Powered by Deep Web Technologies
Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wintertime Boundary Layer Structure in the Grand Canyon  

Science Conference Proceedings (OSTI)

Wintertime temperature profiles in the Grand Canyon exhibit a neutral to isothermal stratification during both daytime and nighttime, with only rare instances of actual temperature inversions. The canyon warms during daytime and cools during ...

C. David Whiteman; Shiyuan Zhong; Xindi Bian

1999-08-01T23:59:59.000Z

2

Wind-Flow Patterns in the Grand Canyon as Revealed by Doppler Lidar  

Science Conference Proceedings (OSTI)

Many interesting flow patterns were found in the Grand Canyon by a scanning Doppler lidar deployed to the south rim during the 1990 Wintertime Visibility Study. Three are analyzed in this study: 1) flow reversal in the canyon, where the flow in ...

Robert M. Banta; Lisa S. Darby; Pirmin Kaufmann; David H. Levinson; Cui-Juan Zhu

1999-08-01T23:59:59.000Z

3

Debris flow deposition and reworking by the Colorado River in Grand Canyon, Arizona  

E-Print Network (OSTI)

Debris flow deposition and reworking by the Colorado River in Grand Canyon, Arizona Brian J Canyon, Arizona, transport coarse-grained sediment onto debris fans adjacent to the Colorado River and Monument Creeks using photogrammetry of aerial photography taken from 1965 to 2000 and supplemented

4

Transport of a Power Plant Tracer Plume over Grand Canyon National Park  

Science Conference Proceedings (OSTI)

Meteorological and air-quality data, as well as surface tracer concentration values, were collected during 1990 to assess the impacts of Navajo Generating Station (NGS) emissions on Grand Canyon National Park (GCNP) air quality. These data have ...

Jun Chen; Robert Bornstein; Charles G. Lindsey

1999-08-01T23:59:59.000Z

5

Aspects of the Load Circulation at the Grand Canyon during the Fall Season  

Science Conference Proceedings (OSTI)

The atmosphere and circulation of air within, above, and around the Grand Canyon of the Colorado River was studied from an instrumented aircraft and from ground-based instruments in September and October 1984. Several patterns were identified. ...

L. P. Stearns

1987-10-01T23:59:59.000Z

6

Meteorological Processes Affecting the Transport of Emissions from the Navajo Generating Station to Grand Canyon National Park  

Science Conference Proceedings (OSTI)

During the 1990 Navajo Generating Station (NGS) Winter Visibility Study, a network of surface and upper-air meteorological measurement systems was operated in and around Grand Canyon National Park to investigate atmospheric processes in complex ...

Charles G. Lindsey; Jun Chen; Timothy S. Dye; L. Willard Richards; Donald L. Blumenthal

1999-08-01T23:59:59.000Z

7

Toward Net Energy Buildings: Design, Construction, and Performance of the Grand Canyon House  

DOE Green Energy (OSTI)

The Grand Canyon house is a joint project of the DOE's National Renewable Energy Laboratory and the U.S. National Park Service and is part of the International Energy Agency Solar Heating and Cooling Programme Task 13 (Advanced Solar Low-Energy Buildings). Energy consumption of the house, designed using a whole-building low-energy approach, was reduced by 75% compared to an equivalent house built in accordance with American Building Officials Model Energy Code and the Home Energy Rating System criteria.

Balcomb, J. D.; Hancock, C. E.; Barker, G.

1999-06-23T23:59:59.000Z

8

Annotated bibliography for the humpback chub (Gila cypha) with emphasis on the Grand Canyon population.  

DOE Green Energy (OSTI)

Glen Canyon Dam is a hydroelectric facility located on the Colorado River in Arizona that is operated by the U.S. Bureau of Reclamation (Reclamation) for multiple purposes including water storage, flood control, power generation, recreation, and enhancement of fish and wildlife. Glen Canyon Dam operations have been managed for the last several years to improve conditions for the humpback chub (Gila cypha) and other ecosystem components. An extensive amount of literature has been produced on the humpback chub. We developed this annotated bibliography to assist managers and researchers in the Grand Canyon as they perform assessments, refine management strategies, and develop new studies to examine the factors affecting humpback chub. The U.S. Geological Survey recently created a multispecies bibliography (including references on the humpback chub) entitled Bibliography of Native Colorado River Big Fishes (available at www.fort.usgs.gov/Products/data/COFishBib). That bibliography, while quite extensive and broader in scope than ours, is not annotated, and, therefore, does not provide any of the information in the original literature. In developing this annotated bibliography, we have attempted to assemble abstracts from relevant published literature. We present here abstracts taken unmodified from individual reports and articles except where noted. The bibliography spans references from 1976 to 2009 and is organized in five broad topical areas, including: (1) biology, (2) ecology, (3) impacts of dam operations, (4) other impacts, and (5) conservation and management, and includes twenty subcategories. Within each subcategory, we present abstracts alphabetically by author and chronologically by year. We present relevant articles not specific to either the humpback chub or Glen Canyon Dam, but cited in other included reports, under the Supporting Articles subcategory. We provide all citations in alphabetical order in Section 7.

Goulet, C. T.; LaGory, K. E.; Environmental Science Division

2009-10-05T23:59:59.000Z

9

Grande Ronde Model Watershed Project; Dark Canyon Riparian Exclosure, Completion Report 2002.  

DOE Green Energy (OSTI)

The Baker Field Office, Vale District Bureau of Land Management (BLM) submitted a project proposal for funding in 2002 through the Grande Ronde Model Watershed Program (GRMWP). The project consisted of constructing two riparian exclosures to prevent livestock grazing in the riparian areas of Dark Canyon and Meadow Creek. The BLM completed the NEPA documentation and supplied the fencing materials. Funding from BPA through the GRMWP was used to complete the construction of the two exclosures. This project was completed in the fall of 2002. The project area is located in Union County, Oregon on BLM managed land adjacent to Dark Canyon and Meadow Creek, T. 3. S., R. 35 E., Section 24 and 25. Section 24 is along Dark Canyon Creek and section 25 is along Meadow Creek. Approximately 0.4 miles of stream would be protected from grazing with the construction of the two exclosures. A two person crew was hired to construct a four-strand barbed wire fence. The fence enclosed the riparian area on both sides of each creek so that no grazing would occur within the riparian area on BLM managed land. Total fence length is approximately 1.25 miles. Materials consisted of metal fence posts, barbed wire, rockjacks, fence stays, and 2 x 4's. The fence was constructed in the fall of 2002. The riparian area is effectively excluded from livestock grazing at this time. The construction of the exclosures should enhance riparian vegetation, increase bank stability, and improve riparian and in-stream habitat by exclusion of livestock in the riparian areas. Monitoring will ensure that the exclosures continues to be effective. Annual monitoring will include photo-points and compliance checks during the grazing season by BLM personnel. The BLM will submit a monitoring report, which includes the results of the annual monitoring, to the GRMWP in years 2005 and 2007. The exclosures do cross the creeks so maintenance may be needed on occasion, especially after high flow events in the creeks. Material such as logs which are mobilized during high stream flows may damage the exclosures requiring maintenance to keep cattle from grazing in the riparian areas. The BLM spent approximately $4,000 on fencing materials and $1,375 on NEPA compliance. In addition, the estimated cost of the monitoring over five years is expected to be approximately $1,600. The $5,050 that the BLM received from the BPA for the project was used to hire two temporary employees to construct the exclosures.

Kuck, Todd

2003-03-01T23:59:59.000Z

10

Structural fabric of the Palisades Monocline: a study of positive inversion, Grand Canyon, Arizona  

E-Print Network (OSTI)

A field study of positive inversion is conducted to describe associated structural fabrics and to infer kinematic development of the Palisades Monocline, Grand Canyon, Arizona. These features are then compared to sand, clay and solid rock models of positive inversion to test model results and improve understanding of inversion processes. The N40W 90 oriented Palisades fault underlying the monocline has experienced northeast-southwest Precambrian extension and subsequent northeastsouthwest Laramide contraction. The magnitude of inversion is estimated to be 25% based on vertical offset across the fault, although this does not account for flexure or horizontal shortening. The preferred N50W 90 joint and vein orientation and N50W 68 NE and SW conjugate normal faults are consistent with the Palisades fault and northeastsouthwest extension. The N45E 90 joint orientation and approximately N40W 28 NE and SW conjugate thrust faults are consistent with northeast-southwest contraction. The deformation is characterized by three domains across the fault zone: 1) the hanging wall, 2) the footwall, and 3) an interior, fault-bounded zone between the hanging wall and footwall. Extensional features are preserved and dominate the hanging wall, contractional features define footwall deformation, and the interior, fault-bounded zone is marked by the co-existence of extensional and contractional features. Extension caused a master normal fault and hanging wall roll-over with distributed joints, veinsand normal faults. During inversion, contraction induced reverse reactivation of existing hanging wall faults, footwall folding and footwall thrust-faulting. Precambrian normal slip along the master normal fault and subsequent Laramide reverse slip along the new footwall bounding fault created an uplifted domain of relatively oldest strata between the hanging wall and footwall. Physical models of co-axial inversion suggest consistent development of the three domains of deformation described at the Palisades fault, however the models often require magnitudes of inversion greater than 50%. Although vertical block motion during horizontal compression is not predicted directly by the Mohr-Coulomb criterion, physical models and analytical solutions (incorporating Mohr- Coulomb criterion) suggest maximum stress trajectories and near vertical failure above high angle basement faults that compare favorably with the Palisades fault zone.

Orofino, James Cory

2006-05-01T23:59:59.000Z

11

Mission  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission Mission Mission LANL's mission is to develop and apply science and technology to ensure the safety, security, and effectiveness of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. April 12, 2012 Radio telescope, Los Alamos National Laboratory New Mexico sunset behind an 82-foot-diameter radio telescope at Los Alamos National Laboratory (Technical Area 33) - one of 10 in the Very Long Baseline Array spanning 5,351 miles. Contact Operator Los Alamos National Laboratory (505) 667-5061 Our mission: to provide early identification, creative maturation, and timely delivery of scientifically robust solutions to the most urgent and technically challenging security issues facing the nation. LANL Mission

12

Mission  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission Mission /about/_assets/images/icon-70th.jpg Mission LANL's mission is to develop and apply science and technology to ensure the safety, security, and effectiveness of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Nuclear Deterrence» Global Security» Mission» Energy Security» Vision & Values» Goals» Cibola satellite Scientist, Daniel Seitz, works on the Cibola satellite at LANL. Cibola is part of the U.S. Department of Defense Space Test Program. It was designed to prove that off-the-shelf computer processors called field-programmable gate arrays can be used for supercomputing in space. The processors can be reconfigured while the satellite is in orbit, enabling researchers to modify them for different tasks, such as studying lightning, disturbances

13

Mission  

Energy.gov (U.S. Department of Energy (DOE))

Our mission is to remove environmental legacies resulting from more than 60 years nuclear weapons development and government-sponsored nuclear energy research. Each of Oak Ridges three...

14

Mission  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the Energy Department is to ensure Americas security andprosperity by addressing its energy, environmental and nuclear challenges throughtransformative science and...

15

Glen Canyon Dam Long-Term Experimental and Management Plan EIS  

NLE Websites -- All DOE Office Websites (Extended Search)

Glen Canyon LTEMP EIS Glen Canyon LTEMP EIS Glen Canyon Dam, a 1,300-MW water-storage and hydroelectric facility is located on the Colorado River upstream of the Grand Canyon. EVS is evaluating the effects of dam operations on the Colorado River. A comprehensive evaluation of Glen Canyon Dam operations and their effects on the Colorado River through the Grand Canyon is being conducted by the Department of the Interior with EVS assistance. The Long-Term Experimental and Management Plan (LTEMP) Environmental Impact Statement (EIS) - the first such evaluation in over 15 years - will examine flow regimes to meet the goals of supplying water for communities, agriculture, and industry and will protect the resources of the Grand Canyon, while providing clean hydropower. The LTEMP EIS, which is expected to be completed by the end of 2013, will

16

Mission  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Accomplishments NETL Accomplishments - the lab 2 Mission Advancing energy options to fuel our economy, strengthen our security, and improve our environment. Message from the Director NETL: The First 100 Years 4 6 3 Contents Advanced Power Systems Gasification Switching to Switchgrass: Using Biomass to Reduce Greenhouse Gas Emissions Hydrogen Fuel Cells Turbines Advanced Combustion Materials Meeting the Challenge: NETL's Materials Capabilities Clean Energy Carbon Capture Carbon Storage Carbon Sequestration Partnerships Demand-Side Efficiency Air, Water, Land Computational Sciences: It's a Virtual World Reliable Supply Energy Infrastructure Methane Hydrates Natural Gas and Oil Production Rocking at the Extreme Drilling Laboratory Science & Technology Leadership

17

A Preliminary Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand  

Open Energy Info (EERE)

Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Canyon Of The Yellowstone River, Yellowstone Caldera, Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Preliminary Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Canyon Of The Yellowstone River, Yellowstone Caldera, Wyoming Details Activities (4) Areas (1) Regions (0) Abstract: Erosion in the Grand Canyon of the Yellowstone River, Yellowstone Caldera (640 ka), Wyoming, has exposed a cross section of older hydrothermal alteration in the canyon walls. The altered outcrops of the post-collapse tuff of Sulphur Creek (480 ka) extend from the canyon rim to more than 300 m beneath it. The hydrothermal minerals are zoned, with an advanced argillic alteration consisting of an association of quartz (opal)

18

Savannah River Site's H Canyon Begins 2012 with New and Continuing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site's H Canyon Begins 2012 with New and Site's H Canyon Begins 2012 with New and Continuing Missions - Transuranic waste remediation, new mission work are the focus of the nation's only active nuclear chemical separations facility in 2012 Savannah River Site's H Canyon Begins 2012 with New and Continuing Missions - Transuranic waste remediation, new mission work are the focus of the nation's only active nuclear chemical separations facility in 2012 January 1, 2012 - 12:00pm Addthis H Canyon, above, and HB-Line are scheduled to soon begin dissolving and purifying plutonium currently stored at the Savannah River Site to demonstrate the capability to produce oxide material that meets the Mixed Oxide Facility (MOX) feedstock specifications. The production process at MOX, which is now under construction, will eventually create fuel pellets for U.S. commercial reactor fuel assemblies.

19

Upper Los Alamos Canyon Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Upper Los Alamos Canyon Cleanup Upper Los Alamos Canyon Cleanup Upper Los Alamos Canyon Cleanup The Upper Los Alamos Canyon Project involves cleaning up hazardous materials left over from some of the Laboratory's earliest activities. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Located along Los Alamos Canyon from 7th Street to the Pajarito Ski Hill, the Upper Los Alamos Canyon Project involves examining sites in present and former Laboratory technical areas to see if any further environmental cleanup actions are needed. If not, the Laboratory can apply to have these sites removed permanently from LANL's Hazardous Waste Permit, meaning that no further actions are needed at those sites. Among the 115 sites included in the Upper LA Canyon Project, 54 have been

20

Upper Los Alamos Canyon Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

septic tanks, sanitary and industrial waste lines, storm drains, incinerators, transformer sites, and areas in which soil has been contaminated. The Upper Los Alamos Canyon...

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

California Nuclear Profile - Diablo Canyon  

U.S. Energy Information Administration (EIA) Indexed Site

Diablo Canyon" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

22

New York Canyon Stimulation  

Science Conference Proceedings (OSTI)

The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "????No Go"??? decision and initiate project termination in April 2012.

Raemy, B. Principal Investigator, TGP Development Company, LLC

2012-06-21T23:59:59.000Z

23

Post-project appraisal of Martin Canyon Creek restoration  

E-Print Network (OSTI)

Haltiner, Jeffery. 1997. Martin Canyon Stream Stabilization:Williams & Associates, Ltd. 1999. Martin Canyon Creek StreamPost-Project Appraisal of Martin Canyon Creek Restoration

Wagner, Wayne; Roseman, Jesse

2006-01-01T23:59:59.000Z

24

Hudson Canyon | Open Energy Information  

Open Energy Info (EERE)

Canyon Canyon Jump to: navigation, search Name Hudson Canyon Facility Hudson Canyon Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Deepwater Wind Long Island Developer Deepwater Wind Location Atlantic Ocean NY Coordinates 40.151°, -73.53° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.151,"lon":-73.53,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

Juniper Canyon | Open Energy Information  

Open Energy Info (EERE)

Juniper Canyon Juniper Canyon Jump to: navigation, search Name Juniper Canyon Facility Juniper Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Developer Iberdrola Energy Purchaser Merchant Location In Klickitat County 4.6 miles Southeast of Goldendale Coordinates 45.910223°, -120.224317° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.910223,"lon":-120.224317,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

Grand Canyon Village, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

463718°, -112.1540586° 463718°, -112.1540586° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.0463718,"lon":-112.1540586,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Pacific Gas & Electric Company, Diablo Canyon Nuclear ...  

Science Conference Proceedings (OSTI)

Pacific Gas & Electric Company, Diablo Canyon Nuclear Power Plant. NVLAP Lab Code: 100537-0. Address and Contact Information: ...

2013-11-08T23:59:59.000Z

28

Pacific Gas & Electric Company, Diablo Canyon Nuclear ...  

Science Conference Proceedings (OSTI)

Pacific Gas & Electric Company, Diablo Canyon Nuclear Power Plant. NVLAP Lab Code: 100537-0. Address and Contact Information: ...

2013-08-23T23:59:59.000Z

29

Internal Tides in Monterey Submarine Canyon  

Science Conference Proceedings (OSTI)

The M2 internal tide in Monterey Submarine Canyon is simulated using a modified version of the Princeton Ocean Model. Most of the internal tide energy entering the canyon is generated to the south, on Sur Slope and at the head of Carmel Canyon. ...

Rob A. Hall; Glenn S. Carter

2011-01-01T23:59:59.000Z

30

Intense, Variable Mixing near the Head of Monterey Submarine Canyon  

Science Conference Proceedings (OSTI)

A microstructure survey near the head of Monterey Submarine Canyon, the first in a canyon, confirmed earlier inferences that coastal submarine canyons are sites of intense mixing. The data collected during two weeks in August 1997 showed ...

Glenn S. Carter; Michael C. Gregg

2002-11-01T23:59:59.000Z

31

Mission Canyon, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

4508303°, -119.7129141° 4508303°, -119.7129141° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.4508303,"lon":-119.7129141,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

Grand Unified Theory  

NLE Websites -- All DOE Office Websites (Extended Search)

Grand Unified Theory Ungelste Rtsel Grand Unified Theory Heute besteht eines der Hauptziele der Teilchenphysik darin, die verschiedenen fundamentalen Krfte in einer Grossen...

33

Pages that link to "Coyote Canyon Steam Plant Biomass Facility...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Coyote Canyon Steam Plant Biomass Facility" Coyote Canyon Steam Plant Biomass Facility Jump to:...

34

Changes related to "Coyote Canyon Steam Plant Biomass Facility...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Changes related to "Coyote Canyon Steam Plant Biomass Facility" Coyote Canyon Steam Plant Biomass Facility Jump to:...

35

DOE - Office of Legacy Management -- Burro Canyon Disposal Cell...  

Office of Legacy Management (LM)

Burro Canyon Disposal Cell - 007 FUSRAP Considered Sites Site: Burro Canyon Disposal Cell (007) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

36

DOE - Office of Legacy Management -- Bodo Canyon Cell - 006  

Office of Legacy Management (LM)

Bodo Canyon Cell - 006 FUSRAP Considered Sites Site: Bodo Canyon Cell (006) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

37

EIS-0219: F-Canyon Plutonium Solutions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Plutonium Solutions Stored in the F-Canyon Facility, Savannah River Site, Aiken, SC December 1, 1994 EIS-0219: Final Environmental Impact Statement F-Canyon Plutonium...

38

ACCELERATED PILOT PROJECT FOR U CANYON DEMOLITION  

SciTech Connect

At the U.S. Department of Energy's Hanford Site in southeast Washington State, CH2M HILL Plateau Remediation Company (CH2M HILL) is underway on a first-of-a-kind project with the decommissioning and demolition of the U Canyon. Following the U.S. Environmental Protection Agency's Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Record of Decision for the final remediation of the canyon, CH2M HILL is combining old and new technology and techniques to prepare U Canyon for demolition. The selected remedial action called first for consolidating and grouting equipment currently in the canyon into lower levels of the plant (openings called cells), after which the cell galleries, hot pipe trench, ventilation tunnel, drains and other voids below the operating deck and crane-way deck levels will be filled with approximately 20,000 cubic yards of grout and the canyon roof and walls demolished down to the approximate level of the canyon deck. The remaining canyon structure will then be buried beneath an engineered barrier designed to control potential contaminant migration for a 500-year life. Methods and lessons learned from this project will set the stage for the future demolition of Hanford's four other canyon-type processing facilities.

KEHLER KL

2011-01-13T23:59:59.000Z

39

Bear Canyon Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Canyon Geothermal Facility Canyon Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Bear Canyon Geothermal Facility General Information Name Bear Canyon Geothermal Facility Facility Bear Canyon Sector Geothermal energy Location Information Location Clear Lake, California, Coordinates 38.762851116528°, -122.69217967987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.762851116528,"lon":-122.69217967987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

40

Hay Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Hay Canyon Wind Farm Hay Canyon Wind Farm Jump to: navigation, search Name Hay Canyon Wind Farm Facility Hay Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Snohomish Public Utility District Location Near Moro OR Coordinates 45.479548°, -120.741491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.479548,"lon":-120.741491,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Spring Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Spring Canyon Wind Farm Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Xcel Energy Location Near Peetz CO Coordinates 40.95366°, -103.166993° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.95366,"lon":-103.166993,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

42

Threemile Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Threemile Canyon Wind Farm Threemile Canyon Wind Farm Jump to: navigation, search Name Threemile Canyon Wind Farm Facility Threemile Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer John Deere Wind Energy Purchaser PacifiCorp Location Morrow County OR Coordinates 45.837861°, -119.701286° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.837861,"lon":-119.701286,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

Three Mile Canyon | Open Energy Information  

Open Energy Info (EERE)

Mile Canyon Mile Canyon Jump to: navigation, search Name Three Mile Canyon Facility Three Mile Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer Momentum RE Energy Purchaser PacifiCorp Location Morrow County OR Coordinates 45.717419°, -119.502258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.717419,"lon":-119.502258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Turbulent Kinetic Energy Dissipation in Barrow Canyon  

Science Conference Proceedings (OSTI)

Pacific Water flows across the shallow Chukchi Sea before reaching the Arctic Ocean, where it is a source of heat, freshwater, nutrients, and carbon. A substantial portion of Pacific Water is routed through Barrow Canyon, located in the northeast ...

E. L. Shroyer

2012-06-01T23:59:59.000Z

45

Internal Waves in Monterey Submarine Canyon  

Science Conference Proceedings (OSTI)

Velocity, temperature, and salinity profile surveying in Monterey Submarine Canyon during spring tide reveals an internal wave field almost an order of magnitude more energetic than that in the open ocean. Semidiurnal fluctuations and their ...

Eric Kunze; Leslie K. Rosenfeld; Glenn S. Carter; Michael C. Gregg

2002-06-01T23:59:59.000Z

46

Rectified Barotropic Flow over a Submarine Canyon  

Science Conference Proceedings (OSTI)

The effect of an isolated canyon interrupting a long continental shelf of constant cross section on the along-isobath, oscillatory motion of a homogeneous, incompressible fluid is considered by employing laboratory experiments (physical models) ...

Nicolas Pernne; Jacques Verron; Dominique Renouard; Don L. Boyer; Xiuzhang Zhang

1997-09-01T23:59:59.000Z

47

Physical Modeling of Flow Field inside Urban Street Canyons  

Science Conference Proceedings (OSTI)

The flow characteristics inside urban street canyons were studied in a laboratory water channel. The approaching flow direction was horizontal and perpendicular to the street axis. The street width was adjusted to form street canyons of aspect ...

Xian-Xiang Li; Dennis Y. C. Leung; Chun-Ho Liu; K. M. Lam

2008-07-01T23:59:59.000Z

48

Coyote Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Coyote Canyon Geothermal Project Coyote Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Coyote Canyon Geothermal Project Project Location Information Coordinates 39.723055555556°, -118.08027777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.723055555556,"lon":-118.08027777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Red Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Red Canyon Wind Farm Red Canyon Wind Farm Facility Red Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Florida Power & Light Co. Location Borden TX Coordinates 32.95326011°, -101.215539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.95326011,"lon":-101.215539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

Devil's Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Devil's Canyon Geothermal Project Devil's Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Devil's Canyon Geothermal Project Project Location Information Coordinates 40.938333333333°, -117.53916666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.938333333333,"lon":-117.53916666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Biglow Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Biglow Canyon Wind Farm Biglow Canyon Wind Farm Facility Biglow Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Portland General Electric Developer Orion/Portland General Electric Energy Purchaser Portland General Electric Location Sherman County OR Coordinates 45.629003°, -120.605607° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.629003,"lon":-120.605607,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

A Laboratory Model of Urban Street-Canyon Flows  

Science Conference Proceedings (OSTI)

A circulating water channel is constructed to examine urban street-canyon flow. In the cases of an even-notch street canyon in which model buildings on both sides of the street have equal heights, one vortex is observed in model canyons with ...

Jong-Jin Baik; Rae-Seol Park; Hye-Yeong Chun; Jae-Jin Kim

2000-09-01T23:59:59.000Z

53

Microsoft Word - Badger Canyon CXWEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KEC-4 KEC-4 SUBJECT: Environmental Clearance Memorandum David Tripp Project Manager - TEP-CSB-1 Proposed Action: Badger Canyon Substation Radio Communication Tower Project Budget Information: Work Order 00253262 Task 03 Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021: B1.7 "Acquisition, installation, operation, and removal of communication systems..." B1.19 "Siting, construction, and operation of microwave and radio communication towers and associated facilities..." Location: Badger Canyon Substation, Benton County, Washington - Township 8 North, Range 28 East, Section 1 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to replace a 40-foot monopole communication

54

Coyote Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Coyote Canyon Geothermal Area Coyote Canyon Geothermal Area (Redirected from Coyote Canyon Geothermal Resource Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Coyote Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.927105,"lon":-117.927225,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

EMSL: Science: Biogeochemistry Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogeochemistry Grand Challenge Shewanella oneidensis MR-1 growing on a hematite surface Shewanella oneidensis MR-1 growing on a hematite surface. A Grand Challenge in...

56

Big Canyon Creek Ecological Restoration Strategy.  

DOE Green Energy (OSTI)

He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

Rasmussen, Lynn; Richardson, Shannon

2007-10-01T23:59:59.000Z

57

Big Canyon Creek Ecological Restoration Strategy.  

Science Conference Proceedings (OSTI)

He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

Rasmussen, Lynn; Richardson, Shannon

2007-10-01T23:59:59.000Z

58

Trail Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Trail Canyon Geothermal Project Trail Canyon Geothermal Project Project Location Information Coordinates 38.325555555556°, -114.29388888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.325555555556,"lon":-114.29388888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

59

Panther Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Panther Canyon Geothermal Project Panther Canyon Geothermal Project Project Location Information Coordinates 40.549444444444°, -117.57666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.549444444444,"lon":-117.57666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

Blue Canyon VI | Open Energy Information  

Open Energy Info (EERE)

VI VI Jump to: navigation, search Name Blue Canyon VI Facility Blue Canyon VI Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EDP Renewables North America LLC Developer EDP Renewables North America LLC Energy Purchaser Merchant Location Lawton OK Coordinates 34.8582°, -98.54752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8582,"lon":-98.54752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE - Office of Legacy Management -- Acid Pueblo Canyon - NM 03  

NLE Websites -- All DOE Office Websites (Extended Search)

Acid Pueblo Canyon - NM 03 Acid Pueblo Canyon - NM 03 FUSRAP Considered Sites Acid/Pueblo Canyon, NM Alternate Name(s): Radioactive Liquid Waste Treatment Plant (TA-45) Acid/Pueblo and Los Alamos Canyon NM.03-3 Location: Canyons in the Pajarito Plateau Region in Los Alamos County, Los Alamos, NM NM.03-3 Historical Operations: Late 1943 or early 1944, head of the south fork of Acid Canyon received untreated liquid waste containing tritium and isotopes of strontium, cesium, uranium, plutonium, and americium discharged from main acid sewer lines and subsequently from the TA-3 plutonium treatment plant. NM.03-3 Eligibility Determination: Radiological Survey(s): Verification Surveys NM.03-5 NM.03-6 Site Status: Certified- Certification Basis and Federal Register Notice NM.03-2

62

Coyote Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Coyote Canyon Geothermal Area Coyote Canyon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Coyote Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.927105,"lon":-117.927225,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

63

EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27: Grapevine Canyon Wind Project, Coconino County, Arizona 27: Grapevine Canyon Wind Project, Coconino County, Arizona EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona Summary This EIS evaluates the environmental impacts of a proposed wind energy generation project in Coconino County, Arizona, on privately owned ranch lands and trust lands administered by the Arizona State Land Department. The proposed project includes a new transmission tie-line that would cross lands administered by Coconino National Forest and interconnect with DOE's Western Area Power Administration's existing Glen Canyon-Pinnacle Peak transmission lines. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download September 11, 2012 EIS-0427: Record of Decision Interconnection of the Grapevine Canyon Wind Project, Coconino County,

64

To See or Not to See: The Viability of Visibility at the Grand Canyon  

E-Print Network (OSTI)

a percentage of haze as coal-fired plants in the East. Thus,cost, since Western coal-fired plants were already subjectdioxide emissions from coal-fired plants account for about

Bergman, Steven H.

1994-01-01T23:59:59.000Z

65

To See or Not to See: The Viability of Visibility at the Grand Canyon  

E-Print Network (OSTI)

control regional haze. 72 Vermont then filed a petition forEPA rules did not require Vermont to in- clude regional haze 52, subpart D (1993)). Vermont v. Thomas, 850 F.2d 99,

Bergman, Steven H.

1994-01-01T23:59:59.000Z

66

Klondike III / Biglow Canyon Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Action and Alternatives 2-3 Proposed Action and Alternatives 2-3 Figure 1 Proposed 230-kV Towers and Rights-of-Way Klondike III/Biglow Canyon Wind Integration Project Bonneville Power Administration Proposed Action and Alternatives 2-4 Figure 1, continued CUMULATIVE IMPACTS ANALYSIS, PROPOSED WIND PROJECTS, SHERMAN COUNTY, WASHINGTON March 2006 WEST, Inc. 32 Figure 1. Region map of wind projects proposed for Sherman County. D e s c h u t e s Ri ver C a n y o n C o l u m b ia R i v e r Hwy 19 H w y 2 0 6 H w y 9 7 I 8 4 Grass Valley Moro Wasco Biggs Arlington Condon Fourmile Canyon McDonald Ferry Biggs Junction Deschutes River Crossing The Dalles Complex RM 15.9-16.8 RM 40 Sherman Co Wasco Co G i l l i a m C o Gilliam Co Morrow Co Rowena Plateau Historic Columbia River Highway John D a y R i v e r C a n y o n P:\B\BPAX00000324\0600INFO\GS\arcmap\figures\visiblity_tech_report\fig2_visual_resources_or.mxd January 9, 2006

67

Mission Advancing  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Accomplishments NETL Accomplishments - the lab 2 Mission Advancing energy options to fuel our economy, strengthen our security, and improve our environment. Renewed Prosperity Through Technological Innovation - Letter from the Director NETL: the ENERGY lab 4 6 3 Contents Technology Transfer Patents and Commercialization Sharing Our Expertise Noteworthy Publications 60 62 63 64 66 Environment, Economy, & Supply Carbon Capture and Storage Partnerships Work to Reduce Atmospheric CO 2 Demand-Side Efficiencies New NETL Facility Showcases Green Technologies Environment & Economy Materials Mercury Membranes NETL Education Program Produces Significant Achievement Monitoring Water Economy & Supply NETL's Natural Gas Prediction Tool Aids Hurricane Recovery Energy Infrastructure

68

Nine Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Facility Nine Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Energy Northwest Developer Energy Northwest Energy Purchaser Energy Northwest Location Benton County Coordinates 46.286065°, -119.425532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.286065,"lon":-119.425532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

Blue Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Facility Blue Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown/Horizon Developer Zilkha Renewable/Kirmart Corp. Energy Purchaser Western Farmers' Electric Cooperative Location North of Lawton OK Coordinates 34.852678°, -98.551807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.852678,"lon":-98.551807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

Beneficial Reuse at Bodo Canyon Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Environmental Justice » Beneficial Reuse at Bodo Services » Environmental Justice » Beneficial Reuse at Bodo Canyon Site Beneficial Reuse at Bodo Canyon Site The George Washington University Environmental Resource Policy Graduate Program Capstone Project Beneficial Reuse at Bodo Canyon Site Feasibility and Community Support for Photovoltaic Array May 2012 The George Washington University Environmental Resource Policy Graduate Program Capstone Project was an analysis of LM's efforts to support the installation of a commercial solar photovoltaic system at the former uranium mill site near Durango, Colorado. Beneficial Reuse at Bodo Canyon Site More Documents & Publications EA-1770: Final Environmental Assessment Performance of a Permeable Reactive Barrier Using Granular Zero-Valent Iron: FY 2004 Annual Report Durango, Colorado, Disposal Site

71

Olowalu-Ukumehame Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Olowalu-Ukumehame Canyon Geothermal Area Olowalu-Ukumehame Canyon Geothermal Area (Redirected from Olowalu-Ukumehame Canyon Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Olowalu-Ukumehame Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

72

Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility Facility Canyon Bloomers, Inc Sector Geothermal energy Type Greenhouse Location Buhl, Idaho Coordinates 42.5990714°, -114.7594946° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

73

Tidal Motion in Submarine CanyonsA Laboratory Experiment  

Science Conference Proceedings (OSTI)

The reasons for the large-amplitude tidal motion observed in oceanic submarine canyons have been explored with a laboratory experiment. A barotropic tide was forced in a stratified tank, containing continental shelf-slope topography into which a ...

Peter G. Baines

1983-02-01T23:59:59.000Z

74

Observations of the Internal Tide in Monterey Canyon  

Science Conference Proceedings (OSTI)

Data from two shipboard experiments in 1994, designed to observe the semidiurnal internal tide in Monterey Canyon, reveal semidiurnal currents of about 20 cm s?1, which is an order of magnitude larger than the estimated barotropic tidal currents. ...

Emil T. Petruncio; Leslie K. Rosenfeld; Jeffrey D. Paduan

1998-10-01T23:59:59.000Z

75

Flow Variability in a North American Downtown Street Canyon  

Science Conference Proceedings (OSTI)

Previous field and laboratory studies have indicated that flow and turbulence inside urban areas and, in particular, in street canyons, is very complex and is associated with wakes and vortices developing near buildings. However, a number of open ...

Petra Klein; James V. Clark

2007-06-01T23:59:59.000Z

76

H CANYON PROCESSING IN CORRELATION WITH FH ANALYTICAL LABS  

Science Conference Proceedings (OSTI)

Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at the labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial number of samples being sent to F/H Labs. All analyses of these samples are imperative to safe and efficient processing. The important campaigns to occur would be impossible without feedback from analyses such as chemical makeup of solutions, concentrations of dissolution acids and nuclear material, as well as nuclear isotopic data. The necessity of analysis for radiochemical processing is evident. Processing devoid of F/H Lab's feedback would go against the ideals of a safety-conscious and highly accomplished processing facility such as H Canyon.

