public Util Comm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <GlacialGolden SpreadGomtiofGraham CountyGranGrand

  9. LLNL/LANS mission committee meeting

    SciTech Connect (OSTI)

    Burns, Michael J [Los Alamos National Laboratory

    2010-12-06T23:59:59.000Z

    Recent events continue to show the national security imperative of the global security mission: (1) Fighting Proliferation - (a) At Yongbyon, 'a modern, industrial-scale U-enrichment facility w/2000 centrifuges' seen Nov. 2010, (b) In Iran, fueling began at Bushehr while P5+1/lran talks delayed to Dec. 2010; (2) Continuing need to support the warfighter and IC - (a) tensions on the Korean peninsula, (b) primitative IEDs a challenge in Afghanistan, (c) cyber command, (d)another Georgian smuggling event; and (3) Countering terrorisms on US soil - (a) toner cartridge bomb, (b) times square bomb, (c) christmas tree bomb. Joint Technical Operations Team (JTOT) and Accident Response Group (ARG) elements deployed to two East Coast locations in November to work a multi-weapon scenario. LANL provided 70% of on-duty field and reconstitution teams for both Marble Challenge 11-01 and JD 11-01. There were a total of 14 deployments in FY10.

  10. Radionuclide and heavy metal concentrations in soil, vegetation, and fish collected around and within Tsicoma Lake in Santa Clara Canyon

    SciTech Connect (OSTI)

    Fresquez, P.R.; Armstrong, D.R.; Naranjo, L. Jr.

    1996-03-01T23:59:59.000Z

    Radionuclide ({sup 3}H, {sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu, total U) and heavy metal (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se, Tl) contents were determined in soil, vegetation (overstory and understory), and fish (rainbow trout) collected around and within Tsicoma Lake in Santa Clara Canyon in 1995. All heavy metal and most radionuclide contents around or within the lake, except for U in soil, vegetation, and fish, were within or just above upper limit background. Detectable levels (where the analytical result was greater than two times counting uncertainty) of U in soils, vegetation, and fish were found in slightly higher concentrations than in background samples. Overall, however, maximum total committed effective dose equivalent (CEDE)(95% confidence level)--based on consumption of 46 lb of fish--from Tsicoma Lake (0.066 mrem/y) was within the maximum total CEDE from the ingestion of fish from the Mescalero National Fish Hatchery (background)(0.113 mrem/y).

  11. Floodplain Assessment for the Proposed Outdoor Fire Range Upgrades at TA-72 in Lower Sandia Canyon, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Hathcock, Charles D. [Los Alamos National Laboratory

    2012-08-27T23:59:59.000Z

    Los Alamos National Laboratory (LANL) is preparing to implement actions in Sandia Canyon at Technical Area (TA) 72. Los Alamos National Security (LANS) biologists conducted a floodplain determination and this project is partially located within a 100-year floodplain. The proposed project is to upgrade the existing outdoor shooting range facilities at TA-72. These upgrades will result in increased safety and efficiencies in the training for Protective Force personnel. In order to remain current on training requirements, the firing ranges at TA-72 will be upgraded which will result in increased safety and efficiencies in the training for Protective Force personnel (Figure 1). These upgrades will allow for an increase in class size and more people to be qualified at the ranges. Some of these upgrades will be built within the 100-year floodplain. The upgrades include: concrete pads for turning target systems and shooting positions, new lighting to illuminate the firing range for night fire, a new speaker system for range operations, canopies at two locations, an impact berm at the far end of the 300-yard mark, and a block wall for road protection.

  12. Biologic surveys for the Sandia National Laboratories, Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Sullivan, R.M. [4115 Allen Dr., Kingsville, TX (United States); Knight, P.J. [Marron and Associates, Inc., Corrales, NM (United States)

    1994-05-25T23:59:59.000Z

    This report provides results of a comprehensive biologic survey performed in Coyote Canyon Test Complex (CCTC), Sandia National Laboratories (SNL), Bernalillo County, New Mexico, which was conducted during the spring and summer of 1992 and 1993. CCTC is sited on land owned by the Department of Energy (DOE) and Kirtland Air Force Base and managed by SNL. The survey covered 3,760 acres of land, most of which is rarely disturbed by CCTC operations. Absence of grazing by livestock and possibly native ungulates, and relative to the general condition of private range lands throughout New Mexico, and relative to other grazing lands in central New Mexico. Widely dispersed, low intensity use by SNL as well as prohibition of grazing has probably contributed to abundance of special status species such as grama grass cactus within the CCTC area. This report evaluates threatened and endangered species found in the area, as well as comprehensive assessment of biologic habitats. Included are analyses of potential impacts and mitigative measures designed to reduce or eliminate potential impacts. Included is a summary of CCTC program and testing activities.

