National Library of Energy BETA

Sample records for miscellaneous plastic products

  1. DOE Publishes Supplemental Proposed Determination for Miscellaneous Residential Refrigeration Products

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a supplemental proposed determination regarding miscellaneous residential refrigeration products.

  2. Miscellaneous States Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Miscellaneous States Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  3. Miscellaneous - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Miscellaneous

  4. Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 8 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 1 1 1 1 0 2010's 0 0 0 1 24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  5. Miscellaneous States Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 21 2 1 2 2 3 3 1990's 2 3 6 6 7 7 7 9 8 8 2000's 7 6 8 8 8 9 11 14 14 0 2010's 9 10 12 32 350 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  6. 2015-03-26: Miscellaneous Refrigeration Products; Notice of Intent to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Establish an ASRAC Working Group | Department of Energy : Miscellaneous Refrigeration Products; Notice of Intent to Establish an ASRAC Working Group 2015-03-26: Miscellaneous Refrigeration Products; Notice of Intent to Establish an ASRAC Working Group This document is a pre-publication Federal Register Notice of Intent regarding establishment of an ASRAC Working Group for Miscellaneous Refrigeration Products, as issued by the Deputy Assistant Secretary for Energy Efficiency on March 26,

  7. ISSUANCE 2015-02-03: Energy Efficiency Program for Residential Products: Energy Conservation Standards for Miscellaneous Refrigeration Products, Reopening of Public Comment Period

    Broader source: Energy.gov [DOE]

    Energy Efficiency Program for Residential Products: Energy Conservation Standards for Miscellaneous Refrigeration Products, Reopening of Public Comment Period

  8. ISSUANCE 2016-05-19: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Final Determination of Miscellaneous Refrigeration Products as Covered Products

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Final Determination of Miscellaneous Refrigeration Products as Covered Products

  9. ISSUANCE 2016-02-26: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Supplemental Proposed Determination of Miscellaneous Refrigeration Products as Covered Products

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Supplemental Proposed Determination of Miscellaneous Refrigeration Products as Covered Products

  10. ,"Miscellaneous States Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  11. Miscellaneous Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    134 121 75 52 25 123 2007-2014 Adjustments 23 0 49 5 0 119 2009-2014 Revision Increases 4 17 19 76 3 2 2009-2014 Revision Decreases 22 77 27 9 29 17 2009-2014 Sales 0 11 89 14 0 0 2009-2014 Acquisitions 0 0 0 67 0 0 2009-2014 Extensions 75 63 5 347 1 0 2009-2014 New Field Discoveries 0 0 0 5 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 4 5 3 3 2 6

  12. ISSUANCE 2015-12-04: Energy Conservation Standards and Test Procedure for Miscellaneous Refrigeration Products: Notice of Data Availability; Request for Information

    Broader source: Energy.gov [DOE]

    Energy Conservation Standards and Test Procedure for Miscellaneous Refrigeration Products: Notice of Data Availability; Request for Information

  13. U.S. Residential Miscellaneous Refrigeration Products: Results from Amazon Mechanical Turk Surveys

    SciTech Connect (OSTI)

    Greenblatt, Jeffery B.; Young, Scott J.; Yang, Hung-Chia; Long, Timothy; Beraki, Bereket; Price, Sarah K.; Pratt, Stacy; Willem, Henry; Desroches, Louis-Benoit

    2013-11-14

    Amazon Mechanical Turk was used, for the first time, to collect statistically representative survey data from U.S. households on the presence, number, type and usage of refrigerators, freezers, and various “miscellaneous” refrigeration products (wine/beverage coolers, residential icemakers and non-vapor compression refrigerators and freezers), along with household and demographic information. Such products have been poorly studied to date, with almost no information available about shipments, stocks, capacities, energy use, etc. A total of 9,981 clean survey responses were obtained from five distinct surveys deployed in 2012. General refrigeration product survey responses were weighted to demographics in the U.S. Energy Information Administration’s Residential Energy Consumption Survey 2009 dataset. Miscellaneous refrigeration product survey responses were weighted according to demographics of product ownership found in the general refrigeration product surveys. Model number matching for a portion of miscellaneous refrigeration product responses allowed validation of refrigeration product characteristics, which enabled more accurate estimates of the penetrations of these products in U.S. households. We estimated that there were 12.3±1.0 million wine/beverage coolers, 5.5(–3.5,+3.2) million residential icemakers and 4.4(–2.7,+2.3) million non-vapor compression refrigerators in U.S. households in 2012. (All numerical results are expressed with ranges indicating the 95% confidence interval.) No evidence was found for the existence of non-vapor compression freezers. Moreover, we found that 15% of wine/beverage coolers used vapor compression cooling technology, while 85% used thermoelectric cooling technology, with the vast majority of thermoelectric units having capacities of less than 30 wine bottles (approximately 3.5 cubic feet). No evidence was found for the existence of wine/beverage coolers with absorption cooling technology. Additionally, we estimated

  14. 2014-11-26 Issuance: Test Procedures for Miscellaneous Refrigeration...

    Office of Environmental Management (EM)

    6 Issuance: Test Procedures for Miscellaneous Refrigeration Products; Notice of Proposed Rulemaking 2014-11-26 Issuance: Test Procedures for Miscellaneous Refrigeration Products; ...

  15. 2014-11-25 Issuance: Energy Conservation Standards for Miscellaneous Refrigeration Products; Notice of Open Meeting and Availability of the Preliminary Technical Support Document

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of open meeting and availability of the preliminary technical support document regarding energy conservation standards for miscellaneous refrigeration products, as issued by the Deputy Assistant Secretary for Energy Efficiency on November 25, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  16. Ultrapyrolytic upgrading of plastic wastes and plastics/heavy oil mixtures to valuable light gas products

    SciTech Connect (OSTI)

    Lovett, S.; Berruti, F.; Behie, L.A.

    1997-11-01

    Viable operating conditions were identified experimentally for maximizing the production of high-value products such as ethylene, propylene, styrene, and benzene, from the ultrapyrolysis of waste plastics. Using both a batch microreactor and a pilot-plant-sized reactor, the key operating variables considered were pyrolysis temperature, product reaction time, and quench time. In the microreactor experiments, polystyrene (PS), a significant component of waste plastics, was pyrolyzed at temperatures ranging from 800 to 965 C, with total reaction times ranging from 500 to 1,000 ms. At a temperature of 965 C and 500 ms, the yields of styrene plus benzene were greater than 95 wt %. In the pilot-plant experiments, the recently patented internally circulating fluidized bed (ICFB) reactor (Milne et al., US Patent Number 5,370,789, 1994b) was used to ultrapyrolyze low-density polyethylene (LDPE) in addition to LDPE (5% by weight)/heavy oil mixtures at a residence time of 600 ms. Both experiments produced light olefin yields greater than 55 wt % at temperatures above 830 C.

  17. ,"Miscellaneous States Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... 1","Miscellaneous States Natural Gas Plant Liquids, Expected Future Production ...

  18. 2014-11-26 Issuance: Test Procedures for Miscellaneous Refrigeration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Products; Notice of Proposed Rulemaking | Department of Energy 6 Issuance: Test Procedures for Miscellaneous Refrigeration Products; Notice of Proposed Rulemaking 2014-11-26 Issuance: Test Procedures for Miscellaneous Refrigeration Products; Notice of Proposed Rulemaking This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for miscellaneous refrigeration products, as issued by the Deputy Assistant Secretary for Energy Efficiency on

  19. Miscellaneous EPA Submittals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EPA Individual Permit: Miscellaneous EPA Submittals An abundance of Individual Permit documents, from implementation to reporting, is available to the public. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Force Majeure SMA Site Submittal Date Document ACID-SMA-2 01-002(b)-00 June 6, 2016 NPDES Permit No. NM0030759 - Update on Certificate of Completion for Site 01-002(b)-00 Monitored within ACID-SMA-2 and ACID-SMA-2.1

  20. Methods for the continuous production of plastic scintillator materials

    DOE Patents [OSTI]

    Bross, Alan; Pla-Dalmau, Anna; Mellott, Kerry

    1999-10-19

    Methods for producing plastic scintillating material employing either two major steps (tumble-mix) or a single major step (inline-coloring or inline-doping). Using the two step method, the polymer pellets are mixed with silicone oil, and the mixture is then tumble mixed with the dopants necessary to yield the proper response from the scintillator material. The mixture is then placed in a compounder and compounded in an inert gas atmosphere. The resultant scintillator material is then extruded and pelletized or formed. When only a single step is employed, the polymer pellets and dopants are metered into an inline-coloring extruding system. The mixture is then processed under a inert gas atmosphere, usually argon or nitrogen, to form plastic scintillator material in the form of either scintillator pellets, for subsequent processing, or as material in the direct formation of the final scintillator shape or form.

  1. Scale-up and Technology Transfer of Protein-based Plastic Products

    SciTech Connect (OSTI)

    Grewell, David

    2008-12-08

    Over the last number of years researchers at ISU have been developing protein based plastics from soybeans, funded by Soy Works Corporation. These materials have been characterized and the processing of these materials into prototype products has been demonstrated. A wide range of net-shape forming processes, including but not limited to extrusion, injection molding and compression molding have been studied. Issues, including technology transfer, re-formulation and product consistency, have been addressed partially during this contract. Also, commercial-scale processing parameters for protein based plastic products were designed, but not yet applicable in the industry. Support in the trouble shooting processing and the manufacturing of protein based plastic products was provided by Iowa State University during the one year contract.

  2. 2011-2012 SECTION IV: Miscellaneous

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Miscellaneous Ernest Rutherford and the origins of nuclear physics J.C. Hardy

  3. Miscellaneous electricity use in U.S. homes

    SciTech Connect (OSTI)

    Sanchez, Marla C.; Koomey, Jonathan G.; Moezzi, Mithra M.; Meier, Alan; Huber, Wolfgang

    1999-09-30

    Historically, residential energy and carbon saving efforts have targeted conventional end uses such as water heating, lighting and refrigeration. The emergence of new household appliances has transformed energy use from a few large and easily identifiable end uses into a broad array of ''miscellaneous'' energy services. This group of so called miscellaneous appliances has been a major contributor to growth in electricity demand in the past two decades. We use industry shipment data, lifetimes, and wattage and usage estimates of over 90 individual products to construct a bottom-up end use model (1976-2010). The model is then used to analyze historical and forecasted growth trends, and to identify the largest individual products within the miscellaneous end use. We also use the end use model to identify and analyze policy priorities. Our forecast projects that over the period 1996 to 2010, miscellaneous consumption will increase 115 TWh, accounting for over 90 percent of future residential electricity growth. A large portion of this growth will be due to halogen torchiere lamps and consumer electronics, making these two components of miscellaneous electricity a particularly fertile area for efficiency programs. Approximately 20 percent (40 TWh) of residential miscellaneous electricity is ''leaking electricity'' or energy consumed by appliances when they are not performing their principal function. If the standby power of all appliances with a standby mode is reduced to one watt, the potential energy savings equal 21 TWh/yr, saving roughly $1-2 billion annually.

  4. Miscellaneous

    U.S. Energy Information Administration (EIA) Indexed Site

    THE PEAK OIL DEBATE As The EIA Turns 30 EIA 2008 Energy Conference Washington, DC April 7, 2008 By: Matthew R. Simmons, Chairman Simmons & Company International EIA 2008 Energy Conference Washington, DC April 7, 2008 By: Matthew R. Simmons, Chairman Simmons & Company International SIMMONS & COMPANY INTERNATIONAL Should We Debate "Peak Oil" Should We Debate "Peak Oil" n Oil seems non-renewable. n High percentage comes from "mature fields." n High

  5. DOE2016 Miscellaneous | Department of Energy

    Energy Savers [EERE]

    Miscellaneous DOE2016 Miscellaneous Addthis 1 of 11 2 of 11 3 of 11 4 of 11 5 of 11 6 of 11 7 of 11 8 of 11 9 of 11 10 of 11 11 of 11

  6. Commercial Miscellaneous Electric Loads Report: Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization and Savings Potential in 2008 by Building Type | Department of Energy Commercial Miscellaneous Electric Loads Report: Energy Consumption Characterization and Savings Potential in 2008 by Building Type Commercial Miscellaneous Electric Loads Report: Energy Consumption Characterization and Savings Potential in 2008 by Building Type Commercial miscellaneous electric loads (MELs) are generally defined as all electric loads except those related to main systems for heating,

  7. Miscellaneous Forms | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Miscellaneous Forms Miscellaneous Forms The following miscellaneous forms are provided in PDF fillable and/or Word format. Click the link in the "Format" column to open a copy of the form or right-click to download. Number* Title/Description Format** SF-85 Questionnaire for Non-Sensitive Positions PDF-fil UCN-13A Relocation Expense Report PDF-fil, PDF print UCN-15436 Gifts and Grants Request PDF-fil, Word UCN-16708 Request for Authorization to Ship SNM or Non-SNM Material (U) Word

  8. Miscellaneous States Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  9. ,"Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs ... Contents","Data 1: Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs ...

  10. Miscellaneous States Natural Gas Plant Liquids, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 21 2 1 2 2 3 3 1990's 2 3 6 6 7 7 7 9 8 8 2000's 7 6 8 8 8 9 11 14 14 0 2010's 9 10 12 32 350 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  11. Authorization basis status report (miscellaneous TWRS facilities, tanks and components)

    SciTech Connect (OSTI)

    Stickney, R.G.

    1998-04-29

    This report presents the results of a systematic evaluation conducted to identify miscellaneous TWRS facilities, tanks and components with potential needed authorization basis upgrades. It provides the Authorization Basis upgrade plan for those miscellaneous TWRS facilities, tanks and components identified.

  12. Miscellaneous | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Miscellaneous Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific ...

  13. Miscellaneous streams best management practices (BMP) report

    SciTech Connect (OSTI)

    Lueck, K.J., Westinghouse Hanford

    1996-07-24

    The Washington State Department of Ecology (Ecology) and U.S. Department of Energy Consent Order No. DE 91NM-177 (Consent Order) lists regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code (WAC) 173-216 (`State Waste Discharge Permit Program`) or WAC 173-218 (`Washington Underground Injection Control Program`) where applicable. Hanford Site liquid effluent streams discharging to the soil column are categorized as Phase I and Phase II Streams, and Miscellaneous Streams. There were originally 33 Phase I and Phase II Streams, however some of these streams have been eliminated. Miscellaneous Streams are those liquid effluent streams discharged to the ground that are not categorized as Phase I or Phase II Streams, and are subject to the requirements of several milestones identified in the Consent Order. The three criteria for identifying streams that are potentially affecting groundwater are: (1) streams discharging to surface contaminated areas (referred to as category `b` streams); (2) potentially contaminated streams (referred to as category `c` streams); and (3) streams discharging within 91 meters (300 feet) of a contaminated crib, ditch, or trench (referred to as category `d` streams). Miscellaneous Streams that meet any of these criteria must be evaluated for application of best management practices (BMP). The purpose of this report is to provide the best management practice preferred alternative. The list of BMP streams has been revised since the original submittal. Several streams from the original list of BMP streams have already been eliminated through facility upgrades, reduction of steam usage, and facility shutdowns. This document contains a description of the changes to the list of BMP streams, applicable definitions and regulatory requirements and possible alternatives, and a schedule for implementing the preferred alternatives.

  14. CONCRETE SUPPORT DESIGN FOR MISCELLANEOUS ESF UTILITIES

    SciTech Connect (OSTI)

    T.A. Misiak

    1999-06-21

    The purpose and objective of this analysis is to design concrete supports for the miscellaneous utility equipment used at the Exploratory Studies Facility (ESF). Two utility systems are analyzed: (1) the surface collection tanks of the Waste Water System, and (2) the chemical tracer mixing and storage tanks of the Non-Potable Water System. This analysis satisfies design recommended in the Title III Evaluation Reports for the Subsurface Fire Water System and Subsurface Portion of the Non-Potable Water System (CRWMS M&O 1998a) and Waste Water Systems (CRWMS M&O 1998b).

  15. BTO Investigates Miscellaneous Electric Loads | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigates Miscellaneous Electric Loads BTO Investigates Miscellaneous Electric Loads The U.S. Department of Energy's Building Technologies Office (BTO) is interested in identifying pathways that will reduce energy consumption from Miscellaneous Electric Loads (MELs). After hosting a panel discussion at the 2016 BTO Peer Review, the Emerging Technologies Program hosted a workshop on June 3, 2016 in San Francisco, California, to discuss applied research and development (R&D) solutions that

  16. Miscellaneous States Crude Oil + Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Miscellaneous States Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  17. Property:Building/FloorAreaMiscellaneous | Open Energy Information

    Open Energy Info (EERE)

    the property "BuildingFloorAreaMiscellaneous" Showing 25 pages using this property. S Sweden Building 05K0002 + 360 + Sweden Building 05K0005 + 110 + Sweden Building 05K0013 +...

  18. Texas General Land Office - Rights of Way and Miscellaneous Easements...

    Open Energy Info (EERE)

    General Land Office - Rights of Way and Miscellaneous Easements Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Texas General Land Office - Rights of...

  19. Laser cutting plastic materials

    SciTech Connect (OSTI)

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  20. DOE - NNSA/NFO -- Photo Library Historical Miscellaneous

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Historical Miscellaneous NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Photo Library - Historical Miscellaneous Photos related to the Nevada National Security Site History which do not fall under the other photo categories Instructions: Click the photograph THUMBNAIL to view the photograph details Click the Category, Number, or Date table header links to sort the information The photographs are displayed in groups of ten (10). Click the Next and Previous link at the bottom to

  1. Smisc - A collection of miscellaneous functions

    SciTech Connect (OSTI)

    Landon Sego, PNNL

    2015-08-31

    A collection of functions for statistical computing and data manipulation. These include routines for rapidly aggregating heterogeneous matrices, manipulating file names, loading R objects, sourcing multiple R files, formatting datetimes, multi-core parallel computing, stream editing, specialized plotting, etc. • Smisc-package A collection of miscellaneous functions allMissing Identifies missing rows or columns in a data frame or matrix as.numericSilent Silent wrapper for coercing a vector to numeric comboList Produces all possible combinations of a set of linear model predictors cumMax Computes the maximum of the vector up to the current index cumsumNA Computes the cummulative sum of a vector without propogating NAs d2binom Probability functions for the sum of two independent binomials dataIn A flexible way to import data into R. dbb The Beta-Binomial Distribution df2list Row-wise conversion of a data frame to a list dfplapply Parallelized single row processing of a data frame dframeEquiv Examines the equivalence of two dataframes or matrices dkbinom Probability functions for the sum of k independent binomials factor2character Converts all factor variables in a dataframe to character variables findDepMat Identify linearly dependent rows or columns in a matrix formatDT Converts date or datetime strings into alternate formats getExtension Filename manipulations: remove the extension or path, extract the extension or path getPath Filename manipulations: remove the extension or path, extract the extension or path grabLast Filename manipulations: remove the extension or path, extract the extension or path ifelse1 Non-vectorized version of ifelse integ Simple numerical integration routine interactionPlot Two-way Interaction Plot with Error Bar linearMap Linear mapping of a numerical vector or scalar list2df Convert a list to a data frame loadObject Loads and returns the object(s) in an ".Rdata" file more Display the contents of a file to the R terminal movAvg2

  2. Smisc - A collection of miscellaneous functions

    Energy Science and Technology Software Center (OSTI)

    2015-08-31

    A collection of functions for statistical computing and data manipulation. These include routines for rapidly aggregating heterogeneous matrices, manipulating file names, loading R objects, sourcing multiple R files, formatting datetimes, multi-core parallel computing, stream editing, specialized plotting, etc. • Smisc-package A collection of miscellaneous functions allMissing Identifies missing rows or columns in a data frame or matrix as.numericSilent Silent wrapper for coercing a vector to numeric comboList Produces all possible combinations of a set ofmore » linear model predictors cumMax Computes the maximum of the vector up to the current index cumsumNA Computes the cummulative sum of a vector without propogating NAs d2binom Probability functions for the sum of two independent binomials dataIn A flexible way to import data into R. dbb The Beta-Binomial Distribution df2list Row-wise conversion of a data frame to a list dfplapply Parallelized single row processing of a data frame dframeEquiv Examines the equivalence of two dataframes or matrices dkbinom Probability functions for the sum of k independent binomials factor2character Converts all factor variables in a dataframe to character variables findDepMat Identify linearly dependent rows or columns in a matrix formatDT Converts date or datetime strings into alternate formats getExtension Filename manipulations: remove the extension or path, extract the extension or path getPath Filename manipulations: remove the extension or path, extract the extension or path grabLast Filename manipulations: remove the extension or path, extract the extension or path ifelse1 Non-vectorized version of ifelse integ Simple numerical integration routine interactionPlot Two-way Interaction Plot with Error Bar linearMap Linear mapping of a numerical vector or scalar list2df Convert a list to a data frame loadObject Loads and returns the object(s) in an ".Rdata" file more Display the contents of a file to the R terminal movAvg2

  3. ,"Miscellaneous Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  4. 2015-03-26: Miscellaneous Refrigeration Products; Notice of Intent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This document is being made available through the Internet solely as a means to facilitate the public's access to this document. ASRACMREFWorkingGroupNOI.pdf (134.29 KB) More ...

  5. Recycle plastics into feedstocks

    SciTech Connect (OSTI)

    Kastner, H.; Kaminsky, W.

    1995-05-01

    Thermal cracking of mixed-plastics wastes with a fluidized-bed reactor can be a viable and cost-effective means to meet mandatory recycling laws. Strict worldwide environmental statutes require the hydrocarbon processing industry (HPI) to develop and implement product applications and technologies that reuse post-consumer mixed-plastics waste. Recycling or reuse of plastics waste has a broad definition. Recycling entails more than mechanical regranulation and remelting of polymers for film and molding applications. A European consortium of academia and refiners have investigated if it is possible and profitable to thermally crack plastics into feedstocks for refining and petrochemical applications. Development and demonstration of pyrolysis methods show promising possibilities of converting landfill garbage into valuable feedstocks such as ethylene, propylene, BTX, etc. Fluidized-bed reactor technologies offer HPI operators a possible avenue to meet recycling laws, conserve raw materials and yield a profit. The paper describes thermal cracking for feedstocks and pyrolysis of polyolefins.

  6. Miscellaneous Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 94 125 15 5 5 0 1977-2014 New Field Discoveries 0 0 0 0 0 16 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 2 0 0 1977-2014 Estimated Production 30 16 24 14 12 ...

  7. Miscellaneous Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Lease Separation 78 10 104 7 19 18 1979-2014 Adjustments 42 -70 66 -97 -5 2 1979-2014 Revision Increases 53 1 46 1 19 1 1979-2014 Revision Decreases 13 0 9 0 0 2 1979-2014 Sales 0 0 0 0 0 0 2000-2014 Acquisitions 0 0 0 0 0 0 2000-2014 Extensions 0 2 0 0 0 0 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 Estimated Production 13 1 8 1 2 2 Production

    17 16 17 13 23 11 2005-2014 Adjustments 1 2 3 -2 13 -12 2009-2014

  8. Miscellaneous States Shale Gas Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas Proved Reserves (Billion Cubic Feet) Miscellaneous States Shale Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 66 58 134 2010's 121 75 52 25 123 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Miscellaneous Shale Gas

  9. Process for remediation of plastic waste

    DOE Patents [OSTI]

    Pol, Vilas G; Thiyagarajan, Pappannan

    2013-11-12

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of about 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically carbon nanotubes having a partially filled core (encapsulated) adjacent to one end of the nanotube. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  10. Process for remediation of plastic waste

    DOE Patents [OSTI]

    Pol, Vilas G.; Thiyagarajan, Pappannan

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  11. H2A Delivery: Miscellaneous Cost and H2 Losses

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Miscellaneous Costs and H2 Losses Hydrogen Delivery Analysis Meeting May 8-9, 2006 Matt Ringer National Renewable Energy Laboratory H2A Delivery Presentation Outline * Direct and Indirect Costs * Operating and Maintenance Costs * Labor Costs and Scaling Factor * Component Hydrogen Losses H2A Delivery Direct and Indirect Costs * Currently posted model includes site preparation, engineering and design, project contingency, one-time licensing fees and permitting - Factor of 1.225 above installed

  12. Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings

    SciTech Connect (OSTI)

    UC Berkeley, Berkeley, CA USA; Brown, Richard; Lanzisera, Steven; Cheung, Hoi Ying; Lai, Judy; Jiang, Xiaofan; Dawson-Haggerty, Stephen; Taneja, Jay; Ortiz, Jorge; Culler, David

    2011-05-24

    Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Despite the success of policies, such as Energy Star, that promote more efficient miscellaneous and electronic products, much remains to be done to address the energy use of these devices if we are to achieve our energy and carbon reduction goals. Developing efficiency strategies for these products depends on better data about their actual usage, but very few studies have collected field data on the long-term energy used by a large sample of devices due to the difficulty and expense of collecting device-level energy data. This paper describes the development of an improved method for collecting device-level energy and power data using small, relatively inexpensive wireless power meters. These meters form a mesh network based on Internet standard protocols and can form networks of hundreds of metering points in a single building. Because the meters are relatively inexpensive and do not require manual data downloading, they can be left in the field for months or years to collect long time-series energy use data. In addition to the metering technology, we also describe a field protocol used to collect comprehensive, robust data on the miscellaneous and electronic devices in a building. The paper presents sample results from several case study buildings, in which all the plug-in devices for several homes were metered, and a representative sample of several hundred plug-in devices in a commercial office building were metered for several months.

  13. Formosa Plastics Corporation | Open Energy Information

    Open Energy Info (EERE)

    Product: A Taiwan-based conglomerate with divisions producing plastics, chemicals, refinery equipment, specifically the making of resins, VCM, caustic soda, hydrochloric acid,...

  14. Plastic Magen Industry | Open Energy Information

    Open Energy Info (EERE)

    products with a lifetime guarantee, including the Heliocol and Sunstar-brand solar water heating systems. References: Plastic Magen Industry1 This article is a stub. You...

  15. Evaluation of Miscellaneous and Electronic Device Energy Use in Hospitals

    SciTech Connect (OSTI)

    Black, Douglas R.; Lanzisera, Steven M.; Lai, Judy; Brown, Richard E.; Singer, Brett C.

    2012-09-01

    Miscellaneous and electronic loads (MELs) consume about one-thirdof the primary energy used in US buildings, and their energy use is increasing faster than other end-uses. In healthcare facilities, 30percent of the annual electricity was used by MELs in 2008. This paper presents methods and challenges for estimating medical MELs energy consumption along with estimates of energy use in a hospital by combining device-level metered data with inventories and usage information. An important finding is that common, small devices consume large amounts of energy in aggregate and should not be ignored when trying to address hospital energy use.

  16. Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 34 12 27 31 14 25 41 13 28 39 1990's 22 14 11 9 11 32 28 31 17 54 2000's 19 19 20 14 12 14 19 15 9 78 2010's 10 104 7 19 18 - = No

  17. Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Reserves in Nonproducing Reservoirs (Million Barrels) Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 1 1 2000's 1 1 16 17 4 4 2 5 4 7 2010's 5 7 12 9 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  18. Miscellaneous States Natural Gas Liquids Lease Condensate, Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Miscellaneous States Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 2 2 2 1990's 1 5 2 2 1 0 0 0 0 2 2000's 0 1 1 2 2 3 3 8 11 20 2010's 28 34 65 89 151 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  19. Miscellaneous States Natural Gas, Wet After Lease Separation Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Miscellaneous States Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 156 1980's 180 193 74 81 77 77 136 66 84 87 1990's 72 76 93 96 67 69 68 44 39 67 2000's 42 83 100 134 110 132 139 241 272 349 2010's 363 393 233 188 185 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  20. Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 142 1980's 146 181 47 50 63 52 95 53 56 48 1990's 50 62 82 87 56 37 40 13 22 13 2000's 23 64 80 120 98 118 120 226 263 271 2010's 353 270 219 169 167 - = No Data

  1. Characterization of Final State Interaction Strength in Plastic Scintillator by Muon-Neutrino Charged Current Charged Pion Production

    SciTech Connect (OSTI)

    Eberly, Brandon M.

    2014-01-01

    Precise knowledge of neutrino-nucleus interactions is increasingly important as neutrino oscillation measurements transition into the systematics-limited era. In addition to modifying the initial interaction, the nuclear medium can scatter and absorb the interaction by-products through final state interactions, changing the types and kinematic distributions of particles seen by the detector. Recent neutrino pion production data from MiniBooNE is inconsistent with the final state interaction strength predicted by models and theoretical calculations, and some models fit best to the MiniBooNE data only after removing final state interactions entirely. This thesis presents a measurement of dσ/dTπ and dσ/dθπ for muon-neutrino charged current charged pion production in the MINER A scintillator tracker. MINER A is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. The analysis is limited to neutrino energies between 1.5-10 GeV. Dependence on invariant hadronic mass W is studied through two versions of the analysis that impose the limits W < 1.4 GeV and W < 1.8 GeV. The lower limit on W increases compatibility with the MiniBooNE pion data. The shapes of the differential cross sections, which depend strongly on the nature of final state interactions, are compared to Monte Carlo and theoretical predictions. It is shown that the measurements presented in this thesis favor models that contain final state interactions. Additionally, a variety of neutrino-nucleus interaction models are shown to successfully reproduce the thesis measurements, while simultaneously failing to describe the shape of the MiniBooNE data.

  2. 200-Area plateau inactive miscellaneous underground storage tanks locations

    SciTech Connect (OSTI)

    Brevick, C.H.

    1997-12-01

    Fluor Daniel Northwest (FDNW) has been tasked by Lockheed Martin Hanford Corporation (LMHC) to incorporate current location data for 64 of the 200-Area plateau inactive miscellaneous underground storage tanks (IMUST) into the centralized mapping computer database for the Hanford facilities. The IMUST coordinate locations and tank names for the tanks currently assigned to the Hanford Site contractors are listed in Appendix A. The IMUST are inactive tanks installed in underground vaults or buried directly in the ground within the 200-East and 200-West Areas of the Hanford Site. The tanks are categorized as tanks with a capacity of less than 190,000 liters (50,000 gal). Some of the IMUST have been stabilized, pumped dry, filled with grout, or may contain an inventory or radioactive and/or hazardous materials. The IMUST have been out of service for at least 12 years.

  3. Building America System Research Plan for Reduction of Miscellaneous Electrical Loads in Zero Energy Homes

    SciTech Connect (OSTI)

    Barley, C. D.; Haley, C.; Anderson, R.; Pratsch, L.

    2008-11-01

    This research plan describes the overall scope of system research that is needed to reduce miscellaneous electrical loads (MEL) in future net zero energy homes.

  4. Fight corrosion with plastic

    SciTech Connect (OSTI)

    Khaladkar, P.

    1995-10-01

    As chemical processors run plants longer to meet goals for increased production at lower costs, and use higher temperatures and higher throughputs to boost performance, there are more rigorous requirements for durable, corrosion-resistant equipment. Plastics, elastomers and composites help meet this need by protecting carbon steel equipment, and by providing materials of construction for components and structures. They can preserve product purity and quality by preventing contamination. Of the many polymers and composites that have proven useful for managing corrosion of chemical process equipment, most fit into three categories: barrier linings and coatings; self-supporting structures, which can be made of composites or solid polymers in tanks, piping, valves, pumps and other equipment; and other products, such as seals, gaskets, adhesives and caulks. The paper describes all three types and also remarks on the need for failure analysis.

  5. After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment

    SciTech Connect (OSTI)

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret J.; Busch, John F.

    2004-01-22

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay area of California, five are in Pittsburgh, Pennsylvania, and five are in Atlanta

  6. Sol-gel antireflective coating on plastics

    DOE Patents [OSTI]

    Ashley, C.S.; Reed, S.T.

    1988-01-26

    An antireflection film made from reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  7. Sol-gel antireflective coating on plastics

    DOE Patents [OSTI]

    Ashley, Carol S.; Reed, Scott T.

    1990-01-01

    An antireflection film made from a reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  8. MECS 2006- Plastics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Plastics (NAICS 326) Sector with Total Energy Input, October 2012 (MECS 2006)

  9. Miscellaneous Electricity Services in the Buildings Sector (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Residential and commercial electricity consumption for miscellaneous services has grown significantly in recent years and currently accounts for more electricity use than any single major end-use service in either sector (including space heating, space cooling, water heating, and lighting). In the residential sector, a proliferation of consumer electronics and information technology equipment has driven much of the growth. In the commercial sector, telecommunications and network equipment and new advances in medical imaging have contributed to recent growth in miscellaneous electricity use.

  10. H2A Delivery: Miscellaneous Cost and H2 Losses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Miscellaneous Cost and H2 Losses H2A Delivery: Miscellaneous Cost and H2 Losses Presentation by Matt Ringer of the National Renewable Energy Laboratory at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 deliv_analysis_ringer.pdf (327.03 KB) More Documents & Publications H2A Delivery Models and Results Hydrogen Delivery Analysis Models H2A Delivery Components Model and Analysis

  11. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    SciTech Connect (OSTI)

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.; Barnes, T. J.; Duncan, K. G.

    2015-01-07

    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service following deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.

  12. Monitoring and Characterization of Miscellaneous Electrical Loads in a Large Retail Environment

    SciTech Connect (OSTI)

    Gentile-Polese, L.; Frank, S.; Sheppy, M.; Lobato, C.; Rader, E.; Smith, J.; Long, N.

    2014-02-01

    Buildings account for 40% of primary energy consumption in the United States (residential 22%; commercial 18%). Most (70% residential and 79% commercial) is used as electricity. Thus, almost 30% of U.S. primary energy is used to provide electricity to buildings. Plug loads play an increasingly critical role in reducing energy use in new buildings (because of their increased efficiency requirements), and in existing buildings (as a significant energy savings opportunity). If all installed commercial building miscellaneous electrical loads (CMELs) were replaced with energy-efficient equipment, a potential annual energy saving of 175 TWh, or 35% of the 504 TWh annual energy use devoted to MELs, could be achieved. This energy saving is equivalent to the annual energy production of 14 average-sized nuclear power plants. To meet DOE's long-term goals of reducing commercial building energy use and carbon emissions, the energy efficiency community must better understand the components and drivers of CMEL energy use, and develop effective reduction strategies. These goals can be facilitated through improved data collection and monitoring methodologies, and evaluation of CMELs energy-saving techniques.

  13. After-hours power status of office equipment and energy use of miscellaneous plug-load equipment

    SciTech Connect (OSTI)

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Marageret J.; Busch, John F.

    2004-05-27

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of miscellaneous plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. For most types of miscellaneous equipment, we also estimated typical unit energy consumption in order to estimate total energy consumption of the miscellaneous devices within our sample. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from sixteen commercial buildings in California, Georgia, and Pennsylvania: four education buildings, two medical buildings, two large offices (> 500 employees each), three medium offices (50-500 employees each), and five small

  14. Electroweak meson production reaction in the nucleon resonance...

    Office of Scientific and Technical Information (OSTI)

    Search Authors Type: All BookMonograph ConferenceEvent Journal Article Miscellaneous ... SciTech Connect Search Results Journal Article: Electroweak meson production reaction in ...