Weinheimer, E.

2012-08-06T23:59:59.000Z

77

Mississippi Nuclear Profile - Grand Gulf  

U.S. Energy Information Administration (EIA) Indexed Site

Grand Gulf" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

78

Our Mission Statement  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Mission Statement The Environmental Management (EM) Program Mission in Oak Ridge is to complete cleanup safely with reduced risks to the public, workers, and the environment at...

79

<GrandPrairie>  

NLE Websites -- All DOE Office Websites (Extended Search)

Grande Praire Wind Farm, O'Neill, NE Grande Praire Wind Farm, O'Neill, NE The Western Area Power Administration (Western), an agency of the Department of Energy (DOE), intends to prepare an environmental impact statement (EIS) on the proposed interconnection of the Grande Prairie Wind Farm (Project) in Holt County, near the city of O'Neill, Nebraska. Grande Prairie Wind, LLC (Grande Prairie), a subsidiary of Midwest Wind Energy Development Group, LLC, has applied to Western to interconnect their proposed Project to Western's power transmission system. Western is issuing this notice to inform the public and interested parties about Western's intent to prepare an EIS, conduct a public scoping process, and invite the public to comment on the scope, proposed action, alternatives, and other issues to be addressed in the EIS.

80

Rio Grande Compact (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rio Grande Compact (Texas) Rio Grande Compact (Texas) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial...

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nine Canyon III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Nine Canyon III Wind Farm Nine Canyon III Wind Farm Facility Nine Canyon III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Energy Northwest Developer Energy Northwest/RES Americas Energy Purchaser Energy Northwest Coordinates 46.286065°, -119.425532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.286065,"lon":-119.425532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

82

Olowalu-Ukumehame Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Olowalu-Ukumehame Canyon Geothermal Area Olowalu-Ukumehame Canyon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Olowalu-Ukumehame Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

83

Microsoft Word - Final_NineCanyon_CommunicationTowerInstall_CX  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2013 1, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Kelly Gardner, PMP Project Manager, TEP-TPP-1 Proposed Action: Nine Canyon Substation Communication Tower Addition: 331800 McNary Sub Bus Tie Relay Replacements and 310427 McNary-Badger Canyon Transfer Trip Install Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 - Additions and modifications to transmission facilities Location: Kennewick, Benton County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to install a 60-foot communications tower and associated communication equipment at the Benton County Public Utility District's Nine Canyon Substation in Benton County, Washington. The upgrade would involve replacing the

84

EXPLORING FOR SUBTLE MISSION CANYON STRATIGRAPHIC TRAPS WITH ELASTIC WAVEFIELD SEISMIC TECHNOLOGY  

SciTech Connect

The 9C3D seismic data that will form the principal data base needed for this research program have been successfully acquired. The seismic field data exhibit a good signal-to-noise (S/N) ratio for all elastic-wave modes. Thus the major hurdle of acquiring optimal-quality 9-C seismic data has been cleared. The stratigraphic oil-reservoir target that will be the imaging objective of the seismic data-processing effort is described in this report to indicate the challenge that now confronts the data-processing phase of the project.

John Beecherl

2004-02-01T23:59:59.000Z

85

Review of the Diablo Canyon probabilistic risk assessment  

SciTech Connect

This report details the review of the Diablo Canyon Probabilistic Risk Assessment (DCPRA). The study was performed under contract from the Probabilistic Risk Analysis Branch, Office of Nuclear Reactor Research, USNRC by Brookhaven National Laboratory. The DCPRA is a full scope Level I effort and although the review touched on all aspects of the PRA, the internal events and seismic events received the vast majority of the review effort. The report includes a number of independent systems analyses sensitivity studies, importance analyses as well as conclusions on the adequacy of the DCPRA for use in the Diablo Canyon Long Term Seismic Program.

Bozoki, G.E.; Fitzpatrick, R.G.; Bohn, M.P. [Sandia National Lab., Albuquerque, NM (United States); Sabek, M.G. [Atomic Energy Authority, Nuclear Regulatory and Safety Center, Cairo (Egypt); Ravindra, M.K.; Johnson, J.J. [EQE Engineering, San Francisco, CA (United States)

1994-08-01T23:59:59.000Z

86

Nanomagnetism and the grand challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Visiting the APS Mission & Goals Find People Organization Charts Committees Job Openings User Information Prospective Users New Users Current Users APS User Portal...

87

Blue Canyon II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Blue Canyon II Wind Farm Blue Canyon II Wind Farm Jump to: navigation, search Name Blue Canyon II Wind Farm Facility Blue Canyon II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer Horizon Wind Energy Energy Purchaser American Electric Power Location North of Lawton OK Coordinates 34.8582°, -98.54752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8582,"lon":-98.54752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

88

Biglow Canyon Phase III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Biglow Canyon Phase III Wind Farm Biglow Canyon Phase III Wind Farm Jump to: navigation, search Name Biglow Canyon Phase III Wind Farm Facility Biglow Canyon Phase III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Portland General Electric Developer Orion Energy Group Energy Purchaser Portland General Electric Location Sherman County OR Coordinates 45.6375°, -120.605278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.6375,"lon":-120.605278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

Thirty-five years at Pajarito Canyon Site  

SciTech Connect

A history of the research activities performed at the Pajarito Canyon Site from 1946 to 1981 is presented. Critical assemblies described include: the Topsy assembly; Lady Godiva; Godiva 2; Jezebel; Flattop; the Honeycomb assembly for Rover studies; Kiwi-TNT; PARKA reactor; Big Ten; and Plasma Cavity Assembly.

Paxton, H.C.

1981-05-01T23:59:59.000Z

90

Properties of Saltstone Prepared Containing H-Canyon Waste  

Science Conference Proceedings (OSTI)

Saltstone slurries were prepared from solutions made from H-Canyon waste and evaluated for processing properties. Salt solutions prepared with a 1:1 ratio of Tank 50H simulant and H-Canyon blended waste produced slurries that met the processing requirements in Table 2 of the Task Technical and Quality Assurance Plan (TTQAP). Additions of set retarder and antifoam were necessary to meet these processing requirements. The water to premix ratio used to achieve acceptable processing properties was 0.63. Slurries prepared solely with H-Canyon blended waste as the salt solution met the gel time and bleed water requirements, but did not set in the allotted time. Compressive strength samples prepared from the mix with acceptable processing properties had an average compressive strength of 814 psi (Samples with a compressive strength value of >200 psi are acceptable.). Analysis for mercury of the leachate of samples analyzed by the Toxic Characteristic Leaching Procedure (TCLP) indicated a concentration of mercury in the leachate <0.11 mg/L (The limit set by the Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) for mercury to require treatment is 0.2 mg/L.). It is recommended that without further testing; Tank 50H be limited to no more than 50 wt% H-Canyon material. It is also recommended that prior to the transfer of Tank 50H to the Saltstone Processing Facility; a sample of the Tank 50H waste be evaluated for processing properties.

Cozzi, A

2005-04-05T23:59:59.000Z

91

REDUCTIONS WITHOUT REGRET: AVOIDING WRONG TURNS, ROACH MOTELS, AND BOX CANYONS  

SciTech Connect

This is the third of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as some closing thoughts for the future. In this paper, we provide one example each of our judgments on what constitutes a box canyon, a roach motel, and a wrong turn: ? Wrong Turn: The Reliable Replacement Warhead ? Roach Motel: SRAM T vs the B61 ? A Possible Box Canyon: A Low-Yield Version of the W76 SLBM Warhead Recognizing that new nuclear missions or weapons are not demanded by current circumstances ? a development path that yields future capabilities similar to those of today, which are adequate if not always ideal, and a broader national-security strategy that supports nonproliferation and arms control by reducing the role for, and numbers, of nuclear weapons ? we briefly consider alternate, less desirable futures, and their possible effect on the complex problem of regional deterrence. In this regard, we discuss the issues posed by, and possible responses to, three example regional deterrence challenges: in-country defensive use of nuclear weapons by an adversary; reassurance of U.S. allies with limited strategic depth threatened by an emergent nuclear power; and extraterritorial, non-strategic offensive use of nuclear weapons by an adversary in support of limited military objectives against a U.S. ally.

Swegle, J.; Tincher, D.

2013-09-11T23:59:59.000Z

92

Neutrino Mass and Grand Unification  

E-Print Network (OSTI)

Seesaw mechanism appears to be the simplest and most appealing way to understand small neutrino masses observed in recent experiments. It introduces three right handed neutrinos with heavy masses to the standard model, with at least one mass required by data to be close to the scale of conventional grand unified theories. This may be a hint that the new physics scale implied by neutrino masses and grand unification of forces are one and the same. Taking this point of view seriously, I explore different ways to resolve the puzzle of large neutrino mixings in grand unified theories such as SO(10) and models based on its subgroup $SU(2)_L\\times SU(2)_R\\times SU(4)_c$.

R. N. Mohapatra

2004-12-03T23:59:59.000Z

93

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission Mission - OE's Core Purpose, Why OE Exists OE drives electric grid modernization and resiliency in the energy infrastructure. OE leads the Department of Energy's efforts to ensure a resilient, reliable, and flexible electricity system. OE accomplishes this mission through research, partnerships, facilitation, modeling and analytics, and emergency preparedness. Vision - OE's Aspirations for the Future OE recognizes that our Nation's sustained economic prosperity, quality of life, and global competitiveness depend on access to an abundance of secure, reliable, and affordable energy resources. Through a mix of technology and policy solutions, we will address the changing dynamics and uncertainties in which the electric system will operate. We will leverage

94

Mission | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission Mission Mission The Office of Economic Impact and Diversity develops and executes Department-wide policies to implement applicable legislation and Executive Orders that strengthen diversity and inclusion goals affecting equal employment opportunities, small and disadvantaged businesses, minority educational institutions, and historically under-represented communities. Our mission is to identify and implement ways of ensuring that everyone is afforded an opportunity to participate fully in the Department of Energy's programs, opportunities, and resources. We encourage partnerships with Minority Serving Institutions and other minority-owned and serving entities to join us in our mission-critical work. We seek to increase contracting opportunities for small and

95

Spelunking in La Cueva Grande  

Science Conference Proceedings (OSTI)

La Cueva Grande is the 5-sided immersive facility put into place at Los Alamos National Laboratory. It was the highest-resolution stereo immersive facility in the world at the time of first use in 2005. The design and common use cases of LCG are presented, ... Keywords: projection systems, virtual reality

Laura Monroe

2008-08-01T23:59:59.000Z

96

Grand Challenges in Energy by Secretary Steven Chu | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Challenges in Energy by Secretary Steven Chu Grand Challenges in Energy by Secretary Steven Chu Grand Challenges in Energy by Secretary Steven Chu More Documents &...

97

The Particle Adventure | Unsolved Mysteries | Grand Unified Theory  

NLE Websites -- All DOE Office Websites (Extended Search)

Unsolved Mysteries - Grand Unified Theory Grand Unified Theory Today, one of the major goals of particle physics is to unify the various fundamental forces in a Grand Unified...

98

PP-53 Rio Grande Electric Cooperative, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Rio Grande Electric Cooperative, Inc. PP-53 Rio Grande Electric Cooperative, Inc. Presidential Permit authorizing Rio Grande Electric Cooperative, Inc.to construct, operate, and...

99

PP-33 Rio Grande Electric Cooperative Inc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rio Grande Electric Cooperative Inc PP-33 Rio Grande Electric Cooperative Inc Presidential permit authorizing Grande Electric Cooperative Inc to construct, operate, and maintain...

100

New York Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » New York Canyon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New York Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Lovelock, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

American Canyon Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name American Canyon Power Plant Biomass Facility Facility American Canyon Power Plant Sector Biomass Facility Type Landfill Gas Location Napa County, California Coordinates 38.5024689°, -122.2653887° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5024689,"lon":-122.2653887,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

Coyote Canyon Steam Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Steam Plant Biomass Facility Steam Plant Biomass Facility Jump to: navigation, search Name Coyote Canyon Steam Plant Biomass Facility Facility Coyote Canyon Steam Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

New York Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

New York Canyon Geothermal Project New York Canyon Geothermal Project Project Location Information Coordinates 40.056111111111°, -118.01083333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.056111111111,"lon":-118.01083333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Blue Canyon V Wind Farm | Open Energy Information  

Open Energy Info (EERE)

V Wind Farm V Wind Farm Jump to: navigation, search Name Blue Canyon V Wind Farm Facility Blue Canyon V Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon-EDPR Developer Horizon-EDPR Energy Purchaser Public Service of Oklahoma Location Caddo & Comanche Counties OK Coordinates 34.8582°, -98.54752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8582,"lon":-98.54752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

New York Canyon Stimulation Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Stimulation Geothermal Project Stimulation Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New York Canyon Stimulation Project Type / Topic 1 Recovery Act: Enhanced Geothermal System Demonstrations Project Type / Topic 2 EGS Demonstration Project Description The projects expected outcomes and benefits are; - Demonstrated commercial viability of the EGS-stimulated reservoir by generating electricity using fluids produced from the reservoir at economic costs. - Significant job creation and preservation and economic development in support of the Recovery Act of 2009. State Nevada Objectives Demonstrate the commercial application of EGS techniques at the New York Canyon (NYC) site in a way that minimizes cost and maximizes opportunities for repeat applications elsewhere.

106

Box Canyon Motel Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Motel Space Heating Low Temperature Geothermal Facility Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Box Canyon Motel Space Heating Low Temperature Geothermal Facility Facility Box Canyon Motel Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716°, -107.6714487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

107

Harbison Canyon, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harbison Canyon, California: Energy Resources Harbison Canyon, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.8203296°, -116.8300236° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.8203296,"lon":-116.8300236,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission The mission of the Office of Environmental Management (EM) is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. The EM program has made significant progress in shifting away from risk management to embracing a mission completion philosophy based on reducing risk and reducing environmental liability. As an established operating cleanup completion and risk reduction program, EM is demonstrating the importance of remaining steadfast to operating principles while staying focused on the mission. For example: EM is constructing and operating facilities to treat radioactive liquid tank waste into a safe, stable form to enable ultimate disposition.

109

The Dissolution of Desicooler Residues in H-Canyon Dissolvers  

Science Conference Proceedings (OSTI)

A series of dissolution and characterization studies has been performed to determine if FB-Line residues stored in desicooler containers will dissolve using a modified H-Canyon processing flowsheet. Samples of desicooler materials were used to evaluate dissolving characteristics in the low-molar nitric acid solutions used in H-Canyon dissolvers. The selection for the H-Canyon dissolution of desicooler residues was based on their high-enriched uranium content and trace levels of plutonium. Test results showed that almost all of the enriched uranium will dissolve from the desicooler materials after extended boiling in one molar nitric acid solutions. The residue that contained uranium after completion of the extended boiling cycle consisted of brown solids that had agglomerated into large pieces and were floating on top of the dissolver solution. Addition of tenth molar fluoride to a three molar nitric acid solution containing boron did not dissolve remaining uranium from the brown solids. Only after boiling in an eight molar nitric acid-tenth molar fluoride solution without boron did remaining uranium and aluminum dissolve from the brown solids. The amount of uranium associated with brown solids would be approximately 1.4 percent of the total uranium content of the desicooler materials. The brown solids that remain in the First Uranium Cycle feed will accumulate at the organic/aqueous interface during solvent extraction operations. Most of the undissolved white residue that remained after extended boiling was aluminum oxide containing additional trace quantities of impurities. However, the presence of mercury used in H-Canyon dissolvers should complete the dissolution of these aluminum compounds.

Gray, J.H.

2003-06-23T23:59:59.000Z

110

A review of proposed Glen Canyon Dam interim operating criteria  

DOE Green Energy (OSTI)

Three sets of interim operating criteria for Glen Canyon Dam on the Colorado River have been proposed for the period of November 1991, to the completion of the record of decision for the Glen Canyon Dam environmental impact statement (about 1993). These criteria set specific limits on dam releases, including maximum and minimum flows, up-ramp and down-ramp rates, and maximum daily fluctuation. Under the proposed interim criteria, all of these parameters would be reduced relative to historical operating criteria to protect downstream natural resources, including sediment deposits, threatened and endangered fishes, trout, the aquatic food base, and riparian plant communities. The scientific bases of the three sets of proposed operating criteria are evaluated in the present report:(1) criteria proposed by the Research/Scientific Group, associated with the Glen Canyon Environmental Studies (GCES); (2) criteria proposed state and federal officials charged with managing downstream resources; and (3) test criteria imposed from July 1991, to November 1991. Data from Phase 1 of the GCES and other sources established that the targeted natural resources are affected by dam operations, but the specific interim criteria chosen were not supported by any existing studies. It is unlikely that irreversible changes to any of the resources would occur over the interim period if historical operating criteria remained in place. It is likely that adoption of any of the sets of proposed interim operating criteria would reduce the levels of sediment transport and erosion below Glen Canyon Dam; however, these interim criteria could result in some adverse effects, including the accumulation of debris at tributary mouths, a shift of new high-water-zone vegetation into more flood-prone areas, and further declines in vegetation in the old high water zone.

LaGory, K.; Hlohowskyj, I.; Tomasko, D.; Hayse, J.; Durham, L.

1992-04-01T23:59:59.000Z

111

DOE - Office of Legacy Management -- Bayo Canyon NM Site - NM 01  

NLE Websites -- All DOE Office Websites (Extended Search)

Bayo Canyon NM Site - NM 01 Bayo Canyon NM Site - NM 01 FUSRAP Considered Sites Bayo Canyon, NM Alternate Name(s): Bayo Canyon Area Bayo Canyon (TA-10) Site NM.01-2 Location: Canyon in the Pajarito Plateau Region in Los Alamos County, Los Alamos, NM NM.01-3 Historical Operations: Used in 1944-1961 by the MED and later AEC at Los Alamos National Laboratory as a firing site for conventional and high-explosives experiments involving natural and depleted uranium, strontium, and lanthanum as a radiation source for blast diagnosis. NM.01-3 NM.01-5 Eligibility Determination: Eligible NM.01-1 Radiological Survey(s): Assessment Survey NM.01-3 Site Status: Certified- Certification Basis NM.01-5 NM.01-6 Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP

112

Nine Canyon Wind Farm Phase II | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Nine Canyon Wind Farm Phase II Jump to: navigation, search Name Nine Canyon Wind Farm Phase II Facility Nine Canyon Wind Farm Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Energy Northwest Developer Energy Northwest Energy Purchaser Energy Northwest Location Benton County Coordinates 46.286065°, -119.425532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.286065,"lon":-119.425532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission The Mission of the Office of Management is to provide the Department of Energy with centralized direction and oversight for the full range of management, procurement and administrative services. Project Management Project Management Awardees The Office of Management's activities include project and contract management, cost estimating, and policy development and oversight, One of the principal outcomes in exercising this responsibility is the delivery of projects on schedule, within budget, with the required performance capability, and compliant with quality, environmental, safety and health standards. Learn more Administrative Services Technician replacing nameplate The Office of Management provides many of the administrative services that

114

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission The primary mission of the Office of Nuclear Energy is to advance nuclear power as a resource capable of meeting the Nation's energy, environmental, and national security needs by resolving technical, cost, safety, proliferation resistance, and security barriers through research, development, and demonstration as appropriate. NE's program is guided by the four research objectives detailed in its Nuclear Energy Research and Development Roadmap: Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals. Develop sustainable fuel cycles.

115

Interplanetary mission fission  

NLE Websites -- All DOE Office Websites (Extended Search)

A new fission experiment demonstrates the viability of a small nuclear reactor to power solar-system-exploring spacecraft. July 15, 2013 Interplanetary mission fission Artist's...

116

Mission | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Calendar Year Reports Recovery Act Peer Reviews DOE Directives Performance Strategic Plan Testimony Financial Statements Semiannual Reports Work Plan Mission About Us...

117

Simulating infiltration tests in fractured basalt at the Box Canyon Site, Idaho  

E-Print Network (OSTI)

in the unsaturated zone at the Idaho National Engineeringzone: Box Canyon Site, Idaho. , Rep. LBNL-42925, Lawrencethe U.S. Department of Energy, Idaho Operations Office, DOE

Unger, Andre J.A.; Faybishenko, Boris; Bodvarsson, Gudmundur S.; Simmons, Ardyth M.

2003-01-01T23:59:59.000Z

118

EV Everywhere Grand Challenge Blueprint  

NLE Websites -- All DOE Office Websites (Extended Search)

A Message from A Message from the Assistant Secretary Every challenge presents an even greater opportunity, and the EV Everywhere Grand Challenge is no exception. The need for clean energy solutions drives the most important economic development race of the 21st century, providing opportunity for America to invent, manufacture, and export clean energy technologies. Recognizing that vehicle electrification is an essential part of our country's "all-of-the above" energy strategy, President Obama issued the EV Everywhere Grand Challenge to the nation in March 2012 with the bold goal to be the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years.

119

OUR COLLEGE MISSION, AND  

E-Print Network (OSTI)

our college community to incorporate shared values into our daily work lives. Members of the ExecutiveOUR COLLEGE TAGLINE, MISSION, AND SHARED VALUES #12;#12;OUR TAG LINE Helping animals, people. Accountability Collaboration Team Transparency OUR MISSION AND VALUES College faculty and staff discuss tag line

Stephens, Graeme L.

120

SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE  

SciTech Connect

For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

Magoulas, V.

2013-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Mountain View Grand | Open Energy Information  

Open Energy Info (EERE)

Grand Grand Jump to: navigation, search Name Mountain View Grand Facility Mountain View Grand Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Mountain View Grand Developer Sustainable Energy Developments Energy Purchaser Mountain View Grand Location Mountain View Grand Resort & Spa NH Coordinates 44.397987°, -71.590306° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.397987,"lon":-71.590306,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA  

E-Print Network (OSTI)

reactions of a nuclear power plant. Diablo Canyon wasmeters from the nuclear power plant) while having suitableThe Diablo Canyon Nuclear Power Plant site in San Luis

Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

2004-01-01T23:59:59.000Z

123

Installation of the Monitoring Site at the Los Alamos Canyon Low-Head Weir  

Science Conference Proceedings (OSTI)

The Cerro Grande fire of 2000 had an enormously adverse impact on and around Los Alamos National Laboratory (LANL). Immediately there were concerns about the potential for enhanced runoff/offsite transport of contaminant-laden sediments because of watershed damage. In response to this concern, the U.S. Army Corps of Engineers installed a low-head weir in Los Alamos Canyon near the White Rock ''Y.'' However, the occurrence of fractured basalt at the surface and ponding of runoff behind the weir enhance the possibility of downward migration of contaminants. Therefore, three boreholes were drilled on the south bank of the channel by LANL to provide a means of monitoring the impact of the Cerro Grande fire and of the weir on water quality beneath the canyon. The boreholes and associated instrumentation are referred to as the Los Alamos Weir Site (LAWS). The three boreholes include a vertical hole and two angled holes (one at approximately 45{sup o} and one at approximately 30{sup o}). Since the basalt is highly fractured, the holes would not stay open. Plans called for inserting flexible liners into all holes. However, using liners in such unstable ground was problematic and, in the angled holes, required deployment through scalloped or perforated polyvinyl chloride (PVC) shield. The vertical hole (LAWS-01), drilled to a total depth of 281.5 ft below ground surface (bgs), was completed as a 278-ft deep monitoring well with four screens: one targeting shallow perched water encountered at 80 ft, two in what may correspond to the upper perched zone at regional groundwater characterization well R-9i (1/4 mi. to the west), and one in what may correspond to the lower perched zone at R-9i. A Water FLUTe{trademark} system deployed in the well isolates the screened intervals; associated transducers and sampling ports permit monitoring head and water quality in the screened intervals. The second hole (LAWS-02), drilled at an angle of 43{sup o} from horizontal, is 156 ft long and bottoms at a depth of 106 ft bgs. The shallow perched water seen at LAWS-01 (at 80 ft) was not encountered. A scalloped PVC shield was installed to keep the hole open while permitting flexible liners to contact the borehole wall. It was initially instrumented with a color-reactive liner to locate water-producing fractures. That was later replaced by an absorbent liner to collect water from the vadose zone. The third hole (LAWS-03), drilled at an angle of 34{sup o} from horizontal, initially had a length of 136 ft and bottomed at a depth of 76 ft bgs. However, the PVC shield rotated during installation such that scallops were at the top and rock debris repeatedly fell in, preventing liner insertion. While pulling the scalloped PVC to replace it with a perforated PVC shield that did not require orientation, the scalloped PVC broke and only 85 ft was recovered. The hole was blocked at that position and could not be drilled out with the equipment available. Thus, LAWS-03 was completed at a length of 85 ft and a depth of 40 ft bgs. An absorbent liner was installed at the outset in preparation for the 2002 summer monsoon season. The entire monitoring site is enclosed inside a locked, 8-ft-high chainlink fence for security. The liners used in the angled boreholes carry electrical wire pairs to detect soil-moisture changes. Surface-water data are provided by stream gages above and below the weir site. Depth of ponding behind the weir is provided by a gage installed just behind the structure.

W.J.Stone; D.L.Newell

2002-08-01T23:59:59.000Z

124

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission Develop and implement innovative HCM business solutions relating to corporate recruiting, organizational and workforce development, workforce and succession planning, talent capacity, and diversity outreach. Functions Directing the activities of the Corporate Outreach and Recruitment Council (with representatives from across the Department including NNSA, the Power Marketing Administrations, and the National Labs); including enhancing entry-level and mid to senior level hiring across DOE, furthering the use of automated technology in outreach and recruitment efforts, designing effective marketing and branding efforts to attract the right candidate for the right job, incorporating diversity strategies, and developing measures of success Designing and managing strategic employment programs that address

125

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission The Assistant Secretary for Policy and International Affairs (PI) is the primary policy advisor to the Secretary, Deputy Secretary, and Under Secretary on domestic and international policy development and implementation as well as DOE policy analysis and activities. The Office of Policy and International Affairs' role is to deliver unbiased advice to the Department of Energy's leadership on existing and prospective energy-related policies, based on integrated and well-founded data and analysis. The Office of Policy and International Affairs has primary responsibility for the Department of Energy's international energy activities including international emergency management, national security, and international cooperation in science and technology.

126

Small mammal study of Sandia Canyon, 1994 and 1995  

SciTech Connect

A wide range of plant and wildlife species utilize water discharged from facilities at Los Alamos National Laboratory (LANL). The purpose of this study was to gather baseline data of small mammal populations and compare small mammal characteristics within three areas of Sandia Canyon, which receives outfall effluents from multiple sources. Three small mammal trapping webs were placed in the upper portion of Sandia Canyon, the first two were centered in a cattail-dominated marsh with a ponderosa pine overstory and the third web was placed in a much drier transition area with a ponderosa pine overstory. Webs 1 and 2 had the highest species diversity indices with deer mice the most commonly captured species in all webs. However, at Web 1, voles, shrews, and harvest mice, species more commonly found in moist habitats, made up a much greater overall percentage (65.6%) than did deer mice and brush mice (34.5%). The highest densities and biomass of animals were found in Web 1 with a continual decrease in density estimates in each web downstream. There is no statistical difference between the mean body weights of deer mice and brush mice between sites. Mean body length was also determined not to be statistically different between the webs (GLM [deer mouse], F = 0.89, p = 0.4117; GLM [brush mouse], F = 2.49, p = 0.0999). Furthermore, no statistical difference between webs was found for the mean lean body masses of deer and brush mice (GLM [deer mouse], F = 2.54, p = 0.0838; GLM [brush mouse], F = 1.60, p = 0.2229). Additional monitoring studies should be conducted in Sandia Canyon so comparisons over time can be made. In addition, rodent tissues should be sampled for contaminants and then compared to background or control populations elsewhere at the Laboratory or at an off-site location.

Bennett, K.; Biggs, J.

1996-11-01T23:59:59.000Z

127

DOE/EA-1521; Environmental Assessment for Spring Canyon Wind Project, Logan County, Colorado  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA, Spring Canyon Wind Project ix EA, Spring Canyon Wind Project ix TABLE OF CONTENTS Page 1.0 PURPOSE AND NEED......................................................................................................... 1 1.1 INTRODUCTION ..................................................................................................... 1 1.2 PURPOSE AND NEED............................................................................................. 3 1.2.1 Federal Agency Action ............................................................................... 3 1.2.2 Applicant's Purpose and Need .................................................................... 3 1.3 SCOPING .................................................................................................................. 3

128

Ice Climbing in Clear Creek Canyon A climbing trip report by Glenn Murray  

E-Print Network (OSTI)

Ice Climbing in Clear Creek Canyon A climbing trip report by Glenn Murray SUMMARY: I climb ice in to ask about local climbing. The guys there told me there was ice nearby, in Clear Creek Canyon. I. Four pitches? Five? It was time to find a partner. The only ice climber I knew in Denver was a friend

129

Green Canyon Hot Springs Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Greenhouse Low Temperature Geothermal Facility Greenhouse Low Temperature Geothermal Facility Facility Green Canyon Hot Springs Sector Geothermal energy Type Greenhouse Location Newdale, Idaho Coordinates 43.8832463°, -111.6063483° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

130

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission The U.S. Department of Energy's Office of Fossil Energy plays a key role in helping the United States meet its continually growing need for secure, reasonably priced and environmentally sound fossil energy supplies. Put simply, FE's primary mission is to ensure the nation can continue to rely on traditional resources for clean, secure and affordable energy while enhancing environmental protection. Realizing the Promise of Clean Coal For the first time in the long history of fossil fuel use, we now see emerging from our laboratories and test sites the tools and technologies that can turn the concept of a virtually zero-emission-including carbon dioxide (CO2)-coal-based energy plant into a viable reality, not 50 or 100 years into the future, but within the coming decade.

131

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission The mission of the U.S. Department of Energy's Southeastern Power Administration is to market and deliver Federal hydroelectric power at the lowest possible cost to public bodies and cooperatives in the southeastern United States in a professional, innovative, customer-oriented manner, while continuing to meet the challenges of an ever-changing electric utility environment through continuous improvements. Market and deliver economical and dependable hydropower to customers The objectives of Southeastern are to market the electric power and energy generated by the Federal reservoir projects and toe encourage widespread use of the power at the lowest possible cost to consumers. Make Southeastern an employer of choice Strategies to achieve this goal include: Promote SEPA as an "Employer of

132

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission Office of Indian Energy Policy and Programs The DOE Office of Indian Energy Policy and Programs, or Office of Indian Energy, is charged by Congress to direct, foster, coordinate, and implement energy planning, education, management, and programs that assist Tribes with energy development, capacity building, energy infrastructure, energy costs, and electrification of Indian lands and homes. Led by Director Tracey A. LeBeau, a member of the Cheyenne River Sioux Tribe of South Dakota, the Office of Indian Energy works within DOE, across government agencies, and with Indian Tribes and organizations to promote Indian energy policies and initiatives. The Office of Indian Energy performs these functions within the scope of DOE's mission and consistently with the

133

Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Gas Flux Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys indicated that a few minor -nomalies might be present. However, the extreme topographic relief in the area did not permit sufficient coverage of the

134

PNNL: About - Mission and Vision  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission, Vision, Values At PNNL, our mission is to transform the world through courageous discovery and innovation. It is our vision that PNNL science and technology will inspire...

135

Patterns in biodiversity and distribution of benthic Polychaeta in the Mississippi Canyon, Northern Gulf of Mexico  

E-Print Network (OSTI)

The distribution of benthic polychaetes in the Mississippi Canyon was examined to evaluate impacts of environmental variables on species assemblages. Environmental variables considered included depth, bathymetric slope, hydrographic features, sediment grain size, food availability and sediment contamination. Samples were collected using GOMEX boxcorer. Density decreased with increasing depth exponentially. Diversity exhibited a unimodal pattern with depth with a maximum value in the intermediate depth range (about 1269 m). Deposit feeders were the most abundant feeding guild. Both the feeding guilds and faunal composition could be divided into three groups along the depth gradient: shallow (300 ? 800 m), intermediate (800 ? 1500 m) and deep (> 1500 m). Results of statistical analyses revealed that depth was the most important determinant in organizing polychaete assemblages in the study area. The Mississippi Canyon and the Central Transect (a non-canyon area) were found not contaminated by trace metals or Polynuclear Aromatic Hydrocarbons (PAHs) in sediments, although the highest PAHs concentration occurred at the head of the Canyon, MT1. The mean density was higher in the Mississippi Canyon (1668 N/m2) than in the Central Transect (979 N/m2), while the mean diversity in the Canyon (ES(100) = 26.9 ) was lower than the Central Transect (ES(100) = 33.1). Large amounts of terrigenous input from the Mississippi River to the Canyon could enhance polychaete density and accelerate competitive exclusion, and thus lead to lower diversity. The faunal composition was significantly different between the two transects, with higher species richness in the Mississippi Canyon (301 species). This could be attributed to structure complexity in the Mississippi Canyon. The distribution of feeding guilds was similar between two transects. The differences observed in polychaete assemblages between two transects may be largely due to high terrigenous sediment and organic matter input to the Mississippi Canyon by the Mississippi River.

Wang, Yuning

2004-12-01T23:59:59.000Z

136

Sediment transport in the Mississippi Canyon: the role of currents and storm events on optical variability  

E-Print Network (OSTI)

Two modes of sediment transport were found to exist in the Mississippi Canyon: the offshelf transport of material in intermediate nepheloid layers originating at depths of 50-175 m and the resuspension and transport of material within the canyon. Large- and small-particle intermediate nepheloid layers were consistently present in the canyon axis and were not observed on the slope to either side of the canyon. The temporal variability in currents, temperature, and particulate matter was measured at a station located at 300 m depth in the canyon axis during consecutive deployments in May-July and August-November 1998. Two moored current meters, one at 3.5 mab and one at 50 mab, recorded flow, while thermographs, a light-scattering sensor, and sediment traps gathered information about the characteristics of the flow and movement of particulate matter. Currents in the upper Mississippi Canyon were oscillatory, with alternating periods of up-canyon and down-canyon flow. Harmonic analysis revealed that the diurnal tidal signal was the dominant component of the flow. Currents were most intense at 3.5 mab. Mean current speed at this depth was approximately 8 cm s? during both deployments, reaching maximum speeds of over 50 cm s?. Current velocities generated sufficient shear stress to resuspend canyon floor sediments about 30% of the time during both deployments. During the second mooring deployment, Hurricane Georges passed 150 km NE of the study site. Near-bottom current velocities and temperature fluctuations were intensified. As the hurricane passed, maximum current speed reached 68 cm s? and a temperature decrease of approximately 7 degrees C occurred in less than 2 hours. Conditions were favorable for sediment resuspension approximately 50% of the time during the five days of hurricane influence. Further evidence for sediment resuspension was provided by similarities between canyon floor core samples and sediment trap collections.

Burden, Cheryl A

1999-01-01T23:59:59.000Z

137

Vehicle Technologies Office: EV Everywhere Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Charging Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics EV Everywhere Grand Challenge With their immense potential for increasing the...

138

Biglow Canyon Phase II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Phase II Wind Farm Phase II Wind Farm Jump to: navigation, search Name Biglow Canyon Phase II Wind Farm Facility Biglow Canyon Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Portland General Electric Developer Orion Energy Group Energy Purchaser Portland General Electric Location Sherman County OR Coordinates 45.6375°, -120.605278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.6375,"lon":-120.605278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission The Director of the Office of Energy Policy and Systems Analysis is the primary energy policy advisor to the Secretary and Deputy Secretary on domestic energy policy development and implementation as well as DOE policy analysis and activities. The role of the Office of Energy Policy and Systems Analysis is to deliver unbiased energy analysis to the Department of Energy's leadership on existing and prospective energy-related policies, focusing in part on integrative analysis of energy systems. The Office of Energy Policy and Systems Analysis includes the Secretariat of the Quadrennial Energy Review with primary responsibility for supporting the White House interagency process and providing to it data collection, analysis, stakeholder engagement, and data synthesis.