  13. Geomorphology of plutonium in the Northern Rio Grande

    SciTech Connect (OSTI)

    Graf, W.L. [Arizona Univ., Tempe, AZ (United States). Dept., of Geography

    1993-03-01T23:59:59.000Z

    Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

  14. Grand Unification as a Bridge Between String Theory and Phenomenology

    SciTech Connect (OSTI)

    Pati, Jogesh C.

    2006-06-09T23:59:59.000Z

    In the first part of the talk, I explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity--be it string/M theory or a reincarnation--this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2){sub L} x SU(2){sub R} x SU(4){sup c} or SO(10) symmetry in 4D in explaining (1) observed neutrino oscillations, (2) baryogenesis via leptogenesis, and (3) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.

  15. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Mission

    E-Print Network [OSTI]

    California at Berkeley, University of

    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Mission R. P. fla B. Dennis, G mission is to investigate the physics of particle acceleration and energy release in solar flares, through-ray/gamma-ray spectroscopy 1. INTRODUCTION The primary scientific objective of the Reuven Ramaty High Energy Solar

  16. Concurrent Engineering for Mission Design in Different Cultures

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Concurrent Engineering for Mission Design in Different Cultures by Akira Ogawa M.S., Mechanical;3 Concurrent Engineering for Mission Design in Different Cultures by Akira Ogawa Submitted to the System Design. As the information technology revolution occurred in 1990's, Integrated Concurrent Engineering (ICE) was invented

  17. MASTER OF SCIENCE IN COMPUTER SCIENCE Mission Statement

    E-Print Network [OSTI]

    O'Laughlin, Jay

    MASTER OF SCIENCE IN COMPUTER SCIENCE Mission Statement The mission of the Department of Computer Learning Outcomes The Computer Science Department offers a Master of Science program in Computer Science with two specializations: Computer Science (CS) and Software Engineering (SE). Upon successful completion

  18. Mission Interdisciplinarit APPEL A PROJETS FUKUSHIMA -UN AN APRES

    E-Print Network [OSTI]

    van Tiggelen, Bart

    MI Mission Interdisciplinarité APPEL A PROJETS FUKUSHIMA - UN AN APRES Défi NEEDS, Action Nucléaire catastrophe de Fukushima en mars 2011, et par ses conséquences sur les populations environnantes. Un an après Fukushima, la Mission Interdisciplinarité souhaite soutenir des projets au sein des unités de recherche les

  19. Implementation of a Manned Vehicle -UAV Mission , T. Schouwenaars

    E-Print Network [OSTI]

    How, Jonathan P.

    vehicles do not exhibit the level of performance and flexibility needed to complete an entire mission autonomously. More specifically, unexpected changes in the environment may require changes to its mission of Technology, Cambridge, MA 02139 jhow@mit.edu Associate Technical Fellow, Boeing Phantom Works, The Boeing

  20. INSIDE Waitt Advanced Biophotonics Center Grand Opening One on One with...Thomas Albright REMEMBERINGWylie

    E-Print Network [OSTI]

    Bellugi, Ursula

    INSIDE » Waitt Advanced Biophotonics Center Grand Opening » One on One with...Thomas Albright Discovery of plant proteins may boost agricultural yields and biofuel production 20 Complex wiring

  1. International Agriculture Fellowship: A Gates Foundation Grand Challenges Exploration in Endophytic Biological Control

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    International Agriculture Fellowship: A Gates Foundation Grand Challenges Exploration in Endophytic Challenges Explorations Grant (see program overview) to develop crop seeds with endophytic fungal

  2. EIS-0344: Grand Coulee-Bell 500 kV Transmission Line

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed action for the construction and operation of the proposed Grand Coulee-Bell 500-kV Transmission Line Project.

  3. La Jolla Canyon and Scripps Canyon Bibliography

    E-Print Network [OSTI]

    Brueggeman, Peter

    2009-01-01T23:59:59.000Z

    use in oceanography and ocean engineering. R. A. Geyer.seas. Volume 9B: Ocean engineering science,. B. Le Mehauteturbidity flows." Ocean Engineering 13(5): 435-447. A class

  4. La Jolla Canyon and Scripps Canyon Bibliography

    E-Print Network [OSTI]

    Brueggeman, Peter

    2009-01-01T23:59:59.000Z

    20%. Mining systems analyzed were clamshell dredging, bucketladder dredging andhydraulic suction dredging. Shepard, Francis P. (1979).