  15. Miscellaneous Lease Condensate Proved Reserves, Reserve Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 20 28 34 65 89 151 1979-2014 Adjustments 4 4 -3 5 -11 -6 2009-2014 Revision Increases 3 6 10 10 12 41 2009-2014 Revision Decreases 2 8 2 5 7 26 2009-2014 Sales 0 0 0 0 0 3 2009-2014 Acquisitions 3 5 0 3 0 5 2009-2014 Extensions 3 4 7 22 35 61 2009-2014 New Field Discoveries 0 0 0 0 0 1 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 3 5 2009-2014 Estimated Production 2 3 2 4 8 1

  16. Miscellaneous Nonassociated Natural Gas Proved Reserves, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation 71 353 270 219 169 167 1979-2014 Adjustments 26 -5 2 -12 5 -3 1979-2014 Revision Increases 12 110 28 18 8 4 1979-2014 Revision Decreases 107 121 42 38 58 6 1979-2014 Sales 0 14 100 14 0 4 2000-2014 Acquisitions 0 0 46 0 0 0 2000-2014 Extensions 94 127 16 5 6 0 1979-2014 New Field Discoveries 0 0 0 0 0 16 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 2 0 0 1979-2014 Estimated Production 17 15 14 12 11 9

  17. Solar-Geophysical Data Number 556, December 1990. Part 2 (comprehensive reports). Data for June 1990 and miscellaneous

    SciTech Connect (OSTI)

    Coffey, H.E.

    1990-12-01

    ;Contents: Detailed index for 1990; Data for June 1990; Miscellaneous--IMP 8 solar wind Apr-May 90; International Geophysical Calendar 1991 with recommended scientific programs.

  18. Cold Sterilization of Plastic Containers - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Cold Sterilization of Plastic Containers Princeton Plasma Physics Laboratory Contact PPPL About This Technology Technology Marketing Summary The sterilization of plastic containers for beverage, food and pharmaceutical products is a significant cost to the associated industries. Currently, plastic containers are sterilized using heat, which necessitates the use of polymers that can withstand the high temperature

  19. BTO Seeks Your Participation to Discuss Miscellaneous Electric Loads (MELS) in San Francisco on June 3

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Building Technologies Office (BTO) is hosting a workshop to discuss future R&D efforts in the area of miscellaneous electric loads (MELs). It’s an area with a large opportunity space for energy savings of interest to the office – and we want your perspective!

  20. Recycling plastic scrap: Injection molding. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect (OSTI)

    NONE

    1997-02-01

    The bibliography contains citations concerning the recycling of scrap plastic produced in the injection molding process. Plastic pellets made from scrap, that are used in the injection molding process, are also discussed. Recycling equipment and automated recycling systems are described. The reuse of plastic scrap culled from junk automobiles and packaging materials is discussed, and waste byproducts from polyurethane production are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  1. Recycling plastic scrap: Injection molding. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    The bibliography contains citations concerning the recycling of scrap plastic produced in the injection molding process. Plastic pellets made from scrap, that are used in the injection molding process, are also discussed. Recycling equipment and automated recycling systems are described. The reuse of plastic scrap culled from junk automobiles and packaging materials is discussed, and waste byproducts from polyurethane production are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Hydrodynamic Elastic Magneto Plastic

    Energy Science and Technology Software Center (OSTI)

    1985-02-01

    The HEMP code solves the conservation equations of two-dimensional elastic-plastic flow, in plane x-y coordinates or in cylindrical symmetry around the x-axis. Provisions for calculation of fixed boundaries, free surfaces, pistons, and boundary slide planes have been included, along with other special conditions.

  3. Recycling Carbon Dioxide to Make Plastics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomer’s thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Novomer's thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Why is this important? By using CO2 that would otherwise be emitted to the atmosphere, the process has the potential to cut greenhouse gas emissions while simultaneously reducing petroleum

  4. Microelectronics plastic molded packaging

    SciTech Connect (OSTI)

    Johnson, D.R.; Palmer, D.W.; Peterson, D.W.

    1997-02-01

    The use of commercial off-the-shelf (COTS) microelectronics for nuclear weapon applications will soon be reality rather than hearsay. The use of COTS for new technologies for uniquely military applications is being driven by the so-called Perry Initiative that requires the U.S. Department of Defense (DoD) to accept and utilize commercial standards for procurement of military systems. Based on this philosophy, coupled with several practical considerations, new weapons systems as well as future upgrades will contain plastic encapsulated microelectronics. However, a conservative Department of Energy (DOE) approach requires lifetime predictive models. Thus, the focus of the current project is on accelerated testing to advance current aging models as well as on the development of the methodology to be used during WR qualification of plastic encapsulated microelectronics. An additional focal point involves achieving awareness of commercial capabilities, materials, and processes. One of the major outcomes of the project has been the definition of proper techniques for handling and evaluation of modern surface mount parts which might be used in future systems. This program is also raising the familiarity level of plastic within the weapons complex, allowing subsystem design rules accommodating COTS to evolve. A two year program plan is presented along with test results and commercial interactions during this first year.

  5. ,"Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  6. ,"Miscellaneous States Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  7. ,"Miscellaneous States Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  8. ,"Miscellaneous States Shale Gas Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Shale Gas Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  9. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOE Patents [OSTI]

    Weaver, P.F.; Pinching Maness.

    1993-10-05

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer. 3 figures.

  10. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOE Patents [OSTI]

    Weaver, Paul F.; Maness, Pin-Ching

    1993-01-01

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer.

  11. Tiny plastic lung mimics human pulmonary function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tiny plastic lung mimics human pulmonary function Tiny plastic lung mimics human pulmonary function Scientists are developing a miniature, tissue-engineered artificial lung that ...

  12. High Performance Plastic DSSC | ANSER Center | Argonne-Northwestern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Plastic DSSC Home > Research > ANSER Research Highlights > High Performance Plastic DSSC...

  13. Enhanced Separation and Mitigated Plasticization in Membranes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Separation and Mitigated Plasticization in Membranes using Metal-Organic Framework Nanoparticles

  14. We Need to Talk... Developing Communicating Power Supplies to Monitor & Control Miscellaneous Electric Loads

    SciTech Connect (OSTI)

    Weber, Andrew; Lanzisera, Steven; Liao, Anna; Meier, Alan

    2014-08-11

    Plug loads represent 30percent of total electricity use in residential buildings. Significant energy savings would result from an accurate understanding of which miscellaneous electric devices are using energy, at what time, and in what quantity. Commercially available plug load monitoring and control solutions replace or limit the attached device's native controls - forcing the user to adapt to a separate set of controls associated with the monitoring and control hardware. A better solution is integration of these capabilities at the power supply level. In this paper, we demonstrate a method achieving this integration. Our solution allows unobtrusive power monitoring and control while retaining native device control features. Further, our prototype enables intelligent behaviors by allowing devices to respond to the state of one another automatically. The CPS enables energy savings while demonstrating an added level of functionality to the user. If CPS technology became widespread in devices, a combination of automated and human interactive solutions would enable high levels of energy savings in buildings.

  15. Development of an Energy-Savings Calculation Methodology for Residential Miscellaneous Electric Loads: Preprint

    SciTech Connect (OSTI)

    Hendron, R.; Eastment, M.

    2006-08-01

    In order to meet whole-house energy savings targets beyond 50% in residential buildings, it will be essential that new technologies and systems approaches be developed to address miscellaneous electric loads (MELs). These MELs are comprised of the small and diverse collection of energy-consuming devices found in homes, including what are commonly known as plug loads (televisions, stereos, microwaves), along with all hard-wired loads that do not fit into other major end-use categories (doorbells, security systems, garage door openers). MELs present special challenges because their purchase and operation are largely under the control of the occupants. If no steps are taken to address MELs, they can constitute 40-50% of the remaining source energy use in homes that achieve 60-70% whole-house energy savings, and this percentage is likely to increase in the future as home electronics become even more sophisticated and their use becomes more widespread. Building America (BA), a U.S. Department of Energy research program that targets 50% energy savings by 2015 and 90% savings by 2025, has begun to identify and develop advanced solutions that can reduce MELs.

  16. Extruded plastic scintillator including inorganic powders

    DOE Patents [OSTI]

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  17. Status report for inactive miscellaneous underground storage tanks at Hanford Site 200 Areas

    SciTech Connect (OSTI)

    Powers, T.B.

    1995-10-01

    The purpose of this status report is to summarize updated data and information from the FY 1994 strategy plan that is associated with inactive miscellaneous underground storage tanks (IMUSTs). Assumptions and processes to assess potential risks and operational concerns are documented in this report. Safety issue priorities are ranked based on a number of considerations. Sixty-three IMUSTs have been Identified and placed on the official IMUST list. All the tanks are associated with past Hanford Site operations. Of the 63 tanks., 19 are catch tanks, 20 are vault tanks, 3 are neutralization tanks, 8 are settling tanks, 2 are solvent makeup tanks used to store hexone, 2 are flush tanks, 3 are decontamination tanks, 1 is a diverter station, 1 is a receiver tank, 1 is an experimental tank, and 3 are waste handling tanks. It is important to proactively deal with the risks Imposed by these 63 tanks, and at the same time not jeopardize the existing commitments and schedules for mitigating and resolving identified safety issues related to the 177 SSTs and DSTS. Access controls and signs have been placed on all but the three official IMUSTs added most recently. An accelerated effort to identify authorization documents and perform unreviewed safety question (USQ) screening has been completed. According to a set of criteria consistent with the safety screening data quality objective (DQO) process, 6 IMUSTs are ranked high related to the hydrogen generation potential safety Issue, 1 is ranked high related to the ferrocyanide potential safety issue, 6 are ranked high related to the flammability potential safety issue, and 25 are ranked high related to the vapor emissions potential safety issue.

  18. Polishing compound for plastic surfaces

    DOE Patents [OSTI]

    Stowell, Michael S.

    1995-01-01

    A polishing compound for plastic surfaces. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS.TM., LEXAN.TM., LUCITE.TM., polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  19. Polishing compound for plastic surfaces

    DOE Patents [OSTI]

    Stowell, M.S.

    1995-08-22

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired. 5 figs.

  20. Polishing compound for plastic surfaces

    DOE Patents [OSTI]

    Stowell, M.S.

    1993-01-01

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains colloidal silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{sup TM}, LEXAN{sup TM}, LUCITE{sup TM}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  1. Building Technologies Office: R&D Opportunities to Reduce Energy Consumption in Miscellaneous Electric Loads (MELs)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office: R&D Opportunities to Reduce Energy Consumption in Miscellaneous Electric Loads (MELs) Pat Phelan (patrick.phelan@ee.doe.gov) BTO Emerging Technologies June 3, 2016 2 Why Do We Care About MELs? Problem: Fraction of energy consumption due to MELs is rising as other building technologies become more efficient. DOE Quadrennial Technology Review (2015)  60% of remaining energy consumption after 2020 R&D targets are achieved, the majority of which are MELs. FY16 Activities: * Panel

  2. Field evaluation of recycled plastic lumber (RPL) pallets. Final project report

    SciTech Connect (OSTI)

    Krishnaswamy, P.; Miele, C.R.; Francini, R.B.; Yuracko, K.; Yerace, P.

    1997-10-01

    One significant component of the waste stream, discarded plastic products and packaging, continues to be a growing portion of the municipal solid waste (MSW). There has been considerable work done in characterizing the quantity and types of plastics in different waste streams, collection methods, separation, sorting as well as technologies for processing post-consumer mixed plastics. The focus in recent years has been the development of markets for recycled plastic products, which constitutes the second half of the material flow diagram cycle shown in Figure 1. One key product that holds significant promise for plastics recycling to be both technically feasible and economically viable is Recycled Plastic Lumber (RPL). The contents of this report forms the second phase of a two-phase pilot project on developing specifications and standards for a product fabricated from RPL. Such standards and specifications are needed to prepare procurement guidelines for state and federal agencies interested in purchasing products made from recycled materials. The first phase focused on establishing a procedure to evaluate RPL product,s such as pallets, in a laboratory setting while this phase focuses on field evaluation of RPL pallets in service. This effort is critical in the development of new markets for RPL products. A brief summary of the findings from Phase 1 of this effort is presented next.

  3. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  4. Plastic Solar Cells See Bright Future | ANSER Center | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plastic Solar Cells See Bright Future Home > News & Events > Plastic Solar Cells See Bright Future Plastic Solar Cells See Bright Future Evanston, Ill---Energy consumption is ...

  5. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  6. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-07-17

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as

  7. New recycling plant accepts and converts co-mingled plastic trash

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    The plant, owned and operated by Innovative Plastic Products Inc. (IPPI), uses a new patented German process to convert co-mingled plastic trash, including impurities like wood, papers, and metal, into a plastic alloy that is immediately molded into finished product. The products currently being produced by IPPI's facility in Greensboro, Ga., are: flat sheets in various thickness called InnoPlast GP(tm); a modular drainage trough called InnoDain(tm); pallets, dollies, industrial floor tile, and cable spools. Ken Carrier, vice president of Marketing, says that by year end the plant should reach an operating capacity of about 1 million pounds per month of finished product from the recycled plastic waste.

  8. Combating oil spill problem using plastic waste

    SciTech Connect (OSTI)

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-10-15

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.

  9. Updated Miscellaneous Electricity Loads and Appliance Energy Usage Profiles for Use in Home Energy Ratings, the Building America Benchmark Procedures and Related Calculations. Revised

    SciTech Connect (OSTI)

    Parker, Danny; Fairey, Philip; Hendron, Robert

    2011-06-10

    This report discusses how TIAX data, supplemented by the 2005 Residential Energy Consumption Survey (RECS)public use data set was used to make significant improvements in the prediction metods for estimating energy use of miscellaneous electric loads.

  10. Polishing compound for plastic surfaces

    DOE Patents [OSTI]

    Stowell, M.S.

    1991-01-01

    This invention is comprised of a polishing compound for plastic materials. The compound includes approximately by approximately by weight 25 to 80 parts at least one petroleum distillate lubricant, 1 to 12 parts mineral spirits, 50 to 155 parts abrasive paste, and 15 to 60 parts water. Preferably, the compound includes approximately 37 to 42 parts at least one petroleum distillate lubricant, up to 8 parts mineral spirits, 95 to 110 parts abrasive paste, and 50 to 55 parts water. The proportions of the ingredients are varied in accordance with the particular application. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC), and similar plastic materials whenever a smooth, clear polished surface is desired.

  11. High Performance Plastic DSSC | ANSER Center | Argonne-Northwestern

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory High Performance Plastic DSSC Home > Research > ANSER Research Highlights > High Performance Plastic DSSC

  12. When Function Follows Form: Plastic Solar Cells | ANSER Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When Function Follows Form: Plastic Solar Cells Home > Research > ANSER Research Highlights > When Function Follows Form: Plastic Solar Cells...

  13. Plastic Deformations in Complex Plasmas

    SciTech Connect (OSTI)

    Durniak, C.; Samsonov, D.

    2011-04-29

    Complex plasmas are macroscopic model systems of real solids and liquids, used to study underdamped dynamics and wave phenomena. Plastic deformations of complex plasma crystals under slow uniaxial compression have been studied experimentally and numerically. It is shown that the lattice becomes locally sheared and that this strain is relaxed by shear slips resulting in global uniform compression and heat generation. Shear slips generate pairs of dislocations which move in opposite directions at subsonic speeds.

  14. Is combustion of plastics desirable?

    SciTech Connect (OSTI)

    Piasecki, B.; Rainey, D.; Fletcher, K.

    1998-07-01

    Managing waste will always entail some tradeoffs. All of the three options--recycling, landfilling and combustion--have some disadvantages. Even landfilling, which produces no emissions, fails to take advantage of the energy value inherent in plastic. Waste combustion, on the other hand, recovers the energy in plastic materials and reduces the volume of disposed solid waste by up to 90% of its initial preburn volumes. However, this management option generates emissions and produces an ash residue that must be managed. As demonstrated by recent test burns, improvements in combustion and air-pollution-control technology have dramatically reduced the health risks from emissions and ash. Recent studies have shown that plastics--in quantities even higher than those normally found in municipal solid waste--do not adversely affect levels of emissions or the quality of ash from waste-to-energy facilities. In addition, waste-to-energy facilities may be a relatively economical source of fuel, and may be a more economic solution to waste management than the other available options. A waste-to-energy plant generally produces electricity that is sold to the electric utilities for approximately six cents per kilowatt-hour, a rate that is competitive with those offered by nuclear power plants and power plants that generate energy by burning fossil fuels.

  15. Closure Report for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-09-01

    Corrective Action Unit (CAU) 121 is identified in the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008) as Storage Tanks and Miscellaneous Sites. CAU 121 consists of the following three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada: (1) CAS 12-01-01, Aboveground Storage Tank; (2) CAS 12-01-02, Aboveground Storage Tank; and (3) CAS 12-22-26, Drums; 2 AST's. CAU 121 closure activities were conducted according to the FFACO and the Streamlined Approach for Environmental Restoration Plan for CAU 121 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007). Field work took place from February through September 2008. Samples were collected to determine the path forward to close each site. Closure activities were completed as defined in the plan based on sample analytical results and site conditions. No contaminants of concern (COCs) were present at CAS 12-01-01; therefore, no further action was chosen as the corrective action alternative. As a best management practice (BMP), the empty aboveground storage tank (AST) was removed and disposed as sanitary waste. At CAS 12-01-02, polychlorinated biphenyls (PCBs) were present above the preliminary action level (PAL) in the soil beneath the AST that could possibly have originated from the AST contents. Therefore, PCBs were considered COCs, and the site was clean closed by excavating and disposing of soil containing PCBs. Approximately 5 cubic yards (yd{sup 3}) of soil were excavated and disposed as petroleum hydrocarbon PCB remediation waste, and approximately 13 yd3 of soil were excavated and disposed as PCB remediation waste. Cleanup samples were collected to confirm that the remaining soil did not contain PCBs above the PAL. Other compounds detected in the soil above PALs (i.e., total petroleum hydrocarbons [TPH] and semi-volatile organic compounds [SVOCs]) were

  16. ,"Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  17. Addendum to the Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    2013-07-31

    This addendum to the Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada, DOE/NV--1480, dated July 2012, documents repairs of erosion and construction of engineered erosion protection features at Corrective Action Site (CAS) 02-37-02 (MULLET) and CAS 09-99-06 (PLAYER). The final as-built drawings are included in Appendix A, and photographs of field work are included in Appendix B. Field work was completed on March 11, 2013.

  18. Technical specifications for mechanical recycling of agricultural plastic waste

    SciTech Connect (OSTI)

    Briassoulis, D. Hiskakis, M.; Babou, E.

    2013-06-15

    Highlights: • Technical specifications for agricultural plastic wastes (APWs) recycling proposed. • Specifications are the base for best economical and environmental APW valorisation. • Analysis of APW reveals inherent characteristics and constraints of APW streams. • Thorough survey on mechanical recycling processes and industry as it applies to APW. • Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project “LabelAgriWaste” revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (“Quality I”) and another one for plastic profile production process (“Quality II”). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities

  19. Extruded plastic scintillator for MINERvA

    SciTech Connect (OSTI)

    Pla-Dalmau, Anna; Bross, Alan D.; Rykalin, Victor V.; Wood, Brian M.; /NICADD, DeKalb

    2005-11-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here.

  20. Method to separate and recover oil and plastic from plastic contaminated with oil

    DOE Patents [OSTI]

    Smith, H.M.; Bohnert, G.W.; Olson, R.B.; Hand, T.E.

    1998-01-27

    The present invention provides a method to separate and recover oils and recyclable plastic from plastic contaminated with oil. The invention utilizes the different solubility of oil in a liquid or supercritical fluid as compared to a gas to effect separation of the oil from the plastic. 3 figs.

  1. Method to separate and recover oil and plastic from plastic contaminated with oil

    DOE Patents [OSTI]

    Smith, Henry M.; Bohnert, George W.; Olson, Ronald B.; Hand, Thomas E.

    1998-01-27

    The present invention provides a method to separate and recover oils and recyclable plastic from plastic contaminated with oil. The invention utilizes the different solubility of oil in as liquid or supercritical fluid as compared to a gas to effect separation of the oil from the plastic.

  2. Plastic Laminate Pulsed Power Development

    SciTech Connect (OSTI)

    ALEXANDER,JEFF A.; SHOPE,STEVEN L.; PATE,RONALD C.; RINEHART,LARRY F.; JOJOLA,JOHN M.; RUEBUSH,MITCHELL H.; CROWE,WAYNE; LUNDSTROM,J.; SMITH,T.; ZAGAR,D.; PRESTWICH,K.

    2000-09-01

    The desire to move high-energy Pulsed Power systems from the laboratory to practical field systems requires the development of compact lightweight drivers. This paper concerns an effort to develop such a system based on a plastic laminate strip Blumlein as the final pulseshaping stage for a 600 kV, 50ns, 5-ohm driver. A lifetime and breakdown study conducted with small-area samples identified Kapton sheet impregnated with Propylene Carbonate as the best material combination of those evaluated. The program has successfully demonstrated techniques for folding large area systems into compact geometry's and vacuum impregnating the laminate in the folded systems. The major operational challenges encountered revolve around edge grading and low inductance, low impedance switching. The design iterations and lessons learned are discussed. A multistage prototype testing program has demonstrated 600kV operation on a short 6ns line. Full-scale prototypes are currently undergoing development and testing.

  3. Sacrificial plastic mold with electroplatable base

    DOE Patents [OSTI]

    Domeier, Linda A.; Hruby, Jill M.; Morales, Alfredo M.

    2002-01-01

    A sacrificial plastic mold having an electroplatable backing is provided. One embodiment consists of the infusion of a softened or molten thermoplastic through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale molding tool contacting the porous metal substrate. Upon demolding, the porous metal substrate will be embedded within the thermoplastic and will project a plastic structure with features determined by the mold tool. This plastic structure, in turn, provides a sacrificial plastic mold mechanically bonded to the porous metal substrate which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved to leave the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  4. Sacrificial Plastic Mold With Electroplatable Base

    DOE Patents [OSTI]

    Domeier, Linda A.; Hruby, Jill M.; Morales, Alfredo M.

    2005-08-16

    A sacrificial plastic mold having an electroplatable backing is provided. One embodiment consists of the infusion of a softened or molten thermoplastic through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale molding tool contacting the porous metal substrate. Upon demolding, the porous metal substrate will be embedded within the thermoplastic and will project a plastic structure with features determined by the mold tool. This plastic structure, in turn, provides a sacrificial plastic mold mechanically bonded to the porous metal substrate which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved to leave the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  5. Castable plastic mold with electroplatable base

    DOE Patents [OSTI]

    Domeier, Linda A.; Morales, Alfredo M.; Gonzales, Marcela G.; Keifer, Patrick M.

    2004-01-20

    A sacrificial plastic mold having an electroplatable backing is provided as are methods of making such a mold via the infusion of a castable liquid formulation through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale master mold. Upon casting and demolding, the porous metal substrate is embedded within the cast formulation and projects a plastic structure with features determined by the mold tool. The plastic structure provides a sacrificial plastic mold mechanically bonded to the porous metal substrate, which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved, leaving the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  6. This New Plastic Is 50% Renewable | Department of Energy

    Office of Environmental Management (EM)

    This New Plastic Is 50% Renewable This New Plastic Is 50% Renewable April 18, 2016 - 10:50am Addthis An artist's rendition of the tough new plastic. | Image courtesy of Mark ...

  7. Shape-Shifting Plastic (Other) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Other: Shape-Shifting Plastic Citation Details In-Document Search Title: Shape-Shifting Plastic A new plastic developed by ORNL and Washington State University transforms from its ...

  8. High-pressure, high-temperature plastic deformation of sintered...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High-pressure, high-temperature plastic deformation of sintered diamonds Citation Details In-Document Search Title: High-pressure, high-temperature plastic ...

  9. Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers Breakout Session 1-D: The Pitch Renewable, ...

  10. New Class of Plastic Scintillators - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scintillator PSD-Capable Doped Plastic Scintillator NeutronGamma Pulse-Shape Discrimination in a Doped Plastic Scintillator NeutronGamma Pulse-Shape Discrimination in a...

  11. Plastic Bags to Batteries: A Green Chemistry Solution | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plastic Bags to Batteries: A Green Chemistry Solution Share Description Plastic bags are the scourge of roadsides, parking lots and landfills. But chemistry comes to the rescue At...

  12. Replex Plastics | Open Energy Information

    Open Energy Info (EERE)

    Vernon Ave Place: Mount Vernon, Ohio Zip: 43050 Sector: Services, Solar Product: Manufacturing; Research and development Phone Number: 740-397-5535 Website: www.replex.com...

  13. Plasticity in Ultra Fine Grained Materials

    SciTech Connect (OSTI)

    Koslowski, Marisol

    2015-04-15

    Understanding the mechanisms of deformation of nanocrystalline (nc) materials is critical to the design of micro and nano devices and to develop materials with superior fracture strength and wear resistance for applications in new energy technologies. In this project we focused on understanding the following plastic deformation processes described in detail in the following sections: 1. Plastic strain recovery (Section 1). 2. Effect of microstructural variability on the yield stress of nc metals (Section 2). 3. The role of partial and extended full dislocations in plastic deformation of nc metals (Section 3).

  14. Impact of oil shortage on plastic medical supplies

    SciTech Connect (OSTI)

    Clark, G.B.; Kline, B.

    1981-03-01

    There is good evidence that production of plastic medical equipment may be a minuscule fraction of the overall petrochemical industry; yet, it is not immune to serious supply shortfall in an oil shortage crisis of either economic or military nature. In support of this allegation, researchers have introduced documented evidence that the US health care industry experienced plastic supply shortfall in the form of increased lead time and cost as a direct result of the 1973-1974 embargo. The industry was fortunate in that there was some cushion effect from residual inventories and that the embargo did not last longer. As a further example, it has been shown that the British industry was not so fortunate; it experienced definite signs of medical plastic shortfall and reaction by the medical profession. The US industry, from manufacturer to consumer, lacks contingency planning in spite of lessons learned from the last embargo. Contrary to the apparent consensus of popular opinion, plan is more than a four-lettered word. More planning and implementation is required if the US health care industry is to be ready to cope with the next oil shortage crisis.

  15. Corrective Action Decision Document/Closure Report for Corrective Action Unit 567: Miscellaneous Soil Sites - Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-12-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 567: Miscellaneous Soil Sites, Nevada National Security Site, Nevada. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 567 based on the implementation of the corrective actions. The corrective actions implemented at CAU 567 were developed based on an evaluation of analytical data from the CAI, the assumed presence of COCs at specific locations, and the detailed and comparative analysis of the CAAs. The CAAs were selected on technical merit focusing on performance, reliability, feasibility, safety, and cost. The implemented corrective actions meet all requirements for the technical components evaluated. The CAAs meet all applicable federal and state regulations for closure of the site. Based on the implementation of these corrective actions, the DOE, National Nuclear Security Administration Nevada Field Office provides the following recommendations: • No further corrective actions are necessary for CAU 567. • The Nevada Division of Environmental Protection issue a Notice of Completion to the DOE, National Nuclear Security Administration Nevada Field Office for closure of CAU 567. • CAU 567 be moved from Appendix III to Appendix IV of the FFACO.

  16. Catalytic pyrolysis of plastic wastes - Towards an economically viable process

    SciTech Connect (OSTI)

    McIntosh, M.J.; Arzoumanidis, G.G.; Brockmeier, F.E.

    1996-07-01

    The ultimate goal of our project is an economically viable pyrolysis process to recover useful fuels and/or chemicals from plastics- containing wastes. This paper reports the effects of various promoted and unpromoted binary oxide catalysts on yields and compositions of liquid organic products, as measured in a small laboratory pyrolysis reactor. On the basis of these results, a commercial scale catalytic pyrolysis reactor was simulated by the Aspen software and rough costs were estimated. The results suggest that such a process has potential economic viability.

  17. Miscellaneous Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    7 5 7 12 9 6 1996-2014 Lease Condensate (million bbls) 0 0 0 0 0 0 1998-2014 Total Gas (billion cu ft) 102 62 120 92 48 42 1996-2014 Nonassociated Gas (billion cu ft) 102 62 120 89 48 42 1996-2014 Associated Gas (billion cu ft) 0 0 0 3 0 0

  18. Experimental estimation of dynamic plastic bending moments by plastic hinge models

    SciTech Connect (OSTI)

    Sogo, T.; Ujihashi, S.; Matsumoto, H.; Adachi, T.

    1995-12-31

    In the present paper, the experimental estimation of dynamic plastic bending moments for metallic materials is investigated. The three-point bending, test under impact and static loads is applied to aluminum alloy (JIS A6063S) and mild steel (JIS SS400). It is confirmed that tile dynamic bending deformations in three-point bending test can be modeled as a plastic hinge, tile experimental results show that the consumed energies of the specimens are proportional to the bending angles. The ratio of the consumed energy to the bending angle is approximately equal to the plastic bending moment. In the case of aluminum alloy, the dynamic plastic bending moments for the different average bending angular velocities coincide with the static plastic bending moments. On the other hand, in the case of mild steel, the dynamic plastic bending moments are proportional to the average bending angular velocities. As a result, we confirm that the present method based on the plastic hinge model and the consumed energy is efficient for determining tile dynamic plastic bending moment.

  19. Plastics and Rubber Products (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The energy pathway-from primary sources (fuel, steam, and electricity) to facility end use-is shown ... of energy use or compare energy consumption across manufacturing subsectors. ...

  20. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, Lawrence J.

    1984-01-01

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  1. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, Lawrence J.

    1986-01-01

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  2. Electroless metal plating of plastics

    DOE Patents [OSTI]

    Krause, L.J.

    1982-09-20

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  3. Health hazard evaluation report No. HETA 80-186-1149, TLB Plastics Corporation, Marion, Indiana

    SciTech Connect (OSTI)

    Gorman, R.W.; Schleomer, J.R.

    1982-07-01

    Laboratory analysis of the cellulose acetate propionate heated to the extrusion temperature revealed that emission products included propionic acid, acetic acid, and plasticizers (suspected but not confirmed to be di(2-ethylbutyl)azelate). Recommendations are provided in the body of the full report to further minimize solvent exposure, eliminate exposure to extrusion emissions, and increase worker comfort.

  4. Fabrication method for miniature plastic gripper

    DOE Patents [OSTI]

    Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

    1998-07-21

    A miniature plastic gripper is described actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

  5. Fabrication method for miniature plastic gripper

    DOE Patents [OSTI]

    Benett, William J.; Krulevitch, Peter A.; Lee, Abraham P.; Northrup, Milton A.; Folta, James A.

    1998-01-01

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

  6. Miniature plastic gripper and fabrication method

    DOE Patents [OSTI]

    Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

    1997-03-11

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same are disclosed. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

  7. Miniature plastic gripper and fabrication method

    DOE Patents [OSTI]

    Benett, William J.; Krulevitch, Peter A.; Lee, Abraham P.; Northrup, Milton A.; Folta, James A.

    1997-01-01

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

  8. Methods for minimizing plastic flow of oil shale during in situ retorting

    DOE Patents [OSTI]

    Lewis, Arthur E.; Mallon, Richard G.

    1978-01-01

    In an in situ oil shale retorting process, plastic flow of hot rubblized oil shale is minimized by injecting carbon dioxide and water into spent shale above the retorting zone. These gases react chemically with the mineral constituents of the spent shale to form a cement-like material which binds the individual shale particles together and bonds the consolidated mass to the wall of the retort. This relieves the weight burden borne by the hot shale below the retorting zone and thereby minimizes plastic flow in the hot shale. At least a portion of the required carbon dioxide and water can be supplied by recycled product gases.

  9. Thermally stable, plastic-bonded explosives

    DOE Patents [OSTI]

    Benziger, Theodore M.

    1979-01-01

    By use of an appropriate thermoplastic rubber as the binder, the thermal stability and thermal stress characteristics of plastic-bonded explosives may be greatly improved. In particular, an HMX-based explosive composition using an oil-extended styrene-ethylenebutylene-styrene block copolymer as the binder exhibits high explosive energy and thermal stability and good handling safety and physical properties.

  10. When Function Follows Form: Plastic Solar Cells | ANSER Center |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne-Northwestern National Laboratory When Function Follows Form: Plastic Solar Cells Home > Research > ANSER Research Highlights > When Function Follows Form: Plastic Solar Cells

  11. Recyclability assessment of nano-reinforced plastic packaging

    SciTech Connect (OSTI)

    Sánchez, C.; Hortal, M.; Aliaga, C.; Devis, A.; Cloquell-Ballester, V.A.

    2014-12-15

    Highlights: • The study compares the recyclability of polymers with and without nanoparticles. • Visual appearance, material quality and mechanical properties are evaluated. • Minor variations in mechanical properties in R-PE and R-PP with nanoparticles. • Slight degradation of R-PET which affect mechanical properties. • Colour deviations in recycled PE, PP and PET in ranges higher that 0.3 units. - Abstract: Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO{sub 3}), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE–Nanoclay1, PE–CaCO{sub 3}, PP–Ag, PET–ZnO, PET–Ag, PET–Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET–Ag) could influence important properties of the recycled material, due to a

  12. Thermal depolymerization of plastics - PDU testing. Task 15. Topical report

    SciTech Connect (OSTI)

    1996-01-01

    The process development unit (PDU) test program is part of an ongoing effort at the Energy & Environmental Research Center (EERC) to expand the base of knowledge for the thermal depolymerization of plastics process. This phase of the development effort, initiated after successful completion of a bench-scale program, has concentrated on maximizing liquid yield. The purposes of the PDU program were (1) to demonstrate the process on a commercially scalable unit, (2) to produce quantities of product that could be used to initiate discussions with potential end users, and (3) to gather engineering and yield data. Experimentation consisted of eleven test points on the PDU and seven on the continuous fluid-bed reactor (CFBR) bench-scale unit. Initial PDU tests (PO35-PO39) were carried out using a base blend, which consists of 60% high-density polyethylene (HDPE), 20% polypropylene (PP), and 20% polystyrene (PS) virgin resin pellets. Test PO39 used base blend with 5% polyvinyl chloride (PVC). The base blend decomposed to produce a flowable liquid, with liquid yields ranging from 33% to 45%. The next series of tests, PO40-PO44, used a postconsumer plastics feed. This material did not decompose as readily as the base blend and formed a very waxy, heavy liquid, with {open_quotes}liquid{close_quotes} yields ranging from 18% to 63% (low liquid yields are the result of using excess air in the natural gas burner in some tests in an attempt to increase gas residence time).

  13. Science on Saturday: Plastic Electronics | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2016 - 09:30 Science on Saturday: Plastic Electronics MBG Auditorium @ PPPL Speaker: Professor Lynn Loo...

  14. Biodegradable plastics from potato waste double savings to environment

    SciTech Connect (OSTI)

    Coleman, R. )

    1990-11-01

    Plastics can be made from starchy food waste. This article describes a method by which these plastics break down into harmless chemicals when exposed to sunlight, water or bacteria. Degradable trash bags and agricultural mulch films can replace some of the millions of pounds of nondegradable plastics used each year. Researchers at Argonne National Laboratory developed that involves enzymatically converting potato waste into glucose, fermenting the glucose to lactic acid using bacteria, and then using the lactic acid to construct fully degradable plastics.