140

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission National Environmental Policy Act of 1969 (NEPA) NEPA is our basic national charter for protection of the environment. Signed into law by President Richard Nixon on January 1, 1970, NEPA was established to foster and promote the general welfare, to create and maintain conditions under which man and nature can exist in productive harmony, and fulfill the social, economic, and other requirements of present and future generations of Americans. NEPA establishes policy, sets goals (section 101), and provides means (section 102) for carrying out the policy. Section 102(2) contains "action-forcing" provisions to make sure that federal agencies act according to the letter and spirit of the Act. The President, the federal agencies, and the courts share responsibility for enforcing the Act so as to achieve the substantive requirements of section 101.

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

JGI - DOE Mission Relevance  

NLE Websites -- All DOE Office Websites (Extended Search)

User Programs User Programs Project Management Office Community Science Program Emerging Technologies Opportunity Program Technology Development Pilot Program Genomic Encyc. of Bacteria and Archaea MyJGI: Information for Collaborators DOE Mission Relevance CSP | Overview | How to Propose a Project | Review Process | DOE Relevance Proposal Schedule | FAQ The Department of Energy Joint Genome Institute (DOE JGI) is managed by the Department of Energy's Office of Biological and Environmental Research (OBER) to produce high-throughput DNA sequencing and analysis in support of its missions in alternative energy, global carbon cycling, and biogeochemistry. These areas mirror DOE and national priorities to develop abundant sources of clean energy, to control greenhouse gas accumulation in

142

Climate VISION: Program Mission  

Office of Scientific and Technical Information (OSTI)

PROGRAM MISSION PROGRAM MISSION Climate VISION - Voluntary Innovative Sector Initiatives: Opportunities Now - is a voluntary public-private partnership initiative to improve energy efficiency and greenhouse gas intensity in energy-intensive industrial sectors. Climate VISION - Voluntary Innovative Sector Initiatives: Opportunities Now - is a public-private partnership initiative launched by the Department of Energy on February 12, 2003. Its primary goal is to identify and pursue cost-effective options to improve the energy or GHG intensity of industry operations by accelerating the transition to technologies, practices, and processes that are cleaner, more efficient, and capable of reducing, capturing or sequestering GHGs. Climate VISION links these objectives with technology development,

143

Mission Critical Networking  

SciTech Connect

Mission-Critical Networking (MCN) refers to networking for application domains where life or livelihood may be at risk. Typical application domains for MCN include critical infrastructure protection and operation, emergency and crisis intervention, healthcare services, and military operations. Such networking is essential for safety, security and economic vitality in our complex world characterized by uncertainty, heterogeneity, emergent behaviors, and the need for reliable and timely response. MCN comprise networking technology, infrastructures and services that may alleviate the risk and directly enable and enhance connectivity for mission-critical information exchange among diverse, widely dispersed, mobile users.

Eltoweissy, Mohamed Y.; Du, David H.C.; Gerla, Mario; Giordano, Silvia; Gouda, Mohamed; Schulzrinne, Henning; Youssef, Moustafa

2010-06-01T23:59:59.000Z

144

The ALEXIS mission recovery  

SciTech Connect

The authors report the recovery of the ALEXIS small satellite mission. ALEXIS is a 113-kg satellite that carries an ultrasoft x-ray telescope array and a high-speed VHF receiver/digitizer (BLACKBEARD), supported by a miniature spacecraft bus. It was launched by a Pegasus booster on 1993 April 25, but a solar paddle was damaged during powered flight. Initial attempts to contact ALEXIS were unsuccessful. The satellite finally responded in June, and was soon brought under control. Because the magnetometer had failed, the rescue required the development of new attitude control-techniques. The telemetry system has performed nominally. They discuss the procedures used to recover the ALEXIS mission.

Bloch, J.; Armstrong, T.; Dingler, B.; Enemark, D.; Holden, D.; Little, C.; Munson, C.; Priedhorsky, B.; Roussel-Dupre, D.; Smith, B. [Los Alamos National Lab., NM (United States); Warner, R.; Dill, B.; Huffman, G.; McLoughlin, F.; Mills, R.; Miller, R. [AeroAstro, Inc., Herndon, VA (United States)

1994-03-01T23:59:59.000Z

145

Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.  

DOE Green Energy (OSTI)

This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyon Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the amount of habitat blocked at each site and the fish life history stages impacted. This assessment protocol will hopefully prove useful to other agencies and become a model for use in other watersheds.

Christian, Richard

2004-02-01T23:59:59.000Z

146

Review: Red Pedagogy: Native American Social and Political Thought by Sandy Grande  

E-Print Network (OSTI)

and Political Thought by Sandy Grande. New York: Rowman &discourse. For these reasons, Sandy Grandes (2004) text

Caldern, Dolores

2006-01-01T23:59:59.000Z

147

Microsoft Word - GrandCoulee_FONSI.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project BPA's Finding of No Significant Impact 1 Bonneville Power Administration's Finding of No Significant Impact (FONSI) for the Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project DOE/EA-1679 SUMMARY The Bonneville Power Administration (BPA) announces its environmental findings on the Bureau of Reclamation's (Reclamation) Grand Coulee Third Powerplant 500-kV Transmission Line Replacement Project. This project involves replacing the six 500-kV transmission lines of the Third Powerplant (TPP) at Grand Coulee Dam. The transmission lines are presently installed within the dam and a two-chambered tunnel that leads to a Spreader Yard about a mile west of the TPP. BPA would design and construct

148

Microsoft Word - canyon disposition rpt 2 01 05.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Efforts to Department of Energy Efforts to Dispose of Hanford's Chemical Separation Facilities DOE/IG-0672 February 2005 -2- benefits of using the facility as a disposal site. Instead, the study focused on characterizing and performing technical analysis on the structural integrity of the facility. In studying the merits of the Initiative, the Department did not ensure that the cost study was sufficient in scope, and once completed, never reviewed the study to determine whether it was accurate and complete or adequately supported the preferred alternative. As a result of not thoroughly evaluating the feasibility of using canyon facilities for waste disposal, the Department may not realize savings ranging up to $500 million. This report highlights the importance of the Department's oversight of its contractors' activities to

149

RECALIBRATION OF H CANYON ONLINE SPECTROPHOTOMETER AT EXTENDED URANIUM CONCENTRATION  

SciTech Connect

The H Canyon online spectrophotometers are calibrated for measurement of the uranium and nitric acid concentrations of several tanks in the 2nd Uranium Cycle.[1] The spectrometers, flow cells, and prediction models are currently optimized for a process in which uranium concentrations are expected to range from 0-15 g/L and nitric acid concentrations from 0.05-6 M. However, an upcoming processing campaign will involve 'Super Kukla' material, which has a lower than usual enrichment of fissionable uranium. Total uranium concentrations will be higher, spanning approximately 0-30 g/L U, with no change in the nitric acid concentrations. The new processing conditions require the installation of new flow cells with shorter path lengths. As the process solutions have a higher uranium concentration, the shorter path length is required to decrease the absorptivity to values closer to the optimal range for the instrument. Also, new uranium and nitric acid prediction models are required to span the extended uranium concentration range. The models will be developed for the 17.5 and 15.4 tanks, for which nitric acid concentrations will not exceed 1 M. The restricted acid range compared to the original models is anticipated to reduce the measurement uncertainty for both uranium and nitric acid. The online spectrophotometers in H Canyon Second Uranium Cycle were modified to allow measurement of uranium and nitric acid for the Super Kukla processing campaign. The expected uranium concentrations, which are higher than those that have been recently processed, required new flow cells with one-third the optical path length of the existing cells. Also, new uranium and nitric acid calibrations were made. The estimated reading uncertainties (2{sigma}) for Tanks 15.4 and 17.5 are {approx}5% for uranium and {approx}25% for nitric acid.

Lascola, R

2008-10-29T23:59:59.000Z

150

SunShot Grand Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home SunShot Grand Challenge SunShot Grand Challenge Addthis SunShot Grand Challenge 1 of 28...

151

B plant mission analysis report  

SciTech Connect

This report further develops the mission for B Plant originally defined in WHC-EP-0722, ``System Engineering Functions and Requirements for the Hanford Cleanup Mission: First Issue.`` The B Plant mission analysis will be the basis for a functional analysis that breaks down the B Plant mission statement into the necessary activities to accomplish the mission. These activities are the product of the functional analysis and will then be used in subsequent steps of the systems engineering process, such as identifying requirements and allocating those requirements to B Plant functions. The information in this mission analysis and the functional and requirements analysis are a part of the B Plant technical baseline.

Lund, D.P.

1995-05-24T23:59:59.000Z

152

EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington EA-1950: Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties,...

153

Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show January 30,...

154

Record of Decision - Klondike III/ Biglow Canyon Wind Integration Project - 10-25-06  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Klondike III/Biglow Canyon Wind Integration Project Klondike III/Biglow Canyon Wind Integration Project DECISION The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE) 1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects,

155

Recovery Act Begins Box Remediation Operations at F Canyon | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Begins Box Remediation Operations at F Canyon Recovery Act Begins Box Remediation Operations at F Canyon Recovery Act Begins Box Remediation Operations at F Canyon May 17, 2011 - 12:00pm Addthis Media Contacts Jim Giusti, DOE (803) 952-7697 james-r.giusti@srs.gov Paivi Nettamo, SRNS (803) 646-6075 paivi.nettamo@srs.gov AIKEN, S.C. - The F Canyon box remediation program, an American Recovery and Reinvestment Act project at Savannah River Site (SRS), has come online to process legacy transuranic (TRU) waste for off-site shipment and permanent disposal at the Waste Isolation Pilot Plant (WIPP), a geological repository in New Mexico. The $40-million facility will process approximately 330 boxes containing TRU waste with a radiological risk higher than seen in the rest of the Site's original 5,000-cubic-meter

156

On Line Spectrophotometric Measurement of Uranium and Nitrate in H Canyon  

SciTech Connect

This report describes the on-line instrumentation developed by the Analytical Development Section of Savannah River Technology Center in support of Highly Enriched Uranium Blend Down processing in H Canyon.

Lascola, R.J.

2002-10-15T23:59:59.000Z

157

Impulsively Started Flow in a Submarine Canyon: Comparison of Results from Laboratory and Numerical Models  

Science Conference Proceedings (OSTI)

Intercomparisons have been made of results from laboratory experiments and a numerical model for the flow in the vicinity of an idealized submarine canyon located along an otherwise continuous shelf. Motion in the rotating and continuously ...

Nicolas Prenne; J. William Lavelle; David C. Smith IV; Don L. Boyer

2001-10-01T23:59:59.000Z

158

Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys

159

Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Field Mapping Activity Date Usefulness not useful DOE-funding Unknown Notes Geologic mapping (Diller, 1982) in this area has identified several trachitic and alkalic dikes, plugs, and vents within the area bounded by the canyons (Fig. 21). The frequency distribution of those dikes in the two

160

EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

63: Vegetation Management on the Glen Canyon-Pinnacle Peak 63: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona Summary DOE's Western Area Power Administration is preparing this EA to evaluate the environmental impacts of updating the vegetation management and right-of-way maintenance program for Western's Glen Canyon to Pinnacle Peak 345-kV transmission lines, which cross the Coconino National Forest, Coconino County, Arizona. For more information on this EA, contact: Ms. Linette King at: lking@wapa.gov. Public Comment Opportunities No public comment opportunities available at this time.

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Vegetation Management on the Glen Canyon-Pinnacle Peak 3: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona Summary DOE's Western Area Power Administration is preparing this EA to evaluate the environmental impacts of updating the vegetation management and right-of-way maintenance program for Western's Glen Canyon to Pinnacle Peak 345-kV transmission lines, which cross the Coconino National Forest, Coconino County, Arizona. For more information on this EA, contact: Ms. Linette King at: lking@wapa.gov. Public Comment Opportunities No public comment opportunities available at this time.

162

Micro-Earthquake At New York Canyon Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

York Canyon Geothermal Area (2011) York Canyon Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At New York Canyon Geothermal Area (2011) Exploration Activity Details Location New York Canyon Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine seismicity before and after reservoir stimulation for EGS Notes The overall goal is to gather high resolution seismicity data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments (as necessary in available boreholes) to provide high quality seismic data for improved processing and interpretation methodologies. This will allow the development and testing

163

Internal Tides and Mixing in a Submarine Canyon with Time-Varying Stratification  

Science Conference Proceedings (OSTI)

The time variability of the energetics and turbulent dissipation of internal tides in the upper Monterey Submarine Canyon (MSC) is examined with three moored profilers and five ADCP moorings spanning FebruaryApril 2009. Highly resolved time ...

Zhongxiang Zhao; Matthew H. Alford; Ren-Chieh Lien; Michael C. Gregg; Glenn S. Carter

2012-12-01T23:59:59.000Z

164

Fire modeling for Building 221-T - T Plant Canyon Deck and Railroad Tunnel  

Science Conference Proceedings (OSTI)

This report was prepared by Hughes Associates, Inc. to document the results of fire models for building 221-T Canyon Deck and Railroad Tunnel. Backup data is contained in document No. WHC-SD-CP-ANAL-010, Rev. 0.

Oar, D.L.

1994-09-29T23:59:59.000Z

165

MSHA issues Crandall Canyon investigation report, fines owners $1.6 million  

Science Conference Proceedings (OSTI)

The paper summarises the findings of the Mine Safety and Health Administration report (available at www.msha.gov) into the death of six people at the Crandall Canyon Mine on 6 August 2007.

NONE

2008-08-15T23:59:59.000Z

166

A Numerical Study of Flow and Pollutant Dispersion Characteristics in Urban Street Canyons  

Science Conference Proceedings (OSTI)

The flow and pollutant dispersion in urban street canyons are investigated using a two-dimensional numerical model with the k? turbulent closure scheme. It is shown that the flow field is characterized mainly by the number and intensity of ...

Jong-Jin Baik; Jae-Jin Kim

1999-11-01T23:59:59.000Z

167

A Numerical Study of Thermal Effects on Flow and Pollutant Dispersion in Urban Street Canyons  

Science Conference Proceedings (OSTI)

This study investigates thermal effects on the flow and pollutant dispersion in urban street canyons. A two-dimensional numerical model with a k? turbulent closure scheme is developed, and the heat transfer between the air and the building wall ...

Jae-Jin Kim; Jong-Jin Baik

1999-09-01T23:59:59.000Z

168

Sediment-Driven Downslope Flow in Submarine Canyons and Channels: Three-Dimensional Numerical Experiments  

Science Conference Proceedings (OSTI)

The role of submarine canyons and channels in sediment-driven downslope flow (sediment plumes) is examined, using a three-dimensional, rotational numerical model that couples the hydrodynamics and sediment transport. The model domain consists of ...

Jochen Kmpf; Hermann Fohrmann

2000-09-01T23:59:59.000Z

169

Cross-Shelf Exchange Driven by Oscillatory Barotropic Currents at an Idealized Coastal Canyon  

Science Conference Proceedings (OSTI)

Numerical simulations are used to study on-shelf transport of dense water by oscillatory barotropic currents incident upon an isolated coastal canyon. The physical system is a laboratory-scale annulus in which forcing is provided by an ...

D. B. Haidvogel

2005-06-01T23:59:59.000Z

170

LaboratoryNumerical Model Comparisons of Canyon Flows: A Parameter Study  

Science Conference Proceedings (OSTI)

An integrated set of laboratory and numerical-model experiments has been conducted to understand the development of residual circulation surrounding a coastal canyon and to explore further the degree to which laboratory experiments can provide ...

Don L. Boyer; Dale B. Haidvogel; Nicolas Prenne

2004-07-01T23:59:59.000Z

171

EIS-0480: Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam  

Energy.gov (U.S. Department of Energy (DOE))

Two agencies of the Department of the Interior, Bureau of Reclamation and National Park Service, are jointly preparing a Long-Term Experimental and Management Plan for the Glen Canyon Dam and an EIS for adoption of the Plan. The Glen Canyon Dam, on the Colorado River in northern, Arizona, generates hydroelectric power that is marketed by DOE's Western Area Power Administration, a cooperating agency.

172

About Brookhaven Mission  

NLE Websites -- All DOE Office Websites (Extended Search)

passion passion for discover y Cover photo: Map showing magnetic flux lines for nickel nanoparticles passion for discover y About Brookhaven Mission Brookhaven National Laboratory's primary mission is to deliver science-based solutions to the nation's energy, environmental, and security needs. The Laboratory is noted for the design, construction, and operation of large-scale, cutting-edge research facilities that support thousands of scientists worldwide, its fundamental research into the nature of matter and materials and for biomedical and climate studies. Location Upton, New York (on Long Island, 60 miles east of New York City) Funding About $500 million, primarily from the U.S. Department of Energy (DOE) Management Brookhaven National Laboratory is operated and managed for the U.S. Department

173

Grand Meadow Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Grand Meadow Wind Farm Grand Meadow Wind Farm Jump to: navigation, search Name Grand Meadow Wind Farm Facility Grand Meadow Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer EnXco Energy Purchaser Xcel Energy Location Dexter MN Coordinates 43.707798°, -92.654071° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.707798,"lon":-92.654071,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

EV Everywhere Grand Challenge - Battery Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandalow, Under Secretary of Energy (acting) and Assistant Secretary for Policy and International Affairs 8:45-8:55 AM SETTING THE STAGE FOR THE EV EVERYWHERE GRAND CHALLENGE Dr....

175

Mission | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

176

Tertiary oxidation in Westwater Canyon member of Morrison formation  

SciTech Connect

Hematitic oxidation in the Westwater Canyon Sandstone Member of the Morrison Formation extends along the outcrop from the Pipeline fault northeast of Gallup, New Mexico, to the San Mateo fault north of Grants, New Mexico. The hematitic sandstone forms a broad lobe in the subsurface to a depth of 2,400 ft (730 m). The downdip edge of this sandstone arcs eastward from northeast Church Rock through Crownpoint, and southeastward to the west edge of the Ambrosia Lake district. The red sandstone is bordered on the downdip side by a band of limonitic oxidation, which interfingers with reduced sandstones basinward. The limonitic oxidation forms a relatively narrow band along the north and west sides of the hematitic lobe but expands progressively in an east and southeast direction. Weak limonitic oxidation, as indicated by the absence of pyrite and by a bleached to faint yellowish-gray color, appears to extend from the San Mateo fault eastward under Mount Taylor to the Rio Puerco of the east. The hematitic oxidation is epigenetic and is believed to be of early Miocene to late Pliocene age. The limonitic oxidation follows the present ground-water flow pattern and probably dates from late Pliocene to the Holocene. The oxidation patterns are important in uranium exploration because the hematitic area is essentially barren, whereas the limonitic areas contain ore deposits that are in the process of being destroyed by oxidation.

Saucier, A.E.

1980-01-01T23:59:59.000Z

177

Explaining the relationship between prehistoric agriculture and environment at Chaco Canyon, New Mexico  

E-Print Network (OSTI)

Chaco Canyon, the Pueblo settlement of New Mexico, represents one of the major cultural developments in the prehistoric Southwest. Between A.D. 900 and A.D. 1100 Chaco reached its peak of cultural florescence. This period was characterized by considerable building activities, appearance of Chaco outliers, and the construction of an extensive road system. After this period a dramatic decline in population and a cessation of building activity took place. Archaeologists call this phenomenon abandonment. In general, development and abandonment of Chaco Canyon coincided with changes in climatic conditions. Between A.D. 900 and A.D. 1100 there was a gradual increase in effective moisture and warmer temperature which proved favorable for agriculture there. With these optimal climatic conditions,development of Chaco Canyon witnessed a great increase in population. However, the Chaco Canyon region could not support a large population indefinitely because of its agricultural marginality. To solve this population-resource imbalance, Chacoan farmers of this period intensified their agricultural activities by constructing water control systems such as check dams, contour terraces, canals, and ditches. These measures worked for a while and the influence of Chaco Canyon was felt in the political, economic, and religious life of a broad geographic region. However, summer moisture began to decrease in the years between A.D. 1130 and A.D. 1180. This decrease became a full scale drought from A.D. 1157 to A.D. 1179 that seems to have severely affected agriculture and wild food resources available for the Chacoans. In addition, the Chacoan water control system designed to capture runoff probably proved to be inadequate as a buffering mechanism. Consequently, population at Chaco Canyon began to decrease and the region was abandoned after A.D. 1140. In an attempt at explaining the specific abandonment of Chaco Canyon, this thesis focuses on relationship between prehistoric agriculture and environment.

Gang, G-Young

1993-01-01T23:59:59.000Z

178

Our Mission | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

179

Rio Grande South | Open Energy Information  

Open Energy Info (EERE)

Rio Grande South Rio Grande South Facility Rio Grande South Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Gulf of Mexico TX Coordinates 26.189°, -97.053° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.189,"lon":-97.053,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

180

Rio Grande North | Open Energy Information  

Open Energy Info (EERE)

Rio Grande North Rio Grande North Facility Rio Grande North Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Offshore from South Padre Island TX Coordinates 26.364°, -97.078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.364,"lon":-97.078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The XEUS Mission  

E-Print Network (OSTI)

XEUS, the X-ray Evolving Universe Spectroscopy mission, is at present an ESA-ISAS initiative for the study of the evolution of the hot Universe in the post-Chandra/XMM-Newton era. The key science objectives of XEUS are: Search for the origin, and subsequent study of growth, of the first massive black holes in the early Universe; assessment of the formation of the first gravitationally bound dark matter dominated systems and their evolution; study of the evolution of metal synthesis up till the present epoch; characterization of the true intergalactic medium. To reach these ambitious science goals the two salient characteristics of the XEUS observatory entail: (1) Its effective spectroscopic grasp, combining a sensitive area > 20 m^2 below 2 keV with a spectral resolution better than 2 eV. This allows significant detection of the most prominent X-ray emission lines (e.g. O-VII, Si-XIII and Fe-XXV) in cosmologically distant sources against the sky background; (2) Its angular resolving power, between 2 and 5 arc seconds, to minimize source confusion as well as noise due to the galactic X-ray foreground emission. To accommodate these instrument requirements a mission concept has been developed featuring an X-ray telescope of 50-m focal length, comprising two laser-locked (separate) mirror and detector spacecraft's. The telescope is injected in a low earth orbit with an inclination commensurate with the ISS. At present an on-orbit growth of the mirror spacecraft is foreseen with the aid of the ISS, raising the mirror diameter from 4.5 to 10 m. The detector spacecraft will be replaced at 5 year intervals after run-out of consumables with an associated upgrade of the focal plane package.

Johan Bleeker; Mariano Mendez

2002-07-12T23:59:59.000Z

182

District-heating system, La Grande, Oregon  

DOE Green Energy (OSTI)

The area suggested for district heating feasibility study encompassed slightly over 400 acres extending north and south from the geographic center of the city. This district was subdivided into 8 areas, which include the Grande Ronde Hospital, Eastern Oregon State College, La Grande school district, one institutional area, one commercial area and three residential areas. Basic space heating loads developed for the various areas after a survey by county personnel and computation using a computer program form the basis for this economic feasibility study.

Not Available

1982-01-01T23:59:59.000Z

183

SunShot Grand Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Grand Challenge SunShot Grand Challenge SunShot Grand Challenge Addthis SunShot Grand Challenge 1 of 28 SunShot Grand Challenge Participants gather for the plenary session at the SunShot Grand Challenge Summit and Technology Forum in Denver, Colorado. (Photo by DENNIS SCHROEDER / NREL) Date taken: 2012-06-13 07:10 Arun Majumdar, Founding Director, ARPA-E 2 of 28 Arun Majumdar, Founding Director, ARPA-E Arun Majumdar, Founding Director, ARPA-E gives the welcoming remarks. (Photo by DENNIS SCHROEDER / NREL) Date taken: 2012-06-13 07:16 Energy Secretary Steven Chu at SunShot Grand Challenge 3 of 28 Energy Secretary Steven Chu at SunShot Grand Challenge Energy Secretary Steven Chu gives the keynote address at the SunShot Grand Challenge Summit. (Photo by DENNIS SCHROEDER / NREL) Date taken: 2012-06-13 07:32

184

NEET Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEET Mission NEET Mission NEET Mission The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies that directly support and complement the Office of Nuclear Energy's (NE) development of new and advanced reactor concepts and fuel cycle technologies. The program will focus on innovative research relevant to multiple reactor and fuel cycle concepts that offer the promise of dramatically improved performance. Crosscutting Technology Development (CTD) include the development of advanced reactor materials, research on innovative nuclear manufacturing methods, new sensor technologies and creative approaches to further reduce proliferation risks. Energy Innovation Hub for Modeling & Simulation (HUB) will provide crosscutting support to facilitate future improvement of

185

Diversity Issues Committee - Mission Statement  

NLE Websites -- All DOE Office Websites (Extended Search)

Diversity Issues Committee Mission Statement Investigate and study issues relating to diversity in the SUF workforce. Provide recommendations to SUF management to improve the work...

186

Flow Patterns at the Ends of a Street Canyon: Measurements from the Joint Urban 2003 Field Experiment  

Science Conference Proceedings (OSTI)

During the Joint Urban 2003 experiment held in Oklahoma City, Oklahoma, an eastwest-running street canyon was heavily instrumented with wind sensors. In this paper, the flow patterns at the street canyon ends are investigated by looking at sonic ...

Suhas U. Pol; Michael J. Brown

2008-05-01T23:59:59.000Z

187

Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal Facility Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Green Canyon Hot Springs Sector Geothermal energy Type Pool and Spa Location Newdale, Idaho Coordinates 43.8832463°, -111.6063483° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

188

DOE - Office of Legacy Management -- White Canyon AEC Ore Buying Station -  

NLE Websites -- All DOE Office Websites (Extended Search)

White Canyon AEC Ore Buying Station White Canyon AEC Ore Buying Station - UT 04 FUSRAP Considered Sites Site: White Canyon AEC Ore Buying Station (UT.04) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The

189

Microsoft Word - CX-BadgerCanyon-RichlandNo1_WoodPoles_FY13.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2013 7, 2013 REPLY TO ATTN OF: KEPR/Pasco SUBJECT: Environmental Clearance Memorandum Walker Miller Electrical Engineer - TPCF-W RICHLAND Proposed Action: Wood pole replacements on the Badger Canyon-Richland #1 transmission line PP&A Project No.: 2670 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance activities. Location: City of Richland, Benton County, WA Transmission Line/ROW Structure # Township Range Section County, State Badger Canyon-Richland #1 4/9 and 4/10 9N 28E 26 Benton, WA Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA, at the expense of the City of Richland, proposes to raise structures 4/9 and 4/10 of the Badger Canyon-Richland #1 115-kilovolt transmission line to

190

Attachments for fire modeling for Building 221-T, T Plant canyon deck and railroad tunnel  

SciTech Connect

The purpose of this attachment is to provide historical information and documentation for Document No. WHC-SD-CP-ANAL-008 Rev 0, ``Fire Modeling for Building 221-T--T Plant Canyon Deck and Railroad Tunnel``, dated September 29, 1994. This data compilation contains the following: Resumes of the Technical Director, Senior Engineer and Junior Engineer; Review and Comment Record; Software Files; CFAST Input and Output Files; Calculation Control Sheets; and Estimating Sprinkler Actuation Time in the Canyon and Railroad Tunnel. The T Plant was originally a fuel reprocessing facility. It was modified later to decontaminate and repair PuRex process equipment.

Oar, D.L. [Westinghouse Hanford Co., Richland, WA (United States)

1995-01-23T23:59:59.000Z

191

Grand Unification with and without Supersymmetry  

Science Conference Proceedings (OSTI)

Grand Unified Theories based on the group SO(10) generically provide interesting and testable relations between the charged fermions and neutrino sector masses and mixings. In the light of the recent neutrino data, we reexamine these relations both in supersymmetric and non-supersymmetric models, and give a brief review of their present status.

Melfo, Alejandra [CFF, Universidad de Los Andes, Merida (Venezuela); Institute J. Stefan, Ljubljana (Slovenia)

2007-06-19T23:59:59.000Z

192

Draft Mission Plan Amendment  

SciTech Connect

The Department of Energy`s Office Civilian Radioactive Waste Management has prepared this document to report plans for the Civilian Radioactive Waste Management Program, whose mission is to manage and dispose of the nation`s spent fuel and high-level radioactive waste in a manner that protects the health and safety of the public and of workers and the quality of the environment. The Congress established this program through the Nuclear Waste Policy Act of 1982. Specifically, the Congress directed us to isolate these wastes in geologic repositories constructed in suitable rock formations deep beneath the surface of the earth. In the Nuclear Waste Policy Amendments Act of 1987, the Congress mandated that only one repository was to be developed at present and that only the Yucca Mountain candidate site in Nevada was to be characterized at this time. The Amendments Act also authorized the construction of a facility for monitored retrievable storage (MRS) and established the Office of the Nuclear Waste Negotiator and the Nuclear Waste Technical Review Board. After a reassessment in 1989, the Secretary of Energy restructured the program, focusing the repository effort scientific evaluations of the Yucca Mountain candidate site, deciding to proceed with the development of an MRS facility, and strengthening the management of the program. 48 refs., 32 figs.

1991-09-01T23:59:59.000Z

193

Canyon dissolution of sand, slag, and crucible residues  

Science Conference Proceedings (OSTI)

An alternative to the FB-Line scrap recovery dissolver was desired for the dissolution of sand, slag, and crucible (SS{ampersand}C) residues from the plutonium reduction process due to the potential generation of hydrogen gas concentrations above the lower flammability limit. To address this concern, a flowsheet was developed for the F-Canyon dissolvers. The dissolvers are continually purged with nominally 33 SCFM of air; therefore the generation of flammable gas concentrations should not be a concern. Following removal of crucible fragments, small batches of the remaining sand fines or slag chunks containing less than approximately 350 grams of plutonium can be dissolved using the center insert in each of the four annular dissolver ports to address nuclear criticality safety concerns. Complete dissolution of the sand fines and slag chunks was achieved in laboratory experiments by heating between 75 and 85 degrees Celsius in a 9.3M nitric acid/0.013M (hydrogen) fluoride solution. Under these conditions, the sand and slag samples dissolved between 1 and 3 hours. Complete dissolution of plutonium and calcium fluorides in the slag required adjusting the dissolver solution to 7.5 wt% aluminum nitrate nonahydrate (ANN). Once ANN was added to a dissolver solution, further dissolution of any plutonium oxide (PuO2) in successive charges was not practical due to complexation of the fluoride by aluminum. During the laboratory experiments, well mixed solutions were necessary to achieve rapid dissolution rates. When agitation was not provided, sand fines dissolved very slowly. Measurement of the hydrogen gas generation rate during dissolution of slag samples was used to estimate the amount of metal in the chunks. Depending upon the yield of the reduction, the values ranged between approximately 1 (good yield) and 20% (poor yield). Aging of the slag will reduce the potential for hydrogen generation as calcium metal oxidizes over time. The potential for excessive corrosion in the dissolvers was evaluated using experimental data reported in the literature. Corrosion data at the exact flowsheet conditions were not available; however, the corrosion rate for 304L stainless steel (wrought material) corrosion coupons in 10M nitric acid/0.01M hydrofluoric acid at 95 degrees Celsius was reported as 21 mils per year. If the fluoride in the dissolver is complexed with aluminum, the corrosion rate will decrease to approximately 5 mils per year.

Rudisill, T.S.; Gray, J.H.; Karraker, D.G.; Chandler, G.T.

1997-12-01T23:59:59.000Z

194

EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah...

195

DOE - Office of Legacy Management -- Climax Uranium Co Grand...  

Office of Legacy Management (LM)

Climax Uranium Co Grand Junction Mill - CO 0-03 FUSRAP Considered Sites Site: Climax Uranium Co. (Grand Junction Mill) (CO.0-03) Designated Name: Alternate Name: Location:...

196

Energy Secretary Steven Chu to Attend Grand Opening of Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123...

197

The Influence of Canyon Winds on Flow Fields near Colorado's Front Range  

Science Conference Proceedings (OSTI)

A network of sodars was operated in the late summer and fall of 1993 to monitor the occurrence of nocturnal winds from a canyon in Colorado's Front Range near the Rocky Flats Plant and to determine the influence of those winds on the flow fields ...

J. C. Doran

1996-04-01T23:59:59.000Z

198

Functional design criteria, Project W-059, B Plant Canyon ventilation upgrade  

SciTech Connect

This document outlines the essential functions and requirements to be included in the design of the proposed B Plant canyon exhaust system upgrade. The project will provide a new exhaust air filter system and isolate the old filters from the airstream.

Roege, P.E.

1995-03-02T23:59:59.000Z

199

Observations of Thermally Driven Wind Jets at the Exit of Weber Canyon, Utah  

Science Conference Proceedings (OSTI)

Thermally driven valley-exit jets were investigated at Utahs Weber Canyon, a main tributary of the Great Salt Lake basin. An intensive measurement campaign during JulySeptember 2010 supplemented longer-term measurements to characterize the wind ...

Morgan F. Chrust; C. David Whiteman; Sebastian W. Hoch

2013-05-01T23:59:59.000Z

200

The Dependence of Canyon Winds on Surface Cooling and External Forcing in Colorado's Front Range  

Science Conference Proceedings (OSTI)

The atmospheric katabatic flow in the foothills of the Front Range of the Rocky Mountains has been monitored by a network of towers and sodars for several years as part of the ASCOT program. The dependence of the outflow from Coal Creek Canyon on ...

Richard L. Coulter; Paul Gudiksen

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Amphipods of the deep Mississippi Canyon, northern Gulf of Mexico: ecology and bioaccumulation of organic contaminants  

E-Print Network (OSTI)

In five summer cruises during the period 2000-2004, seventy-four box cores were collected from eleven locations from the Mississippi Canyon (480- 2750m, northern Gulf of Mexico), and an adjacent transect (336-2920) to understand the community structure and trophic function of amphipods and for measuring the bioaccumulation of polycyclic aromatic hydrocarbons, (PAHs). Amphipods were discovered to be an important component of the macrofauna of the Mississippi Canyon (40 % of the total faunal abundance). Seventy two species, belonging to nineteen families, were collected from the study area with 61 species from the canyon and only 38 species from the non-Canyon transect. The head of the canyon (480m) was dominated by dense mats (15,880 ind/m2) of a new amphipod (Ampelisca mississippiana). The logarithm of the amphipod abundance decreased linearly with depth. The species diversity (H`) exhibited a parabolic pattern with a maximum at 1100m. The differences in amphipod abundances and biodiversities were correlated with the variation in the amount of available organic matter. The depression in diversity in the canyon head is thought to be competitive exclusion resulting from the dominance by A.mississippiana, but the high species richness is presumed to be a function of the structural complexity of the canyon. Annual secondary production of A. mississippiana was 6.93 g dry wt m-2, based on size-frequency method and corresponding to an estimated univoltine generation from a regression model. The production/biomass ratio (P/B) was 3.11. Production of this magnitude is comparable to shallow marine ampeliscids but are high for the depauperate northern Gulf of Mexico. The effect of the organic contaminants and the bioavailability to the amphipods was determined through measuring the bioaccumulation of the PAHs. The distribution of PAHs in sediments was different from the distribution in the organisms suggesting preferential uptake/depuration or uptake from pore or bottom waters. The average bioaccumulation factor (4.36 2.55) and the biota sediment accumulation factor (0.240.13) for the total PAHs by the ampeliscids were within the range reported for other benthic invertebrates. The average bioaccumulation factors were highest for dibenzothiophenes (up to 132) and alkylated PAHs and lowest for parent high molecular weight PAHs.