  5. La Jolla Canyon and Scripps Canyon Bibliography

    E-Print Network [OSTI]

    Brueggeman, Peter

    2009-01-01T23:59:59.000Z

    and O. H. e. J. and Pilkey. Tulsa, Oklahoma: 85-94. Shepard,a Symposium. P. D. Trask. Tulsa, Oklahoma: AmericanCalifornia." AAPG Repr Ser (Tulsa) 26: 370-400. Anon (

  6. La Jolla Canyon and Scripps Canyon Bibliography

    E-Print Network [OSTI]

    Brueggeman, Peter

    2009-01-01T23:59:59.000Z

    sea fan, California." Journal Sed. Petrology 39(2): 601-606.Journal of Sedimentary Petrology 38(4): Buffington, E. C.slope." Journal of Sedimentary Petrology 41(1): 307-309. The

  7. La Jolla Canyon and Scripps Canyon Bibliography

    E-Print Network [OSTI]

    Brueggeman, Peter

    2009-01-01T23:59:59.000Z

    of five turbidity currents." Sedimentology 37(1): 1-5. Ancoastal geomorphology, and in sedimentology which he alwaysfilm. Developments in Sedimentology. 6th International

  8. Mission to Mars (2002) In 2020, the first manned mission to the planet Mars is launched. The Mars I spacecraft is

    E-Print Network [OSTI]

    Schenato, Luca

    Commander Woody Blake (Tim Robbins), Co- Commander Jim McConnell (Gary Sinise), and mission specialists

  9. Pattern of neutrino mixing in grand unified theories

    SciTech Connect (OSTI)

    Milton, K.; Tanaka, K.

    1981-01-01T23:59:59.000Z

    It was found previously in SO(10) grand unified theories that if the neutrinos have a Dirac mass and a right-handed Majorana mass (approx. 10/sup 15/GeV) but no left-handed Majorana mass, there is small ..nu../sub e/ mixing but ..nu../sub ..mu../ - ..nu../sub tau/ mixing can be substantial. This problem is reexamined on the basis of a formalism that assumes that the up, down, lepton, and neutrino mass matrices arise from a single complex 10 and a single 126 Higgs boson. This formalism determines the Majorana mass matrix in terms of quark mass matrices. Adopting three different sets of quark mass matrices that produce acceptable fermion mass ratios and Cabbibo mixing produces results consistent with the above; however, in the optimum case, ..nu../sub e/ - ..nu../sub ..mu../ mixing can be of the order of the Cabbibo angle.

  10. Reservoir characterization of the Ribeira Grande (Azores) field

    SciTech Connect (OSTI)

    Mete, L. (Aquater, Spa, Italy); Rivera-Rodriguez, J.

    1982-01-01T23:59:59.000Z

    A description is made of the geothermal system located at the Ribeira Grande area in San Miguel Island at Azores. To date, three deep wells have been drilled, two of them are considered to be productive and the other one, although capable of production, has been used as an observation well due to completion problems. One of the wells is presently connected to a 3 MW-portable power plant. A series of tests, including both production and well testing, have been conducted in order to provide a reservoir characterization of the system. Several injection falloff, two rate and multiple rate tests have been carried out, as well as a preliminary interference-type test. A description of results obtained is provided.

  11. Radionuclides and heavy metals in rainbow trout from Tsichomo, Nana Ka, Wen Povi, and Pin De Lakes in Santa Clara Canyon

    SciTech Connect (OSTI)

    Fresquez, P.R.; Armstrong, D.R.; Naranjo, L. Jr.

    1998-04-01T23:59:59.000Z

    Radionuclide ({sup 3}H, {sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu, and total uranium) and heavy metal (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se, and TI) concentrations were determined in rainbow trout collected from Tsichomo, Nana Ka, Wen Povi, and Pin De lakes in Santa Clara Canyon in 1997. Most radionuclide and heavy metal concentrations in fish collected from these four lakes were within or just above upper limit background concentrations (Abiquiu reservoir), and as a group were statistically (p < 0.05) similar in most parameters to background.

  12. J. Field Ornithol. 76(1):1220, 2005 Survival of Rio Grande Wild Turkey chicks

    E-Print Network [OSTI]

    Wallace, Mark C.

    12 J. Field Ornithol. 76(1):12­20, 2005 Survival of Rio Grande Wild Turkey chicks Brian L. Spears,1 determined pre-flight daily survival of Rio Grande Wild Turkey (Meleagris gallopavo intermedia) chicks from, survival, telemetry, turkey Increasing population recruitment through reproductive success is often key

  13. EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing an EIS to evaluate the environmental impacts of interconnecting the proposed Grande Prairie Wind Farm, in Holt County, near O’Neill, Nebraska, to Western’s power transmission system. The project website is http://www.wapa.gov/ugp/Environment/GrandePrairie.htm.