  15. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-06-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 121, Storage Tanks and Miscellaneous Sites. CAU 121 is currently listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO, 1996) and consists of three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site (NTS): CAS 12-01-01, Aboveground Storage Tank; CAS 12-01-02, Aboveground Storage Tank; and CAS 12-22-26, Drums; 2 AST's. CASs 12-01-01 and 12-01-02 are located to the west of the Area 12 Camp, and CAS 12-22-26 is located near the U-12g Tunnel, also known as G-tunnel, in Area 12 (Figure 1). The aboveground storage tanks (ASTs) present at CASs 12-01-01 and 12-01-02 will be removed and disposed of at an appropriate facility. Soil below the ASTs will be sampled to identify whether it has been impacted with chemicals or radioactivity above action levels. If impacted soil above action levels is present, the soil will be excavated and disposed of at an appropriate facility. The CAS 12-22-26 site is composed of two overlapping areas, one where drums had formerly been stored, and the other where an AST was used to dispense diesel for locomotives used at G-tunnel. This area is located above an underground radioactive materials area (URMA), and within an area that may have elevated background radioactivity because of containment breaches during nuclear tests and associated tunnel reentry operations. CAS 12-22-26 does not include the URMA or the elevated background radioactivity. An AST that had previously been used to store liquid magnesium chloride (MgCl) was properly disposed of several years ago, and releases from this tank are not an environmental concern. The diesel AST will be removed and disposed of at an appropriate facility. Soil at the former drum area and the diesel AST area will be sampled to identify whether it has been impacted by releases, from the drums or the

  16. Thin Film Transistors On Plastic Substrates

    DOE Patents [OSTI]

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  17. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    SciTech Connect (OSTI)

    Chakraborty, Pritam; Biner, Suleyman Bulent; Zhang, Yongfeng; Spencer, Benjamin Whiting

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  18. Method of coextruding plastics to form a composite sheet

    DOE Patents [OSTI]

    Tsien, Hsue C.

    1985-06-04

    This invention pertains to a method of producing a composite sheet of plastic materials by means of coextrusion. Two plastic materials are matched with respect to their melt indices. These matched plastic materials are then coextruded in a side-by-side orientation while hot and soft to form a composite sheet having a substantially uniform demarkation therebetween. The plastic materials are fed at a substantially equal extrusion velocity and generally have substantially equal viscosities. The coextruded plastics can be worked after coextrusion while they are still hot and soft.

  19. Method of cleaning plastics using super and subcritical media

    DOE Patents [OSTI]

    Sawan, S.P.; Spall, W.D.; Talhi, A.

    1998-05-26

    A method for treating a plastic, such as polyethylene or polypropylene, to remove at least a portion of at least one contaminant includes combining the plastic with a supercritical medium, such as carbon dioxide or sulfur hexafluoride, whereby at least a portion of the contaminant dissolves in the supercritical medium. Alternatively, the plastic can be combined with a suitable liquid medium, such as carbon dioxide or liquid sulfur hexafluoride. At least a portion of the medium, containing the dissolved contaminant, is separated from the plastic, thereby removing at least a portion of the contaminant from the plastic. 10 figs.

  20. Method of cleaning plastics using super and subcritical media

    DOE Patents [OSTI]

    Sawan, Samuel P.; Spall, W. Dale; Talhi, Abdelhafid

    1998-05-26

    A method for treating a plastic, such as polyethylene or polypropylene, to remove at least a portion of at least one contaminant includes combining the plastic with a supercritical medium, such as carbon dioxide or sulfur hexafluoride, whereby at least a portion of the contaminant dissolves in the supercritical medium. Alternatively, the plastic can be combined with a suitable liquid medium, such as carbon dioxide or liquid sulfur hexafluoride. At least a portion of the medium, containing the dissolved contaminant, is separated from the plastic, thereby removing at least a portion of the contaminant from the plastic.

  1. Unified creep-plasticity model for halite

    SciTech Connect (OSTI)

    Krieg, R. D.

    1980-11-01

    There are two national energy programs which are considering caverns in geological salt (NaCl) as a storage repository. One is the disposal of nuclear wastes and the other is the storage of oil. Both short-time and long-time structural deformations and stresses must be predictable for these applications. At 300K, the nominal initial temperature for both applications, the salt is at 0.28 of the melting temperature and exhibits a significant time dependent behavior. A constitutive model has been developed which describes the behavior observed in an extensive set of triaxial creep tests. Analysis of these tests showed that a single deformation mechanism seems to be operative over the stress and temperature range of interest so that the secondary creep data can be represented by a power of the stress over the entire test range. This simple behavior allowed a new unified creep-plasticity model to be applied with some confidence. The resulting model recognizes no inherent difference between plastic and creep strains yet models the total inelastic strain reasonably well including primary and secondary creep and reverse loadings. A multiaxial formulation is applied with a back stress. A Bauschinger effect is exhibited as a consequence and is present regardless of the time scale over which the loading is applied. The model would be interpreted as kinematic hardening in the sense of classical plasticity. Comparisons are made between test data and model behavior.

  2. Heavy oil/plastic co-processing - subtask 4.1. Topical report, February 1, 1994--February 1, 1995

    SciTech Connect (OSTI)

    1998-12-31

    Western Research Institute (WRI) is developing a low-temperature thermal decomposition process to alleviate the problems associated with disposal of waste plastics and at the same time generate a product stream in the gasoline boiling range for use in the refining and petrochemical industries. The technology being developed by WRI is significantly different from conventional thermal decomposition processes used to recover distillates from waste plastics. The key to this difference is the application of a decomposition initiator concept that allows operation of the process at temperatures below those used in other thermal decomposition processes. The WRI technology utilizes the decomposition initiator to enhance thermal decomposition of waste plastics in the presence of a low-value heavy oil at temperatures below those normally used for thermal decomposition. Operation of the process at lower temperatures produces higher yields of distillate product and lower yields of gaseous and char products than conventional processes. The activity of the initiator was identified in earlier research studying the thermal decomposition of polymers. This activity was observed to result in a decrease in the temperature required to thermally decompose plastics in the presence of a heavy oil. These early experiments indicated that the initiator was native to the plastics matrix, but the identity and possible mode of action were not determined. This study was undertaken to identify the active initiator in the plastics matrix and define its activity. The experiments performed in this study were conducted in a batch-type reactor. The particular elements of the activity that were addressed included: (1) the kinetics of the reaction, (2) the effects of diluting the plastics with the heavy oil, and (3) the effects of using different types of heavy oil.

  3. Pion Production Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pion Production Data Release This page gives the updated results for three different MINERvA Publications: Cross sections for neutrino and antineutrino induced pion production on hydrocarbon in the few-GeV region using MINERvA hep-ex/1606.07127 and Single neutral pion production by charged current antinu interactions on plastic scintillator at Enu ∼ 4 GeV hep-ex/1503.02107 and Charged Pion Production from CH in a Neutrino Beam hep-ex/1406.6415 Data Ancillary files for this result are available

  4. Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers Breakout Session 1-D: The Pitch Renewable, Non-Toxic and Cost Competitive Solvents and Plasticizers Len Rand, Chief Executive Officer, Chairman, xF Technologies rand_bioenergy_2015.pdf (874.76 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Development of Industrially Viable Battery Electrode Coatings

  5. An Analytical Elastic Plastic Contact Model with Strain Hardening...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: An Analytical Elastic Plastic Contact Model with Strain Hardening and Frictional Effects for Normal and Oblique Impacts. Citation Details In-Document Search Title:...

  6. Economical Remediation of Plastic Waste into Advanced Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lithium-air batteries. An environmentally-friendly, solvent-less process to convert plastics into carbon nanotubes Process is affordable and scalable PDF icon wastetoadvanced...

  7. Harbec Plastics: 750kW CHP Application- Project Profile

    Broader source: Energy.gov [DOE]

    This case study profiles Harbec Plastics' 750kW combined heat and power (CHP) project in Ontario, New York to improve plant-wide energy performance.

  8. Wave Propagation and Dispersion in Elasto-Plastic Microstructured...

    Office of Scientific and Technical Information (OSTI)

    in Elasto-Plastic Microstructured Materials Remi Dingreville, Joshua Robbins and ... What about the subsurface fields (2D vs. 3D)? (S) Sonia National Laboratories 419 Where ...

  9. Wave Propagation and Dispersion in Elasto-Plastic Microstructured...

    Office of Scientific and Technical Information (OSTI)

    Title: Wave Propagation and Dispersion in Elasto-Plastic Microstructured Materials. Abstract not provided. Authors: Dingreville, Remi Philippe Michel ; Robbins, Joshua ; Voth, ...

  10. COLLOQUIUM: Are Mushrooms the Next Polymers?: Growing Plastic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COLLOQUIUM: Are Mushrooms the Next Polymers?: Growing Plastic Replacements with Fungi Mr. Gavin McIntyre Ecovative Design LLC Colloquium Committee: The Princeton Plasma...

  11. Scaling behavior and complexity of plastic deformation for a...

    Office of Scientific and Technical Information (OSTI)

    Scaling behavior and complexity of plastic deformation for a bulk metallic glass at cryogenic temperatures Citation Details In-Document Search Title: Scaling behavior and ...

  12. Stories of Discovery & Innovation: Just One Word-Plastics | U...

    Office of Science (SC) Website

    Just One Word-Plastics Energy Frontier Research Centers (EFRCs) EFRCs Home Centers ... part by the Center for Interface Science: Solar Electric Materials (CISSEM), an EFRC led ...

  13. Localized Plasticity in the Streamlined Genomes of Vinyl Chloride...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Localized Plasticity in the Streamlined Genomes of Vinyl Chloride Respiring Dehalococcoides Citation ... Here we report the first, to our knowledge, complete genome ...

  14. Alan J. Heeger, Conductive Polymers, and Plastic Solar Cells

    Office of Scientific and Technical Information (OSTI)

    Alan J. Heeger, Conductive Polymers, and Plastic Solar Cells Resources with Additional Information Patents Videos After receiving 'his physics Ph.D. at the University of...

  15. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect (OSTI)

    Alex Savitski; Connie Reichert; John Coffey

    2005-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  16. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect (OSTI)

    Connie Reichert

    2005-09-01

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  17. Maximizing the life cycle of plastics. Final report

    SciTech Connect (OSTI)

    Hawkins, W. L.

    1980-02-01

    The Plastics Research Institute has conducted a coordinated research program designed to extend the useful life of plastics. Since feedstock for practically all synthetic plastics is derived from fossil fuel, every effort should be made to obtain the maximum useful life from these materials. Eventually, plastic scrap may be used as a fuel supplement, but this disposal route should be followed only after the scrap is no longer reusable in its polymeric form. The extent to which plastic scrap will be recovered and reused will be affected by the economic situation as well as the available supply of fossil fuel. The Institute's program was conducted at five major universities. Dedicated faculty members were assembled into a research team and met frequently with members of the Institute's Board of Trustees to review progress of the program. The research was conducted by graduate students in partial fulfillment of degree requirements. Summaries are presented of the following research projects: Improved Stabilization; Separation of Mixed Plastic Scrap; Compatibilizing Agents for Mixed Plastic Scrap; Controlled Degradation of Plastic Scrap; and Determination of Compatibility.

  18. Plastic Bags to Batteries: A Green Chemistry Solution

    ScienceCinema (OSTI)

    None

    2013-04-19

    Plastic bags are the scourge of roadsides, parking lots and landfills. But chemistry comes to the rescue! At Argonne National Laboratory, Vilas Pol has found a way to not only recycle plastic bags--but make them into valuable batteries for cell phones and laptops.

  19. Micrographic detection of plastic deformation in nickel base alloys

    DOE Patents [OSTI]

    Steeves, Arthur F. (Schenectady, NY); Bibb, Albert E. (Clifton Park, NY)

    1984-01-01

    A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm.sup.2 and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.

  20. METHOD OF USING AND MANUFACTURING PLASTIC EQUIVALENT TO ORGANIC MATERIALS

    DOE Patents [OSTI]

    Shonka, F.R.; Rose, J.E.; Failla, G.

    1961-10-24

    Compositions of matter that have the radiation response of animal muscle tissue, bone, or air were prepared. These compositions are composed of specific proportions of three or more of the following constituents: polyethylene plastic, polyamide plastic, oil furnace black, silica, and calcium fluoride. (AEC)

  1. Micrographic detection of plastic deformation in nickel-base alloys

    DOE Patents [OSTI]

    Steeves, A.F.; Bibb, A.E.

    1980-09-20

    A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm/sup 2/ and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.

  2. Measurement of large strains in ropes using plastic optical fibers

    DOE Patents [OSTI]

    Williams, Jerry Gene; Smith, David Barton; Muhs, Jeffrey David

    2006-02-14

    A method for the direct measurement of large strains in ropes in situ using a plastic optical fiber, for example, perfluorocarbon or polymethyl methacrylate and Optical Time-Domain Reflectometer or other light time-of-flight measurement instrumentation. Protective sheaths and guides are incorporated to protect the plastic optical fiber. In one embodiment, a small rope is braided around the plastic optical fiber to impose lateral compressive forces to restrain the plastic optical fiber from slipping and thus experience the same strain as the rope. Methods are described for making reflective interfaces along the length of the plastic optical fiber and to provide the capability to measure strain within discrete segments of the rope. Interpretation of the data allows one to calculate the accumulated strain at any point in time and to determine if the rope has experienced local damage.

  3. Residual stresses and plastic deformation in GTA-welded steel

    SciTech Connect (OSTI)

    Brand, P.C. ); Keijser, T.H. de; Ouden, G. den )

    1993-03-01

    Residual stresses and plastic deformation in single pass GTA welded low-carbon steel were studied by means of x-ray diffraction in combination with optical microscopy and hardness measurements. The residual stresses and the amount of plastic deformation (microstrain) were obtained from x-ray diffraction line positions and line broading. Since the plates were polished before welding, it was possible to observe in the optical microscope two types of Lueders bands. During heating curved Lueders bands and during cooling straight Lueders bands perpendicular to the weld are formed. The curved Lueders bands extend over a larger distance from the weld than the straight Lueders bands. The amount of plastic deformation as obtained from the x-ray diffraction analysis is in agreement with these observations. An explanation is offered for the stresses measured in combination with plastic deformations observed. It is concluded that in the present experiments plastic deformation is the main cause of the residual stresses.

  4. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics

    SciTech Connect (OSTI)

    Gug, JeongIn Cacciola, David Sobkowicz, Margaret J.

    2015-01-15

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in

  5. Geek-Up[10.15.2010]: Growing Nanoparticles, Developing Plastic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15.2010: Growing Nanoparticles, Developing Plastic from Bacteria and Wireless Water Heaters Geek-Up10.15.2010: Growing Nanoparticles, Developing Plastic from Bacteria and ...

  6. Process for the recovery and separation of plastics

    DOE Patents [OSTI]

    Jody, Bassam J.; Daniels, Edward J.; Pomykala Jr., Joseph A.

    2003-07-29

    A method of separating a portion of acrylonitrile-butadiene-styrene (ABS) from a mixture containing ABS and for separating a portion of ABS and polycarbonate (PC) from a mixture of plastics containing ABS and PC is disclosed. The method includes shredding and/or granulating the mixture of plastics containing ABS and PC to provide a selected particle size; sequentially dispersing the shredded mixture of plastics in a series aqueous solutions having different specific gravities and separating the floating fraction until the desired separation is obtained. Surface tension and pH are also variable to be controlled.

  7. Criterion for thermo-plastic shear instability

    SciTech Connect (OSTI)

    Burns, T.J.; Grady, D.E.; Costin, L.S.

    1981-01-01

    Dynamic torsional Kolsky (split-Hopkinson) bar experiments on thin-walled tubes of 1018 cold-rolled and 1020 hot-rolled steel are modeled using a deformation plasticity theory which incorporates a specific constitutive model for the shear stress in terms of strain, strain-rate, and temperature into a system of differential equations. The exact time-dependent homogeneous flow solution of the equations is found and used to derive a special case of a generally accepted instability criterion. For given material parameters, this criterion predicts a critical strain at which a homogeneous deformation can bifuricate into a localized deformation, i.e., a shear band, at constant strain-rate. Stability diagrams of strain-rate vs. strain can be constructed for the two types of steel using the criterion. The Kolsky bar data is shown to be consistent with this analysis, and an explanation for the instability criterion is given which assumes that small perturbations on the non-steady homogeneous flow are isentropic to first order.

  8. High reliability plastic packaging for microelectronics

    SciTech Connect (OSTI)

    Sweet, J.N.; Peterson, D.W.; Hsia, A.H.; Tuck, M.

    1997-07-01

    Goal was Assembly Test Chips (ATCs) which could be used for evaluating plastic encapsulation technologies. Circuits were demonstrated for measuring Au-Al wirebond and Al metal corrosion failure rates during accelerated temperature and humidity testing. The test circuits on the ATC02.5 chip were very sensitive to extrinsic or processing induced failure rates. Accelerated aging experiments were conducted with unpassivated triple track Al structures on the ATC02.6 chip; the unpassivated tracks were found to be very sensitive to particulate contamination. Some modifications to existing circuitry were suggested. The piezoresistive stress sensing circuitry designed for the ATC04 test chip was found suitable for determining the change in the state of mechanical stress at the die when both initial and final measurements were made near room temperature (RT). Attempt to measure thermal stress between RT and a typical polymer glass transition temperature failed because of excessive die resistor- substrate leakage currents at the high temperature end; suitable circuitry changes were developed to overcome this problem. One temperature and humidity experiment was conducted with Sandia developed static radom access memory parts to examine non-corrosion CMOS failures; this objective was not achieved, but corrosion failure at the metal to Si contacts on the die surface could be detected. This 2-year effort resulted in new designs for test circuits which could be used on an advanced ATC for reliability assessment in Defense Programs electronics development projects.

  9. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 575: Area 15 Miscellaneous Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-12-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 575, Area 15 Miscellaneous Sites, identified in the Federal Facility Agreement and Consent Order (FFACO). CAU 575 comprises the following four corrective action sites (CASs) located in Area 15 of the Nevada National Security Site: • 15-19-02, Waste Burial Pit • 15-30-01, Surface Features at Borehole Sites • 15-64-01, Decontamination Area • 15-99-03, Aggregate Plant This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 575 using the SAFER process. Additional information will be obtained by conducting a field investigation to document and verify the adequacy of existing information, to affirm the predicted corrective action decisions, and to provide sufficient data to implement the corrective actions. This will be presented in a closure report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.

  10. Experimental assessment of unvalidated assumptions in classical plasticity theory.

    SciTech Connect (OSTI)

    Brannon, Rebecca Moss; Burghardt, Jeffrey A.; Bauer, Stephen J.; Bronowski, David R.

    2009-01-01

    This report investigates the validity of several key assumptions in classical plasticity theory regarding material response to changes in the loading direction. Three metals, two rock types, and one ceramic were subjected to non-standard loading directions, and the resulting strain response increments were displayed in Gudehus diagrams to illustrate the approximation error of classical plasticity theories. A rigorous mathematical framework for fitting classical theories to the data, thus quantifying the error, is provided. Further data analysis techniques are presented that allow testing for the effect of changes in loading direction without having to use a new sample and for inferring the yield normal and flow directions without having to measure the yield surface. Though the data are inconclusive, there is indication that classical, incrementally linear, plasticity theory may be inadequate over a certain range of loading directions. This range of loading directions also coincides with loading directions that are known to produce a physically inadmissible instability for any nonassociative plasticity model.

  11. A nonlocal, ordinary, state-based plasticity model for peridynamics...

    Office of Scientific and Technical Information (OSTI)

    An implicit time integration algorithm for a non-local, state-based, peridynamics plasticity model is developed. The flow rule was proposed in 3 without an integration strategy ...

  12. A nonlocal, ordinary, state-based plasticity model for peridynamics...

    Office of Scientific and Technical Information (OSTI)

    Just as in local theories of plasticity (LTP), state variables are required. It is shown that the resulting constitutive model does not violate the 2nd law of thermodynamics. The ...

  13. Shape-Shifting Plastic (Other) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Subject: 36 MATERIALS SCIENCE SHAPE-SHIFTING; PLASTIC; TEMPERATURE. Word Cloud More Like This Multimedia File size NAView Multimedia View Multimedia DOI: Run time 00:00:34 Select ...

  14. Elastic-plastic analysis of the SS-3 tensile specimen

    SciTech Connect (OSTI)

    Majumdar, S.

    1998-09-01

    Tensile tests of most irradiated specimens of vanadium alloys are conducted using the miniature SS-3 specimen which is not ASTM approved. Detailed elastic-plastic finite element analysis of the specimen was conducted to show that, as long as the ultimate to yield strength ratio is less than or equal to 1.25 (which is satisfied by many irradiated materials), the stress-plastic strain curve obtained by using such a specimen is representative of the true material behavior.

  15. Economical Remediation of Plastic Waste into Advanced Materials with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coatings | Argonne National Laboratory Economical Remediation of Plastic Waste into Advanced Materials with Coatings Technology available for licensing: An autogenic pyrolysis process to convert plastic waste into high-value carbon nanotubes (50- to 100-nm outside diameter) and perfectly round carbon spheres (2- to 12-μm outside diameter). The tubes can be used as anode material in advanced batteries such as lithium-ion and eventually, lithium-air batteries. An environmentally-friendly,

  16. Elastic-plastic response charts for nuclear overpressures. Final report

    SciTech Connect (OSTI)

    Guice, L.K.; Kiger, S.A.

    1984-06-01

    The single-degree-of-freedom equation of motion for an elastic-plastic system with forcing functions that are representative of nuclear weapon simulations is nondimensionalized and solved. Numerical solutions are calculated by the Newmark Beta method, and response charts incorporating nondimensionalized structural and loading parameters for the Speicher-Brode nuclear pressure history description are provided. A computer code is presented for solving the elastic-plastic problem for Speicher-Brode overpressure as well as triangular-shaped overpressures.

  17. Deformation fields near a steady fatigue crack with anisotropic plasticity

    SciTech Connect (OSTI)

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth and the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.

  18. Treatment studies of paint stripping waste from plastic media blasting

    SciTech Connect (OSTI)

    Spence, R.D.

    1995-12-31

    Blasting with plastic media is used to strip paint and decontaminate surfaces. For disposal the plastic media is pulverized into a plastic dust. About 10 wt % of the waste from plastic media blasting is pulverized paint, which makes the waste a characteristically hazardous waste because of the presence of barium, cadmium, chromium and lead in the paint pigments. Four separate treatments of this hazardous waste were studied: (1) density separation to remove the paint, (2) self-encapsulation of the mix of plastic and paint dust into plastic pellets, (3) solidification/stabilization (S/S) into cementitious waste forms, and (4) low-temperature ashing to destroy the large mass of nonhazardous polymer. Two types of plast blasting wastes were studied: a urea formaldehyde thermoset polymer and an acrylic thermoplastic polymer (polymethylmethacrylate). Toxicity Characteristic Leach Procedure (TCLP) extraction concentrations for the treated and untreated wastes are listed. Density separation failed to adequately separate the paint with an aqueous carbonate solution. Self-encapsulation reduced the waste volume by about 50%, but did not meet TCLP criteria. Cementitious solidification gave the lowest TCLP concentrations, but increased the waste volume by about 50%. Low-temperature ashing at 600 C resulted in a mass decrease of 93 to 98% for the wastes; the metals remaining in the ash could be stabilized with cementitious solidification and still result in a volume decrease of 75 to 95 volume percent.

  19. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  20. Dislocation dynamics simulations of plasticity at small scales

    SciTech Connect (OSTI)

    Zhou, Caizhi

    2010-12-15

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.

  1. Miscellaneous Waste-Form FEPs

    SciTech Connect (OSTI)

    A. Schenker

    2000-12-08

    The US DOE must provide a reasonable assurance that the performance objectives for the Yucca Mountain Project (YMP) potential radioactive-waste repository can be achieved for a 10,000-year post-closure period. The guidance that mandates this direction is under the provisions of 10 CFR Part 63 and the US Department of Energy's ''Revised Interim Guidance Pending Issuance of New US Nuclear Regulatory Commission (NRC) Regulations (Revision 01, July 22, 1999), for Yucca Mountain, Nevada'' (Dyer 1999 and herein referred to as DOE's Interim Guidance). This assurance must be demonstrated in the form of a performance assessment that: (1) identifies the features, events, and processes (FEPs) that might affect the performance of the potential geologic repository; (2) examines the effects of such FEPs on the performance of the potential geologic repository; (3) estimates the expected annual dose to a specified receptor group; and (4) provides the technical basis for inclusion or exclusion of specific FEPs.

  2. Nuclear Operations Application to Environmental Restoration at Corrective Action Unit 547, Miscellaneous Contaminated Waste Sites, at the Nevada National Security Site

    SciTech Connect (OSTI)

    Kevin Cabble , Mark Krauss and Patrick Matthews

    2011-03-03

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office has responsibility for environmental restoration at the Nevada National Security Site (formerly the Nevada Test Site). This includes remediation at locations where past testing activities have resulted in the release of plutonium to the environment. One of the current remediation efforts involves a site where an underground subcritical nuclear safety test was conducted in 1964. The underground test was vented through a steel pipe to the surface in a closed system where gas samples were obtained. The piping downstream of the gas-sampling apparatus was routed belowground to a location where it was allowed to vent into an existing radioactively contaminated borehole. The length of the pipe above the ground surface is approximately 200 meters. This pipe remained in place until remediation efforts began in 2007, at which time internal plutonium contamination was discovered. Following this discovery, an assessment was conducted to determine the quantity of plutonium present in the pipe. This site has been identified as Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites. The quantity of plutonium identified at CAU 547 exceeded the Hazard Category 3 threshold but was below the Hazard Category 2 threshold specified in DOE Standard DOE-STD-1027-92. This CAU, therefore, was initially categorized as a Hazard Category 3 environmental restoration site. A contaminated facility or site that is initially categorized as Hazard Category 3, however, may be downgraded to below Hazard Category 3 if it can be demonstrated through further analysis that the form of the material and the energy available for release support reducing the hazard category. This is an important consideration when performing hazard categorization of environmental restoration sites because energy sources available for release of material are generally fewer at an environmental restoration site

  3. DATA SHARING REPORT CHARACTERIZATION OF POPULATION 7: PERSONAL PROTECTIVE EQUIPMENT, DRY ACTIVE WASTE, AND MISCELLANEOUS DEBRIS, SURVEILLANCE AND MAINTENANCE PROJECT OAK RIDGE NATIONAL LABORATORY OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    Harpenau, Evan M

    2013-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.

  4. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    DOE Patents [OSTI]

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  5. Plastic instabilities in statically and dynamically loaded spherical vessels

    SciTech Connect (OSTI)

    Duffey, Thomas A; Rodriguez, Edward A

    2010-01-01

    Significant changes were made in design limits for pressurized vessels in the 2007 version of the ASME Code (Section VIII, Div. 3) and 2008 and 2009 Addenda. There is now a local damage-mechanics based strain-exhaustion limit as well as the well-known global plastic collapse limit. Moreover, Code Case 2564 (Section VIII, Div. 3) has recently been approved to address impulsively loaded vessels. It is the purpose of this paper to investigate the plastic collapse limit as it applies to dynamically loaded spherical vessels. Plastic instabilities that could potentially develop in spherical shells under symmetric loading conditions are examined for a variety of plastic constitutive relations. First, a literature survey of both static and dynamic instabilities associated with spherical shells is presented. Then, a general plastic instability condition for spherical shells subjected to displacement controlled and impulsive loading is given. This instability condition is evaluated for six plastic and visco-plastic constitutive relations. The role of strain-rate sensitivity on the instability point is investigated. Calculations for statically and dynamically loaded spherical shells are presented, illustrating the formation of instabilities as well as the role of imperfections. Conclusions of this work are that there are two fundamental types of instabilities associated with failure of spherical shells. In the case of impulsively loaded vessels, where the pulse duration is short compared to the fundamental period of the structure, one instability type is found not to occur in the absence of static internal pressure. Moreover, it is found that the specific role of strain-rate sensitivity on the instability strain depends on the form of the constitutive relation assumed.

  6. Antimony leaching in plastics from waste electrical and electronic equipment (WEEE) with various acids and gamma irradiation

    SciTech Connect (OSTI)

    Tostar, Sandra, E-mail: sandra.tostar@chalmers.se [Department of Industrial Materials Recycling, Chalmers University of Technology, 412 96 Gothenburg (Sweden); Stenvall, Erik; Boldizar, Antal [Department of Material and Manufacturing Technology, Chalmers University of Technology, 412 96 Gothenburg (Sweden); Foreman, Mark R. St. J. [Department of Industrial Materials Recycling, Chalmers University of Technology, 412 96 Gothenburg (Sweden)

    2013-06-15

    Highlights: We have proposed a method to recover antimony from electronic plastics. The most efficient acid solution was sodium hydrogen tartrate in dimethyl sulfoxide. Gamma irradiation did not influence the antimony leaching ability. - Abstract: There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are tested for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5 M) dissolved in either dimethyl sulfoxide or water (at ca. 23 C and heated to ca. 105 C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed.

  7. Injection Molding of Plastics from Agricultural Materials

    SciTech Connect (OSTI)

    Bhattacharya, M.; Ruan, R.

    2001-02-22

    The objective of this research was to conduct a systematic study to relate injection molding parameters to properties of blends of starch and synthetic polymer. From this study, we wished to develop a thorough understanding of the injection molding process and gain significant insight into designing molds and aiding in developing products cheaply and efficiently.

  8. Continuous Severe Plastic Deformation Processing of Aluminum Alloys

    SciTech Connect (OSTI)

    Raghavan Srinivasan; Prabir K. Chaudhury; Balakrishna Cherukuri; Qingyou Han; David Swenson; Percy Gros

    2006-06-30

    Metals with grain sizes smaller than 1-micrometer have received much attention in the past decade. These materials have been classified as ultra fine grain (UFG) materials (grain sizes in the range of 100 to 1000-nm) and nano-materials (grain size <100-nm) depending on the grain size. This report addresses the production of bulk UFG metals through the use of severe plastic deformation processing, and their subsequent use as stock material for further thermomechanical processing, such as forging. A number of severe plastic deformation (SPD) methods for producing bulk UFG metals have been developed since the early 1990s. The most promising of these processes for producing large size stock that is suitable for forging is the equal channel angular extrusion or pressing (ECAE/P) process. This process involves introducing large shear strain in the work-piece by pushing it through a die that consists of two channels with the same cross-sectional shape that meet at an angle to each other. Since the cross-sections of the two channels are the same, the extruded product can be re-inserted into the entrance channel and pushed again through the die. Repeated extrusion through the ECAE/P die accumulates sufficient strain to breakdown the microstructure and produce ultra fine grain size. It is well known that metals with very fine grain sizes (< 10-micrometer) have higher strain rate sensitivity and greater elongation to failure at elevated temperature, exhibiting superplastic behavior. However, this superplastic behavior is usually manifest at high temperature (> half the melting temperature on the absolute scale) and very low strain rates (< 0.0001/s). UFG metals have been shown to exhibit superplastic characteristics at lower temperature and higher strain rates, making this phenomenon more practical for manufacturing. This enables part unitization and forging more complex and net shape parts. Laboratory studies have shown that this is particularly true for UFG metals produced

  9. Development of catalyst free carbon nanotubes from coal and waste plastics

    SciTech Connect (OSTI)

    Dosodia, A.; Lal, C.; Singh, B.P.; Mathur, R.B.; Sharma, D.K.

    2009-07-01

    DC-Arc technique has been used to synthesize carbon nanotubes from super clean coal, chemically cleaned coal, original coal and waste plastics instead of using high purity graphite in the presence of metal catalysts. The results obtained are compared in terms of yield, purity and type of carbon nanotubes produced from different types of raw material used. In the present study different types of raw materials have been prepared i.e. chemically cleaned coal and super clean coal, and the carbon nanotubes have been synthesized by DC Arc discharge method. Taking in account the present need of utilizing coal as a cheaper raw material for bulk production of carbon nanotubes and utilization of waste plastics (which itself is a potential environmental threat) for production of such an advance material the present work was undertaken. Since the process does not involve presence of any kind of metal catalyst, it avoids the cost intensive process of removal of these metal particles. The residual coal obtained after refining has major fuel potential and can be utilized for various purposes.

  10. Plastic deformation and sintering of alumina under high pressure

    SciTech Connect (OSTI)

    Liu, Fangming; Liu, Pingping; Wang, Haikuo; Xu, Chao; Yin, Shuai; Yin, Wenwen; Li, Yong; He, Duanwei

    2013-12-21

    Plastic deformation of alumina (Al{sub 2}O{sub 3}) under high pressure was investigated by observing the shape changes of spherical particles, and the near fully dense transparent bulks were prepared at around 5.5 GPa and 900 °C. Through analyzing the deformation features, densities, and residual micro-strain of the Al{sub 2}O{sub 3} compacts prepared under high pressures and temperatures (2.0–5.5 GPa and 600–1200 °C), the effects of plastic deformation on the sintering behavior of alumina have been demonstrated. Under compression, the microscopic deviatoric stress caused by grain-to-grain contact could initiate the plastic deformation of individual particles, eliminate pores of the polycrystalline samples, and enhance the local atomic diffusion at the grain boundaries, thus produced transparent alumina bulks.

  11. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

  12. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  13. Gradient Plasticity Model and its Implementation into MARMOT

    SciTech Connect (OSTI)

    Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.; Sun, Xin

    2013-08-01

    The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in this model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.

  14. DATA SHARING REPORT CHARACTERIZATION OF THE SURVEILLANCE AND MAINTENANCE PROJECT MISCELLANEOUS PROCESS INVENTORY WASTE ITEMS OAK RIDGE NATIONAL LABORATORY, Oak Ridge TN

    SciTech Connect (OSTI)

    Weaver, Phyllis C

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, to provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a sampling and analysis campaign to target certain items associated with URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing for final disposal. This waste was generated during processing, surveillance, and maintenance activities associated with the facilities identified in the process knowledge (PK) provided in Appendix A. A list of items for sampling and analysis were generated from a subset of materials identified in the WHP populations (POPs) 4, 5, 6, 7, and 8, plus a small number of items not explicitly addressed by the WHP. Specifically, UCOR S&M project personnel identified 62 miscellaneous waste items that would require some level of evaluation to identify the appropriate pathway for disposal. These items are highly diverse, relative to origin; composition; physical description; contamination level; data requirements; and the presumed treatment, storage, and disposal facility (TSDF). Because of this diversity, ORAU developed a structured approach to address item-specific data requirements necessary for acceptance in a presumed TSDF that includes the Environmental Management Waste Management Facility (EMWMF)—using the approved Waste Lot (WL) 108.1 profile—the Y-12 Sanitary Landfill (SLF) if appropriate; Energy

  15. Plastic Bags Might Kickstart the Carbon Capture Industry | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Plastic Bags Might Kickstart the Carbon Capture Industry Plastic Bags Might Kickstart the Carbon Capture Industry May 6, 2016 - 5:46pm Addthis This GIF shows how CO2 emissions vary across the United States. Each bar represents a 50x50 kilometer grid. Bar height is proportional to total CO2 emissions and bar color represents the type of CO2 emissions. Red bars represent proportionately more CO2 emissions from electricity generation (coal, gas and oil). Green bars represent CO2

  16. Application of Raman spectroscopy to identification and sorting of post-consumer plastics for recycling

    DOE Patents [OSTI]

    Sommer, Edward J.; Rich, John T.

    2001-01-01

    A high accuracy rapid system for sorting a plurality of waste products by polymer type. The invention involves the application of Raman spectroscopy and complex identification techniques to identify and sort post-consumer plastics for recycling. The invention reads information unique to the molecular structure of the materials to be sorted to identify their chemical compositions and uses rapid high volume sorting techniques to sort them into product streams at commercially viable throughput rates. The system employs a laser diode (20) for irradiating the material sample (10), a spectrograph (50) is used to determine the Raman spectrum of the material sample (10) and a microprocessor based controller (70) is employed to identify the polymer type of the material sample (10).

  17. Crystallization and doping of amorphous silicon on low temperature plastic

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Truher, J.B.; Weiner, K.H.; Sigmon, T.W.

    1994-09-13

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate is disclosed. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900 C), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180 C for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180 C) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide. 5 figs.

  18. Crystallization and doping of amorphous silicon on low temperature plastic

    DOE Patents [OSTI]

    Kaschmitter, James L.; Truher, Joel B.; Weiner, Kurt H.; Sigmon, Thomas W.