Soliman, Yousria Soliman

2007-05-01T23:59:59.000Z

202

EV Everywhere Grand Challenge Kick-Off  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Everywhere Grand Challenge Kick-Off Thursday, June 21, 2012 - Hyatt Regency, Dearborn, MI Event Objective: To showcase existing DOE efforts in vehicle electrification and to obtain stakeholder input on the overall concept of the EV Everywhere Grand Challenge, the high-level strategy, and aggressive next-generation technology development necessary to enable U.S. companies to be the first in the world to produce plug-in electric vehicles (PEVs) that are as affordable and convenient for the average American family as today's gasoline-powered vehicles within the next 10 years. 8:30-8:35 AM CALL TO ORDER Mr. Patrick Davis, DOE EERE Vehicle Technologies Program 8:35-8:45 AM STRATEGIC SIGNIFICANCE OF PLUG-IN ELECTRIC VEHICLES

203

Grand Ridge Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Grand Ridge Wind Farm Facility Grand Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Location La Salle County IL Coordinates 40.999966°, -88.401693° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.999966,"lon":-88.401693,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, 1995  

Science Conference Proceedings (OSTI)

The Biology Team of ESH-20 (the Ecology Group) at Los Alamos National Laboratory (LANL) has collected samples from the stream within Sandia Canyon since the summer of 1990. These field studies measure water quality parameters and collect aquatic macroinvertebrates from sampling sites within the upper canyon stream. Reports by Bennett and Cross discuss previous aquatic studies in Sandia Canyon. This report updates and expands the previous findings. The Biology Team collected water quality data and aquatic macroinvertebrates monthly at three sampling stations within Sandia Canyon in 1995. The two upstream stations occur near a cattail (Typha latifolia) dominated marsh downstream from outfalls that discharge industrial and sanitary waste effluent into the stream, thereby maintaining year-round flow. The third station is approximately 1.5 miles downstream from the outfalls within a mixed conifer forest. All water chemistry parameters measured in Sandia Canyon during 1995 fell within acceptable State limits and scored in the {open_quotes}good{close_quotes} or {open_quotes}excellent{close_quotes} ranges when compared to an Environmental Quality Index. However, aquatic macroinvertebrates habitats have been degraded by widespread erosion, channelization, loss of wetlands due to deposition and stream lowering, scour, limited acceptable substrates, LANL releases and spills, and other stressors. Macroinvertebrate communities at all the stations had low diversities, low densities, and erratic numbers of individuals. These results indicate that although the stream possesses acceptable water chemistry, it has reduced biotic potential. The best developed aquatic community occurs at the sampling station with the best habitat and whose downstream location partially mitigates the effects of upstream impairments.

Cross, S.; Nottelman, H.

1997-01-01T23:59:59.000Z

205

Rio Grande pipeline introduces LPG to Mexico  

SciTech Connect

Rio Grande Pipeline, a joint venture between Mid-America Pipeline Co., Amoco Pipeline Co. and Navajo Pipeline Co., has broken new ground in the energy industry as the first LPG pipeline to cross the US-Mexico border. Plans for the project were announced in November 1995 and first deliveries started three months ago on March 21, 1997. The 8-inch, 265-mile pipeline originates near Odessa, TX, where it receives an 85-15 propane-butane mix via a connection to Mid-America Pipeline. From Odessa, product moves west through the Texas desert and crosses the Rio Grande River about 15 miles south of El Paso near Clint, TX and extends 20 miles into Mexico. Capacity of the line is 24,000 bpd and it has been averaging about 22,000 bpd since line-fill. All in all, it sounded like a reasonably feasible, routine project. But perceptions can be deceiving, or at least misleading. In other words, the project can be summarized as follows: one river, two cultures and a world of difference. The official border crossing for pipeline construction took place on Dec. 2, 1996, with a directional drill under the Rio Grande River, but in actuality, the joint venture partners were continually bridging differences in language, laws, customs and norms with Pemex and contracted workers from Mexico.

NONE

1997-06-01T23:59:59.000Z

206

Seasat: Results of the Mission  

Science Conference Proceedings (OSTI)

On 26 June 1978 the world's first oceanographic satellite, Seasat, was launched into orbit, beginning a 104-day mission of observing the oceans. After an extensive analysis of the accuracy of data from the satellite by all groups interested in ...

Robert H. Stewart

1988-12-01T23:59:59.000Z

207

Mission and Goals | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission and Goals The mission of the Advanced Photon Source (APS) is to deliver world-class science and technology by operating an outstanding synchrotron radiation research...

208

Agropecuaria e Industrial Serra Grande | Open Energy Information  

Open Energy Info (EERE)

Agropecuaria e Industrial Serra Grande Agropecuaria e Industrial Serra Grande Jump to: navigation, search Name Agropecuaria e Industrial Serra Grande Place São Raimundo das Mangabeiras, Maranhao, Brazil Product Privately owned Brazil based ethanol producer, located in the state of Maranhao. References Agropecuaria e Industrial Serra Grande[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Agropecuaria e Industrial Serra Grande is a company located in São Raimundo das Mangabeiras, Maranhao, Brazil . References ↑ "[ Agropecuaria e Industrial Serra Grande]" Retrieved from "http://en.openei.org/w/index.php?title=Agropecuaria_e_Industrial_Serra_Grande&oldid=341914" Categories:

209

Properties of the Wind Field within the Oklahoma City Park Avenue Street Canyon. Part I: Mean Flow and Turbulence Statistics  

Science Conference Proceedings (OSTI)

Velocity data were obtained from sonic anemometer measurements within an eastwest-running street canyon located in the urban core of Oklahoma City, Oklahoma, during the Joint Urban 2003 field campaign. These data were used to explore the ...

M. A. Nelson; E. R. Pardyjak; J. C. Klewicki; S. U. Pol; M. J. Brown

2007-12-01T23:59:59.000Z

210

Characterization of the Thermal Structure inside an Urban Canyon: Field Measurements and Validation of a Simple Model  

Science Conference Proceedings (OSTI)

The results of measurement campaigns are analyzed to investigate the thermal structure in an urban canyon and to validate a simplified model simulating the air and surface temperatures from surface energy budgets. Starting from measurements at ...

Lorenzo Giovannini; Dino Zardi; Massimiliano de Franceschi

2013-01-01T23:59:59.000Z

211

Observations of a Terrain-Forced Mesoscale Vortex and Canyon Drainage Flows along the Front Range of Colorado  

Science Conference Proceedings (OSTI)

Observations taken during the February 1991 Atmospheric Studies in Complex Terrain (ASCOT) Winter Validation Study are used to describe the wind field associated with a terrain-forced mesoscale vortex and thermally forced canyon drainage flows ...

David H. Levinson; Robert M. Banta

1995-07-01T23:59:59.000Z

212

A Large-Eddy Simulation Study of Thermal Effects on Turbulent Flow and Dispersion in and above a Street Canyon  

Science Conference Proceedings (OSTI)

Thermal effects on turbulent flow and dispersion in and above an idealized street canyon with a street aspect ratio of 1 are numerically investigated using the parallelized large-eddy simulation model (PALM). Each of upwind building wall, street ...

Seung-Bu Park; Jong-Jin Baik; Siegfried Raasch; Marcus Oliver Letzel

2012-05-01T23:59:59.000Z

213

Hydraulic Institute Mission and Vision:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Institute Mission and Vision: Institute Mission and Vision: Vision: To be a global authority on pumps and pumping systems. Mission: To be a value-adding resource to member companies and pump users worldwide by: * Developing and delivering comprehensive industry standards. * Expanding knowledge by providing education and tools for the effective application, testing, installation, operation and maintenance of pumps and pumping systems. * Serving as a forum for the exchange of industry information. The Hydraulic Institute is a non-profit industry (trade) association established in 1917. HI and its members are dedicated to excellence in the engineering, manufacture, and application of pumping equipment. The Institute plays a leading role in the development of pump standards in North America and worldwide. HI

214

Environmental Planning and Resource Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

FinalReport Glen Canyon Dam ROD & Operating Constraints Glen Canyon Operations White Paper Grand Canyon Protection Act of 1992 Replacement Resources & Methods Report...

215

Polychlorinated Biphenyls (PCBs) in Catfish and Carp Collected from the Rio Grande Upstream and Downstream of Los Alamos National Laboratory: Revision 1  

Science Conference Proceedings (OSTI)

Concern has existed for years that the Los Alamos National Laboratory (LANL), a complex of nuclear weapons research and support facilities, has released polychlorinated biphenyls (PCBs) to the environment that may have reached adjacent bodies of water through canyons that connect them. In 1997, LANL's Ecology Group began measuring PCBs in fish in the Rio Grande upstream and downstream of ephemeral streams that cross LANL and later began sampling fish in Abiquiu and Cochiti reservoirs, which are situated on the Rio Chama and Rio Grande upstream and downstream of LANL, respectively. In 2002, we electroshocked channel catfish (Ictalurus punctatus) and common carp (Carpiodes carpio) in the Rio Grande upstream and downstream of LANL and analyzed fillets for PCB congeners. We also sampled soils along the Rio Chama and Rio Grande drainages to discern whether a background atmospheric source of PCBs that could impact surface water adjacent to LANL might exist. Trace concentrations of PCBs measured in soil (mean = 4.7E-05 {micro}g/g-ww) appear to be from background global atmospheric sources, at least in part, because the bimodal distribution of low-chlorinated PCB congeners and mid-chlorinated PCB congeners in the soil samples is interpreted to be typical of volatilized PCB congeners that are found in the atmosphere and dust from global fallout. Upstream catfish (n = 5) contained statistically (P = 0.047) higher concentrations of total PCBs (mean = 2.80E-02 {micro}g/g-ww) than downstream catfish (n = 10) (mean = 1.50E-02 {micro}g/g-ww). Similarly, upstream carp (n = 4) contained higher concentrations of total PCBs (mean = 7.98E-02 {micro}g/g-ww) than downstream carp (n = 4) (3.07E-02 {micro}g/g-ww); however, the difference was not statistically significant (P = 0.42). The dominant PCB homologue in all fish samples was hexachlorobiphenyls. Total PCB concentrations in fish in 2002 are lower than 1997; however, differences in analytical methods and other uncertainties exist. A review of historical quantitative PCB data for fish from the Rio Grande and Abiquiu and Cochiti reservoirs does not indicate a distinct contribution of PCBs from LANL to fish in the Rio Grande or Cochiti. Analysis of homologue patterns for fish does not provide sufficient evidence of a LANL contribution. Nevertheless, concentrations of PCBs in fillets of fish sampled from the Rio Grande are indicative of potential adverse chronic health impact from consumption of these fish on a long-term basis.

Gilbert J. Gonzales Philip R. Fresquez

2008-05-12T23:59:59.000Z

216

Microsoft Word - CX-Franklin-BadgerCanyonGrandview-RedMtnsDisconnectSwitch_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2012 8, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Franklin-Badger Canyon and Grandview-Red Mountain switch replacements PP&A Project No.: 2,349 / 2,350 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance Location: Benton County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to replace disconnect switches and related equipment on the Franklin-Badger Canyon No.2 and Grandview-Red Mountain No.1 115- kilovolt transmission lines. The switch stands will be replaced in the same locations as the existing structures, and related load break equipment will be upgraded in-kind to existing. Both

217

Klondike III/Biglow Canyon Wind Integration Project; Record of Decision, October 25, 2006.  

DOE Green Energy (OSTI)

The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE)1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects, BPA will build and operate a 12-mile long, 230-kilovolt (kV) double-circuit transmission line between the wind projects and BPA's new 230-kV John Day Substation in Sherman County, Oregon. BPA will also expand its existing 500-kV John Day Substation.

United States. Bonneville Power Administration

2006-10-25T23:59:59.000Z

218

Potential of breccia pipes in the Mohawk Canyon Area, Hualapai Indian Reservation, Arizona  

Science Conference Proceedings (OSTI)

The Hualapai Indian Reservation is on the southwestern corner of the Colorado Plateau in northern Arizona. Hundreds of solution-collapse breccia pipes crop out in the canyons and on the plateaus of northern Arizona. The pipes originated in the Mississippian Redwall Limestone and stoped their way upward through the upper Paleozoic strata, locally extending into the Triassic Moenkopi and Chinle Formations. The occurrence of high-grade U ore, associated with potentially economic concentrations of Cu, Ag, Pb, Zn, V, Co, and Ni in some of these pipes, has stimulated mining activity in northern Arizona despite the depressed market for most of these metals. Two breccia pipes, 241, and 242, have significant mineralized rock exposed on the Esplanade erosion surface; unfortunately, their economic potential is questionable because of their inaccessibility at the bottom of Mohawk Canyon. All warrant further exploration.

Wenrich, K.J.; Billingsley, G.H.; Van Gosen, B.S.

1990-09-21T23:59:59.000Z

219

Draft Environmental Impact Statement Klondike III/Biglow Canyon Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary S-1 Summary S-1 Summary In this Summary: * Purpose and Need for Action * Alternatives * Affected Environment * Impacts This summary covers the major points of the draft Environmental Impact Statement (EIS) prepared for the Klondike III/Biglow Canyon Wind Integration Project proposed by the Bonneville Power Administration (BPA). The project includes constructing a new double-circuit 230-kilovolt (kV) transmission line in northern Sherman County, Oregon. The new line would connect the Klondike III Wind Project and the Biglow Canyon Wind Farm to BPA's existing John Day 500-kV Substation. The project would also require expansion of BPA's existing John Day 500-kV Substation and a new 230-kV substation to integrate the two wind projects. As a federal agency, BPA is required by the National Environmental Policy Act

220

EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Grande Ronde Basin Endemic Spring Chinook Salmon 3: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon SUMMARY This EA evaluates the environmental impacts for the U.S. Department of Energy Bonneville Power Administration's proposal to fund a program designed to prevent the extinction and begin the recovery of spring Chinook salmon stocks in the Grande Ronde River Basin in the Upper Grande Ronde River, Lostine River, and Catherine Creek in Northeastern Oregon. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 18, 2003 EA-1173-SA-01: Supplement Analysis Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint lidar data.  

E-Print Network (OSTI)

??Accurate estimation of live and dead biomass in forested ecosystems is important for studies of carbon dynamics, biodiversity, and wildfire behavior, and for forest management. (more)

[No author

2009-01-01T23:59:59.000Z

222

DISSOLUTION OF FB-LINE METAL RESIDUES CONTAINING BERYLLIUM IN H-CANYON  

DOE Green Energy (OSTI)

Scrap materials containing plutonium (Pu) metal from FB-Line vaults are currently being dissolved in HB-Line for subsequent disposition through the H-Canyon facility. However, milestone and schedule commitments may require the dissolution of material containing Pu and beryllium (Be) metals in H-Canyon. To support this option, a flowsheet for dissolving Pu and Be metals in H-Canyon was demonstrated using a 4 M nitric acid (HNO{sub 3}) solution containing 0.3 M fluoride (F{sup -}). The F{sup -} was added as calcium fluoride (CaF{sub 2}). The dissolving solution also contained 2.5 g/L boron (B), a nuclear safety contingency for the H-Canyon dissolver, and 3.9 g/L iron (Fe) to represent the dissolution of carbon steel cans. The solution was heated to 90-95 C during the 8 h dissolution cycle. Dissolution of the Be metal appeared to begin as soon as the samples were added to the dissolver. Clear, colorless bubbles generated on the surface were observed and were attributed primarily to the generation of hydrogen (H{sub 2}) gas. The generation of nitrogen dioxide (NO{sub 2}) gas was also evident from the color of the solution. Essentially all of the Pu and Be dissolved during the first hour of the dissolution as the solution was heated to 90-95 C. The amount of residual solids collected following the dissolution was < 2% of the total metal charged to the dissolver. Examination of residual solids by scanning electron microscopy (SEM) showed that the largest dimension of the particles was less than 50 {micro}m with particles of smaller dimensions being more abundant. Energy dispersive spectra from spots on some of the particles showed the solids consisted of a small amount of undissolved material, corrosion products from the glassware, and dried salts from the dissolving solution.

Rudisill, T; Mark Crowder, M; Michael Bronikowski, M

2005-07-15T23:59:59.000Z

223

Steam Generator Tube Integrity Risk Assessment: Volume 2: Application to Diablo Canyon Power Plant  

Science Conference Proceedings (OSTI)

Damage to steam generator tubing can impair its ability to adequately perform the required safety functions in terms of structural stability and leakage. This report describes the Diablo Canyon Power Plant application of a method for calculating risk for severe accidents involving steam generator tube failure. The method helps utilities determine risks associated with application of alternate repair criteria and/or operation with degraded tubing.

2000-08-08T23:59:59.000Z

224

Dissolution of Plutonium Scrub Alloy and Anode Heel Materials in H-Canyon  

SciTech Connect

H-Canyon has a ''gap'' in dissolver operations during the last three months of FY03. One group of material to be processed during the gap is pre-existing scrub alloy material. There are 14 cans of material containing approximately 3.8 kilograms of plutonium. Of the 14 cans, it was anticipated that four cans contain salts, two cans contain anode heel materials, and eight cans contain scrub alloy buttons. H-Canyon desires to process the materials using a flowsheet similar to the SS and C (sand, slag and crucible) dissolution flowsheet used in F-Canyon. The materials will be loaded into carbon steel cans and then placed into aluminum metal charging bundles. Samples were sent to Savannah River Technology Center (SRTC) for characterization and flowsheet testing -- four MSE salts, two anode heels, and seven scrub alloy buttons. SRTC dissolved and characterized each of the samples. Two of them, originally thought to be MSE salts, were found to be graphite mold materials and were unsuitable for processing in H-Canyon. Characterization studies confirmed that the identification of the remaining items as MSE salts, scrub alloy buttons, and anode heel materials was correct. The MSE salts and anode heels solids are comprised primarily of plutonium, potassium, sodium and chloride. Both the MSE salts and anode heels left behind small amounts of residual solids. The scrub alloy buttons are comprised primarily of plutonium and aluminum. The solids dissolve readily with light, effervescent gas generation at the material surface and only trace amounts of NOx generation. Of the seven button samples, four dissolved completely. Two button samples contained small amounts of tantalum that did not dissolve. The last of the seven scrub alloy samples left a trace amount of residual plutonium solids. It is anticipated that the presence of undissolved fissile material is a function of where the sample was located relative to the button surface.

PIERCE, RA

2004-04-12T23:59:59.000Z

225

Evaluation of Zinc Addition During Cycle 9 at Diablo Canyon Unit 1  

Science Conference Proceedings (OSTI)

Laboratory studies have shown that zinc addition to primary coolant can mitigate primary water stress corrosion cracking (PWSCC) of Alloy 600 and reduce radiation fields in PWRs. This report documents experience with zinc addition during Cycle 9 at Diablo Canyon Power Plant Unit 1 (DCPP-1), operated by Pacific Gas & Electric. This project evaluated the effect of zinc addition on PWSCC initiation and propagation. It also examined the impact of zinc addition on radiation fields and fuel cladding deposition...

1999-10-27T23:59:59.000Z

226

Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, November 1993--October 1994  

SciTech Connect

The Ecological Studies Team (EST) of ESH-20 at Los Alamos National Laboratory (LANL) has collected samples from the stream within Sandia Canyon since the summer of 1990. These field studies gather water quality measurements and collect aquatic macroinvertebrates from permanent sampling sites. Reports by Bennett (1994) and Cross (1994) discuss previous EST aquatic studies in Sandia Canyon. This report updates and expands those findings. EST collected water quality data and aquatic macroinvertebrates at five permanent stations within the canyon from November 1993 through October 1994. The two upstream stations are located below outfalls that discharge industrial and sanitary waste effluent into the stream, thereby maintaining year-round flow. Some water quality parameters are different at the first three stations from those expected of natural streams in the area, indicating degraded water quality due to effluent discharges. The aquatic habitat at the upper stations has also been degraded by sedimentation and channelization. The macroinvertebrate communities at these stations are characterized by low diversities and unstable communities. In contrast, the two downstream stations appear to be in a zone of recovery, where water quality parameters more closely resemble those found in natural streams of the area. The two lower stations have increased macroinvertebrate diversity and stable communities, further indications of downstream water quality improvement.

Cross, S.

1995-08-01T23:59:59.000Z

227

Operational Readiness Review Final Report For F-Canyon Restart. Phase 1  

SciTech Connect

An independent WSRC Operational Readiness Review was performed for the restart of Phase 1 processing in F-Canyon, Building 221-F. Readiness to restart the Second Plutonium Cycle process and solvent recovery was assessed. The ORR was conducted by an ORR board of ten members with the support of a subject matter expert. The chairman and four members were drawn from the Operational Safety Evaluation Department, ESH& QA Division; additional members were drawn from other WSRC divisions, independent of the F-Canyon operating division (NMPD). Based on the results of the readiness verification assessments performed according to the ORR plan and the validation of pre-restart corrective actions, the WSRC independent ORR Board has concluded that the facility has achieved the state of readiness committed to in the Restart Plan. Also, based on the scope of the ORR, it is the opinion of the board that F-Canyon Phase 1 processes can be restarted without undue risk to the safety of the public and onsite workers and without undue risk to the environment.

McFarlane, A.F.; Spangler, J.B.

1995-04-05T23:59:59.000Z

228

Environmenal analysis of the Bayo Canyon (TA-10) Site, Los Alamos, New Mexico  

SciTech Connect

The radiological survey of the old TA-10 site in Bayo Canyon found low levels of surface contamination in the vicinity of the firing sites and subsurface contamination in the old waste disposal area. The three alternatives proposed for the site are: (1) to take no action; (2) to restrict usage of the area of subsurface contamination to activities that cause no subsurface disturbance (minimal action); and (3) to remove the subsurface conamination to levels below the working criteria. Dose calculations indicate that doses from surface contamination for recreational users of the canyon, permanent residents, and construction workers and doses for workers involved in excavation of contaminated soil under the clean up alternative are only small percentages of applicable guidelines. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is small, especially considering that the area already has been affected by the original TA-10 decommissioning action, but nevertheless, the preferred alternative is the minimal action alternative, where 0.6 hectare of land is restricted to surface activities. This leaves the rest of the canyon available for development with up to 400 homes. The restricted area can be used for a park, tennis courts, etc., and the /sup 90/Sr activity will decay to levels permitting unrestricted usage in about 160 y.

Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Hansen, W.R.

1982-05-01T23:59:59.000Z

229

City of Grand Rapids - Green Building Requirements for Municipal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2006, the City of Grand Rapids approved a resolution detailing the city's sustainability policy for public buildings. The resolution directed city personnel to implement...

230

DOE - Office of Legacy Management -- Grand Junction Sites  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

231

Statement by Energy Secretary Steven Chu on Today's Grand Opening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steven Chu issued the following statement on today's grand opening of the Nordex wind turbine manufacturing facility in Jonesboro. The facility was supported with funding from the...

232

Rio Grande Rift Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Rift Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Rio Grande Rift Geothermal Region edit Details Areas (21) Power Plants (0) Projects (2)...

233

SunShot Grand Challenge Highlights Ambitious Efforts along the...  

NLE Websites -- All DOE Office Websites (Extended Search)

startups. Secretary Chu also announced a nationwide competition to drive down the cost of rooftop solar energy system. The SunShot Grand Challenge: Summit and Technology Forum...

234

City of Grand Rapids- Green Building Requirements for Municipal Buildings  

Energy.gov (U.S. Department of Energy (DOE))

In January 2006, the City of Grand Rapids approved a resolution detailing the city's sustainability policy for public buildings. The resolution directed city personnel to implement the principles...

235

Odyssey: a Solar System Mission  

E-Print Network (OSTI)

The Solar System Odyssey mission uses modern-day high-precision experimental techniques to test the laws of fundamental physics which determine dynamics in the solar system. It could lead to major discoveries by using demonstrated technologies. The mission proposes to perform a set of precision gravitation experiments from the vicinity of Earth to the outer Solar System. Its scientific objectives can be summarized as follows: i) test of the gravity force law in the Solar System up to and beyond the orbit of Saturn; ii) precise investigation of navigation anomalies at the fly-bys; iii) measurement of Eddington's parameter at occultations; iv) mapping of gravity field in the outer solar system and study of the Kuiper belt. To this aim, the Odyssey mission is built up on a main spacecraft, designed to fly up to 13 AU, with the following components: a) a high-precision accelerometer, with bias-rejection system, measuring the deviation of the trajectory from the geodesics; b) Ka-band transponders, as for Cassini, for a precise range and Doppler measurement up to 13 AU, with additional VLBI equipment; c) optional laser equipment, which would allow one to improve the range and Doppler measurement. In this baseline concept, the main spacecraft is designed to operate beyond the Saturn orbit, up to 13 AU. It experiences multiple planetary fly-bys at Earth, Mars or Venus, and Jupiter. The cruise and fly-by phases allow the mission to achieve its baseline scientific objectives (i) to iii) in the above list). In addition to this baseline concept, the Odyssey mission proposes the release of the Enigma radio-beacon at Saturn, allowing one to extend the deep space gravity test up to at least 50 AU, while achieving the scientific objective of a mapping of gravity field in the outer Solar System.

B. Christophe; P. H. Andersen; J. D. Anderson; S. Asmar; Ph. Brio; O. Bertolami; R. Bingham; F. Bondu; Ph. Bouyer; S. Bremer; J. -M. Courty; H. Dittus; B. Foulon; P. Gil; U. Johann; J. F. Jordan; B. Kent; C. Lmmerzahl; A. Lvy; G. Mtris; O. Olsen; J. Pramos; J. D. Prestage; S. V. Progrebenko; E. Rasel; A. Rathke; S. Reynaud; B. Rievers; E. Samain; T. J. Sumner; S. Theil; P. Touboul; S. Turyshev; P. Vrancken; P. Wolf; N. Yu

2007-11-13T23:59:59.000Z

236

Mission and Functions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission and Functions Mission and Functions Mission and Functions Office of Technology Mission and Functions Mission The Office of Technology manages the Technology Deployment and Technology Development programs to improve the security posture of the Department of Energy and the protection of its assets and facilities through the deployment of new safeguards and security technologies and development of advanced technologies that reduce operating costs, save protective force lives, and improve security effectiveness. Functions Conducts security system testing and analyses of safeguards and security technology and related equipment and techniques associated with programmatic mission requirements for deployment at field and Headquarters sites. Assembles, leads, and manages teams of subject-matter experts to review,

237

Grand River Dam Authority | Open Energy Information  

Open Energy Info (EERE)

Dam Authority Dam Authority Jump to: navigation, search Name Grand River Dam Authority Place Oklahoma Utility Id 7490 Utility Location Yes Ownership S NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png general service Commercial general service commercial Commercial large general servic time of use distributional Commercial

238

Vehicle Technologies Office: EV Everywhere Grand Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge With their immense potential for increasing the country's energy, economic, and environmental security, plug-in hybrid electric and all-electric vehicles (also known as plug-in electric vehicles, or PEVs) will play a key role in the country's transportation future. In fact, transitioning to electric drive vehicles (including hybrid-electric) could reduce U.S. oil dependence by more than 80% and greenhouse gas emissions by more than 60%. The EV Everywhere Grand Challenge focuses on the U.S. becoming the first nation in the world to produce plug-in electric vehicles that are as affordable for the average American family as today's gasoline-powered vehicles within the next 10 years. To learn more about electric vehicles, see our Plug-in Electric Vehicle Basics page. To help meet the EV Everywhere goals, the Vehicle Technologies Office supports efforts in a variety of areas:

239

Grand Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Jump to: navigation, search Name Grand Electric Coop, Inc Place South Dakota Utility Id 7484 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Heat Rate Commercial Farm and Residential Electric Heat Rate Residential Metered Security Light - 100 HPS Lighting Metered Security Light - 175 MV Lighting Metered Security Light - 250 HPS Lighting Metered Security Light - 400 MV Lighting Schedule A - Farm and Residential Residential Schedule ADF -Du al Fuel Service Residential

240

Panel on grand challenges for modeling and simulation  

Science Conference Proceedings (OSTI)

It has been a decade since the Workshop on Grand Challenge for Modeling & Simulation (M&S) was held at Dagstuhl in Germany (www.dagstuhl.de/02351). Grand challenges provide a critical focal point for research and development and can potentially create ...

Simon J. E. Taylor; Richard Fujimoto; Ernest H. Page; Paul A. Fishwick; Adelinde M. Uhrmacher; Gabriel Wainer

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mission  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Energy Efficiency and Renewable Energy (EERE) is at the center of creating the clean energy economy today. They lead the U.S. Department of Energy's efforts to develop and deliver...

242

Mission  

NLE Websites -- All DOE Office Websites (Extended Search)

Underground experiments and ground-based telescopes uncover the nature of dark matter and dark energy. The Fermilab complex efficiently and safely delivers the highest levels of...

243

Mission  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Energy Efficiency and Renewable Energy (EERE) is at the center of creating the clean energy economy today. EERE leads the U.S. Department of Energy's efforts to develop and...

244

Mission design for LISA Pathfinder  

E-Print Network (OSTI)

Here we describe the mission design for SMART-2/LISA Pathfinder. The best trade-off between the requirements of a low-disturbance environment and communications distance is found to be a free-insertion Lissajous orbit around the first co-linear Lagrange point of the Sun-Earth system L1, 1.5x 10^6 km from Earth. In order to transfer SMART-2/LISA Pathfinder from a low Earth orbit, where it will be placed by a small launcher, the spacecraft carries out a number of apogee-raise manoeuvres, which ultimatively place it to a parabolic escape trajectory towards L1. The challenges of the design of a small mission are met, fulfilling the very demanding technology demonstration requirements without creating excessive requirements on the launch system or the ground segment.

M. Landgraf; M. Hechler; S. Kemble

2004-11-15T23:59:59.000Z

245

The Particle Adventure | Unsolved Mysteries | Forces and the Grand Unified  

NLE Websites -- All DOE Office Websites (Extended Search)

Unsolved Mysteries - Forces and the Grand Unified Theory Unsolved Mysteries - Forces and the Grand Unified Theory Forces and the Grand Unified Theory Physicists hope that a Grand Unified Theory will unify the strong, weak, and electromagnetic interactions. There have been several proposed Unified Theories, but we need data to pick which, if any, of these theories describes nature. If a Grand Unification of all the interactions is possible, then all the interactions we observe are all different aspects of the same, unified interaction. However, how can this be the case if strong and weak and electromagnetic interactions are so different in strength and effect? Strangely enough, current data and theory suggests that these varied forces merge into one force when the particles being affected are at a high enough energy.

246

Grand Challenges | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Grand Challenges Grand Challenges Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Basic Research Needs Grand Challenges Science Highlights News & Events Publications Contact BES Home Research Grand Challenges Print Text Size: A A A RSS Feeds FeedbackShare Page Grand Challenge Report The Basic Energy Sciences Advisory Committee (BESAC) report, Directing Matter and Energy: Five Challenges for Science and the Imagination was the culmination of a series of BES-sponsored workshops that began in 2001. Over and over, the recommendations from these workshops described similar themes that in this new era of science, we would design, discover, and synthesize new materials and molecular assemblies through atomic scale control; probe and control photon, phonon, electron, and ion interactions

247

Mission Statements | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

248

Antimatter Driven Sail for Deep Space Missions  

Science Conference Proceedings (OSTI)

The concept of the Antimatter Driven Sail (ADS) has been examined in three major areas: Mission Architecture

Steven D. Howe; Gerald P. Jackson

2005-01-01T23:59:59.000Z

249

Mission Areas | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

250

Mission Statements | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering...

251

Enabling Grid technologies for Planck space mission  

Science Conference Proceedings (OSTI)

PLANCK, the ESA satellite aimed at mapping the microwave sky through two complete sky surveys, will fly in 2007. It is an extremely demanding space mission in terms of computing power and data storage. PLANCK simulations mimic the whole mission starting ... Keywords: CMB, EGEE, HPC, Planck satellite mission, globus, grid computing

Giuliano Taffoni; Davide Maino; Claudio Vuerli; Giuliano Castelli; Riccardo Smareglia; Andrea Zacchei; Fabio Pasian

2007-02-01T23:59:59.000Z

252

Mission Assurance Challenges within the Military Environment  

Science Conference Proceedings (OSTI)

Virtually all modern organizations have embedded information and communication technologies into their core processes as a means to increase operational efficiency, improve decision quality, and reduce operational costs. However, this dependence can ... Keywords: Cyber Mission Assurance, Embedded Information and Communication Technologies, Mission Assurance, Mission-to-Cyber Relationships, Risk Management

Scott Musman, Michael R. Grimaila

2013-04-01T23:59:59.000Z

253

EA-33-A and PP-33-1 Rio Grande Electric Cooperative, Inc. | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-A and PP-33-1 Rio Grande Electric Cooperative, Inc. EA-33-A and PP-33-1 Rio Grande Electric Cooperative, Inc. Order authorizing Rio Grande Electric Cooperative, Inc to export...

254

White House Mission Requests Memorandum | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White House Mission Requests Memorandum White House Mission Requests Memorandum White House Mission Requests Memorandum More Documents & Publications THE WHITE HOUSE THE WHITE...

255

Hydraulic Institute Mission and Vision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Institute Mission and Vision Hydraulic Institute Mission and Vision Mission: To be a value-adding resource to member companies and pump users worldwide by: * Developing...

256

EA-178-B Edison Mission Marketing & Trading, Inc | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-B Edison Mission Marketing & Trading, Inc EA-178-B Edison Mission Marketing & Trading, Inc Order authorizing Edison Mission Marketing & Trading, Inc to export electric energy to...

257

Internal structure of the Kern Canyon Fault, California: a deeply exhumed strike-slip fault  

E-Print Network (OSTI)

Deformation and mineral alteration adjacent to a 2 km long segment of the Kern Canyon fault near Lake Isabella, California are studied to characterize the internal structure of the fault zone and to understand the development of fault structure and constitution and the mechanical and chemical processes responsible for them. The 140 km long Kern Canyon fault (KCF) is a fault of 15 km right-lateral separation exhumed from seismogenic depth that cuts batholithic and metamorphic rocks of the southern Sierra Nevada. The fault consists of at least three distinct phases: an early phase of lower-greenschist-grade ductile shear with an S-C' phyllonite, a subsequent, dominant phase of brittle faulting characterized by a through-going zone of cataclastic rock, and a late stage of minor faulting along discontinuous, thin, hematitic gouge zones. The S-C' fabric and subsidiary fault-slip data indicate that both the phyllonitic and cataclastic zones are approximately vertical and strike-slip; slip lineations within the hematitic gouge suggest oblique-slip. The phyllonite zone trends N20-40E and accommodated ~175 m of separation. The cataclastic zone cuts the phyllonite, trends N21E, and consists of foliated and non-foliated cataclasites; it accommodates the majority of displacement along the fault. Abundant veins and fluid-assisted alteration in the rock surrounding the fault zone attest to the presence of fluids of evolving chemistry during both ductile and brittle faulting. Mass balance calculations indicate quartz loss during phyllonite faulting and imply that the fault system was open and experienced a negative change in volume during phyllonite faulting. Mesoscale and microscale fracture intensities decrease with log distance from the foliated cataclasites and approach a relatively low level at approximately 500 m. The internal structure of the Kern Canyon fault is similar to other large displacement faults in that it consists of a broad zone of fractured and altered rock and a narrow zone of intense cataclasis.