  14. Efficient Irrigation for Water Conservation in the Rio Grande Basin: 2010/2011 Progress and Accomplishments 

    E-Print Network [OSTI]

    Kalisek, D.; Harris, B. L.; Runyan, C.; DeMouche, L.

    2011-01-01T23:59:59.000Z

    Since 2001, the Efficient Irrigation for Water Conservation in the Rio Grande Basin Federal Initiative-known as the Rio Grande Basin Initiative (RGBI)-has saved more than 5 million acre-feet of water. Researchers, Extension specialists, and county...

  15. Institutional Adjustments for Coping with Prolonged and Severe Drought in the Rio Grande Basin

    E-Print Network [OSTI]

    Ward, Frank A.; Young, Robert; Lacewell, Ronald D.; King, J. Philip; Frasier, Marshall; McGuckin, J. Thomas; DuMars, Charles R.; Booker, James; Ellis, John; Srinivasan, Raghavan

    and industrial needs of cities like Albuquerque and El Paso, the Rio Grande represents a significant resource in the arid southwest. In 1938, Congress approved the Rio Grande Compact which divided the annual water flow among the three states of Colorado, New...

  16. Research and management of soil, plant, animal, and human resources in the Middle Rio Grande Basin

    E-Print Network [OSTI]

    Research and management of soil, plant, animal, and human resources in the Middle Rio Grande Basin in 1994 called. "Ecology, diversity, and sustainability of soil, plant, animal, and human resources, Diversity, and Sustainability of Soil, Plant, Animal, and Human resources of the Rio Grande Basin" (Finch

  17. Single-shell tank retrieval program mission analysis report

    SciTech Connect (OSTI)

    Stokes, W.J.

    1998-08-11T23:59:59.000Z

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997).

  18. Goals of the ARISE Space VLBI Mission

    E-Print Network [OSTI]

    James S. Ulvestad

    1999-01-26T23:59:59.000Z

    Supermassive black holes, with masses of 10^6 to more than 10^9 solar masses, are among the most spectacular objects in the Universe, and are laboratories for physics in extreme conditions. The primary goal of ARISE (Advanced Radio Interferometry between Space and Earth) is to use the technique of Space VLBI to increase our understanding of black holes and their environments, by imaging the havoc produced in the near vicinity of the black holes by their enormous gravitational fields. The mission will be based on a 25-meter space-borne radio telescope operating at frequencies between 8 and 86 GHz, roughly equivalent to an orbiting element of the Very Long Baseline Array. In an elliptical orbit with an apogee height of 40,000-100,000 km, ARISE will provide resolution of 15 microarcseconds or better, 5-10 times better than that achievable on the ground. At frequencies of 43 and 86 GHz, the resolution of light weeks to light months in distant quasars will complement the gamma-ray and X-ray observations of high-energy photons, which come from the same regions near the massive black holes. At 22 GHz, ARISE will image the water maser disks in active galaxies more than 15 Mpc from Earth, probing accretion physics and giving accurate measurements of black-hole masses. ARISE also will study gravitational lenses at resolutions of tens of microarcseconds, yielding important information on the dark-matter distribution and on the possible existence of compact objects with masses of 10^3 to 10^6 solar masses.

  19. "Race, Space and Contestation: Gentrification in San Francisco's Latina/o Mission District, 1998-2002

    E-Print Network [OSTI]

    Casique, Francisco Diaz

    2013-01-01T23:59:59.000Z

    Mission Coalition Organization/MCO,” Microfiche drawer 0700-Mission Coalition Organization/MCO,” Microfiche drawer 0700-Coalition Organization (MCO) grew out of a pitched battle

  20. Asset management solutions To support your agency's mission

    E-Print Network [OSTI]

    readiness and accountability, including work management, inventory management, service management, contract and service management functions. Work management Inventory management Procurement management ServiceAsset management solutions To support your agency's mission IBM Maximo® Asset Management

  1. Mission planning and navigation support for lunar and planetary exploration

    E-Print Network [OSTI]

    Essenburg, Joseph R

    2008-01-01T23:59:59.000Z

    When mankind returns to the moon and eventually voyages to Mars, the ability to effectively carry out surface extra-vehicular activities (EVAs) ill be critical to overall mission success. This thesis investigates improving ...

  2. Nuclear Power for Deep-Space Missions | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Power for Deep-Space Missions Mar 06 2015 12:00 PM - 01:00 PM David Dixon, The University of Tennessee, Knoxville UT Science Forum Thompson-Boling Arena Dining room C-D,...