    1994-01-01

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900.degree. C.), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180.degree. C. for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180.degree. C.) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide.

  19. Plasticity of the Quinone-binding Site of the Complex II Homolog...

    Office of Scientific and Technical Information (OSTI)

    Plasticity of the Quinone-binding Site of the Complex II Homolog Quinol:Fumarate Reductase Citation Details In-Document Search Title: Plasticity of the Quinone-binding Site of the...

  20. Health hazard evaluation report HETA 79-034-1440, Intex Plastics, Corinth, Mississippi

    SciTech Connect (OSTI)

    Salisbury, S.

    1984-03-01

    In response to a request from the president of the United Rubber Workers, Local 759, an investigation was begun into possible hazardous working conditions at the Hatco Plastics Division, Currently known as Intex Plastics, Corinth, Mississippi. The request indicated that several production and maintenance employees at that site had been disabled due to chemical poisoining and related illnesses. A medical survey was begun at the facility in March of 1979. Fifty employees participated by completing a questionnaire. A high prevalence of eye, nose, and throat irritation was found along with shortness of breath, cough, and skin rash among workers assigned to the Calender, Color, and Laminating Departments. Air sampling was performed in several departments. Except for methyl-ethyl-ketone (MEK), the levels of substances detected were quite low. The department with the highest exposure to airborne contaminants included the Print Service with 36 to 299 parts per million (ppm) MEK, laminating at 74 to 105ppm MEK, printing at 15 to 113ppm MEK, color at 15 to 24ppm MEK, premix at 0.3 to 6.8mg/cu m total dust, and calender at 0.1 to 0.6mg/cu m total dust.

  1. A Research Needs Assessment for waste plastics recycling: Volume 2, Project report. Final report

    SciTech Connect (OSTI)

    1994-12-01

    This second volume contains detailed information on a number of specific topics relevant to the recovery/recycling of plastics.

  2. Plastic solar panel structure and method for making the same

    SciTech Connect (OSTI)

    Mcalister, R.E.

    1981-06-02

    A method and apparatus are disclosed for extruding a radiant energy heat exchanging panel structure having a multiplicity of parallel passages extending longitudinally therethrough defined by a multiplicity of longitudinally extending integrally interconnected exterior and interior thin wall sections, in which the temperature of the plastic material moving longitudinally away from the extrusion outlet is reduced by flowing fluid into said passages and on the exterior sides thereof, by contacting the exterior sides with pairs of cooled rollers, by rolling a liquid medium upon the operative exterior side, and by flowing a liquid spray thereon to provide a radiation absorbing coating on the exterior side of the panel structure opposite from the operative side thereof. Certain of the flowing fluids are reactant fluids which chemically react with the hot plastic material or condense thereupon to form molecular coatings thereon enhancing the properties thereof as a panel structure.

  3. Sandia/Stanford Unified Creep Plasticity Damage Model for ANSYS

    Energy Science and Technology Software Center (OSTI)

    2006-09-03

    A unified creep plasticity (UCP) model was developed, based upon the time-dependent and time-independent deformation properties of the 95.5Sn-3.9Ag-0.6Cu (wt.%) soldier that were measured at Sandia. Then, a damage parameter, D, was added to the equation to develop the unified creep plasticity damage (UCPD) model. The parameter, D, was parameterized, using data obtained at Sandia from isothermal fatigue experiments on a double-lap shear test. The softwae was validated against a BGA solder joint exposed tomore » thermal cycling. The UCPD model was put into the ANSYS finite element as a subroutine. So, the softwae is the subroutine for ANSYS 8.1.« less

  4. Final LDRD report : advanced plastic scintillators for neutron detection.

    SciTech Connect (OSTI)

    Vance, Andrew L.; Mascarenhas, Nicholas; O'Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  5. Task 3 - pyrolysis of plastic waste. Semi-annual report, April 1--September 30, 1996

    SciTech Connect (OSTI)

    1997-05-01

    This report briefly describes progress in the development of a thermal decomposition process for volume reduction of spent ion-exchange resin. During the reporting period, two series of tests were performed. The mixed waste plastics test investigated the effectiveness of the process in concentrating radionuclide surrogates in a solids residual while yielding a surrogate-free condensate product. Preliminary results indicated the occurrence of solids carryover. The ion-exchange resin tests resulted in a cesium concentration in the unfiltered condensate of about 4 to 20 micrograms/gram, indicating that fine particulate material was passing through the reactor cyclone. Future work includes the evaluation of an auger reactor in place of the fluidized bed reactor to address the problem of reactor carryover. 2 figs., 7 tabs.

  6. Compacting Plastic-Bonded Explosive Molding Powders to Dense Solids

    SciTech Connect (OSTI)

    B. Olinger

    2005-04-15

    Dense solid high explosives are made by compacting plastic-bonded explosive molding powders with high pressures and temperatures for extended periods of time. The density is influenced by manufacturing processes of the powders, compaction temperature, the magnitude of compaction pressure, pressure duration, and number of repeated applications of pressure. The internal density variation of compacted explosives depends on method of compaction and the material being compacted.

  7. Multi-scale Modeling of Plasticity in Tantalum.

    SciTech Connect (OSTI)

    Lim, Hojun; Battaile, Corbett Chandler.; Carroll, Jay; Buchheit, Thomas E.; Boyce, Brad; Weinberger, Christopher

    2015-12-01

    In this report, we present a multi-scale computational model to simulate plastic deformation of tantalum and validating experiments. In atomistic/ dislocation level, dislocation kink- pair theory is used to formulate temperature and strain rate dependent constitutive equations. The kink-pair theory is calibrated to available data from single crystal experiments to produce accurate and convenient constitutive laws. The model is then implemented into a BCC crystal plasticity finite element method (CP-FEM) model to predict temperature and strain rate dependent yield stresses of single and polycrystalline tantalum and compared with existing experimental data from the literature. Furthermore, classical continuum constitutive models describing temperature and strain rate dependent flow behaviors are fit to the yield stresses obtained from the CP-FEM polycrystal predictions. The model is then used to conduct hydro- dynamic simulations of Taylor cylinder impact test and compared with experiments. In order to validate the proposed tantalum CP-FEM model with experiments, we introduce a method for quantitative comparison of CP-FEM models with various experimental techniques. To mitigate the effects of unknown subsurface microstructure, tantalum tensile specimens with a pseudo-two-dimensional grain structure and grain sizes on the order of millimeters are used. A technique combining an electron back scatter diffraction (EBSD) and high resolution digital image correlation (HR-DIC) is used to measure the texture and sub-grain strain fields upon uniaxial tensile loading at various applied strains. Deformed specimens are also analyzed with optical profilometry measurements to obtain out-of- plane strain fields. These high resolution measurements are directly compared with large-scale CP-FEM predictions. This computational method directly links fundamental dislocation physics to plastic deformations in the grain-scale and to the engineering-scale applications. Furthermore, direct

  8. Alan J. Heeger, Conductive Polymers, and Plastic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan J. Heeger, Conductive Polymers, and Plastic Solar Cells Resources with Additional Information * Patents * Videos After receiving 'his physics Ph.D. at the University of California at Berkeley in 1961, [Alan J.] Heeger would spend the next 20 years teaching the subject at the University of Pennsylvania - while also designing and then launching one of the nation's premiere scientific think tanks: the Laboratory for Research on the Structure of Matter. Alan J. Heeger Courtesy of Randy Lamb,

  9. Alan MacDiarmid, Conductive Polymers, and Plastic Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan MacDiarmid, Conductive Polymers, and Plastic Batteries Resources with Additional Information * Patents Alan MacDiarmid ©Alan MacDiarmid/ University of Pennsylvania Photo by Felice Macera Until 1987, the billions of batteries that had been marketed in myriad sizes and shapes all had one thing in common. To make electricity, they depended exclusively upon chemical reactions involving metal components of the battery. But today a revolutionary new type of battery is available commercially. It

  10. Pre-release plastic packaging of MEMS and IMEMS devices

    SciTech Connect (OSTI)

    Peterson, Kenneth A.; Conley, William R.

    2002-01-01

    A method is disclosed for pre-release plastic packaging of MEMS and IMEMS devices. The method can include encapsulating the MEMS device in a transfer molded plastic package. Next, a perforation can be made in the package to provide access to the MEMS elements. The non-ablative material removal process can include wet etching, dry etching, mechanical machining, water jet cutting, and ultrasonic machining, or any combination thereof. Finally, the MEMS elements can be released by using either a wet etching or dry plasma etching process. The MEMS elements can be protected with a parylene protective coating. After releasing the MEMS elements, an anti-stiction coating can be applied. The perforating step can be applied to both sides of the device or package. A cover lid can be attached to the face of the package after releasing any MEMS elements. The cover lid can include a window for providing optical access. The method can be applied to any plastic packaged microelectronic device that requires access to the environment, including chemical, pressure, or temperature-sensitive microsensors; CCD chips, photocells, laser diodes, VCSEL's, and UV-EPROMS. The present method places the high-risk packaging steps ahead of the release of the fragile portions of the device. It also provides protection for the die in shipment between the molding house and the house that will release the MEMS elements and subsequently treat the surfaces.

  11. Productivity and injectivity of horizontal wells. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; OIL WELLS; DAMAGE; WELL DRILLING; WELL COMPLETION; EQUATIONS; PROGRESS REPORT This report...

  12. Recovery and separation of high-value plastics from discarded household appliances

    SciTech Connect (OSTI)

    Karvelas, D.E.; Jody, B.J.; Poykala, J.A. Jr.; Daniels, E.J.; Arman, B. |

    1996-03-01

    Argonne National Laboratory is conducting research to develop a cost- effective and environmentally acceptable process for the separation of high-value plastics from discarded household appliances. The process under development has separated individual high purity (greater than 99.5%) acrylonitrile-butadiene-styrene (ABS) and high- impact polystyrene (HIPS) from commingled plastics generated by appliance-shredding and metal-recovery operations. The process consists of size-reduction steps for the commingled plastics, followed by a series of gravity-separation techniques to separate plastic materials of different densities. Individual plastics of similar densities, such as ABS and HIPS, are further separated by using a chemical solution. By controlling the surface tension, the density, and the temperature of the chemical solution we are able to selectively float/separate plastics that have different surface energies. This separation technique has proven to be highly effective in recovering high-purity plastics materials from discarded household appliances. A conceptual design of a continuous process to recover high-value plastics from discarded appliances is also discussed. In addition to plastics separation research, Argonne National Laboratory is conducting research to develop cost-effective techniques for improving the mechanical properties of plastics recovered from appliances.

  13. Polymer considerations in rechargeable lithium ion plastic batteries

    SciTech Connect (OSTI)

    Gozdz, A.S.; Tarascon, J.M.; Schmutz, C.N.; Warren, P.C.; Gebizlioglu, O.S.; Shokoohi, F.

    1995-07-01

    A series of polymers have been investigated in order to determine their suitability as ionically conductive binders of the active electrode materials and as hybrid electrolyte matrices in plastic lithium ion rechargeable batteries. Hybrid electrolyte films used in this study have been prepared by solvent casting using a 1:1 w/w mixture of the matrix polymer with 1 M LiPF{sub 6} in EC/PC. Based on electrochemical stability, mechanical strength, liquid electrolyte retention, and softening temperature, random copolymers of vinylidene fluoride containing ca. 12 mole % of hexafluoropropylene have been selected for this application.

  14. Co-design for Embedded ViscoPlasticity

    Energy Science and Technology Software Center (OSTI)

    2014-06-03

    CoEVP (Co-design for Embedded ViscoPlasticity) is an implementation of a Lagrangian hydrodynamic model utilizing an embedded viscoplasticity model to provide constitutive parameters. The purpose of CoEVP is to provide a highly simplified "proxy" materials science application for use by the Exascale Materials in Extreme Environments (ExMatEx) codesign center to improve the ability of exascale computers being developed over the next several years to address materials science applications of importance to DOE and the Laboratory.

  15. Peculiarities of plastic deformation nucleation in copper under nanoindentation

    SciTech Connect (OSTI)

    Kryzhevich, Dmitrij S. Korchuganov, Aleksandr V.; Zolnikov, Konstantin P.; Psakhie, Sergey G.

    2015-10-27

    The computer simulation results on the atomic structure of the copper crystallite and its behavior in nanoindentation demonstrate the key role of local structural transformations in nucleation of plasticity. The generation of local structural transformations can be considered as an elementary event during the formation of higher scale defects, including partial dislocations and stacking faults. The cause for local structural transformations, both direct fcc-hcp and reverse hcp-fcc, is an abrupt local increase in atomic volume. A characteristic feature is that the values of local volume jumps in direct and reverse structural transformations are comparable with that in melting and lie in the range 5–7%.

  16. Science on Saturday: Plastic Electronics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 6, 2016, 9:30am Science On Saturday MBG Auditorium, PPPL Science on Saturday: Plastic Electronics Professor Lynn Loo Princeton University Abstract: PDF icon 05 Loo.pdf Science_on_Saturday06Feb2016_LLoo Contact Information Coordinator(s): Ms. Deedee Ortiz-Arias dortiz@pppl.gov Host(s): Dr. Andrew Zwicker azwicker@pppl.gov PPPL Entrance Procedures Visitor Information, Directions, Security at PPPL As a federal facility, the Princeton Plasma Physics Laboratory is operating under heightened

  17. A First Step towards Large-Scale Plants to Plastics Engineering |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A First Step towards Large-Scale Plants to Plastics Engineering A First Step towards Large-Scale Plants to Plastics Engineering November 9, 2010 - 1:56pm Addthis Brookhaven National Laboratory researches making plastics from plants. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? By optimizing the accumulation of particular fatty acids, a Brookhaven team of scientists are developing a method suitable for

  18. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy- Efficient Wood-Plastic Composites

    SciTech Connect (OSTI)

    Thompson, David N.; Emerick, Robert W.; England, Alfred B.; Flanders, James P.; Loge, Frank J.; Wiedeman, Katherine A.; Wolcott, Michael P.

    2010-03-31

    In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. We have demonstrated that biopolymers (polyhydroxyalkanoates, PHA) can be successfully produced from wood pulping waste streams and that viable wood fiber reinforced thermoplastic composite products can be produced from these materials. The results show that microbial polyester (PHB in this study) can be extruded together with wastewater-derived cell mass and wood flour into deck products having performance properties comparable to existing commercial HDPE/WF composite products. This study has thus proven the underlying concept that the microbial polyesters produced from waste effluents can be used to make cost-effective and energy-efficient wood-plastic composites. The cost of purified microbial polyesters is about 5-20 times that of HDPE depending on the cost of crude oil, due to high purification (40%), carbon substrate (40%) and sterilized fermentation (20%) costs for the PHB. Hence, the ability to produce competitive and functional composites with unpurified PHA-biomass mixtures from waste carbon sources in unsterile systems—without cell debris removal—is a significant step forward in producing competitive value-added structural composites from forest products residuals using a biorefinery approach. As demonstrated in the energy and waste analysis for the project, significant energy savings and waste reductions can also be realized using this approach. We recommend that the next step for development of

  19. Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers.

  20. Multiaxial plasticity and fatigue life prediction in coiled tubing

    SciTech Connect (OSTI)

    Tipton, S.M.

    1996-12-31

    Coiled tubing is being used increasingly in the oil well drilling and servicing industry. Continuous steel tubing of structural dimensions (up to 89 mm or 3.5 in. in diameter) is wound onto a large-diameter reel for repeated deployment into and out of a well bore. The bending strain range associated with each wrap-unwrap cycle can exceed 3% with lives well below 100 cycles. During constant internal pressure fatigue testing, tubing has been observed to grow in diameter by as much as 30%. This paper describes an analytical model to predict the fatigue behavior of coiled tubing subjected to variable pressure service conditions. The approach utilizes standard low-cycle fatigue data but requires additional experimental results from constant pressure fatigue testing. The algorithm is based on estimates of biaxial ratcheting from an incremental plasticity model using a hybrid associated flow rule, a modified kinematic hardening rule with multiple von Mises yield surfaces, and a specialized limit surface concept. An empirical damage parameter was formulated based on constant pressure fatigue data using mean and fluctuating von Mises equivalent strain components occurring throughout the life of a section of tubing. This parameters is used with the Palmgren-Miner definition of cumulative damage to track damage that is accumulating nonlinearly under constant or variable pressure histories. Modifications to standard incremental plasticity components and implementation assumptions used to apply the model are presented and discussed. The predictive capability of the model is demonstrated relative to data generated under constant and variable pressure histories.

  1. A robust return-map algorithm for general multisurface plasticity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adhikary, Deepak P.; Jayasundara, Chandana T.; Podgorney, Robert K.; Wilkins, Andy H.

    2016-06-16

    Three new contributions to the field of multisurface plasticity are presented for general situations with an arbitrary number of nonlinear yield surfaces with hardening or softening. A method for handling linearly dependent flow directions is described. A residual that can be used in a line search is defined. An algorithm that has been implemented and comprehensively tested is discussed in detail. Examples are presented to illustrate the computational cost of various components of the algorithm. The overall result is that a single Newton-Raphson iteration of the algorithm costs between 1.5 and 2 times that of an elastic calculation. Examples alsomore » illustrate the successful convergence of the algorithm in complicated situations. For example, without using the new contributions presented here, the algorithm fails to converge for approximately 50% of the trial stresses for a common geomechanical model of sedementary rocks, while the current algorithm results in complete success. Since it involves no approximations, the algorithm is used to quantify the accuracy of an efficient, pragmatic, but approximate, algorithm used for sedimentary-rock plasticity in a commercial software package. Furthermore, the main weakness of the algorithm is identified as the difficulty of correctly choosing the set of initially active constraints in the general setting.« less

  2. Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams.

    SciTech Connect (OSTI)

    Neilsen, Michael K.; Lu, Wei-Yang; Scherzinger, William M.; Hinnerichs, Terry D.; Lo, Chi S.

    2015-06-01

    Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.

  3. PROCESS FOR PRODUCTION OF URANIUM

    DOE Patents [OSTI]

    Crawford, J.W.C.

    1959-09-29

    A process is described for the production of uranium by the autothermic reduction of an anhydrous uranium halide with an alkaline earth metal, preferably magnesium One feature is the initial reduction step which is brought about by locally bringing to reaction temperature a portion of a mixture of the reactants in an open reaction vessel having in contact with the mixture a lining of substantial thickness composed of calcium fluoride. The lining is prepared by coating the interior surface with a plastic mixture of calcium fluoride and water and subsequently heating the coating in situ until at last the exposed surface is substantially anhydrous.

  4. Thick adherent dielectric films on plastic substrates and method for depositing same

    DOE Patents [OSTI]

    Wickboldt, Paul; Ellingboe, Albert R.; Theiss, Steven D.; Smith, Patrick M.

    2002-01-01

    Thick adherent dielectric films deposited on plastic substrates for use as a thermal barrier layer to protect the plastic substrates from high temperatures which, for example, occur during laser annealing of layers subsequently deposited on the dielectric films. It is desirable that the barrier layer has properties including: a thickness of 1 .mu.m or greater, adheres to a plastic substrate, does not lift-off when cycled in temperature, has few or no cracks and does not crack when subjected to bending, resistant to lift-off when submersed in fluids, electrically insulating and preferably transparent. The thick barrier layer may be composed, for example, of a variety of dielectrics and certain metal oxides, and may be deposited on a variety of plastic substrates by various known deposition techniques. The key to the method of forming the thick barrier layer on the plastic substrate is maintaining the substrate cool during deposition of the barrier layer. Cooling of the substrate maybe accomplished by the use of a cooling chuck on which the plastic substrate is positioned, and by directing cooling gas, such as He, Ar and N.sub.2, between the plastic substrate and the cooling chucks. Thick adherent dielectric films up to about 5 .mu.m have been deposited on plastic substrates which include the above-referenced properties, and which enable the plastic substrates to withstand laser processing temperatures applied to materials deposited on the dielectric films.

  5. Arrangement for connecting a fiber-reinforced plastic pipe to a stainless steel flange

    DOE Patents [OSTI]

    Allais, Arnaud; Hoffmann, Ernst

    2008-02-05

    Arrangement for connecting a fiber-reinforced plastic pipe (18) to a stainless steel flange (12, 16), in which the end of the fiber-reinforced plastic pipe (18) is accommodated in a ring-shaped groove (12a, 16a) in the flange (12, 16), the groove conforming to the dimensions of the fiber-reinforced plastic pipe (18), where the gap remaining between the end of the fiber-reinforced plastic pipe (18) and the ring-shaped groove (12a, 16a) is filled with a sealant (19).

  6. Bioconversion of waste biomass to useful products

    DOE Patents [OSTI]

    Grady, James L.; Chen, Guang Jiong

    1998-01-01

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

  7. Bioconversion of waste biomass to useful products

    DOE Patents [OSTI]

    Grady, J.L.; Chen, G.J.

    1998-10-13

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

  8. Charged pion production in $\

    SciTech Connect (OSTI)

    Eberly, B.; et al.

    2015-11-23

    Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energy from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.

  9. Charged pion production in $$\

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eberly, B.; et al.

    2015-11-23

    Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energymore » from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.« less

  10. Active Well Counting Using New PSD Plastic Detectors

    SciTech Connect (OSTI)

    Hausladen, Paul; Newby, Jason; McElroy, Robert Dennis

    2015-11-01

    This report presents results and analysis from a series of proof-of-concept measurements to assess the suitability of segmented detectors constructed from Eljen EJ-299-34 PSD-plastic scintillator with pulse-shape discrimination capability for the purposes of quantifying uranium via active neutron coincidence counting. Present quantification of bulk uranium materials for international safeguards and domestic materials control and accounting relies on active neutron coincidence counting systems, such as the Active Well Coincidence Counter (AWCC) and the Uranium Neutron Coincidence Collar (UNCL), that use moderated He-3 proportional counters along with necessarily low-intensity 241Am(Li) neutron sources. Scintillation-based fast-neutron detectors are a potentially superior technology to the existing AWCC and UNCL designs due to their spectroscopic capability and their inherently short neutron coincidence times that largely eliminate random coincidences and enable interrogation by stronger sources. One of the past impediments to the investigation and adoption of scintillation counters for the purpose of quantifying bulk uranium was the commercial availability of scintillators having the necessary neutron-gamma pulse-shape discrimination properties only as flammable liquids. Recently, Eljen EJ-299-34 PSD-plastic scintillator became commercially available. The present work is the first assessment of an array of PSD-plastic detectors for the purposes of quantifying bulk uranium. The detector panel used in the present work was originally built as the focal plane for a fast-neutron imager, but it was repurposed for the present investigation by construction of a stand to support the inner well of an AWCC immediately in front of the detector panel. The detector panel and data acquisition of this system are particularly well suited for performing active-well fast-neutron counting of LEU and HEU samples because the active detector volume is solid, the 241Am(Li) interrogating

  11. Use of zinc and copper (I) salts to reduce sulfur and nitrogen impurities during the pyrolysis of plastic and rubber waste to hydrocarbons

    DOE Patents [OSTI]

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1984-01-01

    An improvement in a process for the pyrolytic conversion of rubber and plastic waste to hydrocarbon products which results in reduced levels of nitrogen and sulfur impurities in these products. The improvement comprises pyrolyzing the waste in the presence of at least about 1 weight percent of salts, based on the weight of the waste, preferably chloride or carbonate salts, of zinc or copper (I). This invention was made under contract with or subcontract thereunder of the Department of Energy Contract #DE-AC02-78-ER10049.

  12. Electrical separation of plastics coming from special waste

    SciTech Connect (OSTI)

    Gente, Vincenzo; La Marca, Floriana; Lucci, Federica; Massacci, Paolo

    2003-07-01

    Minimisation of waste to landfilling is recognised as a priority in waste management by European rules. In order to achieve this goal, developing suitable technologies for waste recycling is therefore of great importance. To achieve this aim the technologies utilised for mineral processing can be taken into consideration to develop recycling systems. In particular comminution and separation processes can be adopted to recover valuable materials from composite waste. In this work the possibility of recycling pharmaceutical blister packaging has been investigated. A suitable comminution process has been applied in order to obtain the liberation of the plastic and aluminium components. Experiments of electrical separation have been carried out in order to point out the influence of the process parameters on the selections of the different materials and to set up the optimum operating conditions.

  13. Linking strain anisotropy and plasticity in copper metallization

    SciTech Connect (OSTI)

    Murray, Conal E. Jordan-Sweet, Jean; Priyadarshini, Deepika; Nguyen, Son

    2015-05-04

    The elastic anisotropy of copper leads to significant variation in the x-ray elastic constants (XEC), which link diffraction-based strain measurements to stress. An accurate depiction of the mechanical response in copper thin films requires a determination of an appropriate grain interaction model that lies between Voigt and Reuss limits. It is shown that the associated XEC weighting fraction, x*, between these limits provides a metric by which strain anisotropy can be quantified. Experimental values of x*, as determined by a linear regression scheme of diffraction data collected from multiple reflections, reveal the degree of strain anisotropy and its dependence on plastic deformation induced during in-situ and ex-situ thermal treatments.

  14. Spin-orbit torque induced spike-timing dependent plasticity

    SciTech Connect (OSTI)

    Sengupta, Abhronil Al Azim, Zubair; Fong, Xuanyao; Roy, Kaushik

    2015-03-02

    Nanoelectronic devices that mimic the functionality of synapses are a crucial requirement for performing cortical simulations of the brain. In this work, we propose a ferromagnet-heavy metal heterostructure that employs spin-orbit torque to implement spike-timing dependent plasticity. The proposed device offers the advantage of decoupled spike transmission and programming current paths, thereby leading to reliable operation during online learning. Possible arrangement of such devices in a crosspoint architecture can pave the way for ultra-dense neural networks. Simulation studies indicate that the device has the potential of achieving pico-Joule level energy consumption (maximum 2 pJ per synaptic event) which is comparable to the energy consumption for synaptic events in biological synapses.

  15. Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential

    SciTech Connect (OSTI)

    Briassoulis, D.; Hiskakis, M.; Babou, E.; Antiohos, S.K.; Papadi, C.

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Definition of parameters characterising agricultural plastic waste (APW) quality. Black-Right-Pointing-Pointer Analysis of samples to determine APW quality for recycling or energy recovery. Black-Right-Pointing-Pointer Majority of APW samples from various countries have very good quality for recycling. Black-Right-Pointing-Pointer Upper limit of 50% w/w soil contamination in APW acceptable for energy recovery. Black-Right-Pointing-Pointer Chlorine and heavy metals content in APW below the lowest limit for energy recovery. - Abstract: A holistic environmentally sound waste management scheme that transforms agricultural plastic waste (APW) streams into labelled guaranteed quality commodities freely traded in open market has been developed by the European research project LabelAgriWaste. The APW quality is defined by the APW material requirements, translated to technical specifications, for recycling or energy recovery. The present work investigates the characteristics of the APW quality and the key factors affecting it from the introduction of the virgin product to the market to the APW stream reaching the disposer. Samples of APW from different countries were traced from their application to the field through their storage phase and transportation to the final destination. The test results showed that the majority of APW retained their mechanical properties after their use preserving a 'very good quality' for recycling in terms of degradation. The degree of soil contamination concerning the APW recycling and energy recovery potential fluctuates depending on the agricultural plastic category and application. The chlorine and heavy metal content of the tested APW materials was much lower than the maximum acceptable limits for their potential use in cement industries.

  16. Effect of coal filler on the properties of soy protein plastics

    SciTech Connect (OSTI)

    Wang, G.H.; Zhou, A.N.; Hu, M.B. [Xian University of Science & Technology, Xian (China)

    2006-11-15

    The influence of ultrafine coal filler (UFC) content on tensile properties, water absorption, and biodegradability of soy protein plastics were investigated. The addition of UFC in the soy protein plastics, with different content of glycerol as a plasticizer, was at different ratio varying from 10:0 to 6:4. Blend sheets of the soy protein composites were prepared by the compression molding processing. The results show that, with 23.08 wt % glycerol, the tensile strength and elongation at break for the soy protein sheet with coal filler (range from 5 to 30 parts) can be enhanced as compared with nonfilled soy protein plastics. Water resistance of the soy protein plastics improves with the increase in UFC content. The derivative thermogravimetry (DTG) curves indicate a double-stage degradation process for defatted soy flour (SPF), while three-stage degradation process for soy plastics and the soy protein composites. FT-IR, XPS, and SEM were applied to study the interfacial interaction between coal macromolecules and soy protein molecules in UFC filled soy protein plastics. The results demonstrated that there is strong interfacial interaction in the soy protein plastics caused by the compression molding processing.

  17. Indentation-Derived Elastic Modulus of Multilayer Thin Films. Effect of Unloading Induced Plasticity.

    SciTech Connect (OSTI)

    Jamison, Ryan Dale; Shen, Yu-Lin

    2015-08-13

    Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. Additionally, the indentation-derived modulus of a monolayer material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. Furthermore, it is found that several cycles are required to minimize unloading-induced plasticity.

  18. Indentation-derived elastic modulus of multilayer thin films: Effect of unloading induced plasticity

    SciTech Connect (OSTI)

    Jamison, Ryan Dale; Shen, Yu -Lin

    2015-08-13

    Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. Additionally, the indentation-derived modulus of a monolayer material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. Furthermore, it is found that several cycles are required to minimize unloading-induced plasticity.

  19. Pyrolysis of polystyrene - polyphenylene oxide to recover styrene and useful products

    DOE Patents [OSTI]

    Evans, Robert J.; Chum, Helena L.

    1995-01-01

    A process of using fast pyrolysis in a carrier gas to convert a polystyrene and polyphenylene oxide plastic waste to a given polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components therein comprising: selecting a first temperature range to cause pyrolysis of given polystyrene and polyphenylene oxide and its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and a support and treating the feed stream with the catalyst to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of high value monomeric constituent of styrene from polystyrene and polyphenylene oxide in the first temperature range; differentially heating the feed stream at a heat rate within the first temperature range to provide differential pyrolysis for selective recovery of the high value monomeric constituent of styrene from polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components; separating the high value monomer constituent of styrene; selecting a second higher temperature range to cause pyrolysis to a different derived high value product of polyphenylene oxide from the plastic waste and differentially heating the feed stream at the higher temperature range to cause pyrolysis of the plastic into a polyphenylene oxide derived product; and separating the different derived high value polyphenylene oxide product.

  20. Solution of elastic-plastic stress analysis problems by the P-version of the finite element method

    SciTech Connect (OSTI)

    Szabo, B.A.; Holzer, S.M.; Actis, R.L.

    1995-12-31

    The solution of small-strain elastic-plastic stress analysis problems by the p-version of the finite element method is discussed. The formulation is based on the deformation theory of plasticity and the displacement method. Practical realization of controlling discretization errors for elastic-plastic problems is the main focus of the paper. Numerical examples, which include comparisons between the deformation and incremental theories of plasticity under tight control of discretization errors, are presented.

  1. Studies on the Properties of Plasticizer and Lithium Salt on PMMA-based Solid Polymer Electrolytes

    SciTech Connect (OSTI)

    Chew, K. W.; Tan, C. G.; Osman, Z.

    2010-03-11

    The effects of plasticizer and lithium salt on PMMA-based solid polymer electrolyte have been investigated. In current project, three system samples consisted of pure poly(methyl methacrylate (PMMA) system, plasticized poly(methyl methacrylate)(PMMA-EC) system and the LiCF{sub 3}SO{sub 3} salted-poly(methyl methacrylate) containing a fixed amount of plasticizer ([PMMA-EC]-LiCF{sub 3}SO{sub 3}) system have been prepared using solution casting technique. The conductivities of the films from each system are characterized by impedance spectroscopy and infrared spectrum. With the addition of plasticizer, results show improvement on the ionic conductivity value where the value of 6.25x10{sup -10} Scm{sup -1} is obtained. This may be due to the nature of plasticizer that softens the polymer and hence enhanced the ionic transportation across the polymer. The room temperature conductivity for the highest conducting sample in the ([PMMA-EC]-LiCF{sub 3}SO{sub 3}) system is 1.36x10{sup -5} Scm{sup -1}. Fourier Transform Infrared Spectroscopy (FTIR) indicates complexation between the polymer and the plasticizer and the polymer, the plasticizer and the salts, and the result of XRD further supports the observation.

  2. The appearance of plasticity on the blocks surfaces in geological media

    SciTech Connect (OSTI)

    Sibiryakov, Boris P.

    2014-11-14

    In present the elasticity and plasticity are absolutely different models of solids, which are not relate to each other. The experimental observations show, that the plasticity arrives and localizes on the surfaces of structures, which contain solid samples. The transition in special state, where a small part of solid volume is in plastic state, while the main part of volume is in elastic state not be describe by classical continuum Cauchy and Poisson model. This classical model requires two alternative states. Either is elastic state in the all volume or plastic one for all elementary volume too. However, the structured model of space gives us a possibility to describe this complicate state. In this paper shown that the sliding surfaces divided to each other by distances equal to the average sizes of microstructures, in the contrary of classical plasticity, where they have not characteristic distance. The energy of plastic transition is very small, because the main part of volume is elastic body. This description means the smooth transition from elasticity to plasticity in vicinity of sliding surfaces.

  3. Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline

    SciTech Connect (OSTI)

    Kass, Michael D; Pawel, Steven J; Theiss, Timothy J; Janke, Christopher James

    2012-07-01

    In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more

  4. Just One Word-Plastics | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Just One Word-Plastics News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 09.24.12 Just One Word-Plastics A "universal" plastic coating could lead to lower cost, more flexible electronic devices. Print

  5. Sequential pyrolysis of plastic to recover polystyrene, HCl and terephthalic acid

    DOE Patents [OSTI]

    Evans, R.J.; Chum, H.L.

    1995-11-07

    A process is described for pyrolyzing plastic waste feed streams containing polyvinyl chloride, polyethylene terephthalate, polystyrene and polyethylene to recover polystyrene, HCl and terephthalic acid comprising: heating the plastic waste feed stream to a first temperature; adding an acid or base catalyst on an oxide or carbonate support; heating the plastic waste feed stream to pyrolyze polyethylene terephthalate and polyvinyl chloride; separating terephthalic acid or HCl; heating to a second temperature to pyrolyze polystyrene; separating styrene; heating the waste feed stream to a third temperature to pyrolyze polyethylene; and separating hydrocarbons. 83 figs.

  6. Sequential pyrolysis of plastic to recover polystyrene HCL and terephthalic acid

    DOE Patents [OSTI]

    Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

    1995-01-01

    A process of pyrolyzing plastic waste feed streams containing polyvinyl chloride, polyethylene terephthalate, polystyrene and polyethylene to recover polystyrene HCl and terephthalic acid comprising: heating the plastic waste feed stream to a first temperature; adding an acid or base catalyst on an oxide or carbonate support; heating the plastic waste feed stream to pyrolyze polyethylene terephthalate and polyvinyl chloride; separating terephthalic acid or HCl; heating to a second temperature to pyrolyze polystyrene; separating styrene; heating the waste feed stream to a third temperature to pyrolyze polyethylene; and separating hydrocarbons.

  7. Stories of Discovery & Innovation: Just One Word-Plastics | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) Just One Word-Plastics Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 09.24.12 Stories of Discovery & Innovation: Just One Word-Plastics Print Text Size: A A A Subscribe FeedbackShare Page A "universal" plastic coating could lead to lower cost, more flexible electronic devices. This work, featured in the Office of

  8. On the formulation of a crystal plasticity model.

    SciTech Connect (OSTI)

    Marin, Esteban B.