Neal, Leslie Ann

2002-01-01T23:59:59.000Z

258

Seismic stratigraphy and salt tectonics of the Alaminos Canyon area, Gulf of Mexico.  

E-Print Network (OSTI)

The Alaminos Canyon region is located at the change in the bathymetric trend between the slope and rise. Over 6,435 km of migrated seismic reflection profiles were analyzed to produce two structure and two isopach maps. Maps of the seafloor morphology, salt structure, and suprasalt sediments indicate the majority of the slope is covered by a shallow salt canopy. The salt structure map indicates that the Alaminos Canyon study area represents a transition from a semi-continuous salt sheet in the east to a less continuous salt sheet in the western margin. Salt lobe canopies are located within the eastern and western margins of the study area, while the central region represents a transition zone between the two lobate canopies. The sediment isochron maps show that the salt has played an important role in the sediment deposition and the formation of intraslope basins. The salt sheet interacted with slope sediment deposition by acting as a barrier to downslope sediment transport and by influencing the direction of mass transport. The uplift of the salt has formed topographic lows in which sediment is transported from the shelf beyond the slope. Within the study area, intraslope basins consist of remnants of submarine canyons blocked by diapiric uplift and closed depressions formed by subsidence in response to salt withdrawal. These intraslope basins have trapped thick deposits of sediment, thereby reducing the sediment transport beyond the slope region. Pleistocene sealevel fluctuations appear to be the dominant force in the depostional record. As the lowering of relative sealevel ended, the transport of sandy material decreased and hemipelagic sedimentation increased. Eustatic sealevel fluctuations during the Pleistocene led to cyclic seismic depostional sequences throughout the study area.

Mechler, Suzanne Marie

1994-01-01T23:59:59.000Z

259

SURVEY OF LOS ALAMOS AND PUEBLO CANYON FOR RADIOACTIVE CONTAMINATION AND RADIOASSAY TESTS RUN ON SEWER-WATER SAMPLES AND WATER AND SOIL SAMPLES TAKEN FROM LOS ALAMOS AND PUEBLO CANYONS  

SciTech Connect

Chemical sewers and sanitary lines draining the Tech Area, D. P. Site, CMR-12 Laundry, and surrounding residential areas flow into Pueblo and Los Alamos Canyon streams. In order to determine the extent and sources of radioactive contamination in these localities, fluid samples from each of the sewers, soil samples from each of the sewers, soil samples from the ground surrounding the sewer exits, and water and soil samples from selected spots in or near each of the two canyon streams were collected and analyzed for polonium and . plutonium. (W.D.M.)

Kingsley, W.H.; Fox, A.; Tribby, J.F.

1947-02-20T23:59:59.000Z

260

NERSC8_Mission_Need_Final  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission Need Statement Mission Need Statement NERSC-8 Page 1 Mission Need Statement for the Next Generation High Performance Production Computing System Project (NERSC-8) (Non-major acquisition project) Office of Advanced Scientific Computing Research Office of Science U.S. Department of Energy Date Approved: Month / Year Mission Need Statement NERSC-8 Page 2 Submitted by: David Goodwin, Program Manager Date Advanced Scientific Computing Research, Office of Science, DOE Concurrence: Daniel Lehman, Director, Date Office of Project Assessment, Office of Science, DOE Approval: Daniel Hitchcock, Acquisition Executive, Associate Director, Date Advanced Scientific Computing Research, Office of Science, DOE Mission Need Statement

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

B Plant canyon sample TK-21-1 analytical results for the final report  

Science Conference Proceedings (OSTI)

This document is the analytical laboratory report for the TK-21-1 sample collected from the B Plant Canyon on February 18, 1998. The sample was analyzed in accordance with the Sampling and Analysis Plan for B Plant Solutions (SAP) (Simmons, 1997) in support of the B Plant decommissioning project. Samples were analyzed to provide data both to describe the material which would remain in the tanks after the B Plant transition is complete and to determine Tank Farm compatibility. The analytical results are included in the data summary table (Table 1).

Steen, F.H.

1998-04-10T23:59:59.000Z

262

Data Compendium for the Logging Test Pits at the ERDA Grand Junction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound (December 1975) Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound...

263

Small power plant reverse trade mission  

DOE Green Energy (OSTI)

This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

Not Available

1989-09-06T23:59:59.000Z

264

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

Science Conference Proceedings (OSTI)

Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

Murphy, M.B.

1999-02-01T23:59:59.000Z

265

Multimedia from NASA's GLAST Mission  

DOE Data Explorer (OSTI)

GLAST is short for Gamma-ray Large Area Space Telescope, but its name is Fermi. Launched in June, 2008, Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is spectacularly different from the one we perceive with our own eyes. With a huge leap in all key capabilities, Fermi data will enable scientists to answer persistent questions across a broad range of topics, including supermassive black-hole systems, pulsars, the origin of cosmic rays, and searches for signals of new physics. The mission is an astrophysics and particle physics partnership, developed by NASA in collaboration with the U.S. Department of Energy, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the United States. [Copied, edited from http://www.nasa.gov/mission_pages/GLAST/main/index.html] GLAST has two main components, the Large Area Telescope (LAT) and the Gamma Burst Monitor(GBM). The LAT is managed at SLAC National Accelerator Laboratory, and data feeds from Fermi flow to both DOE and NASA. NASA is responsible for maintaining and distributing the data. The multimedia offerings at NASA's GLAST web page are plentiful. Both videos and image collections are available, along with scientific and technical information packaged in a variety of attractive and educational forms.

266

EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30: Facility Operations at the U.S. DOE Grand Junction 30: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to expand and upgrade the U.S. Department of Energy's Grand Junction Projects Office facilities and operations in Grand Junction, Colorado. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD June 8, 1996 EA-0930: Finding of No Significant Impact Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado June 8, 1996 EA-0930: Final Environmental Assessment Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand

267

Detection of Gas Hydrates in Garden Banks and Keathley Canyon from Seismic Data  

E-Print Network (OSTI)

Gas hydrate is a potential energy source that has recently been the subject of much academic and industrial research. The search for deep-water gas hydrate involves many challenges that are especially apparent in the northwestern Gulf of Mexico, where the sub-seafloor is a complex structure of shallow salt diapirs and sheets underlying heavily deformed shallow sediments and surrounding diverse minibasins. Here, we consider the effect these structural factors have on gas hydrate occurrence in Garden Banks and Keathley Canyon blocks of the Gulf of Mexico. This was accomplished by first mapping the salt and shallow deformation structures throughout the region using a 2D grid of seismic reflection data. In addition, major deep-rooted faults and shallow-rooted faults were mapped throughout the area. A shallow sediment deformation map was generated that defined areas of significant faulting. We then quantified the thermal impact of shallow salt to better estimate the gas hydrate stability zone (GHSZ) thickness. The predicted base of the GHSZ was compared to the seismic data, which showed evidence for bottom simulating reflectors and gas chimneys. These BSRs and gas chimneys were used to ground-truth the calculated depth of the base of GHSZ. Finally, the calculated GHSZ thickness was used to estimate the volume of the gas hydrate reservoir in the area after determining the most reasonable gas hydrate concentrations in sediments within the GHSZ. An estimate of 5.5 trillion cubic meters of pure hydrate methane in Garden Banks and Keathley Canyon was obtained.

Murad, Idris

2009-05-01T23:59:59.000Z

268

Source Characterization of the August 6, 2007 Crandall Canyon Mine Seismic Event in Central Utah  

SciTech Connect

On August 6, 2007 a local magnitude 3.9 seismic event occurred at 08:48:40 UTC in central Utah. The epicenter is within the boundaries of the Crandall Canyon coal mine (c.f. Pechmann et al., this volume). We performed a moment tensor analysis with complete, three-component seismic recordings from stations operated by the USGS, the University of Utah, and EarthScope. The analysis method inverts the seismic records to retrieve the full seismic moment tensor, which allows for interpretation of both shearing (e.g., earthquakes) and volume-changing (e.g., explosions and collapses) seismic events. The results show that most of the recorded seismic wave energy is consistent with an underground collapse in the mine. We contrast the waveforms and moment tensor results of the Crandall Canyon Mine seismic event to a similar sized tectonic earthquake about 200 km away near Tremonton, Utah, that occurred on September 1, 2007. Our study does not address the actual cause of the mine collapse.

Ford, S R; Dreger, D S; Walter, W R

2008-07-01T23:59:59.000Z

269

Carbon Steel and Magnesium Oxide Dissolution for H-Canyon Process Applications  

DOE Green Energy (OSTI)

H Area Operations is planning to process plutonium-contaminated uranium metal scrap in its efforts to de-inventory excess nuclear materials. The Savannah River Technology Center (SRTC) performed flowsheet development to support the decision to process the scrap in H-Canyon using 2M nitric acid (HNO3) / 0.025M potassium fluoride (KF) and 2 g/L boron. The scrap will be charged to the H-Canyon dissolver via a stainless steel charging bundle with a carbon steel end cap that must dissolve in an appropriate time frame. Experimental work was performed with a range of potential materials to be used to fabricate the bundle end cap. Testing was conducted with samples of metal plate, wire, cans, rods, and rivets to assess their dissolution characteristics in 2M HNO3/ 0.025M KF and 2 g/L boron. Experiments also measured the amount of hydrogen gas generated during carbon steel dissolution using the above dissolver solution. Each material type and its associated dissolution characteristic relate to specific bundle end cap designs being considered. Supplemental studies were conducted to evaluate the behavior and effect of magnesium oxide (MgO) sand on dissolution of uranium metal in 2M HNO3/ 0.025M KF and 2 g/L boron. The potential exists for a small quantity of MgO to be introduced into the dissolution flowsheet due to the use of MgO sand to extinguish uranium metal fires.

PIERCE, RA

2004-04-12T23:59:59.000Z

270

Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.  

DOE Green Energy (OSTI)

The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.

Rasmussen, Lynn (Nez Perce Soil and Conservation District, Lewiston, ID)

2006-07-01T23:59:59.000Z

271

Radionuclide contaminant analysis of small mammels, plants and sediments within Mortandad Canyon, 1994  

SciTech Connect

Small mammals, plants and sediments were sampled at one upstream location (Site 1) and two downstream locations (Site 2 and Site 3) from the National Pollution Discharge Elimination System outfall {number_sign}051-051 in Mortandad Canyon, Los Alamos County, New Mexico. The purpose of the sampling was to identify radionuclides potentially present, to quantitatively estimate and compare the amount of radionuclide uptake at specific locations (Site 2 and Site 3) within Mortandad Canyon to an upstream site (Site 1), and to identify the primary mode (inhalation ingestion, or surface contact) of contamination to small mammals. Three composite samples of at least five animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. In addition, three composite samples were also collected for plants and sediments at each site. Samples were analyzed for {sup 241}Am, {sup 90}Sr, {sup 238}Pu, {sup 239}Pu, and total U. With the exception of total U, all mean radionuclide concentrations in small mammal carcasses and sediments were significantly higher at Site 2 than Site 1 or Site 3. No differences were detected in the mean radionuclide concentration of plant samples between sites. However, some radionuclide concentrations found at all three sites were higher than regional background. No differences were found between mean carcass radionuclide concentrations and mean pelt radionuclide concentrations, indicating that the two primary modes of contamination may be equally occurring.

Bennett, K.; Biggs, J.; Fresquez, P.

1996-01-01T23:59:59.000Z

272

Thermomechanical models of the Rio Grande rift  

SciTech Connect

Fully two-dimensional, coupled thermochemical solutions of a continental rift and platform are used to model the crust and mantle structure of a hot, buoyant mantle diapir beneath the Rio Grande rift. The thermomechanical model includes both linear and nonlinear laws of the Weertman type relating shear stress and creep strain rate, viscosity which depends on temperature and pressure, and activation energy, temperature-dependent thermal conductivity, temperature-dependent coefficient of thermal expansion, the Boussinesq approximation for thermal bouyancy, material convection using a stress rate that is invariant to rigid rotations, an elastically deformable crust, and a free surface. The model determines the free surface velocities, solid state flow field in the mantle, and viscosity structure of lithosphere and asthenosphere. Regional topography and crustal heat flow are simulated. A suite of symmetric models, assumes continental geotherms on the right and the successively increasing rift geotherms on the left. These models predict an asthenospheric flow field which transfers cold material laterally toward the rift at > 300 km, hot, buoyant material approx. 200 km wide which ascends vertically at rates of 1 km/my between 175 to 325 km, and spreads laterally away from the rift at the base of the lithosphere. Crustal spreading rates are similar to uplift rates. The lithosphere acts as stiff, elastic cap, damping upward motion through decreased velocities of 1 km/10 my and spreading uplift laterally. A parameter study varying material coefficients for the Weertman flow law suggests asthenospheric viscosities of approx. 10/sup 22/ to 10/sup 23/ poise. Similar studies predict crustal viscosities of approx. 10/sup 25/ poise. The buoyant process of mantle flow narrows and concentrates heat transport beneath the rift, increases upward velocity, and broadly arches the lithosphere. 10 figures, 1 table.

Bridwell, R.J.; Anderson, C.A.

1980-01-01T23:59:59.000Z

273

DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awardees for the Industrial Energy Efficiency Grand Awardees for the Industrial Energy Efficiency Grand Challenge DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge May 5, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that 48 research and development projects across the country have been selected as award winners of the Industrial Energy Efficiency Grand Challenge. The grantees will receive a total of $13 million to fund the development of transformational industrial processes and technologies that can significantly reduce greenhouse gas emissions throughout the industrial sector. The funding will be matched by more than $5 million in private industry funding to support a total of $18 million in projects that will enhance America's energy security and strengthen our economy.

274

Grand Blanc Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Grand Blanc Generating Station Biomass Facility Grand Blanc Generating Station Biomass Facility Jump to: navigation, search Name Grand Blanc Generating Station Biomass Facility Facility Grand Blanc Generating Station Sector Biomass Facility Type Landfill Gas Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

EA-1037: Uranium Lease Management Program, Grand Junction, Colorado |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37: Uranium Lease Management Program, Grand Junction, Colorado 37: Uranium Lease Management Program, Grand Junction, Colorado EA-1037: Uranium Lease Management Program, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts of the U.S. Department of Energy's Grand Junction Projects Office's proposal to maintain and preserve the nation's immediately accessible supply of domestic uranium and vanadium ores, to maintain a viable domestic mining and milling infrastructure required to produce and mill these ores, and to provide assurance of a fair monetary return to the U.S. Government. The Uranium Lease Management Program gives The Department of Energy the flexibility to continue leasing these lands. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 22, 1995

276

DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awardees for the Industrial Energy Efficiency Grand Awardees for the Industrial Energy Efficiency Grand Challenge DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge May 5, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that 48 research and development projects across the country have been selected as award winners of the Industrial Energy Efficiency Grand Challenge. The grantees will receive a total of $13 million to fund the development of transformational industrial processes and technologies that can significantly reduce greenhouse gas emissions throughout the industrial sector. The funding will be matched by more than $5 million in private industry funding to support a total of $18 million in projects that will enhance America's energy security and strengthen our economy.

277

SunShot Grand Challenge Summit 2014 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Grand Challenge Summit 2014 SunShot Grand Challenge Summit 2014 SunShot Grand Challenge Summit 2014 May 19, 2014 8:00AM PDT to May 22, 2014 5:00PM PDT Anaheim, California Hilton Anaheim The DOE SunShot Initiative Grand Challenge Summit 2014 will bring together more than 800 members of the solar community including SunShot-funded project teams, industry leaders, innovative researchers and scientists, and local, state and federal government policymakers to review the progress made and discuss the challenges ahead to make solar energy more affordable and widespread across America. The event will include activities that celebrate the accomplishments across more than 250 SunShot-funded projects and discuss the path forward for the U.S. solar energy industry. Plenary Sessions and Keynote Speakers - Top leaders from business,

278

Saft America Advanced Batteries Plant Celebrates Grand Opening in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saft America Advanced Batteries Plant Celebrates Grand Opening in Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville September 16, 2011 - 12:30pm Addthis Department of Energy Investment Helps Support Job Creation, U.S. Economic Competitiveness and Advanced Vehicle Industry WASHINGTON, D.C. - Today, Secretary Steven Chu joined with Saft America to announce the grand opening of the company's Jacksonville, Florida, factory, which will produce advanced lithium-ion batteries to power electric vehicles and other applications. Saft America estimates it will create nearly 280 permanent jobs at the factory, and the city of Jacksonville expects an additional 800 indirect jobs to be created within its community. The project has created or preserved an estimated 300

279

Alpine Extensional Detachment Tectonics In The Grande Kabylie Metamorphic  

Open Energy Info (EERE)

Extensional Detachment Tectonics In The Grande Kabylie Metamorphic Extensional Detachment Tectonics In The Grande Kabylie Metamorphic Core Complex Of The Maghrebides (Northern Algeria) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Alpine Extensional Detachment Tectonics In The Grande Kabylie Metamorphic Core Complex Of The Maghrebides (Northern Algeria) Details Activities (0) Areas (0) Regions (0) Abstract: The Maghrebides are part of the peri-Mediterranean Alpine orogen. They expose in their inner zone inliers of high-grade crystalline rocks surrounded by Oligo-Miocene and younger Miocene cover. Detailed mapping coupled with structural and petrological investigations in the Grande Kabylie massif, and the reinterpretation of the available geochronological data, allow us to refute the traditional concept of rigid behaviour of this

280

Empowering First Year Students by Immersion in a 'Grand Challenges'  

Science Conference Proceedings (OSTI)

Apr 19, 2010 ... Interestingly, this preceded the National Academy of Engineering Grand ... Within their lifetime they will witness burgeoning needs in energy resources, ... to statistics, environmental studies, to history and philosophyin...

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SunShot Grand Challenge Highlights Ambitious Efforts along the...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu also announced a nationwide competition to drive down the cost of rooftop solar energy system. The SunShot Grand Challenge: Summit and Technology Forum kicked off in...

282

Vehicle Technologies Office: EV Everywhere Grand Challenge: DOE...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's 10-Year Vision for Plug-in Electric Vehicles to someone by E-mail Share Vehicle Technologies Office: EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in...

283

Cambridge Grand Junction transit implementation : alternatives, scheduling, cost, and performance  

E-Print Network (OSTI)

The Grand Junction railroad lies at the heart of East Cambridge adjacent to the Kendall Square business district and the Massachusetts Institute of Technology campus. Over the last one hundred years the railroad has gone ...

Iglesias Cuervo, Jesus

2012-01-01T23:59:59.000Z

284

Microsoft Word - GrandCoulee_FinalEA_CommentResponses.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Coulee's Third Powerplant Grand Coulee's Third Powerplant 500-kilovolt Transmission Line Replacement Project Revision Sheet for the Environmental Assessment Finding of No Significant Impact Mitigation Action Plan DOE/EA-1679 December 2011 Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project Revision Sheet for the Environmental Assessment 2 SUMMARY This revision sheet documents the changes to be incorporated into the Grand Coulee's Third Powerplant 500-kilovolt (kV) Transmission Line Replacement Project Preliminary Environmental Assessment (EA). With the addition of these changes, the Preliminary EA will not be reprinted and will serve as the Final EA. On May 2, 2011, the Preliminary EA was sent to agencies and interested parties.

285

DOE Selects Mission Support Alliance, LLC for Mission Support Contract at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Support Alliance, LLC for Mission Support Mission Support Alliance, LLC for Mission Support Contract at its Hanford Site DOE Selects Mission Support Alliance, LLC for Mission Support Contract at its Hanford Site September 3, 2008 - 3:20pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the Mission Support Alliance, LLC has been selected as the mission support contractor for DOE's Hanford Site in southeastern Washington State. The contract is a cost-plus award-fee contract valued at approximately $3.0 billion over ten years (a five-year base period with options to extend it for up to another five years). The Mission Support Alliance, LLC is a limited liability company formed by Lockheed Martin Integrated Technology, LLC; Jacobs Engineering Group, Inc.; and Wackenhut Services, Inc. Pre-selected subcontractors include Abadan,

286

The real mission of ITER  

DOE Green Energy (OSTI)

For future machines, the plasma stored energy is going up by factors of 20-40x, and plasma currents by 2-3x, while the surface to volume ratio is at the same time decreasing. Therefore the disruption forces, even for constant B, (which scale like IxB), and associated possible localized heating on machine components, are more severe. Notably, Tore Supra has demonstrated removal of more than 1 GJ of input energy, over nearly a 400 second period. However, the instantaneous stored energy in the Tore Supra system (which is most directly related to the potential for disruption damage) is quite small compared to other large tokamaks. The goal of ITER is routinely described as studying DT burning plasmas with a Q {approx} 10. In reality, ITER has a much more important first order mission. In fact, if it fails at this mission, the consequences are that ITER will never get to the eventual stated purpose of studying a burning plasma. The real mission of ITER is to study (and demonstrate successfully) plasma control with {approx}10-17 MA toroidal currents and {approx}100-400 MJ plasma stored energy levels in long-pulse scenarios. Before DT operation is ever given a go-ahead in ITER, the reality is that ITER must demonstrate routine and reliable control of high energy hydrogen (and deuterium) plasmas. The difficulty is that ITER must simultaneously deal with several technical problems: (1) heat removal at the plasma/wall interface, (2) protection of the wall components from off-normal events, and (3) generation of dust/redeposition of first wall materials. All previous tokamaks have encountered hundred's of major disruptions in the course of their operation. The consequences of a few MA of runaway electrons (at 20-50 MeV) being generated in ITER, and then being lost to the walls are simply catastrophic. They will not be deposited globally, but will drift out (up, down, whatever, depending on control system), and impact internal structures, unless 'ameliorated'. Basically, this represents an extraordinarily robust e-beam welding machine, capable of deep penetration into any armor tiles, to the cooling channels which are embedded less than 1 cm below the tile surface. When energy is deposited in a fraction of a second on (or in) a tile, the presence of underlying water cooling does no good for the purposes of heat removal.

Wurden, G A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

287

Our Mission | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Mission | National Nuclear Security Administration Mission | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Our Mission Home > Our Mission Our Mission NNSA is responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation, and naval reactor programs. It also responds to nuclear and radiological emergencies in the United States

288

Mission Motors | Open Energy Information  

Open Energy Info (EERE)

Motors Motors Jump to: navigation, search Name Mission Motors Place San Francisco, California Sector Vehicles Product Electric Motorcycles Year founded 2007 Number of employees 11-50 Website http://www.ridemission.com/ Coordinates 37.7749295°, -122.4194155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7749295,"lon":-122.4194155,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

Numerical model to characterize the thermal comfort in new ecodistricts: methodology and validation through the canyon street case  

Science Conference Proceedings (OSTI)

In built-up areas, the urban structures affect the radiative and thermal environment. The numerical simulation models provide informations about urban thermal performance for many ranges of urban configurations. This paper presents a validation of a ... Keywords: CFD model, building heat transfers, coupling model, street canyon, thermo-radiative model

Khaled Athamena; Jean Francois Sini; Julien Guilhot; Jerome Vinet; Maeva Sabre; Jean-Michel Rosant

2011-01-01T23:59:59.000Z

290

Numerical model to characterize the thermal comfort in new eco-districts: methodology and validation through the canyon street case  

Science Conference Proceedings (OSTI)

In built-up areas, the urban structures affect the radiative and thermal environment. The numerical simulation models provide informations about urban thermal performance for many ranges of urban configurations. This paper presents a validation of a ... Keywords: CFD model, building heat transfers, coupling model, street canyon, thermo-radiative model

Khaled Athamena; Jean Francois Sini; Julien Guilhot; Jerome Vinet; Maeva Sabre; Jean-Michel Rosant

2011-01-01T23:59:59.000Z

291

Challenges When Predicting Reservoir Quality in the Subsalt K2/K2-North Field, Green Canyon, Gulf of Mexico  

E-Print Network (OSTI)

in the K2/ K2-North Field, Green Canyon, Gulf of Mexico, presents many challenges for planning primary for seismi- cally better-imaged deepwater reservoirs in the eastern Gulf of Mexico, we utilize well- log, we used depositional mod- els based on Gulf of Mexico shallow-seismic analogs of distributary channel

Greene, Todd J.

292

Integrated Safety Management- Building Mission Success  

NLE Websites -- All DOE Office Websites (Extended Search)

ISM Integrated Safety Management- Building Mission Success Approximately 500 federal and contractor employees will arrive in Idaho Falls to participate in the 2008 Integrated...

293

Office of Sustainability Support - Mission and Functions  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Support (HS-21) Reports to the Office of Environmental Protection, Sustainability Support & Corporate Safety Analysis Mission The Office of Sustainability Support...

294

Office of Information Management - Mission and Functions  

NLE Websites -- All DOE Office Websites (Extended Search)

security of HSS Department-wide databases and systems in support of the HSS missions in health, safety, and security. Manages technology-related organizational change and advises...

295

Equal Employment Opportunity: Collaborating for Mission Success  

National Nuclear Security Administration (NNSA)

r Equal Employment Opportunity: Collaborating for Mission Success April 2013 EEO Complaint BURDEN OF PROOF IN THE EEO COMPLAINT PROCESS Equal Employment Opportunity: Collaborating...

296

Microsoft PowerPoint - Mission.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Administration's mission is to market and reliably deliver Federal hydroelectric power with preference to public bodies and cooperatives. This is accomplished by maximizing the use...

297

Mission Motors Company | Open Energy Information  

Open Energy Info (EERE)

Motors Company Place San Francisco, California Zip 94103 Product San Francisco-based electric Motorcycle manufacturer. References Mission Motors Company1 LinkedIn...

298

Equal Employment Opportunity: Collaborating for Mission Success  

National Nuclear Security Administration (NNSA)

Equal Employment Opportunity: Collaborating for Mission Success U.S. DEPARTMENT OF ENERGY National Nuclear Security Administration 2012 EEO Report of Accomplishment 2012 NNSA...

299

Facility Representative Program: Program Mission Statement  

NLE Websites -- All DOE Office Websites (Extended Search)

General Program Information Program Mission Statement Program Directives and Guidance Facility Representative of the Year Award Program Facility Representative of the Year Award FR...

300

Mission of the Accelerator Systems Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Source and to pursue research and development profitable to the science of accelerators and future light source technologies. This mission is accomplished by pursuing the...

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sandia National Laboratories: National Security Missions  

NLE Websites -- All DOE Office Websites (Extended Search)

chemical and biological weapons of mass destruction, and other acts of terrorism. Nuclear Weapons Weapons researcher Sandia's primary mission is ensuring the U.S. nuclear...

302

Sandia National Laboratories: National Security Missions: Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Missions Nuclear Weapons Stockpile Stewardship Ensuring the nation's nuclear weapons stockpile is safe, secure, and reliable. About Nuclear Weapons Since 1949, Sandia's scientists...

303

h. tms mission-driven development guidelines  

Science Conference Proceedings (OSTI)

Guidelines on Mission-Driven Development within TMS ... in compliance with existing TMS articles of incorporation, bylaws, policies, practices, and procedures .

304

Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2003.  

DOE Green Energy (OSTI)

Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, were located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, was located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving delisting goals established by National Marine Fisheries Service (NMFS or NOAA Fisheries) and ultimately to provide fall Chinook adults through the Lower Snake River Compensation Plan program as mitigation for construction and operation of the four lower Snake River dams. Complete adult returns (all age classes) for all three acclimation facilities occurred in the year 2002. Progeny (which would then be natural origin fish) would be counted towards achieving Endangered Species Act delisting criteria. In 2003, a total of 2,138,391 fish weighing 66,201 pounds were released from the three acclimation facilities. The total includes 437,633 yearling fish weighing 44,330 pounds and 1,700,758 sub-yearling fish weighing 21,871 pounds.

McLeod, Bruce

2004-01-01T23:59:59.000Z

305

Fall Chinook Aclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2001.  

DOE Green Energy (OSTI)

Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, and will ultimately work towards achieving delisting goals established by National Marine Fisheries Service (NMFS). Complete returns for all three acclimation facilities will not occur until the year 2002. Progeny (which would then be natural origin fish protected under the Endangered Species Act) from those returns will be returning for the next five years. In 2001, a total of 2,051,099 fish weighing 59,647 pounds were released from the three acclimation facilities. The total includes 318,932 yearling fish weighing 31,128 pounds and 1,732,167 sub-yearling fish weighing 28,519 pounds. Yearling fish numbers were reduced by Bacterial Kidney Disease (BKD) and sub-yearling acclimation time was limited by record low river water flows.

McLeod, Bruce

2004-01-01T23:59:59.000Z

306

DOE's Industrial Energy Efficiency Grand Challenge Solicitation to ...  

Science Conference Proceedings (OSTI)

One of the mission of Energy Efficiency and Renewable Energy (EERE) division of U.S. Department of Energy (DOE) is to strengthen America's energy security,...

307

Draft Environmental Impact Statement Klondike III/Biglow Canyon Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA

308

Uranium ore rolls in Westwater Canyon sandstone, San Juan Basin, New Mexico  

SciTech Connect

Recent relatively deep uranium-exploration drilling in the Nose Rock area, San Juan Basin, McKinley County, New Mexico, has resulted in the discovery of previously unrecognized uranium ore rolls in gray, unoxidized Westwater Canyon Sandstone of the Morrison Formation. Both the Nose Rock ores and the primary Ambrosia Lake uranium ores were emplaced during the Late Jurassic-Early Cretaceous erosional interval under the same geologic conditions by the same geochemical-cell process. The red, altered interior ground resulting from the geochemical-cell process has been re-reduced by the subsequent entry of reductants into the formation. The original roll form of the Ambrosia Lake orebodies has been obscured and modified by redistribution related to the present-day active redox interface interweaving with the Ambrosia Lake ores.

Clark, D.S.

1980-01-01T23:59:59.000Z

309

Postgraduate Medical Education PGME MISSION STATEMENT  

E-Print Network (OSTI)

Postgraduate Medical Education PGME MISSION STATEMENT FACULTY OF MEDICINE ­ VISION Creating the future of health. FACULTY OF MEDICINE ­ MISSION An innovative medical school committed to excellence and leadership in education, research, and service to society. INTRODUCTION Postgraduate Medical Education

Habib, Ayman

310

CHARACTERIZATION OF H CANYON CONDUCTIVITY METER INDICATIONS WITH ELEVATED URANIUM IN NITRIC ACID  

SciTech Connect

Solution conductivity data from the 1CU conductivity meter in H-Canyon shows that uranium concentration in the 0 to 30 gram per liter (g/L) range has no statistically significant effect on the calibration of free nitric acid measurement. Based on these results, no additional actions are needed on the 1CU Conductivity Meter prior to or during the processing of uranium solutions in the 0 to 30 g/L range. A model based only on free nitric acid concentration is shown to be appropriate for explaining the data. Data uncertainties for the free acid measurement of uranium-bearing solutions are 8.5% or less at 95% confidence. The analytical uncertainty for calibrating solutions is an order of magnitude smaller only when uranium is not present, allowing use of a more accurate analytical procedure. Literature work shows that at a free nitric acid level of 0.33 M, uranium concentration of 30 g/L and 25 C, solution conductivity is 96.4% of that of a uranium-free solution. The level of uncertainties in the literature data and its fitting equation do not justify calibration changes based on this small depression in solution conductivity. This work supports preparation of H-Canyon processing of Super Kukla fuel; however, the results will be applicable to the processing of any similar concentration uranium and nitric acid solution. Super Kukla fuel processing will increase the uranium concentration above the nominal zero to 10 g/L level, though not above 30 g/L. This work examined free nitric acid levels ranging from 0.18 to 0.52 molar. Temperature ranged from 27.9 to 28.3 C during conductivity testing. The data indicates that sequential order of measurement is not a significant factor. The conductivity meter was thus flushed effectively between measurements as desired.

Nash, C

2007-10-31T23:59:59.000Z

311

Early Channel Evolution in the Middle Permian Brushy Canyon Formation, West Texas, USA  

E-Print Network (OSTI)

Submarine channels are important conduits for sediment in deep marine environments, and understanding their formation is critical to modeling basin fill processes. Most models describing channel evolution focus on turbidity currents as the erosive and constructive force in channel initiation. However, slope failure and slumping can be significant drivers of channelization, particularly in upper slope and ramp environments. Determining the relative roles of slumping and erosion by turbidity currents can provide important insight into the timing of channelization and the geometries of subsequent deposits. Samples were collected from Guadalupe Mountains National Park from two primary localities at Salt Flat Bench (Figure 2). Three vertical sections were measured at both locations. A total of 16 samples were collected for petrographic analysis and X-ray fluorescence (XRF) imaging. Spectacular outcrop quality makes the Middle Permian Brushy Canyon Formation in Guadalupe Mountains National Park an ideal location for the study of early channel evolution. A detailed facies analysis of fine-grained channel deposits was conducted in the Upper Brushy Canyon Formation in the Salt Flat Bench outcrops. After channelization, an interval of relative condensation dominated by hemipelagic settling of organic matter and silt was followed by an interval of incomplete sediment bypass by turbidity currents. This sequence of events suggests that sea level was at a relative highstand at the time of channel inception, whereas channel inception by turbidity currents is expected during a lowstand. Slumping rather than erosion by turbidity currents is the most likely mechanism to have initiated a channel at the study area. There is no evidence for the existence for high energy currents until after the interval of condensation. However, the action of weak contour currents during early channel evolution is observed in outcrop and microtextural features. Early carbonate cementation of channel-lining silts may have stabilized the slump surface with respect to erosion by later turbidity currents.

Gunderson, Spencer

2011-08-01T23:59:59.000Z

312

Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico  

SciTech Connect

A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

2009-07-15T23:59:59.000Z

313

Ex post power economic analysis of record of decision operational restrictions at Glen Canyon Dam.  

DOE Green Energy (OSTI)

On October 9, 1996, Bruce Babbitt, then-Secretary of the U.S. Department of the Interior signed the Record of Decision (ROD) on operating criteria for the Glen Canyon Dam (GCD). Criteria selected were based on the Modified Low Fluctuating Flow (MLFF) Alternative as described in the Operation of Glen Canyon Dam, Colorado River Storage Project, Arizona, Final Environmental Impact Statement (EIS) (Reclamation 1995). These restrictions reduced the operating flexibility of the hydroelectric power plant and therefore its economic value. The EIS provided impact information to support the ROD, including an analysis of operating criteria alternatives on power system economics. This ex post study reevaluates ROD power economic impacts and compares these results to the economic analysis performed prior (ex ante) to the ROD for the MLFF Alternative. On the basis of the methodology used in the ex ante analysis, anticipated annual economic impacts of the ROD were estimated to range from approximately $15.1 million to $44.2 million in terms of 1991 dollars ($1991). This ex post analysis incorporates historical events that took place between 1997 and 2005, including the evolution of power markets in the Western Electricity Coordinating Council as reflected in market prices for capacity and energy. Prompted by ROD operational restrictions, this analysis also incorporates a decision made by the Western Area Power Administration to modify commitments that it made to its customers. Simulated operations of GCD were based on the premise that hourly production patterns would maximize the economic value of the hydropower resource. On the basis of this assumption, it was estimated that economic impacts were on average $26.3 million in $1991, or $39 million in $2009.