  3. Post World War II missions emerge for Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Post World War II missions emerge for Y-12 During the period immediately after World War II, Y-12 underwent tremendous change. A location built for one purpose alone - that being...

  4. Concurrent engineering for mission design in different cultures

    E-Print Network [OSTI]

    Ogawa, Akira, S.M. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    The satellite is a highly complex system due to the tight physical constraints, high reliability requirements, and the scale of the product. Except for some commercial missions, most of the satellites are designed from ...

  5. Strategic Research to Enable NASA's Exploration Missions Conference

    E-Print Network [OSTI]

    Rathbun, Julie A.

    21076 #12;Strategic Research to Enable NASA's Exploration Missions Conference Abstracts NASA/TM--2004 21076 National Technical Information Service 5285 Port Royal Road Springfield, VA 22100 Trade names

  6. NASA/TP--2003210793 Lunar Surface Reference Missions

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Hanover, MD 21076-1320 #12;July 2003 NASA/TP--2003­210793 Lunar Surface Reference Missions: A Description Hanover, MD 21076-1320 Springfield, VA 22161 301-

  7. Automated Coordinator Synthesis for Mission Control of Autonomous Underwater Vehicles

    E-Print Network [OSTI]

    Kumar, Ratnesh

    Automated Coordinator Synthesis for Mission Control of Autonomous Underwater Vehicles S vehicles. The approach is aided by tools that allow graphical design, iterative redesign, and code autonomous underwater vehicle (AUV) programs to meet evolving requirements and capabilities. The hierarchical

  8. Collecting manuscripts and scrolls in Ethiopia: The missions of

    E-Print Network [OSTI]

    Boyer, Edmond

    Collecting manuscripts and scrolls in Ethiopia: The missions of Johannes Flemming (1905) and Enno structure of the German state, original manuscripts from Ethiopia as well as copies made for orientalists

  9. Midwest Quantitative Biology Conference Mission Point Resort, Mackinac Island, Michigan

    E-Print Network [OSTI]

    Midwest Quantitative Biology Conference Mission Point Resort, Mackinac Island, Michigan September Exchange Method for the Free Energy of Conformational Fluctuations Michigan State University 3:05-3:30 Role

  10. 3 LANSCE: Mission-Critical for National Security

    E-Print Network [OSTI]

    . LANSCE is a mission-critical facility for the National Nuclear Security Administration (NNSA) and the Department of Energy (DOE). In 2011, the NNSA renewed the memorandum of understanding that affirms

  11. Leadership Rice The mission of Leadership RiceistohelpRiceUniversityundergraduates

    E-Print Network [OSTI]

    Richards-Kortum, Rebecca

    189 Leadership Rice The mission of Leadership RiceistohelpRiceUniversityundergraduates fromalldisciplinesbuildtheirleadershipcapacitiestocreateandmanage changeeffectively.LeadershipRiceexploreshowheartandmind,theoryand practice,andideasandactionscometogethertofacilitatechange. Theintroductorycourse,LEAD309Leadership: Theory to Practice (formerly UNIV309),isrequiredtoapplyforparticipationinthe

  12. Application of ion electrospray propulsion to lunar and interplanetary missions

    E-Print Network [OSTI]

    Whitlock, Caleb W. (Caleb Wade)

    2014-01-01T23:59:59.000Z

    High specific impulse electric propulsion systems enable ambitious lunar and interplanetary missions that return a wealth of scientific data. Many of these technologies are difficult to scale down, meaning the spacecraft ...

  13. adaheli solar mission: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to helioseismology. Woch, J; 10.1002asna.200610743 2010-01-01 3 The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Mission Physics Websites Summary: The Reuven...

  14. Microsoft Word - MissionCreek_Kingston_Acquisition_CX_final.doc

    Broader source: Energy.gov (indexed) [DOE]

    purchase of the Mission Creek Property. Fish and Wildlife Project No.: 2002-003-00, Contract BPA-44646 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25...

  15. Tuesday, March 13, 2007 POSTER SESSION I: FUTURE MISSION CONCEPTS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    . Adachi T. Mikula V. Electromagnetic Spacecraft Used for Magnetic Navigation Within Asteroid Belt, Mining Concepts and Asteroid Magnetic Classification [#1093] Application of expandable/collapsible magnetic coil. Benson S. Propulsion Options for Near Earth Object Characterization Missions [#2087] This presentation

  16. Formation flying for a Fresnel lens observatory mission

    E-Print Network [OSTI]

    John Krizmanic; Gerry Skinner; Neil Gehrels

    2006-01-03T23:59:59.000Z

    The employment of a large area Phase Fresnel Lens (PFL) in a gamma-ray telescope offers the potential to image astrophysical phenomena with micro-arcsecond angular resolution. In order to assess the feasibility of this concept, two detailed studies have been conducted of formation flying missions in which a Fresnel lens capable of focussing gamma-rays and the associated detector are carried on two spacecraft separated by up to 10$^6$ km. These studies were performed at the NASA Goddard Space Flight Center Integrated Mission Design Center (IMDC) which developed spacecraft, orbital dynamics, and mission profiles. The results of the studies indicated that the missions are challenging but could be accomplished with technologies available currently or in the near term. The findings of the original studies have been updated taking account of recent advances in ion thruster propulsion technology.