    2006-08-01

    This report presents the formulation of a crystal elasto-viscoplastic model and the corresponding integration scheme. The model is suitable to represent the isothermal, anisotropic, large deformation of polycrystalline metals. The formulation is an extension of a rigid viscoplastic model to account for elasticity effects, and incorporates a number of changes with respect to a previous formulation [Marin & Dawson, 1998]. This extension is formally derived using the well-known multiplicative decomposition of the deformation gradient into an elastic and plastic components, where the elastic part is additionally decomposed into the elastic stretch V{sup e} and the proper orthogonal R{sup e} tensors. The constitutive equations are written in the intermediate, stress-free configuration obtained by unloading the deformed crystal through the elastic stretch V{sup e-}. The model is framed in a thermodynamic setting, and developed initially for large elastic strains. The crystal equations are then specialized to the case of small elastic strains, an assumption typically valid for metals. The developed integration scheme is implicit and proceeds by separating the spherical and deviatoric crystal responses. An ''approximate'' algorithmic material moduli is also derived for applications in implicit numerical codes. The model equations and their integration procedure have been implemented in both a material point simulator and a commercial finite element code. Both implementations are validated by solving a number of examples involving aggregates of either face centered cubic (FCC) or hexagonal close-packed (HCP) crystals subjected to different loading paths.

  9. Single crystal plasticity by modeling dislocation density rate behavior

    SciTech Connect (OSTI)

    Hansen, Benjamin L; Bronkhorst, Curt; Beyerlein, Irene; Cerreta, E. K.; Dennis-Koller, Darcie

    2010-12-23

    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

  10. Miscellaneous Coalbed Methane Proved Reserves, Reserves Changes...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    41 17 16 17 13 23 2005-2013 Adjustments 1 2 3 -2 13 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 24 2 0 1 0 2009-2013 Sales 0 0 1 0 0 2009-2013 Acquisitions...

  11. Miscellaneous Archived Soil & Groundwater Master Reports | Department...

    Office of Environmental Management (EM)

    (40.82 KB) Falls City (42.13 KB) Gasbuggy (33.09 KB) Gnome-Coach (35.73 KB) Grand Junction Project Office (38.89 KB) Grand Junction (35.92 KB) Green River (38.54 KB) ...

  12. Commercial Miscellaneous Electric Loads Report: Energy Consumption...

    Broader source: Energy.gov (indexed) [DOE]

    loads account for an increasingly large portion of commercial electricity consumption. ... This includes analysis of their unit energy consumption and annual electricity consumption ...

  13. Miscellaneous Coalbed Methane Proved Reserves, Reserves Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    17 16 17 13 23 11 2005-2014 Adjustments 1 2 3 -2 13 -12 2009-2014 Revision Increases 0 0 0 0 0 1 2009-2014 Revision Decreases 24 2 0 1 0 0 2009-2014 Sales 0 0 1 0 0 0 2009-2014 ...

  14. A probe for in situ, remote, detection of defects in buried plastic natural gas pipelines

    SciTech Connect (OSTI)

    Mathur, M.P.; Spenik, J.L.; Condon, C.M.; Monazam, E.R.; Fincham, W.L.

    2007-12-18

    Several techniques are available to determine the integrity of in situ metal pipeline but very little is available in the literature to determine the integrity of plastic pipelines. Since the decade of the 1970s much of the newly installed gas distribution and transmission lines in the United States are fabricated from polyethylene or other plastic. A probe has been developed to determine the in situ integrity of plastic natural gas pipelines that can be installed on a traversing mechanism (pig) to detect abnormalities in the walls of the plastic natural gas pipeline from the interior. This probe has its own internal power source and can be deployed into existing natural gas supply lines. Utilizing the capacitance parameter, the probe inspects the pipe for flaws and records the data internally which can be retrieved later for analysis.

  15. OSTIblog Articles in the plastic Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    systems that use an elastic shape-memory metal alloy as a refrigerant, and the discovery of shape-... Related Topics: fiber, In the OSTI Collections, plastic, Shape-Memory, solar

  16. Improving Energy Efficiency at U.S. Plastics Manufacturing Plants Summary Report and Case Studies

    SciTech Connect (OSTI)

    none,

    2010-06-25

    Industrial Technologies Programs BestPractices report based on a comprehensive plant assessment project with ITPs Industrial Assessment Center, The Society of the Plastics Industry, Inc., and several of its member companies.

  17. Compendium of information on identification and testing of materials for plastic solar thermal collectors

    SciTech Connect (OSTI)

    McGinniss, V.D.; Sliemers, F.A.; Landstrom, D.K.; Talbert, S.G.

    1980-07-31

    This report is intended to organize and summarize prior and current literature concerning the weathering, aging, durability, degradation, and testing methodologies as applied to materials for plastic solar thermal collectors. Topics covered include (1) rate of aging of polymeric materials; (2) environmental factors affecting performance; (3) evaluation and prediction of service life; (4) measurement of physical and chemical properties; (5) discussion of evaluation techniques and specific instrumentation; (6) degradation reactions and mechanisms; (7) weathering of specific polymeric materials; and (8) exposure testing methodology. Major emphasis has been placed on defining the current state of the art in plastics degradation and on identifying information that can be utilized in applying appropriate and effective aging tests for use in projecting service life of plastic solar thermal collectors. This information will also be of value where polymeric components are utilized in the construction of conventional solar collectors or any application where plastic degradation and weathering are prime factors in material selection.

  18. A non-linear elastic constitutive framework for replicating plastic deformation in solids.

    SciTech Connect (OSTI)

    Roberts, Scott Alan; Schunk, Peter Randall

    2014-02-01

    Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a material's stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.

  19. SU-E-T-423: TrueBeam Small Field Dosimetry Using Commercial Plastic...

    Office of Scientific and Technical Information (OSTI)

    radiosurgery and body radiation therapy. Sam Beddar would like to disclose a NIHNCI SBIR Phase II grant (2R44CA153824-02A1) with Standard Imaging, Title: "Water-Equivalent Plastic...

  20. Low-cost solar collectors using thin-film plastics absorbers and glazings

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1980-01-01

    The design, fabrication, performance, cost, and marketing of flat plate solar collectors using plastic absorbers and glazings are described. Manufacturing cost breakdowns are given for single-glazed and double-glazed collectors. (WHK)

  1. Changes in mobility of plastic crystal ethanol during its transformation into the monoclinic crystal state

    SciTech Connect (OSTI)

    Sanz, Alejandro Nogales, Aurora; Ezquerra, Tiberio A.; Puente-Orench, Inés; Instituto de Ciencia de Materiales de Aragón, ICMA-CSIC, Pedro Cerbuna 12, 50009 Zaragoza ; Jiménez-Ruiz, Mónica

    2014-02-07

    Transformation of deuterated ethanol from the plastic crystal phase into the monoclinic one is investigated by means of a singular setup combining simultaneously dielectric spectroscopy with neutron diffraction. We postulate that a dynamic transition from plastic crystal to supercooled liquid-like configuration through a deep reorganization of the hydrogen-bonding network must take place as a previous step of the crystallization process. Once these precursor regions are formed, subsequent crystalline nucleation and growth develop with time.

  2. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOE Patents [OSTI]

    Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickboldt, Paul

    2003-11-04

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  3. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOE Patents [OSTI]

    Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickbold, Paul

    2006-09-26

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  4. Elastic-plastic deformations of a beam with the SD-effect

    SciTech Connect (OSTI)

    Pavilaynen, Galina V.

    2015-03-10

    The results for the bending of a cantilever beam with the SD-effect under a concentrated load are discussed. To solve this problem, the standard Bernoulli-Euler hypotheses for beams and the Ilyushin model of perfect plasticity are used. The problem is solved analytically for structural steel A40X. The SD-effect for elastic-plastic deformations is studied. The solutions for beam made of isotropic material and material with the SD-effect are compared.

  5. Fatigue of LX-14 and LX-19 plastic bonded explosives

    SciTech Connect (OSTI)

    Hoffman, D. M., LLNL

    1998-04-23

    The DOD uses the plastic bonded explosive (PBX) LX-14 in a wide variety of applications including shaped charges and explosively forged projectiles. LX- 19 is a higher energy explosive, which could be easily substituted for LX-14 because it contains the identical Estane 5703p binder and more energetic CL-20 explosive. Delivery systems for large shaped charges, such as TOW-2, include the Apache helicopter. Loads associated with vibrations and expansion from thermal excursions in field operations may, even at low levels over long time periods, cause flaws, already present in the PBX to grow. Flaws near the explosive/liner interface of a shaped charge can reduce performance. Small flaws in explosives are one mechanism (the hot spot mechanism) proposed for initiation and growth to detonation of PBXs like LX-14, PBXN 5, LX-04 and LX-17 among others. Unlike cast-cured explosives and propellants, PBXs cannot usually be compression molded to full density. Generally, the amount of explosive ignited by a shock wave is approximately equal to the original void volume. Whether or not these flaws or cracks grow during field operations to an extent sufficient to adversely affect the shaped charge performance or increase the vulnerability of the PBX is the ultimate question this effort could address. Currently the fatigue life of LX-14 under controlled conditions is being studied in order to generate its failure stress as a function of the number of fatigue cycles (S- N curve). Proposed future work will address flaw and crack growth and their relationship to hot-spot concentration and explosive vulnerability to shock and/or fragment initiation.

  6. Plasticity mechanism for copper extrusion in through-silicon vias for three-dimensional interconnects

    SciTech Connect (OSTI)

    Jiang, Tengfei; Spinella, Laura; Im, Jay; Ho, Paul S. [Microelectronics Research Center and Texas Materials Institute, University of Texas, Austin, Texas 78712 (United States)] [Microelectronics Research Center and Texas Materials Institute, University of Texas, Austin, Texas 78712 (United States); Wu, Chenglin; Huang, Rui [Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, Texas 78712 (United States)] [Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, Texas 78712 (United States); Tamura, Nobumichi; Kunz, Martin [Advanced Light Source (ALS), Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720 (United States)] [Advanced Light Source (ALS), Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720 (United States); Son, Ho-Young; Gyu Kim, Byoung [SK Hynix, Inc., Icheon-si, Gyeonggi-do (Korea, Republic of)] [SK Hynix, Inc., Icheon-si, Gyeonggi-do (Korea, Republic of)

    2013-11-18

    In this paper, we demonstrated the plasticity mechanism for copper (Cu) extrusion in through-silicon via structures under thermal cycling. The local plasticity was directly observed by synchrotron x-ray micro-diffraction near the top of the via with the amount increasing with the peak temperature. The Cu extrusion was confirmed by Atomic Force Microscopy (AFM) measurements and found to be consistent with the observed Cu plasticity behavior. A simple analytical model elucidated the role of plasticity during thermal cycling, and finite element analyses were carried out to confirm the plasticity mechanism as well as the effect of the via/Si interface. The model predictions were able to account for the via extrusions observed in two types of experiments, with one representing a nearly free sliding interface and the other a strongly bonded interface. Interestingly, the AFM extrusion profiles seemed to contour with the local grain structures near the top of the via, suggesting that the grain structure not only affects the yield strength of the Cu and thus its plasticity but could also be important in controlling the pop-up behavior and the statistics for a large ensemble of vias.

  7. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry

    SciTech Connect (OSTI)

    Wang, Chong-Qing; Wang, Hui Liu, You-Nian

    2015-01-15

    Highlights: • Factors of NaOH treatment were studied by orthogonal and single factor experiments. • Mechanism of alkaline treatment for facilitating flotation was manifested. • Flotation separation of PET was achieved with high purity and efficiency. • A flow sheet of purification PET from MWP was designed. - Abstract: Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L{sub 9} (3{sup 4}) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70 °C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile–butadiene–styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics.

  8. Renewable, Nontoxic, and Cost-Competitive Solvents and Plasticizers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable, non---toxic and cost compe44ve Solvents and Plas4cizers June 2015 2 xF Technologies Confiden1al Overview * Renewable Products Company - xF Technologies licenses IP and process technology - Target partners: ethanol producers, chemical companies and petro--- chemical refiners * Products are Furoate and Difuroate Esters - Novel combinaKons of sugar derivaKves with alcohols or diols - Granted patents cover producKon and use * Target Markets - Cleaning and processing solvents, plasKcizers,

  9. Survey of electrochemical production of inorganic compounds. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    The electrochemical generation of inorganic compounds, excluding chlorine/caustic, has been critically reviewed. About 60 x 10/sup 12/ Btu/y fossil fuel equivalent will be used in the year 2000 for the electrosynthesis of inorganic compounds. Significant energy savings in chlorate production can result from the development of suitable electrocatalysts for lowering the cathodic overpotential. Perchlorates, electrolytic hypochlorite, electrolytic manganese dioxide, fluorine and other miscellaneous compounds use relatively small amounts of electrical energy. Implementation of caustic scrubber technology for stack gas cleanup would result in appreciable amounts of sodium sulfate which could be electrolyzed to regenerate caustic. Hydrogen peroxide, now produced by the alkyl anthraquinone process, could be made electrolytically by a new process coupling anodic oxidation of sulfate with cathodic reduction of oxygen in alkaline solution. Ozone is currently manufactured using energy-inefficient silent discharge equipment. A novel energy-efficient approach which uses an oxygen-enhanced anodic reaction is examined.

  10. Productivity and injectivity of horizontal wells. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    Subject: 02 PETROLEUM; 99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; OIL WELLS; DAMAGE; WELL DRILLING; WELL COMPLETION; EQUATIONS; PROGRESS REPORT ...

  11. Hydrogen production from municipal solid waste

    SciTech Connect (OSTI)

    Wallman, P.H.; Richardson, J.H.; Thorsness, C.B.

    1996-06-28

    We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

  12. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  13. Controlled catalystic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers

    DOE Patents [OSTI]

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents.

  14. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers

    DOE Patents [OSTI]

    Evans, R.J.; Chum, H.L.

    1994-06-14

    A process is described using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents. 68 figs.

  15. Indentation-derived elastic modulus of multilayer thin films: Effect of unloading induced plasticity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jamison, Ryan Dale; Shen, Yu -Lin

    2015-08-13

    Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. Additionally, the indentation-derived modulus of a monolayermore » material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. Furthermore, it is found that several cycles are required to minimize unloading-induced plasticity.« less

  16. Integrating the Production of Biofuels and Bioproducts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Integrating the Production of Biofuels and Bioproducts Integrating the Production of Biofuels and Bioproducts April 28, 2016 - 11:25am Addthis Non-food biomass such as the crop residue (the leftover material from crops like stalks, leaves, and husks of corn plants following harvest) pictured above can be converted to biofuels as well as high-value products such as plastics, chemicals, and fertilizers. Non-food biomass such as the crop residue (the leftover material from crops like

  17. Energy and materials flows in the production of olefins and their derivatives

    SciTech Connect (OSTI)

    Gaines, L.L.; Shen, S.Y.

    1980-08-01

    Production of olefins and their derivatives uses almost 3.5% of the oil and gas consumed annually in the United States. It is estimated that their production requires an input energy of 2 Q, which is 50% of the energy used in the production of all petrochemicals. Substantial amounts of this energy could be recovered through recycling. For example, recycling of a single plastic product, polyester soft drink bottles, could have recovered about 0.014 Q in 1979. (About 1.4 Q is used to produce plastic derivatives of olefins). Petrochemical processes use fuels as feedstocks, as well as for process energy, and a portion of this energy is not foregone and can be recovered through combustion of the products. The energy foregone in the production of ethylene is estimated to be 7800 Btu/lb. The energy foregone in plastics production ranges from 12,100 Btu/lb for the new linear low-density polyethylene to 77,200 Btu/lb for nylon 66, which is about 60% of the total energy input for that product. Further investigation of the following areas could yield both material and energy savings in the olefins industry: (1) recycling of petrochemical products to recover energy in addition to that recoverable through combustion, (2) impact of feedstock substitution on utilization of available national resources, and (3) effective use of the heat embodied in process steam. This steam accounts for a major fraction of the industry's energy input.

  18. Elastic-plastic analysis of the toroidal field coil inner leg of the compact ignition tokamak

    SciTech Connect (OSTI)

    Horie, T.

    1987-07-01

    Elastic-plastic analyses were made for the inner leg of the Compact Ignition Tokamak toroidal field (TF) coil, which is made of copper-Inconel composite material. From the result of the elastic-plastic analysis, the effective Young's moduli of the inner leg were determined by the analytical equations. These Young's moduli are useful for the three-dimensional, elastic, overall TF coil analysis. Comparison among the results of the baseline design (R = 1.324 m), the bucked pressless design, the 1.527-m major radius design, and the 1.6-m major radius design was also made, based on the elastic-plastic TF coil inner leg analyses.

  19. In situ nanoindentation study of plastic Co-deformation in Al-TiN nanocomposites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, N.; Wang, H.; Misra, A.; Wang, J.

    2014-10-16

    We performed in situ indentation in a transmission electron microscope on Al-TiN multilayers with individual layer thicknesses of 50 nm, 5 nm and 2.7 nm to explore the effect of length scales on the plastic co-deformability of a metal and a ceramic. At 50 nm, plasticity was confined to the Al layers with easy initiation of cracks in the TiN layers. At 5 nm and below, cracking in TiN was suppressed and post mortem measurements indicated a reduction in layer thickness in both layers. Our results demonstrate the profound size effect in enhancing plastic co-deformability in nanoscale metal-ceramic multilayers.

  20. Isotopes Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes Products Isotopes Products Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Products stress and rest Stress and rest Rb-82 PET images in a patient with dipyridamole stress-inducible lateral wall and apical ischemia. (http://www.fac.org.ar/scvc/llave/image/machac/machaci.htm#f2,3,4) Strontium-82 is supplied to our customers for use in Sr-82/Rb-82 generator technologies. The generators in turn are supplied to

  1. Forest Products

    Broader source: Energy.gov [DOE]

    Purchased energy remains the third largest manufacturing cost for the forest products industry–despite its extensive use of highly efficient co-generation technology. The industry has worked with...

  2. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  3. Method for measuring residual stresses in materials by plastically deforming the material and interference pattern comparison

    DOE Patents [OSTI]

    Pechersky, Martin J.

    1995-01-01

    A method for measuring residual stress in a material comprising the steps of establishing a speckle pattern on the surface with a first laser then heating a portion of that pattern with an infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress dung heating and enables calculation of the stress.

  4. An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package

    SciTech Connect (OSTI)

    Kuhr, Bryan; Brake, Matthew Robert; Lechman, Jeremy B.

    2015-03-01

    The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.

  5. Renewable Plastic from Glucose-Fed Microbes - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Jet Fuel Is Taking Flight Renewable Jet Fuel Is Taking Flight August 26, 2015 - 3:58pm Addthis Zia Haq Zia Haq Senior Analyst and Defense Production Act Coordinator, Bioenergy Technologies Office It's been one year since we at the Energy Department ramped up our efforts to develop renewable jet fuel for the military and commercial aviation industry. The Department's Bioenergy Technologies Office (BETO) joined Farm to Fly 2.0-a partnership with the U.S. Department of Agriculture (USDA),

  6. Bottom production

    SciTech Connect (OSTI)

    Baines, J.; Baranov, S.P.; Bartalini, P.; Bay, A.; Bouhova, E.; Cacciari, M.; Caner, A.; Coadou, Y.; Corti, G.; Damet, J.; Dell-Orso, R.; De Mello Neto, J.R.T.; Domenech, J.L.; Drollinger, V.; Eerola, P.; Ellis, N.; Epp, B.; Frixione, S.; Gadomski, S.; Gavrilenko, I.; Gennai, S.; George, S.; Ghete, V.M.; Guy, L.; Hasegawa, Y.; Iengo, P.; Jacholkowska, A.; Jones, R.; Kharchilava, A.; Kneringer, E.; Koppenburg, P.; Korsmo, H.; Kramer, M.; Labanca, N.; Lehto, M.; Maltoni, F.; Mangano, M.L.; Mele, S.; Nairz, A.M.; Nakada, T.; Nikitin, N.; Nisati, A.; Norrbin, E.; Palla, F.; Rizatdinova, F.; Robins, S.; Rousseau, D.; Sanchis-Lozano, M.A.; Shapiro, M.; Sherwood, P.; Smirnova, L.; Smizanska, M.; Starodumov, A.; Stepanov, N.; Vogt, R.

    2000-03-15

    In the context of the LHC experiments, the physics of bottom flavoured hadrons enters in different contexts. It can be used for QCD tests, it affects the possibilities of B decays studies, and it is an important source of background for several processes of interest. The physics of b production at hadron colliders has a rather long story, dating back to its first observation in the UA1 experiment. Subsequently, b production has been studied at the Tevatron. Besides the transverse momentum spectrum of a single b, it has also become possible, in recent time, to study correlations in the production characteristics of the b and the b. At the LHC new opportunities will be offered by the high statistics and the high energy reach. One expects to be able to study the transverse momentum spectrum at higher transverse momenta, and also to exploit the large statistics to perform more accurate studies of correlations.

  7. Compressed Air System Modifications Improve Efficiency at a Plastics Blow Molding Plant (Southeastern Container Plant)

    SciTech Connect (OSTI)

    None

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the plastics blow molding plant project.

  8. Mitigating cutting-induced plasticity in the contour method, Part 2: Numerical analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Muránsky, O.; Hamelin, C. J.; Hosseinzadeh, F.; Prime, M. B.

    2016-02-10

    Cutting-induced plasticity can have a significant effect on the measurement accuracy of the contour method. The present study examines the benefit of a double-embedded cutting configuration that relies on self-restraint of the specimen, relative to conventional edge-crack cutting configurations. A series of finite element analyses are used to simulate the planar sectioning performed during double-embedded and conventional edge-crack contour cutting configurations. The results of numerical analyses are first compared to measured results to validate the cutting simulations. The simulations are then used to compare the efficacy of different cutting configurations by predicting the deviation of the residual stress profile frommore » an original (pre-cutting) reference stress field, and the extent of cutting-induced plasticity. Comparisons reveal that while the double-embedded cutting configuration produces the most accurate residual stress measurements, the highest levels of plastic flow are generated in this process. As a result, this cutting-induced plastic deformation is, however, largely confined to small ligaments formed as a consequence of the sample sectioning process, and as such it does not significantly affect the back-calculated residual stress field.« less

  9. Experimental investigation of plastic finned-tube heat exchangers, with emphasis on material thermal conductivity

    SciTech Connect (OSTI)

    Chen, Lin; Li, Zhen; Guo, Zeng-Yuan

    2009-07-15

    In this paper, two modified types of polypropylene (PP) with high thermal conductivity up to 2.3 W/m K and 16.5 W/m K are used to manufacture the finned-tube heat exchangers, which are prospected to be used in liquid desiccant air conditioning, heat recovery, water source heat pump, sea water desalination, etc. A third plastic heat exchanger is also manufactured with ordinary PP for validation and comparison. Experiments are carried out to determine the thermal performance of the plastic heat exchangers. It is found that the plastic finned-tube heat exchanger with thermal conductivity of 16.5 W/m K can achieve overall heat transfer coefficient of 34 W/m{sup 2} K. The experimental results are compared with calculation and they agree well with each other. Finally, the effect of material thermal conductivity on heat exchanger thermal performance is studied in detail. The results show that there is a threshold value of material thermal conductivity. Below this value improving thermal conductivity can considerably improve the heat exchanger performance while over this value improving thermal conductivity contributes very little to performance enhancement. For the finned-tube heat exchanger designed in this paper, when the plastic thermal conductivity can reach over 15 W/m K, it can achieve more than 95% of the titanium heat exchanger performance and 84% of the aluminum or copper heat exchanger performance with the same dimension. (author)

  10. Pyrolytic conversion of plastic and rubber waste to hydrocarbons with basic salt catalysts

    DOE Patents [OSTI]

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1985-01-01

    The invention relates to a process for improving the pyrolytic conversion of waste selected from rubber and plastic to low molecular weight olefinic materials by employing basis salt catalysts in the waste mixture. The salts comprise alkali or alkaline earth compounds, particularly sodium carbonate, in an amount of greater than about 1 weight percent based on the waste feed.

  11. On the combined gradient-stochastic plasticity model: Application to Mo-micropillar compression

    SciTech Connect (OSTI)

    Konstantinidis, A. A.; Zhang, X.; Aifantis, E. C.

    2015-02-17

    A formulation for addressing heterogeneous material deformation is proposed. It is based on the use of a stochasticity-enhanced gradient plasticity model implemented through a cellular automaton. The specific application is on Mo-micropillar compression, for which the irregularities of the strain bursts observed have been experimentally measured and theoretically interpreted through Tsallis' q-statistics.

  12. SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement Using Plastic Scintillator

    SciTech Connect (OSTI)

    Hashimoto, M; Kozuka, T; Oguchi, M; Nishio, T; Haga, A; Hanada, T; Kabuki, S

    2014-06-15

    Purpose: To develop the detector for the four-dimensional dose distribution measurement. Methods: We made the prototype detector for four-dimensional dose distribution measurement using a cylindrical plastic scintillator (5 cm diameter) and a conical reflection grass. The plastic scintillator is used as a phantom. When the plastic scintillator is irradiated, the scintillation light was emitted according to absorbed dose distribution. The conical reflection grass was arranged to surround the plastic scintillator, which project to downstream the projection images of the scintillation light. Then, the projection image was reflected to 45 degree direction by flat reflection grass, and was recorded by camcorder. By reconstructing the three-dimensional dose distribution from the projection image recorded in each frame, we could obtain the four-dimensional dose distribution. First, we tested the characteristic according to the amount of emitted light. Then we compared of the light profile and the dose profile calculated with the radiotherapy treatment planning system. Results: The dose dependency of the amount of light showed linearity. The pixel detecting smaller amount of light had high sensitivity than the pixel detecting larger amount of light. However the difference of the sensitivity could be corrected from the amount of light detected in each pixel. Both of the depth light profile through the conical reflection grass and the depth dose profile showed the same attenuation in the region deeper than peak depth. In lateral direction, the difference of the both profiles was shown at outside field and penumbra region. We consider that the difference is occurred due to the scatter of the scintillation light in the plastic scintillator block. Conclusion: It was possible to obtain the amount of light corresponding to the absorbed dose distribution from the prototype detector. Four-dimensional dose distributions can be reconstructed with high accuracy by the correction of

  13. PRODUCTION OF SHEET FROM PARTICULATE MATERIAL

    DOE Patents [OSTI]

    Blainey, A.

    1959-05-12

    A process is presented for forming coherent sheet material from particulate material such as granular or powdered metal, granular or powdered oxide, slurries, pastes, and plastic mixes which cohere under pressure. The primary object is to avoid the use of expensive and/ or short lived pressing tools, that is, dies and specially profiled rolls, and so to reduce the cost of the product and to prcvide in a simple manner for the making of the product in a variety of shapes or sizes. The sheet material is formed when the particulate material is laterally confined in a boundary material deformable in all lateral directions under axial pressure and then axially compressing the layer of particulate material together with the boundary material.

  14. Industrial recycling of glass, plastic and wood materials

    SciTech Connect (OSTI)

    Caccavo, F.N.; Posusney, J.R.

    1998-12-31

    The intent of this paper is to discuss in detail the development and implementation of a recycling program encompassing these three residual waste streams at a major plant site of a large United States company. The paper will review the history of the program`s development, the vendor selection and recycling processes, the initial efforts to include failures and successes, and the cost recovery and profit that can be realized through a well-managed recycling program. The facility that is the subject of this paper is located approximately 20 lies north west of Philadelphia, Pa and supports a site population of over 6,200 employees working in three divisions of the parent company. The primary business of this firm is the manufacture, distribution, and sale of pharmaceutical drugs. This plant is the company`s largest facility engaging its employees in predominantly research and manufacturing operations. The manufacturing operations being the largest division encompassing the widest range of activities from the receipt of raw material through packaging and shipping operations. This site and the company it represents enjoy an excellent relationship within the community stemming in part to the commitment to environmental stewardship demonstrated by this successful program. The site retains its own internal waste management and disposal operations for the wide variety of refuse materials generated and it is this department which is responsible for the creation and maintenance of the site`s extensive recycling effort. The paper will review the ongoing development of these elements of this company`s growing recycling operations and attempt to demonstrate that extensive recycling can be both a productive and cost effective alternative to conventional disposal through incineration`s or landfill.

  15. Dust control in rubber and plastic plants. January 1973-March 1989 (Citations from the Rubber and Plastics Research Association data base). Report for January 1973-March 1989

    SciTech Connect (OSTI)

    Not Available

    1989-03-01

    This bibliography contains citations concerning the prevention of employee respiratory and epidermal ailments due to contaminated atmospheres in rubber and plastics plants. Monitor techniques and contamination removal systems are described for such dust-emitting materials as colorants, glass fibers, ceramics, rock wool, PVC, rubbers, asbestos, lubricants, stabilizers, and fillers. Respiratory health-hazard test results, developments in dust controlling devices, and fire and explosion hazards are also examined. (This updated bibliography contains 246 citations, 70 of which are new entries to the previous edition.)

  16. Oil Production

    Energy Science and Technology Software Center (OSTI)

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  17. Petroleum products

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This book is the first of three volumes devoted to petroleum products and lubricants. This volume begins with standard D 56 and contains all petroleum standards up to D 1947. It contains specifications and test methods for fuels, solvents, burner fuel oils, lubricating oils, cutting oils, lubricating greases, fluids measurement and sampling, liquified petroleum gases, light hydrocarbons, plant spray oils, sulfonates, crude petroleum, petrolatam, and wax.

  18. Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  19. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Hydrogen can be produced using diverse, domestic resources. Fossil fuels, such as natural gas and coal, can be converted to produce hydrogen, and the use of carbon capture, utilization, and storage can reduce the carbon footprint of these processes. Hydrogen can also be produced from low carbon and renewable resources, including biomass grown from non-food crops and splitting water using electricity from wind, solar, geothermal, nuclear, and hydroelectric. This diversity of potential

  20. Product separator

    DOE Patents [OSTI]

    Welsh, Robert A.; Deurbrouck, Albert W.

    1976-01-20

    A secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present.

  1. Large Scale DD Simulation Results for Crystal Plasticity Parameters in Fe-Cr And Fe-Ni Systems

    SciTech Connect (OSTI)

    Zbib, Hussein M.; Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

    2012-04-30

    The development of viable nuclear energy source depends on ensuring structural materials integrity. Structural materials in nuclear reactors will operate in harsh radiation conditions coupled with high level hydrogen and helium production, as well as formation of high density of point defects and defect clusters, and thus will experience severe degradation of mechanical properties. Therefore, the main objective of this work is to develop a capability that predicts aging behavior and in-service lifetime of nuclear reactor components and, thus provide an instrumental tool for tailoring materials design and development for application in future nuclear reactor technologies. Towards this end goal, the long term effort is to develop a physically based multiscale modeling hierarchy, validated and verified, to address outstanding questions regarding the effects of irradiation on materials microstructure and mechanical properties during extended service in the fission and fusion environments. The focus of the current investigation is on modern steels for use in nuclear reactors including high strength ferritic-martensitic steels (Fe-Cr-Ni alloys). The effort is to develop a predicative capability for the influence of irradiation on mechanical behavior. Irradiation hardening is related to structural information crossing different length scales, such as composition, dislocation, and crystal orientation distribution. To predict effective hardening, the influence factors along different length scales should be considered. Therefore, a hierarchical upscaling methodology is implemented in this work in which relevant information is passed between models at three scales, namely, from molecular dynamics to dislocation dynamics to dislocation-based crystal plasticity. The molecular dynamics (MD) was used to predict the dislocation mobility in body centered cubic (bcc) Fe and its Ni and Cr alloys. The results are then passed on to dislocation dynamics to predict the critical resolved

  2. High resolution transmission electron microscopic in-situ observations of plastic deformation of compressed nanocrystalline gold

    SciTech Connect (OSTI)

    Wang, Guoyong; Lian, Jianshe; Jiang, Qing; Sun, Sheng; Zhang, Tong-Yi

    2014-09-14

    Nanocrystalline (nc) metals possess extremely high strength, while their capability to deform plastically has been debated for decades. Low ductility has hitherto been considered an intrinsic behavior for most nc metals, due to the lack of five independent slip systems actively operating during deformation in each nanograin. Here we report in situ high resolution transmission electron microscopic (HRTEM) observations of deformation process of nc gold under compression, showing the excellent ductility of individual and aggregate nanograins. Compression causes permanent change in the profile of individual nanograins, which is mediated by dislocation slip and grain rotation. The high rate of grain boundary sliding and large extent of widely exited grain rotation may meet the boundary compatibility requirements during plastic deformation. The in situ HRTEM observations suggest that nc gold is not intrinsically brittle under compressive loading.

  3. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    SciTech Connect (OSTI)

    Lim, Hojun; Owen, Steven J.; Abdeljawad, Fadi F.; Hanks, Byron; Battaile, Corbett Chandler

    2015-09-01

    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.

  4. Beryllium-7 Implantation in Plastics for Prosthesis Wear Studies | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Beryllium-7 Implantation in Plastics for Prosthesis Wear Studies Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building

  5. Tests and analyses for fully plastic fracture mechanics of plane strain mode I crack growth

    SciTech Connect (OSTI)

    McClintock, F.A.; Parks, D.M.; Kim, Y.J.

    1995-12-31

    Under monotonic loading, structures should ideally be ductile enough to provide continued resistance during crack growth. For fully plastic crack growth in low strength alloys, existing asymptotic solutions for elastic-plastic growing cracks are not applicable because they reach the fracture strain only in regions small compared to the inhomogeneities of the actual fracture process. For the limiting case of non-hardening fully-plastic plane strain crack growth, in a number of geometries and loadings the near-tip fields are characterized in terms of three parameters: an effective angle 2{theta}{sub s} between a pair of slip planes, and the normal stress {sigma}{sub s} and the increment of displacement {delta}u{sub s} across the planes. This three-parameter characterization is in contrast to the one- or two-parameter (K or J and T or Q) characterization in linear or non-linear elastic fracture mechanics. These {theta}{sub s}, {sigma}{sub s}, and {delta}u{sub s} parameters are found form the far-field geometries and loadings through slip line fields or least upper bound analyses based on circular arcs. The resulting crack growth, in terms of the crack tip opening angle (CTOA), is a function of {theta}{sub s}, {sigma}{sub s}, and the material. The geometry of the crack growing between two moving slip planes emanating from its tip reduces this function to the critical fracture shear strain left behind the slip planes, {gamma}f, as a function of {sigma}{sub s}. {gamma}f({sigma}{sub s}) is found theoretically from a hole initiation and growth model. It is also found from preliminary fully plastic crack growth experiments on unequally grooved specimens with fixed-grip extension or 4-point bending of a 1018 CF steel.

  6. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.

    SciTech Connect (OSTI)

    Vogler, Tracy; Lammi, Christopher James

    2014-10-01

    A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.

  7. "Plastic" Solar Cells: Self-Assembly of Bulk Heterojunction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano-Materials by Spontaneous Phase Separation | MIT-Harvard Center for Excitonics "Plastic" Solar Cells: Self-Assembly of Bulk Heterojunction Nano-Materials by Spontaneous Phase Separation October 20, 2009 at 3pm/36-428 Alan Heeger Department of Chemistry, University of California, Santa Barbara heeger abstract: Solar cells - Power from the Sun - can provide and must provide - a significant contribution to our future energy needs. The challenge is clear; we must create the

  8. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOE Patents [OSTI]

    Hermes, Robert E.

    2002-01-01

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  9. An Elastic-Plastic and Strength Prediction Model for Injection-Molded Long-Fiber Thermoplastics

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Phelps, Jay; Tucker III, Charles L.; Bapanapalli, Satish K.