Veselka, T. D.; Poch, L. A.; Palmer, C. S.; Loftin, S.; Osiek, B; Decision and Information Sciences; Western Area Power Administration

2010-07-31T23:59:59.000Z

314

ARM-UAV Mission Gateway System  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM-UAV Mission Gateway System ARM-UAV Mission Gateway System S. T. Moore and S. Bottone Mission Research Corporation Santa Barbara, California Introduction The Atmospheric Radiation Measurement-unmanned aerospace vehicle (ARM-UAV) Mission Gateway System (MGS) is a new field support system for the recently reconfigured ARM-UAV payload. The MGS is responsible for the following critical tasks: * Provides an interface for command and control of the ARM-UAV payload during a flight. * Receives and displays mid-flight state of health information, to help ensure the integrity and safety of the payload. * Receives and displays data snapshots, averaged data, or sub-sampled data. * Provides a user configurable, moving map display to enable the Mission Controller and the science

315

Microsoft Word - CX-GrandCoulee-Creston_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 REPLY TO ATTN OF: KEPR-Bell-1 SUBJECT: Environmental Clearance Memorandum Robert Keudell Robert Zeller Lineman Foreman III - TFWK-Grand Coulee Lineman Foreman I - TFWK-Grand Coulee Proposed Action: Selected wood pole replacement and minor access road maintenance along the Grand Coulee-Creston transmission line at miles 14, 15, 21 and 28. PP&A Project No: 1828 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance activities...for structures, rights of way, infrastructures such as roads, equipment...routine maintenance activities, corrective....are required to maintain... infrastructures... in a condition suitable for a facility to be used for its designed purpose.

316

Grand Ridge Elementary Wind Project | Open Energy Information  

Open Energy Info (EERE)

Grand Ridge Elementary Wind Project Grand Ridge Elementary Wind Project Facility Grand Ridge Elementary Sector Wind energy Facility Type Community Wind Location WA Coordinates 47.545883°, -122.005714° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.545883,"lon":-122.005714,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Fernald Preserve Visitors Center Grand Opening and LEED Platinum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fernald Preserve Visitors Center Grand Opening and LEED Platinum Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification October 16, 2008 - 4:14pm Addthis Remarks as Prepared for Acting Deputy Secretary Kupfer Thank you, Mike, for that introduction and to both you and Jane for hosting this event. You both have been instrumental in the dramatic transformation of this site. We made a commitment more than a decade ago to do three things here at Fernald: to close it, to clean it up and to give it back to the community. I'm proud to say we have fulfilled that commitment safely and ahead of schedule. Less than two years ago, I was here with Secretary Bodman as he announced the completion of a $4.4 billion clean up operation. Since then, we have

318

Grand Marais PUC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Marais PUC - Residential Energy Efficiency Rebate Program Grand Marais PUC - Residential Energy Efficiency Rebate Program Grand Marais PUC - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount CFLs: $2/bulb or up to 50% of cost LEDs: $10 - $15/bulb Lighting Fixtures: $15 - $20/fixture Refrigerators: $25, plus $50 for recycling an old, working unit Freezers: $25, plus $50 for recycling an old, working unit Dishwashers: $25 Clothes Washers: $50 Dehumidifiers: $65 Room A/C: $25, plus $25 for recycling an old, working unit Central A/C: $100 - $200, plus additional rebate for efficiency ratings

319

GreenHunter Biodiesel Refinery Grand Opening | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening GreenHunter Biodiesel Refinery Grand Opening June 2, 2008 - 12:51pm Addthis Remarks as Prepared for (Acting) Deputy Secretary Kupfer Today, Acting Deputy Secretary Jeffrey Kupfer delivered remarks at the launch of GreenHunter Energy's biodiesel refinery, which will be the nation's single largest biodiesel refinery, producing 105 million gallons of "white-water" B100 biodiesel per year. Thank you Gary. I'm pleased to join with Governor Perry, Congressmen Green and Lampson, and Mayor Garcia in celebrating this important occasion. Today, as we open the nation's largest biodiesel refinery, we reach another milestone in our effort to make America more energy secure. As you know, global energy demand is surging. We must act swiftly and aggressively to

320

Fernald Preserve Visitors Center Grand Opening and LEED Platinum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fernald Preserve Visitors Center Grand Opening and LEED Platinum Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification Fernald Preserve Visitors Center Grand Opening and LEED Platinum Certification October 16, 2008 - 4:14pm Addthis Remarks as Prepared for Acting Deputy Secretary Kupfer Thank you, Mike, for that introduction and to both you and Jane for hosting this event. You both have been instrumental in the dramatic transformation of this site. We made a commitment more than a decade ago to do three things here at Fernald: to close it, to clean it up and to give it back to the community. I'm proud to say we have fulfilled that commitment safely and ahead of schedule. Less than two years ago, I was here with Secretary Bodman as he announced the completion of a $4.4 billion clean up operation. Since then, we have

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Moreau-Grand Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Moreau-Grand Electric Coop Inc Moreau-Grand Electric Coop Inc Jump to: navigation, search Name Moreau-Grand Electric Coop Inc Place South Dakota Utility Id 12915 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO Other Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Industrial Small General Service Single Phase Commercial Small General Service Single Phase Well Commercial Small General Service Three Phase Commercial Average Rates Residential: $0.1090/kWh Commercial: $0.0798/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

322

City of Grand Junction, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Junction City of Grand Junction City of Place Iowa Utility Id 7486 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Commercial Demand Service Commercial Residential Eletric Residential Average Rates Residential: $0.1340/kWh Commercial: $0.1300/kWh Industrial: $0.0899/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Grand_Junction,_Iowa_(Utility_Company)&oldid=409673

323

Mutagenic potential of sediments from the Grand Calumet River  

Science Conference Proceedings (OSTI)

The Grand Calumet River/Indiana Harbor Canal is one of the International Joint Commission's Great Lakes Areas of Concern (AOC). Like many other AOCs, the Grand Calumet River is in a heavily industrialized area and has a history of chemical contamination. Many of the chemicals found in the industrial and municipal wastes that enter the waterway end up in sediment where they are concentrated to high levels. In order to assess the potential genotoxicity of sediments from the Grand Calumet River, the authors determined the mutagenic potential of organic extracts of sediments. The sediment extracts were assayed in the Salmonella/microsome mutagenicity test. In the Ames test, all ten sediment samples assayed were found to be mutagenic. In general, chemicals found in the sediments required metabolic activation before a positive mutagenic response was observed.

Maccubbin, A.E.; Ersing, N. (Roswell Park Cancer Inst., Buffalo, NY (United States))

1991-08-01T23:59:59.000Z

324

Winners Announced for the NNSA Grand Challenge Competition | Department of  

NLE Websites -- All DOE Office Websites (Extended Search)

Winners Announced for the NNSA Grand Challenge Competition Winners Announced for the NNSA Grand Challenge Competition Winners Announced for the NNSA Grand Challenge Competition December 11, 2013 - 1:23pm Addthis President Carlton Brown of Clark Atlanta University pictured here with winning students junior Jules Henry (Electrical Engineering/Computer Science) and sophomore KeAndra Goodman (Electrical Engineering/Physics). President Carlton Brown of Clark Atlanta University pictured here with winning students junior Jules Henry (Electrical Engineering/Computer Science) and sophomore KeAndra Goodman (Electrical Engineering/Physics). Annie Whatley Annie Whatley Deputy Director, Office of Minority Economic Impact The first year of the Minority Serving Institution Partnership Program with the Department of Energy site Kansas City Plant was a fruitful one. The two

325

Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2002-2003 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. The project began addressing identified data gaps throughout the Blocked Area in 1999. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, Spokane River below Spokane Falls, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002 and 2003. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife); Butler, Chris (Spokane Tribe of Indians, Wellpinit, WA)

2006-02-01T23:59:59.000Z

326

Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2002 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. In 1999, 2000, and 2001 the project began addressing some of the identified data gaps throughout the Blocked Area. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Department of Natural Resources, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA); Butler, Chris (Spokane Tribe of Indians, Department of Natural Resources, Wellpinit, WA)

2003-09-01T23:59:59.000Z

327

Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. The project began addressing identified data gaps throughout the Blocked Area in 1999. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, Spokane River below Spokane Falls, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002 and 2003. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Olympia, WA); Butler, Chris (Spokane Tribe of Indians, Wellpinit, WA)

2005-11-01T23:59:59.000Z

328

Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2001 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power Planning Council (NPPC). The NPPC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPPC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area and the Columbia Basin Blocked Area Management Plan (1998). The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. In 1999, 2000, and 2001 the project began addressing some of the identified data gaps throughout the Blocked Area. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of seven streams and four lakes on the Spokane Indian Reservation were completed by 2000. Assessments of the Little Spokane River and its tributaries, tributaries to the Pend Oreille River, small lakes in southern Pend Oreille County, and water bodies within and near the Spokane Indian Reservation were conducted in 2001. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispell Department of Natural Resources, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA); O'Connor, Dick (Washington Department of Fish and Wildlife, Olympia, WA)

2003-01-01T23:59:59.000Z

329

Grand Symmetry, Spectral Action, and the Higgs mass  

E-Print Network (OSTI)

In the context of the spectral action and the noncommutative geometry approach to the standard model, we build a model based on a larger symmetry. The latter satisfies all the requirements to have a noncommutative manifold, and mixes gauge and spin degrees of freedom without introducing extra fermions. With this "grand symmetry" it is natural to have the scalar field necessary to obtain the Higgs mass in the vicinity of 126 GeV. Requiring the noncommutative space to be an almost commutative geometry (i.e. the product of manifold by a finite dimensional internal space) gives conditions for the breaking of this grand symmetry to the standard model.

Agostino Devastato; Fedele Lizzi; Pierre Martinetti

2013-04-01T23:59:59.000Z

330

Critical Mission Support Through Energy Secuirty  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Critical Mission Support Critical Mission Support Through Energy Security Development of an Army Energy Security Assessment Model FUPWG Mr. Chuck Tremel, CTC 21 October 2010 2 2 Purpose * Provide an overview of the Army Energy Security Assessment (ESA) methodology - Being developed by Concurrent Technologies Corporation - Monitored by the US Army Corps of Engineers (USACE), Engineering Research and Development-Construction Engineering Research Laboratory (ERDC-CERL) * Engage Utility and Government Stakeholders 3 3 Overall Program Objectives * Develop/enhance the draft ESA methodology demonstrated under the Army Power and Energy Initiative (APEI) - Leverage existing processes (e.g., Anti-terrorism/Force Protection) - Critical Mission focused * Validate the methodology at an Army installation

331

Office of Security Operations: Mission and Functions  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission and Functions Mission and Functions Mission The Office of Headquarters Security Operations strengthens national security by protecting personnel, facilities, property, classified information, and sensitive unclassified information for DOE Headquarters facilities in the National Capital Area under normal and abnormal (i.e., emergency) conditions; managing access authorization functions; ensuring that executives and dignitaries are fully protected, and supporting efforts to ensure the continuity of government in all circumstances as mandated by Presidential Decision Directive. The Office is the database owner for the principal personnel security information processing activities of the Department and personnel security administrative review process. Functions

332

Optical Payload for the STARE Mission  

Science Conference Proceedings (OSTI)

Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) is a nano-sat based mission designed to better determine the trajectory of satellites and space debris in orbit around earth. In this paper, we give a brief overview of the mission and its place in the larger context of Space Situational Awareness (SSA). We then describe the details of the central optical payload, touching on the optical design and characterization of the on-board image sensor used in our Cubesat based prototype. Finally, we discuss the on-board star and satellite track detection algorithm central to the success of the mission.

Simms, L; Riot, V; De Vries, W; Olivier, S S; Pertica, A; Bauman, B J; Phillion, D; Nikolaev, S

2011-03-13T23:59:59.000Z

333

The verifying compiler: A grand challenge for computing research  

Science Conference Proceedings (OSTI)

This contribution proposes a set of criteria that distinguish a grand challenge in science or engineering from the many other kinds of short-term or long-term research problems that engage the interest of scientists and engineers. As an example drawn ...

Tony Hoare

2003-01-01T23:59:59.000Z

334

The verifying compiler: a grand challenge for computing research  

Science Conference Proceedings (OSTI)

I propose a set of criteria which distinguish a grand challenge in science or engineering from the many other kinds of short-term or long-term research problems that engage the interest of scientists and engineers. As an example drawn from Computer Science, ...

Tony Hoare

2003-04-01T23:59:59.000Z

335

Workshop and conference on Grand Challenges applications and software technology  

SciTech Connect

On May 4--7, 1993, nine federal agencies sponsored a four-day meeting on Grand Challenge applications and software technology. The objective was to bring High-Performance Computing and Communications (HPCC) Grand Challenge applications research groups supported under the federal HPCC program together with HPCC software technologists to: discuss multidisciplinary computational science research issues and approaches, identify major technology challenges facing users and providers, and refine software technology requirements for Grand Challenge applications research. The first day and a half focused on applications. Presentations were given by speakers from universities, national laboratories, and government agencies actively involved in Grand Challenge research. Five areas of research were covered: environmental and earth sciences; computational physics; computational biology, chemistry, and materials sciences; computational fluid and plasma dynamics; and applications of artificial intelligence. The next day and a half was spent in working groups in which the applications researchers were joined by software technologists. Nine breakout sessions took place: I/0, Data, and File Systems; Parallel Programming Paradigms; Performance Characterization and Evaluation of Massively Parallel Processing Applications; Program Development Tools; Building Multidisciplinary Applications; Algorithm and Libraries I; Algorithms and Libraries II; Graphics and Visualization; and National HPCC Infrastructure.

1993-12-31T23:59:59.000Z

336

Prognostic Prediction of Tracer Dispersion for the Diablo Canyon Experiments on August 31, September 2, and September 4, 1986  

DOE Green Energy (OSTI)

COAMPS/LODI simulations of the tracer experiments at Diablo Canyon on August 31, September 2, and September 4, 1986 had mixed results. Simulated tracer concentrations on August 31 differed significantly from the measured concentrations. The model transported SF{sub 6} too far south and did not predict transport of SF{sub 6} north along highway 101 or into See Canyon. Early in the day the model rapidly transported SF{sub 6} away from the release point while observations suggested the tracer stayed close to Diablo Canyon for 1-2 hours. For September 2, simulations agreed very well with the measurements. The model accurately predicted the change of wind direction from north northwest to east northeast at the release point. It also predicted the advection of tracer over Mot-r-0 Bay and through the Los Osos Valley toward San Luis Obispo in excellent agreement with the observations. On September 4, the calculated transport of SF{sub 6} from Diablo Canyon had defects similar to those on August 31, a trajectory too far south and limited intrusion of tracer north along highway 101. Conversely, simulations of the Freon release from Los Osos Cemetery on September 4 corresponded well with observations. Since the simulations used only global meteorological data and no local winds for input, even the limited success of COAMPS/LODI is a favorable result. COAMPS's inability to generate southerly winds through the highway 101 corridor on August 31 and September 4 is a symptom of its underestimate of the sea breeze. The weak sea breeze correlates with a small diurnal range of air temperature possibly associated with underestimates of surface solar heating and/or overestimates of surface wetness. Improvement of COAMPS/LODI simulations requires development of new data assimilation techniques to use the local surface and low altitude wind and temperature measurements. Also, quantitative methods are needed to assess the accuracy of the models.

Molenkamp, C.R.

1999-11-29T23:59:59.000Z

337

Mission and Vision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission and Vision Mission and Vision Mission and Vision Mission ARI is a DOE-wide effort to advance the beneficial reuse of its unique and diverse mix of assets, including land, facilities, infrastructure, equipment, technologies, natural resources and highly skilled workforce. ARI promotes a more efficient business environment to encourage collaboration between public and private resources. ARI efforts will maximize benefits to achieve energy and environmental goals as well as to stimulate and diversify regional economies impacted by changes to DOE sites and operations. Vision In 2020, the DOE complex will be composed of about two dozen primary sites. Those sites are sufficient to meet DOE's infrastructure requirements and include the following characteristics: * Operations are conducted in a sustainable manner; facilities and

338

Mission and Goals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission and Goals Mission and Goals Mission and Goals October 10, 2013 - 11:56am Addthis Mission Develop and demonstrate new, energy-efficient processing and materials technologies at a scale adequate to prove their value to manufacturers and spur investment. Develop broadly applicable manufacturing processes that reduce energy intensity and improve production. Develop and demonstrate pervasive materials technologies, enabling improved products that use less energy throughout their lifecycles. Conduct technical assistance activities that promote use of advanced technologies and better energy management to capture U.S. competitive advantage. Goal Reduce by 50% in 10 years the life-cycle energy consumption of manufactured goods by targeting the production and use of advanced manufacturing

339

Afghanistan-NREL Mission | Open Energy Information  

Open Energy Info (EERE)

Afghanistan-NREL Mission Afghanistan-NREL Mission Jump to: navigation, search Logo: NREL Mission to Afghanistan Name NREL Mission to Afghanistan Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Energy Efficiency, Buildings, Solar, Wind Topics Background analysis Program Start 2009 Country Afghanistan Southern Asia References NREL Now Lab Talk Week of December 21, 2009[1] Abstract In August 2009, the Commandant of the U.S. Marine Corps sent a team of active-duty Marines accompanied by two civilian experts to visit bases in Afghanistan to assess the potential for reducing fuel and water demands through energy efficiency and renewable energy measures. In August 2009, the Commandant of the U.S. Marine Corps sent a team of active-duty Marines accompanied by two civilian experts to visit bases in

340

Deep Space Mission Radiation Shielding Optimization  

Science Conference Proceedings (OSTI)

Providing protection against the hazards of space radiation is a major challenge to the exploration and development of space. The great cost of added radiation shielding is a potential limiting factor in deep space missions. In the present report, we ...

Tripathi R. K.; Wilson J. W.; Cucinotta F. A.; Nealy J. E.; Clowdsley M. S.; Kim M-H. Y.

2001-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Soil Moisture Active Passive (SMAP) Mission  

E-Print Network (OSTI)

The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey. SMAP will make global measurements of ...

Entekhabi, Dara

342

Sample Returns Missions in the Coming Decade  

Science Conference Proceedings (OSTI)

In the coming decade, several missions will attempt to return samples to Earth from varying parts of the solar system. These samples will provide invaluable insight into the conditions present during the early formation of the solar system, and possibly ...

Desai Prasun N.; Mitcheltree Robert A.; Cheatwood F. McNeil

2000-10-01T23:59:59.000Z

343

Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2002.  

DOE Green Energy (OSTI)

Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving delisting goals established by National Marine Fisheries Service (NMFS or NOAA Fisheries) and ultimately to provide fall Chinook adults through the Lower Snake River Compensation Plan program as mitigation for construction and operation of the four lower Snake River dams. Complete adult returns (all age classes) for all three acclimation facilities occurred in the year 2002. Progeny (which would then be natural origin fish) would be counted towards achieving Endangered Species Act delisting criteria. In 2002, a total of 2,877,437 fish weighing 47,347 pounds were released from the three acclimation facilities. The total includes 479,358 yearling fish weighing 33,930 pounds and 2,398,079 sub-yearling fish weighing 19,115 pounds. This is the largest number of fish ever released in one year from the acclimation facilities.

McLeod, Bruce

2003-01-01T23:59:59.000Z

344

Tank waste remediation system mission analysis report  

SciTech Connect

This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors` facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission.

Acree, C.D.

1998-01-09T23:59:59.000Z

345

PETROPHYSICAL INVESTIGATION OF THE SECONDARY RECOVERY POTENTIAL IN THE CHERRY CANYON FORMATION NE LEA FIELD LEA COUNTY, NEW MEXICO  

Science Conference Proceedings (OSTI)

Read and Stevens has proposed the evaluation of the waterflood potential from the Cherry Canyon formation in the NE Lea Field in lea County, New Mexico. Much of the development in this area is approaching primary recovery limitations; additional recovery of remaining oil reserves by waterflood needs to be evaluated. The Cherry Canyon formation is composed of fine grained sandstone, containing clay material which results in high water saturation, and also has the tendency to swell and reduce reservoir permeability--the ability of fluid to flow through the rock pores and fractures. There are also abundant organic materials that interfere with obtaining reliable well logs. These complications have limited oil in place calculations and identification of net pay zones, presenting a challenge to the planned waterflood. Core analysis of the Cherry Canyon should improve the understanding of existing well logs and possibly indicate secondary recovery measures, such as waterflood, to enhance field recovery. Lacking truly representative core to provide accurate analyses, Read and Stevens will obtain and preserve fresh core. The consulting firm of T. Scott Hickman and Associates will then collaborate on special core analyses and obtain additional well logs for a more detailed analysis of reservoir properties. The log interpretation will be compared to the core analysis results, and the entire collected data set will be used to assess the potential and economic viability of successfully waterflooding the identified oil zones. Successful results from the project will improve accuracy of log interpretation and establish a methodology for evaluating secondary recovery by waterflood.

T. Scott Hickman

2002-06-01T23:59:59.000Z

346

Office of Cyber Security Evaluations - Mission and Functions  

NLE Websites -- All DOE Office Websites (Extended Search)

Cyber Security Evaluations Reports to the Independent Oversight Program Mission and Functions Mission The Office of Cyber Security Evaluations is responsible for the independent...

347

Site Transition Process upon Completion of the Cleanup Mission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process upon Completion of the Cleanup Mission: Fact Sheet (September 2013) Site Transition Process upon Completion of the Cleanup Mission: Fact Sheet (September 2013) DOE's...

348

Reference No. DE-SOL-0005388 - Sources Sought Notice - Mission...  

NLE Websites -- All DOE Office Websites (Extended Search)

88 Sources Sought Notice Mission Execution and Strategic Analysis (MESA) Support Services Reference No. DE-SOL-0005388-The previous separate actions for Mission Execution...

349

Directors Advance EM Mission with Help from Rigorous Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Directors Advance EM Mission with Help from Rigorous Project Management Program Directors Advance EM Mission with Help from Rigorous Project Management Program October 30, 2013 -...

350

Experimental Design for the LATOR Mission  

E-Print Network (OSTI)

This paper discusses experimental design for the Laser Astrometric Test Of Relativity (LATOR) mission. LATOR is designed to reach unprecedented accuracy of 1 part in 10^8 in measuring the curvature of the solar gravitational field as given by the value of the key Eddington post-Newtonian parameter \\gamma. This mission will demonstrate the accuracy needed to measure effects of the next post-Newtonian order (~G^2) of light deflection resulting from gravity's intrinsic non-linearity. LATOR will provide the first precise measurement of the solar quadrupole moment parameter, J2, and will improve determination of a variety of relativistic effects including Lense-Thirring precession. The mission will benefit from the recent progress in the optical communication technologies -- the immediate and natural step above the standard radio-metric techniques. The key element of LATOR is a geometric redundancy provided by the laser ranging and long-baseline optical interferometry. We discuss the mission and optical designs, as well as the expected performance of this proposed mission. LATOR will lead to very robust advances in the tests of Fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments.

Slava G. Turyshev; Michael Shao; Kenneth L. Nordtvedt

2004-10-08T23:59:59.000Z

351

Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.  

DOE Green Energy (OSTI)

BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with other proposed wind projects in the region. The low to high impacts to visual resources reflect the effect that the transmission line and the turbine strings from both wind projects would have on viewers in the local area, but this impact diminishes with distance from the project.

United States. Bonneville Power Administration

2006-09-01T23:59:59.000Z

352

EA-1338: Transfer of the Department of Energy Grand Junction Office to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Transfer of the Department of Energy Grand Junction Office 8: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado EA-1338: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts for the proposed transfer of real and personal property at the U.S. Department of Energy's Grand Junction Office to non-DOE ownership. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 25, 2000 EA-1338: Finding of No Significant Impact Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 25, 2000 EA-1338: Final Environmental Assessment Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership

353

Estimating commuter rail demand to Kendall Square along the Grand Junction Corridor  

E-Print Network (OSTI)

Since acquiring the Grand Junction Railroad in June 2010 from CSX, the Massachusetts Bay Transit Authority (MBTA) has explored the possibility of using the line for commuter rail service. In addition the Grand Junction ...

Bockelie, Adam

2012-01-01T23:59:59.000Z

354

PP-33-1 and EA-33-A Rio Grande Electric Cooperative Inc | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-1 and EA-33-A Rio Grande Electric Cooperative Inc PP-33-1 and EA-33-A Rio Grande Electric Cooperative Inc Rescission of Presidential Permit and Electricity Export Authorization...

355

Grand Traverse Band Renewable Energy Feasibility Study in Wind, Biomass and Solar  

DOE Green Energy (OSTI)

Renewable Energy Feasibility Study for wind, biomass, solar on the Grand Traverse Band tribal lands from 2005 - 2008

Suzanne McSawby, Project Director

2008-12-31T23:59:59.000Z

356

Flowsheet modifications for dissolution of sand, slag, and crucible residues in the F-canyon dissolvers  

Science Conference Proceedings (OSTI)

An initial flowsheet for the dissolution of sand, slag, and crucible (SS{ampersand}C) was developed for the F- Canyon dissolvers as an alternative to dissolution in FB-Line. In that flowsheet, the sand fines were separated from the slag chunks and crucible fragments. Those two SS{ampersand}C streams were packaged separately in mild-steel cans for dissolution in the 6.4D dissolver. Nuclear safety constraints limited the dissolver charge to approximately 350 grams of plutonium in two of the three wells of the dissolver insert and required 0.23M (molar) boron as a soluble neutron poison in the 9.3M nitric acid/0.013M fluoride dissolver solution. During the first dissolution of SS{ampersand}C fines, it became apparent that a significant amount of the plutonium charged to the 6.4D dissolver did not dissolve in the time predicted by previous laboratory experiments. The extended dissolution time was attributed to fluoride complexation by boron. An extensive research and development (R{ampersand}D) program was initiated to investigate the dissolution chemistry and the physical configuration of the dissolver insert to understand what flowsheet modifications were needed to achieve a viable dissolution process.

Rudisill, T.S.; Karraker, D.G.; Graham, F.R.

1997-12-01T23:59:59.000Z

357

Electromagnetic (EM-60) survey in the Panther Canyon Area, Grass Valley, Nevada  

DOE Green Energy (OSTI)

Eight frequency domain electromagnetic soundings were measured over the Panther Canyon thermal anomaly in Grass Valley, Nevada. The data were collected with Lawrence Berkeley Laboratory's large moment horizontal loop system (EM-60). At the transmitter site located near the center of the thermal anomaly, square wave currents of up to 70 A were impressed into a fourturn 50 m radius coil at frequencies from 0.033 to 500 Hz. At the eight receiver sites, 0.5 to 1.5 km from the loop, magnetic fields were detected with a three-component SQUID magnetometer and vertical and radial magnetic field spectra were calculated. Data were interpreted with a computer program which fit filled spectra and associated ellipse polarization data to one-dimensional resistivity models and results were compared to interpretations from earlier dipole-dipole resistivity measurements. Comparison of these interpretations indicates fairly close agreement between the two, with both models clearly indicating the presence and dimensions of the conductivity anomaly associated with the thermal zone. Although the dc data was better able to resolve the high resistivity bedrock, the EM-data were able to resolve all major features without distortion at shorter transmitter receiver separations and in about one-third of the field time.

Wilt, M.; Goldstein, N.; Stark, M.; Haught, R.

1980-05-01T23:59:59.000Z

358

Treating high pressure zones in one trip in Canyon Reef area of Texas  

Science Conference Proceedings (OSTI)

In the Canyon Reef area near Snyder, Texas, Chevron U.S.A. Inc. is employing ratchet operated, packer type retrievable bridge plugs which have allowed operators to test, treat, or squeeze high pressure zones over a 35-day period on a single trip of the workstring. More zones could have been treated if necessary. The bridge plug was moved and set 31 times while treating the zones. Elapsed time is shown in days starting with T-date being the day tools were first run in for the treatment. The job was run with an average treating pressure of 1,000 psi, and a differential pressure of 2,500 psi that alternated from above the bridge plug to below and back each time the plug was moved to a new zone. The bridge plug used for the job seals by the action of a patented ratcheting mechanism which requires relatively light weight to set. Design of the ratchet enables the sealing elements to hold a seal against the casing wall while the hold-down slips are being set.

Cooley, G.; Mccowen, D.; Fore, M.

1984-03-01T23:59:59.000Z

359

The Construction and Maintenance Plan for a Grand Banks Multi-Purpose Pipeline  

E-Print Network (OSTI)

The Construction and Maintenance Plan for a Grand Banks Multi-Purpose Pipeline D.W. (Don) Wilson, Director, North Atlantic Pipeline Partners, L.P. NOIA 2000 Conference June, 2000 #12;Grand Banks Multi-Purpose Pipeline Route January 2000 Grand Banks of Newfoundland Newfoundland Come by Chance St. John's Argentia 50o

Bruneau, Steve

360

A New Species of Parodia (Cactaceae, Notocacteae) from Rio Grande do Sul, Brazil  

E-Print Network (OSTI)

A New Species of Parodia (Cactaceae, Notocacteae) from Rio Grande do Sul, Brazil Marlon C. Machado Grande do Sul, Brazil. jlarocca@unisinos.br ABSTRACT . A new species, Parodia gaucha M. Machado & Larocca (Cactaceae, Notocacteae), from Encruzilhada do Sul, Rio Grande do Sul, Brazil, is described and illustrated

Zürich, Universität

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Grand Forks, North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Grand Forks, North Dakota: Energy Resources Grand Forks, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.9252568°, -97.0328547° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.9252568,"lon":-97.0328547,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

362

GIS Data from LANL's Cerro Grande Rehabilitation Project (CGRP)  

DOE Data Explorer (OSTI)

The Los Alamos National Laboratorys Cerro Grande Rehabilitation Project (CGRP) involves many subprojects. One of them is a geographic information system for electronically storing and displaying geographically-related data about the fires effects. The data are used for research, planning, emergency response, and for informing the public. This website provides access to geospatial data relating to the May 2000 Cerro Grande Fire. This includes data generated by the Burned Area Emergency Rehabilitation (BAER) Team during and shortly after the fire as well as data resulting from the ongoing environmental monitoring programs related to the fire. These data are available from a data catalog in two forms: (i) direct download of individual geospatial files and (ii) image files.

363

East Grand St Bridge Snowmelt Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Bridge Snowmelt Low Temperature Geothermal Facility Bridge Snowmelt Low Temperature Geothermal Facility Jump to: navigation, search Name East Grand St Bridge Snowmelt Low Temperature Geothermal Facility Facility East Grand St Bridge Sector Geothermal energy Type Snowmelt Location Laramie, Wyoming Coordinates 41.3113669°, -105.5911007° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

364

Grand Ridge II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Jump to: navigation, search Name Grand Ridge II Wind Farm Facility Grand Ridge II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser AEP-Appalachian Power Location La Salle County IL Coordinates 41.15496°, -88.750234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.15496,"lon":-88.750234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

City of Grand Island, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Island City of Grand Island City of Place Nebraska Utility Id 40606 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Flood Lighting Lighting Commercial Rate- Single Phase Commercial Commercial Rate- Three Phase Commercial Residential Rate Residential Three Phase Power Service Industrial

366

City of Grand Haven, Michigan (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Haven Grand Haven Place Michigan Utility Id 7483 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Space Lighting Service - 100 Watt Lighting Area Space Lighting Service - 1000 Watt Lighting Area Space Lighting Service - 175 Watt Mercury Vapor Lighting Area Space Lighting Service - 400 Watt Mercury Vapor Lighting Area Space Lighting Service - Metal Halide 175 Watt Lighting

367

Arroyo Grande, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Arroyo Grande, California: Energy Resources Arroyo Grande, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1185868°, -120.5907252° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1185868,"lon":-120.5907252,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Rio Grande Electric Coop, Inc (New Mexico) | Open Energy Information  

Open Energy Info (EERE)

New Mexico) New Mexico) Jump to: navigation, search Name Rio Grande Electric Coop, Inc Place New Mexico Utility Id 16057 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1560/kWh Commercial: $0.1630/kWh Industrial: $0.1170/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Rio_Grande_Electric_Coop,_Inc_(New_Mexico)&oldid=412780" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here

369

City of Grand Rapids Building Solar Roof Demonstration  

SciTech Connect

Grand Rapids, Michigan is striving to reduce it environmental footprint. The municipal government organization has established environmental sustainability policies with the goal of securing 100% of its energy from renewable sources by 2020. This report describes the process by which the City of Grand Rapids evaluated, selected and installed solar panels on the Water/Environmental Services Building. The solar panels are the first to be placed on a municipal building. Its new power monitoring system provides output data to assess energy efficiency and utilization. It is expected to generate enough clean solar energy to power 25 percent of the building. The benefit to the public includes the economic savings from reduced operational costs for the building; an improved environmentally sustainable area in which to live and work; and increased knowledge about the use of solar energy. It will serve as a model for future energy saving applications.

DeClercq, Mark; Martinez, Imelda

2012-08-31T23:59:59.000Z

370

Volume terms for charged colloids: a grand-canonical treatment  

E-Print Network (OSTI)

We present a study of thermodynamic properties of suspensions of charged colloids on the basis of linear Poisson-Boltzmann theory. We calculate the effective Hamiltonian of the colloids by integrating out the ionic degrees of freedom grand-canonically. This procedure not only yields the well-known pairwise screened-Coulomb interaction between the colloids, but also additional volume terms which affect the phase behavior and the thermodynamic properties such as the osmotic pressure. These calculations are greatly facilitated by the grand-canonical character of our treatment of the ions, and allow for relatively fast computations compared to earlier studies in the canonical ensemble. Moreover, the present derivation of the volume terms are relatively simple, make a direct connection with Donnan equilibrium, yield an explicit expression for the effective screening constant, and allow for extensions to include, for instance, nonlinear effects.

Bas Zoetekouw; Rene van Roij

2005-10-10T23:59:59.000Z

371

Chattanooga Eagle Ford Rio Grande Embayment Texas- Louisiana-  

U.S. Energy Information Administration (EIA) Indexed Site

Rio Grande Rio Grande Embayment Texas- Louisiana- Mississippi Salt Basin Uinta Basin Appa lachia n Basin Utica Marcellus Devonian (Ohio) Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville Hermosa Mancos Pierre Conasauga Woodford- Caney Pearsall- Eagle Ford Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Maverick Sub-Basin Montana Thrust Belt Marfa Basin Valley and Ridge Province Arkoma Basin Forest City Basin Piceance Basin Shale Gas Plays, Lower 48 States 0 200 400 100 300 Miles ± Source: Energy Information Administration based on data from various published studies

372

Mars mission laser tool heads to JPL  

NLE Websites -- All DOE Office Websites (Extended Search)

Mars mission laser tool Mars mission laser tool Mars mission laser tool heads to JPL Curiosity will carry the newly delivered laser instrument to reveal which elements are present in Mars' rocks and soils. September 21, 2010 A bright ball of plasma is produced by ChemCam's invisible laser beam striking a rock within the Mars sample chamber. A bright ball of plasma is produced by ChemCam's invisible laser beam striking a rock within the Mars sample chamber. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "ChemCam will act as a geochemical observatory, providing composition data to understand if Mars was, is, or will be a habitable world." Star Wars photon gun will give Mars rover hands-free rock ID LOS ALAMOS, New Mexico, September 21, 2010-The ChemCam instrument has

373

EnviroMission Ltd | Open Energy Information  

Open Energy Info (EERE)

EnviroMission Ltd EnviroMission Ltd Jump to: navigation, search Name EnviroMission Ltd Place Melbourne, Victoria, Australia Zip 3205 Sector Solar Product Australia-based firm that develops, owns and operates solar thermal convection tower power plants. Coordinates -37.817532°, 144.967148° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-37.817532,"lon":144.967148,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

Pump Systems Matter Mission and Vision:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pump Systems Matter Mission and Vision: Pump Systems Matter Mission and Vision: Pump Systems Matter(tm) (PSM) places a primary focus on pump systems education and outreach and addresses energy savings and total cost of pump ownership. Vision: Pump Systems Matter initiative assists North American pump users gain a more competitive business advantage through strategic, broad-based energy management and pump system performance optimization. Mission: To provide the marketplace with tools and collaborative opportunities to integrate pump system performance optimization and efficient energy management practices into normal business operations. Essential Elements: * Build awareness of the benefits of systems optimization and pump system life cycle cost at the management, production and technical levels of companies throughout the supply chain.