  17. Tuesday, March 24, 2009 SPECIAL SESSION: LUNAR MISSIONS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    . Ustinov E. The Mini-SAR Imaging Radar on the Chandrayaan-1 Mission to the Moon [#1098] The Mini-SAR in flight calibration shows the instrument is performing well. C1XS observed the Moon during an A class

  18. Mission Design for Compressive Sensing with Mobile Robots

    E-Print Network [OSTI]

    Hummel, Robert

    This paper considers mission design strategies for mobile robots whose task is to perform spatial sampling of a static environmental field, in the framework of compressive sensing. According to this theory, we can reconstruct ...

  19. A Tale of 2 Missions (And Hopefully 2 Different Landings)

    SciTech Connect (OSTI)

    Wiens, Roger C. [Los Alamos National Laboratory

    2012-07-19T23:59:59.000Z

    This talk, to be given at the LANL IGPP Annual Review dinner in Santa Fe, NM on July 17, 2012, highlights two important NASA missions LANL played a key role in: The Genesis mission was the first to return to Earth from beyond the Moon, bearing solar particles to help understand the composition of the Sun; and Curiosity, a 1-ton Mars rover launched to the red planet in 2011 with a suite of instruments from LANL called ChemCam.

  20. Summary Findings Fishermen Focus Group Loiza, Puerto Rico Armando Gonzlez-Cabn, USDA Forest Service, Pacific Southwest Research Station, Forest Fire Laboratory, 4955 Canyon Crest Drive,

    E-Print Network [OSTI]

    Summary Findings Fishermen Focus Group ­ Loiza, Puerto Rico Armando González-Cabán, USDA Forest was conducted at the Río Grande de Loiza Fishermen Association in Canovanas, Puerto Rico. The objective

  1. FEASIBILITY STUDY FOR THE DEVELOPMENT OF A TEST BED PROGRAM FOR NOVEL DETECTORS AND DETECTOR MATERIALS AT SRS H-CANYON SEPARATIONS FACILITY

    SciTech Connect (OSTI)

    Sexton, L.; Mendez-Torres, A.; Hanks, D.

    2011-06-07T23:59:59.000Z

    Researchers at the Savannah River National Laboratory (SRNL) have proposed that a test bed for advanced detectors be established at the H-Canyon separations facility located on the DOE Savannah River Site. The purpose of the proposed test bed will be to demonstrate the capabilities of emerging technologies for national and international safeguards applications in an operational environment, and to assess the ability of proven technologies to fill any existing gaps. The need for such a test bed has been expressed in the National Nuclear Security Administration's (NNSA) Next Generation Safeguards Initiative (NGSI) program plan and would serve as a means to facilitate transfer of safeguards technologies from the laboratory to an operational environment. New detectors and detector materials open the possibility of operating in a more efficient and cost effective manner, thereby strengthening national and international safeguards objectives. In particular, such detectors could serve the DOE and IAEA in improving timeliness of detection, minimizing uncertainty and improving confidence in results. SRNL's concept for the H Canyon test bed program would eventually open the facility to other DOE National Laboratories and establish a program for testing national and international safeguards related equipment. The initial phase of the test bed program is to conduct a comprehensive feasibility study to determine the benefits and challenges associated with establishing such a test bed. The feasibility study will address issues related to the planning, execution, and operation of the test bed program. Results from the feasibility study will be summarized and discussed in this paper.

  2. A Preliminary Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S. NationalMammalsSmith JumpCanyon Of

  3. Revised financial analysis of experimental releases conducted at Glen Canyon Dam during water years 1997 through 2005.

    SciTech Connect (OSTI)

    Veselka, T. D.; Poch, L. A.; Palmer, C. S.; Loftin, S.; Osiek, B.; Decision and Information Sciences; Western Area Power Administration, Colorado River Storage Project Management Center

    2011-01-11T23:59:59.000Z

    Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. This paper examines the financial implications of the experimental flows that were conducted at the GCD from 1997 to 2005. An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes operations comply with the ROD operating criteria and experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP power plant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases in some water years resulted in financial benefits to Western whileothers resulted in financial costs. During the study period, the total financial costs of all experimental releases were more than $23 million.