    2008-09-01

    This paper applies a recently developed model to predict the elastic-plastic stress/strain response and strength of injection-molded long-fiber thermoplastics (LFTs). The model combines a micro-macro constitutive modeling approach with experimental characterization and modeling of the composite microstructure to determine the composite stress/strain response and strength. Specifically, it accounts for elastic fibers embedded in a thermoplastic resin that exhibits the elastic-plastic behavior obeying the Ramberg-Osgood relation and J-2 deformation theory of plasticity. It also accounts for fiber length, orientation and volume fraction distributions in the composite formed by the injection-molding process. Injection-molded-long-glass-fiber/polypropylene (PP) specimens were prepared for mechanical characterization and testing. Fiber length, orientation, and volume fraction distributions were then measured at some selected locations for use in the computation. Fiber orientations in these specimens were also predicted using an anisotropic rotary diffusion model developed for LFTs. The stress-strain response of the as-formed composite was computed by an incremental procedure that uses the Eshelbys equivalent inclusion method, the Mori-Tanaka assumption and a fiber orientation averaging technique. The model has been validated against the experimental stress-strain results obtained for these long-glass-fiber/PP specimens.

  10. Processing of microencapsulated dyes for the visual inspection of fibre reinforced plastics

    SciTech Connect (OSTI)

    Hopmann, Ch., E-mail: kerschbaum@ikv.rwth-aachen.de; Kerschbaum, M., E-mail: kerschbaum@ikv.rwth-aachen.de; Ksters, K., E-mail: kerschbaum@ikv.rwth-aachen.de [Institute of Plastics Processing at RWTH Aachen University (IKV), Pontstrasse 49, 52064 Aachen (Germany)

    2014-05-15

    The evaluation of damages caused during processing, assembly or usage of fibre reinforced plastics is still a challenge. The use of inspection technology like ultrasonic scanning enables a detailed damage analysis but requires high investments and trained staff. Therefore, the visual inspection method is widely used. A drawback of this method is the difficult identification of barely visible damages, which can already be detrimental for the structural integrity. Therefore an approach is undertaken to integrate microencapsulated dyes into the laminates of fibre reinforced plastic parts to highlight damages on the surface. In case of a damage, the microcapsules rupture which leads to a release of the dye and a visible bruise on the part surface. To enable a wide application spectrum for this technology the microcapsules must be processable without rupturing with established manufacturing processes for fibre reinforced plastics. Therefore the incorporation of microcapsules in the filament winding, prepreg autoclave and resin transfer moulding (RTM) process is investigated. The results show that the use of a carrier medium is a feasible way to incorporate the microcapsules into the laminate for all investigated manufacturing processes. Impact testing of these laminates shows a bruise formation on the specimen surface which correlates with the impact energy level. This indicates a microcapsule survival during processing and shows the potential of this technology for damage detection and characterization.

  11. Simulation of ratcheting in straight pipes using ANSYS with an improved cyclic plasticity model

    SciTech Connect (OSTI)

    Hassan, T.; Zhu, Y.; Matzen, V.C.

    1996-12-01

    Ratcheting has been shown to be a contributing cause of failure in several seismic experiments on piping components and systems. Most commercial finite element codes have been unable to simulate the ratcheting in those tests accurately. The reason for this can be traced to inadequate plasticity constitutive models in the analysis codes. The authors have incorporated an improved cyclic plasticity model, based on an Armstrong-Frederick kinematic hardening rule in conjunction with the Drucker-Palgen plastic modulus equation, into an ANSYS user subroutine. This modified analysis code has been able to simulate quite accurately the ratcheting behavior of a tube subjected to a constant internal pressure and axially strain controlled cycling. This paper describes simulations obtained form this modified ANSYS code for two additional tests: (1) a tube subjected to constant axial stress and prescribed torsional cycling, and (2) a straight pipe subjected to constant internal pressure and quasi-static cyclic bending. The analysis results from the modified ANSYS code are compared to the experimental data, as well as results from ABAQUS and the original ANSYS code. The resulting correlation shows a significant improvement over the original ANSYS and the ABAQUS codes.

  12. Using handheld plastic scintillator detectors to triage individuals exposed to a radiological dispersal device

    SciTech Connect (OSTI)

    Manger, Ryan P; Hertel, Nolan; Burgett, E.; Ansari, A.

    2011-01-01

    After a radiological dispersal device (RDD) event, people could become internally contaminated by inhaling dispersed radioactive particles. A rapid method to screen individuals who are internally contaminated is desirable. Such initial screening can help in prompt identification of those who are highly contaminated and in prioritizing individuals for further and more definitive evaluation such as laboratory testing. The use of handheld plastic scintillators to rapidly screen those exposed to an RDD with gamma-emitting radionuclides was investigated in this study. The Monte Carlo N-Particle transport code was used to model two commercially available plastic scintillation detectors in conjunction with anthropomorphic phantom models to determine the detector response to inhaled radionuclides. Biokinetic models were used to simulate an inhaled radionuclide and its progression through the anthropomorphic phantoms up to 30 d after intake. The objective of the study was to see if internal contamination levels equivalent to 250 mSv committed effective dose equivalent could be detected using these instruments. Five radionuclides were examined: {sup 60}Co, {sup 137}Cs, {sup 192}Ir, {sup 131}I and {sup 241}Am. The results demonstrate that all of the radionuclides except {sup 241}Am could be detected when placing either one of the two plastic scintillator detector systems on the posterior right torso of the contaminated individuals.

  13. Method for the separation of high impact polystyrene (HIPS) and acrylonitrile butadiene styrene (ABS) plastics

    DOE Patents [OSTI]

    Jody, Bassam J.; Arman, Bayram; Karvelas, Dimitrios E.; Pomykala, Jr., Joseph A.; Daniels, Edward J.

    1997-01-01

    An improved method is provided for separating acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) plastics from each other. The ABS and HIPS plastics are shredded to provide a selected particle size. The shredded particles of the ABS and HIPS plastics are applied to a solution having a solution density in a predefined range between 1.055 gm/cm.sup.3 and 1.07 gm/cm.sup.3, a predefined surface tension in a range between 22 dynes/cm to 40 dynes/cm and a pH in the range of 1.77 and 2.05. In accordance with a feature of the invention, the novel method is provided for separating ABS and HIPS, two solid thermoplastics which have similar densities by selectively modifying the effective density of the HIPS using a binary solution with the appropriate properties, such as pH, density and surface tension, such as a solution of acetic acid and water or a quaternary solution having the appropriate density, surface tension, and pH.

  14. Validation of elastic-plastic computer analyses for use in nuclear waste shipping cask design

    SciTech Connect (OSTI)

    Koploy, M.; Schlafer, W.; Zimmer, A.

    1987-02-01

    GA Technologies designed the Defense High Level Waste (DHLW) Truck Shipping Cask using state-of-the-art analytical techniques verified by model testing performed by Sandia National Laboratories (SNL). The DHLW cask has a thick-walled stainless steel body and incorporates integral stainless steel impact limiters that protect the two ends of the cask during the hypothetical accident condition 30-ft free drop. These integral impact limiters absorb the drop energy through gross plastic deformations. GA used elastic-plastic computer codes developed at Los Alamos and Lawrence Livermore Laboratories, HONDOII and DYNA3D, to analyze for this non-linear behavior. In order to evaluate the analyses, GA developed elastic-plastic stress criteria that were adapted from the ASME Boiler and Pressure Vessel Code, Division I, Section III. This innovative design and analytical approach required test verification. Therefore, SNL performed 30-ft drop and puncture tests on a half-scale model of the DHLW cask. The testing conformed that the analytical approach works and results in a safe, conservative design.

  15. Effect of cryogenic treatment on the plastic property of Ti-6Al-4V titanium alloy

    SciTech Connect (OSTI)

    Gu, K. X.; Wang, J. J.; Yuan, Z.; Zhang, H.; Li, Z. Q.; Zhao, B.

    2014-01-27

    The effect of cryogenic treatment on the plastic property of Ti-6Al-4V plate was studied in the present work. After cryogenic treatment, the low temperature temper at 180 ▭ was conducted in one of the groups and the results were compared with that of the untreated and cryotreated ones. The SLX series program controlled cryogenic equipment was used for the cryogenic treatment. The tensile tests were conducted by universal tensile testing machine and parameters of elongation and area reduction were used to evaluate plastic property. The scanning electron microscope was used to study the morphology of microstructure and fracture surface. The results show that after cryogenic treatment alone the elongation increased 10.6% and the area reduction increased 13.5% while the strength reduced to a small extent. Cryogenic treatment followed with low temperature temper increased the elongation and area reduction just by the extent of 4.7% and 9.5%. It means that the additional low temperature temper after cryogenic is not beneficial to the tensile properties of Ti-6Al-4V alloy. The examination of microstructure by scanning electron microscopy revealed that cryogenic treatment reduced the content of β phase particles which is the main reason for the improvement in plasticity.

  16. High quality garbage: A neural network plastic sorter in hardware and software

    SciTech Connect (OSTI)

    Stanton, S.L.; Alam, M.K.; Hebner, G.A.

    1993-09-01

    In order to produce pure polymer streams from post-consumer waste plastics, a quick, accurate and relatively inexpensive method of sorting needs to be implemented. This technology has been demonstrated by using near-infrared spectroscopy reflectance data and neural network classification techniques. Backpropagation neural network routines have been developed to run real-time sortings in the lab, using a laboratory-grade spectrometer. In addition, a new reflectance spectrometer has been developed which is fast enough for commercial use. Initial training and test sets taken with the laboratory instrument show that a network is capable of learning 100% when classifying 5 groups of plastic (HDPE and LDPE combined), and up to 100% when classifying 6 groups. Initial data sets from the new instrument have classified plastics into all seven groups with varying degrees of success. One of the initial networks has been implemented in hardware, for high speed computations, and thus rapid classification. Two neural accelerator systems have been evaluated, one based on the Intel 8017ONX chip, and another on the AT&T ANNA chip.

  17. Plutonium solution storage in plastic bottles: Operational experience and safety issues

    SciTech Connect (OSTI)

    Conner, W.V.

    1995-03-15

    Computer spread sheet models were developed to gain a better understanding of the factors that lead to pressurization and failure of plastic bottles containing plutonium solutions. These models were developed using data obtained from the literature on gas generation rates for plutonium solutions. Leak rates from sealed plastic bottles were obtained from bottle leak tests conducted at Rocky Flats. Results from these bottle leak tests showed that narrow mouth four liter bottles will seal much better than wide mouth four liter bottles. The gas generation rate and leak rate data were used to develop models for predicting the rate of pressurization and maximum pressures expected in sealed bottles of plutonium solution containing various plutonium and acid concentrations. The computer models were used to develop proposed time limits for storing or transporting plutonium solutions in sealed plastic bottles. For plutonium solutions containing < 1.5 g/l, maximum safe storage times from 4 weeks to 12 months are proposed. The maximum safe storage times vary depending upon the plutonium concentration in the solution. Low concentration plutonium solutions can be stored safely for longer periods of time than high concentration plutonium solutions. For solutions containing > 1.5 g/l plutonium, storage in sealed bottles should not be allowed. However, transportation of higher concentration plutonium solution in sealed bottles is required, and safe transportation times of 1 shift to 6 days are proposed.

  18. Plasticity and ultra-low stress induced twin boundary migration in nanotwinned Cu by in situ nanoindentation studies

    SciTech Connect (OSTI)

    Liu, Y.; Chen, Y.; Jian, J.; Wang, H.; Zhang, X.

    2014-06-09

    Nanotwinned metals have rare combinations of mechanical strength and ductility. Previous studies have shown that detwinning occurs in plastically deformed nanotwinned metals. Although molecular dynamics simulations have predicted that fine nanotwins can migrate at low stress, there is little in situ evidence to validate such predictions. Also it is unclear if detwinning occurs prior to or succeeding plastic yielding. Here, by using in situ nanoindentation in a transmission electron microscope, we show that a non-elastic detwinning process in nanotwinned Cu occurred at ultra-low indentation stress (0.1 GPa), well before the stress necessary for plastic yielding. Furthermore, the in situ nanoindentation technique allows us to differentiate dislocation-nucleation dominated microscopic yielding preceding macroscopic yielding manifested by dislocation-transmission through twin boundaries. This study thus provides further insights for understanding plasticity in nanotwinned metals at microscopic levels.

  19. X-ray Photoelectron Spectroscopy study of the compatibility of the explosive PETN with candidate plastic bonding materials

    SciTech Connect (OSTI)

    Vannet, M.D.; Wang, P.S.; Moddeman, W.E.; Bowling, W.C.

    1985-01-01

    The compatibility of the explosive PETN with two plastic bonding materials, ethyl cellulose and a halogenated vinyl polymer (FPC 461), was determined by X-ray Photoelectron Spectroscopy (XPS). Both were found to coat the PETN crystals, and no change in chemical composition was found in the PETN or the plastic due to either the process or their mutual presence. 3 refs., 1 fig., 1 tab.

  20. Atomic-scale observation of parallel development of super elasticity and reversible plasticity in GaAs nanowires

    SciTech Connect (OSTI)

    Bao, Peite; Du, Sichao; Zheng, Rongkun; Wang, Yanbo; Liao, Xiaozhou; Cui, Xiangyuan; Yen, Hung-Wei; Kong Yeoh, Wai; Ringer, Simon P.; Gao, Qiang; Hoe Tan, H.; Jagadish, Chennupati; Liu, Hongwei; Zou, Jin

    2014-01-13

    We report the atomic-scale observation of parallel development of super elasticity and reversible dislocation-based plasticity from an early stage of bending deformation until fracture in GaAs nanowires. While this phenomenon is in sharp contrast to the textbook knowledge, it is expected to occur widely in nanostructures. This work indicates that the super recoverable deformation in nanomaterials is not simple elastic or reversible plastic deformation in nature, but the coupling of both.

  1. U.S. Energy Information Administration | Renewable Energy...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    MSW Municipal Solid Waste. - No data reported. 1 Includes glass, steel, aluminum, other nonferous metals, plastic, rubber, other materials, and miscellaneous inorganic w astes. ...

  2. 62 U.S...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0.016 MSW Municipal Solid Waste. * Less than 500 billion Btu. 1 Includes glass, steel, aluminum, other nonferous metals, plastic, rubber, other materials, and miscellaneous ...

  3. Microsoft Word - DOE-ID-INL-13-009 R1.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... R1 The atmospheric tracers sulfur ... such as plastic water bottles or other miscellaneous waste. ... Fuel would also be used in small portable generators where ...

  4. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Biodiesel production capacity and production million gallons Period Annual Production ... B100 is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  5. TH-C-19A-10: Systematic Evaluation of Photodetectors Performances for Plastic Scintillation Dosimetry

    SciTech Connect (OSTI)

    Boivin, J; Beaulieu, L; Beddar, S; Guillemette, M

    2014-06-15

    Purpose: To assess and compare the performance of different photodetectors likely to be used in a plastic scintillation detector (PSD). Methods: The PSD consists of a 1 mm diameter, 10 mm long plastic scintillation fiber (BCF-60) which is optically coupled to a clear 10 m long optical fiber of the same diameter. A light-tight plastic sheath covers both fibers and the scintillator end is sealed. The clear fiber end is connected to one of the following six studied photodetectors: two polychromatic cameras (one with an optical lens and one with a fiber optic taper replacing the lens); a monochromatic camera with the same optical lens; a PIN photodiode; an avalanche photodiode (APD); and a photomultiplier tube (PMT). Each PSD is exposed to both low energy beams (120, 180, and 220 kVp) from an orthovoltage unit, and high energy beams (6 MV and 23 MV) from a linear accelerator. Various dose rates are explored to identify the photodetectors operating ranges and accuracy. Results: For all photodetectors, the relative uncertainty remains under 5 % for dose rates over 3 mGy/s. The taper camera collects four times more signal than the optical lens camera, although its standard deviation is higher since it could not be cooled. The PIN, APD and PMT have higher sensitivity, suitable for low dose rate and out-of-field dose monitoring. PMT's relative uncertainty remains under 1 % at the lowest dose rate achievable (50 ?Gy/s), suggesting optimal use for live dosimetry. Conclusion: A set of 6 photodetectors have been studied over a broad dose rate range at various energies. For dose rate above 3 mGy/s, the PIN diode is the most effective photodetector in term of performance/cost ratio. For lower dose rate, such as those seen in interventional radiology, PMTs are the optimal choice. FQRNT Doctoral Research Scholarship.

  6. Thickness effects on the plastic collapse of perforated plates with triangular penetration patterns

    SciTech Connect (OSTI)

    Gordon, J.L.; Jones, D.P.; Holliday, J.E.

    2000-03-01

    This paper investigates the effects of plate thickness on the accuracy of limit load solutions obtained using an elastic-perfectly plastic [EPP] equivalent solid [EQS] procedure for flat perforated plates with a triangular array of penetrations. The EQS approach for limit loads is based on an EQS collapse surface that is valid for generalized plane strain. This assumption is applicable for very thick plates but is known to be less reasonable for very thin plates where plane stress may be a better assumption. The limits of applicability of the generalized plane strain assumption are investigated by obtaining limit load solutions for perforated plates of various thicknesses that are subjected to in-plane and bending loads. Plastic limit load solutions obtained using three-dimensional EPP finite element analysis [FEA] of models which include each penetration explicitly are compared with solutions obtained using the EQS approximation. The penetration pattern chosen for this study has a ligament efficiency (ligament width-to-pitch ratio, h/P) of 0.32. For plates thicker than the pitch, the limit load calculated using the EQS method for both in-plane and bending loads is shown to be very accurate (within 4%) of the limit load calculated for the explicit model. On the other hand, for thin plates (t/P< 2), the EQS limit load is 5% greater than the explicit limit load for bending and 8% greater than the explicit limit load for in-plane loads. For thinner plates, the collapse surface is tied to the local geometry deformation and, hence, an equivalent solid plate representation of plastic collapse is a function of deformation mode and thickness.

  7. Novel Material for Efficient and Low-cost Separation of Gases for Fuels and Plastics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material for Efficient and Low-Cost Separation of Gases for Fuels and Plastics Work was performed at University of California and supported by the Center for Gas Separations Relevant to Clean Energy Technologies EFRC. Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Science 2012, 335, 1606-1610 Left: Crystal structure of Fe 2 (dobdc)-ethylene showing Fe (orange), O(red), C(gray), and D(blue) atoms. The view along the [001] direction shows an ethylene molecule

  8. Structure and deformation behavior of Armco iron subjected to severe plastic deformation

    SciTech Connect (OSTI)

    Valiev, R.Z.; Rauch, E.F.; Baudelet, B.; Ivanisenko, Yu.V.

    1996-12-01

    Structural evolutions in an Armco iron subjected to severe plastic deformation by torsion under high pressure are analyzed with conventional and high resolution electron microscopes. The substructure observed at low strains appears to shrink with increasing deformation and transforms at very high strains into grain boundaries. The resulting grain size decreases down to a constant submicrometric value. Meanwhile, the material strength, as revealed by micro hardness measurements, levels out. Dislocation densities and internal stress levels are used to discuss the structural transformations. Hydrostatic pressure and deformation temperature are believed to modify the steady-state stress level and structural size by impeding the recovery processes involving diffusion.

  9. Sintering Kinetics of Inkjet Printed Conductive Silver Lines on Insulating Plastic Substrate

    SciTech Connect (OSTI)

    Zhou, Wenchao; List, III, Frederick Alyious; Duty, Chad E; Babu, Sudarsanam Suresh

    2015-01-24

    This paper focuses on sintering kinetics of inkjet printed lines containing silver nanoparticles deposited on a plastic substrate. Upon heat treatment, the change of resistance in the printed lines was measured as a function of time and sintering temperatures from 150 to 200 C. A critical temperature was observed for the sintering process, beyond which there was no further reduction in resistance. Analysis shows the critical temperature correlates to the boiling point of the solvent, which is attributed to a liquid-mediated sintering mechanism. It is demonstrated that the sintering process shuts down after the solvent has completely evaporated.

  10. Study of the plastic phases of norbornene and bicyclooctene by means of muonic radicals

    SciTech Connect (OSTI)

    Ricco, M.; Bucci, C.; De Renzi, R.; Guidi, G.; Podini, P.; Tedeschi, R.; Scott, C.A.

    1987-04-01

    We have observed the formation of muonium adduct radicals in norbornene and bicyclooctene. The behavior of the hyperfine constants and of the ..mu..SR linewidths have been investigated as a function of temperature; they have been correlated with the reorientational dynamics of the molecules, which have already been partially determined by means of Raman, NMR, and neutron scattering data. Our measurements have also been interpreted in terms of the electronic configuration of the radicals. In the case of norbornene at the plastic--brittle transition, an abrupt change of tau/sub c/ of 13 orders of magnitude was determined.

  11. An implementation of Hill's theory of normal anisotropic plasticity for explicit shell analysis

    SciTech Connect (OSTI)

    Whirley, R.G.; Engelmann, B.E.

    1991-08-20

    This paper summarizes the formulation and numerical implementation of a general anisotropic elastic-plastic material model for shell analysis. The 1948 Hill yield function is presented and specialized to conditions of plane stress. Next, an unconditionally stable and fully vectorized numerical algorithm for this constitutive model is presented. Finally, the model is specialized to conditions of normal anisotropy, and the implementation in DYNA3D is discussed. This development in material modeling should substantially extend the applicability of DYNA3D for many sheet metal forming applications. Several large-scale sheet metal forming examples are presented to illustrate these new analysis capabilities. 9 refs.

  12. An implementation of Hill`s theory of normal anisotropic plasticity for explicit shell analysis

    SciTech Connect (OSTI)

    Whirley, R.G.; Engelmann, B.E.

    1991-08-20

    This paper summarizes the formulation and numerical implementation of a general anisotropic elastic-plastic material model for shell analysis. The 1948 Hill yield function is presented and specialized to conditions of plane stress. Next, an unconditionally stable and fully vectorized numerical algorithm for this constitutive model is presented. Finally, the model is specialized to conditions of normal anisotropy, and the implementation in DYNA3D is discussed. This development in material modeling should substantially extend the applicability of DYNA3D for many sheet metal forming applications. Several large-scale sheet metal forming examples are presented to illustrate these new analysis capabilities. 9 refs.

  13. Technical, environmental, and economic evaluation of Plastic Media Blasting for paint stripping

    SciTech Connect (OSTI)

    Darvin, C.H.; Wilmoth, R.C.

    1987-01-01

    The U.S. Army Toxic and Hazardous Materials Agency and the U.S. EPA Water Engineering Research Laboratory cooperated to investigate the feasibility of Plastic Media Blasting (PMB) as a paint-removal technique for aluminum military shelters. The PMB process was compared in field tests with sandblasting and with chemical stripping to determine relative cost, effectiveness, efficiency, and environmental consequence. The PMB process was judged superior to the chemical-stripping process and marginally better than sandblasting based upon the evaluation criteria.

  14. Laser machined plastic laminates: Towards portable diagnostic devices for use in low resource environments

    SciTech Connect (OSTI)

    Harper, Jason C.; Carson, Bryan D.; Bachand, George D.; Arndt, William D.; Finley, Melissa R.; Brinker, C. Jeffrey; Edwards, Thayne L.

    2015-07-14

    Despite significant progress in development of bioanalytical devices cost, complexity, access to reagents and lack of infrastructure have prevented use of these technologies in resource-limited regions. To provide a sustainable tool in the global effort to combat infectious diseases the diagnostic device must be low cost, simple to operate and read, robust, and have sensitivity and specificity comparable to laboratory analysis. Thus, in this mini-review we describe recent work using laser machined plastic laminates to produce diagnostic devices that are capable of a wide variety of bioanalytical measurements and show great promise towards future use in low-resource environments.

  15. Laser machined plastic laminates. Towards portable diagnostic devices for use in low resource environments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harper, Jason C.; Carson, Bryan D.; Bachand, George D.; Arndt, William D.; Finley, Melissa R.; Brinker, C. Jeffrey; Edwards, Thayne L.

    2015-07-14

    Despite significant progress in development of bioanalytical devices cost, complexity, access to reagents and lack of infrastructure have prevented use of these technologies in resource-limited regions. To provide a sustainable tool in the global effort to combat infectious diseases the diagnostic device must be low cost, simple to operate and read, robust, and have sensitivity and specificity comparable to laboratory analysis. Thus, in this mini-review we describe recent work using laser machined plastic laminates to produce diagnostic devices that are capable of a wide variety of bioanalytical measurements and show great promise towards future use in low-resource environments.

  16. ARM - VAP Product - armbestns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Products : ARMBESTNS Measurements The measurements below provided by this product are those considered scientifically relevant. Atmospheric moisture Atmospheric...

  17. Evaluation of density separation and other treatment methods for plastic media blasting (PMB) waste

    SciTech Connect (OSTI)

    Spence, R.D.; Morgan, I.L.; Trotter, D.R.

    1995-05-01

    The United States Air Force has developed plastic media blasting (PMB) to replace solvent paint stripping of its aircraft. This paint blasting operation generates a waste stream of mainly pulverized plastic, but the stream also contains enough paint pigments to make the PMB waste RCRA hazardous. A Phase I study identified density separation as the preferred treatment alternative to land disposal of the entire PMB waste stream in a hazardous landfill. This study found density separation to be a less attractive alternative to self-encapsulation, solidification/stabilization (S/S), and low-temperature ashing. Self-encapsulation resulted in a volume decrease but only moderate improvement in Toxicity Characteristic Leaching Procedure (TCLP) performance Solidification/Stabilization (S/S) into cementiaous waste for resulted in excellent TCLP performances, but volume increases. Low-temperature ashing resulted in dramatic volume decreases, but off-gas control is required to contain all the RCRA metals. The resulting ash must be stabilized (e.g., S/S) to meet TCLP limits.

  18. Neutron response characterization for an EJ299-33 plastic scintillation detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lawrence, Chris C.; Febbraro, Michael; Massey, Thomas N.; Flaska, Marek; Becchetti, F. D.; Pozzi, Sara A.

    2014-05-10

    Organic scintillation detectors have shown promise as neutron detectors for characterizing special nuclear materials in various arms-control and homeland security applications. Recent advances have yielded a new plastic scintillator - EJ299-33 - with pulse-shape-discrimination (PSD) capability. Plastic scintillators would have a much expanded range of deployment relative to liquids and crystals. Here, we present a full characterization of pulse height response to fission-energy neutrons for an EJ299-33 detector with 7.62-by-7.62-cm cylindrical active volume, and compare with an EJ309 liquid scintillator in the same assembly. Scintillation light output relations, energy resolutions, and response matrices are presented for both detectors. A Continuousmore » spectrum neutron source, obtained via the bombardment of Al-27 with 7.44-MeV deuterons at the Edwards Accelerator Facility at Ohio University, was used for the measurement. A new procedure for evaluating and comparing PSD performance is presented which accounts for the effect of the light output relation on the ability to detect low energy neutrons. The EJ299-33 is shown to have considerable deficit in matrix condition, and in PSD figure of merit when compared to EJ309, especially when neutron energy is taken into account. Furthermore the EJ299 is likely to bring a modest PSD capability into a array of held applications that are not accessible to liquids or crystals. (C) 2014 Elsevier B.V. All rights reserved. Keywords« less

  19. Strain rate, temperature and representative length scale influence on plasticity and yield stress in copper

    SciTech Connect (OSTI)

    Dupont, Virginie; Germann, Timothy C

    2011-01-18

    Shock compression of materials constitutes a complex process involving high strain rates, elevated temperatures and compression of the lattice. Materials properties are greatly affected by temperature, the representative length scale and the strain rate of the deformation. Experimentally, it is difficult to study the dynamic microscopic mechanisms that affect materials properties following high intensity shock loading, but they can be investigated using molecular dynamics (MD) simulations. Moreover, MD allows a better control over some parameters. We are using MD simulations to study the effect of the strain rate, representative length scale and temperature on the properties of metals during compression. A half-million-atom Cu sample is subjected to strain rates ranging from 10{sup 7} s{sup -1} to 10{sup 12} s{sup -1} at different temperatures ranging from 50K to 1500K. Single crystals as well as polycrystals are investigated. Plasticity mechanisms as well as the evolution of the micro- and macro-yield stress are observed. Our results show that the yield stress increases with increasing strain rate and decreasing temperature. We also show that the strain rate at which the transition between constant and increasing yield stress as a function of the temperature occurs increases with increasing temperature. Calculations at different grain sizes will give an insight into the grain size effect on the plasticity mechanisms and the yield stress.

  20. Elementary model of severe plastic deformation by KoBo process

    SciTech Connect (OSTI)

    Gusak, A.; Storozhuk, N.; Danielewski, M. Korbel, A.; Bochniak, M.

    2014-01-21

    Self-consistent model of generation, interaction, and annihilation of point defects in the gradient of oscillating stresses is presented. This model describes the recently suggested method of severe plastic deformation by combination of pressure and oscillating rotations of the die along the billet axis (KoBo process). Model provides the existence of distinct zone of reduced viscosity with sharply increased concentration of point defects. This zone provides the high extrusion velocity. Presented model confirms that the Severe Plastic Deformation (SPD) in KoBo may be treated as non-equilibrium phase transition of abrupt drop of viscosity in rather well defined spatial zone. In this very zone, an intensive lateral rotational movement proceeds together with generation of point defects which in self-organized manner make rotation possible by the decrease of viscosity. The special properties of material under KoBo version of SPD can be described without using the concepts of nonequilibrium grain boundaries, ballistic jumps and amorphization. The model can be extended to include different SPD processes.

  1. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gerbig, Yvonne B.; Michaels, C. A.; Bradby, Jodie E.; Haberl, Bianca; Cook, Robert F.

    2015-12-17

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique (IIT). The occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were observed. Furthermore, the obtained experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a model for the deformation behavior of a-Si under indentation loading.

  2. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOE Patents [OSTI]

    Abney, K.D.; Kinkead, S.A.; Mason, C.F.V.; Rais, J.

    1997-09-09

    Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  3. Plastic Pollution Research and Control Act. House of Representatives, One Hundredth Congress, First Session, October 8, 1987

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The House report on H.R. 940 recommends passage with amendments to a bill designed to regulate the sea disposal of plastic materials. The bill addresses domestic garbage management and implements an international agreement regulating the disposal of ship garbage disposal. The report includes the amended text of the Act, a summary of the background and legislative history. Title I deals with disposal from ships and the MARPOL Convention; Title II, the problem of plastic driftnet fishing. The report concludes with changes which the bill will impose on existing law, penalties for violations, and legal actions available under the Act.

  4. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOE Patents [OSTI]

    Abney, Kent D.; Kinkead, Scott A.; Mason, Caroline F. V.; Rais, Jiri

    1997-01-01

    Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  5. Biological production of products from waste gases

    DOE Patents [OSTI]

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  6. Covered Product Category: Cool Roof Products

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including cool roof products, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  7. Capacitance probe for detection of anomalies in non-metallic plastic pipe

    DOE Patents [OSTI]

    Mathur, Mahendra P.; Spenik, James L.; Condon, Christopher M.; Anderson, Rodney; Driscoll, Daniel J.; Fincham, Jr., William L.; Monazam, Esmail R.

    2010-11-23

    The disclosure relates to analysis of materials using a capacitive sensor to detect anomalies through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor in order to generate a capacitance versus location output which may be inspected for the detection and localization of anomalies within the material under test. The components may be carried as payload on an inspection vehicle which may traverse through a pipe interior, allowing evaluation of nonmetallic or plastic pipes when the piping exterior is not accessible. In an embodiment, supporting components are solid-state devices powered by a low voltage on-board power supply, providing for use in environments where voltage levels may be restricted.

  8. Plastic shrinkage of mortars with shrinkage reducing admixture and lightweight aggregates studied by neutron tomography

    SciTech Connect (OSTI)

    Wyrzykowski, Mateusz; Trtik, Pavel; Münch, Beat; Weiss, Jason; Vontobel, Peter; Lura, Pietro

    2015-07-15

    Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested. The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.

  9. Hugoniot and mean ionization of laser-shocked Ge-doped plastic

    SciTech Connect (OSTI)

    Huser, G.; Salin, G.; Galmiche, D.; Ozaki, N.; Kodama, R.; Photons Pioneers Center, Osaka University, Suita, Osaka 565-0871 ; Sano, T.; Sakawa, Y.; Miyanishi, K.; Asaumi, Y.; Kita, M.; Kondo, Y.; Nakatsuka, K.; Uranishi, H.; Yang, T.; Yokoyama, N.

    2013-12-15

    Pressure, density, temperature, and reflectivity measurements along the principal Hugoniot of Ge-doped plastics used in Inertial Confinement Fusion capsules surrogates were obtained to pressures reaching up to 7 Mbar and compared to Quotidian Equation of State models. The experiment was performed using the GEKKO XII laser at the Institute of Laser Engineering at Osaka University in Japan. High precision measurements of pressure and density were obtained using a quartz standard and found to be in good agreement with theoretical Hugoniot curves. Modeling of reflectivity measurements show that shocked samples can be described as poor metals and that mean ionization calculated within the frame of QEOS is overestimated. Similarly, shock temperatures were found to be below theoretical Hugoniot curves.

  10. Formation of conductive copper lines by femtosecond laser irradiation of copper nitride film on plastic substrates

    SciTech Connect (OSTI)

    Xu, Xiaodong; Yuan, Ningyi; Qiu, Jianhua; Ding, Jianning

    2015-05-15

    In this paper, we report a simple method to form conductive copper lines by scanning a single-beam femtosecond pulse laser on a plastic substrate covered with copper nitride (Cu{sub 3}N) film. The Cu{sub 3}N films were prepared by DC magnetron sputtering in the presence of an Ar + N{sub 2} atmosphere at 100 °C. The influence of the laser power and scanning speed on the formed copper line width, surface features, and morphology was analyzed by means of optical microscopy, X-ray diffraction, non-contact 3D profilometer, and scanning electron microscopy. The experimental results demonstrate that low laser power and low scanning speed favor the formation of uniform and flat Cu lines. After process optimization, copper lines with a width less than 5 μm were obtained, which provides an attractive application prospect in the field of flexible electronic devices.

  11. Elevated Temperature Primary Load Design Method Using Pseudo Elastic-Perfectly Plastic Model

    SciTech Connect (OSTI)

    Carter, Peter; Sham, Sam; Jetter, Robert I

    2012-01-01

    A new primary load design method for elevated temperature service has been developed. Codification of the procedure in an ASME Boiler and Pressure Vessel Code, Section III Code Case is being pursued. The proposed primary load design method is intended to provide the same margins on creep rupture, yielding and creep deformation for a component or structure that are implicit in the allowable stress data. It provides a methodology that does not require stress classification and is also applicable to a full range of temperature above and below the creep regime. Use of elastic-perfectly plastic analysis based on allowable stress with corrections for constraint, steady state stress and creep ductility is described. This approach is intended to ensure that traditional primary stresses are the basis for design, taking into account ductility limits to stress re-distribution and multiaxial rupture criteria.

  12. Kinetic temperatures of iron ions in the solar wind observed with STEREO/PLASTIC

    SciTech Connect (OSTI)

    Bochsler, Peter; Lee, Martin A.; Popecki, Mark A.; Galvin, Antoinette B.; Kistler, Lynn M.; Moebius, Eberhard; Farrugia, Charles J.; Kucharek, Harald; Simunac, Kristin D. C.; Karrer, Reto; Blush, Lisa M.; Daoudi, Hagar; Wurz, Peter; Klecker, Berndt; Wimmer-Schweingruber, Robert F.; Thompson, Barbara; Luhmann, Janet G.; Jian, Lan K.; Russell, Christopher T.; Opitz, Andrea

    2010-03-25

    STEREO/PLASTIC provides detailed information on the three-dimensional velocity distributions of solar wind iron ions with a time resolution of 5 minutes. In general the distributions at 1 AU contain complicated structures showing persistence over several records, i.e., over intervals of up to 30 minutes, but no clear correlation of the properties of these distributions with the direction of the ambient magnetic field is evident. We have performed a statistical analysis using nearly 9000 observations. Iron ions follow the same trends as protons, alpha particles, and electrons: The ratio T{sub perpendicular}/T{sub ||} seems to be limited by the ion cyclotron instability, whereas T{sub ||} /T{sub perpendicular} is bounded by the firehose instability.