375

Field Studies of Geothermal Reservoirs Rio Grande Rift, New Mexico  

DOE Green Energy (OSTI)

The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity that is found in the Basin and Range is absent because the rift is located on cratonic crust with a thin and well-characterized Phanerozoic stratigraphy and tectonic history. On the other hand, the Neogene thermo-tectonic history of the rift has many parallels with the Basin and Range to the west. The geology of the southern Rio Grande rift is among the best characterized of any rift system in the world. Also, most geologic maps for the region are rather unique in that detailed analyses of Quaternary stratigraphic and surficial unit are added in concert with the details of bedrock geology. Pleistocene to Holocene entrenchment of the Rio Grande and tributaries unroofs the alteration signatures and permeability attributes of paleo outflow plumes and upflow zones, associated with present-day, but hidden or ''blind,'' hydrothermal systems at Rincon and San Diego Mountain.

James C Witcher

2002-07-30T23:59:59.000Z

376

America's Missions: The Home Missions Movement and the Story of the Early Republic  

E-Print Network (OSTI)

This dissertation seeks to enhance our understanding of the early American republic by providing a study of the home missions movement from 1787 to 1845. The home missions movement was a nationwide, multi-denominational religious movement, led by mission societies, and aimed at bringing the Protestant gospel to the various peoples of the states and territories. A history of this movement not only fills a gap in the historiography of early American religious history, but also enlightens our understanding of the broader socio-political world of the early republic. The founding years of the home missions movement, from 1787 to 1815, were led by Congregationalists, Presbyterians, and Baptists. Despite interdenominational competition at home and diplomatic tension with Britain, Protestants tended to cooperate both interdenominationally and transatlantically in order to achieve broader, evangelical goals in their missions. Home missions societies also shed light on a third form of cooperation: cooperation between church and state. We can better understand the relationship between church and state in the early republic by rejecting the idea that these two entities functioned separately. Instead, they functioned within a complex system of cooperation, evidenced by consistent government subsidization of and participation in missions to both white settlers and Indians, as well as by a broad culture of cooperation with Protestant projects in American society. During the early antebellum period, the home missions movement underwent a significant transformation, from functioning as a nationwide group of loosely-affiliated societies, which focused on nearby peoples, to a highly-centralized affair, dominated by a handful of national mission societies, which focused on the salvation of the entire nation. The growing importance of the population of the Mississippi Valley and the national trend toward a more centralized government and economic system played the two key roles in this transformation. This centralization - religious, economic, and political - helped give rise to the antimission movement, a nationwide Protestant protest against mission societies. This movement sheds light on the religious and ideological underpinnings of antebellum sectionalism.

Franklin, Brian 1983-

2012-12-01T23:59:59.000Z

377

The Swift Gamma-Ray Burst Mission  

E-Print Network (OSTI)

The Swift mission, scheduled for launch in early 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is the first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts per year and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to determine the origin of GRBs; classify GRBs and search for new types; study the interaction of the ultra-relativistic outflows of GRBs with their surrounding medium; and use GRBs to study the early universe out to z>10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a new-generation wide-field gamma-ray (15-150 keV) detector; a narrow-field X-ray telescope; and a narrow-field UV/optical telescope. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of ~1 mCrab (~2x10^{-11} erg cm^{-2} s^{-1} in the 15-150 keV band), more than an order of magnitude better than HEAO A-4. A flexible data and operations system will allow rapid follow-up observations of all types of high-energy transients, with rapid data downlink and uplink available through the NASA TDRSS system. The mission is currently funded for 2 years of operations and the spacecraft will have a lifetime to orbital decay of ~8 years. [ABRIDGED

N. Gehrels; G Chincarini; P. Giommi; K. O. Mason; J. A. Nousek; A. A. Wells; N. E. White; S. D. Barthelmy; D. N. Burrows; L. R. Cominsky; K. C. Hurley; F. E. Marshall; P. Meszaros; P. W. A. Roming; Swift Science Team

2004-05-12T23:59:59.000Z

378

Mission & Roles, Environmental Protection Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission Mission The Environmental Protection Division develops and delivers high quality environmental products and services for all Brookhaven National Laboratory stakeholders.* Line management at Brookhaven National Laboratory is responsible and accountable for environmental stewardship, and it is our job to provide them with value-added, timely, effective and efficient support that enables them to conduct operations in an environmentally responsible manner. *Stakeholders include federal, state and local regulators, the public, the U.S. Department of Energy, and internal customers Roles Support Services Provides environmental technical support services and products for the programs listed above to the Laboratory to enhance and achieve environmental stewardship and compliance. These services and products are

379

Environmental assessment of facility operations at the U.S. Department of Energy Grand Junction Projects Office, Grand Junction, Colorado  

SciTech Connect

The US Department of Energy (DOE) has prepared a sitewide environmental assessment (EA) of the proposed action to continue and expand present-day activities on the DOE Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Because DOE-GJPO regularly proposes and conducts many different on-site activities, DOE decided to evaluate these activities in one sitewide EA rather than in multiple, activity-specific documents. On the basis of the information and analyses presented in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined by the National Environmental Policy Act (NEPA) of 1969. Therefore, preparation of an environmental impact statement is not required for facility operations, and DOE is issuing this Finding of No Significant Impact (FONSI).

NONE

1996-06-01T23:59:59.000Z

380

EXPERIMENTAL STUDY TO EVALUATE CORROSION OF THE F-CANYON DISSOLVER DURING THEUNIRRADIATED MARK-42 CAMPAIGN  

DOE Green Energy (OSTI)

Unirradiated Mark 42 fuel tubes are to be dissolved in an upcoming campaign in F-canyon. Savannah River Technology Center (SRTC)/Chemical & Hydrogen Technology Section (CHTS) identified a flow sheet for the dissolution of these Mark 42 fuel tubes which required a more aggressive dissolver solution than previously required for irradiated Mark 42 fuel tubes. Subsequently, SRTC/MTS was requested to develop and perform a corrosion testing program to assess the impact of new flow sheets on corrosion of the dissolver wall. The two primary variables evaluated were the fluoride and aluminum concentrations of the dissolver solution. Fluoride was added as Calcium Fluoride (CaF{sub 2}) while the aluminum was added either as metallic aluminum, which was subsequently dissolved, or as the chemical aluminum nitrate (Al(NO{sub 3}){sub 3}). The dissolved aluminum metal was used to simulate the dissolution of the aluminum from the Mark 42 cladding and fuel matrix. Solution composition for the corrosion tests bracketed the flow sheet for the Mark 42. Corrosion rates of AISI Type 304 stainless steel coupons, both welded and non-welded coupons, were calculated from measured weight losses and post-test concentrations of soluble Fe, Cr and Ni. The corrosion rates, which ranged between 2.7 and 32.5 mpy, were calculated from both the one day and the one week weight losses. These corrosion rates indicated a relatively mild corrosion on the dissolver vessel. The welded coupons consistently had a higher corrosion rate than the non-welded coupons. The difference between the two decreased as the solution aggressiveness decreased. In these test solutions, aggressiveness corresponded with the fluoride concentration. Based on the results of this study, any corrosion occurring during the Mark 42 Campaign is not expected to have a deleterious effect on the dissolver vessel.

Mickalonis, J; Kerry Dunn, K

1999-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Financial analysis of experimental releases conducted at Glen Canyon Dam during water year 2011  

DOE Green Energy (OSTI)

This report examines the financial implications of experimental flows conducted at the Glen Canyon Dam (GCD) in water year 2011. It is the third report in a series examining financial implications of experimental flows conducted since the Record of Decision (ROD) was adopted in February 1997 (Reclamation 1996). A report released in January 2011 examined water years 1997 to 2005 (Veselka et al. 2011), and a report released in August 2011 examined water years 2006 to 2010 (Poch et al. 2011). An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes both that operations comply with the ROD operating criteria and the experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP powerplant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases conducted in water year 2011 resulted only in financial costs; the total cost of all experimental releases was about $622,000.

Poch, L. A.; Veselka, T. D.; Palmer, C. S.; Loftin, S.; Osiek, B. (Decision and Information Sciences); (Western Area Power Administration)

2012-07-16T23:59:59.000Z

382

Hanford defense mission: Past, present and future  

SciTech Connect

This paper describes the origin of Hanford, and its role in the Manhattan Project, its current role, and what is seen for Hanford in the future. Emphasis is on Hanford's defense mission. However, Hanford is a national resource in a number of areas and some of these are mentioned as well.

Munson, L.F.

1986-10-01T23:59:59.000Z

383

Solar composition from the Genesis Discovery Mission  

E-Print Network (OSTI)

Solar composition from the Genesis Discovery Mission D. S. Burnett1 and Genesis Science Team2: the isoto- pic compositions of O, N, and noble gases differ in the Sun from other inner solar system objects in the noble gas data from solar wind implanted in lunar soils. (ii) The most advanced analytical instruments

384

Draft Strategic Laboratory Missions Plan. Volume II  

SciTech Connect

This volume described in detail the Department`s research and technology development activities and their funding at the Department`s laboratories. It includes 166 Mission Activity Profiles, organized by major mission area, with each representing a discrete budget function called a Budget and Reporting (B & R) Code. The activities profiled here encompass the total research and technology development funding of the laboratories from the Department. Each profile includes a description of the activity and shows how the funding for that activity is distributed among the DOE laboratories as well as universities and industry. The profiles also indicate the principal laboratories for each activity, as well as which other laboratories are involved. The information in this volume is at the core of the Strategic Laboratory Mission Plan. It enables a reader to follow funds from the Department`s appropriation to a specific activity description and to specific R & D performing institutions. This information will enable the Department, along with the Laboratory Operations Board and Congress, to review the distribution of R & D performers chosen to execute the Department`s missions.

1996-03-01T23:59:59.000Z

385

SunShot Initiative: Mission, Vision, and Goals  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission, Vision, and Goals to Mission, Vision, and Goals to someone by E-mail Share SunShot Initiative: Mission, Vision, and Goals on Facebook Tweet about SunShot Initiative: Mission, Vision, and Goals on Twitter Bookmark SunShot Initiative: Mission, Vision, and Goals on Google Bookmark SunShot Initiative: Mission, Vision, and Goals on Delicious Rank SunShot Initiative: Mission, Vision, and Goals on Digg Find More places to share SunShot Initiative: Mission, Vision, and Goals on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Balance of Systems Mission, Vision, and Goals Photo of a male silhouetted against a solar array. Researcher Josh Stein of Sandia National Laboratories studies how clouds impact large-scale solar photovoltaic (PV) power plants. Photo from Randy

386

UMTRA project water sampling and analysis plan, Grand Junction, Colorado  

Science Conference Proceedings (OSTI)

Surface remedial action will be completed at the Grand Junction processing site during the summer of 1994. Results of 1993 water sampling indicate that ground water flow conditions and ground water quality at the processing site have remained relatively constant with time. Uranium concentrations in ground water continue to exceed the maximum concentration limits, providing the best indication of the extent of contaminated ground water. Evaluation of surface water quality of the Colorado River indicate no impact from uranium processing activities. No compliance monitoring at the Cheney disposal site has been proposed because ground water in the Dakota Sandstone (uppermost aquifer) is classified as limited-use (Class 111) and because the disposal cell is hydrogeologically isolated from the uppermost aquifer. The following water sampling and water level monitoring activities are planned for calendar year 1994: (i) Semiannual (early summer and late fall) sampling of six existing monitor wells at the former Grand Junction processing site. Analytical results from this sampling will be used to continue characterizing hydrogeochemical trends in background ground water quality and in the contaminated ground water area resulting from source term (tailings) removal. (ii) Water level monitoring of approximately three proposed monitor wells projected to be installed in the alluvium at the processing site in September 1994. Data loggers will be installed in these wells, and water levels will be electronically monitored six times a day. These long-term, continuous ground water level data will be collected to better understand the relationship between surface and ground water at the site. Water level and water quality data eventually will be used in future ground water modeling to establish boundary conditions in the vicinity of the Grand Junction processing site. Modeling results will be used to help demonstrate and document the potential remedial alternative of natural flushing.

Not Available

1994-07-01T23:59:59.000Z

387

Gravitational Collapse and Radiation of Grand Unified Theory  

E-Print Network (OSTI)

The infinite gravitational collapse of any supermassive stars should pass through an energy scale of the grand unified theory (GUT). After nucleon-decays, the supermassive star will convert nearly all its mass into energy, and produce the radiation of GUT. It may probably explain some ultrahigh energy puzzles in astrophysics, for example, quasars and gamma-ray bursts (GRB), etc. This is similar with a process of the Big Bang Universe with a time-reversal evolution in much smaller space scale and mass scale. In this process the star seems be a true white hole.

Yi-Fang Chang

2007-10-02T23:59:59.000Z

388

Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.  

DOE Green Energy (OSTI)

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old project that will protect an additional 1.3 miles of stream and 298.3 acres of habitat; (2) Conducting instream work activities in 3 streams to enhance habitat and/or restore natural channel dimensions, patterns or profiles; (3) Improving fish passage in Bear Creek to restore tributary and mainstem access; (4) Planting and seeding 6.7 stream miles with 7,100 plants and 365 lbs. of seed; (5) Establishing 18 new photopoints and retaking 229 existing photopoint pictures; (6) Monitoring stream temperatures at 12 locations on 6 streams; (7) completing riparian fence, water gap and other maintenance on 98.7 miles of project fences. Since initiation of the project in 1984 over 62 miles of anadromous fish bearing streams and 1,910 acres of habitat have been protected, enhanced and maintained.

McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

2001-04-01T23:59:59.000Z

389

Grande Ronde Endemic Spring Chinook Project - ODFW, 2008 Annual Report.  

DOE Green Energy (OSTI)

Core activities of the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCSP) are funded through the authority of the Lower Snake River Fish and Wildlife Compensation Plan (LSRCP). The LSRCP program was approved by the Water Resources Development Act of 1976, PL 94-587, Section 102, 94th Congress substantially in accordance with the Special Report, LSRCP, June 1975 on file with the Chief of Engineers. The LSRCP was prepared and submitted in compliance with the Fish and Wildlife Coordination Act of 1958, PL 85-624, 85th Congress, August 12, 1958 to mitigate for the losses of fish and wildlife caused by the construction of dams on lower Snake River. The GRESCSP is an artificial propagation program that was initiated by Bonneville Power Administrations Fish and Wildlife program in the mid 1990's. The intent of this program was to change the mitigation aspect of the LSRCP program (harvest mitigation) to an integrated supplementation program; inasmuch as, hatchery produced fish could be experimentally used as a recovery tool and fish surplus to mitigation would be available for in-place and in-kind harvest. Fish production is still authorized by the LSRCP with the original mitigation return goal of 5,860 adult spring Chinook to the project area. The GRESCSP was developed with two primary components: (1) conventional broodstock (projects 199800702; 199800703; 199800704) and (2) captive brood (projects 199801001; 199801006). The GRESCSP relies on cooperative M&E efforts from the LSRCP including setting aside the Wenaha and Minam tributaries as natural production reserves components used for reference streams. The GRESCSP, coordinated with federal and tribal partners, identifies production levels for both propagation components and weir management strategies for each of the three supplemented tributary areas within the Grande Ronde Sub-basin. The three supplemented areas are Catherine Creek, Lostine River, and upper Grande Ronde River. Lookingglass Creek, an extirpated area, will be stocked (smolts and adults) with Catherine Creek origin salmon to initiate natural production in unseeded habitat, and to initiate future harvest opportunities. The current production levels have been incorporated into the U.S. v. Oregon Interim Management Agreement. The purpose of this contract is to integrate Bonneville Power Administration (BPA) efforts with the Lower Snake River Compensation Plan (LSRCP) program utilizing Lookingglass Hatchery as the primary rearing facility. BPA constructed an adult holding and spawning structure on the hatchery grounds; however, maintenance of this infrastructure was discontinued due to funding limitation and transferred to the LSRCP program in 2007. These integrated efforts focus on holding and spawning adults, rearing juveniles, fish health, and monitoring natural production (Redd counts) for Catherine Creek, Lostine River, and Upper Grande Ronde stocks.

Patterson, Scott

2009-04-10T23:59:59.000Z

390

Grand Challenges for Biological and Environmental Research: A Long-Term Vision  

SciTech Connect

The interactions and feedbacks among plants, animals, microbes, humans, and the environment ultimately form the world in which we live. This world is now facing challenges from a growing and increasingly affluent human population whose numbers and lifestyles are driving ever greater energy demand and impacting climate. These and other contributing factors will make energy and climate sustainability extremely difficult to achieve over the 20-year time horizon that is the focus of this report. Despite these severe challenges, there is optimism that deeper understanding of our environment will enable us to mitigate detrimental effects, while also harnessing biological and climate systems to ensure a sustainable energy future. This effort is advanced by scientific inquiries in the fields of atmospheric chemistry and physics, biology, ecology, and subsurface science - all made possible by computing. The Office of Biological and Environmental Research (BER) within the Department of Energy's (DOE) Office of Science has a long history of bringing together researchers from different disciplines to address critical national needs in determining the biological and environmental impacts of energy production and use, characterizing the interplay of climate and energy, and collaborating with other agencies and DOE programs to improve the world's most powerful climate models. BER science focuses on three distinct areas: (1) What are the roles of Earth system components (atmosphere, land, oceans, sea ice, and the biosphere) in determining climate? (2) How is the information stored in a genome translated into microbial, plant, and ecosystem processes that influence biofuel production, climate feedbacks, and the natural cycling of carbon? (3) What are the biological, geochemical, and physical forces that govern the behavior of Earth's subsurface environment? Ultimately, the goal of BER science is to support experimentation and modeling that can reliably predict the outcomes and behaviors of complex biological and environmental systems, leading to robust solutions for DOE missions and strategic goals. In March 2010, the Biological and Environmental Research Advisory Committee held the Grand Challenges for Biological and Environmental Research: A Long-Term Vision workshop to identify scientific opportunities and grand challenges for BER science in the coming decades and to develop an overall strategy for drafting a long-term vision for BER. Key workshop goals included: (1) Identifying the greatest scientific challenges in biology, climate, and the environment that DOE will face over a 20-year time horizon. (2) Describing how BER should be positioned to address those challenges. (3) Determining the new and innovative tools needed to advance BER science. (4) Suggesting how the workforce of the future should be trained in integrative system science. This report lays out grand research challenges for BER - in biological systems, climate, energy sustainability, computing, and education and workforce training - that can put society on a path to achieve the scientific evidence and predictive understanding needed to inform decision making and planning to address future energy needs, climate change, water availability, and land use.

Arkin, A.; Baliga, N.; Braam, J.; Church, G.; Collins, J; Cottingham, R.; Ecker, J.; Gerstein, M.; Gilna, P.; Greenberg, J.; Handelsman, J.; Hubbard, S.; Joachimiak, A.; Liao, J.; Looger, L.; Meyerowitz, E.; Mjolness, E.; Petsko, G.; Sayler, G.; Simpson, M.; Stacey, G.; Sussman, M.; Tiedje, J.; Bader, D.; Cessi, P.; Collins, W.; Denning, S.; Dickinson, R.; Easterling, D.; Edmonds, J.; Feddema, J.; Field, C.; Fridlind, A.; Fung, I.; Held, I.; Jackson, R.; Janetos, A.; Large, W.; Leinen, M.; Leung, R.; Long, S.; Mace, G.; Masiello, C.; Meehl, G.; Ort, D.; Otto-Bliesner, B.; Penner, J.; Prather, M.; Randall, D.; Rasch, P.; Schneider, E.; Shugart, H.; Thornton, P.; Washington, W.; Wildung, R.; Wiscombe, W.; Zak, D.; Zhang, M.; Bielicki, J.; Buford, M.; Cleland, E.; Dale, V.; Duke, C.; Ehleringer, J.; Hecht, A.; Kammen, D.; Marland, G.; Pataki, D.; Riley, M. Robertson, P.; Hubbard, S.

2010-12-01T23:59:59.000Z

391

Floodplain Assessment for the Proposed Engineered Erosion Controls at TA-72 in Lower Sandia Canyon, Los Alamos National Laboratory  

SciTech Connect

Los Alamos National Laboratory (LANL) is preparing to implement engineering controls in Sandia Canyon at Technical Area (TA) 72. Los Alamos National Security (LANS) biologists conducted a floodplain determination and this project is located within a 100-year floodplain. The proposed project is to rehabilitate the degraded channel in lower Sandia Canyon where it crosses through the outdoor firing range at TA-72 to limit the loss of sediment and dissipate floodwater leaving LANL property (Figure 1). The proposed construction of these engineered controls is part of the New Mexico Environment Department's (NMED) approved LANL Individual Storm Water Permit. The purpose of this project is to install storm water controls at Sandia Watershed Site Monitoring Area 6 (S-SMA-6). Storm water controls will be designed and installed to meet the requirements of NPDES Permit No. NM0030759, commonly referred to as the LANL Individual Storm Water Permit (IP). The storm water control measures address storm water mitigation for the area within the boundary of Area of Concern (AOC) 72-001. This action meets the requirements of the IP for S-SMA-6 for storm water controls by a combination of: preventing exposure of upstream storm water and storm water generated within the channel to the AOC and totally retaining storm water falling outside the channel but within the AOC.

Hathcock, Charles D. [Los Alamos National Laboratory

2012-08-27T23:59:59.000Z

392

Effects of hydropower operations on recreational use and nonuse values at Glen Canyon and Flaming Gorge Dams  

DOE Green Energy (OSTI)

Increases in streamflows are generally positively related to the use values of angling and white-water boating, and constant flows tend to increase the use values more than fluctuating flows. In most instances, however, increases in streamflows beyond some threshold level cause the use values to decrease. Expenditures related to angling and white-water boating account for about $24 million of activity in the local economy around Glen Canyon Dam and $24.8 million in the local economy around flaming Gorge Dam. The range of operational scenarios being considered in the Western Area Power Administration`s Electric Power Marketing Environmental Impact Statement, when use rates are held constant, could change the combined use value of angling and white-water boating below Glen Canyon Dam, increasing it by as much as 50%, depending on prevailing hydrological conditions. Changes in the combined use value below Flaming Gorge Dam could range from a decrease of 9% to an increase of 26%. Nonuse values, such as existence and bequest values, could also make a significant contribution to the total value of each site included in this study; however, methodological and data limitations prevented estimating how each operational scenario could change nonuse values.

Carlson, J.L.

1995-03-01T23:59:59.000Z

393

Financial analysis of experimental releases conducted at Glen Canyon Dam during water years 2006 through 2010.  

SciTech Connect

Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. A report released in January 2011 examined the financial implications of the experimental flows that were conducted at the GCD from 1997 to 2005. This report continues the analysis and examines the financial implications of the experimental flows conducted at the GCD from 2006 to 2010. An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes both that operations comply with the ROD operating criteria and the experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP powerplant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases in some water years resulted in financial benefits to Western while others resulted in financial costs. During the study period, the total financial costs of all experimental releases were more than $4.8 million.

Poch, L. A.; Veselka, T. D.; Palmer, C. S.; Loftin, S.; Osiek, B. (Decision and Information Sciences); (Western Area Power Administration, Colorado River Storage Project Management Center)

2011-08-22T23:59:59.000Z

394

Integrated reservoir study of the 8 reservoir of the Green Canyon 18 field  

E-Print Network (OSTI)

The move into deeper waters in the Gulf of Mexico has produced new opportunities for petroleum production, but it also has produced new challenges as different reservoir problems are encountered. This integrated reservoir characterization effort has provided useful information about the behavior and characteristics of a typical unconsolidated, overpressured, fine-grained, turbidite reservoir, which constitutes the majority of the reservoirs present in the Outer Continental Shelf of the Gulf of Mexico. Reservoirs in the Green Canyon 18 (GC 18) field constitute part of a turbidite package with reservoir quality typically increasing with depth. Characterization of the relatively shallow 8 reservoir had hitherto been hindered by the difficulty in resolving its complex architecture and stratigraphy. Furthermore, the combination of its unconsolidated rock matrix and abnormal pore pressure has resulted in severe production-induced compaction. The reservoir's complex geology had previously obfuscated the delineation of its hydrocarbon accumulation and determination of its different resource volumes. Geological and architectural alterations caused by post-accumulation salt tectonic activities had previously undermined the determination of the reservoir's active drive mechanisms and their chronology. Seismic interpretation has provided the reservoir geometry and topography. The reservoir stratigraphy has been defined using log, core and seismic data. With well data as pilot points, the spatial distribution of the reservoir properties has been defined using geostatistics. The resulting geological model was used to construct a dynamic flow model that matched historical production and pressure data.. The reservoir's pressure and production behavior indicates a dominant compaction drive mechanism. The results of this work show that the reservoir performance is influenced not only by the available drive energy, but also by the spatial distribution of the different facies relative to well locations. The study has delineated the hydrocarbon bearing reservoir, quantified the different resource categories as STOIIP/GIIP = 19.8/26.2 mmstb/Bscf, ultimate recovery = 9.92/16.01 mmstb/Bscf, and reserves (as of 9/2001) = 1.74/5.99 mmstb/Bscf of oil and gas, respectively. There does not appear to be significant benefit to infill drilling or enhanced recovery operations.

Aniekwena, Anthony Udegbunam

2003-08-01T23:59:59.000Z

395

SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Grand Challenge Highlights Ambitious Efforts along the SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar Spectrum SunShot Grand Challenge Highlights Ambitious Efforts along the Entire Solar Spectrum June 13, 2012 - 5:30pm Addthis Energy Secretary Steven Chu gives the keynote address at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Energy Secretary Steven Chu gives the keynote address at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Ramamoorthy Ramesh Former Director, SunShot Initiative & Solar Energy Technologies Program What are the key facts? Today at the SunShot Grand Challenge Summit Energy Secretary Chu announced up to $8 million to support clean energy startups. Secretary Chu also announced a nationwide competition to drive down

396

Mission, Kansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mission, Kansas: Energy Resources Mission, Kansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.0277832°, -94.6557914° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0277832,"lon":-94.6557914,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Integrated Safety Management Workshop - Building Mission Success  

NLE Websites -- All DOE Office Websites (Extended Search)

Image layout spacer Integrated Safety Management Workshop - Building Mission Success Acting Deputy Secretary Jeff Kupfer addresses the audience at the 2008 ISM Workshop. Over 500 U.S. Department of Energy and contractor employees started the Labor Day weekend with safety in mind. Hosted by the U.S. Department of Energy's Idaho Operations Office, along with the prime contractors at the Idaho National Laboratory Site, the 2008 Integrated Safety Management Workshop, which was held in Idaho Falls, concluded Aug. 28. Acting Deputy Secretary for the Department of Energy, Jeff Kupfer described the workshop as "the Department of Energy's signature safety event," stating that safety enables the Department's mission success, and complacent work is safety's enemy. Kupfer also noted that workshop participation helps to

398

Equal Employment Opportunity: Collaborating for Mission Success  

National Nuclear Security Administration (NNSA)

r r Equal Employment Opportunity: Collaborating for Mission Success April 2013 EEO Complaint BURDEN OF PROOF IN THE EEO COMPLAINT PROCESS Equal Employment Opportunity: Collaborating for Mission Success WHERE WE ARE Things to Consider Before you Decide to File.... NNSA Office of Civil Rights, NA-1.2 PO Box 5400 Bldg 384, 2 nd floor, North end Albuquerque, NM 87185 Phone: (505) 845-5517 Toll Free: (800) 825-5256 (enter 845-5517 at voice prompt) TTY: (866) 872-1011 Fax: (505) 845-4963 WHO Has to Prove Discrimination Occurred? The burden of proof ultimately rests with the aggrieved person at all times; however, there is a three-step process utilized by the EEOC and the courts when deciding if discrimination occurred

399

The NASA Soil Moisture Active Passive (SMAP) mission: Overview  

E-Print Network (OSTI)

The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey. Its mission design consists of L-band ...

O'Neill, Peggy

400

Using the NEPA Process to Further the Department's Mission and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Using the NEPA Process to Further the Department's Mission and Goals Using the NEPA Process to Further the Department's Mission and Goals This is a statement by DOE's Assistant...

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Human-automation collaborative RRT for UAV mission path planning  

E-Print Network (OSTI)

Future envisioned Unmanned Aerial Vehicle (UAV) missions will be carried out in dynamic and complex environments. Human-automation collaboration will be required in order to distribute the increased mission workload that ...

Caves, Amrico De Jess (Caves Corral)

2010-01-01T23:59:59.000Z

402

High Performance Computing Systems for Autonomous Spaceborne Missions  

Science Conference Proceedings (OSTI)

Future-generation space missions across the solar system to the planets, moons, asteroids, and comets may someday incorporate supercomputers both to expand the range of missions being conducted and to significantly reduce their cost. By performing science ...

Thomas Sterling; Daniel S. Katz; Larry Bergman

2001-08-01T23:59:59.000Z

403

Office of Security Training Operations - Mission and Functions  

NLE Websites -- All DOE Office Websites (Extended Search)

Security Training Operations Please click on this link to go to the National Training Center. Mission The mission of the Office of Security Training Operations is to develop and...

404

A Grand Delta(96) x SU(5) Flavour Model  

E-Print Network (OSTI)

Recent results from the Daya Bay and RENO reactor experiments have measured the smallest lepton mixing angle and found it to have a value of theta_13 approximately 9 degrees. This result presents a new challenge for the existing paradigms of discrete flavour symmetries which attempt to describe all quark and lepton masses and mixing angles. Here we propose a Supersymmetric Grand Unified Theory of Flavour based on Delta(96) x SU(5), together with a U(1) x Z3 symmetry, including a full discussion of Delta(96) in a convenient basis. The Grand Delta(96) x SU(5) Flavour Model relates the quark mixing angles and masses in the form of the Gatto-Sartori-Tonin relation and realises the Georgi-Jarlskog mass relations between the charged leptons and down-type quarks. We predict a Bi-trimaximal (not Tri-bimaximal) form of neutrino mixing matrix, which, after including charged lepton corrections with zero phase, leads to the following GUT scale predictions for the atmospheric, solar, and reactor mixing angles: theta_23=36...

King, Stephen F; Stuart, Alexander J

2012-01-01T23:59:59.000Z

405

A Grand Delta(96) x SU(5) Flavour Model  

E-Print Network (OSTI)

Recent results from the Daya Bay and RENO reactor experiments have measured the smallest lepton mixing angle and found it to have a value of theta_13 approximately 9 degrees. This result presents a new challenge for the existing paradigms of discrete flavour symmetries which attempt to describe all quark and lepton masses and mixing angles. Here we propose a Supersymmetric Grand Unified Theory of Flavour based on Delta(96) x SU(5), together with a U(1) x Z3 symmetry, including a full discussion of Delta(96) in a convenient basis. The Grand Delta(96) x SU(5) Flavour Model relates the quark mixing angles and masses in the form of the Gatto-Sartori-Tonin relation and realises the Georgi-Jarlskog mass relations between the charged leptons and down-type quarks. We predict a Bi-trimaximal (not Tri-bimaximal) form of neutrino mixing matrix, which, after including charged lepton corrections with zero phase, leads to the following GUT scale predictions for the atmospheric, solar, and reactor mixing angles: theta_23=36.9 degrees, theta_12=32.7 degrees and theta_13=9.6 degrees, in good agreement with recent global fits, and a zero Dirac CP phase delta~0.

Stephen F. King; Christoph Luhn; Alexander J. Stuart

2012-07-24T23:59:59.000Z

406

Geomorphology of plutonium in the Northern Rio Grande  

Science Conference Proceedings (OSTI)

Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

Graf, W.L. [Arizona Univ., Tempe, AZ (United States). Dept., of Geography] Arizona Univ., Tempe, AZ (United States). Dept., of Geography

1993-03-01T23:59:59.000Z

407

Microsats for On-Orbit Support Missions  

SciTech Connect

I appreciate the opportunity to address this conference and describe some of our work and plans for future space missions and capabilities. My presentation will consist of a short overview of our program, some potential missions and enabling technologies, as well as, a description of some of our test vehicles and ongoing docking experiments. The Micro-Satellite Technology Program at Lawrence Livermore National Laboratory is developing technologies for a new generation of a very highly capable autonomous microsats. A microsat is defined here as a vehicle that's less than 100 kilograms in mass. We're looking at a number of different microsat design configurations, between 0.5 to 1 meter in length and less than 40 kg in mass. You'll see several ground-test vehicles that we have been building that are modeled after potential future on-orbit systems. In order to have very aggressive missions, these microsats will require new integrated proximity operation sensors, advanced propulsion, avionics and guidance systems. Then to make this dream a reality a new approach to high fidelity ''hardware-in-the-loop'' ground testing, will be discussed that allows repeated tests with the same vehicle multiple times. This will enable you to ''get it right'' before going into space. I'll also show some examples of our preliminary docking work completed as of today.

Ledebuhr, A G

2001-03-15T23:59:59.000Z

408

NREL: Technology Transfer - NREL Mission and CSP Highlighted ...  

National Renewable Energy Laboratory Technology Transfer NREL Mission and CSP Highlighted in Innovation Magazine April 29, 2008. Laboratory Director ...

409

2011 Annual Planning Summary for Office of Legacy Management (LM), Grand Junction (See LM APS)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Office of Legacy Management (LM), Grand Junction (See LM APS).

410

EA-1679: Grand Coulee's Third Powerplant 500-kV Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

environmental impacts from the construction and operation of six new 500-kV overhead transmission lines to replace six existing underground lines at Grand Coulee Dam. DOE's...

411

MISSION AND NEED FOR A FUSION NUCLEAR SCIENCE FACILITY  

E-Print Network (OSTI)

MISSION AND NEED FOR A FUSION NUCLEAR SCIENCE FACILITY Mission Gerald Navratil Need Mohamed Abdou and Symposium 1-2 December 2010 #12;FUSION NUCLEAR SCIENCE FACILITY: COMMENTS ON MISSION Gerald A. Navratil Component Test Facility Theory & Simulation FESAC/Snowmass Report: ITER-Based Development Path #12;FUSION

412

Large-Eddy Simulation of Flow and Pollutant Transport in Street Canyons of Different Building-Height-to-Street-Width Ratios  

Science Conference Proceedings (OSTI)

This study employs a large-eddy simulation technique to investigate the flow, turbulence structure, and pollutant transport in street canyons of building-height-to-street-width (aspect) ratios of 0.5, 1.0, and 2.0 at a Reynolds number of 12 000 ...