  4. Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

  5. Mission Statement for the Didactic Program in Dietetics The mission of the DPD is to provide program graduates with the skills and

    E-Print Network [OSTI]

    Hemmers, Oliver

    Mission Statement for the Didactic Program in Dietetics The mission of the DPD is to provide a Registered Dietitian is to successfully complete the Didactic Program in Dietetics (DPD). Once the program

  6. Interacting Topological Insulator and Emergent Grand Unified Theory

    E-Print Network [OSTI]

    Yi-Zhuang You; Cenke Xu

    2015-03-23T23:59:59.000Z

    Motivated by the Pati-Salam Grand Unified Theory, we study $(4+1)d$ topological insulators with $SU(4) \\times SU(2)_1 \\times SU(2)_2$ symmetry, whose $(3+1)d$ boundary has 16 flavors of left-chiral fermions, which form representations $(\\mathbf{4}, \\mathbf{2}, \\mathbf{1})$ and $(\\bar{\\mathbf{4}}, \\mathbf{1}, \\mathbf{2})$. The key result we obtain is that, without any interaction, this topological insulator has a $\\mathbb{Z}$ classification, namely any quadratic fermion mass operator at the $(3+1)d $ boundary is prohibited by the symmetries listed above; while under interaction this system becomes trivial, namely its $(3+1)d$ boundary can be gapped out by a properly designed short range interaction without generating nonzero vacuum expectation value of any fermion bilinear mass, or in other words, its $(3+1)d$ boundary can be driven into a "strongly coupled symmetric gapped (SCSG) phase". Based on this observation, we propose that after coupling the system to a dynamical $SU(4) \\times SU(2)_1 \\times SU(2)_2$ lattice gauge field, the Pati-Salam GUT can be fully regularized as the boundary states of a $(4+1)d$ topological insulator with a {\\it thin} fourth spatial dimension, the thin fourth dimension makes the entire system generically a $(3+1)d$ system. The mirror sector on the opposite boundary will {\\it not} interfere with the desired GUT, because the mirror sector is driven to the SCSG phase by a carefully designed interaction and is hence decoupled from the GUT.

  7. High performance computing and communications grand challenges program

    SciTech Connect (OSTI)

    Solomon, J.E.; Barr, A.; Chandy, K.M.; Goddard, W.A., III; Kesselman, C.

    1994-10-01T23:59:59.000Z

    The so-called protein folding problem has numerous aspects, however it is principally concerned with the {ital de novo} prediction of three-dimensional (3D) structure from the protein primary amino acid sequence, and with the kinetics of the protein folding process. Our current project focuses on the 3D structure prediction problem which has proved to be an elusive goal of molecular biology and biochemistry. The number of local energy minima is exponential in the number of amino acids in the protein. All current methods of 3D structure prediction attempt to alleviate this problem by imposing various constraints that effectively limit the volume of conformational space which must be searched. Our Grand Challenge project consists of two elements: (1) a hierarchical methodology for 3D protein structure prediction; and (2) development of a parallel computing environment, the Protein Folding Workbench, for carrying out a variety of protein structure prediction/modeling computations. During the first three years of this project, we are focusing on the use of two proteins selected from the Brookhaven Protein Data Base (PDB) of known structure to provide validation of our prediction algorithms and their software implementation, both serial and parallel. Both proteins, protein L from {ital peptostreptococcus magnus}, and {ital streptococcal} protein G, are known to bind to IgG, and both have an {alpha} {plus} {beta} sandwich conformation. Although both proteins bind to IgG, they do so at different sites on the immunoglobin and it is of considerable biological interest to understand structurally why this is so. 12 refs., 1 fig.

  8. The systemic and ideological sources of grand strategic doctrine : American foreign policy in the twentieth century

    E-Print Network [OSTI]

    Green, Brendan Rittenhouse

    2011-01-01T23:59:59.000Z

    What explains the puzzling variation in America's foreign policy posture? This study proposes and tests a theory of American grand strategy that places an emphasis on two key variables: the ideological content of American ...

  9. A Study of Institutional Factors Affecting Water Resource Development in the Lower Rio Grande Valley, Texas 

    E-Print Network [OSTI]

    Trock, W. L.; Casbeer, T. J.

    1969-01-01T23:59:59.000Z

    Despite numerous studies of and plans for the use of land and water resources of the lower Rio Grande Valley for efficient agricultural production, development has lagged and the production potential has not been realized. ...