  13. High-rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation

    SciTech Connect (OSTI)

    Rudd, R E

    2009-02-05

    Recent advances in the ability to generate extremes of pressure and temperature in dynamic experiments and to probe the response of materials has motivated the need for special materials optimized for those conditions as well as a need for a much deeper understanding of the behavior of materials subjected to high pressure and/or temperature. Of particular importance is the understanding of rate effects at the extremely high rates encountered in those experiments, especially with the next generation of laser drives such as at the National Ignition Facility. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum to investigate the processes associated with plastic deformation for strains up to 100%. We use initial atomic configurations that were produced through simulations of solidification in the work of Streitz et al [Phys. Rev. Lett. 96, (2006) 225701]. These 3D polycrystalline systems have typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures.

  14. Grid-based Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid-based Production Grid-based Production PDSF is a Tier 2 site for ALICE and as such has the infrastructure in place to run automated grid-based ALICE production jobs. The main...

  15. Prediction of the Elastic-Plastic Stress/Strain Response for Injection-Molded Long-Fiber Thermoplastics

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Kunc, Vlastimil; Phelps, Jay; Tucker III, Charles L.

    2009-01-26

    This paper proposes a model to predict the elastic-plastic response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the elastic-plastic behavior obeying the Ramberg-Osgood relation and J-2 deformation theory of plasticity. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber orientation was predicted using the anisotropic rotary diffusion model recently developed by Phelps and Tucker for LFTs. An incremental procedure using the Eshelbys equivalent inclusion method and the Mori-Tanaka model is proposed to compute the overall stress increment resulting from an overall strain increment for an aligned fiber composite that contains the same fiber volume fraction and length distribution as the actual composite. The incremental response of the later is then obtained from the solution for the aligned fiber composite that is averaged over all possible fiber orientations using the orientation averaging method. Failure during incremental loading is predicted using the Van Hattum-Bernado model. The elastic-plastic and strength prediction model for LFTs was validated against the experimental stress-strain results obtained for long glass fiber/polypropylene specimens.

  16. In situ measurements of a homogeneous to heterogeneous transition in the plastic response of ion-irradiated Ni microspecimens

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, Xinyu; Strickland, Daniel J.; Derlet, Peter M.; He, Mo-rigen; Cheng, You -Jung; Pu, Jue; Stanford Univ., Stanford, CA; Hattar, Khalid; Gianola, Daniel S.

    2015-02-11

    We report on the use of quantitative in situ microcompression experiments in a scanning electron microscope to systematically investigate the effect of self-ion irradiation damage on the full plastic response of Ni. In addition to the well-known irradiationinduced increases in the yield and flow strengths with increasing dose, we measure substantial changes in plastic flow intermittency behavior, manifested as stress drops accompanying energy releases as the driven material transits critical states. At low irradiation doses, the magnitude of stress drops reduces relative to the unirradiated material and plastic slip proceeds on multiple slip systems, leading to quasi-homogeneous plastic flow.more »In contrast, highly irradiated specimens exhibit pronounced shear localization on parallel slip planes, which we ascribe to the onset of defect free channels normally seen in bulk irradiated materials. Our in situ testing system and approach allows for a quantitative study of the energy release and dynamics associated with defect free channel formation and subsequent localization. As a result, this study provides fundamental insight to the nature of interactions between mobile dislocations and irradiation-mediated and damage-dependent defect structures.« less

  17. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE)

    SciTech Connect (OSTI)

    Stenvall, Erik; Tostar, Sandra; Boldizar, Antal; Foreman, Mark R.StJ.; Mller, Kenneth

    2013-04-15

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrilebutadienestyrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive.

  18. Yield stress and plasticity of nanostructured titanium of different purity at 300, 77, and 4.2 K

    SciTech Connect (OSTI)

    Tabachnikova, E. D. Bengus, V. Z.; Podol'skii, A. V.; Smirnov, S. N.; Valiev, R. Z.

    2009-11-15

    Specimens of nanostructured titanium with different dopant concentrations were prepared by intense plastic deformation via equal-channel-angular pressing. The low-temperature mechanical characteristics of the specimens subjected to active deformation under uniaxial tension and compression were studied. The yield stress and the limit uniform deformation of nanostructured and coarse-grained polycrystalline titanium were compared.

  19. A model for plasticity kinetics and its role in simulating the dynamic behavior of Fe at high strain rates

    SciTech Connect (OSTI)

    Colvin, J D; Minich, R W; Kalantar, D H

    2007-03-29

    The recent diagnostic capability of the Omega laser to study solid-solid phase transitions at pressures greater than 10 GPa and at strain rates exceeding 10{sup 7} s{sup -1} has also provided valuable information on the dynamic elastic-plastic behavior of materials. We have found, for example, that plasticity kinetics modifies the effective loading and thermodynamic paths of the material. In this paper we derive a kinetics equation for the time-dependent plastic response of the material to dynamic loading, and describe the model's implementation in a radiation-hydrodynamics computer code. This model for plasticity kinetics incorporates the Gilman model for dislocation multiplication and saturation. We discuss the application of this model to the simulation of experimental velocity interferometry data for experiments on Omega in which Fe was shock compressed to pressures beyond the {alpha}-to-{var_epsilon} phase transition pressure. The kinetics model is shown to fit the data reasonably well in this high strain rate regime and further allows quantification of the relative contributions of dislocation multiplication and drag. The sensitivity of the observed signatures to the kinetics model parameters is presented.

  20. In situ measurements of a homogeneous to heterogeneous transition in the plastic response of ion-irradiated <111> Ni microspecimens

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, Xinyu; Strickland, Daniel J.; Derlet, Peter M.; He, Mo-rigen; Cheng, You -Jung; Pu, Jue; Stanford Univ., Stanford, CA; Hattar, Khalid; Gianola, Daniel S.

    2015-02-11

    We report on the use of quantitative in situ microcompression experiments in a scanning electron microscope to systematically investigate the effect of self-ion irradiation damage on the full plastic response of <111> Ni. In addition to the well-known irradiationinduced increases in the yield and flow strengths with increasing dose, we measure substantial changes in plastic flow intermittency behavior, manifested as stress drops accompanying energy releases as the driven material transits critical states. At low irradiation doses, the magnitude of stress drops reduces relative to the unirradiated material and plastic slip proceeds on multiple slip systems, leading to quasi-homogeneous plastic flow.more » In contrast, highly irradiated specimens exhibit pronounced shear localization on parallel slip planes, which we ascribe to the onset of defect free channels normally seen in bulk irradiated materials. Our in situ testing system and approach allows for a quantitative study of the energy release and dynamics associated with defect free channel formation and subsequent localization. As a result, this study provides fundamental insight to the nature of interactions between mobile dislocations and irradiation-mediated and damage-dependent defect structures.« less

  1. ,"Weekly Blender Net Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Production of Finished Motor Gasoline (Thousand Barrels per Day)","Weekly East Coast (PADD 1) Blender Net Production of Finished Motor Gasoline (Thousand Barrels per ...

  2. Production | Department of Energy

    Energy Savers [EERE]

    Research & Development Algal Biofuels Production Production PNNL image Algae ... growth rate and high oil content, that make algae attractive to convert into biofuels. ...

  3. J/ψ Production

    Office of Scientific and Technical Information (OSTI)

    National Laboratory, Berkeley, California 94720, USA (Dated: October 30, 2006) We study J production at RHIC and LHC energies with both initial production and regener- ation. ...

  4. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel (B100) production by Petroleum Administration for Defense District (PADD) ... Source: U.S. Energy Information Administration, Form EIA-22M "Monthly Biodiesel Production ...

  5. Evaluation of plastic materials for range shifting, range compensation, and solid-phantom dosimetry in carbon-ion radiotherapy

    SciTech Connect (OSTI)

    Kanematsu, Nobuyuki; Koba, Yusuke; Ogata, Risa

    2013-04-15

    Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. In dosimetry, solid phantoms are often used for convenience. These materials should ideally be equivalent to water. In this study, the authors evaluated dosimetric water equivalence of four common plastics, high-density polyethylene (HDPE), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polyoxymethylene (POM). Methods: Using the Bethe formula for energy loss, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, the authors calculated the effective densities of the plastics for these interactions. The authors experimentally measured variation of the Bragg peak of carbon-ion beams by insertion of HDPE, PMMA, and POM, which were compared with analytical model calculations. Results: The theoretical calculation resulted in slightly reduced multiple scattering and severely increased nuclear interactions for HDPE, compared to water and the other plastics. The increase in attenuation of carbon ions for 20-cm range shift was experimentally measured to be 8.9% for HDPE, 2.5% for PMMA, and 0.0% for POM while PET was theoretically estimated to be in between PMMA and POM. The agreement between the measurements and the calculations was about 1% or better. Conclusions: For carbon-ion beams, POM was dosimetrically indistinguishable from water and the best of the plastics examined in this study. The poorest was HDPE, which would reduce the Bragg peak by 0.45% per cm range shift, although with marginal superiority for reduced multiple scattering. Between the two clear plastics, PET would be superior to PMMA in dosimetric water equivalence.

  6. Transmission Losses Product (pbl/products)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Smoothing and Intertie Service (Pilot) Firstgov Pricing for Transmission Losses Product Bonneville Power Administration (BPA) Power Services offers to sell transmission...

  7. SCIENCE; 99 GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING...

    Office of Scientific and Technical Information (OSTI)

    ZIRCONIUM ALLOYS; ZIRCONIUM BASE ALLOYS 360100* -- Metals & Alloys; 570000 -- Health & Safety Massive zirconium metal scrap can be handled, shipped, and stored with no...

  8. ,"Miscellaneous Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  9. Miscellaneous Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    349 363 393 233 188 185 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 271 353 270 219 169 167 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease ...

  10. Miscellaneous Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 5 0 1 0 0 2009-2014 Extensions 0 1 6 5 4 1 2009-2014 New Field Discoveries 0 0 0 0 0 2 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 2 2009-2014 ...

  11. Miscellaneous Associated-Dissolved Natural Gas Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 0 0 0 0 0 2000-2014 Extensions 0 2 0 0 0 0 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 ...

  12. Miscellaneous Shale Gas Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    58 134 121 75 52 25 2007-2013 Adjustments 23 0 49 5 0 2009-2013 Revision Increases 4 17 19 76 3 2009-2013 Revision Decreases 22 77 27 9 29 2009-2013 Sales 0 11 89 14 0 2009-2013...

  13. BTO Seeks Your Participation to Discuss Miscellaneous Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It's an area with a large opportunity space for energy savings of interest to the office - and we want your perspective BTO is seeking experts from across the power electronics ...

  14. Kelkar, S. 15 GEOTHERMAL ENERGY; 99 GENERAL AND MISCELLANEOUS...

    Office of Scientific and Technical Information (OSTI)

    SYSTEMS; FINITE ELEMENT METHOD; HEAT TRANSFER; MASS TRANSFER; MULTIPHASE FLOW; POROUS MATERIALS; COMPUTER CODES; ENERGY SYSTEMS; ENERGY TRANSFER; FLUID FLOW; GEOTHERMAL...

  15. GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION...

    Office of Scientific and Technical Information (OSTI)

    ENERGY; LMFBR TYPE REACTORS; NUCLEAR POWER; PHYSICS; BREEDER REACTORS; CARBONACEOUS MATERIALS; DOCUMENT TYPES; ENERGY; ENERGY SOURCES; EPITHERMAL REACTORS; FAST REACTORS; FBR...

  16. Miscellaneous States Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    PEAK OIL DEBATE As The EIA Turns 30 EIA 2008 Energy Conference Washington, DC April 7, 2008 By: Matthew R. Simmons, Chairman Simmons & Company International EIA 2008 Energy Conference Washington, DC April 7, 2008 By: Matthew R. Simmons, Chairman Simmons & Company International SIMMONS & COMPANY INTERNATIONAL Should We Debate "Peak Oil" Should We Debate "Peak Oil" n Oil seems non-renewable. n High percentage comes from "mature fields." n High percentage

  17. Bennett, J. 36 MATERIALS SCIENCE; 99 GENERAL AND MISCELLANEOUS...

    Office of Scientific and Technical Information (OSTI)

    METHOD; MATHEMATICAL MODELS; CARBON; COMPUTER CODES; ELEMENTAL MINERALS; ELEMENTS; MECHANICAL PROPERTIES; MINERALS; NONMETALS; NUMERICAL SOLUTION 360203* -- Ceramics, Cermets, &...

  18. methods. Dohner, Jeffrey Lynn 99 GENERAL AND MISCELLANEOUS//MATHEMATIC...

    Office of Scientific and Technical Information (OSTI)

    potential. This discussion then goes on to presented a limited presentation as to how energy methods and Bayesian estimation are used together to qualify components. Example...

  19. ELECTROMOTIVE FORCE, EMF (CELLS) (Miscellaneous) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 1998-09-16 OSTI Identifier: 760971 Report Number(s): BNL--65847; KC030101 R&D Project: AS002CSD; KC030101; TRN: AH200035%%46 DOE Contract Number: AC02-98CH10886 ...

  20. GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION...

    Office of Scientific and Technical Information (OSTI)

    PC-1D installation manual and user's guide Basore, P.A. 14 SOLAR ENERGY; 99 GENERAL AND MISCELLANEOUSMATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; 42 ENGINEERING; CHARGE...

  1. KNUPP,PATRICK 99 GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING...

    Office of Scientific and Technical Information (OSTI)

    DIFFERENTIAL EQUATIONS; VERIFICATION; COMPUTER CODES; NUMERICAL SOLUTION; FLUID MECHANICS A procedure for code Verification by the Method of Manufactured Solutions (MMS) is...

  2. Analysis and Representation of Miscellaneous Electric Loads in NEMS -

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration Analysis & Projections Glossary › FAQS › Overview Projection Data Monthly short-term forecasts to 2016 Annual projections to 2040 International projections All projections reports Analysis & Projections Major Topics Most popular Annual Energy Outlook related Congressional & other requests International Energy Outlook related Presentations Recurring Short-Term Outlook Related Special outlooks Testimony All reports Browse by Tag Alphabetical

  3. ,"Miscellaneous States Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet ... States Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic ...

  4. ,"Miscellaneous States Nonassociated Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  5. Incorporating physically-based microstructures in materials modeling: Bridging phase field and crystal plasticity frameworks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lim, Hojun; Abdeljawad, Fadi; Owen, Steven J.; Hanks, Byron W.; Foulk, James W.; Battaile, Corbett C.

    2016-04-25

    Here, the mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FEmore » meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.« less

  6. Tensile strength of fiber reinforced plastics at 77K irradiated by various radiation sources

    SciTech Connect (OSTI)

    Humer, K.; Weber, H.W.; Tschegg, E.K.; Egusa, S.; Birtcher, R.C.; Gerstenberg, H.

    1993-08-01

    The influence of radiation damage on the mechanical properties of fiber reinforced plastics (FRPs), which are considered as candidate materials for the insulation of superconducting magnets for nuclear fusion reactors, has been investigated. Different types of FRPs (epoxies, bismaleimides; two- and three-dimensional reinforcement structures with E-, S-, or T-glass fibers) has been included in the test program. Three aspects of our present results will be discussed in detail. The first is related to an assessment of the tensile strength and its radiation dependence under the influence of strongly varying radiation conditions. The second aspect refers to low temperature ({approx}5 K) reactor irradiation of selected materials. In this case, identical sets of tensile test samples were transferred into the tensile testing machine, one without warming-up to room temperature and the other after an annealing cycle to room temperature. Finally, a comparison between the radiation response of different materials is made. It turns out that the three-dimensionally reinforced bismaleimide shows the smallest degradation of its tensile properties under all irradiation conditions.

  7. Crystal Plasticity Analysis of Stress Partitioning Mechanisms and Their Microstructural Dependence in Advanced Steels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pu, Chao; Gao, Yanfei

    2015-01-23

    Two-phase advanced steels contain an optimized combination of high yield strength and large elongation strain at failure, as a result of stress partitioning between a hard phase (martensite) and a ductile phase (ferrite or austenite). Provided with strong interfaces between the constituent phases, the failure in the brittle martensite phase will be delayed by the surrounding geometric constraints, while the rule of mixture will dictate a large strength of the composite. To this end, the microstructural design of these composites is imperative especially in terms of the stress partitioning mechanisms among the constituent phases. Based on the characteristic microstructures ofmore » dual phase and multilayered steels, two polycrystalline aggregate models are constructed to simulate the microscopic lattice strain evolution of these materials during uniaxial tensile tests. By comparing the lattice strain evolution from crystal plasticity finite element simulations with advanced in situ diffraction measurements in literature, this study investigates the correlations between the material microstructure and the micromechanical interactions on the intergranular and interphase levels. Finally, it is found that although the applied stress will be ultimately accommodated by the hard phase and hard grain families, the sequence of the stress partitioning on grain and phase levels can be altered by microstructural designs. Implications of these findings on delaying localized failure are also discussed.« less

  8. Residual stress and plastic anisotropy in indented 2024-T351 aluminum disks

    SciTech Connect (OSTI)

    Clausen, Bjorn; Prime, Michael B; Saurabh, Kabra; Brown, Donald W; Pagliaro, Pierluigi; Backlund, Peter; Shaw, Sanjiv; Criss, Everett

    2009-01-01

    Recent studies have proven that generating a well defined residual stress state using the indented disk approach is an excellent way to validate experimental and modeling techniques for measuring and predicting residual stresses. The previous studies dealt with indented stainless steel disks, and included experimental determination of residual stresses using the Contour Method and neutron diffraction measurements. The measured residual stress states showed good agreement between the techniques, and a Finite Element Model predicted residual stress state based upon material properties determined form standard tension and compression/tension tests was also in good agreement with the measurements. In the present work, disks of 2024-T351 Aluminum were investigated. As before, the residual stress profile was measured using neutron diffraction and the Contour Method and Finite Element Modeling was employed to predict the residual stress profile. Analysis and comparison of the three techniques were complicated by the fact that the experimental data shows evidence of plastic anisotropy and strong Bauschinger effect within the indented disks.

  9. Incineration of residue from paint stripping operations using plastic media blasting

    SciTech Connect (OSTI)

    Helt, J.E.; Mallya, N.

    1988-01-01

    A preliminary investigation has been performed on the environmental consequences of incinerating plastic-media-blasting (PMB) wastes from plant removal operations. PMB is similar to sandblasting although blasting taken place at a much lower pressure. The blasted media can be recovered and recycled several times, but ultimately a residue of paint dust/chips and attrited media dust are left for disposal. This residue is a dry solid that may potentially be classified as a hazardous waste. One possible alternative to depositing the waste residue directly into a hazardous waste landfill is incineration. Incineration would provide desirable volume reduction. However, the fate of heavy metals from the entrained paint waste is not known. Samples of PMB residue were combusted at temperatures between 690/degree/C and 815/degree/C with approximately 125% of the stoichiometric air. The ash remaining after combustion was then analyzed for heavy metal content and tested for leachability using the EPA toxicity characteristics leaching procedures (TCLP). 6 refs., 7 tabs.

  10. In-situ characterization of transformation plasticity during an isothermal austenite-to-bainite phase transformation

    SciTech Connect (OSTI)

    Holzweissig, M.J.; Canadinc, D.; Maier, H.J.

    2012-03-15

    This paper elucidates the stress-induced variant selection process during the isothermal austenite-to-bainite phase transformation in a tool steel. Specifically, a thorough set of experiments combining electron backscatter diffraction and in-situ digital image correlation (DIC) was carried out to establish the role of superimposed stress level on the evolution of transformation plasticity (TP) strains. The important finding is that TP increases concomitant with the superimposed stress level, and strain localization accompanies phase transformation at all stress levels considered. Furthermore, TP strain distribution within the whole material becomes more homogeneous with increasing stress, such that fewer bainitic variants are selected to grow under higher stresses, yielding a more homogeneous strain distribution. In particular, the bainitic variants oriented along [101] and [201] directions are favored to grow parallel to the loading axis and are associated with large TP strains. Overall, this very first in-situ DIC investigation of the austenite-to-bainite phase transformation in steels evidences the clear relationship between the superimposed stress level, variant selection, and evolution of TP strains. - Highlights: Black-Right-Pointing-Pointer Local variations of strain were observed by DIC throughout the phase transformation. Black-Right-Pointing-Pointer The study clearly established the role of the stress-induced variant selection. Black-Right-Pointing-Pointer Variant selection is a key parameter that governs distortion.

  11. Extraction of depth-dependent perturbation factors for silicon diodes using a plastic scintillation detector

    SciTech Connect (OSTI)

    Lacroix, Frederic; Guillot, Mathieu; McEwen, Malcolm; Gingras, Luc; Beaulieu, Luc

    2011-10-15

    Purpose: This work presents the experimental extraction of the perturbation factor in megavoltage electron beams for three models of silicon diodes (IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded) using a plastic scintillation detector (PSD). Methods: The authors used a single scanning PSD mounted on a high-precision scanning tank to measure depth-dose curves in 6-, 12-, and 18-MeV clinical electron beams. They also measured depth-dose curves using the IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded diodes. The authors used the depth-dose curves measured with the PSD as a perturbation-free reference to extract the perturbation factors of the diodes. Results: The authors found that the perturbation factors for the diodes increased substantially with depth, especially for low-energy electron beams. The experimental results show the same trend as published Monte Carlo simulation results for the EFD diode; however, the perturbations measured experimentally were greater. They found that using an effective point of measurement (EPOM) placed slightly away from the source reduced the variation of perturbation factors with depth and that the optimal EPOM appears to be energy dependent. Conclusions: The manufacturer recommended EPOM appears to be incorrect at low electron energy (6 MeV). In addition, the perturbation factors for diodes may be greater than predicted by Monte Carlo simulations.

  12. Improved ductility of a transformation-induced-plasticity steel by nanoscale austenite lamellae

    SciTech Connect (OSTI)

    Shen, Yongfeng; liu, Yandong; Sun, Xin; Wang, Y. D.; Zuo, Liang; Misra, R. D. K.

    2013-07-02

    TRIP (transformation-induced-plasticity) steel with a chemical composition of 0.19C0.30Si1.76Mn1.52Al (weight percentage, wt.%) have been treated by intercritical annealing and austempering process. The microstructures of the obtained samples consist of the ferrite, the bainite and the retained austenite phase. The volume fractions of the bainite and the retained austenite gradually increase with increasing the temperature of the intercritical annealing. Consequently, significantly different mechanical properties have been observed. The sample annealed at 820C (for 120s) and partitioned at 400C (for 300s) has the best combination of ultimate tensile strength (UTS, ~682 MPa) and elongation to failure (~70%) with about 26% of bainitic ferrite plates and 17% retained austenite in its microstructure. The retained austenite has a lamella morphology with 100300 nm in thickness and 25 ?m in length. On the contrary, the sample annealed at the same temperature without the partitioning process yields much lower UTS and elongation to failure.

  13. On the Properties of Plastic Ablators in Laser-Driven Material Dynamics Experiments

    SciTech Connect (OSTI)

    Swift, D C; Kraus, R G

    2007-11-15

    Radiation hydrodynamics simulations were used to study the effect of plastic ablators in laser-driven shock experiments. The sensitivity to composition and equation of state was found to be 5-10% in ablation pressure. As was found for metals, a laser pulse of constant irradiance gave a pressure history which decreased by several percent per nanosecond. The pressure history could be made more constant by adjusting the irradiance history. The impedance mismatch with the sample gave an increase o(100%) in the pressure transmitted into the sample, for a reduction of several tens of percent in the duration of the peak load applied to the sample, and structured the release history by adding a release step to a pressure close to the ablation pressure. Algebraic relations were found between the laser pulse duration, the ablator thickness, and the duration of the peak pressure applied to the sample, involving quantities calculated from the equations of state of the ablator and sample using shock dynamics.

  14. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    SciTech Connect (OSTI)

    Choudhary, Shashank E-mail: mohantejesh93@gmail.com E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Tejesh, Chiruvolu Mohan E-mail: mohantejesh93@gmail.com E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Regalla, Srinivasa Prakash E-mail: mohantejesh93@gmail.com E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Suresh, Kurra E-mail: mohantejesh93@gmail.com E-mail: ksuresh@hyderabad.bits-pilani.ac.in

    2013-12-16

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.

  15. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    SciTech Connect (OSTI)

    Nigrey, P.J.; Dickens, T.G.

    1995-12-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.

  16. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    SciTech Connect (OSTI)

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  17. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; Ma, Dong; Gao, Yanfei F.; Bei, Hongbin

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulatingmore » internal strain fields in BMGs for the purpose of ductility enhancement.« less

  18. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    SciTech Connect (OSTI)

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; Ma, Dong; Gao, Yanfei F.; Bei, Hongbin

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulating internal strain fields in BMGs for the purpose of ductility enhancement.

  19. Prediction of Gas Leak Tightness of Superplastically Formed Products

    SciTech Connect (OSTI)

    Snippe, Corijn H. C.; Meinders, T.

    2010-06-15

    In some applications, in this case an aluminium box in a subatomic particle detector containing highly sensitive detecting devices, it is important that a formed sheet should show no gas leak from one side to the other. In order to prevent a trial-and-error procedure to make this leak tight box, a method is set up to predict if a formed sheet conforms to the maximum leak constraint. The technique of superplastic forming (SPF) is used in order to attain very high plastic strains before failure. Since only a few of these boxes are needed, this makes, this generally slow, process an attractive production method. To predict the gas leak of a superplastically formed aluminium sheet in an accurate way, finite element simulations are used in combination with a user-defined material model. This constitutive model couples the leak rate with the void volume fraction. This void volume fraction is then dependent on both the equivalent plastic strain and the applied hydrostatic pressure during the bulge process (backpressure).

  20. DEVELOPMENT OF PLASTICITY MODEL USING NON ASSOCIATED FLOW RULE FOR HCP MATERIALS INCLUDING ZIRCONIUM FOR NUCLEAR APPLICATIONS

    SciTech Connect (OSTI)

    Michael V. Glazoff; Jeong-Whan Yoon

    2013-08-01

    In this report (prepared in collaboration with Prof. Jeong Whan Yoon, Deakin University, Melbourne, Australia) a research effort was made to develop a non associated flow rule for zirconium. Since Zr is a hexagonally close packed (hcp) material, it is impossible to describe its plastic response under arbitrary loading conditions with any associated flow rule (e.g. von Mises). As a result of strong tension compression asymmetry of the yield stress and anisotropy, zirconium displays plastic behavior that requires a more sophisticated approach. Consequently, a new general asymmetric yield function has been developed which accommodates mathematically the four directional anisotropies along 0 degrees, 45 degrees, 90 degrees, and biaxial, under tension and compression. Stress anisotropy has been completely decoupled from the r value by using non associated flow plasticity, where yield function and plastic potential have been treated separately to take care of stress and r value directionalities, respectively. This theoretical development has been verified using Zr alloys at room temperature as an example as these materials have very strong SD (Strength Differential) effect. The proposed yield function reasonably well models the evolution of yield surfaces for a zirconium clock rolled plate during in plane and through thickness compression. It has been found that this function can predict both tension and compression asymmetry mathematically without any numerical tolerance and shows the significant improvement compared to any reported functions. Finally, in the end of the report, a program of further research is outlined aimed at constructing tensorial relationships for the temperature and fluence dependent creep surfaces for Zr, Zircaloy 2, and Zircaloy 4.

  1. State Energy Production Estimates

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Production Estimates 1960 Through 2012 2012 Summary Tables Table P1. Energy Production Estimates in Physical Units, 2012 Alabama 19,455 215,710 9,525 0 Alaska 2,052 351,259...

  2. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Biodiesel production, sales, and stocks million gallons Period B100 production Sales of B100 Sales of B100 included in biodiesel blends Ending stocks of B100 B100 stock change ...

  3. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Inputs to biodiesel production million pounds Period Canola oil Corn oil Cottonseed ... Source: U.S. Energy Information Administration, Form EIA-22M "Monthly Biodiesel Production ...

  4. Energy Efficiency Product Standards

    Broader source: Energy.gov [DOE]

    New Jersey Energy Efficiency Product Standards, enacted in 2005, include minimum standards for eight products, which were preempted by the federal Energy Policy Act of 2005. Future standards, if...

  5. MECS 2006- Forest Products

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Forest Products (NAICS 321, 322) Sector with Total Energy Input, October 2012 (MECS 2006)

  6. Prediction of the Elastic-Plastic Stress/Strain Response for Injection-Molded Long-Fiber Thermoplastics

    SciTech Connect (OSTI)

    Nguyen, Ba N. [Pacific Northwest National Laboratory (PNNL); Kunc, Vlastimil [ORNL; Phelps, Jay H [University of Illinois, Urbana-Champaign; TuckerIII, Charles L. [University of Illinois, Urbana-Champaign; Bapanapalli, Satish K [Pacific Northwest National Laboratory (PNNL)

    2009-01-01

    This paper proposes a model to predict the elastic-plastic response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the elastic-plastic behavior obeying the Ramberg-Osgood relation and J-2 deformation theory of plasticity. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber orientation was predicted using an anisotropic rotary diffusion model recently developed for LFTs. An incremental procedure using Eshelby's equivalent inclusion method and the Mori-Tanaka assumption is proposed to compute the overall stress increment resulting from an overall strain increment for an aligned-fiber composite that contains the same fiber volume fraction and length distribution as the actual composite. The incremental response of the latter is then obtained from the solution for the aligned-fiber composite by averaging over all fiber orientations. Failure during incremental loading is predicted using the Van Hattum-Bernado model. The model is validated against the experimental stress-strain results obtained for long-glass-fiber/polypropylene specimens.

  7. An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brake, M. R. W.

    2015-02-17

    Impact between metallic surfaces is a phenomenon that is ubiquitous in the design and analysis of mechanical systems. We found that to model this phenomenon, a new formulation for frictional elastic–plastic contact between two surfaces is developed. The formulation is developed to consider both frictional, oblique contact (of which normal, frictionless contact is a limiting case) and strain hardening effects. The constitutive model for normal contact is developed as two contiguous loading domains: the elastic regime and a transitionary region in which the plastic response of the materials develops and the elastic response abates. For unloading, the constitutive model ismore » based on an elastic process. Moreover, the normal contact model is assumed to only couple one-way with the frictional/tangential contact model, which results in the normal contact model being independent of the frictional effects. Frictional, tangential contact is modeled using a microslip model that is developed to consider the pressure distribution that develops from the elastic–plastic normal contact. This model is validated through comparisons with experimental results reported in the literature, and is demonstrated to be significantly more accurate than 10 other normal contact models and three other tangential contact models found in the literature.« less

  8. An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts

    SciTech Connect (OSTI)

    Brake, M. R. W.

    2015-02-17

    Impact between metallic surfaces is a phenomenon that is ubiquitous in the design and analysis of mechanical systems. We found that to model this phenomenon, a new formulation for frictional elasticplastic contact between two surfaces is developed. The formulation is developed to consider both frictional, oblique contact (of which normal, frictionless contact is a limiting case) and strain hardening effects. The constitutive model for normal contact is developed as two contiguous loading domains: the elastic regime and a transitionary region in which the plastic response of the materials develops and the elastic response abates. For unloading, the constitutive model is based on an elastic process. Moreover, the normal contact model is assumed to only couple one-way with the frictional/tangential contact model, which results in the normal contact model being independent of the frictional effects. Frictional, tangential contact is modeled using a microslip model that is developed to consider the pressure distribution that develops from the elasticplastic normal contact. This model is validated through comparisons with experimental results reported in the literature, and is demonstrated to be significantly more accurate than 10 other normal contact models and three other tangential contact models found in the literature.

  9. Reducing plastic contamination of the marine environment under MARPOL Annex V: A model for recreational harbors and ports

    SciTech Connect (OSTI)

    Mudar, M.J.

    1991-01-01

    A case study was conducted during Summer, 1990, at the Nantucket Boat Basin, Massachusetts. The purpose of the study was to (1) determine the types and quantities of wastes generated by recreational boaters, particularly plastics and garbage regulated by MARPOL Annex V, (2) develop a model to assist recreational boating facilities to comply with the law and (3) reduce the impact of plastic contamination on the marine environment. An international law which came to force in December, 1988, MARPOL Annex V prohibits the disposal of plastics into the sea and stipulates ocean zones where garbage and other wastes may be disposed. A per capita rate of waste generation by recreational boaters was determined, which will enable recreational harbors and ports to estimate the waste management capacity necessary to meet the requirements of Annex V. In addition to determining the wastestream from the recreational boaters, boaters were surveyed to collect data about pertinent topics including awareness of MARPOL, waste types generated aboard vessels, waste management methods, and how marinas could assist boaters in meeting their waste management needs. As a result of the Boat Basin study, a planning model was developed to assist other recreational harbors and ports to meet the requirements of MARPOL Annex V. Major elements of the model include (1) information Transfer, (2) Waste Management Methods, and (3) the Role of Related Factors such as marina type, and waste characterization and quantification.

  10. Coal production 1988

    SciTech Connect (OSTI)

    Not Available

    1989-11-22

    Coal Production 1988 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1989. 5 figs., 45 tabs.

  11. Coal production 1989

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  12. Mechanisms of Plastic and Fracture Instabilities for Alloy Development of Fusion Materials. Final Project Report for period July 15, 1998 - July 14, 2003

    SciTech Connect (OSTI)

    Ghoniem, N. M.

    2003-07-14

    The main objective of this research was to develop new computational tools for the simulation and analysis of plasticity and fracture mechanisms of fusion materials, and to assist in planning and assessment of corresponding radiation experiments.

  13. Determination of the structural changes by Raman and {sup 13}C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    SciTech Connect (OSTI)

    Cozar, O.; Filip, C.; Tripon, C.; Cioica, N.; Coţa, C.; Nagy, E. M.

    2013-11-13

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  14. Comprehensive Report For Proposed Elevated Temperature Elastic Perfectly Plastic (EPP) Code Cases Representative Example Problems

    SciTech Connect (OSTI)

    Greg L. Hollinger

    2014-06-01

    Background: The current rules in the nuclear section of the ASME Boiler and Pressure Vessel (B&PV) Code , Section III, Subsection NH for the evaluation of strain limits and creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above 1200F (650C)1. To address this issue, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (E-PP) analysis methods and which are expected to be applicable to very high temperatures. The proposed rules for strain limits and creep-fatigue evaluation were initially documented in the technical literature 2, 3, and have been recently revised to incorporate comments and simplify their application. The revised code cases have been developed. Task Objectives: The goal of the Sample Problem task is to exercise these code cases through example problems to demonstrate their feasibility and, also, to identify potential corrections and improvements should problems be encountered. This will provide input to the development of technical background documents for consideration by the applicable B&PV committees considering these code cases for approval. This task has been performed by Hollinger and Pease of Becht Engineering Co., Inc., Nuclear Services Division and a report detailing the results of the E-PP analyses conducted on example problems per the procedures of the E-PP strain limits and creep-fatigue draft code cases is enclosed as Enclosure 1. Conclusions: The feasibility of the application of the E-PP code cases has been demonstrated through example problems that consist of realistic geometry (a nozzle attached to a semi-hemispheric shell with a circumferential weld) and load (pressure; pipe reaction load applied at the end of the nozzle, including axial and shear forces, bending and torsional moments; through-wall transient temperature gradient) and design and operating conditions (Levels A, B and C).