Chun-Ho Liu; Mary C. Barth; Dennis Y. C. Leung

2004-10-01T23:59:59.000Z

413

Near-Surface Currents in DeSoto Canyon (199799): Comparison of Current Meters, Satellite Observation, and Model Simulation  

Science Conference Proceedings (OSTI)

This study evaluates a data-assimilated model simulation of near-surface circulation in DeSoto Canyon (DSC), Gulf of Mexico, with emphasis on analyzing moored current-meter observations and comparing them with satellite data and model results. ...

Dong-Ping Wang; Lie-Yauw Oey; Tal Ezer; Peter Hamilton

2003-01-01T23:59:59.000Z

414

Integrated Reservoir Characterization: Offshore Louisiana, Grand Isle Blocks 32 & 33  

E-Print Network (OSTI)

This thesis integrated geology, geophysics, and petroleum engineering data to build a detailed reservoir characterization models for three gas pay sands in the Grand Isle 33 & 43 fields, offshore Louisiana. The reservoirs are Late Miocene in age and include the upper (PM), middle (QH), and lower (RD) sands. The reservoir models address the stratigraphy of the upper (PM) sand and help delineate the lower (RD) reservoir. In addition, this research addresses the partially depleted QH-2 reservoir compartment. The detailed models were constructed by integrating seismic, well log, and production data. These detailed models can help locate recoverable oil and gas that has been left behind. The upper PM model further delineated that the PM sand has several areas that are shaled-out effectively creating a flow barrier within reservoir compartments. Due to the barrier in the PM-1 reservoir compartment, an area of potentially recoverable hydrocarbons remains. In Grand Isle 33, the middle QH sand was partially depleted in the QH-2 reservoir compartment by a series of development wells. Bottom hole pressure data from wells in Grand Isle 32 & 33 reveal that the two QH fault compartments are in communication across a leaking fault. Production wells in the QH-1 compartment produced reserves from the QH-2 compartment. The lower RD sand model helped further delineate the reservoir in the RD-2 compartment and show that this compartment has been depleted. The RD model also shows the possible presence of remaining recoverable hydrocarbons in the RD-1 compartment. It is estimated that about 6.7 billion cubic feet of gas might remain within this reservoir waiting to be recovered. A seismic amplitude anomaly response from the QH and RD sands is interpreted to be a lithologic indicator rather than the presence of hydrocarbons. Amplitude response from the PM level appears to be below the resolution of the seismic data. A synthetic seismogram model was generated to represent the PM and surrounding sands. This model shows that by increasing the frequency of the seismic data from 20 Hz to a dominant frequency of 30 Hz that the PM and surrounding sands could be seismically resolvable. Also the PM-1 compartment has possible recoverable hydrocarbons of 1.5 billion cubic feet of gas remaining.

Casey, Michael Chase

2011-05-01T23:59:59.000Z

415

High-Resolution Carbon Isotope Stratigraphy, Pennsylvanian Snaky Canyon Formation, East-Central Idaho: Implications for Regional and Global Correlations  

E-Print Network (OSTI)

Nearly 550 samples of fine grained carbonates, collected every 0.5 to 1.0 m from the Bloom Member of the Snaky Canyon Formation at Gallagher Peak, Idaho, were analyzed to determine the high-resolution carbon isotope stratigraphy. To constrain for diagenesis, thin sections were petrographically analyzed and viewed using cathodoluminescence microscopy. Chemical analyses were performed using an electron microprobe. Average delta18O and delta13C values from the Bloom Member are -4.5% +/- 1.6% (1 sigma) and 2.1% +/- 1.1%, respectively. Maximum delta13C values are about 1% higher for the Desmoinesian and Missourian than the Morrowan and Atokan, similar to results from the Yukon Territory. delta18O and delta13C values are lowest for crystalline mosaic limestones and siltstones, moderate for packstones, wackestones, and mudstones, and highest for boundstones and grainstones. The delta13C profile from Gallagher Peak consists of high frequency 1% oscillations with several larger excursions. No large delta13C increase at the base of the section suggests the Mid-Carboniferous boundary is in the underlying Bluebird Mountain formation. delta13C of Gallagher Peak and Arrow Canyon, NV, correlate well from 318 to 310 Ma, but correlation becomes more difficult around 310 Ma. This may result from increased restriction of the Snaky Canyon platform beginning in the Desmoinesian. Most of the short term (<1 Ma) isotopic excursions are the result of diagenesis. Two of the largest negative excursions at Gallagher Peak correlate with two large negative excursions at Big Hatchet Peak, NM, possibly due to sea level lowstands of the Desmoinesian. Phylloid algal mounds at Gallagher Peak are associated with positive excursions because of original aragonite composition and increased open marine influence. Positive excursions related to other facies characteristics also result from increased marine influence. The delta13C curve for the upper half of Gallagher Peak contains three repeated cycles of increasing delta13C over 1-1.5 Ma, which are possibly related to long-term sea level fluctuations. Given the complexity of each local environment, without detailed biostratigraphy, detailed rock descriptions, and analysis of the various rock components, delta13C stratigraphy of whole rocks can be misinterpreted.

Jolley, Casey

2012-05-01T23:59:59.000Z

416

Underground Infrastructure Impacts Due to a Surface Burst Nuclear Device in an Urban Canyon Environment  

SciTech Connect

Investigation of the effects of a nuclear device exploded in a urban environment such as the Chicago studied for this particular report have shown the importance on the effects from the urban canyons so typical of today's urban environment as compared to nuclear test event effects observed at the Nevada Test Site (NTS) and the Pacific Testing Area on which many of the typical legacy empirical codes are based on. This report first looks at the some of the data from nuclear testing that can give an indication of the damage levels that might be experienced due to a nuclear event. While it is well known that a above ground blast, even a ground burst, very poorly transmits energy into the ground ( < 1%) and the experimental results discussed here are for fully coupled detonations, these results do indicate a useful measure of the damage that might be expected. The second part of the report looks at effects of layering of different materials that typically would make up the near ground below surface environment that a shock would propagate through. As these simulations support and is widely known in the community, the effects of different material compositions in these layers modify the shock behavior and especially modify the energy dispersal and coupling into the basement structures. The third part of the report looks at the modification of the underground shock effects from a surface burst 1 KT device due to the presence of basements under the Chicago buildings. Without direct knowledge of the basement structure, a simulated footprint of a uniform 20m depth was assumed underneath each of the NGI defined buildings in the above ground environment. In the above ground case, the underground basement structures channel the energy along the line of site streets keeping the shock levels from falling off as rapidly as has been observed in unobstructed detonations. These simulations indicate a falloff of factors of 2 per scaled length as compared to 10 for the unobstructed case. Again, as in the above ground case, the basements create significant shielding causing the shock profile to become more square and reducing the potential for damage diagonal to the line of sight streets. The results for a 1KT device is that the heavily damaged zone (complete destruction) will extend out to 50m from the detonation ({approx}100m for 10KT). The heavily to moderately damaged zone will extend out to 100m ({approx}200m for 10KT). Since the destruction will depend on geometric angle from the detonation and also the variability of response for various critical infrastructure, for planning purposes the area out to 100m from the detonation should be assumed to be non-operational. Specifically for subway tunnels, while not operational, they could be human passable for human egress in the moderately damaged area. The results of the simulations presented in this report indicate only the general underground infrastructure impact. Simulations done with the actual basement geometry would be an important improvement. Equally as important or even more so, knowing the actual underground material configurations and material composition would be critical information to refine the calculations. Coupling of the shock data into structural codes would help inform the emergency planning and first response communities on the impact to underground structures and the state of buildings after the detonation.

Bos, Randall J. [Los Alamos National Laboratory; Dey, Thomas N. [Los Alamos National Laboratory; Runnels, Scott R. [Los Alamos National Laboratory

2012-07-03T23:59:59.000Z

417

Grand Ridge III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

III Wind Farm III Wind Farm Facility Grand Ridge III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser AEP-Appalachian Power Location La Salle County IL Coordinates 41.15496°, -88.750234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.15496,"lon":-88.750234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

City of Grand Marais, Minnesota (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Marais, Minnesota (Utility Company) Marais, Minnesota (Utility Company) Jump to: navigation, search Name City of Grand Marais Place Minnesota Utility Id 7487 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL - SINGLE PHASE Commercial COMMERCIAL - THREE PHASE Commercial DUAL FUEL(Single Phase) DUAL FUEL(Three Phase) RESIDENTIAL - SINGLE PHASE Residential RESIDENTIAL - THREE PHASE Residential YARD LIGHT METERED Lighting YARD LIGHT UNMETERED Lighting

419

Grand Valley Rrl Pwr Line, Inc | Open Energy Information  

Open Energy Info (EERE)

Pwr Line, Inc Pwr Line, Inc Jump to: navigation, search Name Grand Valley Rrl Pwr Line, Inc Place Colorado Utility Id 7563 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial and Small Power Service, Three Phase Schedule (25)-CSP-1 Commercial Farm and Home (Residential) Service Schedule (10)-FH-1 Residential Industrial Service Schedule (50) -IND-1 Industrial Irrigation Service Schedule (40)-I-1 Commercial Large Power Service Schedule (30) -LP-1 Industrial Nonresidential - General Schedule (20)-NRG-1 Commercial

420

City of East Grand Forks, Minnesota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Minnesota (Utility Company) Minnesota (Utility Company) Jump to: navigation, search Name East Grand Forks City of Place Minnesota Utility Id 5575 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Rate Commercial Off Peak Rates Commercial Residential Electric Heat Residential Residential General Electric Residential Small Commercial Rate Residential Average Rates Residential: $0.0943/kWh Commercial: $0.0740/kWh Industrial: $0.0789/kWh

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EV Everywhere Grand Challenge - Electric Motors and Critical Materials Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Motors and Critical Electric Motors and Critical Materials Breakout Laura Marlino Oak Ridge National Laboratory Iver Anderson Ames Laboratory Facilitators July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov Electric Drive Status and Targets Current Status* PHEV 40** AEV 100** AEV 300+ System Cost $/kW 20 ($1100) 5 ($600) 14 ($1680) 4 ($600) Motor Specific Power kW/kg 1.3 1.9 1.5 2 PE Specific Power kW/kg 10.5 16 12 16.7 System Peak Efficiency % 90 97 91 98 2022 EV Everywhere Targets Extremely Aggressive Targets Especially Challenging for the Electric Motor * 55kW system ** 120kW system + 150 kW system Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov

422

Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.  

DOE Green Energy (OSTI)

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and coordinated by the Grande Ronde Model Watershed Program (Project. No.199202601). Work undertaken during 2007 included: (1) Starting 1 new fencing project in the NFJD subbasin that will protect an additional 1.82 miles of stream and 216.2 acres of habitat; (2) Constructing 0.47 miles of new channel on the Wallowa River to enhance habitat, restore natural channel dimensions, pattern and profile and reconnect approximately 18 acres of floodplain and wetland habitat; (3) Planting 22,100 plants along 3 streams totaling 3.6 stream miles; (4) Establishing 34 new photopoints on 5 projects and retaking 295 existing photopoint pictures; (5) Monitoring stream temperatures at 10 locations on 5 streams and conducting other monitoring activities; (6) Completing riparian fence, water gap and other maintenance on 116.8 miles of project fences; (7) Initiated writing of a comprehensive project summary report that will present a summary of conclusions of the benefits to focal species and management recommendations for the future. Since initiation of this program 56 individual projects have been implemented, monitored and maintained along 84.8 miles of anadromous fish bearing streams that protect and enhance 3,501 acres of riparian and instream habitat.

McGowan, Vance R.; Morton, Winston H.

2008-12-30T23:59:59.000Z

423

Grand Ronde Basin Fish Habitat Enhancement Project, 2008 Annual Report.  

DOE Green Energy (OSTI)

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing the opportunities for natural fish production within the basin. This project originally provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented under revisions of the Fish and Wild Program as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires considerable time be spent developing rapport with landowners to gain acceptance, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources, is the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and coordinated by the Grande Ronde Model Watershed Program (Project. No. 199202601). Work undertaken during 2008 included: (1) completing 1 new fencing project in the North Fork John Day subbasin that protects 1.82 miles of stream and 216.2 acres of habitat, and 1 fencing project in the Wallowa subbasin that protects an additional 0.59 miles of stream and 42.5 acres of habitat; (2) constructing 0.47 miles of new channel on the Wallowa river to enhance habitat, restore natural channel dimensions, pattern and profile and reconnect approximately 18 acres of floodplain and wetland habitat; (3) planting 10,084 plants along 0.5 miles of the Wallowa Riverproject; (4) establishing 34 new photopoints on 5 projects and retaking 295 existing photopoint pictures; (5) monitoring stream temperatures at 10 locations on 5 streams and conducting other monitoring activities; (6) completing riparian fence, water gap and other maintenance on 116.8 miles of project fences; and (7) completed a comprehensive project summary report to the Independent Scientific Review panel (ISRP) that provided our conclusions regarding benefits to focal species, along with management recommendations for the future. Since initiation of this program 57 individual projects have been implemented, monitoring and maintained along 84.9 miles of anadromous fish bearing streams, that protect and enhance 3,564 acres of riparian and instream habitat.

McGowan, Vance R.; Morton, Winston H. [Oregon Department of Fish and Wildlife

2009-07-01T23:59:59.000Z

424

SU(5) x Z{sub 13} grand unification model  

SciTech Connect

We propose an SU(5) grand unified model with an invisible axion and the unification of the three coupling constants which is in agreement with the values, at M{sub Z}, of {alpha}, {alpha}{sub s}, and sin{sup 2}{theta}{sub W}. A discrete, anomalous, Z{sub 13} symmetry implies that the Peccei-Quinn symmetry is an automatic symmetry of the classical Lagrangian protecting, at the same time, the invisible axion against possible semiclassical gravity effects. Although the unification scale is of the order of the Peccei-Quinn scale the proton is stabilized by the fact that in this model the standard model fields form the SU(5) multiplets completed by new exotic fields and, also, because it is protected by the Z{sub 13} symmetry.

Dias, Alex G. [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia 166, 09210-170, Santo Andre, SP (Brazil); Franco, Edison T.; Pleitez, Vicente [Instituto de Fisica Teorica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, Sao Paulo, SP (Brazil)

2007-12-01T23:59:59.000Z

425

An SU(5)$\\otimes$Z_{13} Grand Unification Model  

E-Print Network (OSTI)

We propose an SU(5) grand unified model with an invisible axion and the unification of the three coupling constants which is in agreement with the values, at $M_Z$, of $\\alpha$, $\\alpha_s$, and $\\sin^2\\theta_W$. A discrete, anomalous, $Z_{13}$ symmetry implies that the Peccei-Quinn symmetry is an automatic symmetry of the classical Lagrangian protecting, at the same time, the invisible axion against possible semi-classical gravity effects. Although the unification scale is of the order of the Peccei-Quinn scale the proton is stabilized by the fact that in this model the standard model fields form the SU(5) multiplets completed by new exotic fields and, also, because it is protected by the $Z_{13}$ symmetry.

Alex G. Dias; Edison T. Franco; Vicente Pleitez

2007-08-07T23:59:59.000Z

426

A Graphical representation of the grand canonical partition function  

E-Print Network (OSTI)

In this paper we consider a stochastic partial differential equation defined on a Lattice $L_\\delta$ with coefficients of non-linearity with degree $p$. An analytic solution in the sense of formal power series is given. The obtained series can be re-expressed in terms of rooted trees with two types of leaves. Under the use of the so-called Cole-Hopf transformation and for the particular case $p=2$, one thus get the generalized Burger equation. A graphical representation of the solution and its logarithm is done in this paper. A discussion of the summability of the previous formal solutions is done in this paper using Borel sum. A graphical calculus of the correlation function is given. The special case when the noise is of L\\'evy type gives a simplified representations of the solution of the generalized Burger equation. From the previous results we recall a graphical representation of the grand canonical partition function.

Boubaker Smii

2010-01-07T23:59:59.000Z

427

Higgs-boson effects in grand unified theories  

DOE Green Energy (OSTI)

It is argued that fine tuning of a minimal set of parameters, needed to fix the hierarchy of gauge-boson masses and a knowledge of intermediate symmetry groups, leads to ''natural'' mass scales for physical Higgs bosons in grand unified theories. This is applied to ..delta..B = 2 transitions in models based on SU(5), SO(10), SU(16), and (SU(2N))/sup 4/. It turns out that the Higgs bosons which mediate ..delta..B = 2 neutron-antineutron and hydrogen-antihydrogen oscillations become superheavy, and so such transitions can be observable only in theories with low unification scales, such as SU(16) and (SU(8))/sup 4/, if we adhere to the hypothesis of minimal fine tuning.

Mohapatra, R.N.; Senjanovic, G.

1983-04-01T23:59:59.000Z

428

Heating facilities for the MGM Grand Hotel, Reno, Nevada  

SciTech Connect

The MGM Grand Hotel-Reno is located adjacent to an area with a well-documented geothermal resource. Currently, there is a number of entities seeking to determine the exact nature of the resource at the MGM site. This report concerns itself with identifying current natural gas loads within the MGM complex which could be met by geothermal should a source become available. The two principle assumptions upon which the following material is based are (1) that a source of 190/sup 0/F or higher temperature water is available and (2) all systems discussed would be installed in parallel with existing systems. That is, existing systems would remain in place providing 100 percent backup for the geothermal systems.

1981-09-01T23:59:59.000Z

429

Grand Rapids Public Util Comm | Open Energy Information  

Open Energy Info (EERE)

Rapids Public Util Comm Rapids Public Util Comm Jump to: navigation, search Name Grand Rapids Public Util Comm Place Minnesota Utility Id 7489 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CITY COMMERCIAL Commercial CITY LIGHT & POWER Lighting CITY RESIDENTIAL Residential CONTROLLED WATER HEATING (CITY) Commercial CONTROLLED WATER HEATING (RURAL) Commercial ENTERTAINMENT LIGHTING RATE (CITY) Lighting ENTERTAINMENT LIGHTING RATE (RURAL) Lighting INDUSTRIAL (CITY) Industrial

430

Decreasing Slip Rates From12.8 Ma to Present on the Solitario Canyon Fault at Yucca Mountain, Nevada  

DOE Green Energy (OSTI)

The Solitario Canyon fault, which bounds the west side of Yucca Mountain, Nevada, is the closest fault with Quaternary offset adjacent to the proposed spent nuclear fuel and high-level radioactive waste repository. Dip-slip offset between 12.8 and 10.7 Ma is determined from lithostratigraphic displacement in boreholes USW H-3 and USW WT-7, drilled in the footwall and hanging wall, respectively. The base of the 12.8-Ma Topopah Spring Tuff is interpreted to have 463.3 m of separation across the fault, an average dip slip rate of 0.036 mm/yr. Previous researchers identified a geothermal system active from 11.5 to 10.0 Ma with peak activity at 10.7 Ma that resulted in pervasive alteration of vitric rock to zeolitic minerals where the rocks were in the ground-water saturated zone. The contact between vitric (V) and pervasively zeolitic (Z) rocks cuts across the lithostratigraphic section and offset of this V-Z boundary can be used to measure slip rates between 12.8 and 10.7 Ma. In H-3, the V-Z boundary is 138.4 m below the base of the vitric, densely welded subzone of the Topopah Spring Tuff (Tptpv3). In WT-7, although the V-Z boundary is identified at the base of the Tptpv3, borehole video, cuttings, and geophysical log data indicate the Tptpv3 has well-developed zeolitic alteration along fractures, and this implies 19.5 m of the total thickness of Tptpv3 (and probably additional overlying crystallized rocks) also were in the saturated zone by 10.7 Ma. The V-Z relations across the Solitario Canyon fault in H-3 and WT-7 indicate a minimum of 157.9 m of separation before 10.7 Ma, which is 34.1 percent of the total slip of the Topopah Spring Tuff, and a minimum dip slip rate of 0.075 mm/yr from 12.8 to 10.7 Ma. These data are consistent with the broader structural history of the area near Yucca Mountain. Previous workers used angular unconformities, tilting of structural blocks, and paleomagnetic data to constrain the main period of extensional faulting between 12.7 and 8.5 Ma. Paleoseismic studies in Quaternary deposits documented slip rates on the Solitario Canyon fault from 0.01 to 0.02 mm/yr since 0.077 and 0.20 Ma. The decrease of extensional activity slip rates data on the Solitario Canyon fault provide evidence of decreasing tectonic activity from the middle Miocene to present.

D. Buesch

2006-07-11T23:59:59.000Z

431

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

Science Conference Proceedings (OSTI)

The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

Mark B. Murphy

2005-09-30T23:59:59.000Z

432

Is there a grand challenge or X-prize for data mining?  

Science Conference Proceedings (OSTI)

This panel will discuss possible exciting and motivating Grand Challenge problems for Data Mining, focusing on bioinformatics, multimedia mining, link mining, text mining, and web mining. Keywords: X-prize, bioinformatics, data mining, grand challenge, image mining, link mining, multimedia mining, text mining, video mining, web mining

Gregory Piatetsky-Shapiro; Robert Grossman; Chabane Djeraba; Ronen Feldman; Lise Getoor; Mohammed Zaki

2006-08-01T23:59:59.000Z

433

An applied paleoecology case study: Bahia Grande, Texas prior to construction of the Brownsville Ship Channel  

E-Print Network (OSTI)

Bahia Grande is a large lagoon located within Laguna Atascosa National Wildlife Refuge in Cameron County, Texas. When the Brownsville Ship Channel was built along the southern end of the lagoon in 1936, Bahia Grande was cut off from the marine water of Laguna Madre. Since that time, Bahia Grande has been primarily dry with only ephemeral fresh water coming from heavy rainfall events, resulting in a severe decline in biological productivity. A restoration project led by the U.S. Fish and Wildlife Service has proposed to cut new channels between Bahia Grande and the Ship Channel to restore the connection with Laguna Madre. This is a large-scale project with major implications for the water quality, surrounding ecology, and associated biota in the region. Unfortunately, because very little is known about Bahia Grande prior to isolation, it is difficult to predict whether the results of the restoration will be comparable to the pre-Ship Channel environment. Paleoecological data provide the best opportunity to understand what Bahia Grande was like in the past. This study uses statistical analyses of the molluscan death assemblages from Bahia Grande to gain a better understanding of the environmental conditions in the lagoon before it was isolated. The first question addressed is how does Bahia Grande relate to other water bodies on the Texas coast? This may provide a modern analog to the past conditions in Bahia Grande. The second question inquires whether there are any local patterns or variations within Bahia Grande and several smaller surrounding lagoons. These results provide an important baseline for comparison with the restored lagoon. The results of this investigation show that, in a regional context, Bahia Grande was most similar to Alazan Bay and Baffin Bay, which are mostly enclosed shallow bays with high salinities due to the arid climate and limited freshwater inflow. Within Bahia Grande, there are several distinct molluscan assemblages. Salinity and water coverage are the most likely environmental factors responsible for the differences within Bahia Grande. Additionally, data from surrounding lagoons strongly indicate that some connections with Bahia Grande existed in the past.

Lichlyter, Stephen Alvah

2003-05-01T23:59:59.000Z

434

Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Deliver Keynote on EV Everywhere Grand Challenge to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show Secretary Chu to Deliver Keynote on EV Everywhere Grand Challenge at Washington Auto Show January 30, 2013 - 1:37pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Tomorrow, Thursday, January 31, 2013, Secretary Chu will deliver the government keynote address at the Washington Auto Show's Public Policy Day. His remarks will focus on the Energy Department's EV Everywhere Grand Challenge, including progress to date and a new initiative to strengthen American leadership in this rapidly growing global industry. Launched by President Obama in March 2012, EV-Everywhere is the second in a series of Energy Department "Clean Energy Grand Challenges" aimed at addressing the most pressing energy challenges of our time. The EV

435

Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) |  

Open Energy Info (EERE)

Rio Grande Rift Region (Aiken & Ander, 1981) Rio Grande Rift Region (Aiken & Ander, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) Exploration Activity Details Location Rio Grande Rift Geothermal Region Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown References Carlos L.V. Aiken, Mark E. Ander (1981) A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Retrieved from "http://en.openei.org/w/index.php?title=Ground_Gravity_Survey_At_Rio_Grande_Rift_Region_(Aiken_%26_Ander,_1981)&oldid=401473" Category: Exploration Activities What links here Related changes Special pages Printable version

436

Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monitoring of the Airport Calibration Pads at Walker Field, Grand Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) More Documents & Publications Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013) Long-Term Surveillance Operations and Maintenance Fiscal Year 2013 Year-End Summary Report

437

EA-1679: Grand Coulee's Third Powerplant 500-kV Transmission Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

79: Grand Coulee's Third Powerplant 500-kV Transmission Line 79: Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project, Grant and Okanogon Counties, Washington EA-1679: Grand Coulee's Third Powerplant 500-kV Transmission Line Replacement Project, Grant and Okanogon Counties, Washington Summary This EA evaluates potential environmental impacts from the construction and operation of six new 500-kV overhead transmission lines to replace six existing underground lines at Grand Coulee Dam. DOE's Bonneville Power Administration (BPA), a cooperating agency, was asked by the U. S. Department of the Interior's Bureau of Reclamation to design and construct the proposed new transmission lines. A Finding of No Significant Impact was issued by BPA in December 2011. BPA website: http://efw.bpa.gov/environmental_services/Document_Library/Grand_Coulee/

438

Grand Junction, Colorado, Disposal Site Long-Term Surveillance and Maintenance Program Fact Sheet, July 2001  

Office of Legacy Management (LM)

Grand Junction Disposal Site Grand Junction Disposal Site Uranium ore was processed at the Climax millsite at Grand Junction, Colorado, between 1951 and 1970. The milling operations created process-related waste and tailings, a sandlike material containing radioactive materials and other contaminants. The tailings were an ideal and inexpensive construction material suitable for concrete, mortar, and fill. Accordingly, the tailings were widely used in the Grand Junction area for these purposes. The U.S. Department of Energy (DOE) encapsulated the tailings and other contaminated materials from the millsite and more than 4,000 vicinity properties in the Grand Junction area in an engineered disposal cell. Part of the disposal cell was completed in 1994; the remainder of the cell remains open until it is

439

A simulation pipeline for the Planck mission  

E-Print Network (OSTI)

We describe an assembly of numerical tools to model the output data of the Planck satellite. These start with the generation of a CMB sky in a chosen cosmology, add in various foreground sources, convolve the sky signal with arbitrary, even non-symmetric and polarised beam patterns, derive the time ordered data streams measured by the detectors depending on the chosen satellite-scanning strategy, and include noise signals for the individual detectors and electronic systems. The simulation products are needed to develop, verify, optimise, and characterise the accuracy and performance of all data processing and scientific analysis steps of the Planck mission, including data handling, data integrity checking, calibration, map making, physical component separation, and power spectrum estimation. In addition, the simulations allow detailed studies of the impact of many stochastic and systematic effects on the scientific results. The efficient implementation of the simulation allows the build-up of extended statistics of signal variances and co-variances. Although being developed specifically for the Planck mission, it is expected that the employed framework as well as most of the simulation tools will be of use for other experiments and CMB-related science in general.

Martin Reinecke; Klaus Dolag; Reinhard Hell; Matthias Bartelmann; Torsten Ensslin

2005-08-24T23:59:59.000Z

440

Terms of Reference Administrative Assistant to the Deputy Head of Mission (G5) Election Observation Mission  

E-Print Network (OSTI)

The ODIHR is the leading agency in Europe in the field of election observation. It co-ordinates and organizes the deployment of several observation missions with thousands of observers every year to assess the compliance of elections in OSCE participating States in line with OSCE commitments, other international standards for democratic elections and national legislation. Its unique methodology provides an in-depth insight into all elements of an electoral process, and permits to make concrete recommendations to further improve electoral processes. Under the supervision of the Deputy Head of Mission for the ODIHR Election Observation Mission (EOM), the Administrative Assistant to the Deputy Head of Mission assists the Deputy Head of Mission (DHoM). S/he reports directly to the DHoM. Tasks and responsibilities:- Arrange appointments and maintain supervisors calendar, receive high-ranking visitors, place and screen telephone calls and answer queries with discretion- Organize various meetings with senior officials from presidential administration, national election authorities, relevant ministries, leaders of political parties, representatives of the media and civil society- Interpret meetings to/from English from/to local language- Translate sensitive documents from and to English- Draft non-substantive correspondence and ensure follow up- Keep lists of names, addresses and phone number of the DHoMs interlocutors- Perform other tasks as required. Education and Experience:- Completion of secondary education- Five years of relevant experience. Experience in international organizations is an asset.- Tact, discretion, self-confidence and diplomacy- Ability to work long hours and under pressure- Demonstrated ability to work with people of different cultural and religious backgrounds,

unknown authors

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "missions grand canyon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Grand Challenges Grand Challenges  

Science Conference Proceedings (OSTI)

... adversely impact oceans, groundwater systems, streams ... Vulnerability of Interdependent ... interdependent systems, additional vulnerabilities can be ...

2007-03-01T23:59:59.000Z

442

Sandia National Laboratories: Sandia National Laboratories: Missions:  

NLE Websites -- All DOE Office Websites (Extended Search)

Accomplishments Accomplishments About Defense Systems & Assessments Program Areas Accomplishments Archives Cybersecurity Missions Accomplishments Protecting the nation Sandia lasers test and calibrate sensors on U.S. satellites Sandia's scientists and engineers have a significant impact on national security and continually deliver results, including these noteworthy successes from fiscal year 2012: AHW Launch Advanced Hypersonic Weapon test flight Sandia conducted a highly successful first test flight of the Advanced Hypersonic Weapon (AHW) concept for the U.S. Army Space and Missile Defense Command. Designed to fly within the earth's atmosphere at hypersonic speed and long range, the first-of-its-kind glide vehicle launched from Sandia's Kauai Test Facility in Kauai, Hawaii, using a three-stage

443

Power beaming: Mission enabling for lunar exploration  

SciTech Connect

This paper explores several beam power concepts proposed for powering either lunar base or rover vehicles. At present, power requirements to support lunar exploration activity are met by integral self-contained power system designs. To provide requisite energy flexibility for human expansion into space, an innovative approach to replace on-board self-contained power systems is needed. Power beaming provides an alternative approach to supplying power that would ensure increased mission flexibility while reducing total mass launched into space. Providing power to the moon presents significant design challenges because of the duration of the lunar night. Power beaming provides an alternative to solar photovoltaic systems coupled with battery storage, radioisotope thermoelectric generation, and surface nuclear power. The Synthesis Group describes power beaming as a technology supporting lunar exploration. In this analysis beam power designs are compared to conventional power generation methods.

Bamberger, J.A.

1992-01-01T23:59:59.000Z

444

LLNL/LANS mission committee meeting  

SciTech Connect

Recent events continue to show the national security imperative of the global security mission: (1) Fighting Proliferation - (a) At Yongbyon, 'a modern, industrial-scale U-enrichment facility w/2000 centrifuges' seen Nov. 2010, (b) In Iran, fueling began at Bushehr while P5+1/lran talks delayed to Dec. 2010; (2) Continuing need to support the warfighter and IC - (a) tensions on the Korean peninsula, (b) primitative IEDs a challenge in Afghanistan, (c) cyber command, (d)another Georgian smuggling event; and (3) Countering terrorisms on US soil - (a) toner cartridge bomb, (b) times square bomb, (c) christmas tree bomb. Joint Technical Operations Team (JTOT) and Accident Response Group (ARG) elements deployed to two East Coast locations in November to work a multi-weapon scenario. LANL provided 70% of on-duty field and reconstitution teams for both Marble Challenge 11-01 and JD 11-01. There were a total of 14 deployments in FY10.

Burns, Michael J [Los Alamos National Laboratory

2010-12-06T23:59:59.000Z

445

Unmanned and autonomous systems mission based test and evaluation  

Science Conference Proceedings (OSTI)

We propose to apply principles from the Army Evaluation Center's Mission Based Test and Evaluation (MBT&E) to Unmanned and Autonomous Systems (UAS) Test and Evaluation (T&E) in order to conduct rigorous, real-world testing based on anticipated military ... Keywords: capability based evaluation, measures of effectiveness, measures of performance, mission and means framework, mission based test and evaluation, simulation based test and evaluation, unmanned and autonomous system test and evaluation

Philipp A. Djang; Frank Lopez

2009-09-01T23:59:59.000Z

446

Edison Mission Marktg & Trdg Inc | Open Energy Information  

Open Energy Info (EERE)

Marktg & Trdg Inc Jump to: navigation, search Name Edison Mission Marktg & Trdg Inc Place Massachusetts Utility Id 3601 Utility Location Yes Ownership W Activity Wholesale...

447

SLAC National Accelerator Laboratory Our Vision. Our Mission...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Accelerator Laboratory Our Vision. Our Mission. Our Values. SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park, CA 94025-7015 slac.stanford.edu Great...

448

Don Cook talks about future of Pantex mission | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Defense Programs, last week spoke to Pantexans about the future mission of Pantex and the critical role the plant will play in maintaining the nation's stockpile for...

449

Sheldon Glashow, the Electroweak Theory, and the Grand Unified Theory  

Office of Scientific and Technical Information (OSTI)

Sheldon Glashow and the Electroweak Theory Sheldon Glashow and the Electroweak Theory Resources with Additional Information Sheldon Glashow Courtesy AIP Emilio Segrè Visual Archives, Segrè Collection [Sheldon] 'Glashow shared the 1979 Nobel Prize for physics with Steven Weinberg and Abdus Salam for unifying the theories of weak and electromagnetic forces. The new "electroweak" theory underlies all of particle physics and provides a framework for understanding how the early universe evolved and how the chemical elements were created. ... "Glashow's work has been instrumental in our understanding of how our universe came into being," says Lawrence R. Sulak, chairman of the Boston University physics department. "In the years since winning the prize, Glashow has helped develop the Grand Unified Theory of all particles and all forces. Its predictions led to the construction of massive underground detectors, the refinement of the unification models, the first observation of neutrinos from a supernova, and the recent discovery that neutrinos have mass. Glashow has fueled an ongoing search for rare events and exotic effects that may shed further light on the evolution of the early universe."1

450

Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998  

SciTech Connect

The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

NONE

1998-04-01T23:59:59.000Z

451

Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan, Et Al.,  

Open Energy Info (EERE)

Morgan, Et Al., Morgan, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan, Et Al., 2010) Exploration Activity Details Location Rio Grande Rift Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes San Luis Basin (south-central CO) regional study. References Paul Morgan, Peter Barkmann, Charles Kluth, Matthew Sares (2010) Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Rio_Grande_Rift_Region_(Morgan,_Et_Al.,_2010)&oldid=401472" Category: Exploration

452

INCREASING OIL RECOVERY THROUGH ADVANCED REPROCESSING OF 3D SEISMIC, GRANT CANYON AND BACON FLAT FIELDS, NYE COUNTY, NEVADA  

SciTech Connect

Makoil, Inc., of Orange, California, with the support of the U.S. Department of Energy has reprocessed and reinterpreted the 3D seismic survey of the Grant Canyon area, Railroad Valley, Nye County, Nevada. The project was supported by Dept. of Energy Grant DE-FG26-00BC15257. The Grant Canyon survey covers an area of 11 square