  10. Evaluation of Canal Lining Projects in the Lower Rio Grande Valley

    E-Print Network [OSTI]

    Karimov, Askar; Leigh, Eric; Fipps, Guy

    Since 1999, seven (7) irrigation districts in the Lower Rio Grande Valley of Texas have installed six (6) different types of synthetic canal lining materials, totaling approximately 21 miles. In 2005, we began a program to track the long...

  11. Adsorption characteristics of alkanes onto carbon nanotube bundles: Grand Canonical Monte Carlo simulation

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Adsorption characteristics of alkanes onto carbon nanotube bundles: Grand Canonical Monte Carlo alkane adsorption and separation. Rather than remaining isolated however, nanotubes tend to bundle together, and the adsorption properties of such bundles and subsequent potential for practical alkane

  12. Influences of vegetation characteristics and invertebrate abundance of Rio Grande wild turkey populations, Edwards Plateau, Texas

    E-Print Network [OSTI]

    Randel, Charles Jack

    2005-02-17T23:59:59.000Z

    Since 1970, Rio Grande wild turkey (Meleagris gallapavo intermedia) numbers in the southern region of the Edwards Plateau of Texas have been declining. Nest-site characteristics and invertebrate abundance were hypothesized as limiting wild turkey...

  13. Views from the River Front: Rio Grande Decision Makers Rank Water Conservation Strategies 

    E-Print Network [OSTI]

    Silvy, Valeen; Lesikar, Bruce J.

    2005-10-18T23:59:59.000Z

    This publication details the results of a survey of elected city officials and water managers in the Rio Grande River Basin of Texas and New Mexico. The participants ranked water conservation strategies for their communities....

  14. Media Invitation: 2014 SunShot Grand Challenge Summit and Peer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the media are invited to attend the U.S. Department of Energy (DOE) SunShot Initiative's 2014 Grand Challenge Summit and Peer Review in Anaheim, California from May 19-22, 2014....

  15. Self-consistent thermodynamics for the Tsallis statistics in the grand canonical ensemble: Nonrelativistic hadron gas

    E-Print Network [OSTI]

    Parvan, A S

    2015-01-01T23:59:59.000Z

    In the present paper, the Tsallis statistics in the grand canonical ensemble was reconsidered in a general form. The thermodynamic properties of the nonrelativistic ideal gas of hadrons in the grand canonical ensemble was studied numerically and analytically in a finite volume and the thermodynamic limit. It was proved that the Tsallis statistics in the grand canonical ensemble satisfies the requirements of the equilibrium thermodynamics in the thermodynamic limit if the thermodynamic potential is a homogeneous function of the first order with respect to the extensive variables of state of the system and the entropic variable $z=1/(q-1)$ is an extensive variable of state. The equivalence of canonical, microcanonical and grand canonical ensembles for the nonrelativistic ideal gas of hadrons was demonstrated.

  16. Economic Essays on Water Resources Management of the Texas Lower Rio Grande Valley 

    E-Print Network [OSTI]

    Leidner, Andrew

    2012-07-16T23:59:59.000Z

    The study area for this dissertation is the Texas Lower Rio Grande Valley (Valley). The overarching theme is water and includes regional water management, water management institutions, and water supply decision-making as it relates to community...

  17. The SO2 Allowance Trading System: The Ironic History of a Grand Policy Experiment

    E-Print Network [OSTI]

    Schmalensee, Richard

    Two decades have passed Two decades have passed since the Clean Air Act Amendments of 1990 launched a grand experiment in market-based environmental policy: the SO2 cap-and-trade system. That system performed well but ...

  18. Building a Grand Paris: French Neoliberalism and the Politics of Urban Spatial Production

    E-Print Network [OSTI]

    Enright, Theresa Erin

    2012-01-01T23:59:59.000Z

    de la décentralisation. Paris: L’Harmattan, 2009. Williams,Jobert, 21–86. Paris: L’Harmattan, 1994. Jordan, David P.by Bruno Jobert (Paris: L’Harmattan, 1994). Blanc, Le Grand

  19. Changing Military Dynamics in East Asia: Australia’s Evolving Grand Strategy

    E-Print Network [OSTI]

    SHEARER, Andrew

    2012-01-01T23:59:59.000Z

    White, Hugh. 2010. Power Shift: Australia’s Future Betweenand military power closer to Australia, position- ingAs power shifts in the Asia-Pacific, Australia’s grand

  20. Microsoft Word - CX-GrandCoulee-OkanoganWP-AR-Landing_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    REPLY TO ATTN OF: KEPR-Bell-1 SUBJECT: Environmental Cleareance Memorandum Jim Semrau Robert Keudell Road Engineer - TELF-TPP-3 Line Foreman III - TFWK-Grand Coulee Todd Wehner...