  15. Coal production 1985

    SciTech Connect (OSTI)

    Not Available

    1986-11-07

    Coal Production 1985 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. All data presented in this report, except the total production table presented in the Highlights section, and the demonstrated reserve base data presented in Appendix A, were obtained from form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1985. The data cover 4105 of the 5477 US coal mining operations active in 1985. These mining operations accounted for 99.4% of total US coal production and represented 74.9% of all US coal mining operations in 1985. This report also includes data for the demonstrated reserve vase of coal in the US on January 1, 1985.

  16. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200.degree. C and method of fabrication

    DOE Patents [OSTI]

    Carey, Paul G.; Smith, Patrick M.; Havens, John; Jones, Phil

    1999-01-01

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100.degree. C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired.

  17. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200 C and method of fabrication

    DOE Patents [OSTI]

    Carey, P.G.; Smith, P.M.; Havens, J.H.; Jones, P.

    1999-01-05

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100 C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired. 12 figs.

  18. Measurement of $$K^{+}$$ production in charged-current $$\

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marshall, C. M.

    2016-07-14

    Production of K+ mesons in charged-current νμ interactions on plastic scintillator (CH) is measured using MINERvA exposed to the low-energy NuMI beam at Fermilab. Timing information is used to isolate a sample of 885 charged-current events containing a stopping K+ which decays at rest. The differential cross section in K+ kinetic energy, dσ/dTK, is observed to be relatively flat between 0 and 500 MeV. As a result, its shape is in good agreement with the prediction by the genie neutrino event generator when final-state interactions are included, however the data rate is lower than the prediction by 15%.

  19. Coal Production 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  20. Crude Oil Domestic Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net Inputs of Motor Gasoline Blending Components Net Inputs of RBOB Blending Components Net Inputs of CBOB Blending Components Net Inputs of GTAB Blending Components Net Inputs of All Other Blending Components Net Inputs of Fuel Ethanol Net Production - Finished Motor Gasoline Net Production - Finished Motor Gasoline (Excl.

  1. Microbial production of epoxides

    DOE Patents [OSTI]

    Clark, Thomas R.; Roberto, Francisco F.

    2003-06-10

    A method for microbial production of epoxides and other oxygenated products is disclosed. The method uses a biocatalyst of methanotrophic bacteria cultured in a biphasic medium containing a major amount of a non-aqueous polar solvent. Regeneration of reducing equivalents is carried out by using endogenous hydrogenase activity together with supplied hydrogen gas. This method is especially effective with gaseous substrates and cofactors that result in liquid products.

  2. Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry

    SciTech Connect (OSTI)

    John R. Dorgan

    2005-07-31

    The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. Effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. The PI will be teaching one of the newly developed classes will next Fall (Fall 2006), after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revision. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PIs group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the development of a better educated workforce and citizenry capable of providing technological innovation as a means of growing the economy and providing jobs. In particular, the

  3. Shale Gas Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012...

  4. Procurable Products, Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    printed wiring boards (PWB) using performance and design specifications. Commercial products and services procurement The following items are purchased through Just-In-Time...

  5. Product Efficiency Cases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    granting an Application for Exception filed by Technical Consumer Products, Inc. (TCP) for relief from the provisions of 10 C.F.R. Part 430, Energy Conservation Program:...

  6. substantially reduced production costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    production costs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  7. probabilistic energy production forecasts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy production forecasts - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary ...

  8. Forest Products Industry Profile

    Broader source: Energy.gov [DOE]

    Wood and paper products meet the everyday needs of consumers and businesses. They provide materials essential for communication, education, packaging, construction, shelter, sanitation, and protection.

  9. Furfuryl alcohol cellular product

    DOE Patents [OSTI]

    Sugama, T.; Kukacka, L.E.

    1982-05-26

    Self-extinguishing rigid foam products are formed by polymerization of furfuryl alcohol in the presence of a lightweight, particulate, filler, zinc chloride and selected catalysts.

  10. Forest Products (2010 MECS)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Forest Products Sector (NAICS 321, 322) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014

  11. Weekly Ethanol Production

    Gasoline and Diesel Fuel Update (EIA)

    Area: U.S. Lower 48 (Crude Oil Production) PADD 1 New England Central Atlantic Lower Atlantic PADD 2 Cushing, Oklahoma (Crude Oil Stocks) PADD 3 PADD 4 PADD 5 Alaska (Crude Oil Production) PADD's 4 & 5 Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 07/22/16 07/29/16 08/05/16 08/12/16 08/19/16 08/26/16 View History Crude Oil Production Domestic Production 8,515 8,460

  12. Microsystem product development.

    SciTech Connect (OSTI)

    Polosky, Marc A.; Garcia, Ernest J.

    2006-04-01

    Over the last decade the successful design and fabrication of complex MEMS (MicroElectroMechanical Systems), optical circuits and ASICs have been demonstrated. Packaging and integration processes have lagged behind MEMS research but are rapidly maturing. As packaging processes evolve, a new challenge presents itself, microsystem product development. Product development entails the maturation of the design and all the processes needed to successfully produce a product. Elements such as tooling design, fixtures, gages, testers, inspection, work instructions, process planning, etc., are often overlooked as MEMS engineers concentrate on design, fabrication and packaging processes. Thorough, up-front planning of product development efforts is crucial to the success of any project.

  13. Product Pipeline Reports Tutorial

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum > Petroleum Survey Forms> Petroleum Survey Forms Tutorial Product Pipeline Reports Tutorial Content on this page requires a newer version of Adobe Flash Player. Get Adobe ...

  14. Task 3 -- Pyrolysis of plastic waste. Semi-annual report, April 1--September 30, 1997

    SciTech Connect (OSTI)

    Ness, R.O.; Aulich, T.R.

    1997-09-01

    The Energy and Environmental Research Center is developing a technology for the thermal decomposition of high-organic-content, radionuclide-contaminated mixed wastes and spent (radioactive) ion-exchange resins from the nuclear power industry that will enable the separation and concentration of radionuclides as dry particulate solids and the generation of nonradioactive condensable and noncondensable gas products. Successful application of the technology will enable a significant volume reduction of radioactive waste and the production of an inexpensively disposable nonradioactive organic product. The project objective is to develop and demonstrate the commercial viability of a continuous thermal decomposition process that can fulfill the following requirements: separate radionuclides from radioactive waste streams containing a variety of types and levels of polymers, chlorinated species, and other organics, including rubber, oils, resins, and cellulosic-based materials; concentrate radionuclides in a homogeneous, dry particulate product that can be recovered, handled, and disposed of efficiently and safely; separate and recover any chlorine present (as PVC, chlorinated solvents, or inorganic chlorine) in the contaminated mixed-waste stream; and yield a nonradioactive, low-chlorine-content, condensable organic product that can be economically disposed. Progress is described.

  15. Sunforce Products | Open Energy Information

    Open Energy Info (EERE)

    energy Product: Manufacturer and distributor of solar and wind power generation and battery charging products. References: Sunforce Products1 This article is a stub. You can...

  16. Plastic cap evolution law derived from induced transverse isotropy in dilatational triaxial compression.

    SciTech Connect (OSTI)

    Macon, David James; Brannon, Rebecca Moss; Strack, Otto Eric

    2014-02-01

    , a compliance expression is presented that demonstrated a decrease in lateral stiffness, but leaves axial stiffness unchanged. A demonstration of how the distortion operator could be used in the elastic/plastic analysis of a von Mises surface loaded in TXC is also presented.

  17. Highly lead-loaded red plastic scintillators as an X-ray imaging system for the Laser Mega Joule

    SciTech Connect (OSTI)

    Hamel, M.; Normand, S.; Turk, G.; Darbon, S.

    2011-07-01

    The scope of this project intends to record spatially resolved images of core shape and size of a DT micro-balloon during Inertial Confinement Fusion (ICF) experiments at Laser Mega Joule facility (LMJ). We need to develop an X-ray imaging system which can operate in the radiative background generated by an ignition shot of ICF. The scintillator is a part of the imaging system and has to gather a compromise of scintillating properties (scintillating efficiency, decay time, emission wavelength) so as to both operate in the hard radiative environment and to allow the acquisition of spatially resolved images. Inorganic scintillators cannot be used because no compromise can be found regarding the expected scintillating properties, most of them are not fast enough and emit blue light. Organic scintillators are generally fast, but present low X-ray absorption in the 10 to 40 keV range, that does not permit the acquisition of spatially resolved images. To this aim, we have developed highly lead-loaded and red-fluorescent fast plastic scintillators. Such a combination is not currently available via scintillator suppliers, since they propose only blue-fluorescent plastic scintillators doped with up to 12%w Pb. Thus, incorporation ratio up to 27%w Pb has been reached in our laboratory, which can afford a plastic scintillator with an outstanding Z{sub eff} close to 50. X-rays in the 10 to 40 keV range can thus be detected with a higher probability of photoelectric effect than for classic organic scintillators, such as NE102. The strong orange-red fluorescence can be filtered, so that we can eliminate residual Cerenkov light, generated by {gamma}-ray absorption in glass parts of the imaging system. Decay times of our scintillators evaluated under UV excitation were estimated to be in the range 10 to 13 ns. (authors)

  18. Constitutive response of two plastic-bonded explosive binder materials as a function of temperature and strain-rate

    SciTech Connect (OSTI)

    Cady, C. M.; Blumenthal, W. R.; Gray, G. T. , III; Idar, D. J.

    2004-01-01

    Recently, interest has been shown concerning the mechanical response of plastic-bonded explosives (PBX) and propellants to enable the development of predictive materials models describing the mechanical behavior of these composites. Accordingly, detailed information about the constitutive response is crucial. Compression measurements were conducted on two explosive formulation binders, extruded Estane{trademark} 5703 (hereafter referred to as Estane) and plasticized Estane as a function of temperature from -60 C to +23 C using a specially-designed split Hopkinson pressure bar (strain rate of {approx} 2800 s{sup -1}) and quasi-stattically (strain rates from {approx} 0.001 to 1 s{sup -1}) using a hydraulic load frame. The mechanical response of the Estane was found to exhibit a stronger dependency on strain rate and temperature and higher flow strength for similar test conditions of the materials tested. Plasticized Estane was less sensitively dependent on strain rate and temperature. The visco-elastic recovery of both binders is seen to dominate the mechanical behavior at temperatures above the glass transition temperature (T{sub g}). The binders exhibited increasing elastic loading moduli, E, with increasing strain rate or decreasing temperature, which is similar to other polymeric materials. There is a pronounced shift in the apparent T{sub g} to higher temperatures as the strain rate is increased. At low strain rates the binders exhibit a yield behavior followed by a drop in the flow stress which may or may not recover. At high strain rates the load drop does not occur and the flow stresses level out. A discussion of the Hopkinson bar technique as applied to polymeric or low impedance materials is described in detail.

  19. Central Exclusive Dijet Production

    SciTech Connect (OSTI)

    Dechambre, A.; Cudell, J. R.; Ivanov, I. P.; Hernandez, O.

    2008-08-29

    The ingredients of central exclusive production cross section include large perturbative corrections and soft quantities that must be parametrized and fitted to data. In this talk, we summarize the results of a study of the uncertainties coming from these ingredients, in the case of exclusive dijet production.

  20. Roles of nanoclusters in shear banding and plastic deformation of bulk metallic glasses

    SciTech Connect (OSTI)

    Nieh, T.G.

    2012-07-31

    During the course of this research we published 33 papers in various physics/material journals. We select four representing papers in this report and their results are summarized as follows. I. To study shear banding process, it is pertinent to know the intrinsic shear strain rate within a propagating shear band. To this aim, we used nanoindentation technique to probe the mechanical response of a Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass in locality and found notable pop-in events associated with shear band emission. Using a free volume model and under the situation when temperature and stress/hardness are fixed result in an equation, which predicts that hardness serration caused by pop-in decreases exponentially with the strain rate. Our data are in good agreement with the prediction. The result also predicts that, when strain rate is higher than a critical strain rate of 1700 s^-1, there will be no hardness serration, thereby no pop-in. In other words, multiple shear bandings will take place and material will flow homogeneously. The critical strain rate of 1700 s^-1 can be treated as the intrinsic strain rate within a shear band. We subsequently carried out a simulation study and showed that, if the imposed strain rate was over , the shear band spacing would become so small that the entire sample would virtually behave like one major shear band. Using the datum strain rate =1700 s^-1 and based on a shear band nucleation model proposed by us, the size of a shear-band nucleus in Au-BMG was estimated to be 3 ???? 10^6 atoms, or a sphere of ~30 nm in diameter. II. Inspired by the peculiar result published in a Science article ?¢????Super Plastic Bulk Metallic Glasses at Room Temperature?¢???, we synthesized the Zr-based bulk metallic glass with a composition identical to that in the paper (Zr64.13Cu15.75Ni10.12Al10) and, subsequently, tested in compression at the same slow strain rate (~10^-4 s^-1). We found that the dominant deformation mode is

  1. Texture, residual strain, and plastic deformation around scratches in alloy 600 using synchrotron x-ray Laue micro-diffraction.

    SciTech Connect (OSTI)

    Suominen Fuller, M. L.; Klassen, R. J.; McIntyre, N. S.; Gerson, A. R.; Ramamurthy, S.; King, P. J.; Liu, W.; Univ. of Western Ontario; Univ. of South Australia; Babcock & Wilcox Canada

    2008-01-01

    Deformation around two scratches in Alloy 600 (A600) was studied nondestructively using synchrotron Laue differential aperture X-ray microscopy. The orientation of grains and elastic strain distribution around the scratches were measured. A complex residual deviatoric elastic strain state was found to exist around the scratches. Heavy plastic deformation was observed up to a distance of 20 {micro}m from the scratches. In the region 20-30 {micro}m from the scratches the diffraction spots were heavily streaked and split indicating misoriented dislocation cell structures.

  2. Note: Application of CR-39 plastic nuclear track detectors for quality assurance of mixed oxide fuel pellets

    SciTech Connect (OSTI)

    Kodaira, S. Kurano, M.; Hosogane, T.; Ishikawa, F.; Kageyama, T.; Sato, M.; Kayano, M.; Yasuda, N.

    2015-05-15

    A CR-39 plastic nuclear track detector was used for quality assurance of mixed oxide fuel pellets for next-generation nuclear power plants. Plutonium (Pu) spot sizes and concentrations in the pellets are significant parameters for safe use in the plants. We developed an automatic Pu detection system based on dense α-radiation tracks in the CR-39 detectors. This system would greatly improve image processing time and measurement accuracy, and will be a powerful tool for rapid pellet quality assurance screening.

  3. Plastic deformation in Al (Cu) interconnects stressed by electromigration and studied by synchrotron polychromatic X-ray microdiffraction

    SciTech Connect (OSTI)

    Advanced Light Source; UCLA; Chen, Kai; Chen, Kai; Tamura, Nobumichi; Valek, Bryan C.; Tu, King-Ning

    2008-05-14

    We report here an in-depth synchrotron radiation based white beam X-ray microdiffraction study of plasticity in individual grains of an Al (Cu) interconnect during the early stage of electromigration. The study shows a rearrangement of the geometrically necessary dislocations (GND) in bamboo typed grains during that stage. We find that about 90percent of the GNDs are oriented so that their line direction is the closest to the current flow direction. In non-bamboo typed grains, the Laue peak positions shift, indicating that the grains rotate. An analysis in terms of force directions has been carried out and is consistent with observed electromigration induced grain rotation and bending.

  4. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    and Development Drilling","Mine Production of Uranium ","Uranium Concentrate Production ","Uranium Concentrate Shipments ","Employment " "Year","Drilling (million feet)"," ...

  5. Energy and materials flows in the production of liquid and gaseous oxygen

    SciTech Connect (OSTI)

    Shen, S.; Wolsky, A.M.

    1980-08-01

    Liquid and gaseous oxygen is produced in an energy-intensive air separation processo that also generates nitrogen. More than 65% of the cost of oxygen is attributable to energy costs. Energy use and materials flows are analyzed for various air separation methods. Effective approaches to energy and material conservation in air separation plants include efficient removal of contaminants (carbon dioxide and water), centralization of air products user-industries so that large air separation plants are cost-effective and the energy use in transportation is minimized, and increased production of nitrogen. Air separation plants can produce more than three times more nitrogen than oxygen, but present markets demand, at most, only 1.5 times more. Full utlization of liquid and gaseous nitrogen should be encouraged, so that the wasted separation energy is minimized. There are potential markets for nitrogen in, for example, cryogenic separation of metallic and plastic wastes, cryogenic particle size reduction, and production of ammonia for fertilizer.

  6. Simplified subsea production wellhead

    SciTech Connect (OSTI)

    Lewis, H.R.

    1980-10-28

    A simplified subsea production wellhead which permits (1) pumpdown tool operations for routine well maintenance and (2) vertical entry to the wellbore for major workover operations. The wellhead can be lowered by the production pipeline to a wellhead site on the sea floor. The production wellhead includes a diverter spool for releasably attaching to a subsea well. Pumpdown tools can be used with the diverter spool. If vertical entry of the subsea well is required, the diverter spool can be released, raised and moved horizontally to one side of the subsea well, giving vertical entry. After workover operations, the diverter spool is again moved over the subsea well and reattached.

  7. Fundamentals of energy production

    SciTech Connect (OSTI)

    Harder, E.L.

    1982-01-01

    The theory, methods of conversion, and costs of various energy sources, transformations, and production techniques are summarized. Specific attention is given to carbon-based fuels in liquid, gaseous, and solid forms and processes for producing synthetic fuels. Additional details are presented for hydrogen and biomass technologies, as well as nuclear fuel-based electricity production. Renewable energy methods are dealt with in terms of the potentials and current applications of tidal generating stations, hydroelectric installations, solar thermal and electrical energy production, and the development of large wind turbines. Consideration is given to the environmental effects of individual energy technologies, along with associated costs and transportability of the energy produced.

  8. Product Realization Environment

    Energy Science and Technology Software Center (OSTI)

    1997-06-12

    PRE provides a common framework for information flow and product information management based on Common Object Request Brokering Architecture (CORBA). More specific goals for PRE are using the technologies to improve business practices, to decrease product cycle time, and developing tools to rapidly access specialists (e.g. designers, engineers, scientists) expertise both as preserved knowledge and for real time collaboration. The PRE framework will utilize an object based approach (CORBA) to integrate product development with themore » enterprise by providing software integration for business, engineering, and manufacturing practices across organizational boundaries.« less

  9. Effect of dew point on the formation of surface oxides of twinning-induced plasticity steel

    SciTech Connect (OSTI)

    Kim, Yunkyum; Lee, Joonho; Shin, Kwang-Soo; Jeon, Sun-Ho; Chin, Kwang-Geun

    2014-03-01

    The surface oxides of twinning-induced plasticity (TWIP) steel annealed at 800 C for 43 s were investigated using transmission electron microscopy. During the annealing process, the oxygen potential was controlled by adjusting the dew point in a 15%H{sub 2}N{sub 2} gas atmosphere. It was found that the type of surface oxides formed and the thickness of the oxide layer were determined by the dew point. In a gas mixture with a dew point of ? 20 C, a MnO layer with a thickness of ? 100 nm was formed uniformly on the steel surface. Under the MnO layer, a MnAl{sub 2}O{sub 4} layer with a thickness of ? 15 nm was formed with small Mn{sub 2}SiO{sub 4} particles that measured ? 70 nm in diameter. Approximately 500 nm below the MnAl{sub 2}O{sub 4} layer, Al{sub 2}O{sub 3} was formed at the grain boundaries. On the other hand, in a gas mixture with a dew point of ? 40 C, a MnAl{sub 2}O{sub 4} layer with a thickness of ? 5 nm was formed on most parts of the surface. On some parts of the surface, Mn{sub 2}SiO{sub 4} particles were formed irregularly up to a thickness of ? 50 nm. Approximately 200 nm below the MnAl{sub 2}O{sub 4} layer, Al{sub 2}O{sub 3} was found at the grain boundaries. Thermodynamic calculations were performed to explain the experimental results. The calculations showed that when a{sub O2} > ? 1.26 10{sup ?28}, MnO, MnAl{sub 2}O{sub 4}, and Mn{sub 2}SiO{sub 4} can be formed together, and the major oxide is MnO. When a{sub O2} is in the range of 1.26 10{sup ?28}2.51 10{sup ?31}, MnO is not stable but MnAl{sub 2}O{sub 4} is the major oxide. When a{sub O2} < ? 2.51 10{sup ?31}, only Al{sub 2}O{sub 3} is stable. Consequently, the effective activity of oxygen is considered the dominant factor in determining the type and shape of surface oxides of TWIP steel. - Highlights: The surface oxides of TWIP steel annealed at 800 C were investigated using TEM. The surface oxides were determined by the dew point during the annealing process. The activity

  10. A dislocation-based, strain–gradient–plasticity strengthening model for deformation processed metal–metal composites

    SciTech Connect (OSTI)

    Tian, Liang; Russell, Alan; Anderson, Iver

    2014-01-03

    Deformation processed metal–metal composites (DMMCs) are high-strength, high-electrical conductivity composites developed by severe plastic deformation of two ductile metal phases. The extraordinarily high strength of DMMCs is underestimated using the rule of mixture (or volumetric weighted average) of conventionally work-hardened metals. A dislocation-density-based, strain–gradient–plasticity model is proposed to relate the strain-gradient effect with the geometrically necessary dislocations emanating from the interface to better predict the strength of DMMCs. The model prediction was compared with our experimental findings of Cu–Nb, Cu–Ta, and Al–Ti DMMC systems to verify the applicability of the new model. The results show that this model predicts the strength of DMMCs better than the rule-of-mixture model. The strain-gradient effect, responsible for the exceptionally high strength of heavily cold worked DMMCs, is dominant at large deformation strain since its characteristic microstructure length is comparable with the intrinsic material length.

  11. Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source

    SciTech Connect (OSTI)

    Vanacore, G. M.; Zani, M.; Tagliaferri, A.; Nicotra, G.; Bollani, M.; Bonera, E.; Montalenti, F.; Picco, A.; Boioli, F.; Capellini, G.; Isella, G.; Osmond, J.

    2015-03-14

    The hetero-epitaxial strain relaxation in nano-scale systems plays a fundamental role in shaping their properties. Here, the elastic and plastic relaxation of self-assembled SiGe islands grown by surface-thermal-diffusion from a local Ge solid source on Si(100) are studied by atomic force and transmission electron microscopies, enabling the simultaneous investigation of the strain relaxation in different dynamical regimes. Islands grown by this technique remain dislocation-free and preserve a structural coherence with the substrate for a base width as large as 350 nm. The results indicate that a delay of the plastic relaxation is promoted by an enhanced Si-Ge intermixing, induced by the surface-thermal-diffusion, which takes place already in the SiGe overlayer before the formation of a critical nucleus. The local entropy of mixing dominates, leading the system toward a thermodynamic equilibrium, where non-dislocated, shallow islands with a low residual stress are energetically stable. These findings elucidate the role of the interface dynamics in modulating the lattice distortion at the nano-scale, and highlight the potential use of our growth strategy to create composition and strain-controlled nano-structures for new-generation devices.

  12. A dislocation-based, strain–gradient–plasticity strengthening model for deformation processed metal–metal composites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Liang; Russell, Alan; Anderson, Iver

    2014-01-03

    Deformation processed metal–metal composites (DMMCs) are high-strength, high-electrical conductivity composites developed by severe plastic deformation of two ductile metal phases. The extraordinarily high strength of DMMCs is underestimated using the rule of mixture (or volumetric weighted average) of conventionally work-hardened metals. A dislocation-density-based, strain–gradient–plasticity model is proposed to relate the strain-gradient effect with the geometrically necessary dislocations emanating from the interface to better predict the strength of DMMCs. The model prediction was compared with our experimental findings of Cu–Nb, Cu–Ta, and Al–Ti DMMC systems to verify the applicability of the new model. The results show that this model predicts themore » strength of DMMCs better than the rule-of-mixture model. The strain-gradient effect, responsible for the exceptionally high strength of heavily cold worked DMMCs, is dominant at large deformation strain since its characteristic microstructure length is comparable with the intrinsic material length.« less

  13. SBOT TENNESSEE OAK RIDGE INSTITUTE SCIENCE AND EDUCATION POC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Miscellaneous Chemical Product and Preparation ... Services 541370 Graphic Design Services 541430 Other ... 541618 Research and Development in Biotechnology 541711 ...

  14. Power production and ADS

    SciTech Connect (OSTI)

    Raja, Rajendran; /Fermilab

    2010-03-01

    We describe the power production process in Accelerator Driven Sub-critical systems employing Thorium-232 and Uranium-238 as fuel and examine the demands on the power of the accelerator required.

  15. Bacterial Fermentative Hydrogen Production

    Broader source: Energy.gov [DOE]

    Presentation by Melanie Mormile, Missouri University of Science and Technology, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  16. Biomass Energy Production Incentive

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2007 South Carolina enacted the Energy Freedom and Rural Development Act, which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt-h...

  17. Offshore Development and Production

    Reports and Publications (EIA)

    1999-01-01

    Natural gas production in the federal offshore has increased substantially in recent years, gaining more than 400 billion cubic feet between 1993 and 1997 to a level of 5.14 trillion cubic feet.

  18. Forest products technologies

    SciTech Connect (OSTI)

    None, None

    2006-07-18

    Report highlights DOE Industrial Technology Program co-funded R&D resulting in commercial energy-efficient technologies and emerging technologies helping the forest products industry save energy.

  19. Pretreated densified biomass products

    DOE Patents [OSTI]

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  20. Ethanol production from lignocellulose

    DOE Patents [OSTI]

    Ingram, Lonnie O.; Wood, Brent E.

    2001-01-01

    This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

  1. MTBE Production Economics

    Gasoline and Diesel Fuel Update (EIA)

    MTBE Production Economics Tancred C. M. Lidderdale Contents 1. Summary 2. MTBE Production Costs 3. Relationship between price of MTBE and Reformulated Gasoline 4. Influence of Natural Gas Prices on the Gasoline Market 5. Regression Results 6. Data Sources 7. End Notes 1. Summary Last year the price of MTBE (methyl tertiary butyl ether) increased dramatically on two occasions (Figure 1) (see Data Sources at end of article.): 1. Between April and June 2000, the price (U.S. Gulf Coast waterborne

  2. Drilling Productivity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Drilling Productivity Report Report Background and Methodological Overview August 2014 Updated March 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Drilling Productivity Report: Report Background and Methodological Overview i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data,

  3. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Biodiesel Production Report With data for June 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 August 2016 U.S. Energy Information Administration | Monthly Biodiesel Production Report This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  4. PRODUCTION OF TRITIUM

    DOE Patents [OSTI]

    Jenks, G.H.; Shapiro, E.M.; Elliott, N.; Cannon, C.V.

    1963-02-26

    This invention relates to a process for the production of tritium by subjecting comminuted solid lithium fluoride containing the lithium isotope of atomic mass number 6 to neutron radiation in a self-sustaining neutronic reactor. The lithium fiuoride is heated to above 450 deg C. in an evacuated vacuum-tight container during radiation. Gaseous radiation products are withdrawn and passed through a palladium barrier to recover tritium. (AEC)

  5. LENNOX HEARTH PRODUCTS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LENNOX HEARTH PRODUCTS April 1, 2011 Mr. Daniel Cohen U.S. Department of Energy Assistant General Council for Legislation, Regulation and Energy Efficiency Office of the General Counsel 1000 Independence Avenue, SW Washington, DC 20585 RE: Regulatory Burden RFI Dear Mr. Cohen: Lennox Hearth Products (LHP) is hereby responding to the Department of Energy's (DOE's) request for information - published at 76 Fed. Reg. 6123 (February 3, 2011) - seeking comment and information to assist the DOE in

  6. Coal production, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Coal production in the United States in 1991 declined to a total of 996 million short tons, ending the 6-year upward trend in coal production that began in 1985. The 1991 figure is 33 million short tons below the record level of 1.029 billion short tons produced in 1990 (Table 1). Tables 2 through 33 in this report include data from mining operations that produced, prepared, and processed 10,000 or more short tons during the year. These mines yielded 993 million short tons, or 99.7 percent of the total coal production in 1991, and their summary statistics are discussed below. The majority of US coal (587 million short tons) was produced by surface mining (Table 2). Over half of all US surface mine production occurred in the Western Region, though the 60 surface mines in this area accounted for only 5 percent of the total US surface mines. The high share of production was due to the very large surface mines in Wyoming, Texas and Montana. Nearly three quarters of underground production was in the Appalachian Region, which accounted for 92 percent of underground mines. Continuous mining methods produced the most coal among those underground operations that responded. Of the 406 million short tons, 59 percent (239 million short tons) was produced by continuous mining methods, followed by longwall (29 percent, or 119 million short tons), and conventional methods (11 percent, or 46 million short tons).

  7. Finite element modeling of indentation-induced superelastic effect using a three-dimensional constitutive model for shape memory materials with plasticity

    SciTech Connect (OSTI)

    Zhang, Yijun; Cheng, Yang-Tse; Grummon, David S.

    2007-03-01

    Indentation-induced shape memory and superelastic effects are recently discovered thermo-mechanical behaviors that may find important applications in many areas of science and engineering. Theoretical understanding of these phenomena is challenging because both martensitic phase transformation and slip plasticity exist under complex contact loading conditions. In this paper, we develop a three-dimensional constitutive model of shape memory alloys with plasticity. Spherical indentation-induced superelasticity in a NiTi shape memory alloy was simulated and compared to experimental results on load-displacement curves and recovery ratios. We show that shallow indents have complete recovery upon unloading, where the size of the phase transformation region is about two times the contact radius. Deep indents have only partial recovery when plastic deformation becomes more prevalent in the indent-affected zone.

  8. Novel Material for Efficient and Low-cost Separation of Gases for Fuels and Plastics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid, Porous Material for Improved Efficiency of Gasoline Production and Low-Cost and Non-Toxic Enhancement of Gasoline Quality Herm, Z. R.; Wiers, B, M.; Mason, J. A.; van Baten, J. M.; Hudson, M. R.; Zajdel, P.; Brown, C. M.; Masciocchi, N.; Krishna, R.; Long, J. R. Science 2013, 340, 960-964. Top: Schematic of the proposed hexane isomer separation. The numbers next to the hexane isomers are octane numbers. Bottom Right: The crystal structure of Fe 2 (BDP) 3 showing Fe(orange), N(blue), and

  9. Technology's Impact on Production

    SciTech Connect (OSTI)

    Rachel Amann; Ellis Deweese; Deborah Shipman

    2009-06-30

    As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

  10. "Period","Annual Production Capacity",,"Monthly B100 Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel production capacity and production" "million gallons" "Period","Annual ... is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  11. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    2. U.S. uranium mine production and number of mines and sources, 2003-15 Production / Mining method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Underground (estimated contained thousand pounds U3O8) W W W W W W W W W W W W W Open Pit (estimated contained thousand pounds U3O8) 0 0 0 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching (thousand pounds U3O8) W W 2,681 4,259 W W W W W W W W W Other1 (thousand pounds U3O8) W W W W W W W W W W W W W Total Mine Production (thousand pounds U3O8)

  12. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    9. Summary production statistics of the U.S. uranium industry, 1993-2015 Year Exploration and development surface drilling (million feet) Exploration and development drilling expenditures 1 (million dollars) Mine production of uranium (million pounds U3O8) Uranium concentrate production (million pounds U3O8) Uranium concentrate shipments (million pounds U3O8) Employment (person-years) 1993 1.1 5.7 2.1 3.1 3.4 871 1994 0.7 1.1 2.5 3.4 6.3 980 1995 1.3 2.6 3.5 6.0 5.5 1,107 1996 3.0 7.2 4.7 6.3

  13. State Energy Production Estimates

    Gasoline and Diesel Fuel Update (EIA)

    Production Estimates 1960 Through 2014 2014 Summary Tables U.S. Energy Information Administration | State Energy Data 2014: Production 1 Table P1. Energy Production Estimates in Physical Units, 2014 Alabama 16,377 181,054 9,828 0 Alaska 1,502 345,331 181,175 0 Arizona 8,051 106 56 1,044 Arkansas 94 1,123,678 6,845 0 California 0 252,718 204,269 4,462 Colorado 24,007 1,631,391 95,192 3,133 Connecticut 0 0 0 0 Delaware 0 0 0 0 District of Columbia 0 0 0 0 Florida 0 369 2,227 0 Georgia 0 0 0 2,517

  14. Coal production, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-12-05

    Coal Production 1987 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. The data presented in this report were collected and published by the Energy Information Administration (EIA), to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (P.L. 93-275) as amended. The 1987 coal production and related data presented in this report were obtained from Form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1987. This survey originated at the Bureau of Mines, US Department of the Interior. In 1977, the responsibility for taking the survey was transferred to the EIA under the Department of Energy Organization Act (P.L. 95-91). The data cover 3667 of the 4770 US coal mining operations active in 1987. These mining operations accounted for over 99 percent of total US coal production and represented 77 percent of all US coal mining operations in 1987. This issue is the 12th annual report published by EIA and continues the series formerly included as a chapter in the Minerals Yearbook published by the Bureau of Mines. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1988. This is the eighth annual summary on minable coal, pursuant to Section 801 of Public Law 95-620. 18 figs., 105 tabs.

  15. Fuel Ethanol Oxygenate Production

    Gasoline and Diesel Fuel Update (EIA)

    Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 30,319 28,678 30,812 28,059 30,228 30,258 1981-2016 East Coast (PADD 1) 641 698 804 725 734

  16. Gas production apparatus

    DOE Patents [OSTI]

    Winsche, Warren E.; Miles, Francis T.; Powell, James R.

    1976-01-01

    This invention relates generally to the production of gases, and more particularly to the production of tritium gas in a reliable long operating lifetime systems that employs solid lithium to overcome the heretofore known problems of material compatibility and corrosion, etc., with liquid metals. The solid lithium is irradiated by neutrons inside low activity means containing a positive (+) pressure gas stream for removing and separating the tritium from the solid lithium, and these means are contained in a low activity shell containing a thermal insulator and a neutron moderator.

  17. PRODUCTION OF PURIFIED URANIUM

    DOE Patents [OSTI]

    Burris, L. Jr.; Knighton, J.B.; Feder, H.M.

    1960-01-26

    A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.

  18. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Table 9. Summary production statistics of the U.S. ...

  19. Weekly Coal Production Estimation Methodology

    Gasoline and Diesel Fuel Update (EIA)

    Weekly Coal Production Estimation Methodology Step 1 (Estimate total amount of weekly U.S. coal production) U.S. coal production for the current week is estimated using a ratio ...

  20. SHIELDING AND DETECTOR RESPONSE CALCULATIONS PERTAINING TO CATEGORY 1 QUANTITIES OF PLUTONIUM AND HAND-HELD PLASTIC SCINTILLATORS

    SciTech Connect (OSTI)

    Couture, A.

    2013-06-07

    Nuclear facilities sometimes use hand-held plastic scintillator detectors to detect attempts to divert special nuclear material in situations where portal monitors are impractical. MCNP calculations have been performed to determine the neutron and gamma radiation field arising from a Category I quantity of weapons-grade plutonium in various shielding configurations. The shields considered were composed of combinations of lead and high-density polyethylene such that the mass of the plutonium plus shield was 22.7 kilograms. Monte-Carlo techniques were also used to determine the detector response to each of the shielding configurations. The detector response calculations were verified using field measurements of high-, medium-, and low- energy gamma-ray sources as well as a Cf-252 neutron source.